Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * File:	mca.c
   4 * Purpose:	Generic MCA handling layer
   5 *
   6 * Copyright (C) 2003 Hewlett-Packard Co
   7 *	David Mosberger-Tang <davidm@hpl.hp.com>
   8 *
   9 * Copyright (C) 2002 Dell Inc.
  10 * Copyright (C) Matt Domsch <Matt_Domsch@dell.com>
  11 *
  12 * Copyright (C) 2002 Intel
  13 * Copyright (C) Jenna Hall <jenna.s.hall@intel.com>
  14 *
  15 * Copyright (C) 2001 Intel
  16 * Copyright (C) Fred Lewis <frederick.v.lewis@intel.com>
  17 *
  18 * Copyright (C) 2000 Intel
  19 * Copyright (C) Chuck Fleckenstein <cfleck@co.intel.com>
  20 *
  21 * Copyright (C) 1999, 2004-2008 Silicon Graphics, Inc.
  22 * Copyright (C) Vijay Chander <vijay@engr.sgi.com>
  23 *
  24 * Copyright (C) 2006 FUJITSU LIMITED
  25 * Copyright (C) Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
  26 *
  27 * 2000-03-29 Chuck Fleckenstein <cfleck@co.intel.com>
  28 *	      Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
  29 *	      added min save state dump, added INIT handler.
  30 *
  31 * 2001-01-03 Fred Lewis <frederick.v.lewis@intel.com>
  32 *	      Added setup of CMCI and CPEI IRQs, logging of corrected platform
  33 *	      errors, completed code for logging of corrected & uncorrected
  34 *	      machine check errors, and updated for conformance with Nov. 2000
  35 *	      revision of the SAL 3.0 spec.
  36 *
  37 * 2002-01-04 Jenna Hall <jenna.s.hall@intel.com>
  38 *	      Aligned MCA stack to 16 bytes, added platform vs. CPU error flag,
  39 *	      set SAL default return values, changed error record structure to
  40 *	      linked list, added init call to sal_get_state_info_size().
  41 *
  42 * 2002-03-25 Matt Domsch <Matt_Domsch@dell.com>
  43 *	      GUID cleanups.
  44 *
  45 * 2003-04-15 David Mosberger-Tang <davidm@hpl.hp.com>
  46 *	      Added INIT backtrace support.
  47 *
  48 * 2003-12-08 Keith Owens <kaos@sgi.com>
  49 *	      smp_call_function() must not be called from interrupt context
  50 *	      (can deadlock on tasklist_lock).
  51 *	      Use keventd to call smp_call_function().
  52 *
  53 * 2004-02-01 Keith Owens <kaos@sgi.com>
  54 *	      Avoid deadlock when using printk() for MCA and INIT records.
  55 *	      Delete all record printing code, moved to salinfo_decode in user
  56 *	      space.  Mark variables and functions static where possible.
  57 *	      Delete dead variables and functions.  Reorder to remove the need
  58 *	      for forward declarations and to consolidate related code.
  59 *
  60 * 2005-08-12 Keith Owens <kaos@sgi.com>
  61 *	      Convert MCA/INIT handlers to use per event stacks and SAL/OS
  62 *	      state.
  63 *
  64 * 2005-10-07 Keith Owens <kaos@sgi.com>
  65 *	      Add notify_die() hooks.
  66 *
  67 * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
  68 *	      Add printing support for MCA/INIT.
  69 *
  70 * 2007-04-27 Russ Anderson <rja@sgi.com>
  71 *	      Support multiple cpus going through OS_MCA in the same event.
  72 */
  73#include <linux/jiffies.h>
  74#include <linux/types.h>
  75#include <linux/init.h>
  76#include <linux/sched/signal.h>
  77#include <linux/sched/debug.h>
  78#include <linux/sched/task.h>
  79#include <linux/interrupt.h>
  80#include <linux/irq.h>
  81#include <linux/memblock.h>
  82#include <linux/acpi.h>
  83#include <linux/timer.h>
  84#include <linux/module.h>
  85#include <linux/kernel.h>
  86#include <linux/smp.h>
  87#include <linux/workqueue.h>
  88#include <linux/cpumask.h>
  89#include <linux/kdebug.h>
  90#include <linux/cpu.h>
  91#include <linux/gfp.h>
  92
  93#include <asm/delay.h>
  94#include <asm/efi.h>
  95#include <asm/meminit.h>
  96#include <asm/page.h>
  97#include <asm/ptrace.h>
  98#include <asm/sal.h>
  99#include <asm/mca.h>
 100#include <asm/mca_asm.h>
 101#include <asm/kexec.h>
 102
 103#include <asm/irq.h>
 104#include <asm/hw_irq.h>
 105#include <asm/tlb.h>
 106
 107#include "mca_drv.h"
 108#include "entry.h"
 109#include "irq.h"
 110
 111#if defined(IA64_MCA_DEBUG_INFO)
 112# define IA64_MCA_DEBUG(fmt...) printk(fmt)
 113#else
 114# define IA64_MCA_DEBUG(fmt...) do {} while (0)
 115#endif
 116
 117#define NOTIFY_INIT(event, regs, arg, spin)				\
 118do {									\
 119	if ((notify_die((event), "INIT", (regs), (arg), 0, 0)		\
 120			== NOTIFY_STOP) && ((spin) == 1))		\
 121		ia64_mca_spin(__func__);				\
 122} while (0)
 123
 124#define NOTIFY_MCA(event, regs, arg, spin)				\
 125do {									\
 126	if ((notify_die((event), "MCA", (regs), (arg), 0, 0)		\
 127			== NOTIFY_STOP) && ((spin) == 1))		\
 128		ia64_mca_spin(__func__);				\
 129} while (0)
 130
 131/* Used by mca_asm.S */
 132DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
 133DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
 134DEFINE_PER_CPU(u64, ia64_mca_pal_pte);	    /* PTE to map PAL code */
 135DEFINE_PER_CPU(u64, ia64_mca_pal_base);    /* vaddr PAL code granule */
 136DEFINE_PER_CPU(u64, ia64_mca_tr_reload);   /* Flag for TR reload */
 137
 138unsigned long __per_cpu_mca[NR_CPUS];
 139
 140/* In mca_asm.S */
 141extern void			ia64_os_init_dispatch_monarch (void);
 142extern void			ia64_os_init_dispatch_slave (void);
 143
 144static int monarch_cpu = -1;
 145
 146static ia64_mc_info_t		ia64_mc_info;
 147
 148#define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
 149#define MIN_CPE_POLL_INTERVAL (2*60*HZ)  /* 2 minutes */
 150#define CMC_POLL_INTERVAL     (1*60*HZ)  /* 1 minute */
 151#define CPE_HISTORY_LENGTH    5
 152#define CMC_HISTORY_LENGTH    5
 153
 
 154static struct timer_list cpe_poll_timer;
 
 155static struct timer_list cmc_poll_timer;
 156/*
 157 * This variable tells whether we are currently in polling mode.
 158 * Start with this in the wrong state so we won't play w/ timers
 159 * before the system is ready.
 160 */
 161static int cmc_polling_enabled = 1;
 162
 163/*
 164 * Clearing this variable prevents CPE polling from getting activated
 165 * in mca_late_init.  Use it if your system doesn't provide a CPEI,
 166 * but encounters problems retrieving CPE logs.  This should only be
 167 * necessary for debugging.
 168 */
 169static int cpe_poll_enabled = 1;
 170
 171extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
 172
 173static int mca_init __initdata;
 174
 175/*
 176 * limited & delayed printing support for MCA/INIT handler
 177 */
 178
 179#define mprintk(fmt...) ia64_mca_printk(fmt)
 180
 181#define MLOGBUF_SIZE (512+256*NR_CPUS)
 182#define MLOGBUF_MSGMAX 256
 183static char mlogbuf[MLOGBUF_SIZE];
 184static DEFINE_SPINLOCK(mlogbuf_wlock);	/* mca context only */
 185static DEFINE_SPINLOCK(mlogbuf_rlock);	/* normal context only */
 186static unsigned long mlogbuf_start;
 187static unsigned long mlogbuf_end;
 188static unsigned int mlogbuf_finished = 0;
 189static unsigned long mlogbuf_timestamp = 0;
 190
 191static int loglevel_save = -1;
 192#define BREAK_LOGLEVEL(__console_loglevel)		\
 193	oops_in_progress = 1;				\
 194	if (loglevel_save < 0)				\
 195		loglevel_save = __console_loglevel;	\
 196	__console_loglevel = 15;
 197
 198#define RESTORE_LOGLEVEL(__console_loglevel)		\
 199	if (loglevel_save >= 0) {			\
 200		__console_loglevel = loglevel_save;	\
 201		loglevel_save = -1;			\
 202	}						\
 203	mlogbuf_finished = 0;				\
 204	oops_in_progress = 0;
 205
 206/*
 207 * Push messages into buffer, print them later if not urgent.
 208 */
 209void ia64_mca_printk(const char *fmt, ...)
 210{
 211	va_list args;
 212	int printed_len;
 213	char temp_buf[MLOGBUF_MSGMAX];
 214	char *p;
 215
 216	va_start(args, fmt);
 217	printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args);
 218	va_end(args);
 219
 220	/* Copy the output into mlogbuf */
 221	if (oops_in_progress) {
 222		/* mlogbuf was abandoned, use printk directly instead. */
 223		printk("%s", temp_buf);
 224	} else {
 225		spin_lock(&mlogbuf_wlock);
 226		for (p = temp_buf; *p; p++) {
 227			unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE;
 228			if (next != mlogbuf_start) {
 229				mlogbuf[mlogbuf_end] = *p;
 230				mlogbuf_end = next;
 231			} else {
 232				/* buffer full */
 233				break;
 234			}
 235		}
 236		mlogbuf[mlogbuf_end] = '\0';
 237		spin_unlock(&mlogbuf_wlock);
 238	}
 239}
 240EXPORT_SYMBOL(ia64_mca_printk);
 241
 242/*
 243 * Print buffered messages.
 244 *  NOTE: call this after returning normal context. (ex. from salinfod)
 245 */
 246void ia64_mlogbuf_dump(void)
 247{
 248	char temp_buf[MLOGBUF_MSGMAX];
 249	char *p;
 250	unsigned long index;
 251	unsigned long flags;
 252	unsigned int printed_len;
 253
 254	/* Get output from mlogbuf */
 255	while (mlogbuf_start != mlogbuf_end) {
 256		temp_buf[0] = '\0';
 257		p = temp_buf;
 258		printed_len = 0;
 259
 260		spin_lock_irqsave(&mlogbuf_rlock, flags);
 261
 262		index = mlogbuf_start;
 263		while (index != mlogbuf_end) {
 264			*p = mlogbuf[index];
 265			index = (index + 1) % MLOGBUF_SIZE;
 266			if (!*p)
 267				break;
 268			p++;
 269			if (++printed_len >= MLOGBUF_MSGMAX - 1)
 270				break;
 271		}
 272		*p = '\0';
 273		if (temp_buf[0])
 274			printk("%s", temp_buf);
 275		mlogbuf_start = index;
 276
 277		mlogbuf_timestamp = 0;
 278		spin_unlock_irqrestore(&mlogbuf_rlock, flags);
 279	}
 280}
 281EXPORT_SYMBOL(ia64_mlogbuf_dump);
 282
 283/*
 284 * Call this if system is going to down or if immediate flushing messages to
 285 * console is required. (ex. recovery was failed, crash dump is going to be
 286 * invoked, long-wait rendezvous etc.)
 287 *  NOTE: this should be called from monarch.
 288 */
 289static void ia64_mlogbuf_finish(int wait)
 290{
 291	BREAK_LOGLEVEL(console_loglevel);
 292
 
 293	ia64_mlogbuf_dump();
 294	printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, "
 295		"MCA/INIT might be dodgy or fail.\n");
 296
 297	if (!wait)
 298		return;
 299
 300	/* wait for console */
 301	printk("Delaying for 5 seconds...\n");
 302	udelay(5*1000000);
 303
 304	mlogbuf_finished = 1;
 305}
 306
 307/*
 308 * Print buffered messages from INIT context.
 309 */
 310static void ia64_mlogbuf_dump_from_init(void)
 311{
 312	if (mlogbuf_finished)
 313		return;
 314
 315	if (mlogbuf_timestamp &&
 316			time_before(jiffies, mlogbuf_timestamp + 30 * HZ)) {
 317		printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT "
 318			" and the system seems to be messed up.\n");
 319		ia64_mlogbuf_finish(0);
 320		return;
 321	}
 322
 323	if (!spin_trylock(&mlogbuf_rlock)) {
 324		printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. "
 325			"Generated messages other than stack dump will be "
 326			"buffered to mlogbuf and will be printed later.\n");
 327		printk(KERN_ERR "INIT: If messages would not printed after "
 328			"this INIT, wait 30sec and assert INIT again.\n");
 329		if (!mlogbuf_timestamp)
 330			mlogbuf_timestamp = jiffies;
 331		return;
 332	}
 333	spin_unlock(&mlogbuf_rlock);
 334	ia64_mlogbuf_dump();
 335}
 336
 337static inline void
 338ia64_mca_spin(const char *func)
 339{
 340	if (monarch_cpu == smp_processor_id())
 341		ia64_mlogbuf_finish(0);
 342	mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
 343	while (1)
 344		cpu_relax();
 345}
 346/*
 347 * IA64_MCA log support
 348 */
 349#define IA64_MAX_LOGS		2	/* Double-buffering for nested MCAs */
 350#define IA64_MAX_LOG_TYPES      4   /* MCA, INIT, CMC, CPE */
 351
 352typedef struct ia64_state_log_s
 353{
 354	spinlock_t	isl_lock;
 355	int		isl_index;
 356	unsigned long	isl_count;
 357	ia64_err_rec_t  *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
 358} ia64_state_log_t;
 359
 360static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
 361
 
 
 
 
 
 362#define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
 363#define IA64_LOG_LOCK(it)      spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
 364#define IA64_LOG_UNLOCK(it)    spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
 365#define IA64_LOG_NEXT_INDEX(it)    ia64_state_log[it].isl_index
 366#define IA64_LOG_CURR_INDEX(it)    1 - ia64_state_log[it].isl_index
 367#define IA64_LOG_INDEX_INC(it) \
 368    {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
 369    ia64_state_log[it].isl_count++;}
 370#define IA64_LOG_INDEX_DEC(it) \
 371    ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
 372#define IA64_LOG_NEXT_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
 373#define IA64_LOG_CURR_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
 374#define IA64_LOG_COUNT(it)         ia64_state_log[it].isl_count
 375
 376static inline void ia64_log_allocate(int it, u64 size)
 377{
 378	ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] =
 379		(ia64_err_rec_t *)memblock_alloc(size, SMP_CACHE_BYTES);
 380	if (!ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)])
 381		panic("%s: Failed to allocate %llu bytes\n", __func__, size);
 382
 383	ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] =
 384		(ia64_err_rec_t *)memblock_alloc(size, SMP_CACHE_BYTES);
 385	if (!ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)])
 386		panic("%s: Failed to allocate %llu bytes\n", __func__, size);
 387}
 388
 389/*
 390 * ia64_log_init
 391 *	Reset the OS ia64 log buffer
 392 * Inputs   :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
 393 * Outputs	:	None
 394 */
 395static void __init
 396ia64_log_init(int sal_info_type)
 397{
 398	u64	max_size = 0;
 399
 400	IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
 401	IA64_LOG_LOCK_INIT(sal_info_type);
 402
 403	// SAL will tell us the maximum size of any error record of this type
 404	max_size = ia64_sal_get_state_info_size(sal_info_type);
 405	if (!max_size)
 406		/* alloc_bootmem() doesn't like zero-sized allocations! */
 407		return;
 408
 409	// set up OS data structures to hold error info
 410	ia64_log_allocate(sal_info_type, max_size);
 
 
 411}
 412
 413/*
 414 * ia64_log_get
 415 *
 416 *	Get the current MCA log from SAL and copy it into the OS log buffer.
 417 *
 418 *  Inputs  :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
 419 *              irq_safe    whether you can use printk at this point
 420 *  Outputs :   size        (total record length)
 421 *              *buffer     (ptr to error record)
 422 *
 423 */
 424static u64
 425ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
 426{
 427	sal_log_record_header_t     *log_buffer;
 428	u64                         total_len = 0;
 429	unsigned long               s;
 430
 431	IA64_LOG_LOCK(sal_info_type);
 432
 433	/* Get the process state information */
 434	log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
 435
 436	total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
 437
 438	if (total_len) {
 439		IA64_LOG_INDEX_INC(sal_info_type);
 440		IA64_LOG_UNLOCK(sal_info_type);
 441		if (irq_safe) {
 442			IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. Record length = %ld\n",
 443				       __func__, sal_info_type, total_len);
 444		}
 445		*buffer = (u8 *) log_buffer;
 446		return total_len;
 447	} else {
 448		IA64_LOG_UNLOCK(sal_info_type);
 449		return 0;
 450	}
 451}
 452
 453/*
 454 *  ia64_mca_log_sal_error_record
 455 *
 456 *  This function retrieves a specified error record type from SAL
 457 *  and wakes up any processes waiting for error records.
 458 *
 459 *  Inputs  :   sal_info_type   (Type of error record MCA/CMC/CPE)
 460 *              FIXME: remove MCA and irq_safe.
 461 */
 462static void
 463ia64_mca_log_sal_error_record(int sal_info_type)
 464{
 465	u8 *buffer;
 466	sal_log_record_header_t *rh;
 467	u64 size;
 468	int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
 469#ifdef IA64_MCA_DEBUG_INFO
 470	static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
 471#endif
 472
 473	size = ia64_log_get(sal_info_type, &buffer, irq_safe);
 474	if (!size)
 475		return;
 476
 477	salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
 478
 479	if (irq_safe)
 480		IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
 481			smp_processor_id(),
 482			sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
 483
 484	/* Clear logs from corrected errors in case there's no user-level logger */
 485	rh = (sal_log_record_header_t *)buffer;
 486	if (rh->severity == sal_log_severity_corrected)
 487		ia64_sal_clear_state_info(sal_info_type);
 488}
 489
 490/*
 491 * search_mca_table
 492 *  See if the MCA surfaced in an instruction range
 493 *  that has been tagged as recoverable.
 494 *
 495 *  Inputs
 496 *	first	First address range to check
 497 *	last	Last address range to check
 498 *	ip	Instruction pointer, address we are looking for
 499 *
 500 * Return value:
 501 *      1 on Success (in the table)/ 0 on Failure (not in the  table)
 502 */
 503int
 504search_mca_table (const struct mca_table_entry *first,
 505                const struct mca_table_entry *last,
 506                unsigned long ip)
 507{
 508        const struct mca_table_entry *curr;
 509        u64 curr_start, curr_end;
 510
 511        curr = first;
 512        while (curr <= last) {
 513                curr_start = (u64) &curr->start_addr + curr->start_addr;
 514                curr_end = (u64) &curr->end_addr + curr->end_addr;
 515
 516                if ((ip >= curr_start) && (ip <= curr_end)) {
 517                        return 1;
 518                }
 519                curr++;
 520        }
 521        return 0;
 522}
 523
 524/* Given an address, look for it in the mca tables. */
 525int mca_recover_range(unsigned long addr)
 526{
 527	extern struct mca_table_entry __start___mca_table[];
 528	extern struct mca_table_entry __stop___mca_table[];
 529
 530	return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
 531}
 532EXPORT_SYMBOL_GPL(mca_recover_range);
 533
 
 
 534int cpe_vector = -1;
 535int ia64_cpe_irq = -1;
 536
 537static irqreturn_t
 538ia64_mca_cpe_int_handler (int cpe_irq, void *arg)
 539{
 540	static unsigned long	cpe_history[CPE_HISTORY_LENGTH];
 541	static int		index;
 542	static DEFINE_SPINLOCK(cpe_history_lock);
 543
 544	IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
 545		       __func__, cpe_irq, smp_processor_id());
 546
 547	/* SAL spec states this should run w/ interrupts enabled */
 548	local_irq_enable();
 549
 550	spin_lock(&cpe_history_lock);
 551	if (!cpe_poll_enabled && cpe_vector >= 0) {
 552
 553		int i, count = 1; /* we know 1 happened now */
 554		unsigned long now = jiffies;
 555
 556		for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
 557			if (now - cpe_history[i] <= HZ)
 558				count++;
 559		}
 560
 561		IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
 562		if (count >= CPE_HISTORY_LENGTH) {
 563
 564			cpe_poll_enabled = 1;
 565			spin_unlock(&cpe_history_lock);
 566			disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
 567
 568			/*
 569			 * Corrected errors will still be corrected, but
 570			 * make sure there's a log somewhere that indicates
 571			 * something is generating more than we can handle.
 572			 */
 573			printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
 574
 575			mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
 576
 577			/* lock already released, get out now */
 578			goto out;
 579		} else {
 580			cpe_history[index++] = now;
 581			if (index == CPE_HISTORY_LENGTH)
 582				index = 0;
 583		}
 584	}
 585	spin_unlock(&cpe_history_lock);
 586out:
 587	/* Get the CPE error record and log it */
 588	ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
 589
 590	local_irq_disable();
 591
 592	return IRQ_HANDLED;
 593}
 594
 
 
 
 595/*
 596 * ia64_mca_register_cpev
 597 *
 598 *  Register the corrected platform error vector with SAL.
 599 *
 600 *  Inputs
 601 *      cpev        Corrected Platform Error Vector number
 602 *
 603 *  Outputs
 604 *      None
 605 */
 606void
 607ia64_mca_register_cpev (int cpev)
 608{
 609	/* Register the CPE interrupt vector with SAL */
 610	struct ia64_sal_retval isrv;
 611
 612	isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
 613	if (isrv.status) {
 614		printk(KERN_ERR "Failed to register Corrected Platform "
 615		       "Error interrupt vector with SAL (status %ld)\n", isrv.status);
 616		return;
 617	}
 618
 619	IA64_MCA_DEBUG("%s: corrected platform error "
 620		       "vector %#x registered\n", __func__, cpev);
 621}
 
 622
 623/*
 624 * ia64_mca_cmc_vector_setup
 625 *
 626 *  Setup the corrected machine check vector register in the processor.
 627 *  (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
 628 *  This function is invoked on a per-processor basis.
 629 *
 630 * Inputs
 631 *      None
 632 *
 633 * Outputs
 634 *	None
 635 */
 636void
 637ia64_mca_cmc_vector_setup (void)
 638{
 639	cmcv_reg_t	cmcv;
 640
 641	cmcv.cmcv_regval	= 0;
 642	cmcv.cmcv_mask		= 1;        /* Mask/disable interrupt at first */
 643	cmcv.cmcv_vector	= IA64_CMC_VECTOR;
 644	ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
 645
 646	IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x registered.\n",
 647		       __func__, smp_processor_id(), IA64_CMC_VECTOR);
 648
 649	IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
 650		       __func__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
 651}
 652
 653/*
 654 * ia64_mca_cmc_vector_disable
 655 *
 656 *  Mask the corrected machine check vector register in the processor.
 657 *  This function is invoked on a per-processor basis.
 658 *
 659 * Inputs
 660 *      dummy(unused)
 661 *
 662 * Outputs
 663 *	None
 664 */
 665static void
 666ia64_mca_cmc_vector_disable (void *dummy)
 667{
 668	cmcv_reg_t	cmcv;
 669
 670	cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
 671
 672	cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
 673	ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
 674
 675	IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x disabled.\n",
 676		       __func__, smp_processor_id(), cmcv.cmcv_vector);
 677}
 678
 679/*
 680 * ia64_mca_cmc_vector_enable
 681 *
 682 *  Unmask the corrected machine check vector register in the processor.
 683 *  This function is invoked on a per-processor basis.
 684 *
 685 * Inputs
 686 *      dummy(unused)
 687 *
 688 * Outputs
 689 *	None
 690 */
 691static void
 692ia64_mca_cmc_vector_enable (void *dummy)
 693{
 694	cmcv_reg_t	cmcv;
 695
 696	cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
 697
 698	cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
 699	ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
 700
 701	IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x enabled.\n",
 702		       __func__, smp_processor_id(), cmcv.cmcv_vector);
 703}
 704
 705/*
 706 * ia64_mca_cmc_vector_disable_keventd
 707 *
 708 * Called via keventd (smp_call_function() is not safe in interrupt context) to
 709 * disable the cmc interrupt vector.
 710 */
 711static void
 712ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused)
 713{
 714	on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 0);
 715}
 716
 717/*
 718 * ia64_mca_cmc_vector_enable_keventd
 719 *
 720 * Called via keventd (smp_call_function() is not safe in interrupt context) to
 721 * enable the cmc interrupt vector.
 722 */
 723static void
 724ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused)
 725{
 726	on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 0);
 727}
 728
 729/*
 730 * ia64_mca_wakeup
 731 *
 732 *	Send an inter-cpu interrupt to wake-up a particular cpu.
 733 *
 734 *  Inputs  :   cpuid
 735 *  Outputs :   None
 736 */
 737static void
 738ia64_mca_wakeup(int cpu)
 739{
 740	ia64_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
 741}
 742
 743/*
 744 * ia64_mca_wakeup_all
 745 *
 746 *	Wakeup all the slave cpus which have rendez'ed previously.
 747 *
 748 *  Inputs  :   None
 749 *  Outputs :   None
 750 */
 751static void
 752ia64_mca_wakeup_all(void)
 753{
 754	int cpu;
 755
 756	/* Clear the Rendez checkin flag for all cpus */
 757	for_each_online_cpu(cpu) {
 758		if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
 759			ia64_mca_wakeup(cpu);
 760	}
 761
 762}
 763
 764/*
 765 * ia64_mca_rendez_interrupt_handler
 766 *
 767 *	This is handler used to put slave processors into spinloop
 768 *	while the monarch processor does the mca handling and later
 769 *	wake each slave up once the monarch is done.  The state
 770 *	IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed
 771 *	in SAL.  The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates
 772 *	the cpu has come out of OS rendezvous.
 773 *
 774 *  Inputs  :   None
 775 *  Outputs :   None
 776 */
 777static irqreturn_t
 778ia64_mca_rendez_int_handler(int rendez_irq, void *arg)
 779{
 780	unsigned long flags;
 781	int cpu = smp_processor_id();
 782	struct ia64_mca_notify_die nd =
 783		{ .sos = NULL, .monarch_cpu = &monarch_cpu };
 784
 785	/* Mask all interrupts */
 786	local_irq_save(flags);
 787
 788	NOTIFY_MCA(DIE_MCA_RENDZVOUS_ENTER, get_irq_regs(), (long)&nd, 1);
 789
 790	ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
 791	/* Register with the SAL monarch that the slave has
 792	 * reached SAL
 793	 */
 794	ia64_sal_mc_rendez();
 795
 796	NOTIFY_MCA(DIE_MCA_RENDZVOUS_PROCESS, get_irq_regs(), (long)&nd, 1);
 797
 798	/* Wait for the monarch cpu to exit. */
 799	while (monarch_cpu != -1)
 800	       cpu_relax();	/* spin until monarch leaves */
 801
 802	NOTIFY_MCA(DIE_MCA_RENDZVOUS_LEAVE, get_irq_regs(), (long)&nd, 1);
 803
 804	ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
 805	/* Enable all interrupts */
 806	local_irq_restore(flags);
 807	return IRQ_HANDLED;
 808}
 809
 810/*
 811 * ia64_mca_wakeup_int_handler
 812 *
 813 *	The interrupt handler for processing the inter-cpu interrupt to the
 814 *	slave cpu which was spinning in the rendez loop.
 815 *	Since this spinning is done by turning off the interrupts and
 816 *	polling on the wakeup-interrupt bit in the IRR, there is
 817 *	nothing useful to be done in the handler.
 818 *
 819 *  Inputs  :   wakeup_irq  (Wakeup-interrupt bit)
 820 *	arg		(Interrupt handler specific argument)
 821 *  Outputs :   None
 822 *
 823 */
 824static irqreturn_t
 825ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg)
 826{
 827	return IRQ_HANDLED;
 828}
 829
 830/* Function pointer for extra MCA recovery */
 831int (*ia64_mca_ucmc_extension)
 832	(void*,struct ia64_sal_os_state*)
 833	= NULL;
 834
 835int
 836ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
 837{
 838	if (ia64_mca_ucmc_extension)
 839		return 1;
 840
 841	ia64_mca_ucmc_extension = fn;
 842	return 0;
 843}
 844
 845void
 846ia64_unreg_MCA_extension(void)
 847{
 848	if (ia64_mca_ucmc_extension)
 849		ia64_mca_ucmc_extension = NULL;
 850}
 851
 852EXPORT_SYMBOL(ia64_reg_MCA_extension);
 853EXPORT_SYMBOL(ia64_unreg_MCA_extension);
 854
 855
 856static inline void
 857copy_reg(const u64 *fr, u64 fnat, unsigned long *tr, unsigned long *tnat)
 858{
 859	u64 fslot, tslot, nat;
 860	*tr = *fr;
 861	fslot = ((unsigned long)fr >> 3) & 63;
 862	tslot = ((unsigned long)tr >> 3) & 63;
 863	*tnat &= ~(1UL << tslot);
 864	nat = (fnat >> fslot) & 1;
 865	*tnat |= (nat << tslot);
 866}
 867
 868/* Change the comm field on the MCA/INT task to include the pid that
 869 * was interrupted, it makes for easier debugging.  If that pid was 0
 870 * (swapper or nested MCA/INIT) then use the start of the previous comm
 871 * field suffixed with its cpu.
 872 */
 873
 874static void
 875ia64_mca_modify_comm(const struct task_struct *previous_current)
 876{
 877	char *p, comm[sizeof(current->comm)];
 878	if (previous_current->pid)
 879		snprintf(comm, sizeof(comm), "%s %d",
 880			current->comm, previous_current->pid);
 881	else {
 882		int l;
 883		if ((p = strchr(previous_current->comm, ' ')))
 884			l = p - previous_current->comm;
 885		else
 886			l = strlen(previous_current->comm);
 887		snprintf(comm, sizeof(comm), "%s %*s %d",
 888			current->comm, l, previous_current->comm,
 889			task_thread_info(previous_current)->cpu);
 890	}
 891	memcpy(current->comm, comm, sizeof(current->comm));
 892}
 893
 894static void
 895finish_pt_regs(struct pt_regs *regs, struct ia64_sal_os_state *sos,
 896		unsigned long *nat)
 897{
 898	const struct pal_min_state_area *ms = sos->pal_min_state;
 899	const u64 *bank;
 900
 901	/* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
 902	 * pmsa_{xip,xpsr,xfs}
 903	 */
 904	if (ia64_psr(regs)->ic) {
 905		regs->cr_iip = ms->pmsa_iip;
 906		regs->cr_ipsr = ms->pmsa_ipsr;
 907		regs->cr_ifs = ms->pmsa_ifs;
 908	} else {
 909		regs->cr_iip = ms->pmsa_xip;
 910		regs->cr_ipsr = ms->pmsa_xpsr;
 911		regs->cr_ifs = ms->pmsa_xfs;
 912
 913		sos->iip = ms->pmsa_iip;
 914		sos->ipsr = ms->pmsa_ipsr;
 915		sos->ifs = ms->pmsa_ifs;
 916	}
 917	regs->pr = ms->pmsa_pr;
 918	regs->b0 = ms->pmsa_br0;
 919	regs->ar_rsc = ms->pmsa_rsc;
 920	copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &regs->r1, nat);
 921	copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &regs->r2, nat);
 922	copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &regs->r3, nat);
 923	copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &regs->r8, nat);
 924	copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &regs->r9, nat);
 925	copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &regs->r10, nat);
 926	copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &regs->r11, nat);
 927	copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &regs->r12, nat);
 928	copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &regs->r13, nat);
 929	copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &regs->r14, nat);
 930	copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &regs->r15, nat);
 931	if (ia64_psr(regs)->bn)
 932		bank = ms->pmsa_bank1_gr;
 933	else
 934		bank = ms->pmsa_bank0_gr;
 935	copy_reg(&bank[16-16], ms->pmsa_nat_bits, &regs->r16, nat);
 936	copy_reg(&bank[17-16], ms->pmsa_nat_bits, &regs->r17, nat);
 937	copy_reg(&bank[18-16], ms->pmsa_nat_bits, &regs->r18, nat);
 938	copy_reg(&bank[19-16], ms->pmsa_nat_bits, &regs->r19, nat);
 939	copy_reg(&bank[20-16], ms->pmsa_nat_bits, &regs->r20, nat);
 940	copy_reg(&bank[21-16], ms->pmsa_nat_bits, &regs->r21, nat);
 941	copy_reg(&bank[22-16], ms->pmsa_nat_bits, &regs->r22, nat);
 942	copy_reg(&bank[23-16], ms->pmsa_nat_bits, &regs->r23, nat);
 943	copy_reg(&bank[24-16], ms->pmsa_nat_bits, &regs->r24, nat);
 944	copy_reg(&bank[25-16], ms->pmsa_nat_bits, &regs->r25, nat);
 945	copy_reg(&bank[26-16], ms->pmsa_nat_bits, &regs->r26, nat);
 946	copy_reg(&bank[27-16], ms->pmsa_nat_bits, &regs->r27, nat);
 947	copy_reg(&bank[28-16], ms->pmsa_nat_bits, &regs->r28, nat);
 948	copy_reg(&bank[29-16], ms->pmsa_nat_bits, &regs->r29, nat);
 949	copy_reg(&bank[30-16], ms->pmsa_nat_bits, &regs->r30, nat);
 950	copy_reg(&bank[31-16], ms->pmsa_nat_bits, &regs->r31, nat);
 951}
 952
 953/* On entry to this routine, we are running on the per cpu stack, see
 954 * mca_asm.h.  The original stack has not been touched by this event.  Some of
 955 * the original stack's registers will be in the RBS on this stack.  This stack
 956 * also contains a partial pt_regs and switch_stack, the rest of the data is in
 957 * PAL minstate.
 958 *
 959 * The first thing to do is modify the original stack to look like a blocked
 960 * task so we can run backtrace on the original task.  Also mark the per cpu
 961 * stack as current to ensure that we use the correct task state, it also means
 962 * that we can do backtrace on the MCA/INIT handler code itself.
 963 */
 964
 965static struct task_struct *
 966ia64_mca_modify_original_stack(struct pt_regs *regs,
 967		const struct switch_stack *sw,
 968		struct ia64_sal_os_state *sos,
 969		const char *type)
 970{
 971	char *p;
 972	ia64_va va;
 973	extern char ia64_leave_kernel[];	/* Need asm address, not function descriptor */
 974	const struct pal_min_state_area *ms = sos->pal_min_state;
 975	struct task_struct *previous_current;
 976	struct pt_regs *old_regs;
 977	struct switch_stack *old_sw;
 978	unsigned size = sizeof(struct pt_regs) +
 979			sizeof(struct switch_stack) + 16;
 980	unsigned long *old_bspstore, *old_bsp;
 981	unsigned long *new_bspstore, *new_bsp;
 982	unsigned long old_unat, old_rnat, new_rnat, nat;
 983	u64 slots, loadrs = regs->loadrs;
 984	u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
 985	u64 ar_bspstore = regs->ar_bspstore;
 986	u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
 987	const char *msg;
 988	int cpu = smp_processor_id();
 989
 990	previous_current = curr_task(cpu);
 991	ia64_set_curr_task(cpu, current);
 992	if ((p = strchr(current->comm, ' ')))
 993		*p = '\0';
 994
 995	/* Best effort attempt to cope with MCA/INIT delivered while in
 996	 * physical mode.
 997	 */
 998	regs->cr_ipsr = ms->pmsa_ipsr;
 999	if (ia64_psr(regs)->dt == 0) {
1000		va.l = r12;
1001		if (va.f.reg == 0) {
1002			va.f.reg = 7;
1003			r12 = va.l;
1004		}
1005		va.l = r13;
1006		if (va.f.reg == 0) {
1007			va.f.reg = 7;
1008			r13 = va.l;
1009		}
1010	}
1011	if (ia64_psr(regs)->rt == 0) {
1012		va.l = ar_bspstore;
1013		if (va.f.reg == 0) {
1014			va.f.reg = 7;
1015			ar_bspstore = va.l;
1016		}
1017		va.l = ar_bsp;
1018		if (va.f.reg == 0) {
1019			va.f.reg = 7;
1020			ar_bsp = va.l;
1021		}
1022	}
1023
1024	/* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
1025	 * have been copied to the old stack, the old stack may fail the
1026	 * validation tests below.  So ia64_old_stack() must restore the dirty
1027	 * registers from the new stack.  The old and new bspstore probably
1028	 * have different alignments, so loadrs calculated on the old bsp
1029	 * cannot be used to restore from the new bsp.  Calculate a suitable
1030	 * loadrs for the new stack and save it in the new pt_regs, where
1031	 * ia64_old_stack() can get it.
1032	 */
1033	old_bspstore = (unsigned long *)ar_bspstore;
1034	old_bsp = (unsigned long *)ar_bsp;
1035	slots = ia64_rse_num_regs(old_bspstore, old_bsp);
1036	new_bspstore = (unsigned long *)((u64)current + IA64_RBS_OFFSET);
1037	new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
1038	regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
1039
1040	/* Verify the previous stack state before we change it */
1041	if (user_mode(regs)) {
1042		msg = "occurred in user space";
1043		/* previous_current is guaranteed to be valid when the task was
1044		 * in user space, so ...
1045		 */
1046		ia64_mca_modify_comm(previous_current);
1047		goto no_mod;
1048	}
1049
1050	if (r13 != sos->prev_IA64_KR_CURRENT) {
1051		msg = "inconsistent previous current and r13";
1052		goto no_mod;
1053	}
1054
1055	if (!mca_recover_range(ms->pmsa_iip)) {
1056		if ((r12 - r13) >= KERNEL_STACK_SIZE) {
1057			msg = "inconsistent r12 and r13";
1058			goto no_mod;
1059		}
1060		if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
1061			msg = "inconsistent ar.bspstore and r13";
1062			goto no_mod;
1063		}
1064		va.p = old_bspstore;
1065		if (va.f.reg < 5) {
1066			msg = "old_bspstore is in the wrong region";
1067			goto no_mod;
1068		}
1069		if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
1070			msg = "inconsistent ar.bsp and r13";
1071			goto no_mod;
1072		}
1073		size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
1074		if (ar_bspstore + size > r12) {
1075			msg = "no room for blocked state";
1076			goto no_mod;
1077		}
1078	}
1079
1080	ia64_mca_modify_comm(previous_current);
1081
1082	/* Make the original task look blocked.  First stack a struct pt_regs,
1083	 * describing the state at the time of interrupt.  mca_asm.S built a
1084	 * partial pt_regs, copy it and fill in the blanks using minstate.
1085	 */
1086	p = (char *)r12 - sizeof(*regs);
1087	old_regs = (struct pt_regs *)p;
1088	memcpy(old_regs, regs, sizeof(*regs));
1089	old_regs->loadrs = loadrs;
1090	old_unat = old_regs->ar_unat;
1091	finish_pt_regs(old_regs, sos, &old_unat);
1092
1093	/* Next stack a struct switch_stack.  mca_asm.S built a partial
1094	 * switch_stack, copy it and fill in the blanks using pt_regs and
1095	 * minstate.
1096	 *
1097	 * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1098	 * ar.pfs is set to 0.
1099	 *
1100	 * unwind.c::unw_unwind() does special processing for interrupt frames.
1101	 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1102	 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs.  Not
1103	 * that this is documented, of course.  Set PRED_NON_SYSCALL in the
1104	 * switch_stack on the original stack so it will unwind correctly when
1105	 * unwind.c reads pt_regs.
1106	 *
1107	 * thread.ksp is updated to point to the synthesized switch_stack.
1108	 */
1109	p -= sizeof(struct switch_stack);
1110	old_sw = (struct switch_stack *)p;
1111	memcpy(old_sw, sw, sizeof(*sw));
1112	old_sw->caller_unat = old_unat;
1113	old_sw->ar_fpsr = old_regs->ar_fpsr;
1114	copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
1115	copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
1116	copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
1117	copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
1118	old_sw->b0 = (u64)ia64_leave_kernel;
1119	old_sw->b1 = ms->pmsa_br1;
1120	old_sw->ar_pfs = 0;
1121	old_sw->ar_unat = old_unat;
1122	old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
1123	previous_current->thread.ksp = (u64)p - 16;
1124
1125	/* Finally copy the original stack's registers back to its RBS.
1126	 * Registers from ar.bspstore through ar.bsp at the time of the event
1127	 * are in the current RBS, copy them back to the original stack.  The
1128	 * copy must be done register by register because the original bspstore
1129	 * and the current one have different alignments, so the saved RNAT
1130	 * data occurs at different places.
1131	 *
1132	 * mca_asm does cover, so the old_bsp already includes all registers at
1133	 * the time of MCA/INIT.  It also does flushrs, so all registers before
1134	 * this function have been written to backing store on the MCA/INIT
1135	 * stack.
1136	 */
1137	new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
1138	old_rnat = regs->ar_rnat;
1139	while (slots--) {
1140		if (ia64_rse_is_rnat_slot(new_bspstore)) {
1141			new_rnat = ia64_get_rnat(new_bspstore++);
1142		}
1143		if (ia64_rse_is_rnat_slot(old_bspstore)) {
1144			*old_bspstore++ = old_rnat;
1145			old_rnat = 0;
1146		}
1147		nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
1148		old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
1149		old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
1150		*old_bspstore++ = *new_bspstore++;
1151	}
1152	old_sw->ar_bspstore = (unsigned long)old_bspstore;
1153	old_sw->ar_rnat = old_rnat;
1154
1155	sos->prev_task = previous_current;
1156	return previous_current;
1157
1158no_mod:
1159	mprintk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
1160			smp_processor_id(), type, msg);
1161	old_unat = regs->ar_unat;
1162	finish_pt_regs(regs, sos, &old_unat);
1163	return previous_current;
1164}
1165
1166/* The monarch/slave interaction is based on monarch_cpu and requires that all
1167 * slaves have entered rendezvous before the monarch leaves.  If any cpu has
1168 * not entered rendezvous yet then wait a bit.  The assumption is that any
1169 * slave that has not rendezvoused after a reasonable time is never going to do
1170 * so.  In this context, slave includes cpus that respond to the MCA rendezvous
1171 * interrupt, as well as cpus that receive the INIT slave event.
1172 */
1173
1174static void
1175ia64_wait_for_slaves(int monarch, const char *type)
1176{
1177	int c, i , wait;
1178
1179	/*
1180	 * wait 5 seconds total for slaves (arbitrary)
1181	 */
1182	for (i = 0; i < 5000; i++) {
1183		wait = 0;
1184		for_each_online_cpu(c) {
1185			if (c == monarch)
1186				continue;
1187			if (ia64_mc_info.imi_rendez_checkin[c]
1188					== IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1189				udelay(1000);		/* short wait */
1190				wait = 1;
1191				break;
1192			}
1193		}
1194		if (!wait)
1195			goto all_in;
1196	}
1197
1198	/*
1199	 * Maybe slave(s) dead. Print buffered messages immediately.
1200	 */
1201	ia64_mlogbuf_finish(0);
1202	mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
1203	for_each_online_cpu(c) {
1204		if (c == monarch)
1205			continue;
1206		if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1207			mprintk(" %d", c);
1208	}
1209	mprintk("\n");
1210	return;
1211
1212all_in:
1213	mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
1214	return;
1215}
1216
1217/*  mca_insert_tr
1218 *
1219 *  Switch rid when TR reload and needed!
1220 *  iord: 1: itr, 2: itr;
1221 *
1222*/
1223static void mca_insert_tr(u64 iord)
1224{
1225
1226	int i;
1227	u64 old_rr;
1228	struct ia64_tr_entry *p;
1229	unsigned long psr;
1230	int cpu = smp_processor_id();
1231
1232	if (!ia64_idtrs[cpu])
1233		return;
1234
1235	psr = ia64_clear_ic();
1236	for (i = IA64_TR_ALLOC_BASE; i < IA64_TR_ALLOC_MAX; i++) {
1237		p = ia64_idtrs[cpu] + (iord - 1) * IA64_TR_ALLOC_MAX;
1238		if (p->pte & 0x1) {
1239			old_rr = ia64_get_rr(p->ifa);
1240			if (old_rr != p->rr) {
1241				ia64_set_rr(p->ifa, p->rr);
1242				ia64_srlz_d();
1243			}
1244			ia64_ptr(iord, p->ifa, p->itir >> 2);
1245			ia64_srlz_i();
1246			if (iord & 0x1) {
1247				ia64_itr(0x1, i, p->ifa, p->pte, p->itir >> 2);
1248				ia64_srlz_i();
1249			}
1250			if (iord & 0x2) {
1251				ia64_itr(0x2, i, p->ifa, p->pte, p->itir >> 2);
1252				ia64_srlz_i();
1253			}
1254			if (old_rr != p->rr) {
1255				ia64_set_rr(p->ifa, old_rr);
1256				ia64_srlz_d();
1257			}
1258		}
1259	}
1260	ia64_set_psr(psr);
1261}
1262
1263/*
1264 * ia64_mca_handler
1265 *
1266 *	This is uncorrectable machine check handler called from OS_MCA
1267 *	dispatch code which is in turn called from SAL_CHECK().
1268 *	This is the place where the core of OS MCA handling is done.
1269 *	Right now the logs are extracted and displayed in a well-defined
1270 *	format. This handler code is supposed to be run only on the
1271 *	monarch processor. Once the monarch is done with MCA handling
1272 *	further MCA logging is enabled by clearing logs.
1273 *	Monarch also has the duty of sending wakeup-IPIs to pull the
1274 *	slave processors out of rendezvous spinloop.
1275 *
1276 *	If multiple processors call into OS_MCA, the first will become
1277 *	the monarch.  Subsequent cpus will be recorded in the mca_cpu
1278 *	bitmask.  After the first monarch has processed its MCA, it
1279 *	will wake up the next cpu in the mca_cpu bitmask and then go
1280 *	into the rendezvous loop.  When all processors have serviced
1281 *	their MCA, the last monarch frees up the rest of the processors.
1282 */
1283void
1284ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1285		 struct ia64_sal_os_state *sos)
1286{
1287	int recover, cpu = smp_processor_id();
1288	struct task_struct *previous_current;
1289	struct ia64_mca_notify_die nd =
1290		{ .sos = sos, .monarch_cpu = &monarch_cpu, .data = &recover };
1291	static atomic_t mca_count;
1292	static cpumask_t mca_cpu;
1293
1294	if (atomic_add_return(1, &mca_count) == 1) {
1295		monarch_cpu = cpu;
1296		sos->monarch = 1;
1297	} else {
1298		cpumask_set_cpu(cpu, &mca_cpu);
1299		sos->monarch = 0;
1300	}
1301	mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d "
1302		"monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch);
1303
1304	previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1305
1306	NOTIFY_MCA(DIE_MCA_MONARCH_ENTER, regs, (long)&nd, 1);
1307
1308	ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA;
1309	if (sos->monarch) {
1310		ia64_wait_for_slaves(cpu, "MCA");
1311
1312		/* Wakeup all the processors which are spinning in the
1313		 * rendezvous loop.  They will leave SAL, then spin in the OS
1314		 * with interrupts disabled until this monarch cpu leaves the
1315		 * MCA handler.  That gets control back to the OS so we can
1316		 * backtrace the other cpus, backtrace when spinning in SAL
1317		 * does not work.
1318		 */
1319		ia64_mca_wakeup_all();
1320	} else {
1321		while (cpumask_test_cpu(cpu, &mca_cpu))
1322			cpu_relax();	/* spin until monarch wakes us */
1323	}
1324
1325	NOTIFY_MCA(DIE_MCA_MONARCH_PROCESS, regs, (long)&nd, 1);
1326
1327	/* Get the MCA error record and log it */
1328	ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1329
1330	/* MCA error recovery */
1331	recover = (ia64_mca_ucmc_extension
1332		&& ia64_mca_ucmc_extension(
1333			IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1334			sos));
1335
1336	if (recover) {
1337		sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1338		rh->severity = sal_log_severity_corrected;
1339		ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1340		sos->os_status = IA64_MCA_CORRECTED;
1341	} else {
1342		/* Dump buffered message to console */
1343		ia64_mlogbuf_finish(1);
1344	}
1345
1346	if (__this_cpu_read(ia64_mca_tr_reload)) {
1347		mca_insert_tr(0x1); /*Reload dynamic itrs*/
1348		mca_insert_tr(0x2); /*Reload dynamic itrs*/
1349	}
1350
1351	NOTIFY_MCA(DIE_MCA_MONARCH_LEAVE, regs, (long)&nd, 1);
1352
1353	if (atomic_dec_return(&mca_count) > 0) {
1354		int i;
1355
1356		/* wake up the next monarch cpu,
1357		 * and put this cpu in the rendez loop.
1358		 */
1359		for_each_online_cpu(i) {
1360			if (cpumask_test_cpu(i, &mca_cpu)) {
1361				monarch_cpu = i;
1362				cpumask_clear_cpu(i, &mca_cpu);	/* wake next cpu */
1363				while (monarch_cpu != -1)
1364					cpu_relax();	/* spin until last cpu leaves */
1365				ia64_set_curr_task(cpu, previous_current);
1366				ia64_mc_info.imi_rendez_checkin[cpu]
1367						= IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1368				return;
1369			}
1370		}
1371	}
1372	ia64_set_curr_task(cpu, previous_current);
1373	ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1374	monarch_cpu = -1;	/* This frees the slaves and previous monarchs */
1375}
1376
1377static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd);
1378static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd);
1379
1380/*
1381 * ia64_mca_cmc_int_handler
1382 *
1383 *  This is corrected machine check interrupt handler.
1384 *	Right now the logs are extracted and displayed in a well-defined
1385 *	format.
1386 *
1387 * Inputs
1388 *      interrupt number
1389 *      client data arg ptr
1390 *
1391 * Outputs
1392 *	None
1393 */
1394static irqreturn_t
1395ia64_mca_cmc_int_handler(int cmc_irq, void *arg)
1396{
1397	static unsigned long	cmc_history[CMC_HISTORY_LENGTH];
1398	static int		index;
1399	static DEFINE_SPINLOCK(cmc_history_lock);
1400
1401	IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1402		       __func__, cmc_irq, smp_processor_id());
1403
1404	/* SAL spec states this should run w/ interrupts enabled */
1405	local_irq_enable();
1406
1407	spin_lock(&cmc_history_lock);
1408	if (!cmc_polling_enabled) {
1409		int i, count = 1; /* we know 1 happened now */
1410		unsigned long now = jiffies;
1411
1412		for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1413			if (now - cmc_history[i] <= HZ)
1414				count++;
1415		}
1416
1417		IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1418		if (count >= CMC_HISTORY_LENGTH) {
1419
1420			cmc_polling_enabled = 1;
1421			spin_unlock(&cmc_history_lock);
1422			/* If we're being hit with CMC interrupts, we won't
1423			 * ever execute the schedule_work() below.  Need to
1424			 * disable CMC interrupts on this processor now.
1425			 */
1426			ia64_mca_cmc_vector_disable(NULL);
1427			schedule_work(&cmc_disable_work);
1428
1429			/*
1430			 * Corrected errors will still be corrected, but
1431			 * make sure there's a log somewhere that indicates
1432			 * something is generating more than we can handle.
1433			 */
1434			printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1435
1436			mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1437
1438			/* lock already released, get out now */
1439			goto out;
1440		} else {
1441			cmc_history[index++] = now;
1442			if (index == CMC_HISTORY_LENGTH)
1443				index = 0;
1444		}
1445	}
1446	spin_unlock(&cmc_history_lock);
1447out:
1448	/* Get the CMC error record and log it */
1449	ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1450
1451	local_irq_disable();
1452
1453	return IRQ_HANDLED;
1454}
1455
1456/*
1457 *  ia64_mca_cmc_int_caller
1458 *
1459 * 	Triggered by sw interrupt from CMC polling routine.  Calls
1460 * 	real interrupt handler and either triggers a sw interrupt
1461 * 	on the next cpu or does cleanup at the end.
1462 *
1463 * Inputs
1464 *	interrupt number
1465 *	client data arg ptr
1466 * Outputs
1467 * 	handled
1468 */
1469static irqreturn_t
1470ia64_mca_cmc_int_caller(int cmc_irq, void *arg)
1471{
1472	static int start_count = -1;
1473	unsigned int cpuid;
1474
1475	cpuid = smp_processor_id();
1476
1477	/* If first cpu, update count */
1478	if (start_count == -1)
1479		start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1480
1481	ia64_mca_cmc_int_handler(cmc_irq, arg);
1482
1483	cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1484
1485	if (cpuid < nr_cpu_ids) {
1486		ia64_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1487	} else {
1488		/* If no log record, switch out of polling mode */
1489		if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1490
1491			printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1492			schedule_work(&cmc_enable_work);
1493			cmc_polling_enabled = 0;
1494
1495		} else {
1496
1497			mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1498		}
1499
1500		start_count = -1;
1501	}
1502
1503	return IRQ_HANDLED;
1504}
1505
1506/*
1507 *  ia64_mca_cmc_poll
1508 *
1509 *	Poll for Corrected Machine Checks (CMCs)
1510 *
1511 * Inputs   :   dummy(unused)
1512 * Outputs  :   None
1513 *
1514 */
1515static void
1516ia64_mca_cmc_poll (struct timer_list *unused)
1517{
1518	/* Trigger a CMC interrupt cascade  */
1519	ia64_send_ipi(cpumask_first(cpu_online_mask), IA64_CMCP_VECTOR,
1520							IA64_IPI_DM_INT, 0);
1521}
1522
1523/*
1524 *  ia64_mca_cpe_int_caller
1525 *
1526 * 	Triggered by sw interrupt from CPE polling routine.  Calls
1527 * 	real interrupt handler and either triggers a sw interrupt
1528 * 	on the next cpu or does cleanup at the end.
1529 *
1530 * Inputs
1531 *	interrupt number
1532 *	client data arg ptr
1533 * Outputs
1534 * 	handled
1535 */
 
 
1536static irqreturn_t
1537ia64_mca_cpe_int_caller(int cpe_irq, void *arg)
1538{
1539	static int start_count = -1;
1540	static int poll_time = MIN_CPE_POLL_INTERVAL;
1541	unsigned int cpuid;
1542
1543	cpuid = smp_processor_id();
1544
1545	/* If first cpu, update count */
1546	if (start_count == -1)
1547		start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1548
1549	ia64_mca_cpe_int_handler(cpe_irq, arg);
1550
1551	cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1552
1553	if (cpuid < NR_CPUS) {
1554		ia64_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1555	} else {
1556		/*
1557		 * If a log was recorded, increase our polling frequency,
1558		 * otherwise, backoff or return to interrupt mode.
1559		 */
1560		if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1561			poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1562		} else if (cpe_vector < 0) {
1563			poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1564		} else {
1565			poll_time = MIN_CPE_POLL_INTERVAL;
1566
1567			printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1568			enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1569			cpe_poll_enabled = 0;
1570		}
1571
1572		if (cpe_poll_enabled)
1573			mod_timer(&cpe_poll_timer, jiffies + poll_time);
1574		start_count = -1;
1575	}
1576
1577	return IRQ_HANDLED;
1578}
1579
1580/*
1581 *  ia64_mca_cpe_poll
1582 *
1583 *	Poll for Corrected Platform Errors (CPEs), trigger interrupt
1584 *	on first cpu, from there it will trickle through all the cpus.
1585 *
1586 * Inputs   :   dummy(unused)
1587 * Outputs  :   None
1588 *
1589 */
1590static void
1591ia64_mca_cpe_poll (struct timer_list *unused)
1592{
1593	/* Trigger a CPE interrupt cascade  */
1594	ia64_send_ipi(cpumask_first(cpu_online_mask), IA64_CPEP_VECTOR,
1595							IA64_IPI_DM_INT, 0);
1596}
1597
 
 
1598static int
1599default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1600{
1601	int c;
1602	struct task_struct *g, *t;
1603	if (val != DIE_INIT_MONARCH_PROCESS)
1604		return NOTIFY_DONE;
1605#ifdef CONFIG_KEXEC
1606	if (atomic_read(&kdump_in_progress))
1607		return NOTIFY_DONE;
1608#endif
1609
1610	/*
1611	 * FIXME: mlogbuf will brim over with INIT stack dumps.
1612	 * To enable show_stack from INIT, we use oops_in_progress which should
1613	 * be used in real oops. This would cause something wrong after INIT.
1614	 */
1615	BREAK_LOGLEVEL(console_loglevel);
1616	ia64_mlogbuf_dump_from_init();
1617
1618	printk(KERN_ERR "Processes interrupted by INIT -");
1619	for_each_online_cpu(c) {
1620		struct ia64_sal_os_state *s;
1621		t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1622		s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1623		g = s->prev_task;
1624		if (g) {
1625			if (g->pid)
1626				printk(" %d", g->pid);
1627			else
1628				printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1629		}
1630	}
1631	printk("\n\n");
1632	if (read_trylock(&tasklist_lock)) {
1633		do_each_thread (g, t) {
1634			printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1635			show_stack(t, NULL, KERN_DEFAULT);
1636		} while_each_thread (g, t);
1637		read_unlock(&tasklist_lock);
1638	}
1639	/* FIXME: This will not restore zapped printk locks. */
1640	RESTORE_LOGLEVEL(console_loglevel);
1641	return NOTIFY_DONE;
1642}
1643
1644/*
1645 * C portion of the OS INIT handler
1646 *
1647 * Called from ia64_os_init_dispatch
1648 *
1649 * Inputs: pointer to pt_regs where processor info was saved.  SAL/OS state for
1650 * this event.  This code is used for both monarch and slave INIT events, see
1651 * sos->monarch.
1652 *
1653 * All INIT events switch to the INIT stack and change the previous process to
1654 * blocked status.  If one of the INIT events is the monarch then we are
1655 * probably processing the nmi button/command.  Use the monarch cpu to dump all
1656 * the processes.  The slave INIT events all spin until the monarch cpu
1657 * returns.  We can also get INIT slave events for MCA, in which case the MCA
1658 * process is the monarch.
1659 */
1660
1661void
1662ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1663		  struct ia64_sal_os_state *sos)
1664{
1665	static atomic_t slaves;
1666	static atomic_t monarchs;
1667	struct task_struct *previous_current;
1668	int cpu = smp_processor_id();
1669	struct ia64_mca_notify_die nd =
1670		{ .sos = sos, .monarch_cpu = &monarch_cpu };
1671
1672	NOTIFY_INIT(DIE_INIT_ENTER, regs, (long)&nd, 0);
1673
1674	mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1675		sos->proc_state_param, cpu, sos->monarch);
1676	salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1677
1678	previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1679	sos->os_status = IA64_INIT_RESUME;
1680
1681	/* FIXME: Workaround for broken proms that drive all INIT events as
1682	 * slaves.  The last slave that enters is promoted to be a monarch.
1683	 * Remove this code in September 2006, that gives platforms a year to
1684	 * fix their proms and get their customers updated.
1685	 */
1686	if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1687		mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1688		        __func__, cpu);
1689		atomic_dec(&slaves);
1690		sos->monarch = 1;
1691	}
1692
1693	/* FIXME: Workaround for broken proms that drive all INIT events as
1694	 * monarchs.  Second and subsequent monarchs are demoted to slaves.
1695	 * Remove this code in September 2006, that gives platforms a year to
1696	 * fix their proms and get their customers updated.
1697	 */
1698	if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1699		mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1700			       __func__, cpu);
1701		atomic_dec(&monarchs);
1702		sos->monarch = 0;
1703	}
1704
1705	if (!sos->monarch) {
1706		ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1707
1708#ifdef CONFIG_KEXEC
1709		while (monarch_cpu == -1 && !atomic_read(&kdump_in_progress))
1710			udelay(1000);
1711#else
1712		while (monarch_cpu == -1)
1713			cpu_relax();	/* spin until monarch enters */
1714#endif
1715
1716		NOTIFY_INIT(DIE_INIT_SLAVE_ENTER, regs, (long)&nd, 1);
1717		NOTIFY_INIT(DIE_INIT_SLAVE_PROCESS, regs, (long)&nd, 1);
1718
1719#ifdef CONFIG_KEXEC
1720		while (monarch_cpu != -1 && !atomic_read(&kdump_in_progress))
1721			udelay(1000);
1722#else
1723		while (monarch_cpu != -1)
1724			cpu_relax();	/* spin until monarch leaves */
1725#endif
1726
1727		NOTIFY_INIT(DIE_INIT_SLAVE_LEAVE, regs, (long)&nd, 1);
1728
1729		mprintk("Slave on cpu %d returning to normal service.\n", cpu);
1730		ia64_set_curr_task(cpu, previous_current);
1731		ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1732		atomic_dec(&slaves);
1733		return;
1734	}
1735
1736	monarch_cpu = cpu;
1737	NOTIFY_INIT(DIE_INIT_MONARCH_ENTER, regs, (long)&nd, 1);
1738
1739	/*
1740	 * Wait for a bit.  On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1741	 * generated via the BMC's command-line interface, but since the console is on the
1742	 * same serial line, the user will need some time to switch out of the BMC before
1743	 * the dump begins.
1744	 */
1745	mprintk("Delaying for 5 seconds...\n");
1746	udelay(5*1000000);
1747	ia64_wait_for_slaves(cpu, "INIT");
1748	/* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1749	 * to default_monarch_init_process() above and just print all the
1750	 * tasks.
1751	 */
1752	NOTIFY_INIT(DIE_INIT_MONARCH_PROCESS, regs, (long)&nd, 1);
1753	NOTIFY_INIT(DIE_INIT_MONARCH_LEAVE, regs, (long)&nd, 1);
1754
1755	mprintk("\nINIT dump complete.  Monarch on cpu %d returning to normal service.\n", cpu);
1756	atomic_dec(&monarchs);
1757	ia64_set_curr_task(cpu, previous_current);
1758	monarch_cpu = -1;
1759	return;
1760}
1761
1762static int __init
1763ia64_mca_disable_cpe_polling(char *str)
1764{
1765	cpe_poll_enabled = 0;
1766	return 1;
1767}
1768
1769__setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1770
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1771/* Minimal format of the MCA/INIT stacks.  The pseudo processes that run on
1772 * these stacks can never sleep, they cannot return from the kernel to user
1773 * space, they do not appear in a normal ps listing.  So there is no need to
1774 * format most of the fields.
1775 */
1776
1777static void
1778format_mca_init_stack(void *mca_data, unsigned long offset,
1779		const char *type, int cpu)
1780{
1781	struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1782	struct thread_info *ti;
1783	memset(p, 0, KERNEL_STACK_SIZE);
1784	ti = task_thread_info(p);
1785	ti->flags = _TIF_MCA_INIT;
1786	ti->preempt_count = 1;
1787	ti->task = p;
1788	ti->cpu = cpu;
1789	p->stack = ti;
1790	p->__state = TASK_UNINTERRUPTIBLE;
1791	cpumask_set_cpu(cpu, &p->cpus_mask);
1792	INIT_LIST_HEAD(&p->tasks);
1793	p->parent = p->real_parent = p->group_leader = p;
1794	INIT_LIST_HEAD(&p->children);
1795	INIT_LIST_HEAD(&p->sibling);
1796	strscpy(p->comm, type, sizeof(p->comm)-1);
1797}
1798
1799/* Caller prevents this from being called after init */
1800static void * __ref mca_bootmem(void)
1801{
1802	return memblock_alloc(sizeof(struct ia64_mca_cpu), KERNEL_STACK_SIZE);
 
1803}
1804
1805/* Do per-CPU MCA-related initialization.  */
1806void
1807ia64_mca_cpu_init(void *cpu_data)
1808{
1809	void *pal_vaddr;
1810	void *data;
1811	long sz = sizeof(struct ia64_mca_cpu);
1812	int cpu = smp_processor_id();
1813	static int first_time = 1;
1814
1815	/*
1816	 * Structure will already be allocated if cpu has been online,
1817	 * then offlined.
1818	 */
1819	if (__per_cpu_mca[cpu]) {
1820		data = __va(__per_cpu_mca[cpu]);
1821	} else {
1822		if (first_time) {
1823			data = mca_bootmem();
1824			first_time = 0;
1825		} else
1826			data = (void *)__get_free_pages(GFP_ATOMIC,
1827							get_order(sz));
1828		if (!data)
1829			panic("Could not allocate MCA memory for cpu %d\n",
1830					cpu);
1831	}
1832	format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, mca_stack),
1833		"MCA", cpu);
1834	format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, init_stack),
1835		"INIT", cpu);
1836	__this_cpu_write(ia64_mca_data, (__per_cpu_mca[cpu] = __pa(data)));
1837
1838	/*
1839	 * Stash away a copy of the PTE needed to map the per-CPU page.
1840	 * We may need it during MCA recovery.
1841	 */
1842	__this_cpu_write(ia64_mca_per_cpu_pte,
1843		pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL)));
1844
1845	/*
1846	 * Also, stash away a copy of the PAL address and the PTE
1847	 * needed to map it.
1848	 */
1849	pal_vaddr = efi_get_pal_addr();
1850	if (!pal_vaddr)
1851		return;
1852	__this_cpu_write(ia64_mca_pal_base,
1853		GRANULEROUNDDOWN((unsigned long) pal_vaddr));
1854	__this_cpu_write(ia64_mca_pal_pte, pte_val(mk_pte_phys(__pa(pal_vaddr),
1855							      PAGE_KERNEL)));
1856}
1857
1858static int ia64_mca_cpu_online(unsigned int cpu)
1859{
1860	unsigned long flags;
1861
1862	local_irq_save(flags);
1863	if (!cmc_polling_enabled)
1864		ia64_mca_cmc_vector_enable(NULL);
1865	local_irq_restore(flags);
1866	return 0;
1867}
1868
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1869/*
1870 * ia64_mca_init
1871 *
1872 *  Do all the system level mca specific initialization.
1873 *
1874 *	1. Register spinloop and wakeup request interrupt vectors
1875 *
1876 *	2. Register OS_MCA handler entry point
1877 *
1878 *	3. Register OS_INIT handler entry point
1879 *
1880 *  4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1881 *
1882 *  Note that this initialization is done very early before some kernel
1883 *  services are available.
1884 *
1885 *  Inputs  :   None
1886 *
1887 *  Outputs :   None
1888 */
1889void __init
1890ia64_mca_init(void)
1891{
1892	ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1893	ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1894	ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1895	int i;
1896	long rc;
1897	struct ia64_sal_retval isrv;
1898	unsigned long timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
1899	static struct notifier_block default_init_monarch_nb = {
1900		.notifier_call = default_monarch_init_process,
1901		.priority = 0/* we need to notified last */
1902	};
1903
1904	IA64_MCA_DEBUG("%s: begin\n", __func__);
1905
1906	/* Clear the Rendez checkin flag for all cpus */
1907	for(i = 0 ; i < NR_CPUS; i++)
1908		ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1909
1910	/*
1911	 * Register the rendezvous spinloop and wakeup mechanism with SAL
1912	 */
1913
1914	/* Register the rendezvous interrupt vector with SAL */
1915	while (1) {
1916		isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1917					      SAL_MC_PARAM_MECHANISM_INT,
1918					      IA64_MCA_RENDEZ_VECTOR,
1919					      timeout,
1920					      SAL_MC_PARAM_RZ_ALWAYS);
1921		rc = isrv.status;
1922		if (rc == 0)
1923			break;
1924		if (rc == -2) {
1925			printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1926				"%ld to %ld milliseconds\n", timeout, isrv.v0);
1927			timeout = isrv.v0;
1928			NOTIFY_MCA(DIE_MCA_NEW_TIMEOUT, NULL, timeout, 0);
1929			continue;
1930		}
1931		printk(KERN_ERR "Failed to register rendezvous interrupt "
1932		       "with SAL (status %ld)\n", rc);
1933		return;
1934	}
1935
1936	/* Register the wakeup interrupt vector with SAL */
1937	isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1938				      SAL_MC_PARAM_MECHANISM_INT,
1939				      IA64_MCA_WAKEUP_VECTOR,
1940				      0, 0);
1941	rc = isrv.status;
1942	if (rc) {
1943		printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1944		       "(status %ld)\n", rc);
1945		return;
1946	}
1947
1948	IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __func__);
1949
1950	ia64_mc_info.imi_mca_handler        = ia64_tpa(mca_hldlr_ptr->fp);
1951	/*
1952	 * XXX - disable SAL checksum by setting size to 0; should be
1953	 *	ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1954	 */
1955	ia64_mc_info.imi_mca_handler_size	= 0;
1956
1957	/* Register the os mca handler with SAL */
1958	if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1959				       ia64_mc_info.imi_mca_handler,
1960				       ia64_tpa(mca_hldlr_ptr->gp),
1961				       ia64_mc_info.imi_mca_handler_size,
1962				       0, 0, 0)))
1963	{
1964		printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1965		       "(status %ld)\n", rc);
1966		return;
1967	}
1968
1969	IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __func__,
1970		       ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
1971
1972	/*
1973	 * XXX - disable SAL checksum by setting size to 0, should be
1974	 * size of the actual init handler in mca_asm.S.
1975	 */
1976	ia64_mc_info.imi_monarch_init_handler		= ia64_tpa(init_hldlr_ptr_monarch->fp);
1977	ia64_mc_info.imi_monarch_init_handler_size	= 0;
1978	ia64_mc_info.imi_slave_init_handler		= ia64_tpa(init_hldlr_ptr_slave->fp);
1979	ia64_mc_info.imi_slave_init_handler_size	= 0;
1980
1981	IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __func__,
1982		       ia64_mc_info.imi_monarch_init_handler);
1983
1984	/* Register the os init handler with SAL */
1985	if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
1986				       ia64_mc_info.imi_monarch_init_handler,
1987				       ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1988				       ia64_mc_info.imi_monarch_init_handler_size,
1989				       ia64_mc_info.imi_slave_init_handler,
1990				       ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1991				       ia64_mc_info.imi_slave_init_handler_size)))
1992	{
1993		printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
1994		       "(status %ld)\n", rc);
1995		return;
1996	}
1997	if (register_die_notifier(&default_init_monarch_nb)) {
1998		printk(KERN_ERR "Failed to register default monarch INIT process\n");
1999		return;
2000	}
2001
2002	IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __func__);
2003
2004	/* Initialize the areas set aside by the OS to buffer the
2005	 * platform/processor error states for MCA/INIT/CMC
2006	 * handling.
2007	 */
2008	ia64_log_init(SAL_INFO_TYPE_MCA);
2009	ia64_log_init(SAL_INFO_TYPE_INIT);
2010	ia64_log_init(SAL_INFO_TYPE_CMC);
2011	ia64_log_init(SAL_INFO_TYPE_CPE);
2012
2013	mca_init = 1;
2014	printk(KERN_INFO "MCA related initialization done\n");
2015}
2016
2017
2018/*
2019 * These pieces cannot be done in ia64_mca_init() because it is called before
2020 * early_irq_init() which would wipe out our percpu irq registrations. But we
2021 * cannot leave them until ia64_mca_late_init() because by then all the other
2022 * processors have been brought online and have set their own CMC vectors to
2023 * point at a non-existant action. Called from arch_early_irq_init().
2024 */
2025void __init ia64_mca_irq_init(void)
2026{
2027	/*
2028	 *  Configure the CMCI/P vector and handler. Interrupts for CMC are
2029	 *  per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
2030	 */
2031	register_percpu_irq(IA64_CMC_VECTOR, ia64_mca_cmc_int_handler, 0,
2032			    "cmc_hndlr");
2033	register_percpu_irq(IA64_CMCP_VECTOR, ia64_mca_cmc_int_caller, 0,
2034			    "cmc_poll");
2035	ia64_mca_cmc_vector_setup();       /* Setup vector on BSP */
2036
2037	/* Setup the MCA rendezvous interrupt vector */
2038	register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, ia64_mca_rendez_int_handler,
2039			    0, "mca_rdzv");
2040
2041	/* Setup the MCA wakeup interrupt vector */
2042	register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, ia64_mca_wakeup_int_handler,
2043			    0, "mca_wkup");
2044
 
2045	/* Setup the CPEI/P handler */
2046	register_percpu_irq(IA64_CPEP_VECTOR, ia64_mca_cpe_int_caller, 0,
2047			    "cpe_poll");
2048}
2049
2050/*
2051 * ia64_mca_late_init
2052 *
2053 *	Opportunity to setup things that require initialization later
2054 *	than ia64_mca_init.  Setup a timer to poll for CPEs if the
2055 *	platform doesn't support an interrupt driven mechanism.
2056 *
2057 *  Inputs  :   None
2058 *  Outputs :   Status
2059 */
2060static int __init
2061ia64_mca_late_init(void)
2062{
2063	if (!mca_init)
2064		return 0;
2065
 
 
2066	/* Setup the CMCI/P vector and handler */
2067	timer_setup(&cmc_poll_timer, ia64_mca_cmc_poll, 0);
2068
2069	/* Unmask/enable the vector */
2070	cmc_polling_enabled = 0;
2071	cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "ia64/mca:online",
2072			  ia64_mca_cpu_online, NULL);
2073	IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __func__);
2074
 
2075	/* Setup the CPEI/P vector and handler */
2076	cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
2077	timer_setup(&cpe_poll_timer, ia64_mca_cpe_poll, 0);
2078
2079	{
2080		unsigned int irq;
2081
2082		if (cpe_vector >= 0) {
2083			/* If platform supports CPEI, enable the irq. */
2084			irq = local_vector_to_irq(cpe_vector);
2085			if (irq > 0) {
2086				cpe_poll_enabled = 0;
2087				irq_set_status_flags(irq, IRQ_PER_CPU);
2088				if (request_irq(irq, ia64_mca_cpe_int_handler,
2089						0, "cpe_hndlr", NULL))
2090					pr_err("Failed to register cpe_hndlr interrupt\n");
2091				ia64_cpe_irq = irq;
2092				ia64_mca_register_cpev(cpe_vector);
2093				IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n",
2094					__func__);
2095				return 0;
2096			}
2097			printk(KERN_ERR "%s: Failed to find irq for CPE "
2098					"interrupt handler, vector %d\n",
2099					__func__, cpe_vector);
2100		}
2101		/* If platform doesn't support CPEI, get the timer going. */
2102		if (cpe_poll_enabled) {
2103			ia64_mca_cpe_poll(0UL);
2104			IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __func__);
2105		}
2106	}
 
2107
2108	return 0;
2109}
2110
2111device_initcall(ia64_mca_late_init);
v4.6
 
   1/*
   2 * File:	mca.c
   3 * Purpose:	Generic MCA handling layer
   4 *
   5 * Copyright (C) 2003 Hewlett-Packard Co
   6 *	David Mosberger-Tang <davidm@hpl.hp.com>
   7 *
   8 * Copyright (C) 2002 Dell Inc.
   9 * Copyright (C) Matt Domsch <Matt_Domsch@dell.com>
  10 *
  11 * Copyright (C) 2002 Intel
  12 * Copyright (C) Jenna Hall <jenna.s.hall@intel.com>
  13 *
  14 * Copyright (C) 2001 Intel
  15 * Copyright (C) Fred Lewis <frederick.v.lewis@intel.com>
  16 *
  17 * Copyright (C) 2000 Intel
  18 * Copyright (C) Chuck Fleckenstein <cfleck@co.intel.com>
  19 *
  20 * Copyright (C) 1999, 2004-2008 Silicon Graphics, Inc.
  21 * Copyright (C) Vijay Chander <vijay@engr.sgi.com>
  22 *
  23 * Copyright (C) 2006 FUJITSU LIMITED
  24 * Copyright (C) Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
  25 *
  26 * 2000-03-29 Chuck Fleckenstein <cfleck@co.intel.com>
  27 *	      Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
  28 *	      added min save state dump, added INIT handler.
  29 *
  30 * 2001-01-03 Fred Lewis <frederick.v.lewis@intel.com>
  31 *	      Added setup of CMCI and CPEI IRQs, logging of corrected platform
  32 *	      errors, completed code for logging of corrected & uncorrected
  33 *	      machine check errors, and updated for conformance with Nov. 2000
  34 *	      revision of the SAL 3.0 spec.
  35 *
  36 * 2002-01-04 Jenna Hall <jenna.s.hall@intel.com>
  37 *	      Aligned MCA stack to 16 bytes, added platform vs. CPU error flag,
  38 *	      set SAL default return values, changed error record structure to
  39 *	      linked list, added init call to sal_get_state_info_size().
  40 *
  41 * 2002-03-25 Matt Domsch <Matt_Domsch@dell.com>
  42 *	      GUID cleanups.
  43 *
  44 * 2003-04-15 David Mosberger-Tang <davidm@hpl.hp.com>
  45 *	      Added INIT backtrace support.
  46 *
  47 * 2003-12-08 Keith Owens <kaos@sgi.com>
  48 *	      smp_call_function() must not be called from interrupt context
  49 *	      (can deadlock on tasklist_lock).
  50 *	      Use keventd to call smp_call_function().
  51 *
  52 * 2004-02-01 Keith Owens <kaos@sgi.com>
  53 *	      Avoid deadlock when using printk() for MCA and INIT records.
  54 *	      Delete all record printing code, moved to salinfo_decode in user
  55 *	      space.  Mark variables and functions static where possible.
  56 *	      Delete dead variables and functions.  Reorder to remove the need
  57 *	      for forward declarations and to consolidate related code.
  58 *
  59 * 2005-08-12 Keith Owens <kaos@sgi.com>
  60 *	      Convert MCA/INIT handlers to use per event stacks and SAL/OS
  61 *	      state.
  62 *
  63 * 2005-10-07 Keith Owens <kaos@sgi.com>
  64 *	      Add notify_die() hooks.
  65 *
  66 * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
  67 *	      Add printing support for MCA/INIT.
  68 *
  69 * 2007-04-27 Russ Anderson <rja@sgi.com>
  70 *	      Support multiple cpus going through OS_MCA in the same event.
  71 */
  72#include <linux/jiffies.h>
  73#include <linux/types.h>
  74#include <linux/init.h>
  75#include <linux/sched.h>
 
 
  76#include <linux/interrupt.h>
  77#include <linux/irq.h>
  78#include <linux/bootmem.h>
  79#include <linux/acpi.h>
  80#include <linux/timer.h>
  81#include <linux/module.h>
  82#include <linux/kernel.h>
  83#include <linux/smp.h>
  84#include <linux/workqueue.h>
  85#include <linux/cpumask.h>
  86#include <linux/kdebug.h>
  87#include <linux/cpu.h>
  88#include <linux/gfp.h>
  89
  90#include <asm/delay.h>
  91#include <asm/machvec.h>
  92#include <asm/meminit.h>
  93#include <asm/page.h>
  94#include <asm/ptrace.h>
  95#include <asm/sal.h>
  96#include <asm/mca.h>
 
  97#include <asm/kexec.h>
  98
  99#include <asm/irq.h>
 100#include <asm/hw_irq.h>
 101#include <asm/tlb.h>
 102
 103#include "mca_drv.h"
 104#include "entry.h"
 
 105
 106#if defined(IA64_MCA_DEBUG_INFO)
 107# define IA64_MCA_DEBUG(fmt...)	printk(fmt)
 108#else
 109# define IA64_MCA_DEBUG(fmt...)
 110#endif
 111
 112#define NOTIFY_INIT(event, regs, arg, spin)				\
 113do {									\
 114	if ((notify_die((event), "INIT", (regs), (arg), 0, 0)		\
 115			== NOTIFY_STOP) && ((spin) == 1))		\
 116		ia64_mca_spin(__func__);				\
 117} while (0)
 118
 119#define NOTIFY_MCA(event, regs, arg, spin)				\
 120do {									\
 121	if ((notify_die((event), "MCA", (regs), (arg), 0, 0)		\
 122			== NOTIFY_STOP) && ((spin) == 1))		\
 123		ia64_mca_spin(__func__);				\
 124} while (0)
 125
 126/* Used by mca_asm.S */
 127DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
 128DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
 129DEFINE_PER_CPU(u64, ia64_mca_pal_pte);	    /* PTE to map PAL code */
 130DEFINE_PER_CPU(u64, ia64_mca_pal_base);    /* vaddr PAL code granule */
 131DEFINE_PER_CPU(u64, ia64_mca_tr_reload);   /* Flag for TR reload */
 132
 133unsigned long __per_cpu_mca[NR_CPUS];
 134
 135/* In mca_asm.S */
 136extern void			ia64_os_init_dispatch_monarch (void);
 137extern void			ia64_os_init_dispatch_slave (void);
 138
 139static int monarch_cpu = -1;
 140
 141static ia64_mc_info_t		ia64_mc_info;
 142
 143#define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
 144#define MIN_CPE_POLL_INTERVAL (2*60*HZ)  /* 2 minutes */
 145#define CMC_POLL_INTERVAL     (1*60*HZ)  /* 1 minute */
 146#define CPE_HISTORY_LENGTH    5
 147#define CMC_HISTORY_LENGTH    5
 148
 149#ifdef CONFIG_ACPI
 150static struct timer_list cpe_poll_timer;
 151#endif
 152static struct timer_list cmc_poll_timer;
 153/*
 154 * This variable tells whether we are currently in polling mode.
 155 * Start with this in the wrong state so we won't play w/ timers
 156 * before the system is ready.
 157 */
 158static int cmc_polling_enabled = 1;
 159
 160/*
 161 * Clearing this variable prevents CPE polling from getting activated
 162 * in mca_late_init.  Use it if your system doesn't provide a CPEI,
 163 * but encounters problems retrieving CPE logs.  This should only be
 164 * necessary for debugging.
 165 */
 166static int cpe_poll_enabled = 1;
 167
 168extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
 169
 170static int mca_init __initdata;
 171
 172/*
 173 * limited & delayed printing support for MCA/INIT handler
 174 */
 175
 176#define mprintk(fmt...) ia64_mca_printk(fmt)
 177
 178#define MLOGBUF_SIZE (512+256*NR_CPUS)
 179#define MLOGBUF_MSGMAX 256
 180static char mlogbuf[MLOGBUF_SIZE];
 181static DEFINE_SPINLOCK(mlogbuf_wlock);	/* mca context only */
 182static DEFINE_SPINLOCK(mlogbuf_rlock);	/* normal context only */
 183static unsigned long mlogbuf_start;
 184static unsigned long mlogbuf_end;
 185static unsigned int mlogbuf_finished = 0;
 186static unsigned long mlogbuf_timestamp = 0;
 187
 188static int loglevel_save = -1;
 189#define BREAK_LOGLEVEL(__console_loglevel)		\
 190	oops_in_progress = 1;				\
 191	if (loglevel_save < 0)				\
 192		loglevel_save = __console_loglevel;	\
 193	__console_loglevel = 15;
 194
 195#define RESTORE_LOGLEVEL(__console_loglevel)		\
 196	if (loglevel_save >= 0) {			\
 197		__console_loglevel = loglevel_save;	\
 198		loglevel_save = -1;			\
 199	}						\
 200	mlogbuf_finished = 0;				\
 201	oops_in_progress = 0;
 202
 203/*
 204 * Push messages into buffer, print them later if not urgent.
 205 */
 206void ia64_mca_printk(const char *fmt, ...)
 207{
 208	va_list args;
 209	int printed_len;
 210	char temp_buf[MLOGBUF_MSGMAX];
 211	char *p;
 212
 213	va_start(args, fmt);
 214	printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args);
 215	va_end(args);
 216
 217	/* Copy the output into mlogbuf */
 218	if (oops_in_progress) {
 219		/* mlogbuf was abandoned, use printk directly instead. */
 220		printk("%s", temp_buf);
 221	} else {
 222		spin_lock(&mlogbuf_wlock);
 223		for (p = temp_buf; *p; p++) {
 224			unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE;
 225			if (next != mlogbuf_start) {
 226				mlogbuf[mlogbuf_end] = *p;
 227				mlogbuf_end = next;
 228			} else {
 229				/* buffer full */
 230				break;
 231			}
 232		}
 233		mlogbuf[mlogbuf_end] = '\0';
 234		spin_unlock(&mlogbuf_wlock);
 235	}
 236}
 237EXPORT_SYMBOL(ia64_mca_printk);
 238
 239/*
 240 * Print buffered messages.
 241 *  NOTE: call this after returning normal context. (ex. from salinfod)
 242 */
 243void ia64_mlogbuf_dump(void)
 244{
 245	char temp_buf[MLOGBUF_MSGMAX];
 246	char *p;
 247	unsigned long index;
 248	unsigned long flags;
 249	unsigned int printed_len;
 250
 251	/* Get output from mlogbuf */
 252	while (mlogbuf_start != mlogbuf_end) {
 253		temp_buf[0] = '\0';
 254		p = temp_buf;
 255		printed_len = 0;
 256
 257		spin_lock_irqsave(&mlogbuf_rlock, flags);
 258
 259		index = mlogbuf_start;
 260		while (index != mlogbuf_end) {
 261			*p = mlogbuf[index];
 262			index = (index + 1) % MLOGBUF_SIZE;
 263			if (!*p)
 264				break;
 265			p++;
 266			if (++printed_len >= MLOGBUF_MSGMAX - 1)
 267				break;
 268		}
 269		*p = '\0';
 270		if (temp_buf[0])
 271			printk("%s", temp_buf);
 272		mlogbuf_start = index;
 273
 274		mlogbuf_timestamp = 0;
 275		spin_unlock_irqrestore(&mlogbuf_rlock, flags);
 276	}
 277}
 278EXPORT_SYMBOL(ia64_mlogbuf_dump);
 279
 280/*
 281 * Call this if system is going to down or if immediate flushing messages to
 282 * console is required. (ex. recovery was failed, crash dump is going to be
 283 * invoked, long-wait rendezvous etc.)
 284 *  NOTE: this should be called from monarch.
 285 */
 286static void ia64_mlogbuf_finish(int wait)
 287{
 288	BREAK_LOGLEVEL(console_loglevel);
 289
 290	spin_lock_init(&mlogbuf_rlock);
 291	ia64_mlogbuf_dump();
 292	printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, "
 293		"MCA/INIT might be dodgy or fail.\n");
 294
 295	if (!wait)
 296		return;
 297
 298	/* wait for console */
 299	printk("Delaying for 5 seconds...\n");
 300	udelay(5*1000000);
 301
 302	mlogbuf_finished = 1;
 303}
 304
 305/*
 306 * Print buffered messages from INIT context.
 307 */
 308static void ia64_mlogbuf_dump_from_init(void)
 309{
 310	if (mlogbuf_finished)
 311		return;
 312
 313	if (mlogbuf_timestamp &&
 314			time_before(jiffies, mlogbuf_timestamp + 30 * HZ)) {
 315		printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT "
 316			" and the system seems to be messed up.\n");
 317		ia64_mlogbuf_finish(0);
 318		return;
 319	}
 320
 321	if (!spin_trylock(&mlogbuf_rlock)) {
 322		printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. "
 323			"Generated messages other than stack dump will be "
 324			"buffered to mlogbuf and will be printed later.\n");
 325		printk(KERN_ERR "INIT: If messages would not printed after "
 326			"this INIT, wait 30sec and assert INIT again.\n");
 327		if (!mlogbuf_timestamp)
 328			mlogbuf_timestamp = jiffies;
 329		return;
 330	}
 331	spin_unlock(&mlogbuf_rlock);
 332	ia64_mlogbuf_dump();
 333}
 334
 335static void inline
 336ia64_mca_spin(const char *func)
 337{
 338	if (monarch_cpu == smp_processor_id())
 339		ia64_mlogbuf_finish(0);
 340	mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
 341	while (1)
 342		cpu_relax();
 343}
 344/*
 345 * IA64_MCA log support
 346 */
 347#define IA64_MAX_LOGS		2	/* Double-buffering for nested MCAs */
 348#define IA64_MAX_LOG_TYPES      4   /* MCA, INIT, CMC, CPE */
 349
 350typedef struct ia64_state_log_s
 351{
 352	spinlock_t	isl_lock;
 353	int		isl_index;
 354	unsigned long	isl_count;
 355	ia64_err_rec_t  *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
 356} ia64_state_log_t;
 357
 358static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
 359
 360#define IA64_LOG_ALLOCATE(it, size) \
 361	{ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
 362		(ia64_err_rec_t *)alloc_bootmem(size); \
 363	ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
 364		(ia64_err_rec_t *)alloc_bootmem(size);}
 365#define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
 366#define IA64_LOG_LOCK(it)      spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
 367#define IA64_LOG_UNLOCK(it)    spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
 368#define IA64_LOG_NEXT_INDEX(it)    ia64_state_log[it].isl_index
 369#define IA64_LOG_CURR_INDEX(it)    1 - ia64_state_log[it].isl_index
 370#define IA64_LOG_INDEX_INC(it) \
 371    {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
 372    ia64_state_log[it].isl_count++;}
 373#define IA64_LOG_INDEX_DEC(it) \
 374    ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
 375#define IA64_LOG_NEXT_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
 376#define IA64_LOG_CURR_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
 377#define IA64_LOG_COUNT(it)         ia64_state_log[it].isl_count
 378
 
 
 
 
 
 
 
 
 
 
 
 
 
 379/*
 380 * ia64_log_init
 381 *	Reset the OS ia64 log buffer
 382 * Inputs   :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
 383 * Outputs	:	None
 384 */
 385static void __init
 386ia64_log_init(int sal_info_type)
 387{
 388	u64	max_size = 0;
 389
 390	IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
 391	IA64_LOG_LOCK_INIT(sal_info_type);
 392
 393	// SAL will tell us the maximum size of any error record of this type
 394	max_size = ia64_sal_get_state_info_size(sal_info_type);
 395	if (!max_size)
 396		/* alloc_bootmem() doesn't like zero-sized allocations! */
 397		return;
 398
 399	// set up OS data structures to hold error info
 400	IA64_LOG_ALLOCATE(sal_info_type, max_size);
 401	memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
 402	memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
 403}
 404
 405/*
 406 * ia64_log_get
 407 *
 408 *	Get the current MCA log from SAL and copy it into the OS log buffer.
 409 *
 410 *  Inputs  :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
 411 *              irq_safe    whether you can use printk at this point
 412 *  Outputs :   size        (total record length)
 413 *              *buffer     (ptr to error record)
 414 *
 415 */
 416static u64
 417ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
 418{
 419	sal_log_record_header_t     *log_buffer;
 420	u64                         total_len = 0;
 421	unsigned long               s;
 422
 423	IA64_LOG_LOCK(sal_info_type);
 424
 425	/* Get the process state information */
 426	log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
 427
 428	total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
 429
 430	if (total_len) {
 431		IA64_LOG_INDEX_INC(sal_info_type);
 432		IA64_LOG_UNLOCK(sal_info_type);
 433		if (irq_safe) {
 434			IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. Record length = %ld\n",
 435				       __func__, sal_info_type, total_len);
 436		}
 437		*buffer = (u8 *) log_buffer;
 438		return total_len;
 439	} else {
 440		IA64_LOG_UNLOCK(sal_info_type);
 441		return 0;
 442	}
 443}
 444
 445/*
 446 *  ia64_mca_log_sal_error_record
 447 *
 448 *  This function retrieves a specified error record type from SAL
 449 *  and wakes up any processes waiting for error records.
 450 *
 451 *  Inputs  :   sal_info_type   (Type of error record MCA/CMC/CPE)
 452 *              FIXME: remove MCA and irq_safe.
 453 */
 454static void
 455ia64_mca_log_sal_error_record(int sal_info_type)
 456{
 457	u8 *buffer;
 458	sal_log_record_header_t *rh;
 459	u64 size;
 460	int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
 461#ifdef IA64_MCA_DEBUG_INFO
 462	static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
 463#endif
 464
 465	size = ia64_log_get(sal_info_type, &buffer, irq_safe);
 466	if (!size)
 467		return;
 468
 469	salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
 470
 471	if (irq_safe)
 472		IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
 473			smp_processor_id(),
 474			sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
 475
 476	/* Clear logs from corrected errors in case there's no user-level logger */
 477	rh = (sal_log_record_header_t *)buffer;
 478	if (rh->severity == sal_log_severity_corrected)
 479		ia64_sal_clear_state_info(sal_info_type);
 480}
 481
 482/*
 483 * search_mca_table
 484 *  See if the MCA surfaced in an instruction range
 485 *  that has been tagged as recoverable.
 486 *
 487 *  Inputs
 488 *	first	First address range to check
 489 *	last	Last address range to check
 490 *	ip	Instruction pointer, address we are looking for
 491 *
 492 * Return value:
 493 *      1 on Success (in the table)/ 0 on Failure (not in the  table)
 494 */
 495int
 496search_mca_table (const struct mca_table_entry *first,
 497                const struct mca_table_entry *last,
 498                unsigned long ip)
 499{
 500        const struct mca_table_entry *curr;
 501        u64 curr_start, curr_end;
 502
 503        curr = first;
 504        while (curr <= last) {
 505                curr_start = (u64) &curr->start_addr + curr->start_addr;
 506                curr_end = (u64) &curr->end_addr + curr->end_addr;
 507
 508                if ((ip >= curr_start) && (ip <= curr_end)) {
 509                        return 1;
 510                }
 511                curr++;
 512        }
 513        return 0;
 514}
 515
 516/* Given an address, look for it in the mca tables. */
 517int mca_recover_range(unsigned long addr)
 518{
 519	extern struct mca_table_entry __start___mca_table[];
 520	extern struct mca_table_entry __stop___mca_table[];
 521
 522	return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
 523}
 524EXPORT_SYMBOL_GPL(mca_recover_range);
 525
 526#ifdef CONFIG_ACPI
 527
 528int cpe_vector = -1;
 529int ia64_cpe_irq = -1;
 530
 531static irqreturn_t
 532ia64_mca_cpe_int_handler (int cpe_irq, void *arg)
 533{
 534	static unsigned long	cpe_history[CPE_HISTORY_LENGTH];
 535	static int		index;
 536	static DEFINE_SPINLOCK(cpe_history_lock);
 537
 538	IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
 539		       __func__, cpe_irq, smp_processor_id());
 540
 541	/* SAL spec states this should run w/ interrupts enabled */
 542	local_irq_enable();
 543
 544	spin_lock(&cpe_history_lock);
 545	if (!cpe_poll_enabled && cpe_vector >= 0) {
 546
 547		int i, count = 1; /* we know 1 happened now */
 548		unsigned long now = jiffies;
 549
 550		for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
 551			if (now - cpe_history[i] <= HZ)
 552				count++;
 553		}
 554
 555		IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
 556		if (count >= CPE_HISTORY_LENGTH) {
 557
 558			cpe_poll_enabled = 1;
 559			spin_unlock(&cpe_history_lock);
 560			disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
 561
 562			/*
 563			 * Corrected errors will still be corrected, but
 564			 * make sure there's a log somewhere that indicates
 565			 * something is generating more than we can handle.
 566			 */
 567			printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
 568
 569			mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
 570
 571			/* lock already released, get out now */
 572			goto out;
 573		} else {
 574			cpe_history[index++] = now;
 575			if (index == CPE_HISTORY_LENGTH)
 576				index = 0;
 577		}
 578	}
 579	spin_unlock(&cpe_history_lock);
 580out:
 581	/* Get the CPE error record and log it */
 582	ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
 583
 584	local_irq_disable();
 585
 586	return IRQ_HANDLED;
 587}
 588
 589#endif /* CONFIG_ACPI */
 590
 591#ifdef CONFIG_ACPI
 592/*
 593 * ia64_mca_register_cpev
 594 *
 595 *  Register the corrected platform error vector with SAL.
 596 *
 597 *  Inputs
 598 *      cpev        Corrected Platform Error Vector number
 599 *
 600 *  Outputs
 601 *      None
 602 */
 603void
 604ia64_mca_register_cpev (int cpev)
 605{
 606	/* Register the CPE interrupt vector with SAL */
 607	struct ia64_sal_retval isrv;
 608
 609	isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
 610	if (isrv.status) {
 611		printk(KERN_ERR "Failed to register Corrected Platform "
 612		       "Error interrupt vector with SAL (status %ld)\n", isrv.status);
 613		return;
 614	}
 615
 616	IA64_MCA_DEBUG("%s: corrected platform error "
 617		       "vector %#x registered\n", __func__, cpev);
 618}
 619#endif /* CONFIG_ACPI */
 620
 621/*
 622 * ia64_mca_cmc_vector_setup
 623 *
 624 *  Setup the corrected machine check vector register in the processor.
 625 *  (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
 626 *  This function is invoked on a per-processor basis.
 627 *
 628 * Inputs
 629 *      None
 630 *
 631 * Outputs
 632 *	None
 633 */
 634void
 635ia64_mca_cmc_vector_setup (void)
 636{
 637	cmcv_reg_t	cmcv;
 638
 639	cmcv.cmcv_regval	= 0;
 640	cmcv.cmcv_mask		= 1;        /* Mask/disable interrupt at first */
 641	cmcv.cmcv_vector	= IA64_CMC_VECTOR;
 642	ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
 643
 644	IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x registered.\n",
 645		       __func__, smp_processor_id(), IA64_CMC_VECTOR);
 646
 647	IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
 648		       __func__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
 649}
 650
 651/*
 652 * ia64_mca_cmc_vector_disable
 653 *
 654 *  Mask the corrected machine check vector register in the processor.
 655 *  This function is invoked on a per-processor basis.
 656 *
 657 * Inputs
 658 *      dummy(unused)
 659 *
 660 * Outputs
 661 *	None
 662 */
 663static void
 664ia64_mca_cmc_vector_disable (void *dummy)
 665{
 666	cmcv_reg_t	cmcv;
 667
 668	cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
 669
 670	cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
 671	ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
 672
 673	IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x disabled.\n",
 674		       __func__, smp_processor_id(), cmcv.cmcv_vector);
 675}
 676
 677/*
 678 * ia64_mca_cmc_vector_enable
 679 *
 680 *  Unmask the corrected machine check vector register in the processor.
 681 *  This function is invoked on a per-processor basis.
 682 *
 683 * Inputs
 684 *      dummy(unused)
 685 *
 686 * Outputs
 687 *	None
 688 */
 689static void
 690ia64_mca_cmc_vector_enable (void *dummy)
 691{
 692	cmcv_reg_t	cmcv;
 693
 694	cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
 695
 696	cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
 697	ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
 698
 699	IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x enabled.\n",
 700		       __func__, smp_processor_id(), cmcv.cmcv_vector);
 701}
 702
 703/*
 704 * ia64_mca_cmc_vector_disable_keventd
 705 *
 706 * Called via keventd (smp_call_function() is not safe in interrupt context) to
 707 * disable the cmc interrupt vector.
 708 */
 709static void
 710ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused)
 711{
 712	on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 0);
 713}
 714
 715/*
 716 * ia64_mca_cmc_vector_enable_keventd
 717 *
 718 * Called via keventd (smp_call_function() is not safe in interrupt context) to
 719 * enable the cmc interrupt vector.
 720 */
 721static void
 722ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused)
 723{
 724	on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 0);
 725}
 726
 727/*
 728 * ia64_mca_wakeup
 729 *
 730 *	Send an inter-cpu interrupt to wake-up a particular cpu.
 731 *
 732 *  Inputs  :   cpuid
 733 *  Outputs :   None
 734 */
 735static void
 736ia64_mca_wakeup(int cpu)
 737{
 738	platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
 739}
 740
 741/*
 742 * ia64_mca_wakeup_all
 743 *
 744 *	Wakeup all the slave cpus which have rendez'ed previously.
 745 *
 746 *  Inputs  :   None
 747 *  Outputs :   None
 748 */
 749static void
 750ia64_mca_wakeup_all(void)
 751{
 752	int cpu;
 753
 754	/* Clear the Rendez checkin flag for all cpus */
 755	for_each_online_cpu(cpu) {
 756		if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
 757			ia64_mca_wakeup(cpu);
 758	}
 759
 760}
 761
 762/*
 763 * ia64_mca_rendez_interrupt_handler
 764 *
 765 *	This is handler used to put slave processors into spinloop
 766 *	while the monarch processor does the mca handling and later
 767 *	wake each slave up once the monarch is done.  The state
 768 *	IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed
 769 *	in SAL.  The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates
 770 *	the cpu has come out of OS rendezvous.
 771 *
 772 *  Inputs  :   None
 773 *  Outputs :   None
 774 */
 775static irqreturn_t
 776ia64_mca_rendez_int_handler(int rendez_irq, void *arg)
 777{
 778	unsigned long flags;
 779	int cpu = smp_processor_id();
 780	struct ia64_mca_notify_die nd =
 781		{ .sos = NULL, .monarch_cpu = &monarch_cpu };
 782
 783	/* Mask all interrupts */
 784	local_irq_save(flags);
 785
 786	NOTIFY_MCA(DIE_MCA_RENDZVOUS_ENTER, get_irq_regs(), (long)&nd, 1);
 787
 788	ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
 789	/* Register with the SAL monarch that the slave has
 790	 * reached SAL
 791	 */
 792	ia64_sal_mc_rendez();
 793
 794	NOTIFY_MCA(DIE_MCA_RENDZVOUS_PROCESS, get_irq_regs(), (long)&nd, 1);
 795
 796	/* Wait for the monarch cpu to exit. */
 797	while (monarch_cpu != -1)
 798	       cpu_relax();	/* spin until monarch leaves */
 799
 800	NOTIFY_MCA(DIE_MCA_RENDZVOUS_LEAVE, get_irq_regs(), (long)&nd, 1);
 801
 802	ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
 803	/* Enable all interrupts */
 804	local_irq_restore(flags);
 805	return IRQ_HANDLED;
 806}
 807
 808/*
 809 * ia64_mca_wakeup_int_handler
 810 *
 811 *	The interrupt handler for processing the inter-cpu interrupt to the
 812 *	slave cpu which was spinning in the rendez loop.
 813 *	Since this spinning is done by turning off the interrupts and
 814 *	polling on the wakeup-interrupt bit in the IRR, there is
 815 *	nothing useful to be done in the handler.
 816 *
 817 *  Inputs  :   wakeup_irq  (Wakeup-interrupt bit)
 818 *	arg		(Interrupt handler specific argument)
 819 *  Outputs :   None
 820 *
 821 */
 822static irqreturn_t
 823ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg)
 824{
 825	return IRQ_HANDLED;
 826}
 827
 828/* Function pointer for extra MCA recovery */
 829int (*ia64_mca_ucmc_extension)
 830	(void*,struct ia64_sal_os_state*)
 831	= NULL;
 832
 833int
 834ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
 835{
 836	if (ia64_mca_ucmc_extension)
 837		return 1;
 838
 839	ia64_mca_ucmc_extension = fn;
 840	return 0;
 841}
 842
 843void
 844ia64_unreg_MCA_extension(void)
 845{
 846	if (ia64_mca_ucmc_extension)
 847		ia64_mca_ucmc_extension = NULL;
 848}
 849
 850EXPORT_SYMBOL(ia64_reg_MCA_extension);
 851EXPORT_SYMBOL(ia64_unreg_MCA_extension);
 852
 853
 854static inline void
 855copy_reg(const u64 *fr, u64 fnat, unsigned long *tr, unsigned long *tnat)
 856{
 857	u64 fslot, tslot, nat;
 858	*tr = *fr;
 859	fslot = ((unsigned long)fr >> 3) & 63;
 860	tslot = ((unsigned long)tr >> 3) & 63;
 861	*tnat &= ~(1UL << tslot);
 862	nat = (fnat >> fslot) & 1;
 863	*tnat |= (nat << tslot);
 864}
 865
 866/* Change the comm field on the MCA/INT task to include the pid that
 867 * was interrupted, it makes for easier debugging.  If that pid was 0
 868 * (swapper or nested MCA/INIT) then use the start of the previous comm
 869 * field suffixed with its cpu.
 870 */
 871
 872static void
 873ia64_mca_modify_comm(const struct task_struct *previous_current)
 874{
 875	char *p, comm[sizeof(current->comm)];
 876	if (previous_current->pid)
 877		snprintf(comm, sizeof(comm), "%s %d",
 878			current->comm, previous_current->pid);
 879	else {
 880		int l;
 881		if ((p = strchr(previous_current->comm, ' ')))
 882			l = p - previous_current->comm;
 883		else
 884			l = strlen(previous_current->comm);
 885		snprintf(comm, sizeof(comm), "%s %*s %d",
 886			current->comm, l, previous_current->comm,
 887			task_thread_info(previous_current)->cpu);
 888	}
 889	memcpy(current->comm, comm, sizeof(current->comm));
 890}
 891
 892static void
 893finish_pt_regs(struct pt_regs *regs, struct ia64_sal_os_state *sos,
 894		unsigned long *nat)
 895{
 896	const pal_min_state_area_t *ms = sos->pal_min_state;
 897	const u64 *bank;
 898
 899	/* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
 900	 * pmsa_{xip,xpsr,xfs}
 901	 */
 902	if (ia64_psr(regs)->ic) {
 903		regs->cr_iip = ms->pmsa_iip;
 904		regs->cr_ipsr = ms->pmsa_ipsr;
 905		regs->cr_ifs = ms->pmsa_ifs;
 906	} else {
 907		regs->cr_iip = ms->pmsa_xip;
 908		regs->cr_ipsr = ms->pmsa_xpsr;
 909		regs->cr_ifs = ms->pmsa_xfs;
 910
 911		sos->iip = ms->pmsa_iip;
 912		sos->ipsr = ms->pmsa_ipsr;
 913		sos->ifs = ms->pmsa_ifs;
 914	}
 915	regs->pr = ms->pmsa_pr;
 916	regs->b0 = ms->pmsa_br0;
 917	regs->ar_rsc = ms->pmsa_rsc;
 918	copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &regs->r1, nat);
 919	copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &regs->r2, nat);
 920	copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &regs->r3, nat);
 921	copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &regs->r8, nat);
 922	copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &regs->r9, nat);
 923	copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &regs->r10, nat);
 924	copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &regs->r11, nat);
 925	copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &regs->r12, nat);
 926	copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &regs->r13, nat);
 927	copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &regs->r14, nat);
 928	copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &regs->r15, nat);
 929	if (ia64_psr(regs)->bn)
 930		bank = ms->pmsa_bank1_gr;
 931	else
 932		bank = ms->pmsa_bank0_gr;
 933	copy_reg(&bank[16-16], ms->pmsa_nat_bits, &regs->r16, nat);
 934	copy_reg(&bank[17-16], ms->pmsa_nat_bits, &regs->r17, nat);
 935	copy_reg(&bank[18-16], ms->pmsa_nat_bits, &regs->r18, nat);
 936	copy_reg(&bank[19-16], ms->pmsa_nat_bits, &regs->r19, nat);
 937	copy_reg(&bank[20-16], ms->pmsa_nat_bits, &regs->r20, nat);
 938	copy_reg(&bank[21-16], ms->pmsa_nat_bits, &regs->r21, nat);
 939	copy_reg(&bank[22-16], ms->pmsa_nat_bits, &regs->r22, nat);
 940	copy_reg(&bank[23-16], ms->pmsa_nat_bits, &regs->r23, nat);
 941	copy_reg(&bank[24-16], ms->pmsa_nat_bits, &regs->r24, nat);
 942	copy_reg(&bank[25-16], ms->pmsa_nat_bits, &regs->r25, nat);
 943	copy_reg(&bank[26-16], ms->pmsa_nat_bits, &regs->r26, nat);
 944	copy_reg(&bank[27-16], ms->pmsa_nat_bits, &regs->r27, nat);
 945	copy_reg(&bank[28-16], ms->pmsa_nat_bits, &regs->r28, nat);
 946	copy_reg(&bank[29-16], ms->pmsa_nat_bits, &regs->r29, nat);
 947	copy_reg(&bank[30-16], ms->pmsa_nat_bits, &regs->r30, nat);
 948	copy_reg(&bank[31-16], ms->pmsa_nat_bits, &regs->r31, nat);
 949}
 950
 951/* On entry to this routine, we are running on the per cpu stack, see
 952 * mca_asm.h.  The original stack has not been touched by this event.  Some of
 953 * the original stack's registers will be in the RBS on this stack.  This stack
 954 * also contains a partial pt_regs and switch_stack, the rest of the data is in
 955 * PAL minstate.
 956 *
 957 * The first thing to do is modify the original stack to look like a blocked
 958 * task so we can run backtrace on the original task.  Also mark the per cpu
 959 * stack as current to ensure that we use the correct task state, it also means
 960 * that we can do backtrace on the MCA/INIT handler code itself.
 961 */
 962
 963static struct task_struct *
 964ia64_mca_modify_original_stack(struct pt_regs *regs,
 965		const struct switch_stack *sw,
 966		struct ia64_sal_os_state *sos,
 967		const char *type)
 968{
 969	char *p;
 970	ia64_va va;
 971	extern char ia64_leave_kernel[];	/* Need asm address, not function descriptor */
 972	const pal_min_state_area_t *ms = sos->pal_min_state;
 973	struct task_struct *previous_current;
 974	struct pt_regs *old_regs;
 975	struct switch_stack *old_sw;
 976	unsigned size = sizeof(struct pt_regs) +
 977			sizeof(struct switch_stack) + 16;
 978	unsigned long *old_bspstore, *old_bsp;
 979	unsigned long *new_bspstore, *new_bsp;
 980	unsigned long old_unat, old_rnat, new_rnat, nat;
 981	u64 slots, loadrs = regs->loadrs;
 982	u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
 983	u64 ar_bspstore = regs->ar_bspstore;
 984	u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
 985	const char *msg;
 986	int cpu = smp_processor_id();
 987
 988	previous_current = curr_task(cpu);
 989	set_curr_task(cpu, current);
 990	if ((p = strchr(current->comm, ' ')))
 991		*p = '\0';
 992
 993	/* Best effort attempt to cope with MCA/INIT delivered while in
 994	 * physical mode.
 995	 */
 996	regs->cr_ipsr = ms->pmsa_ipsr;
 997	if (ia64_psr(regs)->dt == 0) {
 998		va.l = r12;
 999		if (va.f.reg == 0) {
1000			va.f.reg = 7;
1001			r12 = va.l;
1002		}
1003		va.l = r13;
1004		if (va.f.reg == 0) {
1005			va.f.reg = 7;
1006			r13 = va.l;
1007		}
1008	}
1009	if (ia64_psr(regs)->rt == 0) {
1010		va.l = ar_bspstore;
1011		if (va.f.reg == 0) {
1012			va.f.reg = 7;
1013			ar_bspstore = va.l;
1014		}
1015		va.l = ar_bsp;
1016		if (va.f.reg == 0) {
1017			va.f.reg = 7;
1018			ar_bsp = va.l;
1019		}
1020	}
1021
1022	/* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
1023	 * have been copied to the old stack, the old stack may fail the
1024	 * validation tests below.  So ia64_old_stack() must restore the dirty
1025	 * registers from the new stack.  The old and new bspstore probably
1026	 * have different alignments, so loadrs calculated on the old bsp
1027	 * cannot be used to restore from the new bsp.  Calculate a suitable
1028	 * loadrs for the new stack and save it in the new pt_regs, where
1029	 * ia64_old_stack() can get it.
1030	 */
1031	old_bspstore = (unsigned long *)ar_bspstore;
1032	old_bsp = (unsigned long *)ar_bsp;
1033	slots = ia64_rse_num_regs(old_bspstore, old_bsp);
1034	new_bspstore = (unsigned long *)((u64)current + IA64_RBS_OFFSET);
1035	new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
1036	regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
1037
1038	/* Verify the previous stack state before we change it */
1039	if (user_mode(regs)) {
1040		msg = "occurred in user space";
1041		/* previous_current is guaranteed to be valid when the task was
1042		 * in user space, so ...
1043		 */
1044		ia64_mca_modify_comm(previous_current);
1045		goto no_mod;
1046	}
1047
1048	if (r13 != sos->prev_IA64_KR_CURRENT) {
1049		msg = "inconsistent previous current and r13";
1050		goto no_mod;
1051	}
1052
1053	if (!mca_recover_range(ms->pmsa_iip)) {
1054		if ((r12 - r13) >= KERNEL_STACK_SIZE) {
1055			msg = "inconsistent r12 and r13";
1056			goto no_mod;
1057		}
1058		if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
1059			msg = "inconsistent ar.bspstore and r13";
1060			goto no_mod;
1061		}
1062		va.p = old_bspstore;
1063		if (va.f.reg < 5) {
1064			msg = "old_bspstore is in the wrong region";
1065			goto no_mod;
1066		}
1067		if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
1068			msg = "inconsistent ar.bsp and r13";
1069			goto no_mod;
1070		}
1071		size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
1072		if (ar_bspstore + size > r12) {
1073			msg = "no room for blocked state";
1074			goto no_mod;
1075		}
1076	}
1077
1078	ia64_mca_modify_comm(previous_current);
1079
1080	/* Make the original task look blocked.  First stack a struct pt_regs,
1081	 * describing the state at the time of interrupt.  mca_asm.S built a
1082	 * partial pt_regs, copy it and fill in the blanks using minstate.
1083	 */
1084	p = (char *)r12 - sizeof(*regs);
1085	old_regs = (struct pt_regs *)p;
1086	memcpy(old_regs, regs, sizeof(*regs));
1087	old_regs->loadrs = loadrs;
1088	old_unat = old_regs->ar_unat;
1089	finish_pt_regs(old_regs, sos, &old_unat);
1090
1091	/* Next stack a struct switch_stack.  mca_asm.S built a partial
1092	 * switch_stack, copy it and fill in the blanks using pt_regs and
1093	 * minstate.
1094	 *
1095	 * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1096	 * ar.pfs is set to 0.
1097	 *
1098	 * unwind.c::unw_unwind() does special processing for interrupt frames.
1099	 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1100	 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs.  Not
1101	 * that this is documented, of course.  Set PRED_NON_SYSCALL in the
1102	 * switch_stack on the original stack so it will unwind correctly when
1103	 * unwind.c reads pt_regs.
1104	 *
1105	 * thread.ksp is updated to point to the synthesized switch_stack.
1106	 */
1107	p -= sizeof(struct switch_stack);
1108	old_sw = (struct switch_stack *)p;
1109	memcpy(old_sw, sw, sizeof(*sw));
1110	old_sw->caller_unat = old_unat;
1111	old_sw->ar_fpsr = old_regs->ar_fpsr;
1112	copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
1113	copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
1114	copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
1115	copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
1116	old_sw->b0 = (u64)ia64_leave_kernel;
1117	old_sw->b1 = ms->pmsa_br1;
1118	old_sw->ar_pfs = 0;
1119	old_sw->ar_unat = old_unat;
1120	old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
1121	previous_current->thread.ksp = (u64)p - 16;
1122
1123	/* Finally copy the original stack's registers back to its RBS.
1124	 * Registers from ar.bspstore through ar.bsp at the time of the event
1125	 * are in the current RBS, copy them back to the original stack.  The
1126	 * copy must be done register by register because the original bspstore
1127	 * and the current one have different alignments, so the saved RNAT
1128	 * data occurs at different places.
1129	 *
1130	 * mca_asm does cover, so the old_bsp already includes all registers at
1131	 * the time of MCA/INIT.  It also does flushrs, so all registers before
1132	 * this function have been written to backing store on the MCA/INIT
1133	 * stack.
1134	 */
1135	new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
1136	old_rnat = regs->ar_rnat;
1137	while (slots--) {
1138		if (ia64_rse_is_rnat_slot(new_bspstore)) {
1139			new_rnat = ia64_get_rnat(new_bspstore++);
1140		}
1141		if (ia64_rse_is_rnat_slot(old_bspstore)) {
1142			*old_bspstore++ = old_rnat;
1143			old_rnat = 0;
1144		}
1145		nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
1146		old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
1147		old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
1148		*old_bspstore++ = *new_bspstore++;
1149	}
1150	old_sw->ar_bspstore = (unsigned long)old_bspstore;
1151	old_sw->ar_rnat = old_rnat;
1152
1153	sos->prev_task = previous_current;
1154	return previous_current;
1155
1156no_mod:
1157	mprintk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
1158			smp_processor_id(), type, msg);
1159	old_unat = regs->ar_unat;
1160	finish_pt_regs(regs, sos, &old_unat);
1161	return previous_current;
1162}
1163
1164/* The monarch/slave interaction is based on monarch_cpu and requires that all
1165 * slaves have entered rendezvous before the monarch leaves.  If any cpu has
1166 * not entered rendezvous yet then wait a bit.  The assumption is that any
1167 * slave that has not rendezvoused after a reasonable time is never going to do
1168 * so.  In this context, slave includes cpus that respond to the MCA rendezvous
1169 * interrupt, as well as cpus that receive the INIT slave event.
1170 */
1171
1172static void
1173ia64_wait_for_slaves(int monarch, const char *type)
1174{
1175	int c, i , wait;
1176
1177	/*
1178	 * wait 5 seconds total for slaves (arbitrary)
1179	 */
1180	for (i = 0; i < 5000; i++) {
1181		wait = 0;
1182		for_each_online_cpu(c) {
1183			if (c == monarch)
1184				continue;
1185			if (ia64_mc_info.imi_rendez_checkin[c]
1186					== IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1187				udelay(1000);		/* short wait */
1188				wait = 1;
1189				break;
1190			}
1191		}
1192		if (!wait)
1193			goto all_in;
1194	}
1195
1196	/*
1197	 * Maybe slave(s) dead. Print buffered messages immediately.
1198	 */
1199	ia64_mlogbuf_finish(0);
1200	mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
1201	for_each_online_cpu(c) {
1202		if (c == monarch)
1203			continue;
1204		if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1205			mprintk(" %d", c);
1206	}
1207	mprintk("\n");
1208	return;
1209
1210all_in:
1211	mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
1212	return;
1213}
1214
1215/*  mca_insert_tr
1216 *
1217 *  Switch rid when TR reload and needed!
1218 *  iord: 1: itr, 2: itr;
1219 *
1220*/
1221static void mca_insert_tr(u64 iord)
1222{
1223
1224	int i;
1225	u64 old_rr;
1226	struct ia64_tr_entry *p;
1227	unsigned long psr;
1228	int cpu = smp_processor_id();
1229
1230	if (!ia64_idtrs[cpu])
1231		return;
1232
1233	psr = ia64_clear_ic();
1234	for (i = IA64_TR_ALLOC_BASE; i < IA64_TR_ALLOC_MAX; i++) {
1235		p = ia64_idtrs[cpu] + (iord - 1) * IA64_TR_ALLOC_MAX;
1236		if (p->pte & 0x1) {
1237			old_rr = ia64_get_rr(p->ifa);
1238			if (old_rr != p->rr) {
1239				ia64_set_rr(p->ifa, p->rr);
1240				ia64_srlz_d();
1241			}
1242			ia64_ptr(iord, p->ifa, p->itir >> 2);
1243			ia64_srlz_i();
1244			if (iord & 0x1) {
1245				ia64_itr(0x1, i, p->ifa, p->pte, p->itir >> 2);
1246				ia64_srlz_i();
1247			}
1248			if (iord & 0x2) {
1249				ia64_itr(0x2, i, p->ifa, p->pte, p->itir >> 2);
1250				ia64_srlz_i();
1251			}
1252			if (old_rr != p->rr) {
1253				ia64_set_rr(p->ifa, old_rr);
1254				ia64_srlz_d();
1255			}
1256		}
1257	}
1258	ia64_set_psr(psr);
1259}
1260
1261/*
1262 * ia64_mca_handler
1263 *
1264 *	This is uncorrectable machine check handler called from OS_MCA
1265 *	dispatch code which is in turn called from SAL_CHECK().
1266 *	This is the place where the core of OS MCA handling is done.
1267 *	Right now the logs are extracted and displayed in a well-defined
1268 *	format. This handler code is supposed to be run only on the
1269 *	monarch processor. Once the monarch is done with MCA handling
1270 *	further MCA logging is enabled by clearing logs.
1271 *	Monarch also has the duty of sending wakeup-IPIs to pull the
1272 *	slave processors out of rendezvous spinloop.
1273 *
1274 *	If multiple processors call into OS_MCA, the first will become
1275 *	the monarch.  Subsequent cpus will be recorded in the mca_cpu
1276 *	bitmask.  After the first monarch has processed its MCA, it
1277 *	will wake up the next cpu in the mca_cpu bitmask and then go
1278 *	into the rendezvous loop.  When all processors have serviced
1279 *	their MCA, the last monarch frees up the rest of the processors.
1280 */
1281void
1282ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1283		 struct ia64_sal_os_state *sos)
1284{
1285	int recover, cpu = smp_processor_id();
1286	struct task_struct *previous_current;
1287	struct ia64_mca_notify_die nd =
1288		{ .sos = sos, .monarch_cpu = &monarch_cpu, .data = &recover };
1289	static atomic_t mca_count;
1290	static cpumask_t mca_cpu;
1291
1292	if (atomic_add_return(1, &mca_count) == 1) {
1293		monarch_cpu = cpu;
1294		sos->monarch = 1;
1295	} else {
1296		cpumask_set_cpu(cpu, &mca_cpu);
1297		sos->monarch = 0;
1298	}
1299	mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d "
1300		"monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch);
1301
1302	previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1303
1304	NOTIFY_MCA(DIE_MCA_MONARCH_ENTER, regs, (long)&nd, 1);
1305
1306	ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA;
1307	if (sos->monarch) {
1308		ia64_wait_for_slaves(cpu, "MCA");
1309
1310		/* Wakeup all the processors which are spinning in the
1311		 * rendezvous loop.  They will leave SAL, then spin in the OS
1312		 * with interrupts disabled until this monarch cpu leaves the
1313		 * MCA handler.  That gets control back to the OS so we can
1314		 * backtrace the other cpus, backtrace when spinning in SAL
1315		 * does not work.
1316		 */
1317		ia64_mca_wakeup_all();
1318	} else {
1319		while (cpumask_test_cpu(cpu, &mca_cpu))
1320			cpu_relax();	/* spin until monarch wakes us */
1321	}
1322
1323	NOTIFY_MCA(DIE_MCA_MONARCH_PROCESS, regs, (long)&nd, 1);
1324
1325	/* Get the MCA error record and log it */
1326	ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1327
1328	/* MCA error recovery */
1329	recover = (ia64_mca_ucmc_extension
1330		&& ia64_mca_ucmc_extension(
1331			IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1332			sos));
1333
1334	if (recover) {
1335		sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1336		rh->severity = sal_log_severity_corrected;
1337		ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1338		sos->os_status = IA64_MCA_CORRECTED;
1339	} else {
1340		/* Dump buffered message to console */
1341		ia64_mlogbuf_finish(1);
1342	}
1343
1344	if (__this_cpu_read(ia64_mca_tr_reload)) {
1345		mca_insert_tr(0x1); /*Reload dynamic itrs*/
1346		mca_insert_tr(0x2); /*Reload dynamic itrs*/
1347	}
1348
1349	NOTIFY_MCA(DIE_MCA_MONARCH_LEAVE, regs, (long)&nd, 1);
1350
1351	if (atomic_dec_return(&mca_count) > 0) {
1352		int i;
1353
1354		/* wake up the next monarch cpu,
1355		 * and put this cpu in the rendez loop.
1356		 */
1357		for_each_online_cpu(i) {
1358			if (cpumask_test_cpu(i, &mca_cpu)) {
1359				monarch_cpu = i;
1360				cpumask_clear_cpu(i, &mca_cpu);	/* wake next cpu */
1361				while (monarch_cpu != -1)
1362					cpu_relax();	/* spin until last cpu leaves */
1363				set_curr_task(cpu, previous_current);
1364				ia64_mc_info.imi_rendez_checkin[cpu]
1365						= IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1366				return;
1367			}
1368		}
1369	}
1370	set_curr_task(cpu, previous_current);
1371	ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1372	monarch_cpu = -1;	/* This frees the slaves and previous monarchs */
1373}
1374
1375static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd);
1376static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd);
1377
1378/*
1379 * ia64_mca_cmc_int_handler
1380 *
1381 *  This is corrected machine check interrupt handler.
1382 *	Right now the logs are extracted and displayed in a well-defined
1383 *	format.
1384 *
1385 * Inputs
1386 *      interrupt number
1387 *      client data arg ptr
1388 *
1389 * Outputs
1390 *	None
1391 */
1392static irqreturn_t
1393ia64_mca_cmc_int_handler(int cmc_irq, void *arg)
1394{
1395	static unsigned long	cmc_history[CMC_HISTORY_LENGTH];
1396	static int		index;
1397	static DEFINE_SPINLOCK(cmc_history_lock);
1398
1399	IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1400		       __func__, cmc_irq, smp_processor_id());
1401
1402	/* SAL spec states this should run w/ interrupts enabled */
1403	local_irq_enable();
1404
1405	spin_lock(&cmc_history_lock);
1406	if (!cmc_polling_enabled) {
1407		int i, count = 1; /* we know 1 happened now */
1408		unsigned long now = jiffies;
1409
1410		for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1411			if (now - cmc_history[i] <= HZ)
1412				count++;
1413		}
1414
1415		IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1416		if (count >= CMC_HISTORY_LENGTH) {
1417
1418			cmc_polling_enabled = 1;
1419			spin_unlock(&cmc_history_lock);
1420			/* If we're being hit with CMC interrupts, we won't
1421			 * ever execute the schedule_work() below.  Need to
1422			 * disable CMC interrupts on this processor now.
1423			 */
1424			ia64_mca_cmc_vector_disable(NULL);
1425			schedule_work(&cmc_disable_work);
1426
1427			/*
1428			 * Corrected errors will still be corrected, but
1429			 * make sure there's a log somewhere that indicates
1430			 * something is generating more than we can handle.
1431			 */
1432			printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1433
1434			mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1435
1436			/* lock already released, get out now */
1437			goto out;
1438		} else {
1439			cmc_history[index++] = now;
1440			if (index == CMC_HISTORY_LENGTH)
1441				index = 0;
1442		}
1443	}
1444	spin_unlock(&cmc_history_lock);
1445out:
1446	/* Get the CMC error record and log it */
1447	ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1448
1449	local_irq_disable();
1450
1451	return IRQ_HANDLED;
1452}
1453
1454/*
1455 *  ia64_mca_cmc_int_caller
1456 *
1457 * 	Triggered by sw interrupt from CMC polling routine.  Calls
1458 * 	real interrupt handler and either triggers a sw interrupt
1459 * 	on the next cpu or does cleanup at the end.
1460 *
1461 * Inputs
1462 *	interrupt number
1463 *	client data arg ptr
1464 * Outputs
1465 * 	handled
1466 */
1467static irqreturn_t
1468ia64_mca_cmc_int_caller(int cmc_irq, void *arg)
1469{
1470	static int start_count = -1;
1471	unsigned int cpuid;
1472
1473	cpuid = smp_processor_id();
1474
1475	/* If first cpu, update count */
1476	if (start_count == -1)
1477		start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1478
1479	ia64_mca_cmc_int_handler(cmc_irq, arg);
1480
1481	cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1482
1483	if (cpuid < nr_cpu_ids) {
1484		platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1485	} else {
1486		/* If no log record, switch out of polling mode */
1487		if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1488
1489			printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1490			schedule_work(&cmc_enable_work);
1491			cmc_polling_enabled = 0;
1492
1493		} else {
1494
1495			mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1496		}
1497
1498		start_count = -1;
1499	}
1500
1501	return IRQ_HANDLED;
1502}
1503
1504/*
1505 *  ia64_mca_cmc_poll
1506 *
1507 *	Poll for Corrected Machine Checks (CMCs)
1508 *
1509 * Inputs   :   dummy(unused)
1510 * Outputs  :   None
1511 *
1512 */
1513static void
1514ia64_mca_cmc_poll (unsigned long dummy)
1515{
1516	/* Trigger a CMC interrupt cascade  */
1517	platform_send_ipi(cpumask_first(cpu_online_mask), IA64_CMCP_VECTOR,
1518							IA64_IPI_DM_INT, 0);
1519}
1520
1521/*
1522 *  ia64_mca_cpe_int_caller
1523 *
1524 * 	Triggered by sw interrupt from CPE polling routine.  Calls
1525 * 	real interrupt handler and either triggers a sw interrupt
1526 * 	on the next cpu or does cleanup at the end.
1527 *
1528 * Inputs
1529 *	interrupt number
1530 *	client data arg ptr
1531 * Outputs
1532 * 	handled
1533 */
1534#ifdef CONFIG_ACPI
1535
1536static irqreturn_t
1537ia64_mca_cpe_int_caller(int cpe_irq, void *arg)
1538{
1539	static int start_count = -1;
1540	static int poll_time = MIN_CPE_POLL_INTERVAL;
1541	unsigned int cpuid;
1542
1543	cpuid = smp_processor_id();
1544
1545	/* If first cpu, update count */
1546	if (start_count == -1)
1547		start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1548
1549	ia64_mca_cpe_int_handler(cpe_irq, arg);
1550
1551	cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1552
1553	if (cpuid < NR_CPUS) {
1554		platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1555	} else {
1556		/*
1557		 * If a log was recorded, increase our polling frequency,
1558		 * otherwise, backoff or return to interrupt mode.
1559		 */
1560		if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1561			poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1562		} else if (cpe_vector < 0) {
1563			poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1564		} else {
1565			poll_time = MIN_CPE_POLL_INTERVAL;
1566
1567			printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1568			enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1569			cpe_poll_enabled = 0;
1570		}
1571
1572		if (cpe_poll_enabled)
1573			mod_timer(&cpe_poll_timer, jiffies + poll_time);
1574		start_count = -1;
1575	}
1576
1577	return IRQ_HANDLED;
1578}
1579
1580/*
1581 *  ia64_mca_cpe_poll
1582 *
1583 *	Poll for Corrected Platform Errors (CPEs), trigger interrupt
1584 *	on first cpu, from there it will trickle through all the cpus.
1585 *
1586 * Inputs   :   dummy(unused)
1587 * Outputs  :   None
1588 *
1589 */
1590static void
1591ia64_mca_cpe_poll (unsigned long dummy)
1592{
1593	/* Trigger a CPE interrupt cascade  */
1594	platform_send_ipi(cpumask_first(cpu_online_mask), IA64_CPEP_VECTOR,
1595							IA64_IPI_DM_INT, 0);
1596}
1597
1598#endif /* CONFIG_ACPI */
1599
1600static int
1601default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1602{
1603	int c;
1604	struct task_struct *g, *t;
1605	if (val != DIE_INIT_MONARCH_PROCESS)
1606		return NOTIFY_DONE;
1607#ifdef CONFIG_KEXEC
1608	if (atomic_read(&kdump_in_progress))
1609		return NOTIFY_DONE;
1610#endif
1611
1612	/*
1613	 * FIXME: mlogbuf will brim over with INIT stack dumps.
1614	 * To enable show_stack from INIT, we use oops_in_progress which should
1615	 * be used in real oops. This would cause something wrong after INIT.
1616	 */
1617	BREAK_LOGLEVEL(console_loglevel);
1618	ia64_mlogbuf_dump_from_init();
1619
1620	printk(KERN_ERR "Processes interrupted by INIT -");
1621	for_each_online_cpu(c) {
1622		struct ia64_sal_os_state *s;
1623		t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1624		s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1625		g = s->prev_task;
1626		if (g) {
1627			if (g->pid)
1628				printk(" %d", g->pid);
1629			else
1630				printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1631		}
1632	}
1633	printk("\n\n");
1634	if (read_trylock(&tasklist_lock)) {
1635		do_each_thread (g, t) {
1636			printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1637			show_stack(t, NULL);
1638		} while_each_thread (g, t);
1639		read_unlock(&tasklist_lock);
1640	}
1641	/* FIXME: This will not restore zapped printk locks. */
1642	RESTORE_LOGLEVEL(console_loglevel);
1643	return NOTIFY_DONE;
1644}
1645
1646/*
1647 * C portion of the OS INIT handler
1648 *
1649 * Called from ia64_os_init_dispatch
1650 *
1651 * Inputs: pointer to pt_regs where processor info was saved.  SAL/OS state for
1652 * this event.  This code is used for both monarch and slave INIT events, see
1653 * sos->monarch.
1654 *
1655 * All INIT events switch to the INIT stack and change the previous process to
1656 * blocked status.  If one of the INIT events is the monarch then we are
1657 * probably processing the nmi button/command.  Use the monarch cpu to dump all
1658 * the processes.  The slave INIT events all spin until the monarch cpu
1659 * returns.  We can also get INIT slave events for MCA, in which case the MCA
1660 * process is the monarch.
1661 */
1662
1663void
1664ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1665		  struct ia64_sal_os_state *sos)
1666{
1667	static atomic_t slaves;
1668	static atomic_t monarchs;
1669	struct task_struct *previous_current;
1670	int cpu = smp_processor_id();
1671	struct ia64_mca_notify_die nd =
1672		{ .sos = sos, .monarch_cpu = &monarch_cpu };
1673
1674	NOTIFY_INIT(DIE_INIT_ENTER, regs, (long)&nd, 0);
1675
1676	mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1677		sos->proc_state_param, cpu, sos->monarch);
1678	salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1679
1680	previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1681	sos->os_status = IA64_INIT_RESUME;
1682
1683	/* FIXME: Workaround for broken proms that drive all INIT events as
1684	 * slaves.  The last slave that enters is promoted to be a monarch.
1685	 * Remove this code in September 2006, that gives platforms a year to
1686	 * fix their proms and get their customers updated.
1687	 */
1688	if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1689		mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1690		        __func__, cpu);
1691		atomic_dec(&slaves);
1692		sos->monarch = 1;
1693	}
1694
1695	/* FIXME: Workaround for broken proms that drive all INIT events as
1696	 * monarchs.  Second and subsequent monarchs are demoted to slaves.
1697	 * Remove this code in September 2006, that gives platforms a year to
1698	 * fix their proms and get their customers updated.
1699	 */
1700	if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1701		mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1702			       __func__, cpu);
1703		atomic_dec(&monarchs);
1704		sos->monarch = 0;
1705	}
1706
1707	if (!sos->monarch) {
1708		ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1709
1710#ifdef CONFIG_KEXEC
1711		while (monarch_cpu == -1 && !atomic_read(&kdump_in_progress))
1712			udelay(1000);
1713#else
1714		while (monarch_cpu == -1)
1715			cpu_relax();	/* spin until monarch enters */
1716#endif
1717
1718		NOTIFY_INIT(DIE_INIT_SLAVE_ENTER, regs, (long)&nd, 1);
1719		NOTIFY_INIT(DIE_INIT_SLAVE_PROCESS, regs, (long)&nd, 1);
1720
1721#ifdef CONFIG_KEXEC
1722		while (monarch_cpu != -1 && !atomic_read(&kdump_in_progress))
1723			udelay(1000);
1724#else
1725		while (monarch_cpu != -1)
1726			cpu_relax();	/* spin until monarch leaves */
1727#endif
1728
1729		NOTIFY_INIT(DIE_INIT_SLAVE_LEAVE, regs, (long)&nd, 1);
1730
1731		mprintk("Slave on cpu %d returning to normal service.\n", cpu);
1732		set_curr_task(cpu, previous_current);
1733		ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1734		atomic_dec(&slaves);
1735		return;
1736	}
1737
1738	monarch_cpu = cpu;
1739	NOTIFY_INIT(DIE_INIT_MONARCH_ENTER, regs, (long)&nd, 1);
1740
1741	/*
1742	 * Wait for a bit.  On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1743	 * generated via the BMC's command-line interface, but since the console is on the
1744	 * same serial line, the user will need some time to switch out of the BMC before
1745	 * the dump begins.
1746	 */
1747	mprintk("Delaying for 5 seconds...\n");
1748	udelay(5*1000000);
1749	ia64_wait_for_slaves(cpu, "INIT");
1750	/* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1751	 * to default_monarch_init_process() above and just print all the
1752	 * tasks.
1753	 */
1754	NOTIFY_INIT(DIE_INIT_MONARCH_PROCESS, regs, (long)&nd, 1);
1755	NOTIFY_INIT(DIE_INIT_MONARCH_LEAVE, regs, (long)&nd, 1);
1756
1757	mprintk("\nINIT dump complete.  Monarch on cpu %d returning to normal service.\n", cpu);
1758	atomic_dec(&monarchs);
1759	set_curr_task(cpu, previous_current);
1760	monarch_cpu = -1;
1761	return;
1762}
1763
1764static int __init
1765ia64_mca_disable_cpe_polling(char *str)
1766{
1767	cpe_poll_enabled = 0;
1768	return 1;
1769}
1770
1771__setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1772
1773static struct irqaction cmci_irqaction = {
1774	.handler =	ia64_mca_cmc_int_handler,
1775	.name =		"cmc_hndlr"
1776};
1777
1778static struct irqaction cmcp_irqaction = {
1779	.handler =	ia64_mca_cmc_int_caller,
1780	.name =		"cmc_poll"
1781};
1782
1783static struct irqaction mca_rdzv_irqaction = {
1784	.handler =	ia64_mca_rendez_int_handler,
1785	.name =		"mca_rdzv"
1786};
1787
1788static struct irqaction mca_wkup_irqaction = {
1789	.handler =	ia64_mca_wakeup_int_handler,
1790	.name =		"mca_wkup"
1791};
1792
1793#ifdef CONFIG_ACPI
1794static struct irqaction mca_cpe_irqaction = {
1795	.handler =	ia64_mca_cpe_int_handler,
1796	.name =		"cpe_hndlr"
1797};
1798
1799static struct irqaction mca_cpep_irqaction = {
1800	.handler =	ia64_mca_cpe_int_caller,
1801	.name =		"cpe_poll"
1802};
1803#endif /* CONFIG_ACPI */
1804
1805/* Minimal format of the MCA/INIT stacks.  The pseudo processes that run on
1806 * these stacks can never sleep, they cannot return from the kernel to user
1807 * space, they do not appear in a normal ps listing.  So there is no need to
1808 * format most of the fields.
1809 */
1810
1811static void
1812format_mca_init_stack(void *mca_data, unsigned long offset,
1813		const char *type, int cpu)
1814{
1815	struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1816	struct thread_info *ti;
1817	memset(p, 0, KERNEL_STACK_SIZE);
1818	ti = task_thread_info(p);
1819	ti->flags = _TIF_MCA_INIT;
1820	ti->preempt_count = 1;
1821	ti->task = p;
1822	ti->cpu = cpu;
1823	p->stack = ti;
1824	p->state = TASK_UNINTERRUPTIBLE;
1825	cpumask_set_cpu(cpu, &p->cpus_allowed);
1826	INIT_LIST_HEAD(&p->tasks);
1827	p->parent = p->real_parent = p->group_leader = p;
1828	INIT_LIST_HEAD(&p->children);
1829	INIT_LIST_HEAD(&p->sibling);
1830	strncpy(p->comm, type, sizeof(p->comm)-1);
1831}
1832
1833/* Caller prevents this from being called after init */
1834static void * __init_refok mca_bootmem(void)
1835{
1836	return __alloc_bootmem(sizeof(struct ia64_mca_cpu),
1837	                    KERNEL_STACK_SIZE, 0);
1838}
1839
1840/* Do per-CPU MCA-related initialization.  */
1841void
1842ia64_mca_cpu_init(void *cpu_data)
1843{
1844	void *pal_vaddr;
1845	void *data;
1846	long sz = sizeof(struct ia64_mca_cpu);
1847	int cpu = smp_processor_id();
1848	static int first_time = 1;
1849
1850	/*
1851	 * Structure will already be allocated if cpu has been online,
1852	 * then offlined.
1853	 */
1854	if (__per_cpu_mca[cpu]) {
1855		data = __va(__per_cpu_mca[cpu]);
1856	} else {
1857		if (first_time) {
1858			data = mca_bootmem();
1859			first_time = 0;
1860		} else
1861			data = (void *)__get_free_pages(GFP_KERNEL,
1862							get_order(sz));
1863		if (!data)
1864			panic("Could not allocate MCA memory for cpu %d\n",
1865					cpu);
1866	}
1867	format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, mca_stack),
1868		"MCA", cpu);
1869	format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, init_stack),
1870		"INIT", cpu);
1871	__this_cpu_write(ia64_mca_data, (__per_cpu_mca[cpu] = __pa(data)));
1872
1873	/*
1874	 * Stash away a copy of the PTE needed to map the per-CPU page.
1875	 * We may need it during MCA recovery.
1876	 */
1877	__this_cpu_write(ia64_mca_per_cpu_pte,
1878		pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL)));
1879
1880	/*
1881	 * Also, stash away a copy of the PAL address and the PTE
1882	 * needed to map it.
1883	 */
1884	pal_vaddr = efi_get_pal_addr();
1885	if (!pal_vaddr)
1886		return;
1887	__this_cpu_write(ia64_mca_pal_base,
1888		GRANULEROUNDDOWN((unsigned long) pal_vaddr));
1889	__this_cpu_write(ia64_mca_pal_pte, pte_val(mk_pte_phys(__pa(pal_vaddr),
1890							      PAGE_KERNEL)));
1891}
1892
1893static void ia64_mca_cmc_vector_adjust(void *dummy)
1894{
1895	unsigned long flags;
1896
1897	local_irq_save(flags);
1898	if (!cmc_polling_enabled)
1899		ia64_mca_cmc_vector_enable(NULL);
1900	local_irq_restore(flags);
 
1901}
1902
1903static int mca_cpu_callback(struct notifier_block *nfb,
1904				      unsigned long action,
1905				      void *hcpu)
1906{
1907	int hotcpu = (unsigned long) hcpu;
1908
1909	switch (action) {
1910	case CPU_ONLINE:
1911	case CPU_ONLINE_FROZEN:
1912		smp_call_function_single(hotcpu, ia64_mca_cmc_vector_adjust,
1913					 NULL, 0);
1914		break;
1915	}
1916	return NOTIFY_OK;
1917}
1918
1919static struct notifier_block mca_cpu_notifier = {
1920	.notifier_call = mca_cpu_callback
1921};
1922
1923/*
1924 * ia64_mca_init
1925 *
1926 *  Do all the system level mca specific initialization.
1927 *
1928 *	1. Register spinloop and wakeup request interrupt vectors
1929 *
1930 *	2. Register OS_MCA handler entry point
1931 *
1932 *	3. Register OS_INIT handler entry point
1933 *
1934 *  4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1935 *
1936 *  Note that this initialization is done very early before some kernel
1937 *  services are available.
1938 *
1939 *  Inputs  :   None
1940 *
1941 *  Outputs :   None
1942 */
1943void __init
1944ia64_mca_init(void)
1945{
1946	ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1947	ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1948	ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1949	int i;
1950	long rc;
1951	struct ia64_sal_retval isrv;
1952	unsigned long timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
1953	static struct notifier_block default_init_monarch_nb = {
1954		.notifier_call = default_monarch_init_process,
1955		.priority = 0/* we need to notified last */
1956	};
1957
1958	IA64_MCA_DEBUG("%s: begin\n", __func__);
1959
1960	/* Clear the Rendez checkin flag for all cpus */
1961	for(i = 0 ; i < NR_CPUS; i++)
1962		ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1963
1964	/*
1965	 * Register the rendezvous spinloop and wakeup mechanism with SAL
1966	 */
1967
1968	/* Register the rendezvous interrupt vector with SAL */
1969	while (1) {
1970		isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1971					      SAL_MC_PARAM_MECHANISM_INT,
1972					      IA64_MCA_RENDEZ_VECTOR,
1973					      timeout,
1974					      SAL_MC_PARAM_RZ_ALWAYS);
1975		rc = isrv.status;
1976		if (rc == 0)
1977			break;
1978		if (rc == -2) {
1979			printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1980				"%ld to %ld milliseconds\n", timeout, isrv.v0);
1981			timeout = isrv.v0;
1982			NOTIFY_MCA(DIE_MCA_NEW_TIMEOUT, NULL, timeout, 0);
1983			continue;
1984		}
1985		printk(KERN_ERR "Failed to register rendezvous interrupt "
1986		       "with SAL (status %ld)\n", rc);
1987		return;
1988	}
1989
1990	/* Register the wakeup interrupt vector with SAL */
1991	isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1992				      SAL_MC_PARAM_MECHANISM_INT,
1993				      IA64_MCA_WAKEUP_VECTOR,
1994				      0, 0);
1995	rc = isrv.status;
1996	if (rc) {
1997		printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1998		       "(status %ld)\n", rc);
1999		return;
2000	}
2001
2002	IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __func__);
2003
2004	ia64_mc_info.imi_mca_handler        = ia64_tpa(mca_hldlr_ptr->fp);
2005	/*
2006	 * XXX - disable SAL checksum by setting size to 0; should be
2007	 *	ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
2008	 */
2009	ia64_mc_info.imi_mca_handler_size	= 0;
2010
2011	/* Register the os mca handler with SAL */
2012	if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
2013				       ia64_mc_info.imi_mca_handler,
2014				       ia64_tpa(mca_hldlr_ptr->gp),
2015				       ia64_mc_info.imi_mca_handler_size,
2016				       0, 0, 0)))
2017	{
2018		printk(KERN_ERR "Failed to register OS MCA handler with SAL "
2019		       "(status %ld)\n", rc);
2020		return;
2021	}
2022
2023	IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __func__,
2024		       ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
2025
2026	/*
2027	 * XXX - disable SAL checksum by setting size to 0, should be
2028	 * size of the actual init handler in mca_asm.S.
2029	 */
2030	ia64_mc_info.imi_monarch_init_handler		= ia64_tpa(init_hldlr_ptr_monarch->fp);
2031	ia64_mc_info.imi_monarch_init_handler_size	= 0;
2032	ia64_mc_info.imi_slave_init_handler		= ia64_tpa(init_hldlr_ptr_slave->fp);
2033	ia64_mc_info.imi_slave_init_handler_size	= 0;
2034
2035	IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __func__,
2036		       ia64_mc_info.imi_monarch_init_handler);
2037
2038	/* Register the os init handler with SAL */
2039	if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
2040				       ia64_mc_info.imi_monarch_init_handler,
2041				       ia64_tpa(ia64_getreg(_IA64_REG_GP)),
2042				       ia64_mc_info.imi_monarch_init_handler_size,
2043				       ia64_mc_info.imi_slave_init_handler,
2044				       ia64_tpa(ia64_getreg(_IA64_REG_GP)),
2045				       ia64_mc_info.imi_slave_init_handler_size)))
2046	{
2047		printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
2048		       "(status %ld)\n", rc);
2049		return;
2050	}
2051	if (register_die_notifier(&default_init_monarch_nb)) {
2052		printk(KERN_ERR "Failed to register default monarch INIT process\n");
2053		return;
2054	}
2055
2056	IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __func__);
2057
2058	/* Initialize the areas set aside by the OS to buffer the
2059	 * platform/processor error states for MCA/INIT/CMC
2060	 * handling.
2061	 */
2062	ia64_log_init(SAL_INFO_TYPE_MCA);
2063	ia64_log_init(SAL_INFO_TYPE_INIT);
2064	ia64_log_init(SAL_INFO_TYPE_CMC);
2065	ia64_log_init(SAL_INFO_TYPE_CPE);
2066
2067	mca_init = 1;
2068	printk(KERN_INFO "MCA related initialization done\n");
2069}
2070
2071
2072/*
2073 * These pieces cannot be done in ia64_mca_init() because it is called before
2074 * early_irq_init() which would wipe out our percpu irq registrations. But we
2075 * cannot leave them until ia64_mca_late_init() because by then all the other
2076 * processors have been brought online and have set their own CMC vectors to
2077 * point at a non-existant action. Called from arch_early_irq_init().
2078 */
2079void __init ia64_mca_irq_init(void)
2080{
2081	/*
2082	 *  Configure the CMCI/P vector and handler. Interrupts for CMC are
2083	 *  per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
2084	 */
2085	register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
2086	register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
 
 
2087	ia64_mca_cmc_vector_setup();       /* Setup vector on BSP */
2088
2089	/* Setup the MCA rendezvous interrupt vector */
2090	register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
 
2091
2092	/* Setup the MCA wakeup interrupt vector */
2093	register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
 
2094
2095#ifdef CONFIG_ACPI
2096	/* Setup the CPEI/P handler */
2097	register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
2098#endif
2099}
2100
2101/*
2102 * ia64_mca_late_init
2103 *
2104 *	Opportunity to setup things that require initialization later
2105 *	than ia64_mca_init.  Setup a timer to poll for CPEs if the
2106 *	platform doesn't support an interrupt driven mechanism.
2107 *
2108 *  Inputs  :   None
2109 *  Outputs :   Status
2110 */
2111static int __init
2112ia64_mca_late_init(void)
2113{
2114	if (!mca_init)
2115		return 0;
2116
2117	register_hotcpu_notifier(&mca_cpu_notifier);
2118
2119	/* Setup the CMCI/P vector and handler */
2120	setup_timer(&cmc_poll_timer, ia64_mca_cmc_poll, 0UL);
2121
2122	/* Unmask/enable the vector */
2123	cmc_polling_enabled = 0;
2124	schedule_work(&cmc_enable_work);
2125
2126	IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __func__);
2127
2128#ifdef CONFIG_ACPI
2129	/* Setup the CPEI/P vector and handler */
2130	cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
2131	setup_timer(&cpe_poll_timer, ia64_mca_cpe_poll, 0UL);
2132
2133	{
2134		unsigned int irq;
2135
2136		if (cpe_vector >= 0) {
2137			/* If platform supports CPEI, enable the irq. */
2138			irq = local_vector_to_irq(cpe_vector);
2139			if (irq > 0) {
2140				cpe_poll_enabled = 0;
2141				irq_set_status_flags(irq, IRQ_PER_CPU);
2142				setup_irq(irq, &mca_cpe_irqaction);
 
 
2143				ia64_cpe_irq = irq;
2144				ia64_mca_register_cpev(cpe_vector);
2145				IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n",
2146					__func__);
2147				return 0;
2148			}
2149			printk(KERN_ERR "%s: Failed to find irq for CPE "
2150					"interrupt handler, vector %d\n",
2151					__func__, cpe_vector);
2152		}
2153		/* If platform doesn't support CPEI, get the timer going. */
2154		if (cpe_poll_enabled) {
2155			ia64_mca_cpe_poll(0UL);
2156			IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __func__);
2157		}
2158	}
2159#endif
2160
2161	return 0;
2162}
2163
2164device_initcall(ia64_mca_late_init);