Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Implementation of the security services.
   4 *
   5 * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
   6 *	     James Morris <jmorris@redhat.com>
   7 *
   8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   9 *
  10 *	Support for enhanced MLS infrastructure.
  11 *	Support for context based audit filters.
  12 *
  13 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  14 *
  15 *	Added conditional policy language extensions
  16 *
  17 * Updated: Hewlett-Packard <paul@paul-moore.com>
  18 *
  19 *      Added support for NetLabel
  20 *      Added support for the policy capability bitmap
  21 *
  22 * Updated: Chad Sellers <csellers@tresys.com>
  23 *
  24 *  Added validation of kernel classes and permissions
  25 *
  26 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  27 *
  28 *  Added support for bounds domain and audit messaged on masked permissions
  29 *
  30 * Updated: Guido Trentalancia <guido@trentalancia.com>
  31 *
  32 *  Added support for runtime switching of the policy type
  33 *
  34 * Copyright (C) 2008, 2009 NEC Corporation
  35 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  36 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  37 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  38 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
 
 
 
  39 */
  40#include <linux/kernel.h>
  41#include <linux/slab.h>
  42#include <linux/string.h>
  43#include <linux/spinlock.h>
  44#include <linux/rcupdate.h>
  45#include <linux/errno.h>
  46#include <linux/in.h>
  47#include <linux/sched.h>
  48#include <linux/audit.h>
 
 
 
  49#include <linux/vmalloc.h>
  50#include <linux/lsm_hooks.h>
  51#include <net/netlabel.h>
  52
  53#include "flask.h"
  54#include "avc.h"
  55#include "avc_ss.h"
  56#include "security.h"
  57#include "context.h"
  58#include "policydb.h"
  59#include "sidtab.h"
  60#include "services.h"
  61#include "conditional.h"
  62#include "mls.h"
  63#include "objsec.h"
  64#include "netlabel.h"
  65#include "xfrm.h"
  66#include "ebitmap.h"
  67#include "audit.h"
  68#include "policycap_names.h"
  69#include "ima.h"
  70
  71struct selinux_policy_convert_data {
  72	struct convert_context_args args;
  73	struct sidtab_convert_params sidtab_params;
 
 
 
 
 
  74};
  75
 
 
 
 
 
 
 
 
 
  76/* Forward declaration. */
  77static int context_struct_to_string(struct policydb *policydb,
  78				    struct context *context,
  79				    char **scontext,
  80				    u32 *scontext_len);
  81
  82static int sidtab_entry_to_string(struct policydb *policydb,
  83				  struct sidtab *sidtab,
  84				  struct sidtab_entry *entry,
  85				  char **scontext,
  86				  u32 *scontext_len);
  87
  88static void context_struct_compute_av(struct policydb *policydb,
  89				      struct context *scontext,
  90				      struct context *tcontext,
  91				      u16 tclass,
  92				      struct av_decision *avd,
  93				      struct extended_perms *xperms);
  94
  95static int selinux_set_mapping(struct policydb *pol,
  96			       const struct security_class_mapping *map,
  97			       struct selinux_map *out_map)
  98{
  99	u16 i, j;
 100	unsigned k;
 101	bool print_unknown_handle = false;
 102
 103	/* Find number of classes in the input mapping */
 104	if (!map)
 105		return -EINVAL;
 106	i = 0;
 107	while (map[i].name)
 108		i++;
 109
 110	/* Allocate space for the class records, plus one for class zero */
 111	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
 112	if (!out_map->mapping)
 113		return -ENOMEM;
 114
 115	/* Store the raw class and permission values */
 116	j = 0;
 117	while (map[j].name) {
 118		const struct security_class_mapping *p_in = map + (j++);
 119		struct selinux_mapping *p_out = out_map->mapping + j;
 120
 121		/* An empty class string skips ahead */
 122		if (!strcmp(p_in->name, "")) {
 123			p_out->num_perms = 0;
 124			continue;
 125		}
 126
 127		p_out->value = string_to_security_class(pol, p_in->name);
 128		if (!p_out->value) {
 129			pr_info("SELinux:  Class %s not defined in policy.\n",
 
 130			       p_in->name);
 131			if (pol->reject_unknown)
 132				goto err;
 133			p_out->num_perms = 0;
 134			print_unknown_handle = true;
 135			continue;
 136		}
 137
 138		k = 0;
 139		while (p_in->perms[k]) {
 140			/* An empty permission string skips ahead */
 141			if (!*p_in->perms[k]) {
 142				k++;
 143				continue;
 144			}
 145			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 146							    p_in->perms[k]);
 147			if (!p_out->perms[k]) {
 148				pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
 
 149				       p_in->perms[k], p_in->name);
 150				if (pol->reject_unknown)
 151					goto err;
 152				print_unknown_handle = true;
 153			}
 154
 155			k++;
 156		}
 157		p_out->num_perms = k;
 158	}
 159
 160	if (print_unknown_handle)
 161		pr_info("SELinux: the above unknown classes and permissions will be %s\n",
 162		       pol->allow_unknown ? "allowed" : "denied");
 163
 164	out_map->size = i;
 165	return 0;
 166err:
 167	kfree(out_map->mapping);
 168	out_map->mapping = NULL;
 169	return -EINVAL;
 170}
 171
 172/*
 173 * Get real, policy values from mapped values
 174 */
 175
 176static u16 unmap_class(struct selinux_map *map, u16 tclass)
 177{
 178	if (tclass < map->size)
 179		return map->mapping[tclass].value;
 180
 181	return tclass;
 182}
 183
 184/*
 185 * Get kernel value for class from its policy value
 186 */
 187static u16 map_class(struct selinux_map *map, u16 pol_value)
 188{
 189	u16 i;
 190
 191	for (i = 1; i < map->size; i++) {
 192		if (map->mapping[i].value == pol_value)
 193			return i;
 194	}
 195
 196	return SECCLASS_NULL;
 197}
 198
 199static void map_decision(struct selinux_map *map,
 200			 u16 tclass, struct av_decision *avd,
 201			 int allow_unknown)
 202{
 203	if (tclass < map->size) {
 204		struct selinux_mapping *mapping = &map->mapping[tclass];
 205		unsigned int i, n = mapping->num_perms;
 206		u32 result;
 207
 208		for (i = 0, result = 0; i < n; i++) {
 209			if (avd->allowed & mapping->perms[i])
 210				result |= 1<<i;
 211			if (allow_unknown && !mapping->perms[i])
 212				result |= 1<<i;
 213		}
 214		avd->allowed = result;
 215
 216		for (i = 0, result = 0; i < n; i++)
 217			if (avd->auditallow & mapping->perms[i])
 218				result |= 1<<i;
 219		avd->auditallow = result;
 220
 221		for (i = 0, result = 0; i < n; i++) {
 222			if (avd->auditdeny & mapping->perms[i])
 223				result |= 1<<i;
 224			if (!allow_unknown && !mapping->perms[i])
 225				result |= 1<<i;
 226		}
 227		/*
 228		 * In case the kernel has a bug and requests a permission
 229		 * between num_perms and the maximum permission number, we
 230		 * should audit that denial
 231		 */
 232		for (; i < (sizeof(u32)*8); i++)
 233			result |= 1<<i;
 234		avd->auditdeny = result;
 235	}
 236}
 237
 238int security_mls_enabled(struct selinux_state *state)
 239{
 240	int mls_enabled;
 241	struct selinux_policy *policy;
 242
 243	if (!selinux_initialized(state))
 244		return 0;
 245
 246	rcu_read_lock();
 247	policy = rcu_dereference(state->policy);
 248	mls_enabled = policy->policydb.mls_enabled;
 249	rcu_read_unlock();
 250	return mls_enabled;
 251}
 252
 253/*
 254 * Return the boolean value of a constraint expression
 255 * when it is applied to the specified source and target
 256 * security contexts.
 257 *
 258 * xcontext is a special beast...  It is used by the validatetrans rules
 259 * only.  For these rules, scontext is the context before the transition,
 260 * tcontext is the context after the transition, and xcontext is the context
 261 * of the process performing the transition.  All other callers of
 262 * constraint_expr_eval should pass in NULL for xcontext.
 263 */
 264static int constraint_expr_eval(struct policydb *policydb,
 265				struct context *scontext,
 266				struct context *tcontext,
 267				struct context *xcontext,
 268				struct constraint_expr *cexpr)
 269{
 270	u32 val1, val2;
 271	struct context *c;
 272	struct role_datum *r1, *r2;
 273	struct mls_level *l1, *l2;
 274	struct constraint_expr *e;
 275	int s[CEXPR_MAXDEPTH];
 276	int sp = -1;
 277
 278	for (e = cexpr; e; e = e->next) {
 279		switch (e->expr_type) {
 280		case CEXPR_NOT:
 281			BUG_ON(sp < 0);
 282			s[sp] = !s[sp];
 283			break;
 284		case CEXPR_AND:
 285			BUG_ON(sp < 1);
 286			sp--;
 287			s[sp] &= s[sp + 1];
 288			break;
 289		case CEXPR_OR:
 290			BUG_ON(sp < 1);
 291			sp--;
 292			s[sp] |= s[sp + 1];
 293			break;
 294		case CEXPR_ATTR:
 295			if (sp == (CEXPR_MAXDEPTH - 1))
 296				return 0;
 297			switch (e->attr) {
 298			case CEXPR_USER:
 299				val1 = scontext->user;
 300				val2 = tcontext->user;
 301				break;
 302			case CEXPR_TYPE:
 303				val1 = scontext->type;
 304				val2 = tcontext->type;
 305				break;
 306			case CEXPR_ROLE:
 307				val1 = scontext->role;
 308				val2 = tcontext->role;
 309				r1 = policydb->role_val_to_struct[val1 - 1];
 310				r2 = policydb->role_val_to_struct[val2 - 1];
 311				switch (e->op) {
 312				case CEXPR_DOM:
 313					s[++sp] = ebitmap_get_bit(&r1->dominates,
 314								  val2 - 1);
 315					continue;
 316				case CEXPR_DOMBY:
 317					s[++sp] = ebitmap_get_bit(&r2->dominates,
 318								  val1 - 1);
 319					continue;
 320				case CEXPR_INCOMP:
 321					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 322								    val2 - 1) &&
 323						   !ebitmap_get_bit(&r2->dominates,
 324								    val1 - 1));
 325					continue;
 326				default:
 327					break;
 328				}
 329				break;
 330			case CEXPR_L1L2:
 331				l1 = &(scontext->range.level[0]);
 332				l2 = &(tcontext->range.level[0]);
 333				goto mls_ops;
 334			case CEXPR_L1H2:
 335				l1 = &(scontext->range.level[0]);
 336				l2 = &(tcontext->range.level[1]);
 337				goto mls_ops;
 338			case CEXPR_H1L2:
 339				l1 = &(scontext->range.level[1]);
 340				l2 = &(tcontext->range.level[0]);
 341				goto mls_ops;
 342			case CEXPR_H1H2:
 343				l1 = &(scontext->range.level[1]);
 344				l2 = &(tcontext->range.level[1]);
 345				goto mls_ops;
 346			case CEXPR_L1H1:
 347				l1 = &(scontext->range.level[0]);
 348				l2 = &(scontext->range.level[1]);
 349				goto mls_ops;
 350			case CEXPR_L2H2:
 351				l1 = &(tcontext->range.level[0]);
 352				l2 = &(tcontext->range.level[1]);
 353				goto mls_ops;
 354mls_ops:
 355				switch (e->op) {
 356				case CEXPR_EQ:
 357					s[++sp] = mls_level_eq(l1, l2);
 358					continue;
 359				case CEXPR_NEQ:
 360					s[++sp] = !mls_level_eq(l1, l2);
 361					continue;
 362				case CEXPR_DOM:
 363					s[++sp] = mls_level_dom(l1, l2);
 364					continue;
 365				case CEXPR_DOMBY:
 366					s[++sp] = mls_level_dom(l2, l1);
 367					continue;
 368				case CEXPR_INCOMP:
 369					s[++sp] = mls_level_incomp(l2, l1);
 370					continue;
 371				default:
 372					BUG();
 373					return 0;
 374				}
 375				break;
 376			default:
 377				BUG();
 378				return 0;
 379			}
 380
 381			switch (e->op) {
 382			case CEXPR_EQ:
 383				s[++sp] = (val1 == val2);
 384				break;
 385			case CEXPR_NEQ:
 386				s[++sp] = (val1 != val2);
 387				break;
 388			default:
 389				BUG();
 390				return 0;
 391			}
 392			break;
 393		case CEXPR_NAMES:
 394			if (sp == (CEXPR_MAXDEPTH-1))
 395				return 0;
 396			c = scontext;
 397			if (e->attr & CEXPR_TARGET)
 398				c = tcontext;
 399			else if (e->attr & CEXPR_XTARGET) {
 400				c = xcontext;
 401				if (!c) {
 402					BUG();
 403					return 0;
 404				}
 405			}
 406			if (e->attr & CEXPR_USER)
 407				val1 = c->user;
 408			else if (e->attr & CEXPR_ROLE)
 409				val1 = c->role;
 410			else if (e->attr & CEXPR_TYPE)
 411				val1 = c->type;
 412			else {
 413				BUG();
 414				return 0;
 415			}
 416
 417			switch (e->op) {
 418			case CEXPR_EQ:
 419				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 420				break;
 421			case CEXPR_NEQ:
 422				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 423				break;
 424			default:
 425				BUG();
 426				return 0;
 427			}
 428			break;
 429		default:
 430			BUG();
 431			return 0;
 432		}
 433	}
 434
 435	BUG_ON(sp != 0);
 436	return s[0];
 437}
 438
 439/*
 440 * security_dump_masked_av - dumps masked permissions during
 441 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 442 */
 443static int dump_masked_av_helper(void *k, void *d, void *args)
 444{
 445	struct perm_datum *pdatum = d;
 446	char **permission_names = args;
 447
 448	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 449
 450	permission_names[pdatum->value - 1] = (char *)k;
 451
 452	return 0;
 453}
 454
 455static void security_dump_masked_av(struct policydb *policydb,
 456				    struct context *scontext,
 457				    struct context *tcontext,
 458				    u16 tclass,
 459				    u32 permissions,
 460				    const char *reason)
 461{
 462	struct common_datum *common_dat;
 463	struct class_datum *tclass_dat;
 464	struct audit_buffer *ab;
 465	char *tclass_name;
 466	char *scontext_name = NULL;
 467	char *tcontext_name = NULL;
 468	char *permission_names[32];
 469	int index;
 470	u32 length;
 471	bool need_comma = false;
 472
 473	if (!permissions)
 474		return;
 475
 476	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
 477	tclass_dat = policydb->class_val_to_struct[tclass - 1];
 478	common_dat = tclass_dat->comdatum;
 479
 480	/* init permission_names */
 481	if (common_dat &&
 482	    hashtab_map(&common_dat->permissions.table,
 483			dump_masked_av_helper, permission_names) < 0)
 484		goto out;
 485
 486	if (hashtab_map(&tclass_dat->permissions.table,
 487			dump_masked_av_helper, permission_names) < 0)
 488		goto out;
 489
 490	/* get scontext/tcontext in text form */
 491	if (context_struct_to_string(policydb, scontext,
 492				     &scontext_name, &length) < 0)
 493		goto out;
 494
 495	if (context_struct_to_string(policydb, tcontext,
 496				     &tcontext_name, &length) < 0)
 497		goto out;
 498
 499	/* audit a message */
 500	ab = audit_log_start(audit_context(),
 501			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
 502	if (!ab)
 503		goto out;
 504
 505	audit_log_format(ab, "op=security_compute_av reason=%s "
 506			 "scontext=%s tcontext=%s tclass=%s perms=",
 507			 reason, scontext_name, tcontext_name, tclass_name);
 508
 509	for (index = 0; index < 32; index++) {
 510		u32 mask = (1 << index);
 511
 512		if ((mask & permissions) == 0)
 513			continue;
 514
 515		audit_log_format(ab, "%s%s",
 516				 need_comma ? "," : "",
 517				 permission_names[index]
 518				 ? permission_names[index] : "????");
 519		need_comma = true;
 520	}
 521	audit_log_end(ab);
 522out:
 523	/* release scontext/tcontext */
 524	kfree(tcontext_name);
 525	kfree(scontext_name);
 
 
 526}
 527
 528/*
 529 * security_boundary_permission - drops violated permissions
 530 * on boundary constraint.
 531 */
 532static void type_attribute_bounds_av(struct policydb *policydb,
 533				     struct context *scontext,
 534				     struct context *tcontext,
 535				     u16 tclass,
 536				     struct av_decision *avd)
 537{
 538	struct context lo_scontext;
 539	struct context lo_tcontext, *tcontextp = tcontext;
 540	struct av_decision lo_avd;
 541	struct type_datum *source;
 542	struct type_datum *target;
 543	u32 masked = 0;
 544
 545	source = policydb->type_val_to_struct[scontext->type - 1];
 
 546	BUG_ON(!source);
 547
 548	if (!source->bounds)
 549		return;
 550
 551	target = policydb->type_val_to_struct[tcontext->type - 1];
 
 552	BUG_ON(!target);
 553
 554	memset(&lo_avd, 0, sizeof(lo_avd));
 555
 556	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 557	lo_scontext.type = source->bounds;
 558
 559	if (target->bounds) {
 560		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 561		lo_tcontext.type = target->bounds;
 562		tcontextp = &lo_tcontext;
 563	}
 564
 565	context_struct_compute_av(policydb, &lo_scontext,
 566				  tcontextp,
 567				  tclass,
 568				  &lo_avd,
 569				  NULL);
 570
 571	masked = ~lo_avd.allowed & avd->allowed;
 572
 573	if (likely(!masked))
 574		return;		/* no masked permission */
 575
 576	/* mask violated permissions */
 577	avd->allowed &= ~masked;
 578
 579	/* audit masked permissions */
 580	security_dump_masked_av(policydb, scontext, tcontext,
 581				tclass, masked, "bounds");
 582}
 583
 584/*
 585 * flag which drivers have permissions
 586 * only looking for ioctl based extended permssions
 587 */
 588void services_compute_xperms_drivers(
 589		struct extended_perms *xperms,
 590		struct avtab_node *node)
 591{
 592	unsigned int i;
 593
 594	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 595		/* if one or more driver has all permissions allowed */
 596		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
 597			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
 598	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 599		/* if allowing permissions within a driver */
 600		security_xperm_set(xperms->drivers.p,
 601					node->datum.u.xperms->driver);
 602	}
 603
 604	xperms->len = 1;
 
 
 605}
 606
 607/*
 608 * Compute access vectors and extended permissions based on a context
 609 * structure pair for the permissions in a particular class.
 610 */
 611static void context_struct_compute_av(struct policydb *policydb,
 612				      struct context *scontext,
 613				      struct context *tcontext,
 614				      u16 tclass,
 615				      struct av_decision *avd,
 616				      struct extended_perms *xperms)
 617{
 618	struct constraint_node *constraint;
 619	struct role_allow *ra;
 620	struct avtab_key avkey;
 621	struct avtab_node *node;
 622	struct class_datum *tclass_datum;
 623	struct ebitmap *sattr, *tattr;
 624	struct ebitmap_node *snode, *tnode;
 625	unsigned int i, j;
 626
 627	avd->allowed = 0;
 628	avd->auditallow = 0;
 629	avd->auditdeny = 0xffffffff;
 630	if (xperms) {
 631		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
 632		xperms->len = 0;
 633	}
 634
 635	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
 636		if (printk_ratelimit())
 637			pr_warn("SELinux:  Invalid class %hu\n", tclass);
 638		return;
 639	}
 640
 641	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 642
 643	/*
 644	 * If a specific type enforcement rule was defined for
 645	 * this permission check, then use it.
 646	 */
 647	avkey.target_class = tclass;
 648	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
 649	sattr = &policydb->type_attr_map_array[scontext->type - 1];
 650	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
 
 
 
 
 651	ebitmap_for_each_positive_bit(sattr, snode, i) {
 652		ebitmap_for_each_positive_bit(tattr, tnode, j) {
 653			avkey.source_type = i + 1;
 654			avkey.target_type = j + 1;
 655			for (node = avtab_search_node(&policydb->te_avtab,
 656						      &avkey);
 657			     node;
 658			     node = avtab_search_node_next(node, avkey.specified)) {
 659				if (node->key.specified == AVTAB_ALLOWED)
 660					avd->allowed |= node->datum.u.data;
 661				else if (node->key.specified == AVTAB_AUDITALLOW)
 662					avd->auditallow |= node->datum.u.data;
 663				else if (node->key.specified == AVTAB_AUDITDENY)
 664					avd->auditdeny &= node->datum.u.data;
 665				else if (xperms && (node->key.specified & AVTAB_XPERMS))
 666					services_compute_xperms_drivers(xperms, node);
 667			}
 668
 669			/* Check conditional av table for additional permissions */
 670			cond_compute_av(&policydb->te_cond_avtab, &avkey,
 671					avd, xperms);
 672
 673		}
 674	}
 675
 676	/*
 677	 * Remove any permissions prohibited by a constraint (this includes
 678	 * the MLS policy).
 679	 */
 680	constraint = tclass_datum->constraints;
 681	while (constraint) {
 682		if ((constraint->permissions & (avd->allowed)) &&
 683		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
 684					  constraint->expr)) {
 685			avd->allowed &= ~(constraint->permissions);
 686		}
 687		constraint = constraint->next;
 688	}
 689
 690	/*
 691	 * If checking process transition permission and the
 692	 * role is changing, then check the (current_role, new_role)
 693	 * pair.
 694	 */
 695	if (tclass == policydb->process_class &&
 696	    (avd->allowed & policydb->process_trans_perms) &&
 697	    scontext->role != tcontext->role) {
 698		for (ra = policydb->role_allow; ra; ra = ra->next) {
 699			if (scontext->role == ra->role &&
 700			    tcontext->role == ra->new_role)
 701				break;
 702		}
 703		if (!ra)
 704			avd->allowed &= ~policydb->process_trans_perms;
 705	}
 706
 707	/*
 708	 * If the given source and target types have boundary
 709	 * constraint, lazy checks have to mask any violated
 710	 * permission and notice it to userspace via audit.
 711	 */
 712	type_attribute_bounds_av(policydb, scontext, tcontext,
 713				 tclass, avd);
 714}
 715
 716static int security_validtrans_handle_fail(struct selinux_state *state,
 717					struct selinux_policy *policy,
 718					struct sidtab_entry *oentry,
 719					struct sidtab_entry *nentry,
 720					struct sidtab_entry *tentry,
 721					u16 tclass)
 722{
 723	struct policydb *p = &policy->policydb;
 724	struct sidtab *sidtab = policy->sidtab;
 725	char *o = NULL, *n = NULL, *t = NULL;
 726	u32 olen, nlen, tlen;
 727
 728	if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
 729		goto out;
 730	if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
 731		goto out;
 732	if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
 733		goto out;
 734	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
 735		  "op=security_validate_transition seresult=denied"
 736		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 737		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
 738out:
 739	kfree(o);
 740	kfree(n);
 741	kfree(t);
 742
 743	if (!enforcing_enabled(state))
 744		return 0;
 745	return -EPERM;
 746}
 747
 748static int security_compute_validatetrans(struct selinux_state *state,
 749					  u32 oldsid, u32 newsid, u32 tasksid,
 750					  u16 orig_tclass, bool user)
 751{
 752	struct selinux_policy *policy;
 753	struct policydb *policydb;
 754	struct sidtab *sidtab;
 755	struct sidtab_entry *oentry;
 756	struct sidtab_entry *nentry;
 757	struct sidtab_entry *tentry;
 758	struct class_datum *tclass_datum;
 759	struct constraint_node *constraint;
 760	u16 tclass;
 761	int rc = 0;
 762
 763
 764	if (!selinux_initialized(state))
 765		return 0;
 766
 767	rcu_read_lock();
 768
 769	policy = rcu_dereference(state->policy);
 770	policydb = &policy->policydb;
 771	sidtab = policy->sidtab;
 772
 773	if (!user)
 774		tclass = unmap_class(&policy->map, orig_tclass);
 775	else
 776		tclass = orig_tclass;
 777
 778	if (!tclass || tclass > policydb->p_classes.nprim) {
 779		rc = -EINVAL;
 780		goto out;
 781	}
 782	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 783
 784	oentry = sidtab_search_entry(sidtab, oldsid);
 785	if (!oentry) {
 786		pr_err("SELinux: %s:  unrecognized SID %d\n",
 787			__func__, oldsid);
 788		rc = -EINVAL;
 789		goto out;
 790	}
 791
 792	nentry = sidtab_search_entry(sidtab, newsid);
 793	if (!nentry) {
 794		pr_err("SELinux: %s:  unrecognized SID %d\n",
 795			__func__, newsid);
 796		rc = -EINVAL;
 797		goto out;
 798	}
 799
 800	tentry = sidtab_search_entry(sidtab, tasksid);
 801	if (!tentry) {
 802		pr_err("SELinux: %s:  unrecognized SID %d\n",
 803			__func__, tasksid);
 804		rc = -EINVAL;
 805		goto out;
 806	}
 807
 808	constraint = tclass_datum->validatetrans;
 809	while (constraint) {
 810		if (!constraint_expr_eval(policydb, &oentry->context,
 811					  &nentry->context, &tentry->context,
 812					  constraint->expr)) {
 813			if (user)
 814				rc = -EPERM;
 815			else
 816				rc = security_validtrans_handle_fail(state,
 817								policy,
 818								oentry,
 819								nentry,
 820								tentry,
 821								tclass);
 822			goto out;
 823		}
 824		constraint = constraint->next;
 825	}
 826
 827out:
 828	rcu_read_unlock();
 829	return rc;
 830}
 831
 832int security_validate_transition_user(struct selinux_state *state,
 833				      u32 oldsid, u32 newsid, u32 tasksid,
 834				      u16 tclass)
 835{
 836	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 837					      tclass, true);
 838}
 839
 840int security_validate_transition(struct selinux_state *state,
 841				 u32 oldsid, u32 newsid, u32 tasksid,
 842				 u16 orig_tclass)
 843{
 844	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 845					      orig_tclass, false);
 846}
 847
 848/*
 849 * security_bounded_transition - check whether the given
 850 * transition is directed to bounded, or not.
 851 * It returns 0, if @newsid is bounded by @oldsid.
 852 * Otherwise, it returns error code.
 853 *
 854 * @state: SELinux state
 855 * @oldsid : current security identifier
 856 * @newsid : destinated security identifier
 857 */
 858int security_bounded_transition(struct selinux_state *state,
 859				u32 old_sid, u32 new_sid)
 860{
 861	struct selinux_policy *policy;
 862	struct policydb *policydb;
 863	struct sidtab *sidtab;
 864	struct sidtab_entry *old_entry, *new_entry;
 865	struct type_datum *type;
 866	int index;
 867	int rc;
 868
 869	if (!selinux_initialized(state))
 870		return 0;
 871
 872	rcu_read_lock();
 873	policy = rcu_dereference(state->policy);
 874	policydb = &policy->policydb;
 875	sidtab = policy->sidtab;
 876
 877	rc = -EINVAL;
 878	old_entry = sidtab_search_entry(sidtab, old_sid);
 879	if (!old_entry) {
 880		pr_err("SELinux: %s: unrecognized SID %u\n",
 881		       __func__, old_sid);
 882		goto out;
 883	}
 884
 885	rc = -EINVAL;
 886	new_entry = sidtab_search_entry(sidtab, new_sid);
 887	if (!new_entry) {
 888		pr_err("SELinux: %s: unrecognized SID %u\n",
 889		       __func__, new_sid);
 890		goto out;
 891	}
 892
 893	rc = 0;
 894	/* type/domain unchanged */
 895	if (old_entry->context.type == new_entry->context.type)
 896		goto out;
 897
 898	index = new_entry->context.type;
 899	while (true) {
 900		type = policydb->type_val_to_struct[index - 1];
 
 901		BUG_ON(!type);
 902
 903		/* not bounded anymore */
 904		rc = -EPERM;
 905		if (!type->bounds)
 906			break;
 907
 908		/* @newsid is bounded by @oldsid */
 909		rc = 0;
 910		if (type->bounds == old_entry->context.type)
 911			break;
 912
 913		index = type->bounds;
 914	}
 915
 916	if (rc) {
 917		char *old_name = NULL;
 918		char *new_name = NULL;
 919		u32 length;
 920
 921		if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
 922					    &old_name, &length) &&
 923		    !sidtab_entry_to_string(policydb, sidtab, new_entry,
 924					    &new_name, &length)) {
 925			audit_log(audit_context(),
 926				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 927				  "op=security_bounded_transition "
 928				  "seresult=denied "
 929				  "oldcontext=%s newcontext=%s",
 930				  old_name, new_name);
 931		}
 932		kfree(new_name);
 933		kfree(old_name);
 934	}
 935out:
 936	rcu_read_unlock();
 937
 938	return rc;
 939}
 940
 941static void avd_init(struct selinux_policy *policy, struct av_decision *avd)
 942{
 943	avd->allowed = 0;
 944	avd->auditallow = 0;
 945	avd->auditdeny = 0xffffffff;
 946	if (policy)
 947		avd->seqno = policy->latest_granting;
 948	else
 949		avd->seqno = 0;
 950	avd->flags = 0;
 951}
 952
 953void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
 954					struct avtab_node *node)
 955{
 956	unsigned int i;
 957
 958	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 959		if (xpermd->driver != node->datum.u.xperms->driver)
 960			return;
 961	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 962		if (!security_xperm_test(node->datum.u.xperms->perms.p,
 963					xpermd->driver))
 964			return;
 965	} else {
 966		BUG();
 967	}
 968
 969	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
 970		xpermd->used |= XPERMS_ALLOWED;
 971		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 972			memset(xpermd->allowed->p, 0xff,
 973					sizeof(xpermd->allowed->p));
 974		}
 975		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 976			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
 977				xpermd->allowed->p[i] |=
 978					node->datum.u.xperms->perms.p[i];
 979		}
 980	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
 981		xpermd->used |= XPERMS_AUDITALLOW;
 982		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 983			memset(xpermd->auditallow->p, 0xff,
 984					sizeof(xpermd->auditallow->p));
 985		}
 986		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 987			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
 988				xpermd->auditallow->p[i] |=
 989					node->datum.u.xperms->perms.p[i];
 990		}
 991	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
 992		xpermd->used |= XPERMS_DONTAUDIT;
 993		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 994			memset(xpermd->dontaudit->p, 0xff,
 995					sizeof(xpermd->dontaudit->p));
 996		}
 997		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 998			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
 999				xpermd->dontaudit->p[i] |=
1000					node->datum.u.xperms->perms.p[i];
1001		}
1002	} else {
1003		BUG();
1004	}
1005}
1006
1007void security_compute_xperms_decision(struct selinux_state *state,
1008				      u32 ssid,
1009				      u32 tsid,
1010				      u16 orig_tclass,
1011				      u8 driver,
1012				      struct extended_perms_decision *xpermd)
1013{
1014	struct selinux_policy *policy;
1015	struct policydb *policydb;
1016	struct sidtab *sidtab;
1017	u16 tclass;
1018	struct context *scontext, *tcontext;
1019	struct avtab_key avkey;
1020	struct avtab_node *node;
1021	struct ebitmap *sattr, *tattr;
1022	struct ebitmap_node *snode, *tnode;
1023	unsigned int i, j;
1024
1025	xpermd->driver = driver;
1026	xpermd->used = 0;
1027	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1028	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1029	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1030
1031	rcu_read_lock();
1032	if (!selinux_initialized(state))
1033		goto allow;
1034
1035	policy = rcu_dereference(state->policy);
1036	policydb = &policy->policydb;
1037	sidtab = policy->sidtab;
1038
1039	scontext = sidtab_search(sidtab, ssid);
1040	if (!scontext) {
1041		pr_err("SELinux: %s:  unrecognized SID %d\n",
1042		       __func__, ssid);
1043		goto out;
1044	}
1045
1046	tcontext = sidtab_search(sidtab, tsid);
1047	if (!tcontext) {
1048		pr_err("SELinux: %s:  unrecognized SID %d\n",
1049		       __func__, tsid);
1050		goto out;
1051	}
1052
1053	tclass = unmap_class(&policy->map, orig_tclass);
1054	if (unlikely(orig_tclass && !tclass)) {
1055		if (policydb->allow_unknown)
1056			goto allow;
1057		goto out;
1058	}
1059
1060
1061	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1062		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1063		goto out;
1064	}
1065
1066	avkey.target_class = tclass;
1067	avkey.specified = AVTAB_XPERMS;
1068	sattr = &policydb->type_attr_map_array[scontext->type - 1];
1069	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
 
 
 
 
1070	ebitmap_for_each_positive_bit(sattr, snode, i) {
1071		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1072			avkey.source_type = i + 1;
1073			avkey.target_type = j + 1;
1074			for (node = avtab_search_node(&policydb->te_avtab,
1075						      &avkey);
1076			     node;
1077			     node = avtab_search_node_next(node, avkey.specified))
1078				services_compute_xperms_decision(xpermd, node);
1079
1080			cond_compute_xperms(&policydb->te_cond_avtab,
1081						&avkey, xpermd);
1082		}
1083	}
1084out:
1085	rcu_read_unlock();
1086	return;
1087allow:
1088	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1089	goto out;
1090}
1091
1092/**
1093 * security_compute_av - Compute access vector decisions.
1094 * @state: SELinux state
1095 * @ssid: source security identifier
1096 * @tsid: target security identifier
1097 * @orig_tclass: target security class
1098 * @avd: access vector decisions
1099 * @xperms: extended permissions
1100 *
1101 * Compute a set of access vector decisions based on the
1102 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1103 */
1104void security_compute_av(struct selinux_state *state,
1105			 u32 ssid,
1106			 u32 tsid,
1107			 u16 orig_tclass,
1108			 struct av_decision *avd,
1109			 struct extended_perms *xperms)
1110{
1111	struct selinux_policy *policy;
1112	struct policydb *policydb;
1113	struct sidtab *sidtab;
1114	u16 tclass;
1115	struct context *scontext = NULL, *tcontext = NULL;
1116
1117	rcu_read_lock();
1118	policy = rcu_dereference(state->policy);
1119	avd_init(policy, avd);
1120	xperms->len = 0;
1121	if (!selinux_initialized(state))
1122		goto allow;
1123
1124	policydb = &policy->policydb;
1125	sidtab = policy->sidtab;
1126
1127	scontext = sidtab_search(sidtab, ssid);
1128	if (!scontext) {
1129		pr_err("SELinux: %s:  unrecognized SID %d\n",
1130		       __func__, ssid);
1131		goto out;
1132	}
1133
1134	/* permissive domain? */
1135	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1136		avd->flags |= AVD_FLAGS_PERMISSIVE;
1137
1138	tcontext = sidtab_search(sidtab, tsid);
1139	if (!tcontext) {
1140		pr_err("SELinux: %s:  unrecognized SID %d\n",
1141		       __func__, tsid);
1142		goto out;
1143	}
1144
1145	tclass = unmap_class(&policy->map, orig_tclass);
1146	if (unlikely(orig_tclass && !tclass)) {
1147		if (policydb->allow_unknown)
1148			goto allow;
1149		goto out;
1150	}
1151	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1152				  xperms);
1153	map_decision(&policy->map, orig_tclass, avd,
1154		     policydb->allow_unknown);
1155out:
1156	rcu_read_unlock();
1157	return;
1158allow:
1159	avd->allowed = 0xffffffff;
1160	goto out;
1161}
1162
1163void security_compute_av_user(struct selinux_state *state,
1164			      u32 ssid,
1165			      u32 tsid,
1166			      u16 tclass,
1167			      struct av_decision *avd)
1168{
1169	struct selinux_policy *policy;
1170	struct policydb *policydb;
1171	struct sidtab *sidtab;
1172	struct context *scontext = NULL, *tcontext = NULL;
1173
1174	rcu_read_lock();
1175	policy = rcu_dereference(state->policy);
1176	avd_init(policy, avd);
1177	if (!selinux_initialized(state))
1178		goto allow;
1179
1180	policydb = &policy->policydb;
1181	sidtab = policy->sidtab;
1182
1183	scontext = sidtab_search(sidtab, ssid);
1184	if (!scontext) {
1185		pr_err("SELinux: %s:  unrecognized SID %d\n",
1186		       __func__, ssid);
1187		goto out;
1188	}
1189
1190	/* permissive domain? */
1191	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1192		avd->flags |= AVD_FLAGS_PERMISSIVE;
1193
1194	tcontext = sidtab_search(sidtab, tsid);
1195	if (!tcontext) {
1196		pr_err("SELinux: %s:  unrecognized SID %d\n",
1197		       __func__, tsid);
1198		goto out;
1199	}
1200
1201	if (unlikely(!tclass)) {
1202		if (policydb->allow_unknown)
1203			goto allow;
1204		goto out;
1205	}
1206
1207	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1208				  NULL);
1209 out:
1210	rcu_read_unlock();
1211	return;
1212allow:
1213	avd->allowed = 0xffffffff;
1214	goto out;
1215}
1216
1217/*
1218 * Write the security context string representation of
1219 * the context structure `context' into a dynamically
1220 * allocated string of the correct size.  Set `*scontext'
1221 * to point to this string and set `*scontext_len' to
1222 * the length of the string.
1223 */
1224static int context_struct_to_string(struct policydb *p,
1225				    struct context *context,
1226				    char **scontext, u32 *scontext_len)
1227{
1228	char *scontextp;
1229
1230	if (scontext)
1231		*scontext = NULL;
1232	*scontext_len = 0;
1233
1234	if (context->len) {
1235		*scontext_len = context->len;
1236		if (scontext) {
1237			*scontext = kstrdup(context->str, GFP_ATOMIC);
1238			if (!(*scontext))
1239				return -ENOMEM;
1240		}
1241		return 0;
1242	}
1243
1244	/* Compute the size of the context. */
1245	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1246	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1247	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1248	*scontext_len += mls_compute_context_len(p, context);
1249
1250	if (!scontext)
1251		return 0;
1252
1253	/* Allocate space for the context; caller must free this space. */
1254	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1255	if (!scontextp)
1256		return -ENOMEM;
1257	*scontext = scontextp;
1258
1259	/*
1260	 * Copy the user name, role name and type name into the context.
1261	 */
1262	scontextp += sprintf(scontextp, "%s:%s:%s",
1263		sym_name(p, SYM_USERS, context->user - 1),
1264		sym_name(p, SYM_ROLES, context->role - 1),
1265		sym_name(p, SYM_TYPES, context->type - 1));
1266
1267	mls_sid_to_context(p, context, &scontextp);
1268
1269	*scontextp = 0;
1270
1271	return 0;
1272}
1273
1274static int sidtab_entry_to_string(struct policydb *p,
1275				  struct sidtab *sidtab,
1276				  struct sidtab_entry *entry,
1277				  char **scontext, u32 *scontext_len)
1278{
1279	int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1280
1281	if (rc != -ENOENT)
1282		return rc;
1283
1284	rc = context_struct_to_string(p, &entry->context, scontext,
1285				      scontext_len);
1286	if (!rc && scontext)
1287		sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1288	return rc;
1289}
1290
1291#include "initial_sid_to_string.h"
1292
1293int security_sidtab_hash_stats(struct selinux_state *state, char *page)
1294{
1295	struct selinux_policy *policy;
1296	int rc;
1297
1298	if (!selinux_initialized(state)) {
1299		pr_err("SELinux: %s:  called before initial load_policy\n",
1300		       __func__);
1301		return -EINVAL;
1302	}
1303
1304	rcu_read_lock();
1305	policy = rcu_dereference(state->policy);
1306	rc = sidtab_hash_stats(policy->sidtab, page);
1307	rcu_read_unlock();
1308
1309	return rc;
1310}
1311
1312const char *security_get_initial_sid_context(u32 sid)
1313{
1314	if (unlikely(sid > SECINITSID_NUM))
1315		return NULL;
1316	return initial_sid_to_string[sid];
1317}
1318
1319static int security_sid_to_context_core(struct selinux_state *state,
1320					u32 sid, char **scontext,
1321					u32 *scontext_len, int force,
1322					int only_invalid)
1323{
1324	struct selinux_policy *policy;
1325	struct policydb *policydb;
1326	struct sidtab *sidtab;
1327	struct sidtab_entry *entry;
1328	int rc = 0;
1329
1330	if (scontext)
1331		*scontext = NULL;
1332	*scontext_len  = 0;
1333
1334	if (!selinux_initialized(state)) {
1335		if (sid <= SECINITSID_NUM) {
1336			char *scontextp;
1337			const char *s = initial_sid_to_string[sid];
1338
1339			if (!s)
1340				return -EINVAL;
1341			*scontext_len = strlen(s) + 1;
1342			if (!scontext)
1343				return 0;
1344			scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1345			if (!scontextp)
1346				return -ENOMEM;
 
 
 
1347			*scontext = scontextp;
1348			return 0;
1349		}
1350		pr_err("SELinux: %s:  called before initial "
1351		       "load_policy on unknown SID %d\n", __func__, sid);
1352		return -EINVAL;
 
1353	}
1354	rcu_read_lock();
1355	policy = rcu_dereference(state->policy);
1356	policydb = &policy->policydb;
1357	sidtab = policy->sidtab;
1358
1359	if (force)
1360		entry = sidtab_search_entry_force(sidtab, sid);
1361	else
1362		entry = sidtab_search_entry(sidtab, sid);
1363	if (!entry) {
1364		pr_err("SELinux: %s:  unrecognized SID %d\n",
1365			__func__, sid);
1366		rc = -EINVAL;
1367		goto out_unlock;
1368	}
1369	if (only_invalid && !entry->context.len)
1370		goto out_unlock;
1371
1372	rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1373				    scontext_len);
1374
1375out_unlock:
1376	rcu_read_unlock();
 
1377	return rc;
1378
1379}
1380
1381/**
1382 * security_sid_to_context - Obtain a context for a given SID.
1383 * @state: SELinux state
1384 * @sid: security identifier, SID
1385 * @scontext: security context
1386 * @scontext_len: length in bytes
1387 *
1388 * Write the string representation of the context associated with @sid
1389 * into a dynamically allocated string of the correct size.  Set @scontext
1390 * to point to this string and set @scontext_len to the length of the string.
1391 */
1392int security_sid_to_context(struct selinux_state *state,
1393			    u32 sid, char **scontext, u32 *scontext_len)
1394{
1395	return security_sid_to_context_core(state, sid, scontext,
1396					    scontext_len, 0, 0);
1397}
1398
1399int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1400				  char **scontext, u32 *scontext_len)
1401{
1402	return security_sid_to_context_core(state, sid, scontext,
1403					    scontext_len, 1, 0);
1404}
1405
1406/**
1407 * security_sid_to_context_inval - Obtain a context for a given SID if it
1408 *                                 is invalid.
1409 * @state: SELinux state
1410 * @sid: security identifier, SID
1411 * @scontext: security context
1412 * @scontext_len: length in bytes
1413 *
1414 * Write the string representation of the context associated with @sid
1415 * into a dynamically allocated string of the correct size, but only if the
1416 * context is invalid in the current policy.  Set @scontext to point to
1417 * this string (or NULL if the context is valid) and set @scontext_len to
1418 * the length of the string (or 0 if the context is valid).
1419 */
1420int security_sid_to_context_inval(struct selinux_state *state, u32 sid,
1421				  char **scontext, u32 *scontext_len)
1422{
1423	return security_sid_to_context_core(state, sid, scontext,
1424					    scontext_len, 1, 1);
1425}
1426
1427/*
1428 * Caveat:  Mutates scontext.
1429 */
1430static int string_to_context_struct(struct policydb *pol,
1431				    struct sidtab *sidtabp,
1432				    char *scontext,
 
1433				    struct context *ctx,
1434				    u32 def_sid)
1435{
1436	struct role_datum *role;
1437	struct type_datum *typdatum;
1438	struct user_datum *usrdatum;
1439	char *scontextp, *p, oldc;
1440	int rc = 0;
1441
1442	context_init(ctx);
1443
1444	/* Parse the security context. */
1445
1446	rc = -EINVAL;
1447	scontextp = scontext;
1448
1449	/* Extract the user. */
1450	p = scontextp;
1451	while (*p && *p != ':')
1452		p++;
1453
1454	if (*p == 0)
1455		goto out;
1456
1457	*p++ = 0;
1458
1459	usrdatum = symtab_search(&pol->p_users, scontextp);
1460	if (!usrdatum)
1461		goto out;
1462
1463	ctx->user = usrdatum->value;
1464
1465	/* Extract role. */
1466	scontextp = p;
1467	while (*p && *p != ':')
1468		p++;
1469
1470	if (*p == 0)
1471		goto out;
1472
1473	*p++ = 0;
1474
1475	role = symtab_search(&pol->p_roles, scontextp);
1476	if (!role)
1477		goto out;
1478	ctx->role = role->value;
1479
1480	/* Extract type. */
1481	scontextp = p;
1482	while (*p && *p != ':')
1483		p++;
1484	oldc = *p;
1485	*p++ = 0;
1486
1487	typdatum = symtab_search(&pol->p_types, scontextp);
1488	if (!typdatum || typdatum->attribute)
1489		goto out;
1490
1491	ctx->type = typdatum->value;
1492
1493	rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1494	if (rc)
1495		goto out;
1496
1497	/* Check the validity of the new context. */
1498	rc = -EINVAL;
 
 
 
 
1499	if (!policydb_context_isvalid(pol, ctx))
1500		goto out;
1501	rc = 0;
1502out:
1503	if (rc)
1504		context_destroy(ctx);
1505	return rc;
1506}
1507
1508static int security_context_to_sid_core(struct selinux_state *state,
1509					const char *scontext, u32 scontext_len,
1510					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1511					int force)
1512{
1513	struct selinux_policy *policy;
1514	struct policydb *policydb;
1515	struct sidtab *sidtab;
1516	char *scontext2, *str = NULL;
1517	struct context context;
1518	int rc = 0;
1519
1520	/* An empty security context is never valid. */
1521	if (!scontext_len)
1522		return -EINVAL;
1523
1524	/* Copy the string to allow changes and ensure a NUL terminator */
1525	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1526	if (!scontext2)
1527		return -ENOMEM;
1528
1529	if (!selinux_initialized(state)) {
1530		int i;
1531
1532		for (i = 1; i < SECINITSID_NUM; i++) {
1533			const char *s = initial_sid_to_string[i];
1534
1535			if (s && !strcmp(s, scontext2)) {
1536				*sid = i;
1537				goto out;
1538			}
1539		}
1540		*sid = SECINITSID_KERNEL;
1541		goto out;
1542	}
1543	*sid = SECSID_NULL;
1544
1545	if (force) {
1546		/* Save another copy for storing in uninterpreted form */
1547		rc = -ENOMEM;
1548		str = kstrdup(scontext2, gfp_flags);
1549		if (!str)
1550			goto out;
1551	}
1552retry:
1553	rcu_read_lock();
1554	policy = rcu_dereference(state->policy);
1555	policydb = &policy->policydb;
1556	sidtab = policy->sidtab;
1557	rc = string_to_context_struct(policydb, sidtab, scontext2,
1558				      &context, def_sid);
1559	if (rc == -EINVAL && force) {
1560		context.str = str;
1561		context.len = strlen(str) + 1;
1562		str = NULL;
1563	} else if (rc)
1564		goto out_unlock;
1565	rc = sidtab_context_to_sid(sidtab, &context, sid);
1566	if (rc == -ESTALE) {
1567		rcu_read_unlock();
1568		if (context.str) {
1569			str = context.str;
1570			context.str = NULL;
1571		}
1572		context_destroy(&context);
1573		goto retry;
1574	}
1575	context_destroy(&context);
1576out_unlock:
1577	rcu_read_unlock();
1578out:
1579	kfree(scontext2);
1580	kfree(str);
1581	return rc;
1582}
1583
1584/**
1585 * security_context_to_sid - Obtain a SID for a given security context.
1586 * @state: SELinux state
1587 * @scontext: security context
1588 * @scontext_len: length in bytes
1589 * @sid: security identifier, SID
1590 * @gfp: context for the allocation
1591 *
1592 * Obtains a SID associated with the security context that
1593 * has the string representation specified by @scontext.
1594 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1595 * memory is available, or 0 on success.
1596 */
1597int security_context_to_sid(struct selinux_state *state,
1598			    const char *scontext, u32 scontext_len, u32 *sid,
1599			    gfp_t gfp)
1600{
1601	return security_context_to_sid_core(state, scontext, scontext_len,
1602					    sid, SECSID_NULL, gfp, 0);
1603}
1604
1605int security_context_str_to_sid(struct selinux_state *state,
1606				const char *scontext, u32 *sid, gfp_t gfp)
1607{
1608	return security_context_to_sid(state, scontext, strlen(scontext),
1609				       sid, gfp);
1610}
1611
1612/**
1613 * security_context_to_sid_default - Obtain a SID for a given security context,
1614 * falling back to specified default if needed.
1615 *
1616 * @state: SELinux state
1617 * @scontext: security context
1618 * @scontext_len: length in bytes
1619 * @sid: security identifier, SID
1620 * @def_sid: default SID to assign on error
1621 * @gfp_flags: the allocator get-free-page (GFP) flags
1622 *
1623 * Obtains a SID associated with the security context that
1624 * has the string representation specified by @scontext.
1625 * The default SID is passed to the MLS layer to be used to allow
1626 * kernel labeling of the MLS field if the MLS field is not present
1627 * (for upgrading to MLS without full relabel).
1628 * Implicitly forces adding of the context even if it cannot be mapped yet.
1629 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1630 * memory is available, or 0 on success.
1631 */
1632int security_context_to_sid_default(struct selinux_state *state,
1633				    const char *scontext, u32 scontext_len,
1634				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1635{
1636	return security_context_to_sid_core(state, scontext, scontext_len,
1637					    sid, def_sid, gfp_flags, 1);
1638}
1639
1640int security_context_to_sid_force(struct selinux_state *state,
1641				  const char *scontext, u32 scontext_len,
1642				  u32 *sid)
1643{
1644	return security_context_to_sid_core(state, scontext, scontext_len,
1645					    sid, SECSID_NULL, GFP_KERNEL, 1);
1646}
1647
1648static int compute_sid_handle_invalid_context(
1649	struct selinux_state *state,
1650	struct selinux_policy *policy,
1651	struct sidtab_entry *sentry,
1652	struct sidtab_entry *tentry,
1653	u16 tclass,
1654	struct context *newcontext)
1655{
1656	struct policydb *policydb = &policy->policydb;
1657	struct sidtab *sidtab = policy->sidtab;
1658	char *s = NULL, *t = NULL, *n = NULL;
1659	u32 slen, tlen, nlen;
1660	struct audit_buffer *ab;
1661
1662	if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1663		goto out;
1664	if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1665		goto out;
1666	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1667		goto out;
1668	ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1669	if (!ab)
1670		goto out;
1671	audit_log_format(ab,
1672			 "op=security_compute_sid invalid_context=");
1673	/* no need to record the NUL with untrusted strings */
1674	audit_log_n_untrustedstring(ab, n, nlen - 1);
1675	audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1676			 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1677	audit_log_end(ab);
1678out:
1679	kfree(s);
1680	kfree(t);
1681	kfree(n);
1682	if (!enforcing_enabled(state))
1683		return 0;
1684	return -EACCES;
1685}
1686
1687static void filename_compute_type(struct policydb *policydb,
1688				  struct context *newcontext,
1689				  u32 stype, u32 ttype, u16 tclass,
1690				  const char *objname)
1691{
1692	struct filename_trans_key ft;
1693	struct filename_trans_datum *datum;
1694
1695	/*
1696	 * Most filename trans rules are going to live in specific directories
1697	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1698	 * if the ttype does not contain any rules.
1699	 */
1700	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1701		return;
1702
 
1703	ft.ttype = ttype;
1704	ft.tclass = tclass;
1705	ft.name = objname;
1706
1707	datum = policydb_filenametr_search(policydb, &ft);
1708	while (datum) {
1709		if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1710			newcontext->type = datum->otype;
1711			return;
1712		}
1713		datum = datum->next;
1714	}
1715}
1716
1717static int security_compute_sid(struct selinux_state *state,
1718				u32 ssid,
1719				u32 tsid,
1720				u16 orig_tclass,
1721				u32 specified,
1722				const char *objname,
1723				u32 *out_sid,
1724				bool kern)
1725{
1726	struct selinux_policy *policy;
1727	struct policydb *policydb;
1728	struct sidtab *sidtab;
1729	struct class_datum *cladatum;
1730	struct context *scontext, *tcontext, newcontext;
1731	struct sidtab_entry *sentry, *tentry;
1732	struct avtab_key avkey;
1733	struct avtab_datum *avdatum;
1734	struct avtab_node *node;
1735	u16 tclass;
1736	int rc = 0;
1737	bool sock;
1738
1739	if (!selinux_initialized(state)) {
1740		switch (orig_tclass) {
1741		case SECCLASS_PROCESS: /* kernel value */
1742			*out_sid = ssid;
1743			break;
1744		default:
1745			*out_sid = tsid;
1746			break;
1747		}
1748		goto out;
1749	}
1750
1751retry:
1752	cladatum = NULL;
1753	context_init(&newcontext);
1754
1755	rcu_read_lock();
1756
1757	policy = rcu_dereference(state->policy);
1758
1759	if (kern) {
1760		tclass = unmap_class(&policy->map, orig_tclass);
1761		sock = security_is_socket_class(orig_tclass);
1762	} else {
1763		tclass = orig_tclass;
1764		sock = security_is_socket_class(map_class(&policy->map,
1765							  tclass));
1766	}
1767
1768	policydb = &policy->policydb;
1769	sidtab = policy->sidtab;
1770
1771	sentry = sidtab_search_entry(sidtab, ssid);
1772	if (!sentry) {
1773		pr_err("SELinux: %s:  unrecognized SID %d\n",
1774		       __func__, ssid);
1775		rc = -EINVAL;
1776		goto out_unlock;
1777	}
1778	tentry = sidtab_search_entry(sidtab, tsid);
1779	if (!tentry) {
1780		pr_err("SELinux: %s:  unrecognized SID %d\n",
1781		       __func__, tsid);
1782		rc = -EINVAL;
1783		goto out_unlock;
1784	}
1785
1786	scontext = &sentry->context;
1787	tcontext = &tentry->context;
1788
1789	if (tclass && tclass <= policydb->p_classes.nprim)
1790		cladatum = policydb->class_val_to_struct[tclass - 1];
1791
1792	/* Set the user identity. */
1793	switch (specified) {
1794	case AVTAB_TRANSITION:
1795	case AVTAB_CHANGE:
1796		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1797			newcontext.user = tcontext->user;
1798		} else {
1799			/* notice this gets both DEFAULT_SOURCE and unset */
1800			/* Use the process user identity. */
1801			newcontext.user = scontext->user;
1802		}
1803		break;
1804	case AVTAB_MEMBER:
1805		/* Use the related object owner. */
1806		newcontext.user = tcontext->user;
1807		break;
1808	}
1809
1810	/* Set the role to default values. */
1811	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1812		newcontext.role = scontext->role;
1813	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1814		newcontext.role = tcontext->role;
1815	} else {
1816		if ((tclass == policydb->process_class) || sock)
1817			newcontext.role = scontext->role;
1818		else
1819			newcontext.role = OBJECT_R_VAL;
1820	}
1821
1822	/* Set the type to default values. */
1823	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1824		newcontext.type = scontext->type;
1825	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1826		newcontext.type = tcontext->type;
1827	} else {
1828		if ((tclass == policydb->process_class) || sock) {
1829			/* Use the type of process. */
1830			newcontext.type = scontext->type;
1831		} else {
1832			/* Use the type of the related object. */
1833			newcontext.type = tcontext->type;
1834		}
1835	}
1836
1837	/* Look for a type transition/member/change rule. */
1838	avkey.source_type = scontext->type;
1839	avkey.target_type = tcontext->type;
1840	avkey.target_class = tclass;
1841	avkey.specified = specified;
1842	avdatum = avtab_search(&policydb->te_avtab, &avkey);
1843
1844	/* If no permanent rule, also check for enabled conditional rules */
1845	if (!avdatum) {
1846		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1847		for (; node; node = avtab_search_node_next(node, specified)) {
1848			if (node->key.specified & AVTAB_ENABLED) {
1849				avdatum = &node->datum;
1850				break;
1851			}
1852		}
1853	}
1854
1855	if (avdatum) {
1856		/* Use the type from the type transition/member/change rule. */
1857		newcontext.type = avdatum->u.data;
1858	}
1859
1860	/* if we have a objname this is a file trans check so check those rules */
1861	if (objname)
1862		filename_compute_type(policydb, &newcontext, scontext->type,
1863				      tcontext->type, tclass, objname);
1864
1865	/* Check for class-specific changes. */
1866	if (specified & AVTAB_TRANSITION) {
1867		/* Look for a role transition rule. */
1868		struct role_trans_datum *rtd;
1869		struct role_trans_key rtk = {
1870			.role = scontext->role,
1871			.type = tcontext->type,
1872			.tclass = tclass,
1873		};
1874
1875		rtd = policydb_roletr_search(policydb, &rtk);
1876		if (rtd)
1877			newcontext.role = rtd->new_role;
1878	}
1879
1880	/* Set the MLS attributes.
1881	   This is done last because it may allocate memory. */
1882	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1883			     &newcontext, sock);
1884	if (rc)
1885		goto out_unlock;
1886
1887	/* Check the validity of the context. */
1888	if (!policydb_context_isvalid(policydb, &newcontext)) {
1889		rc = compute_sid_handle_invalid_context(state, policy, sentry,
1890							tentry, tclass,
 
1891							&newcontext);
1892		if (rc)
1893			goto out_unlock;
1894	}
1895	/* Obtain the sid for the context. */
1896	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1897	if (rc == -ESTALE) {
1898		rcu_read_unlock();
1899		context_destroy(&newcontext);
1900		goto retry;
1901	}
1902out_unlock:
1903	rcu_read_unlock();
1904	context_destroy(&newcontext);
1905out:
1906	return rc;
1907}
1908
1909/**
1910 * security_transition_sid - Compute the SID for a new subject/object.
1911 * @state: SELinux state
1912 * @ssid: source security identifier
1913 * @tsid: target security identifier
1914 * @tclass: target security class
1915 * @qstr: object name
1916 * @out_sid: security identifier for new subject/object
1917 *
1918 * Compute a SID to use for labeling a new subject or object in the
1919 * class @tclass based on a SID pair (@ssid, @tsid).
1920 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1921 * if insufficient memory is available, or %0 if the new SID was
1922 * computed successfully.
1923 */
1924int security_transition_sid(struct selinux_state *state,
1925			    u32 ssid, u32 tsid, u16 tclass,
1926			    const struct qstr *qstr, u32 *out_sid)
1927{
1928	return security_compute_sid(state, ssid, tsid, tclass,
1929				    AVTAB_TRANSITION,
1930				    qstr ? qstr->name : NULL, out_sid, true);
1931}
1932
1933int security_transition_sid_user(struct selinux_state *state,
1934				 u32 ssid, u32 tsid, u16 tclass,
1935				 const char *objname, u32 *out_sid)
1936{
1937	return security_compute_sid(state, ssid, tsid, tclass,
1938				    AVTAB_TRANSITION,
1939				    objname, out_sid, false);
1940}
1941
1942/**
1943 * security_member_sid - Compute the SID for member selection.
1944 * @state: SELinux state
1945 * @ssid: source security identifier
1946 * @tsid: target security identifier
1947 * @tclass: target security class
1948 * @out_sid: security identifier for selected member
1949 *
1950 * Compute a SID to use when selecting a member of a polyinstantiated
1951 * object of class @tclass based on a SID pair (@ssid, @tsid).
1952 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1953 * if insufficient memory is available, or %0 if the SID was
1954 * computed successfully.
1955 */
1956int security_member_sid(struct selinux_state *state,
1957			u32 ssid,
1958			u32 tsid,
1959			u16 tclass,
1960			u32 *out_sid)
1961{
1962	return security_compute_sid(state, ssid, tsid, tclass,
1963				    AVTAB_MEMBER, NULL,
1964				    out_sid, false);
1965}
1966
1967/**
1968 * security_change_sid - Compute the SID for object relabeling.
1969 * @state: SELinux state
1970 * @ssid: source security identifier
1971 * @tsid: target security identifier
1972 * @tclass: target security class
1973 * @out_sid: security identifier for selected member
1974 *
1975 * Compute a SID to use for relabeling an object of class @tclass
1976 * based on a SID pair (@ssid, @tsid).
1977 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1978 * if insufficient memory is available, or %0 if the SID was
1979 * computed successfully.
1980 */
1981int security_change_sid(struct selinux_state *state,
1982			u32 ssid,
1983			u32 tsid,
1984			u16 tclass,
1985			u32 *out_sid)
1986{
1987	return security_compute_sid(state,
1988				    ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1989				    out_sid, false);
1990}
1991
 
 
 
 
 
 
 
 
 
 
 
 
 
1992static inline int convert_context_handle_invalid_context(
1993	struct selinux_state *state,
1994	struct policydb *policydb,
1995	struct context *context)
1996{
 
1997	char *s;
1998	u32 len;
1999
2000	if (enforcing_enabled(state))
2001		return -EINVAL;
2002
2003	if (!context_struct_to_string(policydb, context, &s, &len)) {
2004		pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
2005			s);
2006		kfree(s);
2007	}
2008	return 0;
2009}
2010
2011/**
2012 * services_convert_context - Convert a security context across policies.
2013 * @args: populated convert_context_args struct
2014 * @oldc: original context
2015 * @newc: converted context
2016 * @gfp_flags: allocation flags
2017 *
2018 * Convert the values in the security context structure @oldc from the values
2019 * specified in the policy @args->oldp to the values specified in the policy
2020 * @args->newp, storing the new context in @newc, and verifying that the
 
2021 * context is valid under the new policy.
2022 */
2023int services_convert_context(struct convert_context_args *args,
2024			     struct context *oldc, struct context *newc,
2025			     gfp_t gfp_flags)
2026{
 
 
2027	struct ocontext *oc;
 
2028	struct role_datum *role;
2029	struct type_datum *typdatum;
2030	struct user_datum *usrdatum;
2031	char *s;
2032	u32 len;
2033	int rc;
2034
2035	if (oldc->str) {
2036		s = kstrdup(oldc->str, gfp_flags);
 
 
 
 
 
 
 
 
2037		if (!s)
2038			return -ENOMEM;
2039
2040		rc = string_to_context_struct(args->newp, NULL, s, newc, SECSID_NULL);
2041		if (rc == -EINVAL) {
2042			/*
2043			 * Retain string representation for later mapping.
2044			 *
2045			 * IMPORTANT: We need to copy the contents of oldc->str
2046			 * back into s again because string_to_context_struct()
2047			 * may have garbled it.
2048			 */
2049			memcpy(s, oldc->str, oldc->len);
2050			context_init(newc);
2051			newc->str = s;
2052			newc->len = oldc->len;
2053			return 0;
2054		}
2055		kfree(s);
2056		if (rc) {
 
 
 
 
 
 
 
 
 
 
 
2057			/* Other error condition, e.g. ENOMEM. */
2058			pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
2059			       oldc->str, -rc);
2060			return rc;
2061		}
2062		pr_info("SELinux:  Context %s became valid (mapped).\n",
2063			oldc->str);
2064		return 0;
2065	}
2066
2067	context_init(newc);
 
 
2068
2069	/* Convert the user. */
2070	usrdatum = symtab_search(&args->newp->p_users,
2071				 sym_name(args->oldp, SYM_USERS, oldc->user - 1));
 
2072	if (!usrdatum)
2073		goto bad;
2074	newc->user = usrdatum->value;
2075
2076	/* Convert the role. */
2077	role = symtab_search(&args->newp->p_roles,
2078			     sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
 
2079	if (!role)
2080		goto bad;
2081	newc->role = role->value;
2082
2083	/* Convert the type. */
2084	typdatum = symtab_search(&args->newp->p_types,
2085				 sym_name(args->oldp, SYM_TYPES, oldc->type - 1));
 
2086	if (!typdatum)
2087		goto bad;
2088	newc->type = typdatum->value;
2089
2090	/* Convert the MLS fields if dealing with MLS policies */
2091	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2092		rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2093		if (rc)
2094			goto bad;
 
 
 
 
 
 
 
2095	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2096		/*
2097		 * Switching between non-MLS and MLS policy:
2098		 * ensure that the MLS fields of the context for all
2099		 * existing entries in the sidtab are filled in with a
2100		 * suitable default value, likely taken from one of the
2101		 * initial SIDs.
2102		 */
2103		oc = args->newp->ocontexts[OCON_ISID];
2104		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2105			oc = oc->next;
 
2106		if (!oc) {
2107			pr_err("SELinux:  unable to look up"
2108				" the initial SIDs list\n");
2109			goto bad;
2110		}
2111		rc = mls_range_set(newc, &oc->context[0].range);
 
2112		if (rc)
2113			goto bad;
2114	}
2115
2116	/* Check the validity of the new context. */
2117	if (!policydb_context_isvalid(args->newp, newc)) {
2118		rc = convert_context_handle_invalid_context(args->state,
2119							    args->oldp, oldc);
2120		if (rc)
2121			goto bad;
2122	}
2123
2124	return 0;
 
 
 
 
2125bad:
2126	/* Map old representation to string and save it. */
2127	rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2128	if (rc)
2129		return rc;
2130	context_destroy(newc);
2131	newc->str = s;
2132	newc->len = len;
2133	pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2134		newc->str);
2135	return 0;
 
 
2136}
2137
2138static void security_load_policycaps(struct selinux_state *state,
2139				struct selinux_policy *policy)
2140{
2141	struct policydb *p;
2142	unsigned int i;
2143	struct ebitmap_node *node;
2144
2145	p = &policy->policydb;
2146
2147	for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2148		WRITE_ONCE(state->policycap[i],
2149			ebitmap_get_bit(&p->policycaps, i));
2150
2151	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2152		pr_info("SELinux:  policy capability %s=%d\n",
2153			selinux_policycap_names[i],
2154			ebitmap_get_bit(&p->policycaps, i));
2155
2156	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2157		if (i >= ARRAY_SIZE(selinux_policycap_names))
2158			pr_info("SELinux:  unknown policy capability %u\n",
2159				i);
2160	}
2161}
2162
2163static int security_preserve_bools(struct selinux_policy *oldpolicy,
2164				struct selinux_policy *newpolicy);
2165
2166static void selinux_policy_free(struct selinux_policy *policy)
2167{
2168	if (!policy)
2169		return;
2170
2171	sidtab_destroy(policy->sidtab);
2172	kfree(policy->map.mapping);
2173	policydb_destroy(&policy->policydb);
2174	kfree(policy->sidtab);
2175	kfree(policy);
2176}
2177
2178static void selinux_policy_cond_free(struct selinux_policy *policy)
2179{
2180	cond_policydb_destroy_dup(&policy->policydb);
2181	kfree(policy);
2182}
2183
2184void selinux_policy_cancel(struct selinux_state *state,
2185			   struct selinux_load_state *load_state)
2186{
2187	struct selinux_policy *oldpolicy;
2188
2189	oldpolicy = rcu_dereference_protected(state->policy,
2190					lockdep_is_held(&state->policy_mutex));
2191
2192	sidtab_cancel_convert(oldpolicy->sidtab);
2193	selinux_policy_free(load_state->policy);
2194	kfree(load_state->convert_data);
2195}
2196
2197static void selinux_notify_policy_change(struct selinux_state *state,
2198					u32 seqno)
2199{
2200	/* Flush external caches and notify userspace of policy load */
2201	avc_ss_reset(state->avc, seqno);
2202	selnl_notify_policyload(seqno);
2203	selinux_status_update_policyload(state, seqno);
2204	selinux_netlbl_cache_invalidate();
2205	selinux_xfrm_notify_policyload();
2206	selinux_ima_measure_state_locked(state);
2207}
2208
2209void selinux_policy_commit(struct selinux_state *state,
2210			   struct selinux_load_state *load_state)
2211{
2212	struct selinux_policy *oldpolicy, *newpolicy = load_state->policy;
2213	unsigned long flags;
2214	u32 seqno;
2215
2216	oldpolicy = rcu_dereference_protected(state->policy,
2217					lockdep_is_held(&state->policy_mutex));
2218
2219	/* If switching between different policy types, log MLS status */
2220	if (oldpolicy) {
2221		if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled)
2222			pr_info("SELinux: Disabling MLS support...\n");
2223		else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled)
2224			pr_info("SELinux: Enabling MLS support...\n");
2225	}
2226
2227	/* Set latest granting seqno for new policy. */
2228	if (oldpolicy)
2229		newpolicy->latest_granting = oldpolicy->latest_granting + 1;
2230	else
2231		newpolicy->latest_granting = 1;
2232	seqno = newpolicy->latest_granting;
2233
2234	/* Install the new policy. */
2235	if (oldpolicy) {
2236		sidtab_freeze_begin(oldpolicy->sidtab, &flags);
2237		rcu_assign_pointer(state->policy, newpolicy);
2238		sidtab_freeze_end(oldpolicy->sidtab, &flags);
2239	} else {
2240		rcu_assign_pointer(state->policy, newpolicy);
2241	}
2242
2243	/* Load the policycaps from the new policy */
2244	security_load_policycaps(state, newpolicy);
2245
2246	if (!selinux_initialized(state)) {
2247		/*
2248		 * After first policy load, the security server is
2249		 * marked as initialized and ready to handle requests and
2250		 * any objects created prior to policy load are then labeled.
2251		 */
2252		selinux_mark_initialized(state);
2253		selinux_complete_init();
2254	}
2255
2256	/* Free the old policy */
2257	synchronize_rcu();
2258	selinux_policy_free(oldpolicy);
2259	kfree(load_state->convert_data);
2260
2261	/* Notify others of the policy change */
2262	selinux_notify_policy_change(state, seqno);
2263}
2264
2265/**
2266 * security_load_policy - Load a security policy configuration.
2267 * @state: SELinux state
2268 * @data: binary policy data
2269 * @len: length of data in bytes
2270 * @load_state: policy load state
2271 *
2272 * Load a new set of security policy configuration data,
2273 * validate it and convert the SID table as necessary.
2274 * This function will flush the access vector cache after
2275 * loading the new policy.
2276 */
2277int security_load_policy(struct selinux_state *state, void *data, size_t len,
2278			 struct selinux_load_state *load_state)
2279{
2280	struct selinux_policy *newpolicy, *oldpolicy;
2281	struct selinux_policy_convert_data *convert_data;
 
 
 
 
 
 
2282	int rc = 0;
2283	struct policy_file file = { data, len }, *fp = &file;
2284
2285	newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL);
2286	if (!newpolicy)
2287		return -ENOMEM;
2288
2289	newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL);
2290	if (!newpolicy->sidtab) {
2291		rc = -ENOMEM;
2292		goto err_policy;
2293	}
 
2294
2295	rc = policydb_read(&newpolicy->policydb, fp);
2296	if (rc)
2297		goto err_sidtab;
2298
2299	newpolicy->policydb.len = len;
2300	rc = selinux_set_mapping(&newpolicy->policydb, secclass_map,
2301				&newpolicy->map);
2302	if (rc)
2303		goto err_policydb;
2304
2305	rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab);
2306	if (rc) {
2307		pr_err("SELinux:  unable to load the initial SIDs\n");
2308		goto err_mapping;
2309	}
 
 
2310
2311	if (!selinux_initialized(state)) {
2312		/* First policy load, so no need to preserve state from old policy */
2313		load_state->policy = newpolicy;
2314		load_state->convert_data = NULL;
2315		return 0;
 
 
 
 
 
 
 
 
 
 
 
2316	}
2317
2318	oldpolicy = rcu_dereference_protected(state->policy,
2319					lockdep_is_held(&state->policy_mutex));
 
 
 
 
 
 
 
 
 
 
 
 
2320
2321	/* Preserve active boolean values from the old policy */
2322	rc = security_preserve_bools(oldpolicy, newpolicy);
2323	if (rc) {
2324		pr_err("SELinux:  unable to preserve booleans\n");
2325		goto err_free_isids;
 
2326	}
2327
2328	/*
2329	 * Convert the internal representations of contexts
2330	 * in the new SID table.
2331	 */
2332
2333	convert_data = kmalloc(sizeof(*convert_data), GFP_KERNEL);
2334	if (!convert_data) {
2335		rc = -ENOMEM;
2336		goto err_free_isids;
2337	}
2338
2339	convert_data->args.state = state;
2340	convert_data->args.oldp = &oldpolicy->policydb;
2341	convert_data->args.newp = &newpolicy->policydb;
2342
2343	convert_data->sidtab_params.args = &convert_data->args;
2344	convert_data->sidtab_params.target = newpolicy->sidtab;
 
2345
2346	rc = sidtab_convert(oldpolicy->sidtab, &convert_data->sidtab_params);
 
 
 
 
 
 
 
2347	if (rc) {
2348		pr_err("SELinux:  unable to convert the internal"
2349			" representation of contexts in the new SID"
2350			" table\n");
2351		goto err_free_convert_data;
2352	}
2353
2354	load_state->policy = newpolicy;
2355	load_state->convert_data = convert_data;
2356	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2357
2358err_free_convert_data:
2359	kfree(convert_data);
2360err_free_isids:
2361	sidtab_destroy(newpolicy->sidtab);
2362err_mapping:
2363	kfree(newpolicy->map.mapping);
2364err_policydb:
2365	policydb_destroy(&newpolicy->policydb);
2366err_sidtab:
2367	kfree(newpolicy->sidtab);
2368err_policy:
2369	kfree(newpolicy);
2370
 
 
2371	return rc;
2372}
2373
2374/**
2375 * ocontext_to_sid - Helper to safely get sid for an ocontext
2376 * @sidtab: SID table
2377 * @c: ocontext structure
2378 * @index: index of the context entry (0 or 1)
2379 * @out_sid: pointer to the resulting SID value
2380 *
2381 * For all ocontexts except OCON_ISID the SID fields are populated
2382 * on-demand when needed. Since updating the SID value is an SMP-sensitive
2383 * operation, this helper must be used to do that safely.
2384 *
2385 * WARNING: This function may return -ESTALE, indicating that the caller
2386 * must retry the operation after re-acquiring the policy pointer!
2387 */
2388static int ocontext_to_sid(struct sidtab *sidtab, struct ocontext *c,
2389			   size_t index, u32 *out_sid)
2390{
2391	int rc;
2392	u32 sid;
2393
2394	/* Ensure the associated sidtab entry is visible to this thread. */
2395	sid = smp_load_acquire(&c->sid[index]);
2396	if (!sid) {
2397		rc = sidtab_context_to_sid(sidtab, &c->context[index], &sid);
2398		if (rc)
2399			return rc;
2400
2401		/*
2402		 * Ensure the new sidtab entry is visible to other threads
2403		 * when they see the SID.
2404		 */
2405		smp_store_release(&c->sid[index], sid);
2406	}
2407	*out_sid = sid;
2408	return 0;
2409}
2410
2411/**
2412 * security_port_sid - Obtain the SID for a port.
2413 * @state: SELinux state
2414 * @protocol: protocol number
2415 * @port: port number
2416 * @out_sid: security identifier
2417 */
2418int security_port_sid(struct selinux_state *state,
2419		      u8 protocol, u16 port, u32 *out_sid)
2420{
2421	struct selinux_policy *policy;
2422	struct policydb *policydb;
2423	struct sidtab *sidtab;
2424	struct ocontext *c;
2425	int rc;
2426
2427	if (!selinux_initialized(state)) {
2428		*out_sid = SECINITSID_PORT;
2429		return 0;
2430	}
2431
2432retry:
2433	rc = 0;
2434	rcu_read_lock();
2435	policy = rcu_dereference(state->policy);
2436	policydb = &policy->policydb;
2437	sidtab = policy->sidtab;
2438
2439	c = policydb->ocontexts[OCON_PORT];
2440	while (c) {
2441		if (c->u.port.protocol == protocol &&
2442		    c->u.port.low_port <= port &&
2443		    c->u.port.high_port >= port)
2444			break;
2445		c = c->next;
2446	}
2447
2448	if (c) {
2449		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2450		if (rc == -ESTALE) {
2451			rcu_read_unlock();
2452			goto retry;
 
 
2453		}
2454		if (rc)
2455			goto out;
2456	} else {
2457		*out_sid = SECINITSID_PORT;
2458	}
2459
2460out:
2461	rcu_read_unlock();
2462	return rc;
2463}
2464
2465/**
2466 * security_ib_pkey_sid - Obtain the SID for a pkey.
2467 * @state: SELinux state
2468 * @subnet_prefix: Subnet Prefix
2469 * @pkey_num: pkey number
2470 * @out_sid: security identifier
2471 */
2472int security_ib_pkey_sid(struct selinux_state *state,
2473			 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2474{
2475	struct selinux_policy *policy;
2476	struct policydb *policydb;
2477	struct sidtab *sidtab;
2478	struct ocontext *c;
2479	int rc;
2480
2481	if (!selinux_initialized(state)) {
2482		*out_sid = SECINITSID_UNLABELED;
2483		return 0;
2484	}
2485
2486retry:
2487	rc = 0;
2488	rcu_read_lock();
2489	policy = rcu_dereference(state->policy);
2490	policydb = &policy->policydb;
2491	sidtab = policy->sidtab;
2492
2493	c = policydb->ocontexts[OCON_IBPKEY];
2494	while (c) {
2495		if (c->u.ibpkey.low_pkey <= pkey_num &&
2496		    c->u.ibpkey.high_pkey >= pkey_num &&
2497		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2498			break;
2499
2500		c = c->next;
2501	}
2502
2503	if (c) {
2504		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2505		if (rc == -ESTALE) {
2506			rcu_read_unlock();
2507			goto retry;
 
 
2508		}
2509		if (rc)
2510			goto out;
2511	} else
2512		*out_sid = SECINITSID_UNLABELED;
2513
2514out:
2515	rcu_read_unlock();
2516	return rc;
2517}
2518
2519/**
2520 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2521 * @state: SELinux state
2522 * @dev_name: device name
2523 * @port_num: port number
2524 * @out_sid: security identifier
2525 */
2526int security_ib_endport_sid(struct selinux_state *state,
2527			    const char *dev_name, u8 port_num, u32 *out_sid)
2528{
2529	struct selinux_policy *policy;
2530	struct policydb *policydb;
2531	struct sidtab *sidtab;
2532	struct ocontext *c;
2533	int rc;
2534
2535	if (!selinux_initialized(state)) {
2536		*out_sid = SECINITSID_UNLABELED;
2537		return 0;
2538	}
2539
2540retry:
2541	rc = 0;
2542	rcu_read_lock();
2543	policy = rcu_dereference(state->policy);
2544	policydb = &policy->policydb;
2545	sidtab = policy->sidtab;
2546
2547	c = policydb->ocontexts[OCON_IBENDPORT];
2548	while (c) {
2549		if (c->u.ibendport.port == port_num &&
2550		    !strncmp(c->u.ibendport.dev_name,
2551			     dev_name,
2552			     IB_DEVICE_NAME_MAX))
2553			break;
2554
2555		c = c->next;
2556	}
2557
2558	if (c) {
2559		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2560		if (rc == -ESTALE) {
2561			rcu_read_unlock();
2562			goto retry;
 
 
2563		}
2564		if (rc)
2565			goto out;
2566	} else
2567		*out_sid = SECINITSID_UNLABELED;
2568
2569out:
2570	rcu_read_unlock();
2571	return rc;
2572}
2573
2574/**
2575 * security_netif_sid - Obtain the SID for a network interface.
2576 * @state: SELinux state
2577 * @name: interface name
2578 * @if_sid: interface SID
2579 */
2580int security_netif_sid(struct selinux_state *state,
2581		       char *name, u32 *if_sid)
2582{
2583	struct selinux_policy *policy;
2584	struct policydb *policydb;
2585	struct sidtab *sidtab;
2586	int rc;
2587	struct ocontext *c;
2588
2589	if (!selinux_initialized(state)) {
2590		*if_sid = SECINITSID_NETIF;
2591		return 0;
2592	}
2593
2594retry:
2595	rc = 0;
2596	rcu_read_lock();
2597	policy = rcu_dereference(state->policy);
2598	policydb = &policy->policydb;
2599	sidtab = policy->sidtab;
2600
2601	c = policydb->ocontexts[OCON_NETIF];
2602	while (c) {
2603		if (strcmp(name, c->u.name) == 0)
2604			break;
2605		c = c->next;
2606	}
2607
2608	if (c) {
2609		rc = ocontext_to_sid(sidtab, c, 0, if_sid);
2610		if (rc == -ESTALE) {
2611			rcu_read_unlock();
2612			goto retry;
 
 
 
 
 
 
 
2613		}
2614		if (rc)
2615			goto out;
2616	} else
2617		*if_sid = SECINITSID_NETIF;
2618
2619out:
2620	rcu_read_unlock();
2621	return rc;
2622}
2623
2624static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2625{
2626	int i, fail = 0;
2627
2628	for (i = 0; i < 4; i++)
2629		if (addr[i] != (input[i] & mask[i])) {
2630			fail = 1;
2631			break;
2632		}
2633
2634	return !fail;
2635}
2636
2637/**
2638 * security_node_sid - Obtain the SID for a node (host).
2639 * @state: SELinux state
2640 * @domain: communication domain aka address family
2641 * @addrp: address
2642 * @addrlen: address length in bytes
2643 * @out_sid: security identifier
2644 */
2645int security_node_sid(struct selinux_state *state,
2646		      u16 domain,
2647		      void *addrp,
2648		      u32 addrlen,
2649		      u32 *out_sid)
2650{
2651	struct selinux_policy *policy;
2652	struct policydb *policydb;
2653	struct sidtab *sidtab;
2654	int rc;
2655	struct ocontext *c;
2656
2657	if (!selinux_initialized(state)) {
2658		*out_sid = SECINITSID_NODE;
2659		return 0;
2660	}
2661
2662retry:
2663	rcu_read_lock();
2664	policy = rcu_dereference(state->policy);
2665	policydb = &policy->policydb;
2666	sidtab = policy->sidtab;
2667
2668	switch (domain) {
2669	case AF_INET: {
2670		u32 addr;
2671
2672		rc = -EINVAL;
2673		if (addrlen != sizeof(u32))
2674			goto out;
2675
2676		addr = *((u32 *)addrp);
2677
2678		c = policydb->ocontexts[OCON_NODE];
2679		while (c) {
2680			if (c->u.node.addr == (addr & c->u.node.mask))
2681				break;
2682			c = c->next;
2683		}
2684		break;
2685	}
2686
2687	case AF_INET6:
2688		rc = -EINVAL;
2689		if (addrlen != sizeof(u64) * 2)
2690			goto out;
2691		c = policydb->ocontexts[OCON_NODE6];
2692		while (c) {
2693			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2694						c->u.node6.mask))
2695				break;
2696			c = c->next;
2697		}
2698		break;
2699
2700	default:
2701		rc = 0;
2702		*out_sid = SECINITSID_NODE;
2703		goto out;
2704	}
2705
2706	if (c) {
2707		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2708		if (rc == -ESTALE) {
2709			rcu_read_unlock();
2710			goto retry;
 
 
2711		}
2712		if (rc)
2713			goto out;
2714	} else {
2715		*out_sid = SECINITSID_NODE;
2716	}
2717
2718	rc = 0;
2719out:
2720	rcu_read_unlock();
2721	return rc;
2722}
2723
2724#define SIDS_NEL 25
2725
2726/**
2727 * security_get_user_sids - Obtain reachable SIDs for a user.
2728 * @state: SELinux state
2729 * @fromsid: starting SID
2730 * @username: username
2731 * @sids: array of reachable SIDs for user
2732 * @nel: number of elements in @sids
2733 *
2734 * Generate the set of SIDs for legal security contexts
2735 * for a given user that can be reached by @fromsid.
2736 * Set *@sids to point to a dynamically allocated
2737 * array containing the set of SIDs.  Set *@nel to the
2738 * number of elements in the array.
2739 */
2740
2741int security_get_user_sids(struct selinux_state *state,
2742			   u32 fromsid,
2743			   char *username,
2744			   u32 **sids,
2745			   u32 *nel)
2746{
2747	struct selinux_policy *policy;
2748	struct policydb *policydb;
2749	struct sidtab *sidtab;
2750	struct context *fromcon, usercon;
2751	u32 *mysids = NULL, *mysids2, sid;
2752	u32 i, j, mynel, maxnel = SIDS_NEL;
2753	struct user_datum *user;
2754	struct role_datum *role;
2755	struct ebitmap_node *rnode, *tnode;
2756	int rc;
2757
2758	*sids = NULL;
2759	*nel = 0;
2760
2761	if (!selinux_initialized(state))
2762		return 0;
2763
2764	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_KERNEL);
2765	if (!mysids)
2766		return -ENOMEM;
2767
2768retry:
2769	mynel = 0;
2770	rcu_read_lock();
2771	policy = rcu_dereference(state->policy);
2772	policydb = &policy->policydb;
2773	sidtab = policy->sidtab;
2774
2775	context_init(&usercon);
2776
2777	rc = -EINVAL;
2778	fromcon = sidtab_search(sidtab, fromsid);
2779	if (!fromcon)
2780		goto out_unlock;
2781
2782	rc = -EINVAL;
2783	user = symtab_search(&policydb->p_users, username);
2784	if (!user)
2785		goto out_unlock;
2786
2787	usercon.user = user->value;
2788
 
 
 
 
 
2789	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2790		role = policydb->role_val_to_struct[i];
2791		usercon.role = i + 1;
2792		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2793			usercon.type = j + 1;
2794
2795			if (mls_setup_user_range(policydb, fromcon, user,
2796						 &usercon))
2797				continue;
2798
2799			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2800			if (rc == -ESTALE) {
2801				rcu_read_unlock();
2802				goto retry;
2803			}
2804			if (rc)
2805				goto out_unlock;
2806			if (mynel < maxnel) {
2807				mysids[mynel++] = sid;
2808			} else {
2809				rc = -ENOMEM;
2810				maxnel += SIDS_NEL;
2811				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2812				if (!mysids2)
2813					goto out_unlock;
2814				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2815				kfree(mysids);
2816				mysids = mysids2;
2817				mysids[mynel++] = sid;
2818			}
2819		}
2820	}
2821	rc = 0;
2822out_unlock:
2823	rcu_read_unlock();
2824	if (rc || !mynel) {
2825		kfree(mysids);
2826		return rc;
2827	}
2828
2829	rc = -ENOMEM;
2830	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2831	if (!mysids2) {
2832		kfree(mysids);
2833		return rc;
2834	}
2835	for (i = 0, j = 0; i < mynel; i++) {
2836		struct av_decision dummy_avd;
2837		rc = avc_has_perm_noaudit(state,
2838					  fromsid, mysids[i],
2839					  SECCLASS_PROCESS, /* kernel value */
2840					  PROCESS__TRANSITION, AVC_STRICT,
2841					  &dummy_avd);
2842		if (!rc)
2843			mysids2[j++] = mysids[i];
2844		cond_resched();
2845	}
 
2846	kfree(mysids);
2847	*sids = mysids2;
2848	*nel = j;
2849	return 0;
 
2850}
2851
2852/**
2853 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2854 * @policy: policy
2855 * @fstype: filesystem type
2856 * @path: path from root of mount
2857 * @orig_sclass: file security class
2858 * @sid: SID for path
2859 *
2860 * Obtain a SID to use for a file in a filesystem that
2861 * cannot support xattr or use a fixed labeling behavior like
2862 * transition SIDs or task SIDs.
2863 *
2864 * WARNING: This function may return -ESTALE, indicating that the caller
2865 * must retry the operation after re-acquiring the policy pointer!
2866 */
2867static inline int __security_genfs_sid(struct selinux_policy *policy,
2868				       const char *fstype,
2869				       const char *path,
2870				       u16 orig_sclass,
2871				       u32 *sid)
2872{
2873	struct policydb *policydb = &policy->policydb;
2874	struct sidtab *sidtab = policy->sidtab;
2875	int len;
2876	u16 sclass;
2877	struct genfs *genfs;
2878	struct ocontext *c;
2879	int cmp = 0;
2880
2881	while (path[0] == '/' && path[1] == '/')
2882		path++;
2883
2884	sclass = unmap_class(&policy->map, orig_sclass);
2885	*sid = SECINITSID_UNLABELED;
2886
2887	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2888		cmp = strcmp(fstype, genfs->fstype);
2889		if (cmp <= 0)
2890			break;
2891	}
2892
 
2893	if (!genfs || cmp)
2894		return -ENOENT;
2895
2896	for (c = genfs->head; c; c = c->next) {
2897		len = strlen(c->u.name);
2898		if ((!c->v.sclass || sclass == c->v.sclass) &&
2899		    (strncmp(c->u.name, path, len) == 0))
2900			break;
2901	}
2902
 
2903	if (!c)
2904		return -ENOENT;
 
 
 
 
 
 
2905
2906	return ocontext_to_sid(sidtab, c, 0, sid);
 
 
 
2907}
2908
2909/**
2910 * security_genfs_sid - Obtain a SID for a file in a filesystem
2911 * @state: SELinux state
2912 * @fstype: filesystem type
2913 * @path: path from root of mount
2914 * @orig_sclass: file security class
2915 * @sid: SID for path
2916 *
2917 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2918 * it afterward.
2919 */
2920int security_genfs_sid(struct selinux_state *state,
2921		       const char *fstype,
2922		       const char *path,
2923		       u16 orig_sclass,
2924		       u32 *sid)
2925{
2926	struct selinux_policy *policy;
2927	int retval;
2928
2929	if (!selinux_initialized(state)) {
2930		*sid = SECINITSID_UNLABELED;
2931		return 0;
2932	}
2933
2934	do {
2935		rcu_read_lock();
2936		policy = rcu_dereference(state->policy);
2937		retval = __security_genfs_sid(policy, fstype, path,
2938					      orig_sclass, sid);
2939		rcu_read_unlock();
2940	} while (retval == -ESTALE);
2941	return retval;
2942}
2943
2944int selinux_policy_genfs_sid(struct selinux_policy *policy,
2945			const char *fstype,
2946			const char *path,
2947			u16 orig_sclass,
2948			u32 *sid)
2949{
2950	/* no lock required, policy is not yet accessible by other threads */
2951	return __security_genfs_sid(policy, fstype, path, orig_sclass, sid);
2952}
2953
2954/**
2955 * security_fs_use - Determine how to handle labeling for a filesystem.
2956 * @state: SELinux state
2957 * @sb: superblock in question
2958 */
2959int security_fs_use(struct selinux_state *state, struct super_block *sb)
2960{
2961	struct selinux_policy *policy;
2962	struct policydb *policydb;
2963	struct sidtab *sidtab;
2964	int rc;
2965	struct ocontext *c;
2966	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2967	const char *fstype = sb->s_type->name;
2968
2969	if (!selinux_initialized(state)) {
2970		sbsec->behavior = SECURITY_FS_USE_NONE;
2971		sbsec->sid = SECINITSID_UNLABELED;
2972		return 0;
2973	}
2974
2975retry:
2976	rcu_read_lock();
2977	policy = rcu_dereference(state->policy);
2978	policydb = &policy->policydb;
2979	sidtab = policy->sidtab;
2980
2981	c = policydb->ocontexts[OCON_FSUSE];
2982	while (c) {
2983		if (strcmp(fstype, c->u.name) == 0)
2984			break;
2985		c = c->next;
2986	}
2987
2988	if (c) {
2989		sbsec->behavior = c->v.behavior;
2990		rc = ocontext_to_sid(sidtab, c, 0, &sbsec->sid);
2991		if (rc == -ESTALE) {
2992			rcu_read_unlock();
2993			goto retry;
 
2994		}
2995		if (rc)
2996			goto out;
2997	} else {
2998		rc = __security_genfs_sid(policy, fstype, "/",
2999					SECCLASS_DIR, &sbsec->sid);
3000		if (rc == -ESTALE) {
3001			rcu_read_unlock();
3002			goto retry;
3003		}
3004		if (rc) {
3005			sbsec->behavior = SECURITY_FS_USE_NONE;
3006			rc = 0;
3007		} else {
3008			sbsec->behavior = SECURITY_FS_USE_GENFS;
3009		}
3010	}
3011
3012out:
3013	rcu_read_unlock();
3014	return rc;
3015}
3016
3017int security_get_bools(struct selinux_policy *policy,
3018		       u32 *len, char ***names, int **values)
3019{
3020	struct policydb *policydb;
3021	u32 i;
3022	int rc;
 
 
 
 
 
 
3023
3024	policydb = &policy->policydb;
 
 
3025
3026	*names = NULL;
3027	*values = NULL;
3028
3029	rc = 0;
3030	*len = policydb->p_bools.nprim;
3031	if (!*len)
3032		goto out;
3033
3034	rc = -ENOMEM;
3035	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
3036	if (!*names)
3037		goto err;
3038
3039	rc = -ENOMEM;
3040	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
3041	if (!*values)
3042		goto err;
3043
3044	for (i = 0; i < *len; i++) {
3045		(*values)[i] = policydb->bool_val_to_struct[i]->state;
3046
3047		rc = -ENOMEM;
3048		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
3049				      GFP_ATOMIC);
3050		if (!(*names)[i])
3051			goto err;
3052	}
3053	rc = 0;
3054out:
 
3055	return rc;
3056err:
3057	if (*names) {
3058		for (i = 0; i < *len; i++)
3059			kfree((*names)[i]);
3060		kfree(*names);
3061	}
3062	kfree(*values);
3063	*len = 0;
3064	*names = NULL;
3065	*values = NULL;
3066	goto out;
3067}
3068
3069
3070int security_set_bools(struct selinux_state *state, u32 len, int *values)
3071{
3072	struct selinux_policy *newpolicy, *oldpolicy;
3073	int rc;
3074	u32 i, seqno = 0;
3075
3076	if (!selinux_initialized(state))
3077		return -EINVAL;
3078
3079	oldpolicy = rcu_dereference_protected(state->policy,
3080					lockdep_is_held(&state->policy_mutex));
3081
3082	/* Consistency check on number of booleans, should never fail */
3083	if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim))
3084		return -EINVAL;
3085
3086	newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL);
3087	if (!newpolicy)
3088		return -ENOMEM;
3089
3090	/*
3091	 * Deep copy only the parts of the policydb that might be
3092	 * modified as a result of changing booleans.
3093	 */
3094	rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb);
3095	if (rc) {
3096		kfree(newpolicy);
3097		return -ENOMEM;
3098	}
3099
3100	/* Update the boolean states in the copy */
3101	for (i = 0; i < len; i++) {
3102		int new_state = !!values[i];
3103		int old_state = newpolicy->policydb.bool_val_to_struct[i]->state;
3104
3105		if (new_state != old_state) {
3106			audit_log(audit_context(), GFP_ATOMIC,
3107				AUDIT_MAC_CONFIG_CHANGE,
3108				"bool=%s val=%d old_val=%d auid=%u ses=%u",
3109				sym_name(&newpolicy->policydb, SYM_BOOLS, i),
3110				new_state,
3111				old_state,
3112				from_kuid(&init_user_ns, audit_get_loginuid(current)),
3113				audit_get_sessionid(current));
3114			newpolicy->policydb.bool_val_to_struct[i]->state = new_state;
3115		}
 
 
 
 
3116	}
3117
3118	/* Re-evaluate the conditional rules in the copy */
3119	evaluate_cond_nodes(&newpolicy->policydb);
3120
3121	/* Set latest granting seqno for new policy */
3122	newpolicy->latest_granting = oldpolicy->latest_granting + 1;
3123	seqno = newpolicy->latest_granting;
3124
3125	/* Install the new policy */
3126	rcu_assign_pointer(state->policy, newpolicy);
3127
3128	/*
3129	 * Free the conditional portions of the old policydb
3130	 * that were copied for the new policy, and the oldpolicy
3131	 * structure itself but not what it references.
3132	 */
3133	synchronize_rcu();
3134	selinux_policy_cond_free(oldpolicy);
3135
3136	/* Notify others of the policy change */
3137	selinux_notify_policy_change(state, seqno);
3138	return 0;
 
 
 
 
 
 
 
 
3139}
3140
3141int security_get_bool_value(struct selinux_state *state,
3142			    u32 index)
3143{
3144	struct selinux_policy *policy;
3145	struct policydb *policydb;
3146	int rc;
3147	u32 len;
3148
3149	if (!selinux_initialized(state))
3150		return 0;
3151
3152	rcu_read_lock();
3153	policy = rcu_dereference(state->policy);
3154	policydb = &policy->policydb;
3155
3156	rc = -EFAULT;
3157	len = policydb->p_bools.nprim;
3158	if (index >= len)
3159		goto out;
3160
3161	rc = policydb->bool_val_to_struct[index]->state;
3162out:
3163	rcu_read_unlock();
3164	return rc;
3165}
3166
3167static int security_preserve_bools(struct selinux_policy *oldpolicy,
3168				struct selinux_policy *newpolicy)
3169{
3170	int rc, *bvalues = NULL;
3171	char **bnames = NULL;
3172	struct cond_bool_datum *booldatum;
3173	u32 i, nbools = 0;
3174
3175	rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues);
3176	if (rc)
3177		goto out;
3178	for (i = 0; i < nbools; i++) {
3179		booldatum = symtab_search(&newpolicy->policydb.p_bools,
3180					bnames[i]);
3181		if (booldatum)
3182			booldatum->state = bvalues[i];
3183	}
3184	evaluate_cond_nodes(&newpolicy->policydb);
 
 
 
 
3185
3186out:
3187	if (bnames) {
3188		for (i = 0; i < nbools; i++)
3189			kfree(bnames[i]);
3190	}
3191	kfree(bnames);
3192	kfree(bvalues);
3193	return rc;
3194}
3195
3196/*
3197 * security_sid_mls_copy() - computes a new sid based on the given
3198 * sid and the mls portion of mls_sid.
3199 */
3200int security_sid_mls_copy(struct selinux_state *state,
3201			  u32 sid, u32 mls_sid, u32 *new_sid)
3202{
3203	struct selinux_policy *policy;
3204	struct policydb *policydb;
3205	struct sidtab *sidtab;
3206	struct context *context1;
3207	struct context *context2;
3208	struct context newcon;
3209	char *s;
3210	u32 len;
3211	int rc;
3212
3213	if (!selinux_initialized(state)) {
 
3214		*new_sid = sid;
3215		return 0;
3216	}
3217
3218retry:
3219	rc = 0;
3220	context_init(&newcon);
3221
3222	rcu_read_lock();
3223	policy = rcu_dereference(state->policy);
3224	policydb = &policy->policydb;
3225	sidtab = policy->sidtab;
3226
3227	if (!policydb->mls_enabled) {
3228		*new_sid = sid;
3229		goto out_unlock;
3230	}
3231
3232	rc = -EINVAL;
3233	context1 = sidtab_search(sidtab, sid);
3234	if (!context1) {
3235		pr_err("SELinux: %s:  unrecognized SID %d\n",
3236			__func__, sid);
3237		goto out_unlock;
3238	}
3239
3240	rc = -EINVAL;
3241	context2 = sidtab_search(sidtab, mls_sid);
3242	if (!context2) {
3243		pr_err("SELinux: %s:  unrecognized SID %d\n",
3244			__func__, mls_sid);
3245		goto out_unlock;
3246	}
3247
3248	newcon.user = context1->user;
3249	newcon.role = context1->role;
3250	newcon.type = context1->type;
3251	rc = mls_context_cpy(&newcon, context2);
3252	if (rc)
3253		goto out_unlock;
3254
3255	/* Check the validity of the new context. */
3256	if (!policydb_context_isvalid(policydb, &newcon)) {
3257		rc = convert_context_handle_invalid_context(state, policydb,
3258							&newcon);
3259		if (rc) {
3260			if (!context_struct_to_string(policydb, &newcon, &s,
3261						      &len)) {
3262				struct audit_buffer *ab;
3263
3264				ab = audit_log_start(audit_context(),
3265						     GFP_ATOMIC,
3266						     AUDIT_SELINUX_ERR);
3267				audit_log_format(ab,
3268						 "op=security_sid_mls_copy invalid_context=");
3269				/* don't record NUL with untrusted strings */
3270				audit_log_n_untrustedstring(ab, s, len - 1);
3271				audit_log_end(ab);
3272				kfree(s);
3273			}
3274			goto out_unlock;
3275		}
3276	}
 
3277	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3278	if (rc == -ESTALE) {
3279		rcu_read_unlock();
3280		context_destroy(&newcon);
3281		goto retry;
3282	}
3283out_unlock:
3284	rcu_read_unlock();
3285	context_destroy(&newcon);
 
3286	return rc;
3287}
3288
3289/**
3290 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3291 * @state: SELinux state
3292 * @nlbl_sid: NetLabel SID
3293 * @nlbl_type: NetLabel labeling protocol type
3294 * @xfrm_sid: XFRM SID
3295 * @peer_sid: network peer sid
3296 *
3297 * Description:
3298 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3299 * resolved into a single SID it is returned via @peer_sid and the function
3300 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3301 * returns a negative value.  A table summarizing the behavior is below:
3302 *
3303 *                                 | function return |      @sid
3304 *   ------------------------------+-----------------+-----------------
3305 *   no peer labels                |        0        |    SECSID_NULL
3306 *   single peer label             |        0        |    <peer_label>
3307 *   multiple, consistent labels   |        0        |    <peer_label>
3308 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3309 *
3310 */
3311int security_net_peersid_resolve(struct selinux_state *state,
3312				 u32 nlbl_sid, u32 nlbl_type,
3313				 u32 xfrm_sid,
3314				 u32 *peer_sid)
3315{
3316	struct selinux_policy *policy;
3317	struct policydb *policydb;
3318	struct sidtab *sidtab;
3319	int rc;
3320	struct context *nlbl_ctx;
3321	struct context *xfrm_ctx;
3322
3323	*peer_sid = SECSID_NULL;
3324
3325	/* handle the common (which also happens to be the set of easy) cases
3326	 * right away, these two if statements catch everything involving a
3327	 * single or absent peer SID/label */
3328	if (xfrm_sid == SECSID_NULL) {
3329		*peer_sid = nlbl_sid;
3330		return 0;
3331	}
3332	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3333	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3334	 * is present */
3335	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3336		*peer_sid = xfrm_sid;
3337		return 0;
3338	}
3339
3340	if (!selinux_initialized(state))
3341		return 0;
3342
3343	rcu_read_lock();
3344	policy = rcu_dereference(state->policy);
3345	policydb = &policy->policydb;
3346	sidtab = policy->sidtab;
3347
3348	/*
3349	 * We don't need to check initialized here since the only way both
3350	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3351	 * security server was initialized and state->initialized was true.
3352	 */
3353	if (!policydb->mls_enabled) {
3354		rc = 0;
3355		goto out;
3356	}
3357
3358	rc = -EINVAL;
3359	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3360	if (!nlbl_ctx) {
3361		pr_err("SELinux: %s:  unrecognized SID %d\n",
3362		       __func__, nlbl_sid);
3363		goto out;
3364	}
3365	rc = -EINVAL;
3366	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3367	if (!xfrm_ctx) {
3368		pr_err("SELinux: %s:  unrecognized SID %d\n",
3369		       __func__, xfrm_sid);
3370		goto out;
3371	}
3372	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3373	if (rc)
3374		goto out;
3375
3376	/* at present NetLabel SIDs/labels really only carry MLS
3377	 * information so if the MLS portion of the NetLabel SID
3378	 * matches the MLS portion of the labeled XFRM SID/label
3379	 * then pass along the XFRM SID as it is the most
3380	 * expressive */
3381	*peer_sid = xfrm_sid;
3382out:
3383	rcu_read_unlock();
3384	return rc;
3385}
3386
3387static int get_classes_callback(void *k, void *d, void *args)
3388{
3389	struct class_datum *datum = d;
3390	char *name = k, **classes = args;
3391	int value = datum->value - 1;
3392
3393	classes[value] = kstrdup(name, GFP_ATOMIC);
3394	if (!classes[value])
3395		return -ENOMEM;
3396
3397	return 0;
3398}
3399
3400int security_get_classes(struct selinux_policy *policy,
3401			 char ***classes, int *nclasses)
3402{
3403	struct policydb *policydb;
3404	int rc;
3405
3406	policydb = &policy->policydb;
 
 
 
 
 
 
3407
3408	rc = -ENOMEM;
3409	*nclasses = policydb->p_classes.nprim;
3410	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3411	if (!*classes)
3412		goto out;
3413
3414	rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3415			 *classes);
3416	if (rc) {
3417		int i;
3418		for (i = 0; i < *nclasses; i++)
3419			kfree((*classes)[i]);
3420		kfree(*classes);
3421	}
3422
3423out:
 
3424	return rc;
3425}
3426
3427static int get_permissions_callback(void *k, void *d, void *args)
3428{
3429	struct perm_datum *datum = d;
3430	char *name = k, **perms = args;
3431	int value = datum->value - 1;
3432
3433	perms[value] = kstrdup(name, GFP_ATOMIC);
3434	if (!perms[value])
3435		return -ENOMEM;
3436
3437	return 0;
3438}
3439
3440int security_get_permissions(struct selinux_policy *policy,
3441			     char *class, char ***perms, int *nperms)
3442{
3443	struct policydb *policydb;
3444	int rc, i;
3445	struct class_datum *match;
3446
3447	policydb = &policy->policydb;
3448
3449	rc = -EINVAL;
3450	match = symtab_search(&policydb->p_classes, class);
3451	if (!match) {
3452		pr_err("SELinux: %s:  unrecognized class %s\n",
3453			__func__, class);
3454		goto out;
3455	}
3456
3457	rc = -ENOMEM;
3458	*nperms = match->permissions.nprim;
3459	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3460	if (!*perms)
3461		goto out;
3462
3463	if (match->comdatum) {
3464		rc = hashtab_map(&match->comdatum->permissions.table,
3465				 get_permissions_callback, *perms);
3466		if (rc)
3467			goto err;
3468	}
3469
3470	rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3471			 *perms);
3472	if (rc)
3473		goto err;
3474
3475out:
 
3476	return rc;
3477
3478err:
 
3479	for (i = 0; i < *nperms; i++)
3480		kfree((*perms)[i]);
3481	kfree(*perms);
3482	return rc;
3483}
3484
3485int security_get_reject_unknown(struct selinux_state *state)
3486{
3487	struct selinux_policy *policy;
3488	int value;
3489
3490	if (!selinux_initialized(state))
3491		return 0;
3492
3493	rcu_read_lock();
3494	policy = rcu_dereference(state->policy);
3495	value = policy->policydb.reject_unknown;
3496	rcu_read_unlock();
3497	return value;
3498}
3499
3500int security_get_allow_unknown(struct selinux_state *state)
3501{
3502	struct selinux_policy *policy;
3503	int value;
3504
3505	if (!selinux_initialized(state))
3506		return 0;
3507
3508	rcu_read_lock();
3509	policy = rcu_dereference(state->policy);
3510	value = policy->policydb.allow_unknown;
3511	rcu_read_unlock();
3512	return value;
3513}
3514
3515/**
3516 * security_policycap_supported - Check for a specific policy capability
3517 * @state: SELinux state
3518 * @req_cap: capability
3519 *
3520 * Description:
3521 * This function queries the currently loaded policy to see if it supports the
3522 * capability specified by @req_cap.  Returns true (1) if the capability is
3523 * supported, false (0) if it isn't supported.
3524 *
3525 */
3526int security_policycap_supported(struct selinux_state *state,
3527				 unsigned int req_cap)
3528{
3529	struct selinux_policy *policy;
3530	int rc;
3531
3532	if (!selinux_initialized(state))
3533		return 0;
3534
3535	rcu_read_lock();
3536	policy = rcu_dereference(state->policy);
3537	rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap);
3538	rcu_read_unlock();
3539
3540	return rc;
3541}
3542
3543struct selinux_audit_rule {
3544	u32 au_seqno;
3545	struct context au_ctxt;
3546};
3547
3548void selinux_audit_rule_free(void *vrule)
3549{
3550	struct selinux_audit_rule *rule = vrule;
3551
3552	if (rule) {
3553		context_destroy(&rule->au_ctxt);
3554		kfree(rule);
3555	}
3556}
3557
3558int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3559{
3560	struct selinux_state *state = &selinux_state;
3561	struct selinux_policy *policy;
3562	struct policydb *policydb;
3563	struct selinux_audit_rule *tmprule;
3564	struct role_datum *roledatum;
3565	struct type_datum *typedatum;
3566	struct user_datum *userdatum;
3567	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3568	int rc = 0;
3569
3570	*rule = NULL;
3571
3572	if (!selinux_initialized(state))
3573		return -EOPNOTSUPP;
3574
3575	switch (field) {
3576	case AUDIT_SUBJ_USER:
3577	case AUDIT_SUBJ_ROLE:
3578	case AUDIT_SUBJ_TYPE:
3579	case AUDIT_OBJ_USER:
3580	case AUDIT_OBJ_ROLE:
3581	case AUDIT_OBJ_TYPE:
3582		/* only 'equals' and 'not equals' fit user, role, and type */
3583		if (op != Audit_equal && op != Audit_not_equal)
3584			return -EINVAL;
3585		break;
3586	case AUDIT_SUBJ_SEN:
3587	case AUDIT_SUBJ_CLR:
3588	case AUDIT_OBJ_LEV_LOW:
3589	case AUDIT_OBJ_LEV_HIGH:
3590		/* we do not allow a range, indicated by the presence of '-' */
3591		if (strchr(rulestr, '-'))
3592			return -EINVAL;
3593		break;
3594	default:
3595		/* only the above fields are valid */
3596		return -EINVAL;
3597	}
3598
3599	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3600	if (!tmprule)
3601		return -ENOMEM;
3602
3603	context_init(&tmprule->au_ctxt);
3604
3605	rcu_read_lock();
3606	policy = rcu_dereference(state->policy);
3607	policydb = &policy->policydb;
3608
3609	tmprule->au_seqno = policy->latest_granting;
3610
3611	switch (field) {
3612	case AUDIT_SUBJ_USER:
3613	case AUDIT_OBJ_USER:
3614		rc = -EINVAL;
3615		userdatum = symtab_search(&policydb->p_users, rulestr);
3616		if (!userdatum)
3617			goto out;
3618		tmprule->au_ctxt.user = userdatum->value;
3619		break;
3620	case AUDIT_SUBJ_ROLE:
3621	case AUDIT_OBJ_ROLE:
3622		rc = -EINVAL;
3623		roledatum = symtab_search(&policydb->p_roles, rulestr);
3624		if (!roledatum)
3625			goto out;
3626		tmprule->au_ctxt.role = roledatum->value;
3627		break;
3628	case AUDIT_SUBJ_TYPE:
3629	case AUDIT_OBJ_TYPE:
3630		rc = -EINVAL;
3631		typedatum = symtab_search(&policydb->p_types, rulestr);
3632		if (!typedatum)
3633			goto out;
3634		tmprule->au_ctxt.type = typedatum->value;
3635		break;
3636	case AUDIT_SUBJ_SEN:
3637	case AUDIT_SUBJ_CLR:
3638	case AUDIT_OBJ_LEV_LOW:
3639	case AUDIT_OBJ_LEV_HIGH:
3640		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3641				     GFP_ATOMIC);
3642		if (rc)
3643			goto out;
3644		break;
3645	}
3646	rc = 0;
3647out:
3648	rcu_read_unlock();
3649
3650	if (rc) {
3651		selinux_audit_rule_free(tmprule);
3652		tmprule = NULL;
3653	}
3654
3655	*rule = tmprule;
3656
3657	return rc;
3658}
3659
3660/* Check to see if the rule contains any selinux fields */
3661int selinux_audit_rule_known(struct audit_krule *rule)
3662{
3663	int i;
3664
3665	for (i = 0; i < rule->field_count; i++) {
3666		struct audit_field *f = &rule->fields[i];
3667		switch (f->type) {
3668		case AUDIT_SUBJ_USER:
3669		case AUDIT_SUBJ_ROLE:
3670		case AUDIT_SUBJ_TYPE:
3671		case AUDIT_SUBJ_SEN:
3672		case AUDIT_SUBJ_CLR:
3673		case AUDIT_OBJ_USER:
3674		case AUDIT_OBJ_ROLE:
3675		case AUDIT_OBJ_TYPE:
3676		case AUDIT_OBJ_LEV_LOW:
3677		case AUDIT_OBJ_LEV_HIGH:
3678			return 1;
3679		}
3680	}
3681
3682	return 0;
3683}
3684
3685int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
 
3686{
3687	struct selinux_state *state = &selinux_state;
3688	struct selinux_policy *policy;
3689	struct context *ctxt;
3690	struct mls_level *level;
3691	struct selinux_audit_rule *rule = vrule;
3692	int match = 0;
3693
3694	if (unlikely(!rule)) {
3695		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3696		return -ENOENT;
3697	}
3698
3699	if (!selinux_initialized(state))
3700		return 0;
3701
3702	rcu_read_lock();
3703
3704	policy = rcu_dereference(state->policy);
3705
3706	if (rule->au_seqno < policy->latest_granting) {
3707		match = -ESTALE;
3708		goto out;
3709	}
3710
3711	ctxt = sidtab_search(policy->sidtab, sid);
3712	if (unlikely(!ctxt)) {
3713		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3714			  sid);
3715		match = -ENOENT;
3716		goto out;
3717	}
3718
3719	/* a field/op pair that is not caught here will simply fall through
3720	   without a match */
3721	switch (field) {
3722	case AUDIT_SUBJ_USER:
3723	case AUDIT_OBJ_USER:
3724		switch (op) {
3725		case Audit_equal:
3726			match = (ctxt->user == rule->au_ctxt.user);
3727			break;
3728		case Audit_not_equal:
3729			match = (ctxt->user != rule->au_ctxt.user);
3730			break;
3731		}
3732		break;
3733	case AUDIT_SUBJ_ROLE:
3734	case AUDIT_OBJ_ROLE:
3735		switch (op) {
3736		case Audit_equal:
3737			match = (ctxt->role == rule->au_ctxt.role);
3738			break;
3739		case Audit_not_equal:
3740			match = (ctxt->role != rule->au_ctxt.role);
3741			break;
3742		}
3743		break;
3744	case AUDIT_SUBJ_TYPE:
3745	case AUDIT_OBJ_TYPE:
3746		switch (op) {
3747		case Audit_equal:
3748			match = (ctxt->type == rule->au_ctxt.type);
3749			break;
3750		case Audit_not_equal:
3751			match = (ctxt->type != rule->au_ctxt.type);
3752			break;
3753		}
3754		break;
3755	case AUDIT_SUBJ_SEN:
3756	case AUDIT_SUBJ_CLR:
3757	case AUDIT_OBJ_LEV_LOW:
3758	case AUDIT_OBJ_LEV_HIGH:
3759		level = ((field == AUDIT_SUBJ_SEN ||
3760			  field == AUDIT_OBJ_LEV_LOW) ?
3761			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3762		switch (op) {
3763		case Audit_equal:
3764			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3765					     level);
3766			break;
3767		case Audit_not_equal:
3768			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3769					      level);
3770			break;
3771		case Audit_lt:
3772			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3773					       level) &&
3774				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3775					       level));
3776			break;
3777		case Audit_le:
3778			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3779					      level);
3780			break;
3781		case Audit_gt:
3782			match = (mls_level_dom(level,
3783					      &rule->au_ctxt.range.level[0]) &&
3784				 !mls_level_eq(level,
3785					       &rule->au_ctxt.range.level[0]));
3786			break;
3787		case Audit_ge:
3788			match = mls_level_dom(level,
3789					      &rule->au_ctxt.range.level[0]);
3790			break;
3791		}
3792	}
3793
3794out:
3795	rcu_read_unlock();
3796	return match;
3797}
3798
 
 
3799static int aurule_avc_callback(u32 event)
3800{
3801	if (event == AVC_CALLBACK_RESET)
3802		return audit_update_lsm_rules();
3803	return 0;
 
 
3804}
3805
3806static int __init aurule_init(void)
3807{
3808	int err;
3809
3810	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3811	if (err)
3812		panic("avc_add_callback() failed, error %d\n", err);
3813
3814	return err;
3815}
3816__initcall(aurule_init);
3817
3818#ifdef CONFIG_NETLABEL
3819/**
3820 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3821 * @secattr: the NetLabel packet security attributes
3822 * @sid: the SELinux SID
3823 *
3824 * Description:
3825 * Attempt to cache the context in @ctx, which was derived from the packet in
3826 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3827 * already been initialized.
3828 *
3829 */
3830static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3831				      u32 sid)
3832{
3833	u32 *sid_cache;
3834
3835	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3836	if (sid_cache == NULL)
3837		return;
3838	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3839	if (secattr->cache == NULL) {
3840		kfree(sid_cache);
3841		return;
3842	}
3843
3844	*sid_cache = sid;
3845	secattr->cache->free = kfree;
3846	secattr->cache->data = sid_cache;
3847	secattr->flags |= NETLBL_SECATTR_CACHE;
3848}
3849
3850/**
3851 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3852 * @state: SELinux state
3853 * @secattr: the NetLabel packet security attributes
3854 * @sid: the SELinux SID
3855 *
3856 * Description:
3857 * Convert the given NetLabel security attributes in @secattr into a
3858 * SELinux SID.  If the @secattr field does not contain a full SELinux
3859 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3860 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3861 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3862 * conversion for future lookups.  Returns zero on success, negative values on
3863 * failure.
3864 *
3865 */
3866int security_netlbl_secattr_to_sid(struct selinux_state *state,
3867				   struct netlbl_lsm_secattr *secattr,
3868				   u32 *sid)
3869{
3870	struct selinux_policy *policy;
3871	struct policydb *policydb;
3872	struct sidtab *sidtab;
3873	int rc;
3874	struct context *ctx;
3875	struct context ctx_new;
3876
3877	if (!selinux_initialized(state)) {
3878		*sid = SECSID_NULL;
3879		return 0;
3880	}
3881
3882retry:
3883	rc = 0;
3884	rcu_read_lock();
3885	policy = rcu_dereference(state->policy);
3886	policydb = &policy->policydb;
3887	sidtab = policy->sidtab;
3888
3889	if (secattr->flags & NETLBL_SECATTR_CACHE)
3890		*sid = *(u32 *)secattr->cache->data;
3891	else if (secattr->flags & NETLBL_SECATTR_SECID)
3892		*sid = secattr->attr.secid;
3893	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3894		rc = -EIDRM;
3895		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3896		if (ctx == NULL)
3897			goto out;
3898
3899		context_init(&ctx_new);
3900		ctx_new.user = ctx->user;
3901		ctx_new.role = ctx->role;
3902		ctx_new.type = ctx->type;
3903		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3904		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3905			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3906			if (rc)
3907				goto out;
3908		}
3909		rc = -EIDRM;
3910		if (!mls_context_isvalid(policydb, &ctx_new)) {
3911			ebitmap_destroy(&ctx_new.range.level[0].cat);
3912			goto out;
3913		}
3914
3915		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3916		ebitmap_destroy(&ctx_new.range.level[0].cat);
3917		if (rc == -ESTALE) {
3918			rcu_read_unlock();
3919			goto retry;
3920		}
3921		if (rc)
3922			goto out;
3923
3924		security_netlbl_cache_add(secattr, *sid);
 
 
3925	} else
3926		*sid = SECSID_NULL;
3927
 
 
 
 
3928out:
3929	rcu_read_unlock();
3930	return rc;
3931}
3932
3933/**
3934 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3935 * @state: SELinux state
3936 * @sid: the SELinux SID
3937 * @secattr: the NetLabel packet security attributes
3938 *
3939 * Description:
3940 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3941 * Returns zero on success, negative values on failure.
3942 *
3943 */
3944int security_netlbl_sid_to_secattr(struct selinux_state *state,
3945				   u32 sid, struct netlbl_lsm_secattr *secattr)
3946{
3947	struct selinux_policy *policy;
3948	struct policydb *policydb;
3949	int rc;
3950	struct context *ctx;
3951
3952	if (!selinux_initialized(state))
3953		return 0;
3954
3955	rcu_read_lock();
3956	policy = rcu_dereference(state->policy);
3957	policydb = &policy->policydb;
3958
3959	rc = -ENOENT;
3960	ctx = sidtab_search(policy->sidtab, sid);
3961	if (ctx == NULL)
3962		goto out;
3963
3964	rc = -ENOMEM;
3965	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3966				  GFP_ATOMIC);
3967	if (secattr->domain == NULL)
3968		goto out;
3969
3970	secattr->attr.secid = sid;
3971	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3972	mls_export_netlbl_lvl(policydb, ctx, secattr);
3973	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3974out:
3975	rcu_read_unlock();
3976	return rc;
3977}
3978#endif /* CONFIG_NETLABEL */
3979
3980/**
3981 * __security_read_policy - read the policy.
3982 * @policy: SELinux policy
3983 * @data: binary policy data
3984 * @len: length of data in bytes
3985 *
3986 */
3987static int __security_read_policy(struct selinux_policy *policy,
3988				  void *data, size_t *len)
3989{
3990	int rc;
3991	struct policy_file fp;
3992
3993	fp.data = data;
3994	fp.len = *len;
3995
3996	rc = policydb_write(&policy->policydb, &fp);
3997	if (rc)
3998		return rc;
3999
4000	*len = (unsigned long)fp.data - (unsigned long)data;
4001	return 0;
4002}
4003
4004/**
4005 * security_read_policy - read the policy.
4006 * @state: selinux_state
4007 * @data: binary policy data
4008 * @len: length of data in bytes
4009 *
4010 */
4011int security_read_policy(struct selinux_state *state,
4012			 void **data, size_t *len)
4013{
4014	struct selinux_policy *policy;
 
 
4015
4016	policy = rcu_dereference_protected(
4017			state->policy, lockdep_is_held(&state->policy_mutex));
4018	if (!policy)
4019		return -EINVAL;
4020
4021	*len = policy->policydb.len;
 
4022	*data = vmalloc_user(*len);
4023	if (!*data)
4024		return -ENOMEM;
4025
4026	return __security_read_policy(policy, *data, len);
4027}
4028
4029/**
4030 * security_read_state_kernel - read the policy.
4031 * @state: selinux_state
4032 * @data: binary policy data
4033 * @len: length of data in bytes
4034 *
4035 * Allocates kernel memory for reading SELinux policy.
4036 * This function is for internal use only and should not
4037 * be used for returning data to user space.
4038 *
4039 * This function must be called with policy_mutex held.
4040 */
4041int security_read_state_kernel(struct selinux_state *state,
4042			       void **data, size_t *len)
4043{
4044	int err;
4045	struct selinux_policy *policy;
4046
4047	policy = rcu_dereference_protected(
4048			state->policy, lockdep_is_held(&state->policy_mutex));
4049	if (!policy)
4050		return -EINVAL;
4051
4052	*len = policy->policydb.len;
4053	*data = vmalloc(*len);
4054	if (!*data)
4055		return -ENOMEM;
4056
4057	err = __security_read_policy(policy, *data, len);
4058	if (err) {
4059		vfree(*data);
4060		*data = NULL;
4061		*len = 0;
4062	}
4063	return err;
4064}
v4.17
 
   1/*
   2 * Implementation of the security services.
   3 *
   4 * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
   5 *	     James Morris <jmorris@redhat.com>
   6 *
   7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   8 *
   9 *	Support for enhanced MLS infrastructure.
  10 *	Support for context based audit filters.
  11 *
  12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  13 *
  14 *	Added conditional policy language extensions
  15 *
  16 * Updated: Hewlett-Packard <paul@paul-moore.com>
  17 *
  18 *      Added support for NetLabel
  19 *      Added support for the policy capability bitmap
  20 *
  21 * Updated: Chad Sellers <csellers@tresys.com>
  22 *
  23 *  Added validation of kernel classes and permissions
  24 *
  25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  26 *
  27 *  Added support for bounds domain and audit messaged on masked permissions
  28 *
  29 * Updated: Guido Trentalancia <guido@trentalancia.com>
  30 *
  31 *  Added support for runtime switching of the policy type
  32 *
  33 * Copyright (C) 2008, 2009 NEC Corporation
  34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
  38 *	This program is free software; you can redistribute it and/or modify
  39 *	it under the terms of the GNU General Public License as published by
  40 *	the Free Software Foundation, version 2.
  41 */
  42#include <linux/kernel.h>
  43#include <linux/slab.h>
  44#include <linux/string.h>
  45#include <linux/spinlock.h>
  46#include <linux/rcupdate.h>
  47#include <linux/errno.h>
  48#include <linux/in.h>
  49#include <linux/sched.h>
  50#include <linux/audit.h>
  51#include <linux/mutex.h>
  52#include <linux/selinux.h>
  53#include <linux/flex_array.h>
  54#include <linux/vmalloc.h>
 
  55#include <net/netlabel.h>
  56
  57#include "flask.h"
  58#include "avc.h"
  59#include "avc_ss.h"
  60#include "security.h"
  61#include "context.h"
  62#include "policydb.h"
  63#include "sidtab.h"
  64#include "services.h"
  65#include "conditional.h"
  66#include "mls.h"
  67#include "objsec.h"
  68#include "netlabel.h"
  69#include "xfrm.h"
  70#include "ebitmap.h"
  71#include "audit.h"
 
 
  72
  73/* Policy capability names */
  74char *selinux_policycap_names[__POLICYDB_CAPABILITY_MAX] = {
  75	"network_peer_controls",
  76	"open_perms",
  77	"extended_socket_class",
  78	"always_check_network",
  79	"cgroup_seclabel",
  80	"nnp_nosuid_transition"
  81};
  82
  83static struct selinux_ss selinux_ss;
  84
  85void selinux_ss_init(struct selinux_ss **ss)
  86{
  87	rwlock_init(&selinux_ss.policy_rwlock);
  88	mutex_init(&selinux_ss.status_lock);
  89	*ss = &selinux_ss;
  90}
  91
  92/* Forward declaration. */
  93static int context_struct_to_string(struct policydb *policydb,
  94				    struct context *context,
  95				    char **scontext,
  96				    u32 *scontext_len);
  97
 
 
 
 
 
 
  98static void context_struct_compute_av(struct policydb *policydb,
  99				      struct context *scontext,
 100				      struct context *tcontext,
 101				      u16 tclass,
 102				      struct av_decision *avd,
 103				      struct extended_perms *xperms);
 104
 105static int selinux_set_mapping(struct policydb *pol,
 106			       struct security_class_mapping *map,
 107			       struct selinux_map *out_map)
 108{
 109	u16 i, j;
 110	unsigned k;
 111	bool print_unknown_handle = false;
 112
 113	/* Find number of classes in the input mapping */
 114	if (!map)
 115		return -EINVAL;
 116	i = 0;
 117	while (map[i].name)
 118		i++;
 119
 120	/* Allocate space for the class records, plus one for class zero */
 121	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
 122	if (!out_map->mapping)
 123		return -ENOMEM;
 124
 125	/* Store the raw class and permission values */
 126	j = 0;
 127	while (map[j].name) {
 128		struct security_class_mapping *p_in = map + (j++);
 129		struct selinux_mapping *p_out = out_map->mapping + j;
 130
 131		/* An empty class string skips ahead */
 132		if (!strcmp(p_in->name, "")) {
 133			p_out->num_perms = 0;
 134			continue;
 135		}
 136
 137		p_out->value = string_to_security_class(pol, p_in->name);
 138		if (!p_out->value) {
 139			printk(KERN_INFO
 140			       "SELinux:  Class %s not defined in policy.\n",
 141			       p_in->name);
 142			if (pol->reject_unknown)
 143				goto err;
 144			p_out->num_perms = 0;
 145			print_unknown_handle = true;
 146			continue;
 147		}
 148
 149		k = 0;
 150		while (p_in->perms[k]) {
 151			/* An empty permission string skips ahead */
 152			if (!*p_in->perms[k]) {
 153				k++;
 154				continue;
 155			}
 156			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 157							    p_in->perms[k]);
 158			if (!p_out->perms[k]) {
 159				printk(KERN_INFO
 160				       "SELinux:  Permission %s in class %s not defined in policy.\n",
 161				       p_in->perms[k], p_in->name);
 162				if (pol->reject_unknown)
 163					goto err;
 164				print_unknown_handle = true;
 165			}
 166
 167			k++;
 168		}
 169		p_out->num_perms = k;
 170	}
 171
 172	if (print_unknown_handle)
 173		printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
 174		       pol->allow_unknown ? "allowed" : "denied");
 175
 176	out_map->size = i;
 177	return 0;
 178err:
 179	kfree(out_map->mapping);
 180	out_map->mapping = NULL;
 181	return -EINVAL;
 182}
 183
 184/*
 185 * Get real, policy values from mapped values
 186 */
 187
 188static u16 unmap_class(struct selinux_map *map, u16 tclass)
 189{
 190	if (tclass < map->size)
 191		return map->mapping[tclass].value;
 192
 193	return tclass;
 194}
 195
 196/*
 197 * Get kernel value for class from its policy value
 198 */
 199static u16 map_class(struct selinux_map *map, u16 pol_value)
 200{
 201	u16 i;
 202
 203	for (i = 1; i < map->size; i++) {
 204		if (map->mapping[i].value == pol_value)
 205			return i;
 206	}
 207
 208	return SECCLASS_NULL;
 209}
 210
 211static void map_decision(struct selinux_map *map,
 212			 u16 tclass, struct av_decision *avd,
 213			 int allow_unknown)
 214{
 215	if (tclass < map->size) {
 216		struct selinux_mapping *mapping = &map->mapping[tclass];
 217		unsigned int i, n = mapping->num_perms;
 218		u32 result;
 219
 220		for (i = 0, result = 0; i < n; i++) {
 221			if (avd->allowed & mapping->perms[i])
 222				result |= 1<<i;
 223			if (allow_unknown && !mapping->perms[i])
 224				result |= 1<<i;
 225		}
 226		avd->allowed = result;
 227
 228		for (i = 0, result = 0; i < n; i++)
 229			if (avd->auditallow & mapping->perms[i])
 230				result |= 1<<i;
 231		avd->auditallow = result;
 232
 233		for (i = 0, result = 0; i < n; i++) {
 234			if (avd->auditdeny & mapping->perms[i])
 235				result |= 1<<i;
 236			if (!allow_unknown && !mapping->perms[i])
 237				result |= 1<<i;
 238		}
 239		/*
 240		 * In case the kernel has a bug and requests a permission
 241		 * between num_perms and the maximum permission number, we
 242		 * should audit that denial
 243		 */
 244		for (; i < (sizeof(u32)*8); i++)
 245			result |= 1<<i;
 246		avd->auditdeny = result;
 247	}
 248}
 249
 250int security_mls_enabled(struct selinux_state *state)
 251{
 252	struct policydb *p = &state->ss->policydb;
 
 
 
 
 253
 254	return p->mls_enabled;
 
 
 
 
 255}
 256
 257/*
 258 * Return the boolean value of a constraint expression
 259 * when it is applied to the specified source and target
 260 * security contexts.
 261 *
 262 * xcontext is a special beast...  It is used by the validatetrans rules
 263 * only.  For these rules, scontext is the context before the transition,
 264 * tcontext is the context after the transition, and xcontext is the context
 265 * of the process performing the transition.  All other callers of
 266 * constraint_expr_eval should pass in NULL for xcontext.
 267 */
 268static int constraint_expr_eval(struct policydb *policydb,
 269				struct context *scontext,
 270				struct context *tcontext,
 271				struct context *xcontext,
 272				struct constraint_expr *cexpr)
 273{
 274	u32 val1, val2;
 275	struct context *c;
 276	struct role_datum *r1, *r2;
 277	struct mls_level *l1, *l2;
 278	struct constraint_expr *e;
 279	int s[CEXPR_MAXDEPTH];
 280	int sp = -1;
 281
 282	for (e = cexpr; e; e = e->next) {
 283		switch (e->expr_type) {
 284		case CEXPR_NOT:
 285			BUG_ON(sp < 0);
 286			s[sp] = !s[sp];
 287			break;
 288		case CEXPR_AND:
 289			BUG_ON(sp < 1);
 290			sp--;
 291			s[sp] &= s[sp + 1];
 292			break;
 293		case CEXPR_OR:
 294			BUG_ON(sp < 1);
 295			sp--;
 296			s[sp] |= s[sp + 1];
 297			break;
 298		case CEXPR_ATTR:
 299			if (sp == (CEXPR_MAXDEPTH - 1))
 300				return 0;
 301			switch (e->attr) {
 302			case CEXPR_USER:
 303				val1 = scontext->user;
 304				val2 = tcontext->user;
 305				break;
 306			case CEXPR_TYPE:
 307				val1 = scontext->type;
 308				val2 = tcontext->type;
 309				break;
 310			case CEXPR_ROLE:
 311				val1 = scontext->role;
 312				val2 = tcontext->role;
 313				r1 = policydb->role_val_to_struct[val1 - 1];
 314				r2 = policydb->role_val_to_struct[val2 - 1];
 315				switch (e->op) {
 316				case CEXPR_DOM:
 317					s[++sp] = ebitmap_get_bit(&r1->dominates,
 318								  val2 - 1);
 319					continue;
 320				case CEXPR_DOMBY:
 321					s[++sp] = ebitmap_get_bit(&r2->dominates,
 322								  val1 - 1);
 323					continue;
 324				case CEXPR_INCOMP:
 325					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 326								    val2 - 1) &&
 327						   !ebitmap_get_bit(&r2->dominates,
 328								    val1 - 1));
 329					continue;
 330				default:
 331					break;
 332				}
 333				break;
 334			case CEXPR_L1L2:
 335				l1 = &(scontext->range.level[0]);
 336				l2 = &(tcontext->range.level[0]);
 337				goto mls_ops;
 338			case CEXPR_L1H2:
 339				l1 = &(scontext->range.level[0]);
 340				l2 = &(tcontext->range.level[1]);
 341				goto mls_ops;
 342			case CEXPR_H1L2:
 343				l1 = &(scontext->range.level[1]);
 344				l2 = &(tcontext->range.level[0]);
 345				goto mls_ops;
 346			case CEXPR_H1H2:
 347				l1 = &(scontext->range.level[1]);
 348				l2 = &(tcontext->range.level[1]);
 349				goto mls_ops;
 350			case CEXPR_L1H1:
 351				l1 = &(scontext->range.level[0]);
 352				l2 = &(scontext->range.level[1]);
 353				goto mls_ops;
 354			case CEXPR_L2H2:
 355				l1 = &(tcontext->range.level[0]);
 356				l2 = &(tcontext->range.level[1]);
 357				goto mls_ops;
 358mls_ops:
 359			switch (e->op) {
 360			case CEXPR_EQ:
 361				s[++sp] = mls_level_eq(l1, l2);
 362				continue;
 363			case CEXPR_NEQ:
 364				s[++sp] = !mls_level_eq(l1, l2);
 365				continue;
 366			case CEXPR_DOM:
 367				s[++sp] = mls_level_dom(l1, l2);
 368				continue;
 369			case CEXPR_DOMBY:
 370				s[++sp] = mls_level_dom(l2, l1);
 371				continue;
 372			case CEXPR_INCOMP:
 373				s[++sp] = mls_level_incomp(l2, l1);
 374				continue;
 375			default:
 376				BUG();
 377				return 0;
 378			}
 379			break;
 380			default:
 381				BUG();
 382				return 0;
 383			}
 384
 385			switch (e->op) {
 386			case CEXPR_EQ:
 387				s[++sp] = (val1 == val2);
 388				break;
 389			case CEXPR_NEQ:
 390				s[++sp] = (val1 != val2);
 391				break;
 392			default:
 393				BUG();
 394				return 0;
 395			}
 396			break;
 397		case CEXPR_NAMES:
 398			if (sp == (CEXPR_MAXDEPTH-1))
 399				return 0;
 400			c = scontext;
 401			if (e->attr & CEXPR_TARGET)
 402				c = tcontext;
 403			else if (e->attr & CEXPR_XTARGET) {
 404				c = xcontext;
 405				if (!c) {
 406					BUG();
 407					return 0;
 408				}
 409			}
 410			if (e->attr & CEXPR_USER)
 411				val1 = c->user;
 412			else if (e->attr & CEXPR_ROLE)
 413				val1 = c->role;
 414			else if (e->attr & CEXPR_TYPE)
 415				val1 = c->type;
 416			else {
 417				BUG();
 418				return 0;
 419			}
 420
 421			switch (e->op) {
 422			case CEXPR_EQ:
 423				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 424				break;
 425			case CEXPR_NEQ:
 426				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 427				break;
 428			default:
 429				BUG();
 430				return 0;
 431			}
 432			break;
 433		default:
 434			BUG();
 435			return 0;
 436		}
 437	}
 438
 439	BUG_ON(sp != 0);
 440	return s[0];
 441}
 442
 443/*
 444 * security_dump_masked_av - dumps masked permissions during
 445 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 446 */
 447static int dump_masked_av_helper(void *k, void *d, void *args)
 448{
 449	struct perm_datum *pdatum = d;
 450	char **permission_names = args;
 451
 452	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 453
 454	permission_names[pdatum->value - 1] = (char *)k;
 455
 456	return 0;
 457}
 458
 459static void security_dump_masked_av(struct policydb *policydb,
 460				    struct context *scontext,
 461				    struct context *tcontext,
 462				    u16 tclass,
 463				    u32 permissions,
 464				    const char *reason)
 465{
 466	struct common_datum *common_dat;
 467	struct class_datum *tclass_dat;
 468	struct audit_buffer *ab;
 469	char *tclass_name;
 470	char *scontext_name = NULL;
 471	char *tcontext_name = NULL;
 472	char *permission_names[32];
 473	int index;
 474	u32 length;
 475	bool need_comma = false;
 476
 477	if (!permissions)
 478		return;
 479
 480	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
 481	tclass_dat = policydb->class_val_to_struct[tclass - 1];
 482	common_dat = tclass_dat->comdatum;
 483
 484	/* init permission_names */
 485	if (common_dat &&
 486	    hashtab_map(common_dat->permissions.table,
 487			dump_masked_av_helper, permission_names) < 0)
 488		goto out;
 489
 490	if (hashtab_map(tclass_dat->permissions.table,
 491			dump_masked_av_helper, permission_names) < 0)
 492		goto out;
 493
 494	/* get scontext/tcontext in text form */
 495	if (context_struct_to_string(policydb, scontext,
 496				     &scontext_name, &length) < 0)
 497		goto out;
 498
 499	if (context_struct_to_string(policydb, tcontext,
 500				     &tcontext_name, &length) < 0)
 501		goto out;
 502
 503	/* audit a message */
 504	ab = audit_log_start(current->audit_context,
 505			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
 506	if (!ab)
 507		goto out;
 508
 509	audit_log_format(ab, "op=security_compute_av reason=%s "
 510			 "scontext=%s tcontext=%s tclass=%s perms=",
 511			 reason, scontext_name, tcontext_name, tclass_name);
 512
 513	for (index = 0; index < 32; index++) {
 514		u32 mask = (1 << index);
 515
 516		if ((mask & permissions) == 0)
 517			continue;
 518
 519		audit_log_format(ab, "%s%s",
 520				 need_comma ? "," : "",
 521				 permission_names[index]
 522				 ? permission_names[index] : "????");
 523		need_comma = true;
 524	}
 525	audit_log_end(ab);
 526out:
 527	/* release scontext/tcontext */
 528	kfree(tcontext_name);
 529	kfree(scontext_name);
 530
 531	return;
 532}
 533
 534/*
 535 * security_boundary_permission - drops violated permissions
 536 * on boundary constraint.
 537 */
 538static void type_attribute_bounds_av(struct policydb *policydb,
 539				     struct context *scontext,
 540				     struct context *tcontext,
 541				     u16 tclass,
 542				     struct av_decision *avd)
 543{
 544	struct context lo_scontext;
 545	struct context lo_tcontext, *tcontextp = tcontext;
 546	struct av_decision lo_avd;
 547	struct type_datum *source;
 548	struct type_datum *target;
 549	u32 masked = 0;
 550
 551	source = flex_array_get_ptr(policydb->type_val_to_struct_array,
 552				    scontext->type - 1);
 553	BUG_ON(!source);
 554
 555	if (!source->bounds)
 556		return;
 557
 558	target = flex_array_get_ptr(policydb->type_val_to_struct_array,
 559				    tcontext->type - 1);
 560	BUG_ON(!target);
 561
 562	memset(&lo_avd, 0, sizeof(lo_avd));
 563
 564	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 565	lo_scontext.type = source->bounds;
 566
 567	if (target->bounds) {
 568		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 569		lo_tcontext.type = target->bounds;
 570		tcontextp = &lo_tcontext;
 571	}
 572
 573	context_struct_compute_av(policydb, &lo_scontext,
 574				  tcontextp,
 575				  tclass,
 576				  &lo_avd,
 577				  NULL);
 578
 579	masked = ~lo_avd.allowed & avd->allowed;
 580
 581	if (likely(!masked))
 582		return;		/* no masked permission */
 583
 584	/* mask violated permissions */
 585	avd->allowed &= ~masked;
 586
 587	/* audit masked permissions */
 588	security_dump_masked_av(policydb, scontext, tcontext,
 589				tclass, masked, "bounds");
 590}
 591
 592/*
 593 * flag which drivers have permissions
 594 * only looking for ioctl based extended permssions
 595 */
 596void services_compute_xperms_drivers(
 597		struct extended_perms *xperms,
 598		struct avtab_node *node)
 599{
 600	unsigned int i;
 601
 602	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 603		/* if one or more driver has all permissions allowed */
 604		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
 605			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
 606	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 607		/* if allowing permissions within a driver */
 608		security_xperm_set(xperms->drivers.p,
 609					node->datum.u.xperms->driver);
 610	}
 611
 612	/* If no ioctl commands are allowed, ignore auditallow and auditdeny */
 613	if (node->key.specified & AVTAB_XPERMS_ALLOWED)
 614		xperms->len = 1;
 615}
 616
 617/*
 618 * Compute access vectors and extended permissions based on a context
 619 * structure pair for the permissions in a particular class.
 620 */
 621static void context_struct_compute_av(struct policydb *policydb,
 622				      struct context *scontext,
 623				      struct context *tcontext,
 624				      u16 tclass,
 625				      struct av_decision *avd,
 626				      struct extended_perms *xperms)
 627{
 628	struct constraint_node *constraint;
 629	struct role_allow *ra;
 630	struct avtab_key avkey;
 631	struct avtab_node *node;
 632	struct class_datum *tclass_datum;
 633	struct ebitmap *sattr, *tattr;
 634	struct ebitmap_node *snode, *tnode;
 635	unsigned int i, j;
 636
 637	avd->allowed = 0;
 638	avd->auditallow = 0;
 639	avd->auditdeny = 0xffffffff;
 640	if (xperms) {
 641		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
 642		xperms->len = 0;
 643	}
 644
 645	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
 646		if (printk_ratelimit())
 647			printk(KERN_WARNING "SELinux:  Invalid class %hu\n", tclass);
 648		return;
 649	}
 650
 651	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 652
 653	/*
 654	 * If a specific type enforcement rule was defined for
 655	 * this permission check, then use it.
 656	 */
 657	avkey.target_class = tclass;
 658	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
 659	sattr = flex_array_get(policydb->type_attr_map_array,
 660			       scontext->type - 1);
 661	BUG_ON(!sattr);
 662	tattr = flex_array_get(policydb->type_attr_map_array,
 663			       tcontext->type - 1);
 664	BUG_ON(!tattr);
 665	ebitmap_for_each_positive_bit(sattr, snode, i) {
 666		ebitmap_for_each_positive_bit(tattr, tnode, j) {
 667			avkey.source_type = i + 1;
 668			avkey.target_type = j + 1;
 669			for (node = avtab_search_node(&policydb->te_avtab,
 670						      &avkey);
 671			     node;
 672			     node = avtab_search_node_next(node, avkey.specified)) {
 673				if (node->key.specified == AVTAB_ALLOWED)
 674					avd->allowed |= node->datum.u.data;
 675				else if (node->key.specified == AVTAB_AUDITALLOW)
 676					avd->auditallow |= node->datum.u.data;
 677				else if (node->key.specified == AVTAB_AUDITDENY)
 678					avd->auditdeny &= node->datum.u.data;
 679				else if (xperms && (node->key.specified & AVTAB_XPERMS))
 680					services_compute_xperms_drivers(xperms, node);
 681			}
 682
 683			/* Check conditional av table for additional permissions */
 684			cond_compute_av(&policydb->te_cond_avtab, &avkey,
 685					avd, xperms);
 686
 687		}
 688	}
 689
 690	/*
 691	 * Remove any permissions prohibited by a constraint (this includes
 692	 * the MLS policy).
 693	 */
 694	constraint = tclass_datum->constraints;
 695	while (constraint) {
 696		if ((constraint->permissions & (avd->allowed)) &&
 697		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
 698					  constraint->expr)) {
 699			avd->allowed &= ~(constraint->permissions);
 700		}
 701		constraint = constraint->next;
 702	}
 703
 704	/*
 705	 * If checking process transition permission and the
 706	 * role is changing, then check the (current_role, new_role)
 707	 * pair.
 708	 */
 709	if (tclass == policydb->process_class &&
 710	    (avd->allowed & policydb->process_trans_perms) &&
 711	    scontext->role != tcontext->role) {
 712		for (ra = policydb->role_allow; ra; ra = ra->next) {
 713			if (scontext->role == ra->role &&
 714			    tcontext->role == ra->new_role)
 715				break;
 716		}
 717		if (!ra)
 718			avd->allowed &= ~policydb->process_trans_perms;
 719	}
 720
 721	/*
 722	 * If the given source and target types have boundary
 723	 * constraint, lazy checks have to mask any violated
 724	 * permission and notice it to userspace via audit.
 725	 */
 726	type_attribute_bounds_av(policydb, scontext, tcontext,
 727				 tclass, avd);
 728}
 729
 730static int security_validtrans_handle_fail(struct selinux_state *state,
 731					   struct context *ocontext,
 732					   struct context *ncontext,
 733					   struct context *tcontext,
 734					   u16 tclass)
 
 735{
 736	struct policydb *p = &state->ss->policydb;
 
 737	char *o = NULL, *n = NULL, *t = NULL;
 738	u32 olen, nlen, tlen;
 739
 740	if (context_struct_to_string(p, ocontext, &o, &olen))
 741		goto out;
 742	if (context_struct_to_string(p, ncontext, &n, &nlen))
 743		goto out;
 744	if (context_struct_to_string(p, tcontext, &t, &tlen))
 745		goto out;
 746	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
 747		  "op=security_validate_transition seresult=denied"
 748		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 749		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
 750out:
 751	kfree(o);
 752	kfree(n);
 753	kfree(t);
 754
 755	if (!enforcing_enabled(state))
 756		return 0;
 757	return -EPERM;
 758}
 759
 760static int security_compute_validatetrans(struct selinux_state *state,
 761					  u32 oldsid, u32 newsid, u32 tasksid,
 762					  u16 orig_tclass, bool user)
 763{
 
 764	struct policydb *policydb;
 765	struct sidtab *sidtab;
 766	struct context *ocontext;
 767	struct context *ncontext;
 768	struct context *tcontext;
 769	struct class_datum *tclass_datum;
 770	struct constraint_node *constraint;
 771	u16 tclass;
 772	int rc = 0;
 773
 774
 775	if (!state->initialized)
 776		return 0;
 777
 778	read_lock(&state->ss->policy_rwlock);
 779
 780	policydb = &state->ss->policydb;
 781	sidtab = &state->ss->sidtab;
 
 782
 783	if (!user)
 784		tclass = unmap_class(&state->ss->map, orig_tclass);
 785	else
 786		tclass = orig_tclass;
 787
 788	if (!tclass || tclass > policydb->p_classes.nprim) {
 789		rc = -EINVAL;
 790		goto out;
 791	}
 792	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 793
 794	ocontext = sidtab_search(sidtab, oldsid);
 795	if (!ocontext) {
 796		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 797			__func__, oldsid);
 798		rc = -EINVAL;
 799		goto out;
 800	}
 801
 802	ncontext = sidtab_search(sidtab, newsid);
 803	if (!ncontext) {
 804		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 805			__func__, newsid);
 806		rc = -EINVAL;
 807		goto out;
 808	}
 809
 810	tcontext = sidtab_search(sidtab, tasksid);
 811	if (!tcontext) {
 812		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 813			__func__, tasksid);
 814		rc = -EINVAL;
 815		goto out;
 816	}
 817
 818	constraint = tclass_datum->validatetrans;
 819	while (constraint) {
 820		if (!constraint_expr_eval(policydb, ocontext, ncontext,
 821					  tcontext, constraint->expr)) {
 
 822			if (user)
 823				rc = -EPERM;
 824			else
 825				rc = security_validtrans_handle_fail(state,
 826								     ocontext,
 827								     ncontext,
 828								     tcontext,
 829								     tclass);
 
 830			goto out;
 831		}
 832		constraint = constraint->next;
 833	}
 834
 835out:
 836	read_unlock(&state->ss->policy_rwlock);
 837	return rc;
 838}
 839
 840int security_validate_transition_user(struct selinux_state *state,
 841				      u32 oldsid, u32 newsid, u32 tasksid,
 842				      u16 tclass)
 843{
 844	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 845					      tclass, true);
 846}
 847
 848int security_validate_transition(struct selinux_state *state,
 849				 u32 oldsid, u32 newsid, u32 tasksid,
 850				 u16 orig_tclass)
 851{
 852	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 853					      orig_tclass, false);
 854}
 855
 856/*
 857 * security_bounded_transition - check whether the given
 858 * transition is directed to bounded, or not.
 859 * It returns 0, if @newsid is bounded by @oldsid.
 860 * Otherwise, it returns error code.
 861 *
 
 862 * @oldsid : current security identifier
 863 * @newsid : destinated security identifier
 864 */
 865int security_bounded_transition(struct selinux_state *state,
 866				u32 old_sid, u32 new_sid)
 867{
 
 868	struct policydb *policydb;
 869	struct sidtab *sidtab;
 870	struct context *old_context, *new_context;
 871	struct type_datum *type;
 872	int index;
 873	int rc;
 874
 875	if (!state->initialized)
 876		return 0;
 877
 878	read_lock(&state->ss->policy_rwlock);
 879
 880	policydb = &state->ss->policydb;
 881	sidtab = &state->ss->sidtab;
 882
 883	rc = -EINVAL;
 884	old_context = sidtab_search(sidtab, old_sid);
 885	if (!old_context) {
 886		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
 887		       __func__, old_sid);
 888		goto out;
 889	}
 890
 891	rc = -EINVAL;
 892	new_context = sidtab_search(sidtab, new_sid);
 893	if (!new_context) {
 894		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
 895		       __func__, new_sid);
 896		goto out;
 897	}
 898
 899	rc = 0;
 900	/* type/domain unchanged */
 901	if (old_context->type == new_context->type)
 902		goto out;
 903
 904	index = new_context->type;
 905	while (true) {
 906		type = flex_array_get_ptr(policydb->type_val_to_struct_array,
 907					  index - 1);
 908		BUG_ON(!type);
 909
 910		/* not bounded anymore */
 911		rc = -EPERM;
 912		if (!type->bounds)
 913			break;
 914
 915		/* @newsid is bounded by @oldsid */
 916		rc = 0;
 917		if (type->bounds == old_context->type)
 918			break;
 919
 920		index = type->bounds;
 921	}
 922
 923	if (rc) {
 924		char *old_name = NULL;
 925		char *new_name = NULL;
 926		u32 length;
 927
 928		if (!context_struct_to_string(policydb, old_context,
 929					      &old_name, &length) &&
 930		    !context_struct_to_string(policydb, new_context,
 931					      &new_name, &length)) {
 932			audit_log(current->audit_context,
 933				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 934				  "op=security_bounded_transition "
 935				  "seresult=denied "
 936				  "oldcontext=%s newcontext=%s",
 937				  old_name, new_name);
 938		}
 939		kfree(new_name);
 940		kfree(old_name);
 941	}
 942out:
 943	read_unlock(&state->ss->policy_rwlock);
 944
 945	return rc;
 946}
 947
 948static void avd_init(struct selinux_state *state, struct av_decision *avd)
 949{
 950	avd->allowed = 0;
 951	avd->auditallow = 0;
 952	avd->auditdeny = 0xffffffff;
 953	avd->seqno = state->ss->latest_granting;
 
 
 
 954	avd->flags = 0;
 955}
 956
 957void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
 958					struct avtab_node *node)
 959{
 960	unsigned int i;
 961
 962	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 963		if (xpermd->driver != node->datum.u.xperms->driver)
 964			return;
 965	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 966		if (!security_xperm_test(node->datum.u.xperms->perms.p,
 967					xpermd->driver))
 968			return;
 969	} else {
 970		BUG();
 971	}
 972
 973	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
 974		xpermd->used |= XPERMS_ALLOWED;
 975		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 976			memset(xpermd->allowed->p, 0xff,
 977					sizeof(xpermd->allowed->p));
 978		}
 979		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 980			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
 981				xpermd->allowed->p[i] |=
 982					node->datum.u.xperms->perms.p[i];
 983		}
 984	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
 985		xpermd->used |= XPERMS_AUDITALLOW;
 986		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 987			memset(xpermd->auditallow->p, 0xff,
 988					sizeof(xpermd->auditallow->p));
 989		}
 990		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 991			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
 992				xpermd->auditallow->p[i] |=
 993					node->datum.u.xperms->perms.p[i];
 994		}
 995	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
 996		xpermd->used |= XPERMS_DONTAUDIT;
 997		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 998			memset(xpermd->dontaudit->p, 0xff,
 999					sizeof(xpermd->dontaudit->p));
1000		}
1001		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
1002			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
1003				xpermd->dontaudit->p[i] |=
1004					node->datum.u.xperms->perms.p[i];
1005		}
1006	} else {
1007		BUG();
1008	}
1009}
1010
1011void security_compute_xperms_decision(struct selinux_state *state,
1012				      u32 ssid,
1013				      u32 tsid,
1014				      u16 orig_tclass,
1015				      u8 driver,
1016				      struct extended_perms_decision *xpermd)
1017{
 
1018	struct policydb *policydb;
1019	struct sidtab *sidtab;
1020	u16 tclass;
1021	struct context *scontext, *tcontext;
1022	struct avtab_key avkey;
1023	struct avtab_node *node;
1024	struct ebitmap *sattr, *tattr;
1025	struct ebitmap_node *snode, *tnode;
1026	unsigned int i, j;
1027
1028	xpermd->driver = driver;
1029	xpermd->used = 0;
1030	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1031	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1032	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1033
1034	read_lock(&state->ss->policy_rwlock);
1035	if (!state->initialized)
1036		goto allow;
1037
1038	policydb = &state->ss->policydb;
1039	sidtab = &state->ss->sidtab;
 
1040
1041	scontext = sidtab_search(sidtab, ssid);
1042	if (!scontext) {
1043		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1044		       __func__, ssid);
1045		goto out;
1046	}
1047
1048	tcontext = sidtab_search(sidtab, tsid);
1049	if (!tcontext) {
1050		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1051		       __func__, tsid);
1052		goto out;
1053	}
1054
1055	tclass = unmap_class(&state->ss->map, orig_tclass);
1056	if (unlikely(orig_tclass && !tclass)) {
1057		if (policydb->allow_unknown)
1058			goto allow;
1059		goto out;
1060	}
1061
1062
1063	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1064		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1065		goto out;
1066	}
1067
1068	avkey.target_class = tclass;
1069	avkey.specified = AVTAB_XPERMS;
1070	sattr = flex_array_get(policydb->type_attr_map_array,
1071				scontext->type - 1);
1072	BUG_ON(!sattr);
1073	tattr = flex_array_get(policydb->type_attr_map_array,
1074				tcontext->type - 1);
1075	BUG_ON(!tattr);
1076	ebitmap_for_each_positive_bit(sattr, snode, i) {
1077		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1078			avkey.source_type = i + 1;
1079			avkey.target_type = j + 1;
1080			for (node = avtab_search_node(&policydb->te_avtab,
1081						      &avkey);
1082			     node;
1083			     node = avtab_search_node_next(node, avkey.specified))
1084				services_compute_xperms_decision(xpermd, node);
1085
1086			cond_compute_xperms(&policydb->te_cond_avtab,
1087						&avkey, xpermd);
1088		}
1089	}
1090out:
1091	read_unlock(&state->ss->policy_rwlock);
1092	return;
1093allow:
1094	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1095	goto out;
1096}
1097
1098/**
1099 * security_compute_av - Compute access vector decisions.
 
1100 * @ssid: source security identifier
1101 * @tsid: target security identifier
1102 * @tclass: target security class
1103 * @avd: access vector decisions
1104 * @xperms: extended permissions
1105 *
1106 * Compute a set of access vector decisions based on the
1107 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1108 */
1109void security_compute_av(struct selinux_state *state,
1110			 u32 ssid,
1111			 u32 tsid,
1112			 u16 orig_tclass,
1113			 struct av_decision *avd,
1114			 struct extended_perms *xperms)
1115{
 
1116	struct policydb *policydb;
1117	struct sidtab *sidtab;
1118	u16 tclass;
1119	struct context *scontext = NULL, *tcontext = NULL;
1120
1121	read_lock(&state->ss->policy_rwlock);
1122	avd_init(state, avd);
 
1123	xperms->len = 0;
1124	if (!state->initialized)
1125		goto allow;
1126
1127	policydb = &state->ss->policydb;
1128	sidtab = &state->ss->sidtab;
1129
1130	scontext = sidtab_search(sidtab, ssid);
1131	if (!scontext) {
1132		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1133		       __func__, ssid);
1134		goto out;
1135	}
1136
1137	/* permissive domain? */
1138	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1139		avd->flags |= AVD_FLAGS_PERMISSIVE;
1140
1141	tcontext = sidtab_search(sidtab, tsid);
1142	if (!tcontext) {
1143		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1144		       __func__, tsid);
1145		goto out;
1146	}
1147
1148	tclass = unmap_class(&state->ss->map, orig_tclass);
1149	if (unlikely(orig_tclass && !tclass)) {
1150		if (policydb->allow_unknown)
1151			goto allow;
1152		goto out;
1153	}
1154	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1155				  xperms);
1156	map_decision(&state->ss->map, orig_tclass, avd,
1157		     policydb->allow_unknown);
1158out:
1159	read_unlock(&state->ss->policy_rwlock);
1160	return;
1161allow:
1162	avd->allowed = 0xffffffff;
1163	goto out;
1164}
1165
1166void security_compute_av_user(struct selinux_state *state,
1167			      u32 ssid,
1168			      u32 tsid,
1169			      u16 tclass,
1170			      struct av_decision *avd)
1171{
 
1172	struct policydb *policydb;
1173	struct sidtab *sidtab;
1174	struct context *scontext = NULL, *tcontext = NULL;
1175
1176	read_lock(&state->ss->policy_rwlock);
1177	avd_init(state, avd);
1178	if (!state->initialized)
 
1179		goto allow;
1180
1181	policydb = &state->ss->policydb;
1182	sidtab = &state->ss->sidtab;
1183
1184	scontext = sidtab_search(sidtab, ssid);
1185	if (!scontext) {
1186		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1187		       __func__, ssid);
1188		goto out;
1189	}
1190
1191	/* permissive domain? */
1192	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1193		avd->flags |= AVD_FLAGS_PERMISSIVE;
1194
1195	tcontext = sidtab_search(sidtab, tsid);
1196	if (!tcontext) {
1197		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1198		       __func__, tsid);
1199		goto out;
1200	}
1201
1202	if (unlikely(!tclass)) {
1203		if (policydb->allow_unknown)
1204			goto allow;
1205		goto out;
1206	}
1207
1208	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1209				  NULL);
1210 out:
1211	read_unlock(&state->ss->policy_rwlock);
1212	return;
1213allow:
1214	avd->allowed = 0xffffffff;
1215	goto out;
1216}
1217
1218/*
1219 * Write the security context string representation of
1220 * the context structure `context' into a dynamically
1221 * allocated string of the correct size.  Set `*scontext'
1222 * to point to this string and set `*scontext_len' to
1223 * the length of the string.
1224 */
1225static int context_struct_to_string(struct policydb *p,
1226				    struct context *context,
1227				    char **scontext, u32 *scontext_len)
1228{
1229	char *scontextp;
1230
1231	if (scontext)
1232		*scontext = NULL;
1233	*scontext_len = 0;
1234
1235	if (context->len) {
1236		*scontext_len = context->len;
1237		if (scontext) {
1238			*scontext = kstrdup(context->str, GFP_ATOMIC);
1239			if (!(*scontext))
1240				return -ENOMEM;
1241		}
1242		return 0;
1243	}
1244
1245	/* Compute the size of the context. */
1246	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1247	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1248	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1249	*scontext_len += mls_compute_context_len(p, context);
1250
1251	if (!scontext)
1252		return 0;
1253
1254	/* Allocate space for the context; caller must free this space. */
1255	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1256	if (!scontextp)
1257		return -ENOMEM;
1258	*scontext = scontextp;
1259
1260	/*
1261	 * Copy the user name, role name and type name into the context.
1262	 */
1263	scontextp += sprintf(scontextp, "%s:%s:%s",
1264		sym_name(p, SYM_USERS, context->user - 1),
1265		sym_name(p, SYM_ROLES, context->role - 1),
1266		sym_name(p, SYM_TYPES, context->type - 1));
1267
1268	mls_sid_to_context(p, context, &scontextp);
1269
1270	*scontextp = 0;
1271
1272	return 0;
1273}
1274
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1275#include "initial_sid_to_string.h"
1276
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1277const char *security_get_initial_sid_context(u32 sid)
1278{
1279	if (unlikely(sid > SECINITSID_NUM))
1280		return NULL;
1281	return initial_sid_to_string[sid];
1282}
1283
1284static int security_sid_to_context_core(struct selinux_state *state,
1285					u32 sid, char **scontext,
1286					u32 *scontext_len, int force)
 
1287{
 
1288	struct policydb *policydb;
1289	struct sidtab *sidtab;
1290	struct context *context;
1291	int rc = 0;
1292
1293	if (scontext)
1294		*scontext = NULL;
1295	*scontext_len  = 0;
1296
1297	if (!state->initialized) {
1298		if (sid <= SECINITSID_NUM) {
1299			char *scontextp;
 
1300
1301			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
 
 
1302			if (!scontext)
1303				goto out;
1304			scontextp = kmemdup(initial_sid_to_string[sid],
1305					    *scontext_len, GFP_ATOMIC);
1306			if (!scontextp) {
1307				rc = -ENOMEM;
1308				goto out;
1309			}
1310			*scontext = scontextp;
1311			goto out;
1312		}
1313		printk(KERN_ERR "SELinux: %s:  called before initial "
1314		       "load_policy on unknown SID %d\n", __func__, sid);
1315		rc = -EINVAL;
1316		goto out;
1317	}
1318	read_lock(&state->ss->policy_rwlock);
1319	policydb = &state->ss->policydb;
1320	sidtab = &state->ss->sidtab;
 
 
1321	if (force)
1322		context = sidtab_search_force(sidtab, sid);
1323	else
1324		context = sidtab_search(sidtab, sid);
1325	if (!context) {
1326		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1327			__func__, sid);
1328		rc = -EINVAL;
1329		goto out_unlock;
1330	}
1331	rc = context_struct_to_string(policydb, context, scontext,
1332				      scontext_len);
 
 
 
 
1333out_unlock:
1334	read_unlock(&state->ss->policy_rwlock);
1335out:
1336	return rc;
1337
1338}
1339
1340/**
1341 * security_sid_to_context - Obtain a context for a given SID.
 
1342 * @sid: security identifier, SID
1343 * @scontext: security context
1344 * @scontext_len: length in bytes
1345 *
1346 * Write the string representation of the context associated with @sid
1347 * into a dynamically allocated string of the correct size.  Set @scontext
1348 * to point to this string and set @scontext_len to the length of the string.
1349 */
1350int security_sid_to_context(struct selinux_state *state,
1351			    u32 sid, char **scontext, u32 *scontext_len)
1352{
1353	return security_sid_to_context_core(state, sid, scontext,
1354					    scontext_len, 0);
1355}
1356
1357int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1358				  char **scontext, u32 *scontext_len)
1359{
1360	return security_sid_to_context_core(state, sid, scontext,
1361					    scontext_len, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1362}
1363
1364/*
1365 * Caveat:  Mutates scontext.
1366 */
1367static int string_to_context_struct(struct policydb *pol,
1368				    struct sidtab *sidtabp,
1369				    char *scontext,
1370				    u32 scontext_len,
1371				    struct context *ctx,
1372				    u32 def_sid)
1373{
1374	struct role_datum *role;
1375	struct type_datum *typdatum;
1376	struct user_datum *usrdatum;
1377	char *scontextp, *p, oldc;
1378	int rc = 0;
1379
1380	context_init(ctx);
1381
1382	/* Parse the security context. */
1383
1384	rc = -EINVAL;
1385	scontextp = (char *) scontext;
1386
1387	/* Extract the user. */
1388	p = scontextp;
1389	while (*p && *p != ':')
1390		p++;
1391
1392	if (*p == 0)
1393		goto out;
1394
1395	*p++ = 0;
1396
1397	usrdatum = hashtab_search(pol->p_users.table, scontextp);
1398	if (!usrdatum)
1399		goto out;
1400
1401	ctx->user = usrdatum->value;
1402
1403	/* Extract role. */
1404	scontextp = p;
1405	while (*p && *p != ':')
1406		p++;
1407
1408	if (*p == 0)
1409		goto out;
1410
1411	*p++ = 0;
1412
1413	role = hashtab_search(pol->p_roles.table, scontextp);
1414	if (!role)
1415		goto out;
1416	ctx->role = role->value;
1417
1418	/* Extract type. */
1419	scontextp = p;
1420	while (*p && *p != ':')
1421		p++;
1422	oldc = *p;
1423	*p++ = 0;
1424
1425	typdatum = hashtab_search(pol->p_types.table, scontextp);
1426	if (!typdatum || typdatum->attribute)
1427		goto out;
1428
1429	ctx->type = typdatum->value;
1430
1431	rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1432	if (rc)
1433		goto out;
1434
 
1435	rc = -EINVAL;
1436	if ((p - scontext) < scontext_len)
1437		goto out;
1438
1439	/* Check the validity of the new context. */
1440	if (!policydb_context_isvalid(pol, ctx))
1441		goto out;
1442	rc = 0;
1443out:
1444	if (rc)
1445		context_destroy(ctx);
1446	return rc;
1447}
1448
1449static int security_context_to_sid_core(struct selinux_state *state,
1450					const char *scontext, u32 scontext_len,
1451					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1452					int force)
1453{
 
1454	struct policydb *policydb;
1455	struct sidtab *sidtab;
1456	char *scontext2, *str = NULL;
1457	struct context context;
1458	int rc = 0;
1459
1460	/* An empty security context is never valid. */
1461	if (!scontext_len)
1462		return -EINVAL;
1463
1464	/* Copy the string to allow changes and ensure a NUL terminator */
1465	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1466	if (!scontext2)
1467		return -ENOMEM;
1468
1469	if (!state->initialized) {
1470		int i;
1471
1472		for (i = 1; i < SECINITSID_NUM; i++) {
1473			if (!strcmp(initial_sid_to_string[i], scontext2)) {
 
 
1474				*sid = i;
1475				goto out;
1476			}
1477		}
1478		*sid = SECINITSID_KERNEL;
1479		goto out;
1480	}
1481	*sid = SECSID_NULL;
1482
1483	if (force) {
1484		/* Save another copy for storing in uninterpreted form */
1485		rc = -ENOMEM;
1486		str = kstrdup(scontext2, gfp_flags);
1487		if (!str)
1488			goto out;
1489	}
1490	read_lock(&state->ss->policy_rwlock);
1491	policydb = &state->ss->policydb;
1492	sidtab = &state->ss->sidtab;
 
 
1493	rc = string_to_context_struct(policydb, sidtab, scontext2,
1494				      scontext_len, &context, def_sid);
1495	if (rc == -EINVAL && force) {
1496		context.str = str;
1497		context.len = strlen(str) + 1;
1498		str = NULL;
1499	} else if (rc)
1500		goto out_unlock;
1501	rc = sidtab_context_to_sid(sidtab, &context, sid);
 
 
 
 
 
 
 
 
 
1502	context_destroy(&context);
1503out_unlock:
1504	read_unlock(&state->ss->policy_rwlock);
1505out:
1506	kfree(scontext2);
1507	kfree(str);
1508	return rc;
1509}
1510
1511/**
1512 * security_context_to_sid - Obtain a SID for a given security context.
 
1513 * @scontext: security context
1514 * @scontext_len: length in bytes
1515 * @sid: security identifier, SID
1516 * @gfp: context for the allocation
1517 *
1518 * Obtains a SID associated with the security context that
1519 * has the string representation specified by @scontext.
1520 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1521 * memory is available, or 0 on success.
1522 */
1523int security_context_to_sid(struct selinux_state *state,
1524			    const char *scontext, u32 scontext_len, u32 *sid,
1525			    gfp_t gfp)
1526{
1527	return security_context_to_sid_core(state, scontext, scontext_len,
1528					    sid, SECSID_NULL, gfp, 0);
1529}
1530
1531int security_context_str_to_sid(struct selinux_state *state,
1532				const char *scontext, u32 *sid, gfp_t gfp)
1533{
1534	return security_context_to_sid(state, scontext, strlen(scontext),
1535				       sid, gfp);
1536}
1537
1538/**
1539 * security_context_to_sid_default - Obtain a SID for a given security context,
1540 * falling back to specified default if needed.
1541 *
 
1542 * @scontext: security context
1543 * @scontext_len: length in bytes
1544 * @sid: security identifier, SID
1545 * @def_sid: default SID to assign on error
 
1546 *
1547 * Obtains a SID associated with the security context that
1548 * has the string representation specified by @scontext.
1549 * The default SID is passed to the MLS layer to be used to allow
1550 * kernel labeling of the MLS field if the MLS field is not present
1551 * (for upgrading to MLS without full relabel).
1552 * Implicitly forces adding of the context even if it cannot be mapped yet.
1553 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1554 * memory is available, or 0 on success.
1555 */
1556int security_context_to_sid_default(struct selinux_state *state,
1557				    const char *scontext, u32 scontext_len,
1558				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1559{
1560	return security_context_to_sid_core(state, scontext, scontext_len,
1561					    sid, def_sid, gfp_flags, 1);
1562}
1563
1564int security_context_to_sid_force(struct selinux_state *state,
1565				  const char *scontext, u32 scontext_len,
1566				  u32 *sid)
1567{
1568	return security_context_to_sid_core(state, scontext, scontext_len,
1569					    sid, SECSID_NULL, GFP_KERNEL, 1);
1570}
1571
1572static int compute_sid_handle_invalid_context(
1573	struct selinux_state *state,
1574	struct context *scontext,
1575	struct context *tcontext,
 
1576	u16 tclass,
1577	struct context *newcontext)
1578{
1579	struct policydb *policydb = &state->ss->policydb;
 
1580	char *s = NULL, *t = NULL, *n = NULL;
1581	u32 slen, tlen, nlen;
 
1582
1583	if (context_struct_to_string(policydb, scontext, &s, &slen))
1584		goto out;
1585	if (context_struct_to_string(policydb, tcontext, &t, &tlen))
1586		goto out;
1587	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1588		goto out;
1589	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1590		  "op=security_compute_sid invalid_context=%s"
1591		  " scontext=%s"
1592		  " tcontext=%s"
1593		  " tclass=%s",
1594		  n, s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
 
 
 
 
1595out:
1596	kfree(s);
1597	kfree(t);
1598	kfree(n);
1599	if (!enforcing_enabled(state))
1600		return 0;
1601	return -EACCES;
1602}
1603
1604static void filename_compute_type(struct policydb *policydb,
1605				  struct context *newcontext,
1606				  u32 stype, u32 ttype, u16 tclass,
1607				  const char *objname)
1608{
1609	struct filename_trans ft;
1610	struct filename_trans_datum *otype;
1611
1612	/*
1613	 * Most filename trans rules are going to live in specific directories
1614	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1615	 * if the ttype does not contain any rules.
1616	 */
1617	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1618		return;
1619
1620	ft.stype = stype;
1621	ft.ttype = ttype;
1622	ft.tclass = tclass;
1623	ft.name = objname;
1624
1625	otype = hashtab_search(policydb->filename_trans, &ft);
1626	if (otype)
1627		newcontext->type = otype->otype;
 
 
 
 
 
1628}
1629
1630static int security_compute_sid(struct selinux_state *state,
1631				u32 ssid,
1632				u32 tsid,
1633				u16 orig_tclass,
1634				u32 specified,
1635				const char *objname,
1636				u32 *out_sid,
1637				bool kern)
1638{
 
1639	struct policydb *policydb;
1640	struct sidtab *sidtab;
1641	struct class_datum *cladatum = NULL;
1642	struct context *scontext = NULL, *tcontext = NULL, newcontext;
1643	struct role_trans *roletr = NULL;
1644	struct avtab_key avkey;
1645	struct avtab_datum *avdatum;
1646	struct avtab_node *node;
1647	u16 tclass;
1648	int rc = 0;
1649	bool sock;
1650
1651	if (!state->initialized) {
1652		switch (orig_tclass) {
1653		case SECCLASS_PROCESS: /* kernel value */
1654			*out_sid = ssid;
1655			break;
1656		default:
1657			*out_sid = tsid;
1658			break;
1659		}
1660		goto out;
1661	}
1662
 
 
1663	context_init(&newcontext);
1664
1665	read_lock(&state->ss->policy_rwlock);
 
 
1666
1667	if (kern) {
1668		tclass = unmap_class(&state->ss->map, orig_tclass);
1669		sock = security_is_socket_class(orig_tclass);
1670	} else {
1671		tclass = orig_tclass;
1672		sock = security_is_socket_class(map_class(&state->ss->map,
1673							  tclass));
1674	}
1675
1676	policydb = &state->ss->policydb;
1677	sidtab = &state->ss->sidtab;
1678
1679	scontext = sidtab_search(sidtab, ssid);
1680	if (!scontext) {
1681		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1682		       __func__, ssid);
1683		rc = -EINVAL;
1684		goto out_unlock;
1685	}
1686	tcontext = sidtab_search(sidtab, tsid);
1687	if (!tcontext) {
1688		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1689		       __func__, tsid);
1690		rc = -EINVAL;
1691		goto out_unlock;
1692	}
1693
 
 
 
1694	if (tclass && tclass <= policydb->p_classes.nprim)
1695		cladatum = policydb->class_val_to_struct[tclass - 1];
1696
1697	/* Set the user identity. */
1698	switch (specified) {
1699	case AVTAB_TRANSITION:
1700	case AVTAB_CHANGE:
1701		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1702			newcontext.user = tcontext->user;
1703		} else {
1704			/* notice this gets both DEFAULT_SOURCE and unset */
1705			/* Use the process user identity. */
1706			newcontext.user = scontext->user;
1707		}
1708		break;
1709	case AVTAB_MEMBER:
1710		/* Use the related object owner. */
1711		newcontext.user = tcontext->user;
1712		break;
1713	}
1714
1715	/* Set the role to default values. */
1716	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1717		newcontext.role = scontext->role;
1718	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1719		newcontext.role = tcontext->role;
1720	} else {
1721		if ((tclass == policydb->process_class) || (sock == true))
1722			newcontext.role = scontext->role;
1723		else
1724			newcontext.role = OBJECT_R_VAL;
1725	}
1726
1727	/* Set the type to default values. */
1728	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1729		newcontext.type = scontext->type;
1730	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1731		newcontext.type = tcontext->type;
1732	} else {
1733		if ((tclass == policydb->process_class) || (sock == true)) {
1734			/* Use the type of process. */
1735			newcontext.type = scontext->type;
1736		} else {
1737			/* Use the type of the related object. */
1738			newcontext.type = tcontext->type;
1739		}
1740	}
1741
1742	/* Look for a type transition/member/change rule. */
1743	avkey.source_type = scontext->type;
1744	avkey.target_type = tcontext->type;
1745	avkey.target_class = tclass;
1746	avkey.specified = specified;
1747	avdatum = avtab_search(&policydb->te_avtab, &avkey);
1748
1749	/* If no permanent rule, also check for enabled conditional rules */
1750	if (!avdatum) {
1751		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1752		for (; node; node = avtab_search_node_next(node, specified)) {
1753			if (node->key.specified & AVTAB_ENABLED) {
1754				avdatum = &node->datum;
1755				break;
1756			}
1757		}
1758	}
1759
1760	if (avdatum) {
1761		/* Use the type from the type transition/member/change rule. */
1762		newcontext.type = avdatum->u.data;
1763	}
1764
1765	/* if we have a objname this is a file trans check so check those rules */
1766	if (objname)
1767		filename_compute_type(policydb, &newcontext, scontext->type,
1768				      tcontext->type, tclass, objname);
1769
1770	/* Check for class-specific changes. */
1771	if (specified & AVTAB_TRANSITION) {
1772		/* Look for a role transition rule. */
1773		for (roletr = policydb->role_tr; roletr;
1774		     roletr = roletr->next) {
1775			if ((roletr->role == scontext->role) &&
1776			    (roletr->type == tcontext->type) &&
1777			    (roletr->tclass == tclass)) {
1778				/* Use the role transition rule. */
1779				newcontext.role = roletr->new_role;
1780				break;
1781			}
1782		}
1783	}
1784
1785	/* Set the MLS attributes.
1786	   This is done last because it may allocate memory. */
1787	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1788			     &newcontext, sock);
1789	if (rc)
1790		goto out_unlock;
1791
1792	/* Check the validity of the context. */
1793	if (!policydb_context_isvalid(policydb, &newcontext)) {
1794		rc = compute_sid_handle_invalid_context(state, scontext,
1795							tcontext,
1796							tclass,
1797							&newcontext);
1798		if (rc)
1799			goto out_unlock;
1800	}
1801	/* Obtain the sid for the context. */
1802	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
 
 
 
 
 
1803out_unlock:
1804	read_unlock(&state->ss->policy_rwlock);
1805	context_destroy(&newcontext);
1806out:
1807	return rc;
1808}
1809
1810/**
1811 * security_transition_sid - Compute the SID for a new subject/object.
 
1812 * @ssid: source security identifier
1813 * @tsid: target security identifier
1814 * @tclass: target security class
 
1815 * @out_sid: security identifier for new subject/object
1816 *
1817 * Compute a SID to use for labeling a new subject or object in the
1818 * class @tclass based on a SID pair (@ssid, @tsid).
1819 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1820 * if insufficient memory is available, or %0 if the new SID was
1821 * computed successfully.
1822 */
1823int security_transition_sid(struct selinux_state *state,
1824			    u32 ssid, u32 tsid, u16 tclass,
1825			    const struct qstr *qstr, u32 *out_sid)
1826{
1827	return security_compute_sid(state, ssid, tsid, tclass,
1828				    AVTAB_TRANSITION,
1829				    qstr ? qstr->name : NULL, out_sid, true);
1830}
1831
1832int security_transition_sid_user(struct selinux_state *state,
1833				 u32 ssid, u32 tsid, u16 tclass,
1834				 const char *objname, u32 *out_sid)
1835{
1836	return security_compute_sid(state, ssid, tsid, tclass,
1837				    AVTAB_TRANSITION,
1838				    objname, out_sid, false);
1839}
1840
1841/**
1842 * security_member_sid - Compute the SID for member selection.
 
1843 * @ssid: source security identifier
1844 * @tsid: target security identifier
1845 * @tclass: target security class
1846 * @out_sid: security identifier for selected member
1847 *
1848 * Compute a SID to use when selecting a member of a polyinstantiated
1849 * object of class @tclass based on a SID pair (@ssid, @tsid).
1850 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1851 * if insufficient memory is available, or %0 if the SID was
1852 * computed successfully.
1853 */
1854int security_member_sid(struct selinux_state *state,
1855			u32 ssid,
1856			u32 tsid,
1857			u16 tclass,
1858			u32 *out_sid)
1859{
1860	return security_compute_sid(state, ssid, tsid, tclass,
1861				    AVTAB_MEMBER, NULL,
1862				    out_sid, false);
1863}
1864
1865/**
1866 * security_change_sid - Compute the SID for object relabeling.
 
1867 * @ssid: source security identifier
1868 * @tsid: target security identifier
1869 * @tclass: target security class
1870 * @out_sid: security identifier for selected member
1871 *
1872 * Compute a SID to use for relabeling an object of class @tclass
1873 * based on a SID pair (@ssid, @tsid).
1874 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1875 * if insufficient memory is available, or %0 if the SID was
1876 * computed successfully.
1877 */
1878int security_change_sid(struct selinux_state *state,
1879			u32 ssid,
1880			u32 tsid,
1881			u16 tclass,
1882			u32 *out_sid)
1883{
1884	return security_compute_sid(state,
1885				    ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1886				    out_sid, false);
1887}
1888
1889/* Clone the SID into the new SID table. */
1890static int clone_sid(u32 sid,
1891		     struct context *context,
1892		     void *arg)
1893{
1894	struct sidtab *s = arg;
1895
1896	if (sid > SECINITSID_NUM)
1897		return sidtab_insert(s, sid, context);
1898	else
1899		return 0;
1900}
1901
1902static inline int convert_context_handle_invalid_context(
1903	struct selinux_state *state,
 
1904	struct context *context)
1905{
1906	struct policydb *policydb = &state->ss->policydb;
1907	char *s;
1908	u32 len;
1909
1910	if (enforcing_enabled(state))
1911		return -EINVAL;
1912
1913	if (!context_struct_to_string(policydb, context, &s, &len)) {
1914		printk(KERN_WARNING "SELinux:  Context %s would be invalid if enforcing\n", s);
 
1915		kfree(s);
1916	}
1917	return 0;
1918}
1919
1920struct convert_context_args {
1921	struct selinux_state *state;
1922	struct policydb *oldp;
1923	struct policydb *newp;
1924};
1925
1926/*
1927 * Convert the values in the security context
1928 * structure `c' from the values specified
1929 * in the policy `p->oldp' to the values specified
1930 * in the policy `p->newp'.  Verify that the
1931 * context is valid under the new policy.
1932 */
1933static int convert_context(u32 key,
1934			   struct context *c,
1935			   void *p)
1936{
1937	struct convert_context_args *args;
1938	struct context oldc;
1939	struct ocontext *oc;
1940	struct mls_range *range;
1941	struct role_datum *role;
1942	struct type_datum *typdatum;
1943	struct user_datum *usrdatum;
1944	char *s;
1945	u32 len;
1946	int rc = 0;
1947
1948	if (key <= SECINITSID_NUM)
1949		goto out;
1950
1951	args = p;
1952
1953	if (c->str) {
1954		struct context ctx;
1955
1956		rc = -ENOMEM;
1957		s = kstrdup(c->str, GFP_KERNEL);
1958		if (!s)
1959			goto out;
1960
1961		rc = string_to_context_struct(args->newp, NULL, s,
1962					      c->len, &ctx, SECSID_NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
1963		kfree(s);
1964		if (!rc) {
1965			printk(KERN_INFO "SELinux:  Context %s became valid (mapped).\n",
1966			       c->str);
1967			/* Replace string with mapped representation. */
1968			kfree(c->str);
1969			memcpy(c, &ctx, sizeof(*c));
1970			goto out;
1971		} else if (rc == -EINVAL) {
1972			/* Retain string representation for later mapping. */
1973			rc = 0;
1974			goto out;
1975		} else {
1976			/* Other error condition, e.g. ENOMEM. */
1977			printk(KERN_ERR "SELinux:   Unable to map context %s, rc = %d.\n",
1978			       c->str, -rc);
1979			goto out;
1980		}
 
 
 
1981	}
1982
1983	rc = context_cpy(&oldc, c);
1984	if (rc)
1985		goto out;
1986
1987	/* Convert the user. */
1988	rc = -EINVAL;
1989	usrdatum = hashtab_search(args->newp->p_users.table,
1990				  sym_name(args->oldp, SYM_USERS, c->user - 1));
1991	if (!usrdatum)
1992		goto bad;
1993	c->user = usrdatum->value;
1994
1995	/* Convert the role. */
1996	rc = -EINVAL;
1997	role = hashtab_search(args->newp->p_roles.table,
1998			      sym_name(args->oldp, SYM_ROLES, c->role - 1));
1999	if (!role)
2000		goto bad;
2001	c->role = role->value;
2002
2003	/* Convert the type. */
2004	rc = -EINVAL;
2005	typdatum = hashtab_search(args->newp->p_types.table,
2006				  sym_name(args->oldp, SYM_TYPES, c->type - 1));
2007	if (!typdatum)
2008		goto bad;
2009	c->type = typdatum->value;
2010
2011	/* Convert the MLS fields if dealing with MLS policies */
2012	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2013		rc = mls_convert_context(args->oldp, args->newp, c);
2014		if (rc)
2015			goto bad;
2016	} else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
2017		/*
2018		 * Switching between MLS and non-MLS policy:
2019		 * free any storage used by the MLS fields in the
2020		 * context for all existing entries in the sidtab.
2021		 */
2022		mls_context_destroy(c);
2023	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2024		/*
2025		 * Switching between non-MLS and MLS policy:
2026		 * ensure that the MLS fields of the context for all
2027		 * existing entries in the sidtab are filled in with a
2028		 * suitable default value, likely taken from one of the
2029		 * initial SIDs.
2030		 */
2031		oc = args->newp->ocontexts[OCON_ISID];
2032		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2033			oc = oc->next;
2034		rc = -EINVAL;
2035		if (!oc) {
2036			printk(KERN_ERR "SELinux:  unable to look up"
2037				" the initial SIDs list\n");
2038			goto bad;
2039		}
2040		range = &oc->context[0].range;
2041		rc = mls_range_set(c, range);
2042		if (rc)
2043			goto bad;
2044	}
2045
2046	/* Check the validity of the new context. */
2047	if (!policydb_context_isvalid(args->newp, c)) {
2048		rc = convert_context_handle_invalid_context(args->state,
2049							    &oldc);
2050		if (rc)
2051			goto bad;
2052	}
2053
2054	context_destroy(&oldc);
2055
2056	rc = 0;
2057out:
2058	return rc;
2059bad:
2060	/* Map old representation to string and save it. */
2061	rc = context_struct_to_string(args->oldp, &oldc, &s, &len);
2062	if (rc)
2063		return rc;
2064	context_destroy(&oldc);
2065	context_destroy(c);
2066	c->str = s;
2067	c->len = len;
2068	printk(KERN_INFO "SELinux:  Context %s became invalid (unmapped).\n",
2069	       c->str);
2070	rc = 0;
2071	goto out;
2072}
2073
2074static void security_load_policycaps(struct selinux_state *state)
 
2075{
2076	struct policydb *p = &state->ss->policydb;
2077	unsigned int i;
2078	struct ebitmap_node *node;
2079
 
 
2080	for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2081		state->policycap[i] = ebitmap_get_bit(&p->policycaps, i);
 
2082
2083	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2084		pr_info("SELinux:  policy capability %s=%d\n",
2085			selinux_policycap_names[i],
2086			ebitmap_get_bit(&p->policycaps, i));
2087
2088	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2089		if (i >= ARRAY_SIZE(selinux_policycap_names))
2090			pr_info("SELinux:  unknown policy capability %u\n",
2091				i);
2092	}
2093}
2094
2095static int security_preserve_bools(struct selinux_state *state,
2096				   struct policydb *newpolicydb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2097
2098/**
2099 * security_load_policy - Load a security policy configuration.
 
2100 * @data: binary policy data
2101 * @len: length of data in bytes
 
2102 *
2103 * Load a new set of security policy configuration data,
2104 * validate it and convert the SID table as necessary.
2105 * This function will flush the access vector cache after
2106 * loading the new policy.
2107 */
2108int security_load_policy(struct selinux_state *state, void *data, size_t len)
 
2109{
2110	struct policydb *policydb;
2111	struct sidtab *sidtab;
2112	struct policydb *oldpolicydb, *newpolicydb;
2113	struct sidtab oldsidtab, newsidtab;
2114	struct selinux_mapping *oldmapping;
2115	struct selinux_map newmap;
2116	struct convert_context_args args;
2117	u32 seqno;
2118	int rc = 0;
2119	struct policy_file file = { data, len }, *fp = &file;
2120
2121	oldpolicydb = kzalloc(2 * sizeof(*oldpolicydb), GFP_KERNEL);
2122	if (!oldpolicydb) {
 
 
 
 
2123		rc = -ENOMEM;
2124		goto out;
2125	}
2126	newpolicydb = oldpolicydb + 1;
2127
2128	policydb = &state->ss->policydb;
2129	sidtab = &state->ss->sidtab;
 
2130
2131	if (!state->initialized) {
2132		rc = policydb_read(policydb, fp);
2133		if (rc)
2134			goto out;
 
2135
2136		policydb->len = len;
2137		rc = selinux_set_mapping(policydb, secclass_map,
2138					 &state->ss->map);
2139		if (rc) {
2140			policydb_destroy(policydb);
2141			goto out;
2142		}
2143
2144		rc = policydb_load_isids(policydb, sidtab);
2145		if (rc) {
2146			policydb_destroy(policydb);
2147			goto out;
2148		}
2149
2150		security_load_policycaps(state);
2151		state->initialized = 1;
2152		seqno = ++state->ss->latest_granting;
2153		selinux_complete_init();
2154		avc_ss_reset(state->avc, seqno);
2155		selnl_notify_policyload(seqno);
2156		selinux_status_update_policyload(state, seqno);
2157		selinux_netlbl_cache_invalidate();
2158		selinux_xfrm_notify_policyload();
2159		goto out;
2160	}
2161
2162#if 0
2163	sidtab_hash_eval(sidtab, "sids");
2164#endif
2165
2166	rc = policydb_read(newpolicydb, fp);
2167	if (rc)
2168		goto out;
2169
2170	newpolicydb->len = len;
2171	/* If switching between different policy types, log MLS status */
2172	if (policydb->mls_enabled && !newpolicydb->mls_enabled)
2173		printk(KERN_INFO "SELinux: Disabling MLS support...\n");
2174	else if (!policydb->mls_enabled && newpolicydb->mls_enabled)
2175		printk(KERN_INFO "SELinux: Enabling MLS support...\n");
2176
2177	rc = policydb_load_isids(newpolicydb, &newsidtab);
 
2178	if (rc) {
2179		printk(KERN_ERR "SELinux:  unable to load the initial SIDs\n");
2180		policydb_destroy(newpolicydb);
2181		goto out;
2182	}
2183
2184	rc = selinux_set_mapping(newpolicydb, secclass_map, &newmap);
2185	if (rc)
2186		goto err;
 
2187
2188	rc = security_preserve_bools(state, newpolicydb);
2189	if (rc) {
2190		printk(KERN_ERR "SELinux:  unable to preserve booleans\n");
2191		goto err;
2192	}
2193
2194	/* Clone the SID table. */
2195	sidtab_shutdown(sidtab);
 
2196
2197	rc = sidtab_map(sidtab, clone_sid, &newsidtab);
2198	if (rc)
2199		goto err;
2200
2201	/*
2202	 * Convert the internal representations of contexts
2203	 * in the new SID table.
2204	 */
2205	args.state = state;
2206	args.oldp = policydb;
2207	args.newp = newpolicydb;
2208	rc = sidtab_map(&newsidtab, convert_context, &args);
2209	if (rc) {
2210		printk(KERN_ERR "SELinux:  unable to convert the internal"
2211			" representation of contexts in the new SID"
2212			" table\n");
2213		goto err;
2214	}
2215
2216	/* Save the old policydb and SID table to free later. */
2217	memcpy(oldpolicydb, policydb, sizeof(*policydb));
2218	sidtab_set(&oldsidtab, sidtab);
2219
2220	/* Install the new policydb and SID table. */
2221	write_lock_irq(&state->ss->policy_rwlock);
2222	memcpy(policydb, newpolicydb, sizeof(*policydb));
2223	sidtab_set(sidtab, &newsidtab);
2224	security_load_policycaps(state);
2225	oldmapping = state->ss->map.mapping;
2226	state->ss->map.mapping = newmap.mapping;
2227	state->ss->map.size = newmap.size;
2228	seqno = ++state->ss->latest_granting;
2229	write_unlock_irq(&state->ss->policy_rwlock);
2230
2231	/* Free the old policydb and SID table. */
2232	policydb_destroy(oldpolicydb);
2233	sidtab_destroy(&oldsidtab);
2234	kfree(oldmapping);
2235
2236	avc_ss_reset(state->avc, seqno);
2237	selnl_notify_policyload(seqno);
2238	selinux_status_update_policyload(state, seqno);
2239	selinux_netlbl_cache_invalidate();
2240	selinux_xfrm_notify_policyload();
2241
2242	rc = 0;
2243	goto out;
2244
2245err:
2246	kfree(newmap.mapping);
2247	sidtab_destroy(&newsidtab);
2248	policydb_destroy(newpolicydb);
 
 
 
 
 
 
 
 
2249
2250out:
2251	kfree(oldpolicydb);
2252	return rc;
2253}
2254
2255size_t security_policydb_len(struct selinux_state *state)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2256{
2257	struct policydb *p = &state->ss->policydb;
2258	size_t len;
2259
2260	read_lock(&state->ss->policy_rwlock);
2261	len = p->len;
2262	read_unlock(&state->ss->policy_rwlock);
 
 
 
2263
2264	return len;
 
 
 
 
 
 
 
2265}
2266
2267/**
2268 * security_port_sid - Obtain the SID for a port.
 
2269 * @protocol: protocol number
2270 * @port: port number
2271 * @out_sid: security identifier
2272 */
2273int security_port_sid(struct selinux_state *state,
2274		      u8 protocol, u16 port, u32 *out_sid)
2275{
 
2276	struct policydb *policydb;
2277	struct sidtab *sidtab;
2278	struct ocontext *c;
2279	int rc = 0;
2280
2281	read_lock(&state->ss->policy_rwlock);
 
 
 
2282
2283	policydb = &state->ss->policydb;
2284	sidtab = &state->ss->sidtab;
 
 
 
 
2285
2286	c = policydb->ocontexts[OCON_PORT];
2287	while (c) {
2288		if (c->u.port.protocol == protocol &&
2289		    c->u.port.low_port <= port &&
2290		    c->u.port.high_port >= port)
2291			break;
2292		c = c->next;
2293	}
2294
2295	if (c) {
2296		if (!c->sid[0]) {
2297			rc = sidtab_context_to_sid(sidtab,
2298						   &c->context[0],
2299						   &c->sid[0]);
2300			if (rc)
2301				goto out;
2302		}
2303		*out_sid = c->sid[0];
 
2304	} else {
2305		*out_sid = SECINITSID_PORT;
2306	}
2307
2308out:
2309	read_unlock(&state->ss->policy_rwlock);
2310	return rc;
2311}
2312
2313/**
2314 * security_pkey_sid - Obtain the SID for a pkey.
 
2315 * @subnet_prefix: Subnet Prefix
2316 * @pkey_num: pkey number
2317 * @out_sid: security identifier
2318 */
2319int security_ib_pkey_sid(struct selinux_state *state,
2320			 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2321{
 
2322	struct policydb *policydb;
2323	struct sidtab *sidtab;
2324	struct ocontext *c;
2325	int rc = 0;
2326
2327	read_lock(&state->ss->policy_rwlock);
 
 
 
2328
2329	policydb = &state->ss->policydb;
2330	sidtab = &state->ss->sidtab;
 
 
 
 
2331
2332	c = policydb->ocontexts[OCON_IBPKEY];
2333	while (c) {
2334		if (c->u.ibpkey.low_pkey <= pkey_num &&
2335		    c->u.ibpkey.high_pkey >= pkey_num &&
2336		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2337			break;
2338
2339		c = c->next;
2340	}
2341
2342	if (c) {
2343		if (!c->sid[0]) {
2344			rc = sidtab_context_to_sid(sidtab,
2345						   &c->context[0],
2346						   &c->sid[0]);
2347			if (rc)
2348				goto out;
2349		}
2350		*out_sid = c->sid[0];
 
2351	} else
2352		*out_sid = SECINITSID_UNLABELED;
2353
2354out:
2355	read_unlock(&state->ss->policy_rwlock);
2356	return rc;
2357}
2358
2359/**
2360 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
 
2361 * @dev_name: device name
2362 * @port: port number
2363 * @out_sid: security identifier
2364 */
2365int security_ib_endport_sid(struct selinux_state *state,
2366			    const char *dev_name, u8 port_num, u32 *out_sid)
2367{
 
2368	struct policydb *policydb;
2369	struct sidtab *sidtab;
2370	struct ocontext *c;
2371	int rc = 0;
2372
2373	read_lock(&state->ss->policy_rwlock);
 
 
 
2374
2375	policydb = &state->ss->policydb;
2376	sidtab = &state->ss->sidtab;
 
 
 
 
2377
2378	c = policydb->ocontexts[OCON_IBENDPORT];
2379	while (c) {
2380		if (c->u.ibendport.port == port_num &&
2381		    !strncmp(c->u.ibendport.dev_name,
2382			     dev_name,
2383			     IB_DEVICE_NAME_MAX))
2384			break;
2385
2386		c = c->next;
2387	}
2388
2389	if (c) {
2390		if (!c->sid[0]) {
2391			rc = sidtab_context_to_sid(sidtab,
2392						   &c->context[0],
2393						   &c->sid[0]);
2394			if (rc)
2395				goto out;
2396		}
2397		*out_sid = c->sid[0];
 
2398	} else
2399		*out_sid = SECINITSID_UNLABELED;
2400
2401out:
2402	read_unlock(&state->ss->policy_rwlock);
2403	return rc;
2404}
2405
2406/**
2407 * security_netif_sid - Obtain the SID for a network interface.
 
2408 * @name: interface name
2409 * @if_sid: interface SID
2410 */
2411int security_netif_sid(struct selinux_state *state,
2412		       char *name, u32 *if_sid)
2413{
 
2414	struct policydb *policydb;
2415	struct sidtab *sidtab;
2416	int rc = 0;
2417	struct ocontext *c;
2418
2419	read_lock(&state->ss->policy_rwlock);
 
 
 
2420
2421	policydb = &state->ss->policydb;
2422	sidtab = &state->ss->sidtab;
 
 
 
 
2423
2424	c = policydb->ocontexts[OCON_NETIF];
2425	while (c) {
2426		if (strcmp(name, c->u.name) == 0)
2427			break;
2428		c = c->next;
2429	}
2430
2431	if (c) {
2432		if (!c->sid[0] || !c->sid[1]) {
2433			rc = sidtab_context_to_sid(sidtab,
2434						  &c->context[0],
2435						  &c->sid[0]);
2436			if (rc)
2437				goto out;
2438			rc = sidtab_context_to_sid(sidtab,
2439						   &c->context[1],
2440						   &c->sid[1]);
2441			if (rc)
2442				goto out;
2443		}
2444		*if_sid = c->sid[0];
 
2445	} else
2446		*if_sid = SECINITSID_NETIF;
2447
2448out:
2449	read_unlock(&state->ss->policy_rwlock);
2450	return rc;
2451}
2452
2453static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2454{
2455	int i, fail = 0;
2456
2457	for (i = 0; i < 4; i++)
2458		if (addr[i] != (input[i] & mask[i])) {
2459			fail = 1;
2460			break;
2461		}
2462
2463	return !fail;
2464}
2465
2466/**
2467 * security_node_sid - Obtain the SID for a node (host).
 
2468 * @domain: communication domain aka address family
2469 * @addrp: address
2470 * @addrlen: address length in bytes
2471 * @out_sid: security identifier
2472 */
2473int security_node_sid(struct selinux_state *state,
2474		      u16 domain,
2475		      void *addrp,
2476		      u32 addrlen,
2477		      u32 *out_sid)
2478{
 
2479	struct policydb *policydb;
2480	struct sidtab *sidtab;
2481	int rc;
2482	struct ocontext *c;
2483
2484	read_lock(&state->ss->policy_rwlock);
 
 
 
2485
2486	policydb = &state->ss->policydb;
2487	sidtab = &state->ss->sidtab;
 
 
 
2488
2489	switch (domain) {
2490	case AF_INET: {
2491		u32 addr;
2492
2493		rc = -EINVAL;
2494		if (addrlen != sizeof(u32))
2495			goto out;
2496
2497		addr = *((u32 *)addrp);
2498
2499		c = policydb->ocontexts[OCON_NODE];
2500		while (c) {
2501			if (c->u.node.addr == (addr & c->u.node.mask))
2502				break;
2503			c = c->next;
2504		}
2505		break;
2506	}
2507
2508	case AF_INET6:
2509		rc = -EINVAL;
2510		if (addrlen != sizeof(u64) * 2)
2511			goto out;
2512		c = policydb->ocontexts[OCON_NODE6];
2513		while (c) {
2514			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2515						c->u.node6.mask))
2516				break;
2517			c = c->next;
2518		}
2519		break;
2520
2521	default:
2522		rc = 0;
2523		*out_sid = SECINITSID_NODE;
2524		goto out;
2525	}
2526
2527	if (c) {
2528		if (!c->sid[0]) {
2529			rc = sidtab_context_to_sid(sidtab,
2530						   &c->context[0],
2531						   &c->sid[0]);
2532			if (rc)
2533				goto out;
2534		}
2535		*out_sid = c->sid[0];
 
2536	} else {
2537		*out_sid = SECINITSID_NODE;
2538	}
2539
2540	rc = 0;
2541out:
2542	read_unlock(&state->ss->policy_rwlock);
2543	return rc;
2544}
2545
2546#define SIDS_NEL 25
2547
2548/**
2549 * security_get_user_sids - Obtain reachable SIDs for a user.
 
2550 * @fromsid: starting SID
2551 * @username: username
2552 * @sids: array of reachable SIDs for user
2553 * @nel: number of elements in @sids
2554 *
2555 * Generate the set of SIDs for legal security contexts
2556 * for a given user that can be reached by @fromsid.
2557 * Set *@sids to point to a dynamically allocated
2558 * array containing the set of SIDs.  Set *@nel to the
2559 * number of elements in the array.
2560 */
2561
2562int security_get_user_sids(struct selinux_state *state,
2563			   u32 fromsid,
2564			   char *username,
2565			   u32 **sids,
2566			   u32 *nel)
2567{
 
2568	struct policydb *policydb;
2569	struct sidtab *sidtab;
2570	struct context *fromcon, usercon;
2571	u32 *mysids = NULL, *mysids2, sid;
2572	u32 mynel = 0, maxnel = SIDS_NEL;
2573	struct user_datum *user;
2574	struct role_datum *role;
2575	struct ebitmap_node *rnode, *tnode;
2576	int rc = 0, i, j;
2577
2578	*sids = NULL;
2579	*nel = 0;
2580
2581	if (!state->initialized)
2582		goto out;
2583
2584	read_lock(&state->ss->policy_rwlock);
 
 
2585
2586	policydb = &state->ss->policydb;
2587	sidtab = &state->ss->sidtab;
 
 
 
 
2588
2589	context_init(&usercon);
2590
2591	rc = -EINVAL;
2592	fromcon = sidtab_search(sidtab, fromsid);
2593	if (!fromcon)
2594		goto out_unlock;
2595
2596	rc = -EINVAL;
2597	user = hashtab_search(policydb->p_users.table, username);
2598	if (!user)
2599		goto out_unlock;
2600
2601	usercon.user = user->value;
2602
2603	rc = -ENOMEM;
2604	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2605	if (!mysids)
2606		goto out_unlock;
2607
2608	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2609		role = policydb->role_val_to_struct[i];
2610		usercon.role = i + 1;
2611		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2612			usercon.type = j + 1;
2613
2614			if (mls_setup_user_range(policydb, fromcon, user,
2615						 &usercon))
2616				continue;
2617
2618			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
 
 
 
 
2619			if (rc)
2620				goto out_unlock;
2621			if (mynel < maxnel) {
2622				mysids[mynel++] = sid;
2623			} else {
2624				rc = -ENOMEM;
2625				maxnel += SIDS_NEL;
2626				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2627				if (!mysids2)
2628					goto out_unlock;
2629				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2630				kfree(mysids);
2631				mysids = mysids2;
2632				mysids[mynel++] = sid;
2633			}
2634		}
2635	}
2636	rc = 0;
2637out_unlock:
2638	read_unlock(&state->ss->policy_rwlock);
2639	if (rc || !mynel) {
2640		kfree(mysids);
2641		goto out;
2642	}
2643
2644	rc = -ENOMEM;
2645	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2646	if (!mysids2) {
2647		kfree(mysids);
2648		goto out;
2649	}
2650	for (i = 0, j = 0; i < mynel; i++) {
2651		struct av_decision dummy_avd;
2652		rc = avc_has_perm_noaudit(state,
2653					  fromsid, mysids[i],
2654					  SECCLASS_PROCESS, /* kernel value */
2655					  PROCESS__TRANSITION, AVC_STRICT,
2656					  &dummy_avd);
2657		if (!rc)
2658			mysids2[j++] = mysids[i];
2659		cond_resched();
2660	}
2661	rc = 0;
2662	kfree(mysids);
2663	*sids = mysids2;
2664	*nel = j;
2665out:
2666	return rc;
2667}
2668
2669/**
2670 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
 
2671 * @fstype: filesystem type
2672 * @path: path from root of mount
2673 * @sclass: file security class
2674 * @sid: SID for path
2675 *
2676 * Obtain a SID to use for a file in a filesystem that
2677 * cannot support xattr or use a fixed labeling behavior like
2678 * transition SIDs or task SIDs.
2679 *
2680 * The caller must acquire the policy_rwlock before calling this function.
 
2681 */
2682static inline int __security_genfs_sid(struct selinux_state *state,
2683				       const char *fstype,
2684				       char *path,
2685				       u16 orig_sclass,
2686				       u32 *sid)
2687{
2688	struct policydb *policydb = &state->ss->policydb;
2689	struct sidtab *sidtab = &state->ss->sidtab;
2690	int len;
2691	u16 sclass;
2692	struct genfs *genfs;
2693	struct ocontext *c;
2694	int rc, cmp = 0;
2695
2696	while (path[0] == '/' && path[1] == '/')
2697		path++;
2698
2699	sclass = unmap_class(&state->ss->map, orig_sclass);
2700	*sid = SECINITSID_UNLABELED;
2701
2702	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2703		cmp = strcmp(fstype, genfs->fstype);
2704		if (cmp <= 0)
2705			break;
2706	}
2707
2708	rc = -ENOENT;
2709	if (!genfs || cmp)
2710		goto out;
2711
2712	for (c = genfs->head; c; c = c->next) {
2713		len = strlen(c->u.name);
2714		if ((!c->v.sclass || sclass == c->v.sclass) &&
2715		    (strncmp(c->u.name, path, len) == 0))
2716			break;
2717	}
2718
2719	rc = -ENOENT;
2720	if (!c)
2721		goto out;
2722
2723	if (!c->sid[0]) {
2724		rc = sidtab_context_to_sid(sidtab, &c->context[0], &c->sid[0]);
2725		if (rc)
2726			goto out;
2727	}
2728
2729	*sid = c->sid[0];
2730	rc = 0;
2731out:
2732	return rc;
2733}
2734
2735/**
2736 * security_genfs_sid - Obtain a SID for a file in a filesystem
 
2737 * @fstype: filesystem type
2738 * @path: path from root of mount
2739 * @sclass: file security class
2740 * @sid: SID for path
2741 *
2742 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2743 * it afterward.
2744 */
2745int security_genfs_sid(struct selinux_state *state,
2746		       const char *fstype,
2747		       char *path,
2748		       u16 orig_sclass,
2749		       u32 *sid)
2750{
 
2751	int retval;
2752
2753	read_lock(&state->ss->policy_rwlock);
2754	retval = __security_genfs_sid(state, fstype, path, orig_sclass, sid);
2755	read_unlock(&state->ss->policy_rwlock);
 
 
 
 
 
 
 
 
 
2756	return retval;
2757}
2758
 
 
 
 
 
 
 
 
 
 
2759/**
2760 * security_fs_use - Determine how to handle labeling for a filesystem.
 
2761 * @sb: superblock in question
2762 */
2763int security_fs_use(struct selinux_state *state, struct super_block *sb)
2764{
 
2765	struct policydb *policydb;
2766	struct sidtab *sidtab;
2767	int rc = 0;
2768	struct ocontext *c;
2769	struct superblock_security_struct *sbsec = sb->s_security;
2770	const char *fstype = sb->s_type->name;
2771
2772	read_lock(&state->ss->policy_rwlock);
 
 
 
 
2773
2774	policydb = &state->ss->policydb;
2775	sidtab = &state->ss->sidtab;
 
 
 
2776
2777	c = policydb->ocontexts[OCON_FSUSE];
2778	while (c) {
2779		if (strcmp(fstype, c->u.name) == 0)
2780			break;
2781		c = c->next;
2782	}
2783
2784	if (c) {
2785		sbsec->behavior = c->v.behavior;
2786		if (!c->sid[0]) {
2787			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2788						   &c->sid[0]);
2789			if (rc)
2790				goto out;
2791		}
2792		sbsec->sid = c->sid[0];
 
2793	} else {
2794		rc = __security_genfs_sid(state, fstype, "/", SECCLASS_DIR,
2795					  &sbsec->sid);
 
 
 
 
2796		if (rc) {
2797			sbsec->behavior = SECURITY_FS_USE_NONE;
2798			rc = 0;
2799		} else {
2800			sbsec->behavior = SECURITY_FS_USE_GENFS;
2801		}
2802	}
2803
2804out:
2805	read_unlock(&state->ss->policy_rwlock);
2806	return rc;
2807}
2808
2809int security_get_bools(struct selinux_state *state,
2810		       int *len, char ***names, int **values)
2811{
2812	struct policydb *policydb;
2813	int i, rc;
2814
2815	if (!state->initialized) {
2816		*len = 0;
2817		*names = NULL;
2818		*values = NULL;
2819		return 0;
2820	}
2821
2822	read_lock(&state->ss->policy_rwlock);
2823
2824	policydb = &state->ss->policydb;
2825
2826	*names = NULL;
2827	*values = NULL;
2828
2829	rc = 0;
2830	*len = policydb->p_bools.nprim;
2831	if (!*len)
2832		goto out;
2833
2834	rc = -ENOMEM;
2835	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2836	if (!*names)
2837		goto err;
2838
2839	rc = -ENOMEM;
2840	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2841	if (!*values)
2842		goto err;
2843
2844	for (i = 0; i < *len; i++) {
2845		(*values)[i] = policydb->bool_val_to_struct[i]->state;
2846
2847		rc = -ENOMEM;
2848		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
2849				      GFP_ATOMIC);
2850		if (!(*names)[i])
2851			goto err;
2852	}
2853	rc = 0;
2854out:
2855	read_unlock(&state->ss->policy_rwlock);
2856	return rc;
2857err:
2858	if (*names) {
2859		for (i = 0; i < *len; i++)
2860			kfree((*names)[i]);
 
2861	}
2862	kfree(*values);
 
 
 
2863	goto out;
2864}
2865
2866
2867int security_set_bools(struct selinux_state *state, int len, int *values)
2868{
2869	struct policydb *policydb;
2870	int i, rc;
2871	int lenp, seqno = 0;
2872	struct cond_node *cur;
 
 
2873
2874	write_lock_irq(&state->ss->policy_rwlock);
 
2875
2876	policydb = &state->ss->policydb;
 
 
2877
2878	rc = -EFAULT;
2879	lenp = policydb->p_bools.nprim;
2880	if (len != lenp)
2881		goto out;
 
 
 
 
 
 
 
 
 
2882
 
2883	for (i = 0; i < len; i++) {
2884		if (!!values[i] != policydb->bool_val_to_struct[i]->state) {
2885			audit_log(current->audit_context, GFP_ATOMIC,
 
 
 
2886				AUDIT_MAC_CONFIG_CHANGE,
2887				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2888				sym_name(policydb, SYM_BOOLS, i),
2889				!!values[i],
2890				policydb->bool_val_to_struct[i]->state,
2891				from_kuid(&init_user_ns, audit_get_loginuid(current)),
2892				audit_get_sessionid(current));
 
2893		}
2894		if (values[i])
2895			policydb->bool_val_to_struct[i]->state = 1;
2896		else
2897			policydb->bool_val_to_struct[i]->state = 0;
2898	}
2899
2900	for (cur = policydb->cond_list; cur; cur = cur->next) {
2901		rc = evaluate_cond_node(policydb, cur);
2902		if (rc)
2903			goto out;
2904	}
 
 
 
 
 
 
 
 
 
 
 
 
2905
2906	seqno = ++state->ss->latest_granting;
2907	rc = 0;
2908out:
2909	write_unlock_irq(&state->ss->policy_rwlock);
2910	if (!rc) {
2911		avc_ss_reset(state->avc, seqno);
2912		selnl_notify_policyload(seqno);
2913		selinux_status_update_policyload(state, seqno);
2914		selinux_xfrm_notify_policyload();
2915	}
2916	return rc;
2917}
2918
2919int security_get_bool_value(struct selinux_state *state,
2920			    int index)
2921{
 
2922	struct policydb *policydb;
2923	int rc;
2924	int len;
2925
2926	read_lock(&state->ss->policy_rwlock);
 
2927
2928	policydb = &state->ss->policydb;
 
 
2929
2930	rc = -EFAULT;
2931	len = policydb->p_bools.nprim;
2932	if (index >= len)
2933		goto out;
2934
2935	rc = policydb->bool_val_to_struct[index]->state;
2936out:
2937	read_unlock(&state->ss->policy_rwlock);
2938	return rc;
2939}
2940
2941static int security_preserve_bools(struct selinux_state *state,
2942				   struct policydb *policydb)
2943{
2944	int rc, nbools = 0, *bvalues = NULL, i;
2945	char **bnames = NULL;
2946	struct cond_bool_datum *booldatum;
2947	struct cond_node *cur;
2948
2949	rc = security_get_bools(state, &nbools, &bnames, &bvalues);
2950	if (rc)
2951		goto out;
2952	for (i = 0; i < nbools; i++) {
2953		booldatum = hashtab_search(policydb->p_bools.table, bnames[i]);
 
2954		if (booldatum)
2955			booldatum->state = bvalues[i];
2956	}
2957	for (cur = policydb->cond_list; cur; cur = cur->next) {
2958		rc = evaluate_cond_node(policydb, cur);
2959		if (rc)
2960			goto out;
2961	}
2962
2963out:
2964	if (bnames) {
2965		for (i = 0; i < nbools; i++)
2966			kfree(bnames[i]);
2967	}
2968	kfree(bnames);
2969	kfree(bvalues);
2970	return rc;
2971}
2972
2973/*
2974 * security_sid_mls_copy() - computes a new sid based on the given
2975 * sid and the mls portion of mls_sid.
2976 */
2977int security_sid_mls_copy(struct selinux_state *state,
2978			  u32 sid, u32 mls_sid, u32 *new_sid)
2979{
2980	struct policydb *policydb = &state->ss->policydb;
2981	struct sidtab *sidtab = &state->ss->sidtab;
 
2982	struct context *context1;
2983	struct context *context2;
2984	struct context newcon;
2985	char *s;
2986	u32 len;
2987	int rc;
2988
2989	rc = 0;
2990	if (!state->initialized || !policydb->mls_enabled) {
2991		*new_sid = sid;
2992		goto out;
2993	}
2994
 
 
2995	context_init(&newcon);
2996
2997	read_lock(&state->ss->policy_rwlock);
 
 
 
 
 
 
 
 
2998
2999	rc = -EINVAL;
3000	context1 = sidtab_search(sidtab, sid);
3001	if (!context1) {
3002		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
3003			__func__, sid);
3004		goto out_unlock;
3005	}
3006
3007	rc = -EINVAL;
3008	context2 = sidtab_search(sidtab, mls_sid);
3009	if (!context2) {
3010		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
3011			__func__, mls_sid);
3012		goto out_unlock;
3013	}
3014
3015	newcon.user = context1->user;
3016	newcon.role = context1->role;
3017	newcon.type = context1->type;
3018	rc = mls_context_cpy(&newcon, context2);
3019	if (rc)
3020		goto out_unlock;
3021
3022	/* Check the validity of the new context. */
3023	if (!policydb_context_isvalid(policydb, &newcon)) {
3024		rc = convert_context_handle_invalid_context(state, &newcon);
 
3025		if (rc) {
3026			if (!context_struct_to_string(policydb, &newcon, &s,
3027						      &len)) {
3028				audit_log(current->audit_context,
3029					  GFP_ATOMIC, AUDIT_SELINUX_ERR,
3030					  "op=security_sid_mls_copy "
3031					  "invalid_context=%s", s);
 
 
 
 
 
 
3032				kfree(s);
3033			}
3034			goto out_unlock;
3035		}
3036	}
3037
3038	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
 
 
 
 
 
3039out_unlock:
3040	read_unlock(&state->ss->policy_rwlock);
3041	context_destroy(&newcon);
3042out:
3043	return rc;
3044}
3045
3046/**
3047 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
 
3048 * @nlbl_sid: NetLabel SID
3049 * @nlbl_type: NetLabel labeling protocol type
3050 * @xfrm_sid: XFRM SID
 
3051 *
3052 * Description:
3053 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3054 * resolved into a single SID it is returned via @peer_sid and the function
3055 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3056 * returns a negative value.  A table summarizing the behavior is below:
3057 *
3058 *                                 | function return |      @sid
3059 *   ------------------------------+-----------------+-----------------
3060 *   no peer labels                |        0        |    SECSID_NULL
3061 *   single peer label             |        0        |    <peer_label>
3062 *   multiple, consistent labels   |        0        |    <peer_label>
3063 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3064 *
3065 */
3066int security_net_peersid_resolve(struct selinux_state *state,
3067				 u32 nlbl_sid, u32 nlbl_type,
3068				 u32 xfrm_sid,
3069				 u32 *peer_sid)
3070{
3071	struct policydb *policydb = &state->ss->policydb;
3072	struct sidtab *sidtab = &state->ss->sidtab;
 
3073	int rc;
3074	struct context *nlbl_ctx;
3075	struct context *xfrm_ctx;
3076
3077	*peer_sid = SECSID_NULL;
3078
3079	/* handle the common (which also happens to be the set of easy) cases
3080	 * right away, these two if statements catch everything involving a
3081	 * single or absent peer SID/label */
3082	if (xfrm_sid == SECSID_NULL) {
3083		*peer_sid = nlbl_sid;
3084		return 0;
3085	}
3086	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3087	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3088	 * is present */
3089	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3090		*peer_sid = xfrm_sid;
3091		return 0;
3092	}
3093
 
 
 
 
 
 
 
 
3094	/*
3095	 * We don't need to check initialized here since the only way both
3096	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3097	 * security server was initialized and state->initialized was true.
3098	 */
3099	if (!policydb->mls_enabled)
3100		return 0;
3101
3102	read_lock(&state->ss->policy_rwlock);
3103
3104	rc = -EINVAL;
3105	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3106	if (!nlbl_ctx) {
3107		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
3108		       __func__, nlbl_sid);
3109		goto out;
3110	}
3111	rc = -EINVAL;
3112	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3113	if (!xfrm_ctx) {
3114		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
3115		       __func__, xfrm_sid);
3116		goto out;
3117	}
3118	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3119	if (rc)
3120		goto out;
3121
3122	/* at present NetLabel SIDs/labels really only carry MLS
3123	 * information so if the MLS portion of the NetLabel SID
3124	 * matches the MLS portion of the labeled XFRM SID/label
3125	 * then pass along the XFRM SID as it is the most
3126	 * expressive */
3127	*peer_sid = xfrm_sid;
3128out:
3129	read_unlock(&state->ss->policy_rwlock);
3130	return rc;
3131}
3132
3133static int get_classes_callback(void *k, void *d, void *args)
3134{
3135	struct class_datum *datum = d;
3136	char *name = k, **classes = args;
3137	int value = datum->value - 1;
3138
3139	classes[value] = kstrdup(name, GFP_ATOMIC);
3140	if (!classes[value])
3141		return -ENOMEM;
3142
3143	return 0;
3144}
3145
3146int security_get_classes(struct selinux_state *state,
3147			 char ***classes, int *nclasses)
3148{
3149	struct policydb *policydb = &state->ss->policydb;
3150	int rc;
3151
3152	if (!state->initialized) {
3153		*nclasses = 0;
3154		*classes = NULL;
3155		return 0;
3156	}
3157
3158	read_lock(&state->ss->policy_rwlock);
3159
3160	rc = -ENOMEM;
3161	*nclasses = policydb->p_classes.nprim;
3162	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3163	if (!*classes)
3164		goto out;
3165
3166	rc = hashtab_map(policydb->p_classes.table, get_classes_callback,
3167			*classes);
3168	if (rc) {
3169		int i;
3170		for (i = 0; i < *nclasses; i++)
3171			kfree((*classes)[i]);
3172		kfree(*classes);
3173	}
3174
3175out:
3176	read_unlock(&state->ss->policy_rwlock);
3177	return rc;
3178}
3179
3180static int get_permissions_callback(void *k, void *d, void *args)
3181{
3182	struct perm_datum *datum = d;
3183	char *name = k, **perms = args;
3184	int value = datum->value - 1;
3185
3186	perms[value] = kstrdup(name, GFP_ATOMIC);
3187	if (!perms[value])
3188		return -ENOMEM;
3189
3190	return 0;
3191}
3192
3193int security_get_permissions(struct selinux_state *state,
3194			     char *class, char ***perms, int *nperms)
3195{
3196	struct policydb *policydb = &state->ss->policydb;
3197	int rc, i;
3198	struct class_datum *match;
3199
3200	read_lock(&state->ss->policy_rwlock);
3201
3202	rc = -EINVAL;
3203	match = hashtab_search(policydb->p_classes.table, class);
3204	if (!match) {
3205		printk(KERN_ERR "SELinux: %s:  unrecognized class %s\n",
3206			__func__, class);
3207		goto out;
3208	}
3209
3210	rc = -ENOMEM;
3211	*nperms = match->permissions.nprim;
3212	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3213	if (!*perms)
3214		goto out;
3215
3216	if (match->comdatum) {
3217		rc = hashtab_map(match->comdatum->permissions.table,
3218				get_permissions_callback, *perms);
3219		if (rc)
3220			goto err;
3221	}
3222
3223	rc = hashtab_map(match->permissions.table, get_permissions_callback,
3224			*perms);
3225	if (rc)
3226		goto err;
3227
3228out:
3229	read_unlock(&state->ss->policy_rwlock);
3230	return rc;
3231
3232err:
3233	read_unlock(&state->ss->policy_rwlock);
3234	for (i = 0; i < *nperms; i++)
3235		kfree((*perms)[i]);
3236	kfree(*perms);
3237	return rc;
3238}
3239
3240int security_get_reject_unknown(struct selinux_state *state)
3241{
3242	return state->ss->policydb.reject_unknown;
 
 
 
 
 
 
 
 
 
 
3243}
3244
3245int security_get_allow_unknown(struct selinux_state *state)
3246{
3247	return state->ss->policydb.allow_unknown;
 
 
 
 
 
 
 
 
 
 
3248}
3249
3250/**
3251 * security_policycap_supported - Check for a specific policy capability
 
3252 * @req_cap: capability
3253 *
3254 * Description:
3255 * This function queries the currently loaded policy to see if it supports the
3256 * capability specified by @req_cap.  Returns true (1) if the capability is
3257 * supported, false (0) if it isn't supported.
3258 *
3259 */
3260int security_policycap_supported(struct selinux_state *state,
3261				 unsigned int req_cap)
3262{
3263	struct policydb *policydb = &state->ss->policydb;
3264	int rc;
3265
3266	read_lock(&state->ss->policy_rwlock);
3267	rc = ebitmap_get_bit(&policydb->policycaps, req_cap);
3268	read_unlock(&state->ss->policy_rwlock);
 
 
 
 
3269
3270	return rc;
3271}
3272
3273struct selinux_audit_rule {
3274	u32 au_seqno;
3275	struct context au_ctxt;
3276};
3277
3278void selinux_audit_rule_free(void *vrule)
3279{
3280	struct selinux_audit_rule *rule = vrule;
3281
3282	if (rule) {
3283		context_destroy(&rule->au_ctxt);
3284		kfree(rule);
3285	}
3286}
3287
3288int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3289{
3290	struct selinux_state *state = &selinux_state;
3291	struct policydb *policydb = &state->ss->policydb;
 
3292	struct selinux_audit_rule *tmprule;
3293	struct role_datum *roledatum;
3294	struct type_datum *typedatum;
3295	struct user_datum *userdatum;
3296	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3297	int rc = 0;
3298
3299	*rule = NULL;
3300
3301	if (!state->initialized)
3302		return -EOPNOTSUPP;
3303
3304	switch (field) {
3305	case AUDIT_SUBJ_USER:
3306	case AUDIT_SUBJ_ROLE:
3307	case AUDIT_SUBJ_TYPE:
3308	case AUDIT_OBJ_USER:
3309	case AUDIT_OBJ_ROLE:
3310	case AUDIT_OBJ_TYPE:
3311		/* only 'equals' and 'not equals' fit user, role, and type */
3312		if (op != Audit_equal && op != Audit_not_equal)
3313			return -EINVAL;
3314		break;
3315	case AUDIT_SUBJ_SEN:
3316	case AUDIT_SUBJ_CLR:
3317	case AUDIT_OBJ_LEV_LOW:
3318	case AUDIT_OBJ_LEV_HIGH:
3319		/* we do not allow a range, indicated by the presence of '-' */
3320		if (strchr(rulestr, '-'))
3321			return -EINVAL;
3322		break;
3323	default:
3324		/* only the above fields are valid */
3325		return -EINVAL;
3326	}
3327
3328	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3329	if (!tmprule)
3330		return -ENOMEM;
3331
3332	context_init(&tmprule->au_ctxt);
3333
3334	read_lock(&state->ss->policy_rwlock);
 
 
3335
3336	tmprule->au_seqno = state->ss->latest_granting;
3337
3338	switch (field) {
3339	case AUDIT_SUBJ_USER:
3340	case AUDIT_OBJ_USER:
3341		rc = -EINVAL;
3342		userdatum = hashtab_search(policydb->p_users.table, rulestr);
3343		if (!userdatum)
3344			goto out;
3345		tmprule->au_ctxt.user = userdatum->value;
3346		break;
3347	case AUDIT_SUBJ_ROLE:
3348	case AUDIT_OBJ_ROLE:
3349		rc = -EINVAL;
3350		roledatum = hashtab_search(policydb->p_roles.table, rulestr);
3351		if (!roledatum)
3352			goto out;
3353		tmprule->au_ctxt.role = roledatum->value;
3354		break;
3355	case AUDIT_SUBJ_TYPE:
3356	case AUDIT_OBJ_TYPE:
3357		rc = -EINVAL;
3358		typedatum = hashtab_search(policydb->p_types.table, rulestr);
3359		if (!typedatum)
3360			goto out;
3361		tmprule->au_ctxt.type = typedatum->value;
3362		break;
3363	case AUDIT_SUBJ_SEN:
3364	case AUDIT_SUBJ_CLR:
3365	case AUDIT_OBJ_LEV_LOW:
3366	case AUDIT_OBJ_LEV_HIGH:
3367		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3368				     GFP_ATOMIC);
3369		if (rc)
3370			goto out;
3371		break;
3372	}
3373	rc = 0;
3374out:
3375	read_unlock(&state->ss->policy_rwlock);
3376
3377	if (rc) {
3378		selinux_audit_rule_free(tmprule);
3379		tmprule = NULL;
3380	}
3381
3382	*rule = tmprule;
3383
3384	return rc;
3385}
3386
3387/* Check to see if the rule contains any selinux fields */
3388int selinux_audit_rule_known(struct audit_krule *rule)
3389{
3390	int i;
3391
3392	for (i = 0; i < rule->field_count; i++) {
3393		struct audit_field *f = &rule->fields[i];
3394		switch (f->type) {
3395		case AUDIT_SUBJ_USER:
3396		case AUDIT_SUBJ_ROLE:
3397		case AUDIT_SUBJ_TYPE:
3398		case AUDIT_SUBJ_SEN:
3399		case AUDIT_SUBJ_CLR:
3400		case AUDIT_OBJ_USER:
3401		case AUDIT_OBJ_ROLE:
3402		case AUDIT_OBJ_TYPE:
3403		case AUDIT_OBJ_LEV_LOW:
3404		case AUDIT_OBJ_LEV_HIGH:
3405			return 1;
3406		}
3407	}
3408
3409	return 0;
3410}
3411
3412int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
3413			     struct audit_context *actx)
3414{
3415	struct selinux_state *state = &selinux_state;
 
3416	struct context *ctxt;
3417	struct mls_level *level;
3418	struct selinux_audit_rule *rule = vrule;
3419	int match = 0;
3420
3421	if (unlikely(!rule)) {
3422		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3423		return -ENOENT;
3424	}
3425
3426	read_lock(&state->ss->policy_rwlock);
 
 
 
3427
3428	if (rule->au_seqno < state->ss->latest_granting) {
 
 
3429		match = -ESTALE;
3430		goto out;
3431	}
3432
3433	ctxt = sidtab_search(&state->ss->sidtab, sid);
3434	if (unlikely(!ctxt)) {
3435		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3436			  sid);
3437		match = -ENOENT;
3438		goto out;
3439	}
3440
3441	/* a field/op pair that is not caught here will simply fall through
3442	   without a match */
3443	switch (field) {
3444	case AUDIT_SUBJ_USER:
3445	case AUDIT_OBJ_USER:
3446		switch (op) {
3447		case Audit_equal:
3448			match = (ctxt->user == rule->au_ctxt.user);
3449			break;
3450		case Audit_not_equal:
3451			match = (ctxt->user != rule->au_ctxt.user);
3452			break;
3453		}
3454		break;
3455	case AUDIT_SUBJ_ROLE:
3456	case AUDIT_OBJ_ROLE:
3457		switch (op) {
3458		case Audit_equal:
3459			match = (ctxt->role == rule->au_ctxt.role);
3460			break;
3461		case Audit_not_equal:
3462			match = (ctxt->role != rule->au_ctxt.role);
3463			break;
3464		}
3465		break;
3466	case AUDIT_SUBJ_TYPE:
3467	case AUDIT_OBJ_TYPE:
3468		switch (op) {
3469		case Audit_equal:
3470			match = (ctxt->type == rule->au_ctxt.type);
3471			break;
3472		case Audit_not_equal:
3473			match = (ctxt->type != rule->au_ctxt.type);
3474			break;
3475		}
3476		break;
3477	case AUDIT_SUBJ_SEN:
3478	case AUDIT_SUBJ_CLR:
3479	case AUDIT_OBJ_LEV_LOW:
3480	case AUDIT_OBJ_LEV_HIGH:
3481		level = ((field == AUDIT_SUBJ_SEN ||
3482			  field == AUDIT_OBJ_LEV_LOW) ?
3483			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3484		switch (op) {
3485		case Audit_equal:
3486			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3487					     level);
3488			break;
3489		case Audit_not_equal:
3490			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3491					      level);
3492			break;
3493		case Audit_lt:
3494			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3495					       level) &&
3496				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3497					       level));
3498			break;
3499		case Audit_le:
3500			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3501					      level);
3502			break;
3503		case Audit_gt:
3504			match = (mls_level_dom(level,
3505					      &rule->au_ctxt.range.level[0]) &&
3506				 !mls_level_eq(level,
3507					       &rule->au_ctxt.range.level[0]));
3508			break;
3509		case Audit_ge:
3510			match = mls_level_dom(level,
3511					      &rule->au_ctxt.range.level[0]);
3512			break;
3513		}
3514	}
3515
3516out:
3517	read_unlock(&state->ss->policy_rwlock);
3518	return match;
3519}
3520
3521static int (*aurule_callback)(void) = audit_update_lsm_rules;
3522
3523static int aurule_avc_callback(u32 event)
3524{
3525	int err = 0;
3526
3527	if (event == AVC_CALLBACK_RESET && aurule_callback)
3528		err = aurule_callback();
3529	return err;
3530}
3531
3532static int __init aurule_init(void)
3533{
3534	int err;
3535
3536	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3537	if (err)
3538		panic("avc_add_callback() failed, error %d\n", err);
3539
3540	return err;
3541}
3542__initcall(aurule_init);
3543
3544#ifdef CONFIG_NETLABEL
3545/**
3546 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3547 * @secattr: the NetLabel packet security attributes
3548 * @sid: the SELinux SID
3549 *
3550 * Description:
3551 * Attempt to cache the context in @ctx, which was derived from the packet in
3552 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3553 * already been initialized.
3554 *
3555 */
3556static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3557				      u32 sid)
3558{
3559	u32 *sid_cache;
3560
3561	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3562	if (sid_cache == NULL)
3563		return;
3564	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3565	if (secattr->cache == NULL) {
3566		kfree(sid_cache);
3567		return;
3568	}
3569
3570	*sid_cache = sid;
3571	secattr->cache->free = kfree;
3572	secattr->cache->data = sid_cache;
3573	secattr->flags |= NETLBL_SECATTR_CACHE;
3574}
3575
3576/**
3577 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
 
3578 * @secattr: the NetLabel packet security attributes
3579 * @sid: the SELinux SID
3580 *
3581 * Description:
3582 * Convert the given NetLabel security attributes in @secattr into a
3583 * SELinux SID.  If the @secattr field does not contain a full SELinux
3584 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3585 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3586 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3587 * conversion for future lookups.  Returns zero on success, negative values on
3588 * failure.
3589 *
3590 */
3591int security_netlbl_secattr_to_sid(struct selinux_state *state,
3592				   struct netlbl_lsm_secattr *secattr,
3593				   u32 *sid)
3594{
3595	struct policydb *policydb = &state->ss->policydb;
3596	struct sidtab *sidtab = &state->ss->sidtab;
 
3597	int rc;
3598	struct context *ctx;
3599	struct context ctx_new;
3600
3601	if (!state->initialized) {
3602		*sid = SECSID_NULL;
3603		return 0;
3604	}
3605
3606	read_lock(&state->ss->policy_rwlock);
 
 
 
 
 
3607
3608	if (secattr->flags & NETLBL_SECATTR_CACHE)
3609		*sid = *(u32 *)secattr->cache->data;
3610	else if (secattr->flags & NETLBL_SECATTR_SECID)
3611		*sid = secattr->attr.secid;
3612	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3613		rc = -EIDRM;
3614		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3615		if (ctx == NULL)
3616			goto out;
3617
3618		context_init(&ctx_new);
3619		ctx_new.user = ctx->user;
3620		ctx_new.role = ctx->role;
3621		ctx_new.type = ctx->type;
3622		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3623		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3624			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3625			if (rc)
3626				goto out;
3627		}
3628		rc = -EIDRM;
3629		if (!mls_context_isvalid(policydb, &ctx_new))
3630			goto out_free;
 
 
3631
3632		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
 
 
 
 
 
3633		if (rc)
3634			goto out_free;
3635
3636		security_netlbl_cache_add(secattr, *sid);
3637
3638		ebitmap_destroy(&ctx_new.range.level[0].cat);
3639	} else
3640		*sid = SECSID_NULL;
3641
3642	read_unlock(&state->ss->policy_rwlock);
3643	return 0;
3644out_free:
3645	ebitmap_destroy(&ctx_new.range.level[0].cat);
3646out:
3647	read_unlock(&state->ss->policy_rwlock);
3648	return rc;
3649}
3650
3651/**
3652 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
 
3653 * @sid: the SELinux SID
3654 * @secattr: the NetLabel packet security attributes
3655 *
3656 * Description:
3657 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3658 * Returns zero on success, negative values on failure.
3659 *
3660 */
3661int security_netlbl_sid_to_secattr(struct selinux_state *state,
3662				   u32 sid, struct netlbl_lsm_secattr *secattr)
3663{
3664	struct policydb *policydb = &state->ss->policydb;
 
3665	int rc;
3666	struct context *ctx;
3667
3668	if (!state->initialized)
3669		return 0;
3670
3671	read_lock(&state->ss->policy_rwlock);
 
 
3672
3673	rc = -ENOENT;
3674	ctx = sidtab_search(&state->ss->sidtab, sid);
3675	if (ctx == NULL)
3676		goto out;
3677
3678	rc = -ENOMEM;
3679	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3680				  GFP_ATOMIC);
3681	if (secattr->domain == NULL)
3682		goto out;
3683
3684	secattr->attr.secid = sid;
3685	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3686	mls_export_netlbl_lvl(policydb, ctx, secattr);
3687	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3688out:
3689	read_unlock(&state->ss->policy_rwlock);
3690	return rc;
3691}
3692#endif /* CONFIG_NETLABEL */
3693
3694/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3695 * security_read_policy - read the policy.
 
3696 * @data: binary policy data
3697 * @len: length of data in bytes
3698 *
3699 */
3700int security_read_policy(struct selinux_state *state,
3701			 void **data, size_t *len)
3702{
3703	struct policydb *policydb = &state->ss->policydb;
3704	int rc;
3705	struct policy_file fp;
3706
3707	if (!state->initialized)
 
 
3708		return -EINVAL;
3709
3710	*len = security_policydb_len(state);
3711
3712	*data = vmalloc_user(*len);
3713	if (!*data)
3714		return -ENOMEM;
3715
3716	fp.data = *data;
3717	fp.len = *len;
3718
3719	read_lock(&state->ss->policy_rwlock);
3720	rc = policydb_write(policydb, &fp);
3721	read_unlock(&state->ss->policy_rwlock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3722
3723	if (rc)
3724		return rc;
 
 
3725
3726	*len = (unsigned long)fp.data - (unsigned long)*data;
3727	return 0;
 
 
3728
 
 
 
 
 
 
 
3729}