Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * File: mca.c
4 * Purpose: Generic MCA handling layer
5 *
6 * Copyright (C) 2003 Hewlett-Packard Co
7 * David Mosberger-Tang <davidm@hpl.hp.com>
8 *
9 * Copyright (C) 2002 Dell Inc.
10 * Copyright (C) Matt Domsch <Matt_Domsch@dell.com>
11 *
12 * Copyright (C) 2002 Intel
13 * Copyright (C) Jenna Hall <jenna.s.hall@intel.com>
14 *
15 * Copyright (C) 2001 Intel
16 * Copyright (C) Fred Lewis <frederick.v.lewis@intel.com>
17 *
18 * Copyright (C) 2000 Intel
19 * Copyright (C) Chuck Fleckenstein <cfleck@co.intel.com>
20 *
21 * Copyright (C) 1999, 2004-2008 Silicon Graphics, Inc.
22 * Copyright (C) Vijay Chander <vijay@engr.sgi.com>
23 *
24 * Copyright (C) 2006 FUJITSU LIMITED
25 * Copyright (C) Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
26 *
27 * 2000-03-29 Chuck Fleckenstein <cfleck@co.intel.com>
28 * Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
29 * added min save state dump, added INIT handler.
30 *
31 * 2001-01-03 Fred Lewis <frederick.v.lewis@intel.com>
32 * Added setup of CMCI and CPEI IRQs, logging of corrected platform
33 * errors, completed code for logging of corrected & uncorrected
34 * machine check errors, and updated for conformance with Nov. 2000
35 * revision of the SAL 3.0 spec.
36 *
37 * 2002-01-04 Jenna Hall <jenna.s.hall@intel.com>
38 * Aligned MCA stack to 16 bytes, added platform vs. CPU error flag,
39 * set SAL default return values, changed error record structure to
40 * linked list, added init call to sal_get_state_info_size().
41 *
42 * 2002-03-25 Matt Domsch <Matt_Domsch@dell.com>
43 * GUID cleanups.
44 *
45 * 2003-04-15 David Mosberger-Tang <davidm@hpl.hp.com>
46 * Added INIT backtrace support.
47 *
48 * 2003-12-08 Keith Owens <kaos@sgi.com>
49 * smp_call_function() must not be called from interrupt context
50 * (can deadlock on tasklist_lock).
51 * Use keventd to call smp_call_function().
52 *
53 * 2004-02-01 Keith Owens <kaos@sgi.com>
54 * Avoid deadlock when using printk() for MCA and INIT records.
55 * Delete all record printing code, moved to salinfo_decode in user
56 * space. Mark variables and functions static where possible.
57 * Delete dead variables and functions. Reorder to remove the need
58 * for forward declarations and to consolidate related code.
59 *
60 * 2005-08-12 Keith Owens <kaos@sgi.com>
61 * Convert MCA/INIT handlers to use per event stacks and SAL/OS
62 * state.
63 *
64 * 2005-10-07 Keith Owens <kaos@sgi.com>
65 * Add notify_die() hooks.
66 *
67 * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
68 * Add printing support for MCA/INIT.
69 *
70 * 2007-04-27 Russ Anderson <rja@sgi.com>
71 * Support multiple cpus going through OS_MCA in the same event.
72 */
73#include <linux/jiffies.h>
74#include <linux/types.h>
75#include <linux/init.h>
76#include <linux/sched/signal.h>
77#include <linux/sched/debug.h>
78#include <linux/sched/task.h>
79#include <linux/interrupt.h>
80#include <linux/irq.h>
81#include <linux/memblock.h>
82#include <linux/acpi.h>
83#include <linux/timer.h>
84#include <linux/module.h>
85#include <linux/kernel.h>
86#include <linux/smp.h>
87#include <linux/workqueue.h>
88#include <linux/cpumask.h>
89#include <linux/kdebug.h>
90#include <linux/cpu.h>
91#include <linux/gfp.h>
92
93#include <asm/delay.h>
94#include <asm/efi.h>
95#include <asm/meminit.h>
96#include <asm/page.h>
97#include <asm/ptrace.h>
98#include <asm/sal.h>
99#include <asm/mca.h>
100#include <asm/mca_asm.h>
101#include <asm/kexec.h>
102
103#include <asm/irq.h>
104#include <asm/hw_irq.h>
105#include <asm/tlb.h>
106
107#include "mca_drv.h"
108#include "entry.h"
109#include "irq.h"
110
111#if defined(IA64_MCA_DEBUG_INFO)
112# define IA64_MCA_DEBUG(fmt...) printk(fmt)
113#else
114# define IA64_MCA_DEBUG(fmt...) do {} while (0)
115#endif
116
117#define NOTIFY_INIT(event, regs, arg, spin) \
118do { \
119 if ((notify_die((event), "INIT", (regs), (arg), 0, 0) \
120 == NOTIFY_STOP) && ((spin) == 1)) \
121 ia64_mca_spin(__func__); \
122} while (0)
123
124#define NOTIFY_MCA(event, regs, arg, spin) \
125do { \
126 if ((notify_die((event), "MCA", (regs), (arg), 0, 0) \
127 == NOTIFY_STOP) && ((spin) == 1)) \
128 ia64_mca_spin(__func__); \
129} while (0)
130
131/* Used by mca_asm.S */
132DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
133DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
134DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */
135DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */
136DEFINE_PER_CPU(u64, ia64_mca_tr_reload); /* Flag for TR reload */
137
138unsigned long __per_cpu_mca[NR_CPUS];
139
140/* In mca_asm.S */
141extern void ia64_os_init_dispatch_monarch (void);
142extern void ia64_os_init_dispatch_slave (void);
143
144static int monarch_cpu = -1;
145
146static ia64_mc_info_t ia64_mc_info;
147
148#define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
149#define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */
150#define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */
151#define CPE_HISTORY_LENGTH 5
152#define CMC_HISTORY_LENGTH 5
153
154static struct timer_list cpe_poll_timer;
155static struct timer_list cmc_poll_timer;
156/*
157 * This variable tells whether we are currently in polling mode.
158 * Start with this in the wrong state so we won't play w/ timers
159 * before the system is ready.
160 */
161static int cmc_polling_enabled = 1;
162
163/*
164 * Clearing this variable prevents CPE polling from getting activated
165 * in mca_late_init. Use it if your system doesn't provide a CPEI,
166 * but encounters problems retrieving CPE logs. This should only be
167 * necessary for debugging.
168 */
169static int cpe_poll_enabled = 1;
170
171extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
172
173static int mca_init __initdata;
174
175/*
176 * limited & delayed printing support for MCA/INIT handler
177 */
178
179#define mprintk(fmt...) ia64_mca_printk(fmt)
180
181#define MLOGBUF_SIZE (512+256*NR_CPUS)
182#define MLOGBUF_MSGMAX 256
183static char mlogbuf[MLOGBUF_SIZE];
184static DEFINE_SPINLOCK(mlogbuf_wlock); /* mca context only */
185static DEFINE_SPINLOCK(mlogbuf_rlock); /* normal context only */
186static unsigned long mlogbuf_start;
187static unsigned long mlogbuf_end;
188static unsigned int mlogbuf_finished = 0;
189static unsigned long mlogbuf_timestamp = 0;
190
191static int loglevel_save = -1;
192#define BREAK_LOGLEVEL(__console_loglevel) \
193 oops_in_progress = 1; \
194 if (loglevel_save < 0) \
195 loglevel_save = __console_loglevel; \
196 __console_loglevel = 15;
197
198#define RESTORE_LOGLEVEL(__console_loglevel) \
199 if (loglevel_save >= 0) { \
200 __console_loglevel = loglevel_save; \
201 loglevel_save = -1; \
202 } \
203 mlogbuf_finished = 0; \
204 oops_in_progress = 0;
205
206/*
207 * Push messages into buffer, print them later if not urgent.
208 */
209void ia64_mca_printk(const char *fmt, ...)
210{
211 va_list args;
212 int printed_len;
213 char temp_buf[MLOGBUF_MSGMAX];
214 char *p;
215
216 va_start(args, fmt);
217 printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args);
218 va_end(args);
219
220 /* Copy the output into mlogbuf */
221 if (oops_in_progress) {
222 /* mlogbuf was abandoned, use printk directly instead. */
223 printk("%s", temp_buf);
224 } else {
225 spin_lock(&mlogbuf_wlock);
226 for (p = temp_buf; *p; p++) {
227 unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE;
228 if (next != mlogbuf_start) {
229 mlogbuf[mlogbuf_end] = *p;
230 mlogbuf_end = next;
231 } else {
232 /* buffer full */
233 break;
234 }
235 }
236 mlogbuf[mlogbuf_end] = '\0';
237 spin_unlock(&mlogbuf_wlock);
238 }
239}
240EXPORT_SYMBOL(ia64_mca_printk);
241
242/*
243 * Print buffered messages.
244 * NOTE: call this after returning normal context. (ex. from salinfod)
245 */
246void ia64_mlogbuf_dump(void)
247{
248 char temp_buf[MLOGBUF_MSGMAX];
249 char *p;
250 unsigned long index;
251 unsigned long flags;
252 unsigned int printed_len;
253
254 /* Get output from mlogbuf */
255 while (mlogbuf_start != mlogbuf_end) {
256 temp_buf[0] = '\0';
257 p = temp_buf;
258 printed_len = 0;
259
260 spin_lock_irqsave(&mlogbuf_rlock, flags);
261
262 index = mlogbuf_start;
263 while (index != mlogbuf_end) {
264 *p = mlogbuf[index];
265 index = (index + 1) % MLOGBUF_SIZE;
266 if (!*p)
267 break;
268 p++;
269 if (++printed_len >= MLOGBUF_MSGMAX - 1)
270 break;
271 }
272 *p = '\0';
273 if (temp_buf[0])
274 printk("%s", temp_buf);
275 mlogbuf_start = index;
276
277 mlogbuf_timestamp = 0;
278 spin_unlock_irqrestore(&mlogbuf_rlock, flags);
279 }
280}
281EXPORT_SYMBOL(ia64_mlogbuf_dump);
282
283/*
284 * Call this if system is going to down or if immediate flushing messages to
285 * console is required. (ex. recovery was failed, crash dump is going to be
286 * invoked, long-wait rendezvous etc.)
287 * NOTE: this should be called from monarch.
288 */
289static void ia64_mlogbuf_finish(int wait)
290{
291 BREAK_LOGLEVEL(console_loglevel);
292
293 ia64_mlogbuf_dump();
294 printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, "
295 "MCA/INIT might be dodgy or fail.\n");
296
297 if (!wait)
298 return;
299
300 /* wait for console */
301 printk("Delaying for 5 seconds...\n");
302 udelay(5*1000000);
303
304 mlogbuf_finished = 1;
305}
306
307/*
308 * Print buffered messages from INIT context.
309 */
310static void ia64_mlogbuf_dump_from_init(void)
311{
312 if (mlogbuf_finished)
313 return;
314
315 if (mlogbuf_timestamp &&
316 time_before(jiffies, mlogbuf_timestamp + 30 * HZ)) {
317 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT "
318 " and the system seems to be messed up.\n");
319 ia64_mlogbuf_finish(0);
320 return;
321 }
322
323 if (!spin_trylock(&mlogbuf_rlock)) {
324 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. "
325 "Generated messages other than stack dump will be "
326 "buffered to mlogbuf and will be printed later.\n");
327 printk(KERN_ERR "INIT: If messages would not printed after "
328 "this INIT, wait 30sec and assert INIT again.\n");
329 if (!mlogbuf_timestamp)
330 mlogbuf_timestamp = jiffies;
331 return;
332 }
333 spin_unlock(&mlogbuf_rlock);
334 ia64_mlogbuf_dump();
335}
336
337static inline void
338ia64_mca_spin(const char *func)
339{
340 if (monarch_cpu == smp_processor_id())
341 ia64_mlogbuf_finish(0);
342 mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
343 while (1)
344 cpu_relax();
345}
346/*
347 * IA64_MCA log support
348 */
349#define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */
350#define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */
351
352typedef struct ia64_state_log_s
353{
354 spinlock_t isl_lock;
355 int isl_index;
356 unsigned long isl_count;
357 ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
358} ia64_state_log_t;
359
360static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
361
362#define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
363#define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
364#define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
365#define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index
366#define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index
367#define IA64_LOG_INDEX_INC(it) \
368 {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
369 ia64_state_log[it].isl_count++;}
370#define IA64_LOG_INDEX_DEC(it) \
371 ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
372#define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
373#define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
374#define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count
375
376static inline void ia64_log_allocate(int it, u64 size)
377{
378 ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] =
379 (ia64_err_rec_t *)memblock_alloc(size, SMP_CACHE_BYTES);
380 if (!ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)])
381 panic("%s: Failed to allocate %llu bytes\n", __func__, size);
382
383 ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] =
384 (ia64_err_rec_t *)memblock_alloc(size, SMP_CACHE_BYTES);
385 if (!ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)])
386 panic("%s: Failed to allocate %llu bytes\n", __func__, size);
387}
388
389/*
390 * ia64_log_init
391 * Reset the OS ia64 log buffer
392 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
393 * Outputs : None
394 */
395static void __init
396ia64_log_init(int sal_info_type)
397{
398 u64 max_size = 0;
399
400 IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
401 IA64_LOG_LOCK_INIT(sal_info_type);
402
403 // SAL will tell us the maximum size of any error record of this type
404 max_size = ia64_sal_get_state_info_size(sal_info_type);
405 if (!max_size)
406 /* alloc_bootmem() doesn't like zero-sized allocations! */
407 return;
408
409 // set up OS data structures to hold error info
410 ia64_log_allocate(sal_info_type, max_size);
411}
412
413/*
414 * ia64_log_get
415 *
416 * Get the current MCA log from SAL and copy it into the OS log buffer.
417 *
418 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
419 * irq_safe whether you can use printk at this point
420 * Outputs : size (total record length)
421 * *buffer (ptr to error record)
422 *
423 */
424static u64
425ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
426{
427 sal_log_record_header_t *log_buffer;
428 u64 total_len = 0;
429 unsigned long s;
430
431 IA64_LOG_LOCK(sal_info_type);
432
433 /* Get the process state information */
434 log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
435
436 total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
437
438 if (total_len) {
439 IA64_LOG_INDEX_INC(sal_info_type);
440 IA64_LOG_UNLOCK(sal_info_type);
441 if (irq_safe) {
442 IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. Record length = %ld\n",
443 __func__, sal_info_type, total_len);
444 }
445 *buffer = (u8 *) log_buffer;
446 return total_len;
447 } else {
448 IA64_LOG_UNLOCK(sal_info_type);
449 return 0;
450 }
451}
452
453/*
454 * ia64_mca_log_sal_error_record
455 *
456 * This function retrieves a specified error record type from SAL
457 * and wakes up any processes waiting for error records.
458 *
459 * Inputs : sal_info_type (Type of error record MCA/CMC/CPE)
460 * FIXME: remove MCA and irq_safe.
461 */
462static void
463ia64_mca_log_sal_error_record(int sal_info_type)
464{
465 u8 *buffer;
466 sal_log_record_header_t *rh;
467 u64 size;
468 int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
469#ifdef IA64_MCA_DEBUG_INFO
470 static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
471#endif
472
473 size = ia64_log_get(sal_info_type, &buffer, irq_safe);
474 if (!size)
475 return;
476
477 salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
478
479 if (irq_safe)
480 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
481 smp_processor_id(),
482 sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
483
484 /* Clear logs from corrected errors in case there's no user-level logger */
485 rh = (sal_log_record_header_t *)buffer;
486 if (rh->severity == sal_log_severity_corrected)
487 ia64_sal_clear_state_info(sal_info_type);
488}
489
490/*
491 * search_mca_table
492 * See if the MCA surfaced in an instruction range
493 * that has been tagged as recoverable.
494 *
495 * Inputs
496 * first First address range to check
497 * last Last address range to check
498 * ip Instruction pointer, address we are looking for
499 *
500 * Return value:
501 * 1 on Success (in the table)/ 0 on Failure (not in the table)
502 */
503int
504search_mca_table (const struct mca_table_entry *first,
505 const struct mca_table_entry *last,
506 unsigned long ip)
507{
508 const struct mca_table_entry *curr;
509 u64 curr_start, curr_end;
510
511 curr = first;
512 while (curr <= last) {
513 curr_start = (u64) &curr->start_addr + curr->start_addr;
514 curr_end = (u64) &curr->end_addr + curr->end_addr;
515
516 if ((ip >= curr_start) && (ip <= curr_end)) {
517 return 1;
518 }
519 curr++;
520 }
521 return 0;
522}
523
524/* Given an address, look for it in the mca tables. */
525int mca_recover_range(unsigned long addr)
526{
527 extern struct mca_table_entry __start___mca_table[];
528 extern struct mca_table_entry __stop___mca_table[];
529
530 return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
531}
532EXPORT_SYMBOL_GPL(mca_recover_range);
533
534int cpe_vector = -1;
535int ia64_cpe_irq = -1;
536
537static irqreturn_t
538ia64_mca_cpe_int_handler (int cpe_irq, void *arg)
539{
540 static unsigned long cpe_history[CPE_HISTORY_LENGTH];
541 static int index;
542 static DEFINE_SPINLOCK(cpe_history_lock);
543
544 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
545 __func__, cpe_irq, smp_processor_id());
546
547 /* SAL spec states this should run w/ interrupts enabled */
548 local_irq_enable();
549
550 spin_lock(&cpe_history_lock);
551 if (!cpe_poll_enabled && cpe_vector >= 0) {
552
553 int i, count = 1; /* we know 1 happened now */
554 unsigned long now = jiffies;
555
556 for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
557 if (now - cpe_history[i] <= HZ)
558 count++;
559 }
560
561 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
562 if (count >= CPE_HISTORY_LENGTH) {
563
564 cpe_poll_enabled = 1;
565 spin_unlock(&cpe_history_lock);
566 disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
567
568 /*
569 * Corrected errors will still be corrected, but
570 * make sure there's a log somewhere that indicates
571 * something is generating more than we can handle.
572 */
573 printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
574
575 mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
576
577 /* lock already released, get out now */
578 goto out;
579 } else {
580 cpe_history[index++] = now;
581 if (index == CPE_HISTORY_LENGTH)
582 index = 0;
583 }
584 }
585 spin_unlock(&cpe_history_lock);
586out:
587 /* Get the CPE error record and log it */
588 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
589
590 local_irq_disable();
591
592 return IRQ_HANDLED;
593}
594
595/*
596 * ia64_mca_register_cpev
597 *
598 * Register the corrected platform error vector with SAL.
599 *
600 * Inputs
601 * cpev Corrected Platform Error Vector number
602 *
603 * Outputs
604 * None
605 */
606void
607ia64_mca_register_cpev (int cpev)
608{
609 /* Register the CPE interrupt vector with SAL */
610 struct ia64_sal_retval isrv;
611
612 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
613 if (isrv.status) {
614 printk(KERN_ERR "Failed to register Corrected Platform "
615 "Error interrupt vector with SAL (status %ld)\n", isrv.status);
616 return;
617 }
618
619 IA64_MCA_DEBUG("%s: corrected platform error "
620 "vector %#x registered\n", __func__, cpev);
621}
622
623/*
624 * ia64_mca_cmc_vector_setup
625 *
626 * Setup the corrected machine check vector register in the processor.
627 * (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
628 * This function is invoked on a per-processor basis.
629 *
630 * Inputs
631 * None
632 *
633 * Outputs
634 * None
635 */
636void
637ia64_mca_cmc_vector_setup (void)
638{
639 cmcv_reg_t cmcv;
640
641 cmcv.cmcv_regval = 0;
642 cmcv.cmcv_mask = 1; /* Mask/disable interrupt at first */
643 cmcv.cmcv_vector = IA64_CMC_VECTOR;
644 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
645
646 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x registered.\n",
647 __func__, smp_processor_id(), IA64_CMC_VECTOR);
648
649 IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
650 __func__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
651}
652
653/*
654 * ia64_mca_cmc_vector_disable
655 *
656 * Mask the corrected machine check vector register in the processor.
657 * This function is invoked on a per-processor basis.
658 *
659 * Inputs
660 * dummy(unused)
661 *
662 * Outputs
663 * None
664 */
665static void
666ia64_mca_cmc_vector_disable (void *dummy)
667{
668 cmcv_reg_t cmcv;
669
670 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
671
672 cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
673 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
674
675 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x disabled.\n",
676 __func__, smp_processor_id(), cmcv.cmcv_vector);
677}
678
679/*
680 * ia64_mca_cmc_vector_enable
681 *
682 * Unmask the corrected machine check vector register in the processor.
683 * This function is invoked on a per-processor basis.
684 *
685 * Inputs
686 * dummy(unused)
687 *
688 * Outputs
689 * None
690 */
691static void
692ia64_mca_cmc_vector_enable (void *dummy)
693{
694 cmcv_reg_t cmcv;
695
696 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
697
698 cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
699 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
700
701 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x enabled.\n",
702 __func__, smp_processor_id(), cmcv.cmcv_vector);
703}
704
705/*
706 * ia64_mca_cmc_vector_disable_keventd
707 *
708 * Called via keventd (smp_call_function() is not safe in interrupt context) to
709 * disable the cmc interrupt vector.
710 */
711static void
712ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused)
713{
714 on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 0);
715}
716
717/*
718 * ia64_mca_cmc_vector_enable_keventd
719 *
720 * Called via keventd (smp_call_function() is not safe in interrupt context) to
721 * enable the cmc interrupt vector.
722 */
723static void
724ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused)
725{
726 on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 0);
727}
728
729/*
730 * ia64_mca_wakeup
731 *
732 * Send an inter-cpu interrupt to wake-up a particular cpu.
733 *
734 * Inputs : cpuid
735 * Outputs : None
736 */
737static void
738ia64_mca_wakeup(int cpu)
739{
740 ia64_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
741}
742
743/*
744 * ia64_mca_wakeup_all
745 *
746 * Wakeup all the slave cpus which have rendez'ed previously.
747 *
748 * Inputs : None
749 * Outputs : None
750 */
751static void
752ia64_mca_wakeup_all(void)
753{
754 int cpu;
755
756 /* Clear the Rendez checkin flag for all cpus */
757 for_each_online_cpu(cpu) {
758 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
759 ia64_mca_wakeup(cpu);
760 }
761
762}
763
764/*
765 * ia64_mca_rendez_interrupt_handler
766 *
767 * This is handler used to put slave processors into spinloop
768 * while the monarch processor does the mca handling and later
769 * wake each slave up once the monarch is done. The state
770 * IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed
771 * in SAL. The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates
772 * the cpu has come out of OS rendezvous.
773 *
774 * Inputs : None
775 * Outputs : None
776 */
777static irqreturn_t
778ia64_mca_rendez_int_handler(int rendez_irq, void *arg)
779{
780 unsigned long flags;
781 int cpu = smp_processor_id();
782 struct ia64_mca_notify_die nd =
783 { .sos = NULL, .monarch_cpu = &monarch_cpu };
784
785 /* Mask all interrupts */
786 local_irq_save(flags);
787
788 NOTIFY_MCA(DIE_MCA_RENDZVOUS_ENTER, get_irq_regs(), (long)&nd, 1);
789
790 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
791 /* Register with the SAL monarch that the slave has
792 * reached SAL
793 */
794 ia64_sal_mc_rendez();
795
796 NOTIFY_MCA(DIE_MCA_RENDZVOUS_PROCESS, get_irq_regs(), (long)&nd, 1);
797
798 /* Wait for the monarch cpu to exit. */
799 while (monarch_cpu != -1)
800 cpu_relax(); /* spin until monarch leaves */
801
802 NOTIFY_MCA(DIE_MCA_RENDZVOUS_LEAVE, get_irq_regs(), (long)&nd, 1);
803
804 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
805 /* Enable all interrupts */
806 local_irq_restore(flags);
807 return IRQ_HANDLED;
808}
809
810/*
811 * ia64_mca_wakeup_int_handler
812 *
813 * The interrupt handler for processing the inter-cpu interrupt to the
814 * slave cpu which was spinning in the rendez loop.
815 * Since this spinning is done by turning off the interrupts and
816 * polling on the wakeup-interrupt bit in the IRR, there is
817 * nothing useful to be done in the handler.
818 *
819 * Inputs : wakeup_irq (Wakeup-interrupt bit)
820 * arg (Interrupt handler specific argument)
821 * Outputs : None
822 *
823 */
824static irqreturn_t
825ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg)
826{
827 return IRQ_HANDLED;
828}
829
830/* Function pointer for extra MCA recovery */
831int (*ia64_mca_ucmc_extension)
832 (void*,struct ia64_sal_os_state*)
833 = NULL;
834
835int
836ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
837{
838 if (ia64_mca_ucmc_extension)
839 return 1;
840
841 ia64_mca_ucmc_extension = fn;
842 return 0;
843}
844
845void
846ia64_unreg_MCA_extension(void)
847{
848 if (ia64_mca_ucmc_extension)
849 ia64_mca_ucmc_extension = NULL;
850}
851
852EXPORT_SYMBOL(ia64_reg_MCA_extension);
853EXPORT_SYMBOL(ia64_unreg_MCA_extension);
854
855
856static inline void
857copy_reg(const u64 *fr, u64 fnat, unsigned long *tr, unsigned long *tnat)
858{
859 u64 fslot, tslot, nat;
860 *tr = *fr;
861 fslot = ((unsigned long)fr >> 3) & 63;
862 tslot = ((unsigned long)tr >> 3) & 63;
863 *tnat &= ~(1UL << tslot);
864 nat = (fnat >> fslot) & 1;
865 *tnat |= (nat << tslot);
866}
867
868/* Change the comm field on the MCA/INT task to include the pid that
869 * was interrupted, it makes for easier debugging. If that pid was 0
870 * (swapper or nested MCA/INIT) then use the start of the previous comm
871 * field suffixed with its cpu.
872 */
873
874static void
875ia64_mca_modify_comm(const struct task_struct *previous_current)
876{
877 char *p, comm[sizeof(current->comm)];
878 if (previous_current->pid)
879 snprintf(comm, sizeof(comm), "%s %d",
880 current->comm, previous_current->pid);
881 else {
882 int l;
883 if ((p = strchr(previous_current->comm, ' ')))
884 l = p - previous_current->comm;
885 else
886 l = strlen(previous_current->comm);
887 snprintf(comm, sizeof(comm), "%s %*s %d",
888 current->comm, l, previous_current->comm,
889 task_thread_info(previous_current)->cpu);
890 }
891 memcpy(current->comm, comm, sizeof(current->comm));
892}
893
894static void
895finish_pt_regs(struct pt_regs *regs, struct ia64_sal_os_state *sos,
896 unsigned long *nat)
897{
898 const struct pal_min_state_area *ms = sos->pal_min_state;
899 const u64 *bank;
900
901 /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
902 * pmsa_{xip,xpsr,xfs}
903 */
904 if (ia64_psr(regs)->ic) {
905 regs->cr_iip = ms->pmsa_iip;
906 regs->cr_ipsr = ms->pmsa_ipsr;
907 regs->cr_ifs = ms->pmsa_ifs;
908 } else {
909 regs->cr_iip = ms->pmsa_xip;
910 regs->cr_ipsr = ms->pmsa_xpsr;
911 regs->cr_ifs = ms->pmsa_xfs;
912
913 sos->iip = ms->pmsa_iip;
914 sos->ipsr = ms->pmsa_ipsr;
915 sos->ifs = ms->pmsa_ifs;
916 }
917 regs->pr = ms->pmsa_pr;
918 regs->b0 = ms->pmsa_br0;
919 regs->ar_rsc = ms->pmsa_rsc;
920 copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, ®s->r1, nat);
921 copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, ®s->r2, nat);
922 copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, ®s->r3, nat);
923 copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, ®s->r8, nat);
924 copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, ®s->r9, nat);
925 copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, ®s->r10, nat);
926 copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, ®s->r11, nat);
927 copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, ®s->r12, nat);
928 copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, ®s->r13, nat);
929 copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, ®s->r14, nat);
930 copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, ®s->r15, nat);
931 if (ia64_psr(regs)->bn)
932 bank = ms->pmsa_bank1_gr;
933 else
934 bank = ms->pmsa_bank0_gr;
935 copy_reg(&bank[16-16], ms->pmsa_nat_bits, ®s->r16, nat);
936 copy_reg(&bank[17-16], ms->pmsa_nat_bits, ®s->r17, nat);
937 copy_reg(&bank[18-16], ms->pmsa_nat_bits, ®s->r18, nat);
938 copy_reg(&bank[19-16], ms->pmsa_nat_bits, ®s->r19, nat);
939 copy_reg(&bank[20-16], ms->pmsa_nat_bits, ®s->r20, nat);
940 copy_reg(&bank[21-16], ms->pmsa_nat_bits, ®s->r21, nat);
941 copy_reg(&bank[22-16], ms->pmsa_nat_bits, ®s->r22, nat);
942 copy_reg(&bank[23-16], ms->pmsa_nat_bits, ®s->r23, nat);
943 copy_reg(&bank[24-16], ms->pmsa_nat_bits, ®s->r24, nat);
944 copy_reg(&bank[25-16], ms->pmsa_nat_bits, ®s->r25, nat);
945 copy_reg(&bank[26-16], ms->pmsa_nat_bits, ®s->r26, nat);
946 copy_reg(&bank[27-16], ms->pmsa_nat_bits, ®s->r27, nat);
947 copy_reg(&bank[28-16], ms->pmsa_nat_bits, ®s->r28, nat);
948 copy_reg(&bank[29-16], ms->pmsa_nat_bits, ®s->r29, nat);
949 copy_reg(&bank[30-16], ms->pmsa_nat_bits, ®s->r30, nat);
950 copy_reg(&bank[31-16], ms->pmsa_nat_bits, ®s->r31, nat);
951}
952
953/* On entry to this routine, we are running on the per cpu stack, see
954 * mca_asm.h. The original stack has not been touched by this event. Some of
955 * the original stack's registers will be in the RBS on this stack. This stack
956 * also contains a partial pt_regs and switch_stack, the rest of the data is in
957 * PAL minstate.
958 *
959 * The first thing to do is modify the original stack to look like a blocked
960 * task so we can run backtrace on the original task. Also mark the per cpu
961 * stack as current to ensure that we use the correct task state, it also means
962 * that we can do backtrace on the MCA/INIT handler code itself.
963 */
964
965static struct task_struct *
966ia64_mca_modify_original_stack(struct pt_regs *regs,
967 const struct switch_stack *sw,
968 struct ia64_sal_os_state *sos,
969 const char *type)
970{
971 char *p;
972 ia64_va va;
973 extern char ia64_leave_kernel[]; /* Need asm address, not function descriptor */
974 const struct pal_min_state_area *ms = sos->pal_min_state;
975 struct task_struct *previous_current;
976 struct pt_regs *old_regs;
977 struct switch_stack *old_sw;
978 unsigned size = sizeof(struct pt_regs) +
979 sizeof(struct switch_stack) + 16;
980 unsigned long *old_bspstore, *old_bsp;
981 unsigned long *new_bspstore, *new_bsp;
982 unsigned long old_unat, old_rnat, new_rnat, nat;
983 u64 slots, loadrs = regs->loadrs;
984 u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
985 u64 ar_bspstore = regs->ar_bspstore;
986 u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
987 const char *msg;
988 int cpu = smp_processor_id();
989
990 previous_current = curr_task(cpu);
991 ia64_set_curr_task(cpu, current);
992 if ((p = strchr(current->comm, ' ')))
993 *p = '\0';
994
995 /* Best effort attempt to cope with MCA/INIT delivered while in
996 * physical mode.
997 */
998 regs->cr_ipsr = ms->pmsa_ipsr;
999 if (ia64_psr(regs)->dt == 0) {
1000 va.l = r12;
1001 if (va.f.reg == 0) {
1002 va.f.reg = 7;
1003 r12 = va.l;
1004 }
1005 va.l = r13;
1006 if (va.f.reg == 0) {
1007 va.f.reg = 7;
1008 r13 = va.l;
1009 }
1010 }
1011 if (ia64_psr(regs)->rt == 0) {
1012 va.l = ar_bspstore;
1013 if (va.f.reg == 0) {
1014 va.f.reg = 7;
1015 ar_bspstore = va.l;
1016 }
1017 va.l = ar_bsp;
1018 if (va.f.reg == 0) {
1019 va.f.reg = 7;
1020 ar_bsp = va.l;
1021 }
1022 }
1023
1024 /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
1025 * have been copied to the old stack, the old stack may fail the
1026 * validation tests below. So ia64_old_stack() must restore the dirty
1027 * registers from the new stack. The old and new bspstore probably
1028 * have different alignments, so loadrs calculated on the old bsp
1029 * cannot be used to restore from the new bsp. Calculate a suitable
1030 * loadrs for the new stack and save it in the new pt_regs, where
1031 * ia64_old_stack() can get it.
1032 */
1033 old_bspstore = (unsigned long *)ar_bspstore;
1034 old_bsp = (unsigned long *)ar_bsp;
1035 slots = ia64_rse_num_regs(old_bspstore, old_bsp);
1036 new_bspstore = (unsigned long *)((u64)current + IA64_RBS_OFFSET);
1037 new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
1038 regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
1039
1040 /* Verify the previous stack state before we change it */
1041 if (user_mode(regs)) {
1042 msg = "occurred in user space";
1043 /* previous_current is guaranteed to be valid when the task was
1044 * in user space, so ...
1045 */
1046 ia64_mca_modify_comm(previous_current);
1047 goto no_mod;
1048 }
1049
1050 if (r13 != sos->prev_IA64_KR_CURRENT) {
1051 msg = "inconsistent previous current and r13";
1052 goto no_mod;
1053 }
1054
1055 if (!mca_recover_range(ms->pmsa_iip)) {
1056 if ((r12 - r13) >= KERNEL_STACK_SIZE) {
1057 msg = "inconsistent r12 and r13";
1058 goto no_mod;
1059 }
1060 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
1061 msg = "inconsistent ar.bspstore and r13";
1062 goto no_mod;
1063 }
1064 va.p = old_bspstore;
1065 if (va.f.reg < 5) {
1066 msg = "old_bspstore is in the wrong region";
1067 goto no_mod;
1068 }
1069 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
1070 msg = "inconsistent ar.bsp and r13";
1071 goto no_mod;
1072 }
1073 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
1074 if (ar_bspstore + size > r12) {
1075 msg = "no room for blocked state";
1076 goto no_mod;
1077 }
1078 }
1079
1080 ia64_mca_modify_comm(previous_current);
1081
1082 /* Make the original task look blocked. First stack a struct pt_regs,
1083 * describing the state at the time of interrupt. mca_asm.S built a
1084 * partial pt_regs, copy it and fill in the blanks using minstate.
1085 */
1086 p = (char *)r12 - sizeof(*regs);
1087 old_regs = (struct pt_regs *)p;
1088 memcpy(old_regs, regs, sizeof(*regs));
1089 old_regs->loadrs = loadrs;
1090 old_unat = old_regs->ar_unat;
1091 finish_pt_regs(old_regs, sos, &old_unat);
1092
1093 /* Next stack a struct switch_stack. mca_asm.S built a partial
1094 * switch_stack, copy it and fill in the blanks using pt_regs and
1095 * minstate.
1096 *
1097 * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1098 * ar.pfs is set to 0.
1099 *
1100 * unwind.c::unw_unwind() does special processing for interrupt frames.
1101 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1102 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not
1103 * that this is documented, of course. Set PRED_NON_SYSCALL in the
1104 * switch_stack on the original stack so it will unwind correctly when
1105 * unwind.c reads pt_regs.
1106 *
1107 * thread.ksp is updated to point to the synthesized switch_stack.
1108 */
1109 p -= sizeof(struct switch_stack);
1110 old_sw = (struct switch_stack *)p;
1111 memcpy(old_sw, sw, sizeof(*sw));
1112 old_sw->caller_unat = old_unat;
1113 old_sw->ar_fpsr = old_regs->ar_fpsr;
1114 copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
1115 copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
1116 copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
1117 copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
1118 old_sw->b0 = (u64)ia64_leave_kernel;
1119 old_sw->b1 = ms->pmsa_br1;
1120 old_sw->ar_pfs = 0;
1121 old_sw->ar_unat = old_unat;
1122 old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
1123 previous_current->thread.ksp = (u64)p - 16;
1124
1125 /* Finally copy the original stack's registers back to its RBS.
1126 * Registers from ar.bspstore through ar.bsp at the time of the event
1127 * are in the current RBS, copy them back to the original stack. The
1128 * copy must be done register by register because the original bspstore
1129 * and the current one have different alignments, so the saved RNAT
1130 * data occurs at different places.
1131 *
1132 * mca_asm does cover, so the old_bsp already includes all registers at
1133 * the time of MCA/INIT. It also does flushrs, so all registers before
1134 * this function have been written to backing store on the MCA/INIT
1135 * stack.
1136 */
1137 new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
1138 old_rnat = regs->ar_rnat;
1139 while (slots--) {
1140 if (ia64_rse_is_rnat_slot(new_bspstore)) {
1141 new_rnat = ia64_get_rnat(new_bspstore++);
1142 }
1143 if (ia64_rse_is_rnat_slot(old_bspstore)) {
1144 *old_bspstore++ = old_rnat;
1145 old_rnat = 0;
1146 }
1147 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
1148 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
1149 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
1150 *old_bspstore++ = *new_bspstore++;
1151 }
1152 old_sw->ar_bspstore = (unsigned long)old_bspstore;
1153 old_sw->ar_rnat = old_rnat;
1154
1155 sos->prev_task = previous_current;
1156 return previous_current;
1157
1158no_mod:
1159 mprintk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
1160 smp_processor_id(), type, msg);
1161 old_unat = regs->ar_unat;
1162 finish_pt_regs(regs, sos, &old_unat);
1163 return previous_current;
1164}
1165
1166/* The monarch/slave interaction is based on monarch_cpu and requires that all
1167 * slaves have entered rendezvous before the monarch leaves. If any cpu has
1168 * not entered rendezvous yet then wait a bit. The assumption is that any
1169 * slave that has not rendezvoused after a reasonable time is never going to do
1170 * so. In this context, slave includes cpus that respond to the MCA rendezvous
1171 * interrupt, as well as cpus that receive the INIT slave event.
1172 */
1173
1174static void
1175ia64_wait_for_slaves(int monarch, const char *type)
1176{
1177 int c, i , wait;
1178
1179 /*
1180 * wait 5 seconds total for slaves (arbitrary)
1181 */
1182 for (i = 0; i < 5000; i++) {
1183 wait = 0;
1184 for_each_online_cpu(c) {
1185 if (c == monarch)
1186 continue;
1187 if (ia64_mc_info.imi_rendez_checkin[c]
1188 == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1189 udelay(1000); /* short wait */
1190 wait = 1;
1191 break;
1192 }
1193 }
1194 if (!wait)
1195 goto all_in;
1196 }
1197
1198 /*
1199 * Maybe slave(s) dead. Print buffered messages immediately.
1200 */
1201 ia64_mlogbuf_finish(0);
1202 mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
1203 for_each_online_cpu(c) {
1204 if (c == monarch)
1205 continue;
1206 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1207 mprintk(" %d", c);
1208 }
1209 mprintk("\n");
1210 return;
1211
1212all_in:
1213 mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
1214 return;
1215}
1216
1217/* mca_insert_tr
1218 *
1219 * Switch rid when TR reload and needed!
1220 * iord: 1: itr, 2: itr;
1221 *
1222*/
1223static void mca_insert_tr(u64 iord)
1224{
1225
1226 int i;
1227 u64 old_rr;
1228 struct ia64_tr_entry *p;
1229 unsigned long psr;
1230 int cpu = smp_processor_id();
1231
1232 if (!ia64_idtrs[cpu])
1233 return;
1234
1235 psr = ia64_clear_ic();
1236 for (i = IA64_TR_ALLOC_BASE; i < IA64_TR_ALLOC_MAX; i++) {
1237 p = ia64_idtrs[cpu] + (iord - 1) * IA64_TR_ALLOC_MAX;
1238 if (p->pte & 0x1) {
1239 old_rr = ia64_get_rr(p->ifa);
1240 if (old_rr != p->rr) {
1241 ia64_set_rr(p->ifa, p->rr);
1242 ia64_srlz_d();
1243 }
1244 ia64_ptr(iord, p->ifa, p->itir >> 2);
1245 ia64_srlz_i();
1246 if (iord & 0x1) {
1247 ia64_itr(0x1, i, p->ifa, p->pte, p->itir >> 2);
1248 ia64_srlz_i();
1249 }
1250 if (iord & 0x2) {
1251 ia64_itr(0x2, i, p->ifa, p->pte, p->itir >> 2);
1252 ia64_srlz_i();
1253 }
1254 if (old_rr != p->rr) {
1255 ia64_set_rr(p->ifa, old_rr);
1256 ia64_srlz_d();
1257 }
1258 }
1259 }
1260 ia64_set_psr(psr);
1261}
1262
1263/*
1264 * ia64_mca_handler
1265 *
1266 * This is uncorrectable machine check handler called from OS_MCA
1267 * dispatch code which is in turn called from SAL_CHECK().
1268 * This is the place where the core of OS MCA handling is done.
1269 * Right now the logs are extracted and displayed in a well-defined
1270 * format. This handler code is supposed to be run only on the
1271 * monarch processor. Once the monarch is done with MCA handling
1272 * further MCA logging is enabled by clearing logs.
1273 * Monarch also has the duty of sending wakeup-IPIs to pull the
1274 * slave processors out of rendezvous spinloop.
1275 *
1276 * If multiple processors call into OS_MCA, the first will become
1277 * the monarch. Subsequent cpus will be recorded in the mca_cpu
1278 * bitmask. After the first monarch has processed its MCA, it
1279 * will wake up the next cpu in the mca_cpu bitmask and then go
1280 * into the rendezvous loop. When all processors have serviced
1281 * their MCA, the last monarch frees up the rest of the processors.
1282 */
1283void
1284ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1285 struct ia64_sal_os_state *sos)
1286{
1287 int recover, cpu = smp_processor_id();
1288 struct task_struct *previous_current;
1289 struct ia64_mca_notify_die nd =
1290 { .sos = sos, .monarch_cpu = &monarch_cpu, .data = &recover };
1291 static atomic_t mca_count;
1292 static cpumask_t mca_cpu;
1293
1294 if (atomic_add_return(1, &mca_count) == 1) {
1295 monarch_cpu = cpu;
1296 sos->monarch = 1;
1297 } else {
1298 cpumask_set_cpu(cpu, &mca_cpu);
1299 sos->monarch = 0;
1300 }
1301 mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d "
1302 "monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch);
1303
1304 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1305
1306 NOTIFY_MCA(DIE_MCA_MONARCH_ENTER, regs, (long)&nd, 1);
1307
1308 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA;
1309 if (sos->monarch) {
1310 ia64_wait_for_slaves(cpu, "MCA");
1311
1312 /* Wakeup all the processors which are spinning in the
1313 * rendezvous loop. They will leave SAL, then spin in the OS
1314 * with interrupts disabled until this monarch cpu leaves the
1315 * MCA handler. That gets control back to the OS so we can
1316 * backtrace the other cpus, backtrace when spinning in SAL
1317 * does not work.
1318 */
1319 ia64_mca_wakeup_all();
1320 } else {
1321 while (cpumask_test_cpu(cpu, &mca_cpu))
1322 cpu_relax(); /* spin until monarch wakes us */
1323 }
1324
1325 NOTIFY_MCA(DIE_MCA_MONARCH_PROCESS, regs, (long)&nd, 1);
1326
1327 /* Get the MCA error record and log it */
1328 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1329
1330 /* MCA error recovery */
1331 recover = (ia64_mca_ucmc_extension
1332 && ia64_mca_ucmc_extension(
1333 IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1334 sos));
1335
1336 if (recover) {
1337 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1338 rh->severity = sal_log_severity_corrected;
1339 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1340 sos->os_status = IA64_MCA_CORRECTED;
1341 } else {
1342 /* Dump buffered message to console */
1343 ia64_mlogbuf_finish(1);
1344 }
1345
1346 if (__this_cpu_read(ia64_mca_tr_reload)) {
1347 mca_insert_tr(0x1); /*Reload dynamic itrs*/
1348 mca_insert_tr(0x2); /*Reload dynamic itrs*/
1349 }
1350
1351 NOTIFY_MCA(DIE_MCA_MONARCH_LEAVE, regs, (long)&nd, 1);
1352
1353 if (atomic_dec_return(&mca_count) > 0) {
1354 int i;
1355
1356 /* wake up the next monarch cpu,
1357 * and put this cpu in the rendez loop.
1358 */
1359 for_each_online_cpu(i) {
1360 if (cpumask_test_cpu(i, &mca_cpu)) {
1361 monarch_cpu = i;
1362 cpumask_clear_cpu(i, &mca_cpu); /* wake next cpu */
1363 while (monarch_cpu != -1)
1364 cpu_relax(); /* spin until last cpu leaves */
1365 ia64_set_curr_task(cpu, previous_current);
1366 ia64_mc_info.imi_rendez_checkin[cpu]
1367 = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1368 return;
1369 }
1370 }
1371 }
1372 ia64_set_curr_task(cpu, previous_current);
1373 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1374 monarch_cpu = -1; /* This frees the slaves and previous monarchs */
1375}
1376
1377static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd);
1378static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd);
1379
1380/*
1381 * ia64_mca_cmc_int_handler
1382 *
1383 * This is corrected machine check interrupt handler.
1384 * Right now the logs are extracted and displayed in a well-defined
1385 * format.
1386 *
1387 * Inputs
1388 * interrupt number
1389 * client data arg ptr
1390 *
1391 * Outputs
1392 * None
1393 */
1394static irqreturn_t
1395ia64_mca_cmc_int_handler(int cmc_irq, void *arg)
1396{
1397 static unsigned long cmc_history[CMC_HISTORY_LENGTH];
1398 static int index;
1399 static DEFINE_SPINLOCK(cmc_history_lock);
1400
1401 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1402 __func__, cmc_irq, smp_processor_id());
1403
1404 /* SAL spec states this should run w/ interrupts enabled */
1405 local_irq_enable();
1406
1407 spin_lock(&cmc_history_lock);
1408 if (!cmc_polling_enabled) {
1409 int i, count = 1; /* we know 1 happened now */
1410 unsigned long now = jiffies;
1411
1412 for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1413 if (now - cmc_history[i] <= HZ)
1414 count++;
1415 }
1416
1417 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1418 if (count >= CMC_HISTORY_LENGTH) {
1419
1420 cmc_polling_enabled = 1;
1421 spin_unlock(&cmc_history_lock);
1422 /* If we're being hit with CMC interrupts, we won't
1423 * ever execute the schedule_work() below. Need to
1424 * disable CMC interrupts on this processor now.
1425 */
1426 ia64_mca_cmc_vector_disable(NULL);
1427 schedule_work(&cmc_disable_work);
1428
1429 /*
1430 * Corrected errors will still be corrected, but
1431 * make sure there's a log somewhere that indicates
1432 * something is generating more than we can handle.
1433 */
1434 printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1435
1436 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1437
1438 /* lock already released, get out now */
1439 goto out;
1440 } else {
1441 cmc_history[index++] = now;
1442 if (index == CMC_HISTORY_LENGTH)
1443 index = 0;
1444 }
1445 }
1446 spin_unlock(&cmc_history_lock);
1447out:
1448 /* Get the CMC error record and log it */
1449 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1450
1451 local_irq_disable();
1452
1453 return IRQ_HANDLED;
1454}
1455
1456/*
1457 * ia64_mca_cmc_int_caller
1458 *
1459 * Triggered by sw interrupt from CMC polling routine. Calls
1460 * real interrupt handler and either triggers a sw interrupt
1461 * on the next cpu or does cleanup at the end.
1462 *
1463 * Inputs
1464 * interrupt number
1465 * client data arg ptr
1466 * Outputs
1467 * handled
1468 */
1469static irqreturn_t
1470ia64_mca_cmc_int_caller(int cmc_irq, void *arg)
1471{
1472 static int start_count = -1;
1473 unsigned int cpuid;
1474
1475 cpuid = smp_processor_id();
1476
1477 /* If first cpu, update count */
1478 if (start_count == -1)
1479 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1480
1481 ia64_mca_cmc_int_handler(cmc_irq, arg);
1482
1483 cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1484
1485 if (cpuid < nr_cpu_ids) {
1486 ia64_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1487 } else {
1488 /* If no log record, switch out of polling mode */
1489 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1490
1491 printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1492 schedule_work(&cmc_enable_work);
1493 cmc_polling_enabled = 0;
1494
1495 } else {
1496
1497 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1498 }
1499
1500 start_count = -1;
1501 }
1502
1503 return IRQ_HANDLED;
1504}
1505
1506/*
1507 * ia64_mca_cmc_poll
1508 *
1509 * Poll for Corrected Machine Checks (CMCs)
1510 *
1511 * Inputs : dummy(unused)
1512 * Outputs : None
1513 *
1514 */
1515static void
1516ia64_mca_cmc_poll (struct timer_list *unused)
1517{
1518 /* Trigger a CMC interrupt cascade */
1519 ia64_send_ipi(cpumask_first(cpu_online_mask), IA64_CMCP_VECTOR,
1520 IA64_IPI_DM_INT, 0);
1521}
1522
1523/*
1524 * ia64_mca_cpe_int_caller
1525 *
1526 * Triggered by sw interrupt from CPE polling routine. Calls
1527 * real interrupt handler and either triggers a sw interrupt
1528 * on the next cpu or does cleanup at the end.
1529 *
1530 * Inputs
1531 * interrupt number
1532 * client data arg ptr
1533 * Outputs
1534 * handled
1535 */
1536static irqreturn_t
1537ia64_mca_cpe_int_caller(int cpe_irq, void *arg)
1538{
1539 static int start_count = -1;
1540 static int poll_time = MIN_CPE_POLL_INTERVAL;
1541 unsigned int cpuid;
1542
1543 cpuid = smp_processor_id();
1544
1545 /* If first cpu, update count */
1546 if (start_count == -1)
1547 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1548
1549 ia64_mca_cpe_int_handler(cpe_irq, arg);
1550
1551 cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1552
1553 if (cpuid < NR_CPUS) {
1554 ia64_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1555 } else {
1556 /*
1557 * If a log was recorded, increase our polling frequency,
1558 * otherwise, backoff or return to interrupt mode.
1559 */
1560 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1561 poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1562 } else if (cpe_vector < 0) {
1563 poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1564 } else {
1565 poll_time = MIN_CPE_POLL_INTERVAL;
1566
1567 printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1568 enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1569 cpe_poll_enabled = 0;
1570 }
1571
1572 if (cpe_poll_enabled)
1573 mod_timer(&cpe_poll_timer, jiffies + poll_time);
1574 start_count = -1;
1575 }
1576
1577 return IRQ_HANDLED;
1578}
1579
1580/*
1581 * ia64_mca_cpe_poll
1582 *
1583 * Poll for Corrected Platform Errors (CPEs), trigger interrupt
1584 * on first cpu, from there it will trickle through all the cpus.
1585 *
1586 * Inputs : dummy(unused)
1587 * Outputs : None
1588 *
1589 */
1590static void
1591ia64_mca_cpe_poll (struct timer_list *unused)
1592{
1593 /* Trigger a CPE interrupt cascade */
1594 ia64_send_ipi(cpumask_first(cpu_online_mask), IA64_CPEP_VECTOR,
1595 IA64_IPI_DM_INT, 0);
1596}
1597
1598static int
1599default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1600{
1601 int c;
1602 struct task_struct *g, *t;
1603 if (val != DIE_INIT_MONARCH_PROCESS)
1604 return NOTIFY_DONE;
1605#ifdef CONFIG_KEXEC
1606 if (atomic_read(&kdump_in_progress))
1607 return NOTIFY_DONE;
1608#endif
1609
1610 /*
1611 * FIXME: mlogbuf will brim over with INIT stack dumps.
1612 * To enable show_stack from INIT, we use oops_in_progress which should
1613 * be used in real oops. This would cause something wrong after INIT.
1614 */
1615 BREAK_LOGLEVEL(console_loglevel);
1616 ia64_mlogbuf_dump_from_init();
1617
1618 printk(KERN_ERR "Processes interrupted by INIT -");
1619 for_each_online_cpu(c) {
1620 struct ia64_sal_os_state *s;
1621 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1622 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1623 g = s->prev_task;
1624 if (g) {
1625 if (g->pid)
1626 printk(" %d", g->pid);
1627 else
1628 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1629 }
1630 }
1631 printk("\n\n");
1632 if (read_trylock(&tasklist_lock)) {
1633 do_each_thread (g, t) {
1634 printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1635 show_stack(t, NULL, KERN_DEFAULT);
1636 } while_each_thread (g, t);
1637 read_unlock(&tasklist_lock);
1638 }
1639 /* FIXME: This will not restore zapped printk locks. */
1640 RESTORE_LOGLEVEL(console_loglevel);
1641 return NOTIFY_DONE;
1642}
1643
1644/*
1645 * C portion of the OS INIT handler
1646 *
1647 * Called from ia64_os_init_dispatch
1648 *
1649 * Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for
1650 * this event. This code is used for both monarch and slave INIT events, see
1651 * sos->monarch.
1652 *
1653 * All INIT events switch to the INIT stack and change the previous process to
1654 * blocked status. If one of the INIT events is the monarch then we are
1655 * probably processing the nmi button/command. Use the monarch cpu to dump all
1656 * the processes. The slave INIT events all spin until the monarch cpu
1657 * returns. We can also get INIT slave events for MCA, in which case the MCA
1658 * process is the monarch.
1659 */
1660
1661void
1662ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1663 struct ia64_sal_os_state *sos)
1664{
1665 static atomic_t slaves;
1666 static atomic_t monarchs;
1667 struct task_struct *previous_current;
1668 int cpu = smp_processor_id();
1669 struct ia64_mca_notify_die nd =
1670 { .sos = sos, .monarch_cpu = &monarch_cpu };
1671
1672 NOTIFY_INIT(DIE_INIT_ENTER, regs, (long)&nd, 0);
1673
1674 mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1675 sos->proc_state_param, cpu, sos->monarch);
1676 salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1677
1678 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1679 sos->os_status = IA64_INIT_RESUME;
1680
1681 /* FIXME: Workaround for broken proms that drive all INIT events as
1682 * slaves. The last slave that enters is promoted to be a monarch.
1683 * Remove this code in September 2006, that gives platforms a year to
1684 * fix their proms and get their customers updated.
1685 */
1686 if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1687 mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1688 __func__, cpu);
1689 atomic_dec(&slaves);
1690 sos->monarch = 1;
1691 }
1692
1693 /* FIXME: Workaround for broken proms that drive all INIT events as
1694 * monarchs. Second and subsequent monarchs are demoted to slaves.
1695 * Remove this code in September 2006, that gives platforms a year to
1696 * fix their proms and get their customers updated.
1697 */
1698 if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1699 mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1700 __func__, cpu);
1701 atomic_dec(&monarchs);
1702 sos->monarch = 0;
1703 }
1704
1705 if (!sos->monarch) {
1706 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1707
1708#ifdef CONFIG_KEXEC
1709 while (monarch_cpu == -1 && !atomic_read(&kdump_in_progress))
1710 udelay(1000);
1711#else
1712 while (monarch_cpu == -1)
1713 cpu_relax(); /* spin until monarch enters */
1714#endif
1715
1716 NOTIFY_INIT(DIE_INIT_SLAVE_ENTER, regs, (long)&nd, 1);
1717 NOTIFY_INIT(DIE_INIT_SLAVE_PROCESS, regs, (long)&nd, 1);
1718
1719#ifdef CONFIG_KEXEC
1720 while (monarch_cpu != -1 && !atomic_read(&kdump_in_progress))
1721 udelay(1000);
1722#else
1723 while (monarch_cpu != -1)
1724 cpu_relax(); /* spin until monarch leaves */
1725#endif
1726
1727 NOTIFY_INIT(DIE_INIT_SLAVE_LEAVE, regs, (long)&nd, 1);
1728
1729 mprintk("Slave on cpu %d returning to normal service.\n", cpu);
1730 ia64_set_curr_task(cpu, previous_current);
1731 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1732 atomic_dec(&slaves);
1733 return;
1734 }
1735
1736 monarch_cpu = cpu;
1737 NOTIFY_INIT(DIE_INIT_MONARCH_ENTER, regs, (long)&nd, 1);
1738
1739 /*
1740 * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1741 * generated via the BMC's command-line interface, but since the console is on the
1742 * same serial line, the user will need some time to switch out of the BMC before
1743 * the dump begins.
1744 */
1745 mprintk("Delaying for 5 seconds...\n");
1746 udelay(5*1000000);
1747 ia64_wait_for_slaves(cpu, "INIT");
1748 /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1749 * to default_monarch_init_process() above and just print all the
1750 * tasks.
1751 */
1752 NOTIFY_INIT(DIE_INIT_MONARCH_PROCESS, regs, (long)&nd, 1);
1753 NOTIFY_INIT(DIE_INIT_MONARCH_LEAVE, regs, (long)&nd, 1);
1754
1755 mprintk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu);
1756 atomic_dec(&monarchs);
1757 ia64_set_curr_task(cpu, previous_current);
1758 monarch_cpu = -1;
1759 return;
1760}
1761
1762static int __init
1763ia64_mca_disable_cpe_polling(char *str)
1764{
1765 cpe_poll_enabled = 0;
1766 return 1;
1767}
1768
1769__setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1770
1771/* Minimal format of the MCA/INIT stacks. The pseudo processes that run on
1772 * these stacks can never sleep, they cannot return from the kernel to user
1773 * space, they do not appear in a normal ps listing. So there is no need to
1774 * format most of the fields.
1775 */
1776
1777static void
1778format_mca_init_stack(void *mca_data, unsigned long offset,
1779 const char *type, int cpu)
1780{
1781 struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1782 struct thread_info *ti;
1783 memset(p, 0, KERNEL_STACK_SIZE);
1784 ti = task_thread_info(p);
1785 ti->flags = _TIF_MCA_INIT;
1786 ti->preempt_count = 1;
1787 ti->task = p;
1788 ti->cpu = cpu;
1789 p->stack = ti;
1790 p->__state = TASK_UNINTERRUPTIBLE;
1791 cpumask_set_cpu(cpu, &p->cpus_mask);
1792 INIT_LIST_HEAD(&p->tasks);
1793 p->parent = p->real_parent = p->group_leader = p;
1794 INIT_LIST_HEAD(&p->children);
1795 INIT_LIST_HEAD(&p->sibling);
1796 strscpy(p->comm, type, sizeof(p->comm)-1);
1797}
1798
1799/* Caller prevents this from being called after init */
1800static void * __ref mca_bootmem(void)
1801{
1802 return memblock_alloc(sizeof(struct ia64_mca_cpu), KERNEL_STACK_SIZE);
1803}
1804
1805/* Do per-CPU MCA-related initialization. */
1806void
1807ia64_mca_cpu_init(void *cpu_data)
1808{
1809 void *pal_vaddr;
1810 void *data;
1811 long sz = sizeof(struct ia64_mca_cpu);
1812 int cpu = smp_processor_id();
1813 static int first_time = 1;
1814
1815 /*
1816 * Structure will already be allocated if cpu has been online,
1817 * then offlined.
1818 */
1819 if (__per_cpu_mca[cpu]) {
1820 data = __va(__per_cpu_mca[cpu]);
1821 } else {
1822 if (first_time) {
1823 data = mca_bootmem();
1824 first_time = 0;
1825 } else
1826 data = (void *)__get_free_pages(GFP_ATOMIC,
1827 get_order(sz));
1828 if (!data)
1829 panic("Could not allocate MCA memory for cpu %d\n",
1830 cpu);
1831 }
1832 format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, mca_stack),
1833 "MCA", cpu);
1834 format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, init_stack),
1835 "INIT", cpu);
1836 __this_cpu_write(ia64_mca_data, (__per_cpu_mca[cpu] = __pa(data)));
1837
1838 /*
1839 * Stash away a copy of the PTE needed to map the per-CPU page.
1840 * We may need it during MCA recovery.
1841 */
1842 __this_cpu_write(ia64_mca_per_cpu_pte,
1843 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL)));
1844
1845 /*
1846 * Also, stash away a copy of the PAL address and the PTE
1847 * needed to map it.
1848 */
1849 pal_vaddr = efi_get_pal_addr();
1850 if (!pal_vaddr)
1851 return;
1852 __this_cpu_write(ia64_mca_pal_base,
1853 GRANULEROUNDDOWN((unsigned long) pal_vaddr));
1854 __this_cpu_write(ia64_mca_pal_pte, pte_val(mk_pte_phys(__pa(pal_vaddr),
1855 PAGE_KERNEL)));
1856}
1857
1858static int ia64_mca_cpu_online(unsigned int cpu)
1859{
1860 unsigned long flags;
1861
1862 local_irq_save(flags);
1863 if (!cmc_polling_enabled)
1864 ia64_mca_cmc_vector_enable(NULL);
1865 local_irq_restore(flags);
1866 return 0;
1867}
1868
1869/*
1870 * ia64_mca_init
1871 *
1872 * Do all the system level mca specific initialization.
1873 *
1874 * 1. Register spinloop and wakeup request interrupt vectors
1875 *
1876 * 2. Register OS_MCA handler entry point
1877 *
1878 * 3. Register OS_INIT handler entry point
1879 *
1880 * 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1881 *
1882 * Note that this initialization is done very early before some kernel
1883 * services are available.
1884 *
1885 * Inputs : None
1886 *
1887 * Outputs : None
1888 */
1889void __init
1890ia64_mca_init(void)
1891{
1892 ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1893 ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1894 ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1895 int i;
1896 long rc;
1897 struct ia64_sal_retval isrv;
1898 unsigned long timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
1899 static struct notifier_block default_init_monarch_nb = {
1900 .notifier_call = default_monarch_init_process,
1901 .priority = 0/* we need to notified last */
1902 };
1903
1904 IA64_MCA_DEBUG("%s: begin\n", __func__);
1905
1906 /* Clear the Rendez checkin flag for all cpus */
1907 for(i = 0 ; i < NR_CPUS; i++)
1908 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1909
1910 /*
1911 * Register the rendezvous spinloop and wakeup mechanism with SAL
1912 */
1913
1914 /* Register the rendezvous interrupt vector with SAL */
1915 while (1) {
1916 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1917 SAL_MC_PARAM_MECHANISM_INT,
1918 IA64_MCA_RENDEZ_VECTOR,
1919 timeout,
1920 SAL_MC_PARAM_RZ_ALWAYS);
1921 rc = isrv.status;
1922 if (rc == 0)
1923 break;
1924 if (rc == -2) {
1925 printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1926 "%ld to %ld milliseconds\n", timeout, isrv.v0);
1927 timeout = isrv.v0;
1928 NOTIFY_MCA(DIE_MCA_NEW_TIMEOUT, NULL, timeout, 0);
1929 continue;
1930 }
1931 printk(KERN_ERR "Failed to register rendezvous interrupt "
1932 "with SAL (status %ld)\n", rc);
1933 return;
1934 }
1935
1936 /* Register the wakeup interrupt vector with SAL */
1937 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1938 SAL_MC_PARAM_MECHANISM_INT,
1939 IA64_MCA_WAKEUP_VECTOR,
1940 0, 0);
1941 rc = isrv.status;
1942 if (rc) {
1943 printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1944 "(status %ld)\n", rc);
1945 return;
1946 }
1947
1948 IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __func__);
1949
1950 ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp);
1951 /*
1952 * XXX - disable SAL checksum by setting size to 0; should be
1953 * ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1954 */
1955 ia64_mc_info.imi_mca_handler_size = 0;
1956
1957 /* Register the os mca handler with SAL */
1958 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1959 ia64_mc_info.imi_mca_handler,
1960 ia64_tpa(mca_hldlr_ptr->gp),
1961 ia64_mc_info.imi_mca_handler_size,
1962 0, 0, 0)))
1963 {
1964 printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1965 "(status %ld)\n", rc);
1966 return;
1967 }
1968
1969 IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __func__,
1970 ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
1971
1972 /*
1973 * XXX - disable SAL checksum by setting size to 0, should be
1974 * size of the actual init handler in mca_asm.S.
1975 */
1976 ia64_mc_info.imi_monarch_init_handler = ia64_tpa(init_hldlr_ptr_monarch->fp);
1977 ia64_mc_info.imi_monarch_init_handler_size = 0;
1978 ia64_mc_info.imi_slave_init_handler = ia64_tpa(init_hldlr_ptr_slave->fp);
1979 ia64_mc_info.imi_slave_init_handler_size = 0;
1980
1981 IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __func__,
1982 ia64_mc_info.imi_monarch_init_handler);
1983
1984 /* Register the os init handler with SAL */
1985 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
1986 ia64_mc_info.imi_monarch_init_handler,
1987 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1988 ia64_mc_info.imi_monarch_init_handler_size,
1989 ia64_mc_info.imi_slave_init_handler,
1990 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1991 ia64_mc_info.imi_slave_init_handler_size)))
1992 {
1993 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
1994 "(status %ld)\n", rc);
1995 return;
1996 }
1997 if (register_die_notifier(&default_init_monarch_nb)) {
1998 printk(KERN_ERR "Failed to register default monarch INIT process\n");
1999 return;
2000 }
2001
2002 IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __func__);
2003
2004 /* Initialize the areas set aside by the OS to buffer the
2005 * platform/processor error states for MCA/INIT/CMC
2006 * handling.
2007 */
2008 ia64_log_init(SAL_INFO_TYPE_MCA);
2009 ia64_log_init(SAL_INFO_TYPE_INIT);
2010 ia64_log_init(SAL_INFO_TYPE_CMC);
2011 ia64_log_init(SAL_INFO_TYPE_CPE);
2012
2013 mca_init = 1;
2014 printk(KERN_INFO "MCA related initialization done\n");
2015}
2016
2017
2018/*
2019 * These pieces cannot be done in ia64_mca_init() because it is called before
2020 * early_irq_init() which would wipe out our percpu irq registrations. But we
2021 * cannot leave them until ia64_mca_late_init() because by then all the other
2022 * processors have been brought online and have set their own CMC vectors to
2023 * point at a non-existant action. Called from arch_early_irq_init().
2024 */
2025void __init ia64_mca_irq_init(void)
2026{
2027 /*
2028 * Configure the CMCI/P vector and handler. Interrupts for CMC are
2029 * per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
2030 */
2031 register_percpu_irq(IA64_CMC_VECTOR, ia64_mca_cmc_int_handler, 0,
2032 "cmc_hndlr");
2033 register_percpu_irq(IA64_CMCP_VECTOR, ia64_mca_cmc_int_caller, 0,
2034 "cmc_poll");
2035 ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */
2036
2037 /* Setup the MCA rendezvous interrupt vector */
2038 register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, ia64_mca_rendez_int_handler,
2039 0, "mca_rdzv");
2040
2041 /* Setup the MCA wakeup interrupt vector */
2042 register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, ia64_mca_wakeup_int_handler,
2043 0, "mca_wkup");
2044
2045 /* Setup the CPEI/P handler */
2046 register_percpu_irq(IA64_CPEP_VECTOR, ia64_mca_cpe_int_caller, 0,
2047 "cpe_poll");
2048}
2049
2050/*
2051 * ia64_mca_late_init
2052 *
2053 * Opportunity to setup things that require initialization later
2054 * than ia64_mca_init. Setup a timer to poll for CPEs if the
2055 * platform doesn't support an interrupt driven mechanism.
2056 *
2057 * Inputs : None
2058 * Outputs : Status
2059 */
2060static int __init
2061ia64_mca_late_init(void)
2062{
2063 if (!mca_init)
2064 return 0;
2065
2066 /* Setup the CMCI/P vector and handler */
2067 timer_setup(&cmc_poll_timer, ia64_mca_cmc_poll, 0);
2068
2069 /* Unmask/enable the vector */
2070 cmc_polling_enabled = 0;
2071 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "ia64/mca:online",
2072 ia64_mca_cpu_online, NULL);
2073 IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __func__);
2074
2075 /* Setup the CPEI/P vector and handler */
2076 cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
2077 timer_setup(&cpe_poll_timer, ia64_mca_cpe_poll, 0);
2078
2079 {
2080 unsigned int irq;
2081
2082 if (cpe_vector >= 0) {
2083 /* If platform supports CPEI, enable the irq. */
2084 irq = local_vector_to_irq(cpe_vector);
2085 if (irq > 0) {
2086 cpe_poll_enabled = 0;
2087 irq_set_status_flags(irq, IRQ_PER_CPU);
2088 if (request_irq(irq, ia64_mca_cpe_int_handler,
2089 0, "cpe_hndlr", NULL))
2090 pr_err("Failed to register cpe_hndlr interrupt\n");
2091 ia64_cpe_irq = irq;
2092 ia64_mca_register_cpev(cpe_vector);
2093 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n",
2094 __func__);
2095 return 0;
2096 }
2097 printk(KERN_ERR "%s: Failed to find irq for CPE "
2098 "interrupt handler, vector %d\n",
2099 __func__, cpe_vector);
2100 }
2101 /* If platform doesn't support CPEI, get the timer going. */
2102 if (cpe_poll_enabled) {
2103 ia64_mca_cpe_poll(0UL);
2104 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __func__);
2105 }
2106 }
2107
2108 return 0;
2109}
2110
2111device_initcall(ia64_mca_late_init);
1/*
2 * File: mca.c
3 * Purpose: Generic MCA handling layer
4 *
5 * Copyright (C) 2003 Hewlett-Packard Co
6 * David Mosberger-Tang <davidm@hpl.hp.com>
7 *
8 * Copyright (C) 2002 Dell Inc.
9 * Copyright (C) Matt Domsch <Matt_Domsch@dell.com>
10 *
11 * Copyright (C) 2002 Intel
12 * Copyright (C) Jenna Hall <jenna.s.hall@intel.com>
13 *
14 * Copyright (C) 2001 Intel
15 * Copyright (C) Fred Lewis <frederick.v.lewis@intel.com>
16 *
17 * Copyright (C) 2000 Intel
18 * Copyright (C) Chuck Fleckenstein <cfleck@co.intel.com>
19 *
20 * Copyright (C) 1999, 2004-2008 Silicon Graphics, Inc.
21 * Copyright (C) Vijay Chander <vijay@engr.sgi.com>
22 *
23 * Copyright (C) 2006 FUJITSU LIMITED
24 * Copyright (C) Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
25 *
26 * 2000-03-29 Chuck Fleckenstein <cfleck@co.intel.com>
27 * Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
28 * added min save state dump, added INIT handler.
29 *
30 * 2001-01-03 Fred Lewis <frederick.v.lewis@intel.com>
31 * Added setup of CMCI and CPEI IRQs, logging of corrected platform
32 * errors, completed code for logging of corrected & uncorrected
33 * machine check errors, and updated for conformance with Nov. 2000
34 * revision of the SAL 3.0 spec.
35 *
36 * 2002-01-04 Jenna Hall <jenna.s.hall@intel.com>
37 * Aligned MCA stack to 16 bytes, added platform vs. CPU error flag,
38 * set SAL default return values, changed error record structure to
39 * linked list, added init call to sal_get_state_info_size().
40 *
41 * 2002-03-25 Matt Domsch <Matt_Domsch@dell.com>
42 * GUID cleanups.
43 *
44 * 2003-04-15 David Mosberger-Tang <davidm@hpl.hp.com>
45 * Added INIT backtrace support.
46 *
47 * 2003-12-08 Keith Owens <kaos@sgi.com>
48 * smp_call_function() must not be called from interrupt context
49 * (can deadlock on tasklist_lock).
50 * Use keventd to call smp_call_function().
51 *
52 * 2004-02-01 Keith Owens <kaos@sgi.com>
53 * Avoid deadlock when using printk() for MCA and INIT records.
54 * Delete all record printing code, moved to salinfo_decode in user
55 * space. Mark variables and functions static where possible.
56 * Delete dead variables and functions. Reorder to remove the need
57 * for forward declarations and to consolidate related code.
58 *
59 * 2005-08-12 Keith Owens <kaos@sgi.com>
60 * Convert MCA/INIT handlers to use per event stacks and SAL/OS
61 * state.
62 *
63 * 2005-10-07 Keith Owens <kaos@sgi.com>
64 * Add notify_die() hooks.
65 *
66 * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
67 * Add printing support for MCA/INIT.
68 *
69 * 2007-04-27 Russ Anderson <rja@sgi.com>
70 * Support multiple cpus going through OS_MCA in the same event.
71 */
72#include <linux/jiffies.h>
73#include <linux/types.h>
74#include <linux/init.h>
75#include <linux/sched.h>
76#include <linux/interrupt.h>
77#include <linux/irq.h>
78#include <linux/bootmem.h>
79#include <linux/acpi.h>
80#include <linux/timer.h>
81#include <linux/module.h>
82#include <linux/kernel.h>
83#include <linux/smp.h>
84#include <linux/workqueue.h>
85#include <linux/cpumask.h>
86#include <linux/kdebug.h>
87#include <linux/cpu.h>
88#include <linux/gfp.h>
89
90#include <asm/delay.h>
91#include <asm/machvec.h>
92#include <asm/meminit.h>
93#include <asm/page.h>
94#include <asm/ptrace.h>
95#include <asm/sal.h>
96#include <asm/mca.h>
97#include <asm/kexec.h>
98
99#include <asm/irq.h>
100#include <asm/hw_irq.h>
101#include <asm/tlb.h>
102
103#include "mca_drv.h"
104#include "entry.h"
105
106#if defined(IA64_MCA_DEBUG_INFO)
107# define IA64_MCA_DEBUG(fmt...) printk(fmt)
108#else
109# define IA64_MCA_DEBUG(fmt...)
110#endif
111
112#define NOTIFY_INIT(event, regs, arg, spin) \
113do { \
114 if ((notify_die((event), "INIT", (regs), (arg), 0, 0) \
115 == NOTIFY_STOP) && ((spin) == 1)) \
116 ia64_mca_spin(__func__); \
117} while (0)
118
119#define NOTIFY_MCA(event, regs, arg, spin) \
120do { \
121 if ((notify_die((event), "MCA", (regs), (arg), 0, 0) \
122 == NOTIFY_STOP) && ((spin) == 1)) \
123 ia64_mca_spin(__func__); \
124} while (0)
125
126/* Used by mca_asm.S */
127DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
128DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
129DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */
130DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */
131DEFINE_PER_CPU(u64, ia64_mca_tr_reload); /* Flag for TR reload */
132
133unsigned long __per_cpu_mca[NR_CPUS];
134
135/* In mca_asm.S */
136extern void ia64_os_init_dispatch_monarch (void);
137extern void ia64_os_init_dispatch_slave (void);
138
139static int monarch_cpu = -1;
140
141static ia64_mc_info_t ia64_mc_info;
142
143#define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
144#define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */
145#define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */
146#define CPE_HISTORY_LENGTH 5
147#define CMC_HISTORY_LENGTH 5
148
149#ifdef CONFIG_ACPI
150static struct timer_list cpe_poll_timer;
151#endif
152static struct timer_list cmc_poll_timer;
153/*
154 * This variable tells whether we are currently in polling mode.
155 * Start with this in the wrong state so we won't play w/ timers
156 * before the system is ready.
157 */
158static int cmc_polling_enabled = 1;
159
160/*
161 * Clearing this variable prevents CPE polling from getting activated
162 * in mca_late_init. Use it if your system doesn't provide a CPEI,
163 * but encounters problems retrieving CPE logs. This should only be
164 * necessary for debugging.
165 */
166static int cpe_poll_enabled = 1;
167
168extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
169
170static int mca_init __initdata;
171
172/*
173 * limited & delayed printing support for MCA/INIT handler
174 */
175
176#define mprintk(fmt...) ia64_mca_printk(fmt)
177
178#define MLOGBUF_SIZE (512+256*NR_CPUS)
179#define MLOGBUF_MSGMAX 256
180static char mlogbuf[MLOGBUF_SIZE];
181static DEFINE_SPINLOCK(mlogbuf_wlock); /* mca context only */
182static DEFINE_SPINLOCK(mlogbuf_rlock); /* normal context only */
183static unsigned long mlogbuf_start;
184static unsigned long mlogbuf_end;
185static unsigned int mlogbuf_finished = 0;
186static unsigned long mlogbuf_timestamp = 0;
187
188static int loglevel_save = -1;
189#define BREAK_LOGLEVEL(__console_loglevel) \
190 oops_in_progress = 1; \
191 if (loglevel_save < 0) \
192 loglevel_save = __console_loglevel; \
193 __console_loglevel = 15;
194
195#define RESTORE_LOGLEVEL(__console_loglevel) \
196 if (loglevel_save >= 0) { \
197 __console_loglevel = loglevel_save; \
198 loglevel_save = -1; \
199 } \
200 mlogbuf_finished = 0; \
201 oops_in_progress = 0;
202
203/*
204 * Push messages into buffer, print them later if not urgent.
205 */
206void ia64_mca_printk(const char *fmt, ...)
207{
208 va_list args;
209 int printed_len;
210 char temp_buf[MLOGBUF_MSGMAX];
211 char *p;
212
213 va_start(args, fmt);
214 printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args);
215 va_end(args);
216
217 /* Copy the output into mlogbuf */
218 if (oops_in_progress) {
219 /* mlogbuf was abandoned, use printk directly instead. */
220 printk("%s", temp_buf);
221 } else {
222 spin_lock(&mlogbuf_wlock);
223 for (p = temp_buf; *p; p++) {
224 unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE;
225 if (next != mlogbuf_start) {
226 mlogbuf[mlogbuf_end] = *p;
227 mlogbuf_end = next;
228 } else {
229 /* buffer full */
230 break;
231 }
232 }
233 mlogbuf[mlogbuf_end] = '\0';
234 spin_unlock(&mlogbuf_wlock);
235 }
236}
237EXPORT_SYMBOL(ia64_mca_printk);
238
239/*
240 * Print buffered messages.
241 * NOTE: call this after returning normal context. (ex. from salinfod)
242 */
243void ia64_mlogbuf_dump(void)
244{
245 char temp_buf[MLOGBUF_MSGMAX];
246 char *p;
247 unsigned long index;
248 unsigned long flags;
249 unsigned int printed_len;
250
251 /* Get output from mlogbuf */
252 while (mlogbuf_start != mlogbuf_end) {
253 temp_buf[0] = '\0';
254 p = temp_buf;
255 printed_len = 0;
256
257 spin_lock_irqsave(&mlogbuf_rlock, flags);
258
259 index = mlogbuf_start;
260 while (index != mlogbuf_end) {
261 *p = mlogbuf[index];
262 index = (index + 1) % MLOGBUF_SIZE;
263 if (!*p)
264 break;
265 p++;
266 if (++printed_len >= MLOGBUF_MSGMAX - 1)
267 break;
268 }
269 *p = '\0';
270 if (temp_buf[0])
271 printk("%s", temp_buf);
272 mlogbuf_start = index;
273
274 mlogbuf_timestamp = 0;
275 spin_unlock_irqrestore(&mlogbuf_rlock, flags);
276 }
277}
278EXPORT_SYMBOL(ia64_mlogbuf_dump);
279
280/*
281 * Call this if system is going to down or if immediate flushing messages to
282 * console is required. (ex. recovery was failed, crash dump is going to be
283 * invoked, long-wait rendezvous etc.)
284 * NOTE: this should be called from monarch.
285 */
286static void ia64_mlogbuf_finish(int wait)
287{
288 BREAK_LOGLEVEL(console_loglevel);
289
290 spin_lock_init(&mlogbuf_rlock);
291 ia64_mlogbuf_dump();
292 printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, "
293 "MCA/INIT might be dodgy or fail.\n");
294
295 if (!wait)
296 return;
297
298 /* wait for console */
299 printk("Delaying for 5 seconds...\n");
300 udelay(5*1000000);
301
302 mlogbuf_finished = 1;
303}
304
305/*
306 * Print buffered messages from INIT context.
307 */
308static void ia64_mlogbuf_dump_from_init(void)
309{
310 if (mlogbuf_finished)
311 return;
312
313 if (mlogbuf_timestamp &&
314 time_before(jiffies, mlogbuf_timestamp + 30 * HZ)) {
315 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT "
316 " and the system seems to be messed up.\n");
317 ia64_mlogbuf_finish(0);
318 return;
319 }
320
321 if (!spin_trylock(&mlogbuf_rlock)) {
322 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. "
323 "Generated messages other than stack dump will be "
324 "buffered to mlogbuf and will be printed later.\n");
325 printk(KERN_ERR "INIT: If messages would not printed after "
326 "this INIT, wait 30sec and assert INIT again.\n");
327 if (!mlogbuf_timestamp)
328 mlogbuf_timestamp = jiffies;
329 return;
330 }
331 spin_unlock(&mlogbuf_rlock);
332 ia64_mlogbuf_dump();
333}
334
335static void inline
336ia64_mca_spin(const char *func)
337{
338 if (monarch_cpu == smp_processor_id())
339 ia64_mlogbuf_finish(0);
340 mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
341 while (1)
342 cpu_relax();
343}
344/*
345 * IA64_MCA log support
346 */
347#define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */
348#define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */
349
350typedef struct ia64_state_log_s
351{
352 spinlock_t isl_lock;
353 int isl_index;
354 unsigned long isl_count;
355 ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
356} ia64_state_log_t;
357
358static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
359
360#define IA64_LOG_ALLOCATE(it, size) \
361 {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
362 (ia64_err_rec_t *)alloc_bootmem(size); \
363 ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
364 (ia64_err_rec_t *)alloc_bootmem(size);}
365#define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
366#define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
367#define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
368#define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index
369#define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index
370#define IA64_LOG_INDEX_INC(it) \
371 {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
372 ia64_state_log[it].isl_count++;}
373#define IA64_LOG_INDEX_DEC(it) \
374 ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
375#define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
376#define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
377#define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count
378
379/*
380 * ia64_log_init
381 * Reset the OS ia64 log buffer
382 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
383 * Outputs : None
384 */
385static void __init
386ia64_log_init(int sal_info_type)
387{
388 u64 max_size = 0;
389
390 IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
391 IA64_LOG_LOCK_INIT(sal_info_type);
392
393 // SAL will tell us the maximum size of any error record of this type
394 max_size = ia64_sal_get_state_info_size(sal_info_type);
395 if (!max_size)
396 /* alloc_bootmem() doesn't like zero-sized allocations! */
397 return;
398
399 // set up OS data structures to hold error info
400 IA64_LOG_ALLOCATE(sal_info_type, max_size);
401 memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
402 memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
403}
404
405/*
406 * ia64_log_get
407 *
408 * Get the current MCA log from SAL and copy it into the OS log buffer.
409 *
410 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
411 * irq_safe whether you can use printk at this point
412 * Outputs : size (total record length)
413 * *buffer (ptr to error record)
414 *
415 */
416static u64
417ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
418{
419 sal_log_record_header_t *log_buffer;
420 u64 total_len = 0;
421 unsigned long s;
422
423 IA64_LOG_LOCK(sal_info_type);
424
425 /* Get the process state information */
426 log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
427
428 total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
429
430 if (total_len) {
431 IA64_LOG_INDEX_INC(sal_info_type);
432 IA64_LOG_UNLOCK(sal_info_type);
433 if (irq_safe) {
434 IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. Record length = %ld\n",
435 __func__, sal_info_type, total_len);
436 }
437 *buffer = (u8 *) log_buffer;
438 return total_len;
439 } else {
440 IA64_LOG_UNLOCK(sal_info_type);
441 return 0;
442 }
443}
444
445/*
446 * ia64_mca_log_sal_error_record
447 *
448 * This function retrieves a specified error record type from SAL
449 * and wakes up any processes waiting for error records.
450 *
451 * Inputs : sal_info_type (Type of error record MCA/CMC/CPE)
452 * FIXME: remove MCA and irq_safe.
453 */
454static void
455ia64_mca_log_sal_error_record(int sal_info_type)
456{
457 u8 *buffer;
458 sal_log_record_header_t *rh;
459 u64 size;
460 int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
461#ifdef IA64_MCA_DEBUG_INFO
462 static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
463#endif
464
465 size = ia64_log_get(sal_info_type, &buffer, irq_safe);
466 if (!size)
467 return;
468
469 salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
470
471 if (irq_safe)
472 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
473 smp_processor_id(),
474 sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
475
476 /* Clear logs from corrected errors in case there's no user-level logger */
477 rh = (sal_log_record_header_t *)buffer;
478 if (rh->severity == sal_log_severity_corrected)
479 ia64_sal_clear_state_info(sal_info_type);
480}
481
482/*
483 * search_mca_table
484 * See if the MCA surfaced in an instruction range
485 * that has been tagged as recoverable.
486 *
487 * Inputs
488 * first First address range to check
489 * last Last address range to check
490 * ip Instruction pointer, address we are looking for
491 *
492 * Return value:
493 * 1 on Success (in the table)/ 0 on Failure (not in the table)
494 */
495int
496search_mca_table (const struct mca_table_entry *first,
497 const struct mca_table_entry *last,
498 unsigned long ip)
499{
500 const struct mca_table_entry *curr;
501 u64 curr_start, curr_end;
502
503 curr = first;
504 while (curr <= last) {
505 curr_start = (u64) &curr->start_addr + curr->start_addr;
506 curr_end = (u64) &curr->end_addr + curr->end_addr;
507
508 if ((ip >= curr_start) && (ip <= curr_end)) {
509 return 1;
510 }
511 curr++;
512 }
513 return 0;
514}
515
516/* Given an address, look for it in the mca tables. */
517int mca_recover_range(unsigned long addr)
518{
519 extern struct mca_table_entry __start___mca_table[];
520 extern struct mca_table_entry __stop___mca_table[];
521
522 return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
523}
524EXPORT_SYMBOL_GPL(mca_recover_range);
525
526#ifdef CONFIG_ACPI
527
528int cpe_vector = -1;
529int ia64_cpe_irq = -1;
530
531static irqreturn_t
532ia64_mca_cpe_int_handler (int cpe_irq, void *arg)
533{
534 static unsigned long cpe_history[CPE_HISTORY_LENGTH];
535 static int index;
536 static DEFINE_SPINLOCK(cpe_history_lock);
537
538 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
539 __func__, cpe_irq, smp_processor_id());
540
541 /* SAL spec states this should run w/ interrupts enabled */
542 local_irq_enable();
543
544 spin_lock(&cpe_history_lock);
545 if (!cpe_poll_enabled && cpe_vector >= 0) {
546
547 int i, count = 1; /* we know 1 happened now */
548 unsigned long now = jiffies;
549
550 for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
551 if (now - cpe_history[i] <= HZ)
552 count++;
553 }
554
555 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
556 if (count >= CPE_HISTORY_LENGTH) {
557
558 cpe_poll_enabled = 1;
559 spin_unlock(&cpe_history_lock);
560 disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
561
562 /*
563 * Corrected errors will still be corrected, but
564 * make sure there's a log somewhere that indicates
565 * something is generating more than we can handle.
566 */
567 printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
568
569 mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
570
571 /* lock already released, get out now */
572 goto out;
573 } else {
574 cpe_history[index++] = now;
575 if (index == CPE_HISTORY_LENGTH)
576 index = 0;
577 }
578 }
579 spin_unlock(&cpe_history_lock);
580out:
581 /* Get the CPE error record and log it */
582 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
583
584 local_irq_disable();
585
586 return IRQ_HANDLED;
587}
588
589#endif /* CONFIG_ACPI */
590
591#ifdef CONFIG_ACPI
592/*
593 * ia64_mca_register_cpev
594 *
595 * Register the corrected platform error vector with SAL.
596 *
597 * Inputs
598 * cpev Corrected Platform Error Vector number
599 *
600 * Outputs
601 * None
602 */
603void
604ia64_mca_register_cpev (int cpev)
605{
606 /* Register the CPE interrupt vector with SAL */
607 struct ia64_sal_retval isrv;
608
609 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
610 if (isrv.status) {
611 printk(KERN_ERR "Failed to register Corrected Platform "
612 "Error interrupt vector with SAL (status %ld)\n", isrv.status);
613 return;
614 }
615
616 IA64_MCA_DEBUG("%s: corrected platform error "
617 "vector %#x registered\n", __func__, cpev);
618}
619#endif /* CONFIG_ACPI */
620
621/*
622 * ia64_mca_cmc_vector_setup
623 *
624 * Setup the corrected machine check vector register in the processor.
625 * (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
626 * This function is invoked on a per-processor basis.
627 *
628 * Inputs
629 * None
630 *
631 * Outputs
632 * None
633 */
634void
635ia64_mca_cmc_vector_setup (void)
636{
637 cmcv_reg_t cmcv;
638
639 cmcv.cmcv_regval = 0;
640 cmcv.cmcv_mask = 1; /* Mask/disable interrupt at first */
641 cmcv.cmcv_vector = IA64_CMC_VECTOR;
642 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
643
644 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x registered.\n",
645 __func__, smp_processor_id(), IA64_CMC_VECTOR);
646
647 IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
648 __func__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
649}
650
651/*
652 * ia64_mca_cmc_vector_disable
653 *
654 * Mask the corrected machine check vector register in the processor.
655 * This function is invoked on a per-processor basis.
656 *
657 * Inputs
658 * dummy(unused)
659 *
660 * Outputs
661 * None
662 */
663static void
664ia64_mca_cmc_vector_disable (void *dummy)
665{
666 cmcv_reg_t cmcv;
667
668 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
669
670 cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
671 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
672
673 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x disabled.\n",
674 __func__, smp_processor_id(), cmcv.cmcv_vector);
675}
676
677/*
678 * ia64_mca_cmc_vector_enable
679 *
680 * Unmask the corrected machine check vector register in the processor.
681 * This function is invoked on a per-processor basis.
682 *
683 * Inputs
684 * dummy(unused)
685 *
686 * Outputs
687 * None
688 */
689static void
690ia64_mca_cmc_vector_enable (void *dummy)
691{
692 cmcv_reg_t cmcv;
693
694 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
695
696 cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
697 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
698
699 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x enabled.\n",
700 __func__, smp_processor_id(), cmcv.cmcv_vector);
701}
702
703/*
704 * ia64_mca_cmc_vector_disable_keventd
705 *
706 * Called via keventd (smp_call_function() is not safe in interrupt context) to
707 * disable the cmc interrupt vector.
708 */
709static void
710ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused)
711{
712 on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 0);
713}
714
715/*
716 * ia64_mca_cmc_vector_enable_keventd
717 *
718 * Called via keventd (smp_call_function() is not safe in interrupt context) to
719 * enable the cmc interrupt vector.
720 */
721static void
722ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused)
723{
724 on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 0);
725}
726
727/*
728 * ia64_mca_wakeup
729 *
730 * Send an inter-cpu interrupt to wake-up a particular cpu.
731 *
732 * Inputs : cpuid
733 * Outputs : None
734 */
735static void
736ia64_mca_wakeup(int cpu)
737{
738 platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
739}
740
741/*
742 * ia64_mca_wakeup_all
743 *
744 * Wakeup all the slave cpus which have rendez'ed previously.
745 *
746 * Inputs : None
747 * Outputs : None
748 */
749static void
750ia64_mca_wakeup_all(void)
751{
752 int cpu;
753
754 /* Clear the Rendez checkin flag for all cpus */
755 for_each_online_cpu(cpu) {
756 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
757 ia64_mca_wakeup(cpu);
758 }
759
760}
761
762/*
763 * ia64_mca_rendez_interrupt_handler
764 *
765 * This is handler used to put slave processors into spinloop
766 * while the monarch processor does the mca handling and later
767 * wake each slave up once the monarch is done. The state
768 * IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed
769 * in SAL. The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates
770 * the cpu has come out of OS rendezvous.
771 *
772 * Inputs : None
773 * Outputs : None
774 */
775static irqreturn_t
776ia64_mca_rendez_int_handler(int rendez_irq, void *arg)
777{
778 unsigned long flags;
779 int cpu = smp_processor_id();
780 struct ia64_mca_notify_die nd =
781 { .sos = NULL, .monarch_cpu = &monarch_cpu };
782
783 /* Mask all interrupts */
784 local_irq_save(flags);
785
786 NOTIFY_MCA(DIE_MCA_RENDZVOUS_ENTER, get_irq_regs(), (long)&nd, 1);
787
788 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
789 /* Register with the SAL monarch that the slave has
790 * reached SAL
791 */
792 ia64_sal_mc_rendez();
793
794 NOTIFY_MCA(DIE_MCA_RENDZVOUS_PROCESS, get_irq_regs(), (long)&nd, 1);
795
796 /* Wait for the monarch cpu to exit. */
797 while (monarch_cpu != -1)
798 cpu_relax(); /* spin until monarch leaves */
799
800 NOTIFY_MCA(DIE_MCA_RENDZVOUS_LEAVE, get_irq_regs(), (long)&nd, 1);
801
802 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
803 /* Enable all interrupts */
804 local_irq_restore(flags);
805 return IRQ_HANDLED;
806}
807
808/*
809 * ia64_mca_wakeup_int_handler
810 *
811 * The interrupt handler for processing the inter-cpu interrupt to the
812 * slave cpu which was spinning in the rendez loop.
813 * Since this spinning is done by turning off the interrupts and
814 * polling on the wakeup-interrupt bit in the IRR, there is
815 * nothing useful to be done in the handler.
816 *
817 * Inputs : wakeup_irq (Wakeup-interrupt bit)
818 * arg (Interrupt handler specific argument)
819 * Outputs : None
820 *
821 */
822static irqreturn_t
823ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg)
824{
825 return IRQ_HANDLED;
826}
827
828/* Function pointer for extra MCA recovery */
829int (*ia64_mca_ucmc_extension)
830 (void*,struct ia64_sal_os_state*)
831 = NULL;
832
833int
834ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
835{
836 if (ia64_mca_ucmc_extension)
837 return 1;
838
839 ia64_mca_ucmc_extension = fn;
840 return 0;
841}
842
843void
844ia64_unreg_MCA_extension(void)
845{
846 if (ia64_mca_ucmc_extension)
847 ia64_mca_ucmc_extension = NULL;
848}
849
850EXPORT_SYMBOL(ia64_reg_MCA_extension);
851EXPORT_SYMBOL(ia64_unreg_MCA_extension);
852
853
854static inline void
855copy_reg(const u64 *fr, u64 fnat, unsigned long *tr, unsigned long *tnat)
856{
857 u64 fslot, tslot, nat;
858 *tr = *fr;
859 fslot = ((unsigned long)fr >> 3) & 63;
860 tslot = ((unsigned long)tr >> 3) & 63;
861 *tnat &= ~(1UL << tslot);
862 nat = (fnat >> fslot) & 1;
863 *tnat |= (nat << tslot);
864}
865
866/* Change the comm field on the MCA/INT task to include the pid that
867 * was interrupted, it makes for easier debugging. If that pid was 0
868 * (swapper or nested MCA/INIT) then use the start of the previous comm
869 * field suffixed with its cpu.
870 */
871
872static void
873ia64_mca_modify_comm(const struct task_struct *previous_current)
874{
875 char *p, comm[sizeof(current->comm)];
876 if (previous_current->pid)
877 snprintf(comm, sizeof(comm), "%s %d",
878 current->comm, previous_current->pid);
879 else {
880 int l;
881 if ((p = strchr(previous_current->comm, ' ')))
882 l = p - previous_current->comm;
883 else
884 l = strlen(previous_current->comm);
885 snprintf(comm, sizeof(comm), "%s %*s %d",
886 current->comm, l, previous_current->comm,
887 task_thread_info(previous_current)->cpu);
888 }
889 memcpy(current->comm, comm, sizeof(current->comm));
890}
891
892static void
893finish_pt_regs(struct pt_regs *regs, struct ia64_sal_os_state *sos,
894 unsigned long *nat)
895{
896 const pal_min_state_area_t *ms = sos->pal_min_state;
897 const u64 *bank;
898
899 /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
900 * pmsa_{xip,xpsr,xfs}
901 */
902 if (ia64_psr(regs)->ic) {
903 regs->cr_iip = ms->pmsa_iip;
904 regs->cr_ipsr = ms->pmsa_ipsr;
905 regs->cr_ifs = ms->pmsa_ifs;
906 } else {
907 regs->cr_iip = ms->pmsa_xip;
908 regs->cr_ipsr = ms->pmsa_xpsr;
909 regs->cr_ifs = ms->pmsa_xfs;
910
911 sos->iip = ms->pmsa_iip;
912 sos->ipsr = ms->pmsa_ipsr;
913 sos->ifs = ms->pmsa_ifs;
914 }
915 regs->pr = ms->pmsa_pr;
916 regs->b0 = ms->pmsa_br0;
917 regs->ar_rsc = ms->pmsa_rsc;
918 copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, ®s->r1, nat);
919 copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, ®s->r2, nat);
920 copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, ®s->r3, nat);
921 copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, ®s->r8, nat);
922 copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, ®s->r9, nat);
923 copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, ®s->r10, nat);
924 copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, ®s->r11, nat);
925 copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, ®s->r12, nat);
926 copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, ®s->r13, nat);
927 copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, ®s->r14, nat);
928 copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, ®s->r15, nat);
929 if (ia64_psr(regs)->bn)
930 bank = ms->pmsa_bank1_gr;
931 else
932 bank = ms->pmsa_bank0_gr;
933 copy_reg(&bank[16-16], ms->pmsa_nat_bits, ®s->r16, nat);
934 copy_reg(&bank[17-16], ms->pmsa_nat_bits, ®s->r17, nat);
935 copy_reg(&bank[18-16], ms->pmsa_nat_bits, ®s->r18, nat);
936 copy_reg(&bank[19-16], ms->pmsa_nat_bits, ®s->r19, nat);
937 copy_reg(&bank[20-16], ms->pmsa_nat_bits, ®s->r20, nat);
938 copy_reg(&bank[21-16], ms->pmsa_nat_bits, ®s->r21, nat);
939 copy_reg(&bank[22-16], ms->pmsa_nat_bits, ®s->r22, nat);
940 copy_reg(&bank[23-16], ms->pmsa_nat_bits, ®s->r23, nat);
941 copy_reg(&bank[24-16], ms->pmsa_nat_bits, ®s->r24, nat);
942 copy_reg(&bank[25-16], ms->pmsa_nat_bits, ®s->r25, nat);
943 copy_reg(&bank[26-16], ms->pmsa_nat_bits, ®s->r26, nat);
944 copy_reg(&bank[27-16], ms->pmsa_nat_bits, ®s->r27, nat);
945 copy_reg(&bank[28-16], ms->pmsa_nat_bits, ®s->r28, nat);
946 copy_reg(&bank[29-16], ms->pmsa_nat_bits, ®s->r29, nat);
947 copy_reg(&bank[30-16], ms->pmsa_nat_bits, ®s->r30, nat);
948 copy_reg(&bank[31-16], ms->pmsa_nat_bits, ®s->r31, nat);
949}
950
951/* On entry to this routine, we are running on the per cpu stack, see
952 * mca_asm.h. The original stack has not been touched by this event. Some of
953 * the original stack's registers will be in the RBS on this stack. This stack
954 * also contains a partial pt_regs and switch_stack, the rest of the data is in
955 * PAL minstate.
956 *
957 * The first thing to do is modify the original stack to look like a blocked
958 * task so we can run backtrace on the original task. Also mark the per cpu
959 * stack as current to ensure that we use the correct task state, it also means
960 * that we can do backtrace on the MCA/INIT handler code itself.
961 */
962
963static struct task_struct *
964ia64_mca_modify_original_stack(struct pt_regs *regs,
965 const struct switch_stack *sw,
966 struct ia64_sal_os_state *sos,
967 const char *type)
968{
969 char *p;
970 ia64_va va;
971 extern char ia64_leave_kernel[]; /* Need asm address, not function descriptor */
972 const pal_min_state_area_t *ms = sos->pal_min_state;
973 struct task_struct *previous_current;
974 struct pt_regs *old_regs;
975 struct switch_stack *old_sw;
976 unsigned size = sizeof(struct pt_regs) +
977 sizeof(struct switch_stack) + 16;
978 unsigned long *old_bspstore, *old_bsp;
979 unsigned long *new_bspstore, *new_bsp;
980 unsigned long old_unat, old_rnat, new_rnat, nat;
981 u64 slots, loadrs = regs->loadrs;
982 u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
983 u64 ar_bspstore = regs->ar_bspstore;
984 u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
985 const char *msg;
986 int cpu = smp_processor_id();
987
988 previous_current = curr_task(cpu);
989 set_curr_task(cpu, current);
990 if ((p = strchr(current->comm, ' ')))
991 *p = '\0';
992
993 /* Best effort attempt to cope with MCA/INIT delivered while in
994 * physical mode.
995 */
996 regs->cr_ipsr = ms->pmsa_ipsr;
997 if (ia64_psr(regs)->dt == 0) {
998 va.l = r12;
999 if (va.f.reg == 0) {
1000 va.f.reg = 7;
1001 r12 = va.l;
1002 }
1003 va.l = r13;
1004 if (va.f.reg == 0) {
1005 va.f.reg = 7;
1006 r13 = va.l;
1007 }
1008 }
1009 if (ia64_psr(regs)->rt == 0) {
1010 va.l = ar_bspstore;
1011 if (va.f.reg == 0) {
1012 va.f.reg = 7;
1013 ar_bspstore = va.l;
1014 }
1015 va.l = ar_bsp;
1016 if (va.f.reg == 0) {
1017 va.f.reg = 7;
1018 ar_bsp = va.l;
1019 }
1020 }
1021
1022 /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
1023 * have been copied to the old stack, the old stack may fail the
1024 * validation tests below. So ia64_old_stack() must restore the dirty
1025 * registers from the new stack. The old and new bspstore probably
1026 * have different alignments, so loadrs calculated on the old bsp
1027 * cannot be used to restore from the new bsp. Calculate a suitable
1028 * loadrs for the new stack and save it in the new pt_regs, where
1029 * ia64_old_stack() can get it.
1030 */
1031 old_bspstore = (unsigned long *)ar_bspstore;
1032 old_bsp = (unsigned long *)ar_bsp;
1033 slots = ia64_rse_num_regs(old_bspstore, old_bsp);
1034 new_bspstore = (unsigned long *)((u64)current + IA64_RBS_OFFSET);
1035 new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
1036 regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
1037
1038 /* Verify the previous stack state before we change it */
1039 if (user_mode(regs)) {
1040 msg = "occurred in user space";
1041 /* previous_current is guaranteed to be valid when the task was
1042 * in user space, so ...
1043 */
1044 ia64_mca_modify_comm(previous_current);
1045 goto no_mod;
1046 }
1047
1048 if (r13 != sos->prev_IA64_KR_CURRENT) {
1049 msg = "inconsistent previous current and r13";
1050 goto no_mod;
1051 }
1052
1053 if (!mca_recover_range(ms->pmsa_iip)) {
1054 if ((r12 - r13) >= KERNEL_STACK_SIZE) {
1055 msg = "inconsistent r12 and r13";
1056 goto no_mod;
1057 }
1058 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
1059 msg = "inconsistent ar.bspstore and r13";
1060 goto no_mod;
1061 }
1062 va.p = old_bspstore;
1063 if (va.f.reg < 5) {
1064 msg = "old_bspstore is in the wrong region";
1065 goto no_mod;
1066 }
1067 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
1068 msg = "inconsistent ar.bsp and r13";
1069 goto no_mod;
1070 }
1071 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
1072 if (ar_bspstore + size > r12) {
1073 msg = "no room for blocked state";
1074 goto no_mod;
1075 }
1076 }
1077
1078 ia64_mca_modify_comm(previous_current);
1079
1080 /* Make the original task look blocked. First stack a struct pt_regs,
1081 * describing the state at the time of interrupt. mca_asm.S built a
1082 * partial pt_regs, copy it and fill in the blanks using minstate.
1083 */
1084 p = (char *)r12 - sizeof(*regs);
1085 old_regs = (struct pt_regs *)p;
1086 memcpy(old_regs, regs, sizeof(*regs));
1087 old_regs->loadrs = loadrs;
1088 old_unat = old_regs->ar_unat;
1089 finish_pt_regs(old_regs, sos, &old_unat);
1090
1091 /* Next stack a struct switch_stack. mca_asm.S built a partial
1092 * switch_stack, copy it and fill in the blanks using pt_regs and
1093 * minstate.
1094 *
1095 * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1096 * ar.pfs is set to 0.
1097 *
1098 * unwind.c::unw_unwind() does special processing for interrupt frames.
1099 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1100 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not
1101 * that this is documented, of course. Set PRED_NON_SYSCALL in the
1102 * switch_stack on the original stack so it will unwind correctly when
1103 * unwind.c reads pt_regs.
1104 *
1105 * thread.ksp is updated to point to the synthesized switch_stack.
1106 */
1107 p -= sizeof(struct switch_stack);
1108 old_sw = (struct switch_stack *)p;
1109 memcpy(old_sw, sw, sizeof(*sw));
1110 old_sw->caller_unat = old_unat;
1111 old_sw->ar_fpsr = old_regs->ar_fpsr;
1112 copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
1113 copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
1114 copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
1115 copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
1116 old_sw->b0 = (u64)ia64_leave_kernel;
1117 old_sw->b1 = ms->pmsa_br1;
1118 old_sw->ar_pfs = 0;
1119 old_sw->ar_unat = old_unat;
1120 old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
1121 previous_current->thread.ksp = (u64)p - 16;
1122
1123 /* Finally copy the original stack's registers back to its RBS.
1124 * Registers from ar.bspstore through ar.bsp at the time of the event
1125 * are in the current RBS, copy them back to the original stack. The
1126 * copy must be done register by register because the original bspstore
1127 * and the current one have different alignments, so the saved RNAT
1128 * data occurs at different places.
1129 *
1130 * mca_asm does cover, so the old_bsp already includes all registers at
1131 * the time of MCA/INIT. It also does flushrs, so all registers before
1132 * this function have been written to backing store on the MCA/INIT
1133 * stack.
1134 */
1135 new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
1136 old_rnat = regs->ar_rnat;
1137 while (slots--) {
1138 if (ia64_rse_is_rnat_slot(new_bspstore)) {
1139 new_rnat = ia64_get_rnat(new_bspstore++);
1140 }
1141 if (ia64_rse_is_rnat_slot(old_bspstore)) {
1142 *old_bspstore++ = old_rnat;
1143 old_rnat = 0;
1144 }
1145 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
1146 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
1147 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
1148 *old_bspstore++ = *new_bspstore++;
1149 }
1150 old_sw->ar_bspstore = (unsigned long)old_bspstore;
1151 old_sw->ar_rnat = old_rnat;
1152
1153 sos->prev_task = previous_current;
1154 return previous_current;
1155
1156no_mod:
1157 mprintk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
1158 smp_processor_id(), type, msg);
1159 old_unat = regs->ar_unat;
1160 finish_pt_regs(regs, sos, &old_unat);
1161 return previous_current;
1162}
1163
1164/* The monarch/slave interaction is based on monarch_cpu and requires that all
1165 * slaves have entered rendezvous before the monarch leaves. If any cpu has
1166 * not entered rendezvous yet then wait a bit. The assumption is that any
1167 * slave that has not rendezvoused after a reasonable time is never going to do
1168 * so. In this context, slave includes cpus that respond to the MCA rendezvous
1169 * interrupt, as well as cpus that receive the INIT slave event.
1170 */
1171
1172static void
1173ia64_wait_for_slaves(int monarch, const char *type)
1174{
1175 int c, i , wait;
1176
1177 /*
1178 * wait 5 seconds total for slaves (arbitrary)
1179 */
1180 for (i = 0; i < 5000; i++) {
1181 wait = 0;
1182 for_each_online_cpu(c) {
1183 if (c == monarch)
1184 continue;
1185 if (ia64_mc_info.imi_rendez_checkin[c]
1186 == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1187 udelay(1000); /* short wait */
1188 wait = 1;
1189 break;
1190 }
1191 }
1192 if (!wait)
1193 goto all_in;
1194 }
1195
1196 /*
1197 * Maybe slave(s) dead. Print buffered messages immediately.
1198 */
1199 ia64_mlogbuf_finish(0);
1200 mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
1201 for_each_online_cpu(c) {
1202 if (c == monarch)
1203 continue;
1204 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1205 mprintk(" %d", c);
1206 }
1207 mprintk("\n");
1208 return;
1209
1210all_in:
1211 mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
1212 return;
1213}
1214
1215/* mca_insert_tr
1216 *
1217 * Switch rid when TR reload and needed!
1218 * iord: 1: itr, 2: itr;
1219 *
1220*/
1221static void mca_insert_tr(u64 iord)
1222{
1223
1224 int i;
1225 u64 old_rr;
1226 struct ia64_tr_entry *p;
1227 unsigned long psr;
1228 int cpu = smp_processor_id();
1229
1230 if (!ia64_idtrs[cpu])
1231 return;
1232
1233 psr = ia64_clear_ic();
1234 for (i = IA64_TR_ALLOC_BASE; i < IA64_TR_ALLOC_MAX; i++) {
1235 p = ia64_idtrs[cpu] + (iord - 1) * IA64_TR_ALLOC_MAX;
1236 if (p->pte & 0x1) {
1237 old_rr = ia64_get_rr(p->ifa);
1238 if (old_rr != p->rr) {
1239 ia64_set_rr(p->ifa, p->rr);
1240 ia64_srlz_d();
1241 }
1242 ia64_ptr(iord, p->ifa, p->itir >> 2);
1243 ia64_srlz_i();
1244 if (iord & 0x1) {
1245 ia64_itr(0x1, i, p->ifa, p->pte, p->itir >> 2);
1246 ia64_srlz_i();
1247 }
1248 if (iord & 0x2) {
1249 ia64_itr(0x2, i, p->ifa, p->pte, p->itir >> 2);
1250 ia64_srlz_i();
1251 }
1252 if (old_rr != p->rr) {
1253 ia64_set_rr(p->ifa, old_rr);
1254 ia64_srlz_d();
1255 }
1256 }
1257 }
1258 ia64_set_psr(psr);
1259}
1260
1261/*
1262 * ia64_mca_handler
1263 *
1264 * This is uncorrectable machine check handler called from OS_MCA
1265 * dispatch code which is in turn called from SAL_CHECK().
1266 * This is the place where the core of OS MCA handling is done.
1267 * Right now the logs are extracted and displayed in a well-defined
1268 * format. This handler code is supposed to be run only on the
1269 * monarch processor. Once the monarch is done with MCA handling
1270 * further MCA logging is enabled by clearing logs.
1271 * Monarch also has the duty of sending wakeup-IPIs to pull the
1272 * slave processors out of rendezvous spinloop.
1273 *
1274 * If multiple processors call into OS_MCA, the first will become
1275 * the monarch. Subsequent cpus will be recorded in the mca_cpu
1276 * bitmask. After the first monarch has processed its MCA, it
1277 * will wake up the next cpu in the mca_cpu bitmask and then go
1278 * into the rendezvous loop. When all processors have serviced
1279 * their MCA, the last monarch frees up the rest of the processors.
1280 */
1281void
1282ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1283 struct ia64_sal_os_state *sos)
1284{
1285 int recover, cpu = smp_processor_id();
1286 struct task_struct *previous_current;
1287 struct ia64_mca_notify_die nd =
1288 { .sos = sos, .monarch_cpu = &monarch_cpu, .data = &recover };
1289 static atomic_t mca_count;
1290 static cpumask_t mca_cpu;
1291
1292 if (atomic_add_return(1, &mca_count) == 1) {
1293 monarch_cpu = cpu;
1294 sos->monarch = 1;
1295 } else {
1296 cpumask_set_cpu(cpu, &mca_cpu);
1297 sos->monarch = 0;
1298 }
1299 mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d "
1300 "monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch);
1301
1302 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1303
1304 NOTIFY_MCA(DIE_MCA_MONARCH_ENTER, regs, (long)&nd, 1);
1305
1306 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA;
1307 if (sos->monarch) {
1308 ia64_wait_for_slaves(cpu, "MCA");
1309
1310 /* Wakeup all the processors which are spinning in the
1311 * rendezvous loop. They will leave SAL, then spin in the OS
1312 * with interrupts disabled until this monarch cpu leaves the
1313 * MCA handler. That gets control back to the OS so we can
1314 * backtrace the other cpus, backtrace when spinning in SAL
1315 * does not work.
1316 */
1317 ia64_mca_wakeup_all();
1318 } else {
1319 while (cpumask_test_cpu(cpu, &mca_cpu))
1320 cpu_relax(); /* spin until monarch wakes us */
1321 }
1322
1323 NOTIFY_MCA(DIE_MCA_MONARCH_PROCESS, regs, (long)&nd, 1);
1324
1325 /* Get the MCA error record and log it */
1326 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1327
1328 /* MCA error recovery */
1329 recover = (ia64_mca_ucmc_extension
1330 && ia64_mca_ucmc_extension(
1331 IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1332 sos));
1333
1334 if (recover) {
1335 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1336 rh->severity = sal_log_severity_corrected;
1337 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1338 sos->os_status = IA64_MCA_CORRECTED;
1339 } else {
1340 /* Dump buffered message to console */
1341 ia64_mlogbuf_finish(1);
1342 }
1343
1344 if (__this_cpu_read(ia64_mca_tr_reload)) {
1345 mca_insert_tr(0x1); /*Reload dynamic itrs*/
1346 mca_insert_tr(0x2); /*Reload dynamic itrs*/
1347 }
1348
1349 NOTIFY_MCA(DIE_MCA_MONARCH_LEAVE, regs, (long)&nd, 1);
1350
1351 if (atomic_dec_return(&mca_count) > 0) {
1352 int i;
1353
1354 /* wake up the next monarch cpu,
1355 * and put this cpu in the rendez loop.
1356 */
1357 for_each_online_cpu(i) {
1358 if (cpumask_test_cpu(i, &mca_cpu)) {
1359 monarch_cpu = i;
1360 cpumask_clear_cpu(i, &mca_cpu); /* wake next cpu */
1361 while (monarch_cpu != -1)
1362 cpu_relax(); /* spin until last cpu leaves */
1363 set_curr_task(cpu, previous_current);
1364 ia64_mc_info.imi_rendez_checkin[cpu]
1365 = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1366 return;
1367 }
1368 }
1369 }
1370 set_curr_task(cpu, previous_current);
1371 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1372 monarch_cpu = -1; /* This frees the slaves and previous monarchs */
1373}
1374
1375static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd);
1376static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd);
1377
1378/*
1379 * ia64_mca_cmc_int_handler
1380 *
1381 * This is corrected machine check interrupt handler.
1382 * Right now the logs are extracted and displayed in a well-defined
1383 * format.
1384 *
1385 * Inputs
1386 * interrupt number
1387 * client data arg ptr
1388 *
1389 * Outputs
1390 * None
1391 */
1392static irqreturn_t
1393ia64_mca_cmc_int_handler(int cmc_irq, void *arg)
1394{
1395 static unsigned long cmc_history[CMC_HISTORY_LENGTH];
1396 static int index;
1397 static DEFINE_SPINLOCK(cmc_history_lock);
1398
1399 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1400 __func__, cmc_irq, smp_processor_id());
1401
1402 /* SAL spec states this should run w/ interrupts enabled */
1403 local_irq_enable();
1404
1405 spin_lock(&cmc_history_lock);
1406 if (!cmc_polling_enabled) {
1407 int i, count = 1; /* we know 1 happened now */
1408 unsigned long now = jiffies;
1409
1410 for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1411 if (now - cmc_history[i] <= HZ)
1412 count++;
1413 }
1414
1415 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1416 if (count >= CMC_HISTORY_LENGTH) {
1417
1418 cmc_polling_enabled = 1;
1419 spin_unlock(&cmc_history_lock);
1420 /* If we're being hit with CMC interrupts, we won't
1421 * ever execute the schedule_work() below. Need to
1422 * disable CMC interrupts on this processor now.
1423 */
1424 ia64_mca_cmc_vector_disable(NULL);
1425 schedule_work(&cmc_disable_work);
1426
1427 /*
1428 * Corrected errors will still be corrected, but
1429 * make sure there's a log somewhere that indicates
1430 * something is generating more than we can handle.
1431 */
1432 printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1433
1434 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1435
1436 /* lock already released, get out now */
1437 goto out;
1438 } else {
1439 cmc_history[index++] = now;
1440 if (index == CMC_HISTORY_LENGTH)
1441 index = 0;
1442 }
1443 }
1444 spin_unlock(&cmc_history_lock);
1445out:
1446 /* Get the CMC error record and log it */
1447 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1448
1449 local_irq_disable();
1450
1451 return IRQ_HANDLED;
1452}
1453
1454/*
1455 * ia64_mca_cmc_int_caller
1456 *
1457 * Triggered by sw interrupt from CMC polling routine. Calls
1458 * real interrupt handler and either triggers a sw interrupt
1459 * on the next cpu or does cleanup at the end.
1460 *
1461 * Inputs
1462 * interrupt number
1463 * client data arg ptr
1464 * Outputs
1465 * handled
1466 */
1467static irqreturn_t
1468ia64_mca_cmc_int_caller(int cmc_irq, void *arg)
1469{
1470 static int start_count = -1;
1471 unsigned int cpuid;
1472
1473 cpuid = smp_processor_id();
1474
1475 /* If first cpu, update count */
1476 if (start_count == -1)
1477 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1478
1479 ia64_mca_cmc_int_handler(cmc_irq, arg);
1480
1481 cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1482
1483 if (cpuid < nr_cpu_ids) {
1484 platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1485 } else {
1486 /* If no log record, switch out of polling mode */
1487 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1488
1489 printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1490 schedule_work(&cmc_enable_work);
1491 cmc_polling_enabled = 0;
1492
1493 } else {
1494
1495 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1496 }
1497
1498 start_count = -1;
1499 }
1500
1501 return IRQ_HANDLED;
1502}
1503
1504/*
1505 * ia64_mca_cmc_poll
1506 *
1507 * Poll for Corrected Machine Checks (CMCs)
1508 *
1509 * Inputs : dummy(unused)
1510 * Outputs : None
1511 *
1512 */
1513static void
1514ia64_mca_cmc_poll (unsigned long dummy)
1515{
1516 /* Trigger a CMC interrupt cascade */
1517 platform_send_ipi(cpumask_first(cpu_online_mask), IA64_CMCP_VECTOR,
1518 IA64_IPI_DM_INT, 0);
1519}
1520
1521/*
1522 * ia64_mca_cpe_int_caller
1523 *
1524 * Triggered by sw interrupt from CPE polling routine. Calls
1525 * real interrupt handler and either triggers a sw interrupt
1526 * on the next cpu or does cleanup at the end.
1527 *
1528 * Inputs
1529 * interrupt number
1530 * client data arg ptr
1531 * Outputs
1532 * handled
1533 */
1534#ifdef CONFIG_ACPI
1535
1536static irqreturn_t
1537ia64_mca_cpe_int_caller(int cpe_irq, void *arg)
1538{
1539 static int start_count = -1;
1540 static int poll_time = MIN_CPE_POLL_INTERVAL;
1541 unsigned int cpuid;
1542
1543 cpuid = smp_processor_id();
1544
1545 /* If first cpu, update count */
1546 if (start_count == -1)
1547 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1548
1549 ia64_mca_cpe_int_handler(cpe_irq, arg);
1550
1551 cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1552
1553 if (cpuid < NR_CPUS) {
1554 platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1555 } else {
1556 /*
1557 * If a log was recorded, increase our polling frequency,
1558 * otherwise, backoff or return to interrupt mode.
1559 */
1560 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1561 poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1562 } else if (cpe_vector < 0) {
1563 poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1564 } else {
1565 poll_time = MIN_CPE_POLL_INTERVAL;
1566
1567 printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1568 enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1569 cpe_poll_enabled = 0;
1570 }
1571
1572 if (cpe_poll_enabled)
1573 mod_timer(&cpe_poll_timer, jiffies + poll_time);
1574 start_count = -1;
1575 }
1576
1577 return IRQ_HANDLED;
1578}
1579
1580/*
1581 * ia64_mca_cpe_poll
1582 *
1583 * Poll for Corrected Platform Errors (CPEs), trigger interrupt
1584 * on first cpu, from there it will trickle through all the cpus.
1585 *
1586 * Inputs : dummy(unused)
1587 * Outputs : None
1588 *
1589 */
1590static void
1591ia64_mca_cpe_poll (unsigned long dummy)
1592{
1593 /* Trigger a CPE interrupt cascade */
1594 platform_send_ipi(cpumask_first(cpu_online_mask), IA64_CPEP_VECTOR,
1595 IA64_IPI_DM_INT, 0);
1596}
1597
1598#endif /* CONFIG_ACPI */
1599
1600static int
1601default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1602{
1603 int c;
1604 struct task_struct *g, *t;
1605 if (val != DIE_INIT_MONARCH_PROCESS)
1606 return NOTIFY_DONE;
1607#ifdef CONFIG_KEXEC
1608 if (atomic_read(&kdump_in_progress))
1609 return NOTIFY_DONE;
1610#endif
1611
1612 /*
1613 * FIXME: mlogbuf will brim over with INIT stack dumps.
1614 * To enable show_stack from INIT, we use oops_in_progress which should
1615 * be used in real oops. This would cause something wrong after INIT.
1616 */
1617 BREAK_LOGLEVEL(console_loglevel);
1618 ia64_mlogbuf_dump_from_init();
1619
1620 printk(KERN_ERR "Processes interrupted by INIT -");
1621 for_each_online_cpu(c) {
1622 struct ia64_sal_os_state *s;
1623 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1624 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1625 g = s->prev_task;
1626 if (g) {
1627 if (g->pid)
1628 printk(" %d", g->pid);
1629 else
1630 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1631 }
1632 }
1633 printk("\n\n");
1634 if (read_trylock(&tasklist_lock)) {
1635 do_each_thread (g, t) {
1636 printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1637 show_stack(t, NULL);
1638 } while_each_thread (g, t);
1639 read_unlock(&tasklist_lock);
1640 }
1641 /* FIXME: This will not restore zapped printk locks. */
1642 RESTORE_LOGLEVEL(console_loglevel);
1643 return NOTIFY_DONE;
1644}
1645
1646/*
1647 * C portion of the OS INIT handler
1648 *
1649 * Called from ia64_os_init_dispatch
1650 *
1651 * Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for
1652 * this event. This code is used for both monarch and slave INIT events, see
1653 * sos->monarch.
1654 *
1655 * All INIT events switch to the INIT stack and change the previous process to
1656 * blocked status. If one of the INIT events is the monarch then we are
1657 * probably processing the nmi button/command. Use the monarch cpu to dump all
1658 * the processes. The slave INIT events all spin until the monarch cpu
1659 * returns. We can also get INIT slave events for MCA, in which case the MCA
1660 * process is the monarch.
1661 */
1662
1663void
1664ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1665 struct ia64_sal_os_state *sos)
1666{
1667 static atomic_t slaves;
1668 static atomic_t monarchs;
1669 struct task_struct *previous_current;
1670 int cpu = smp_processor_id();
1671 struct ia64_mca_notify_die nd =
1672 { .sos = sos, .monarch_cpu = &monarch_cpu };
1673
1674 NOTIFY_INIT(DIE_INIT_ENTER, regs, (long)&nd, 0);
1675
1676 mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1677 sos->proc_state_param, cpu, sos->monarch);
1678 salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1679
1680 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1681 sos->os_status = IA64_INIT_RESUME;
1682
1683 /* FIXME: Workaround for broken proms that drive all INIT events as
1684 * slaves. The last slave that enters is promoted to be a monarch.
1685 * Remove this code in September 2006, that gives platforms a year to
1686 * fix their proms and get their customers updated.
1687 */
1688 if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1689 mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1690 __func__, cpu);
1691 atomic_dec(&slaves);
1692 sos->monarch = 1;
1693 }
1694
1695 /* FIXME: Workaround for broken proms that drive all INIT events as
1696 * monarchs. Second and subsequent monarchs are demoted to slaves.
1697 * Remove this code in September 2006, that gives platforms a year to
1698 * fix their proms and get their customers updated.
1699 */
1700 if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1701 mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1702 __func__, cpu);
1703 atomic_dec(&monarchs);
1704 sos->monarch = 0;
1705 }
1706
1707 if (!sos->monarch) {
1708 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1709
1710#ifdef CONFIG_KEXEC
1711 while (monarch_cpu == -1 && !atomic_read(&kdump_in_progress))
1712 udelay(1000);
1713#else
1714 while (monarch_cpu == -1)
1715 cpu_relax(); /* spin until monarch enters */
1716#endif
1717
1718 NOTIFY_INIT(DIE_INIT_SLAVE_ENTER, regs, (long)&nd, 1);
1719 NOTIFY_INIT(DIE_INIT_SLAVE_PROCESS, regs, (long)&nd, 1);
1720
1721#ifdef CONFIG_KEXEC
1722 while (monarch_cpu != -1 && !atomic_read(&kdump_in_progress))
1723 udelay(1000);
1724#else
1725 while (monarch_cpu != -1)
1726 cpu_relax(); /* spin until monarch leaves */
1727#endif
1728
1729 NOTIFY_INIT(DIE_INIT_SLAVE_LEAVE, regs, (long)&nd, 1);
1730
1731 mprintk("Slave on cpu %d returning to normal service.\n", cpu);
1732 set_curr_task(cpu, previous_current);
1733 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1734 atomic_dec(&slaves);
1735 return;
1736 }
1737
1738 monarch_cpu = cpu;
1739 NOTIFY_INIT(DIE_INIT_MONARCH_ENTER, regs, (long)&nd, 1);
1740
1741 /*
1742 * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1743 * generated via the BMC's command-line interface, but since the console is on the
1744 * same serial line, the user will need some time to switch out of the BMC before
1745 * the dump begins.
1746 */
1747 mprintk("Delaying for 5 seconds...\n");
1748 udelay(5*1000000);
1749 ia64_wait_for_slaves(cpu, "INIT");
1750 /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1751 * to default_monarch_init_process() above and just print all the
1752 * tasks.
1753 */
1754 NOTIFY_INIT(DIE_INIT_MONARCH_PROCESS, regs, (long)&nd, 1);
1755 NOTIFY_INIT(DIE_INIT_MONARCH_LEAVE, regs, (long)&nd, 1);
1756
1757 mprintk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu);
1758 atomic_dec(&monarchs);
1759 set_curr_task(cpu, previous_current);
1760 monarch_cpu = -1;
1761 return;
1762}
1763
1764static int __init
1765ia64_mca_disable_cpe_polling(char *str)
1766{
1767 cpe_poll_enabled = 0;
1768 return 1;
1769}
1770
1771__setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1772
1773static struct irqaction cmci_irqaction = {
1774 .handler = ia64_mca_cmc_int_handler,
1775 .name = "cmc_hndlr"
1776};
1777
1778static struct irqaction cmcp_irqaction = {
1779 .handler = ia64_mca_cmc_int_caller,
1780 .name = "cmc_poll"
1781};
1782
1783static struct irqaction mca_rdzv_irqaction = {
1784 .handler = ia64_mca_rendez_int_handler,
1785 .name = "mca_rdzv"
1786};
1787
1788static struct irqaction mca_wkup_irqaction = {
1789 .handler = ia64_mca_wakeup_int_handler,
1790 .name = "mca_wkup"
1791};
1792
1793#ifdef CONFIG_ACPI
1794static struct irqaction mca_cpe_irqaction = {
1795 .handler = ia64_mca_cpe_int_handler,
1796 .name = "cpe_hndlr"
1797};
1798
1799static struct irqaction mca_cpep_irqaction = {
1800 .handler = ia64_mca_cpe_int_caller,
1801 .name = "cpe_poll"
1802};
1803#endif /* CONFIG_ACPI */
1804
1805/* Minimal format of the MCA/INIT stacks. The pseudo processes that run on
1806 * these stacks can never sleep, they cannot return from the kernel to user
1807 * space, they do not appear in a normal ps listing. So there is no need to
1808 * format most of the fields.
1809 */
1810
1811static void
1812format_mca_init_stack(void *mca_data, unsigned long offset,
1813 const char *type, int cpu)
1814{
1815 struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1816 struct thread_info *ti;
1817 memset(p, 0, KERNEL_STACK_SIZE);
1818 ti = task_thread_info(p);
1819 ti->flags = _TIF_MCA_INIT;
1820 ti->preempt_count = 1;
1821 ti->task = p;
1822 ti->cpu = cpu;
1823 p->stack = ti;
1824 p->state = TASK_UNINTERRUPTIBLE;
1825 cpumask_set_cpu(cpu, &p->cpus_allowed);
1826 INIT_LIST_HEAD(&p->tasks);
1827 p->parent = p->real_parent = p->group_leader = p;
1828 INIT_LIST_HEAD(&p->children);
1829 INIT_LIST_HEAD(&p->sibling);
1830 strncpy(p->comm, type, sizeof(p->comm)-1);
1831}
1832
1833/* Caller prevents this from being called after init */
1834static void * __init_refok mca_bootmem(void)
1835{
1836 return __alloc_bootmem(sizeof(struct ia64_mca_cpu),
1837 KERNEL_STACK_SIZE, 0);
1838}
1839
1840/* Do per-CPU MCA-related initialization. */
1841void
1842ia64_mca_cpu_init(void *cpu_data)
1843{
1844 void *pal_vaddr;
1845 void *data;
1846 long sz = sizeof(struct ia64_mca_cpu);
1847 int cpu = smp_processor_id();
1848 static int first_time = 1;
1849
1850 /*
1851 * Structure will already be allocated if cpu has been online,
1852 * then offlined.
1853 */
1854 if (__per_cpu_mca[cpu]) {
1855 data = __va(__per_cpu_mca[cpu]);
1856 } else {
1857 if (first_time) {
1858 data = mca_bootmem();
1859 first_time = 0;
1860 } else
1861 data = (void *)__get_free_pages(GFP_KERNEL,
1862 get_order(sz));
1863 if (!data)
1864 panic("Could not allocate MCA memory for cpu %d\n",
1865 cpu);
1866 }
1867 format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, mca_stack),
1868 "MCA", cpu);
1869 format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, init_stack),
1870 "INIT", cpu);
1871 __this_cpu_write(ia64_mca_data, (__per_cpu_mca[cpu] = __pa(data)));
1872
1873 /*
1874 * Stash away a copy of the PTE needed to map the per-CPU page.
1875 * We may need it during MCA recovery.
1876 */
1877 __this_cpu_write(ia64_mca_per_cpu_pte,
1878 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL)));
1879
1880 /*
1881 * Also, stash away a copy of the PAL address and the PTE
1882 * needed to map it.
1883 */
1884 pal_vaddr = efi_get_pal_addr();
1885 if (!pal_vaddr)
1886 return;
1887 __this_cpu_write(ia64_mca_pal_base,
1888 GRANULEROUNDDOWN((unsigned long) pal_vaddr));
1889 __this_cpu_write(ia64_mca_pal_pte, pte_val(mk_pte_phys(__pa(pal_vaddr),
1890 PAGE_KERNEL)));
1891}
1892
1893static void ia64_mca_cmc_vector_adjust(void *dummy)
1894{
1895 unsigned long flags;
1896
1897 local_irq_save(flags);
1898 if (!cmc_polling_enabled)
1899 ia64_mca_cmc_vector_enable(NULL);
1900 local_irq_restore(flags);
1901}
1902
1903static int mca_cpu_callback(struct notifier_block *nfb,
1904 unsigned long action,
1905 void *hcpu)
1906{
1907 int hotcpu = (unsigned long) hcpu;
1908
1909 switch (action) {
1910 case CPU_ONLINE:
1911 case CPU_ONLINE_FROZEN:
1912 smp_call_function_single(hotcpu, ia64_mca_cmc_vector_adjust,
1913 NULL, 0);
1914 break;
1915 }
1916 return NOTIFY_OK;
1917}
1918
1919static struct notifier_block mca_cpu_notifier = {
1920 .notifier_call = mca_cpu_callback
1921};
1922
1923/*
1924 * ia64_mca_init
1925 *
1926 * Do all the system level mca specific initialization.
1927 *
1928 * 1. Register spinloop and wakeup request interrupt vectors
1929 *
1930 * 2. Register OS_MCA handler entry point
1931 *
1932 * 3. Register OS_INIT handler entry point
1933 *
1934 * 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1935 *
1936 * Note that this initialization is done very early before some kernel
1937 * services are available.
1938 *
1939 * Inputs : None
1940 *
1941 * Outputs : None
1942 */
1943void __init
1944ia64_mca_init(void)
1945{
1946 ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1947 ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1948 ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1949 int i;
1950 long rc;
1951 struct ia64_sal_retval isrv;
1952 unsigned long timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
1953 static struct notifier_block default_init_monarch_nb = {
1954 .notifier_call = default_monarch_init_process,
1955 .priority = 0/* we need to notified last */
1956 };
1957
1958 IA64_MCA_DEBUG("%s: begin\n", __func__);
1959
1960 /* Clear the Rendez checkin flag for all cpus */
1961 for(i = 0 ; i < NR_CPUS; i++)
1962 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1963
1964 /*
1965 * Register the rendezvous spinloop and wakeup mechanism with SAL
1966 */
1967
1968 /* Register the rendezvous interrupt vector with SAL */
1969 while (1) {
1970 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1971 SAL_MC_PARAM_MECHANISM_INT,
1972 IA64_MCA_RENDEZ_VECTOR,
1973 timeout,
1974 SAL_MC_PARAM_RZ_ALWAYS);
1975 rc = isrv.status;
1976 if (rc == 0)
1977 break;
1978 if (rc == -2) {
1979 printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1980 "%ld to %ld milliseconds\n", timeout, isrv.v0);
1981 timeout = isrv.v0;
1982 NOTIFY_MCA(DIE_MCA_NEW_TIMEOUT, NULL, timeout, 0);
1983 continue;
1984 }
1985 printk(KERN_ERR "Failed to register rendezvous interrupt "
1986 "with SAL (status %ld)\n", rc);
1987 return;
1988 }
1989
1990 /* Register the wakeup interrupt vector with SAL */
1991 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1992 SAL_MC_PARAM_MECHANISM_INT,
1993 IA64_MCA_WAKEUP_VECTOR,
1994 0, 0);
1995 rc = isrv.status;
1996 if (rc) {
1997 printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1998 "(status %ld)\n", rc);
1999 return;
2000 }
2001
2002 IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __func__);
2003
2004 ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp);
2005 /*
2006 * XXX - disable SAL checksum by setting size to 0; should be
2007 * ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
2008 */
2009 ia64_mc_info.imi_mca_handler_size = 0;
2010
2011 /* Register the os mca handler with SAL */
2012 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
2013 ia64_mc_info.imi_mca_handler,
2014 ia64_tpa(mca_hldlr_ptr->gp),
2015 ia64_mc_info.imi_mca_handler_size,
2016 0, 0, 0)))
2017 {
2018 printk(KERN_ERR "Failed to register OS MCA handler with SAL "
2019 "(status %ld)\n", rc);
2020 return;
2021 }
2022
2023 IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __func__,
2024 ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
2025
2026 /*
2027 * XXX - disable SAL checksum by setting size to 0, should be
2028 * size of the actual init handler in mca_asm.S.
2029 */
2030 ia64_mc_info.imi_monarch_init_handler = ia64_tpa(init_hldlr_ptr_monarch->fp);
2031 ia64_mc_info.imi_monarch_init_handler_size = 0;
2032 ia64_mc_info.imi_slave_init_handler = ia64_tpa(init_hldlr_ptr_slave->fp);
2033 ia64_mc_info.imi_slave_init_handler_size = 0;
2034
2035 IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __func__,
2036 ia64_mc_info.imi_monarch_init_handler);
2037
2038 /* Register the os init handler with SAL */
2039 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
2040 ia64_mc_info.imi_monarch_init_handler,
2041 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
2042 ia64_mc_info.imi_monarch_init_handler_size,
2043 ia64_mc_info.imi_slave_init_handler,
2044 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
2045 ia64_mc_info.imi_slave_init_handler_size)))
2046 {
2047 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
2048 "(status %ld)\n", rc);
2049 return;
2050 }
2051 if (register_die_notifier(&default_init_monarch_nb)) {
2052 printk(KERN_ERR "Failed to register default monarch INIT process\n");
2053 return;
2054 }
2055
2056 IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __func__);
2057
2058 /* Initialize the areas set aside by the OS to buffer the
2059 * platform/processor error states for MCA/INIT/CMC
2060 * handling.
2061 */
2062 ia64_log_init(SAL_INFO_TYPE_MCA);
2063 ia64_log_init(SAL_INFO_TYPE_INIT);
2064 ia64_log_init(SAL_INFO_TYPE_CMC);
2065 ia64_log_init(SAL_INFO_TYPE_CPE);
2066
2067 mca_init = 1;
2068 printk(KERN_INFO "MCA related initialization done\n");
2069}
2070
2071
2072/*
2073 * These pieces cannot be done in ia64_mca_init() because it is called before
2074 * early_irq_init() which would wipe out our percpu irq registrations. But we
2075 * cannot leave them until ia64_mca_late_init() because by then all the other
2076 * processors have been brought online and have set their own CMC vectors to
2077 * point at a non-existant action. Called from arch_early_irq_init().
2078 */
2079void __init ia64_mca_irq_init(void)
2080{
2081 /*
2082 * Configure the CMCI/P vector and handler. Interrupts for CMC are
2083 * per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
2084 */
2085 register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
2086 register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
2087 ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */
2088
2089 /* Setup the MCA rendezvous interrupt vector */
2090 register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
2091
2092 /* Setup the MCA wakeup interrupt vector */
2093 register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
2094
2095#ifdef CONFIG_ACPI
2096 /* Setup the CPEI/P handler */
2097 register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
2098#endif
2099}
2100
2101/*
2102 * ia64_mca_late_init
2103 *
2104 * Opportunity to setup things that require initialization later
2105 * than ia64_mca_init. Setup a timer to poll for CPEs if the
2106 * platform doesn't support an interrupt driven mechanism.
2107 *
2108 * Inputs : None
2109 * Outputs : Status
2110 */
2111static int __init
2112ia64_mca_late_init(void)
2113{
2114 if (!mca_init)
2115 return 0;
2116
2117 register_hotcpu_notifier(&mca_cpu_notifier);
2118
2119 /* Setup the CMCI/P vector and handler */
2120 setup_timer(&cmc_poll_timer, ia64_mca_cmc_poll, 0UL);
2121
2122 /* Unmask/enable the vector */
2123 cmc_polling_enabled = 0;
2124 schedule_work(&cmc_enable_work);
2125
2126 IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __func__);
2127
2128#ifdef CONFIG_ACPI
2129 /* Setup the CPEI/P vector and handler */
2130 cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
2131 setup_timer(&cpe_poll_timer, ia64_mca_cpe_poll, 0UL);
2132
2133 {
2134 unsigned int irq;
2135
2136 if (cpe_vector >= 0) {
2137 /* If platform supports CPEI, enable the irq. */
2138 irq = local_vector_to_irq(cpe_vector);
2139 if (irq > 0) {
2140 cpe_poll_enabled = 0;
2141 irq_set_status_flags(irq, IRQ_PER_CPU);
2142 setup_irq(irq, &mca_cpe_irqaction);
2143 ia64_cpe_irq = irq;
2144 ia64_mca_register_cpev(cpe_vector);
2145 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n",
2146 __func__);
2147 return 0;
2148 }
2149 printk(KERN_ERR "%s: Failed to find irq for CPE "
2150 "interrupt handler, vector %d\n",
2151 __func__, cpe_vector);
2152 }
2153 /* If platform doesn't support CPEI, get the timer going. */
2154 if (cpe_poll_enabled) {
2155 ia64_mca_cpe_poll(0UL);
2156 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __func__);
2157 }
2158 }
2159#endif
2160
2161 return 0;
2162}
2163
2164device_initcall(ia64_mca_late_init);