Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.17.
   1// SPDX-License-Identifier: GPL-2.0
   2
   3/* net/sched/sch_taprio.c	 Time Aware Priority Scheduler
   4 *
   5 * Authors:	Vinicius Costa Gomes <vinicius.gomes@intel.com>
   6 *
   7 */
   8
   9#include <linux/ethtool.h>
  10#include <linux/types.h>
  11#include <linux/slab.h>
  12#include <linux/kernel.h>
  13#include <linux/string.h>
  14#include <linux/list.h>
  15#include <linux/errno.h>
  16#include <linux/skbuff.h>
  17#include <linux/math64.h>
  18#include <linux/module.h>
  19#include <linux/spinlock.h>
  20#include <linux/rcupdate.h>
  21#include <linux/time.h>
  22#include <net/netlink.h>
  23#include <net/pkt_sched.h>
  24#include <net/pkt_cls.h>
  25#include <net/sch_generic.h>
  26#include <net/sock.h>
  27#include <net/tcp.h>
  28
  29static LIST_HEAD(taprio_list);
  30
  31#define TAPRIO_ALL_GATES_OPEN -1
  32
  33#define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST)
  34#define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)
  35#define TAPRIO_FLAGS_INVALID U32_MAX
  36
  37struct sched_entry {
  38	struct list_head list;
  39
  40	/* The instant that this entry "closes" and the next one
  41	 * should open, the qdisc will make some effort so that no
  42	 * packet leaves after this time.
  43	 */
  44	ktime_t close_time;
  45	ktime_t next_txtime;
  46	atomic_t budget;
  47	int index;
  48	u32 gate_mask;
  49	u32 interval;
  50	u8 command;
  51};
  52
  53struct sched_gate_list {
  54	struct rcu_head rcu;
  55	struct list_head entries;
  56	size_t num_entries;
  57	ktime_t cycle_close_time;
  58	s64 cycle_time;
  59	s64 cycle_time_extension;
  60	s64 base_time;
  61};
  62
  63struct taprio_sched {
  64	struct Qdisc **qdiscs;
  65	struct Qdisc *root;
  66	u32 flags;
  67	enum tk_offsets tk_offset;
  68	int clockid;
  69	bool offloaded;
  70	atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+
  71				    * speeds it's sub-nanoseconds per byte
  72				    */
  73
  74	/* Protects the update side of the RCU protected current_entry */
  75	spinlock_t current_entry_lock;
  76	struct sched_entry __rcu *current_entry;
  77	struct sched_gate_list __rcu *oper_sched;
  78	struct sched_gate_list __rcu *admin_sched;
  79	struct hrtimer advance_timer;
  80	struct list_head taprio_list;
  81	u32 max_frm_len[TC_MAX_QUEUE]; /* for the fast path */
  82	u32 max_sdu[TC_MAX_QUEUE]; /* for dump and offloading */
  83	u32 txtime_delay;
  84};
  85
  86struct __tc_taprio_qopt_offload {
  87	refcount_t users;
  88	struct tc_taprio_qopt_offload offload;
  89};
  90
  91static ktime_t sched_base_time(const struct sched_gate_list *sched)
  92{
  93	if (!sched)
  94		return KTIME_MAX;
  95
  96	return ns_to_ktime(sched->base_time);
  97}
  98
  99static ktime_t taprio_mono_to_any(const struct taprio_sched *q, ktime_t mono)
 100{
 101	/* This pairs with WRITE_ONCE() in taprio_parse_clockid() */
 102	enum tk_offsets tk_offset = READ_ONCE(q->tk_offset);
 103
 104	switch (tk_offset) {
 105	case TK_OFFS_MAX:
 106		return mono;
 107	default:
 108		return ktime_mono_to_any(mono, tk_offset);
 109	}
 110}
 111
 112static ktime_t taprio_get_time(const struct taprio_sched *q)
 113{
 114	return taprio_mono_to_any(q, ktime_get());
 115}
 116
 117static void taprio_free_sched_cb(struct rcu_head *head)
 118{
 119	struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu);
 120	struct sched_entry *entry, *n;
 121
 122	list_for_each_entry_safe(entry, n, &sched->entries, list) {
 123		list_del(&entry->list);
 124		kfree(entry);
 125	}
 126
 127	kfree(sched);
 128}
 129
 130static void switch_schedules(struct taprio_sched *q,
 131			     struct sched_gate_list **admin,
 132			     struct sched_gate_list **oper)
 133{
 134	rcu_assign_pointer(q->oper_sched, *admin);
 135	rcu_assign_pointer(q->admin_sched, NULL);
 136
 137	if (*oper)
 138		call_rcu(&(*oper)->rcu, taprio_free_sched_cb);
 139
 140	*oper = *admin;
 141	*admin = NULL;
 142}
 143
 144/* Get how much time has been already elapsed in the current cycle. */
 145static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time)
 146{
 147	ktime_t time_since_sched_start;
 148	s32 time_elapsed;
 149
 150	time_since_sched_start = ktime_sub(time, sched->base_time);
 151	div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed);
 152
 153	return time_elapsed;
 154}
 155
 156static ktime_t get_interval_end_time(struct sched_gate_list *sched,
 157				     struct sched_gate_list *admin,
 158				     struct sched_entry *entry,
 159				     ktime_t intv_start)
 160{
 161	s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start);
 162	ktime_t intv_end, cycle_ext_end, cycle_end;
 163
 164	cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed);
 165	intv_end = ktime_add_ns(intv_start, entry->interval);
 166	cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension);
 167
 168	if (ktime_before(intv_end, cycle_end))
 169		return intv_end;
 170	else if (admin && admin != sched &&
 171		 ktime_after(admin->base_time, cycle_end) &&
 172		 ktime_before(admin->base_time, cycle_ext_end))
 173		return admin->base_time;
 174	else
 175		return cycle_end;
 176}
 177
 178static int length_to_duration(struct taprio_sched *q, int len)
 179{
 180	return div_u64(len * atomic64_read(&q->picos_per_byte), PSEC_PER_NSEC);
 181}
 182
 183/* Returns the entry corresponding to next available interval. If
 184 * validate_interval is set, it only validates whether the timestamp occurs
 185 * when the gate corresponding to the skb's traffic class is open.
 186 */
 187static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb,
 188						  struct Qdisc *sch,
 189						  struct sched_gate_list *sched,
 190						  struct sched_gate_list *admin,
 191						  ktime_t time,
 192						  ktime_t *interval_start,
 193						  ktime_t *interval_end,
 194						  bool validate_interval)
 195{
 196	ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time;
 197	ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time;
 198	struct sched_entry *entry = NULL, *entry_found = NULL;
 199	struct taprio_sched *q = qdisc_priv(sch);
 200	struct net_device *dev = qdisc_dev(sch);
 201	bool entry_available = false;
 202	s32 cycle_elapsed;
 203	int tc, n;
 204
 205	tc = netdev_get_prio_tc_map(dev, skb->priority);
 206	packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb));
 207
 208	*interval_start = 0;
 209	*interval_end = 0;
 210
 211	if (!sched)
 212		return NULL;
 213
 214	cycle = sched->cycle_time;
 215	cycle_elapsed = get_cycle_time_elapsed(sched, time);
 216	curr_intv_end = ktime_sub_ns(time, cycle_elapsed);
 217	cycle_end = ktime_add_ns(curr_intv_end, cycle);
 218
 219	list_for_each_entry(entry, &sched->entries, list) {
 220		curr_intv_start = curr_intv_end;
 221		curr_intv_end = get_interval_end_time(sched, admin, entry,
 222						      curr_intv_start);
 223
 224		if (ktime_after(curr_intv_start, cycle_end))
 225			break;
 226
 227		if (!(entry->gate_mask & BIT(tc)) ||
 228		    packet_transmit_time > entry->interval)
 229			continue;
 230
 231		txtime = entry->next_txtime;
 232
 233		if (ktime_before(txtime, time) || validate_interval) {
 234			transmit_end_time = ktime_add_ns(time, packet_transmit_time);
 235			if ((ktime_before(curr_intv_start, time) &&
 236			     ktime_before(transmit_end_time, curr_intv_end)) ||
 237			    (ktime_after(curr_intv_start, time) && !validate_interval)) {
 238				entry_found = entry;
 239				*interval_start = curr_intv_start;
 240				*interval_end = curr_intv_end;
 241				break;
 242			} else if (!entry_available && !validate_interval) {
 243				/* Here, we are just trying to find out the
 244				 * first available interval in the next cycle.
 245				 */
 246				entry_available = true;
 247				entry_found = entry;
 248				*interval_start = ktime_add_ns(curr_intv_start, cycle);
 249				*interval_end = ktime_add_ns(curr_intv_end, cycle);
 250			}
 251		} else if (ktime_before(txtime, earliest_txtime) &&
 252			   !entry_available) {
 253			earliest_txtime = txtime;
 254			entry_found = entry;
 255			n = div_s64(ktime_sub(txtime, curr_intv_start), cycle);
 256			*interval_start = ktime_add(curr_intv_start, n * cycle);
 257			*interval_end = ktime_add(curr_intv_end, n * cycle);
 258		}
 259	}
 260
 261	return entry_found;
 262}
 263
 264static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch)
 265{
 266	struct taprio_sched *q = qdisc_priv(sch);
 267	struct sched_gate_list *sched, *admin;
 268	ktime_t interval_start, interval_end;
 269	struct sched_entry *entry;
 270
 271	rcu_read_lock();
 272	sched = rcu_dereference(q->oper_sched);
 273	admin = rcu_dereference(q->admin_sched);
 274
 275	entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp,
 276				       &interval_start, &interval_end, true);
 277	rcu_read_unlock();
 278
 279	return entry;
 280}
 281
 282static bool taprio_flags_valid(u32 flags)
 283{
 284	/* Make sure no other flag bits are set. */
 285	if (flags & ~(TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST |
 286		      TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
 287		return false;
 288	/* txtime-assist and full offload are mutually exclusive */
 289	if ((flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) &&
 290	    (flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
 291		return false;
 292	return true;
 293}
 294
 295/* This returns the tstamp value set by TCP in terms of the set clock. */
 296static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb)
 297{
 298	unsigned int offset = skb_network_offset(skb);
 299	const struct ipv6hdr *ipv6h;
 300	const struct iphdr *iph;
 301	struct ipv6hdr _ipv6h;
 302
 303	ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
 304	if (!ipv6h)
 305		return 0;
 306
 307	if (ipv6h->version == 4) {
 308		iph = (struct iphdr *)ipv6h;
 309		offset += iph->ihl * 4;
 310
 311		/* special-case 6in4 tunnelling, as that is a common way to get
 312		 * v6 connectivity in the home
 313		 */
 314		if (iph->protocol == IPPROTO_IPV6) {
 315			ipv6h = skb_header_pointer(skb, offset,
 316						   sizeof(_ipv6h), &_ipv6h);
 317
 318			if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
 319				return 0;
 320		} else if (iph->protocol != IPPROTO_TCP) {
 321			return 0;
 322		}
 323	} else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) {
 324		return 0;
 325	}
 326
 327	return taprio_mono_to_any(q, skb->skb_mstamp_ns);
 328}
 329
 330/* There are a few scenarios where we will have to modify the txtime from
 331 * what is read from next_txtime in sched_entry. They are:
 332 * 1. If txtime is in the past,
 333 *    a. The gate for the traffic class is currently open and packet can be
 334 *       transmitted before it closes, schedule the packet right away.
 335 *    b. If the gate corresponding to the traffic class is going to open later
 336 *       in the cycle, set the txtime of packet to the interval start.
 337 * 2. If txtime is in the future, there are packets corresponding to the
 338 *    current traffic class waiting to be transmitted. So, the following
 339 *    possibilities exist:
 340 *    a. We can transmit the packet before the window containing the txtime
 341 *       closes.
 342 *    b. The window might close before the transmission can be completed
 343 *       successfully. So, schedule the packet in the next open window.
 344 */
 345static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch)
 346{
 347	ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp;
 348	struct taprio_sched *q = qdisc_priv(sch);
 349	struct sched_gate_list *sched, *admin;
 350	ktime_t minimum_time, now, txtime;
 351	int len, packet_transmit_time;
 352	struct sched_entry *entry;
 353	bool sched_changed;
 354
 355	now = taprio_get_time(q);
 356	minimum_time = ktime_add_ns(now, q->txtime_delay);
 357
 358	tcp_tstamp = get_tcp_tstamp(q, skb);
 359	minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp);
 360
 361	rcu_read_lock();
 362	admin = rcu_dereference(q->admin_sched);
 363	sched = rcu_dereference(q->oper_sched);
 364	if (admin && ktime_after(minimum_time, admin->base_time))
 365		switch_schedules(q, &admin, &sched);
 366
 367	/* Until the schedule starts, all the queues are open */
 368	if (!sched || ktime_before(minimum_time, sched->base_time)) {
 369		txtime = minimum_time;
 370		goto done;
 371	}
 372
 373	len = qdisc_pkt_len(skb);
 374	packet_transmit_time = length_to_duration(q, len);
 375
 376	do {
 377		sched_changed = false;
 378
 379		entry = find_entry_to_transmit(skb, sch, sched, admin,
 380					       minimum_time,
 381					       &interval_start, &interval_end,
 382					       false);
 383		if (!entry) {
 384			txtime = 0;
 385			goto done;
 386		}
 387
 388		txtime = entry->next_txtime;
 389		txtime = max_t(ktime_t, txtime, minimum_time);
 390		txtime = max_t(ktime_t, txtime, interval_start);
 391
 392		if (admin && admin != sched &&
 393		    ktime_after(txtime, admin->base_time)) {
 394			sched = admin;
 395			sched_changed = true;
 396			continue;
 397		}
 398
 399		transmit_end_time = ktime_add(txtime, packet_transmit_time);
 400		minimum_time = transmit_end_time;
 401
 402		/* Update the txtime of current entry to the next time it's
 403		 * interval starts.
 404		 */
 405		if (ktime_after(transmit_end_time, interval_end))
 406			entry->next_txtime = ktime_add(interval_start, sched->cycle_time);
 407	} while (sched_changed || ktime_after(transmit_end_time, interval_end));
 408
 409	entry->next_txtime = transmit_end_time;
 410
 411done:
 412	rcu_read_unlock();
 413	return txtime;
 414}
 415
 416static int taprio_enqueue_one(struct sk_buff *skb, struct Qdisc *sch,
 417			      struct Qdisc *child, struct sk_buff **to_free)
 418{
 419	struct taprio_sched *q = qdisc_priv(sch);
 420	struct net_device *dev = qdisc_dev(sch);
 421	int prio = skb->priority;
 422	u8 tc;
 423
 424	/* sk_flags are only safe to use on full sockets. */
 425	if (skb->sk && sk_fullsock(skb->sk) && sock_flag(skb->sk, SOCK_TXTIME)) {
 426		if (!is_valid_interval(skb, sch))
 427			return qdisc_drop(skb, sch, to_free);
 428	} else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
 429		skb->tstamp = get_packet_txtime(skb, sch);
 430		if (!skb->tstamp)
 431			return qdisc_drop(skb, sch, to_free);
 432	}
 433
 434	/* Devices with full offload are expected to honor this in hardware */
 435	tc = netdev_get_prio_tc_map(dev, prio);
 436	if (skb->len > q->max_frm_len[tc])
 437		return qdisc_drop(skb, sch, to_free);
 438
 439	qdisc_qstats_backlog_inc(sch, skb);
 440	sch->q.qlen++;
 441
 442	return qdisc_enqueue(skb, child, to_free);
 443}
 444
 445/* Will not be called in the full offload case, since the TX queues are
 446 * attached to the Qdisc created using qdisc_create_dflt()
 447 */
 448static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch,
 449			  struct sk_buff **to_free)
 450{
 451	struct taprio_sched *q = qdisc_priv(sch);
 452	struct Qdisc *child;
 453	int queue;
 454
 455	queue = skb_get_queue_mapping(skb);
 456
 457	child = q->qdiscs[queue];
 458	if (unlikely(!child))
 459		return qdisc_drop(skb, sch, to_free);
 460
 461	/* Large packets might not be transmitted when the transmission duration
 462	 * exceeds any configured interval. Therefore, segment the skb into
 463	 * smaller chunks. Drivers with full offload are expected to handle
 464	 * this in hardware.
 465	 */
 466	if (skb_is_gso(skb)) {
 467		unsigned int slen = 0, numsegs = 0, len = qdisc_pkt_len(skb);
 468		netdev_features_t features = netif_skb_features(skb);
 469		struct sk_buff *segs, *nskb;
 470		int ret;
 471
 472		segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
 473		if (IS_ERR_OR_NULL(segs))
 474			return qdisc_drop(skb, sch, to_free);
 475
 476		skb_list_walk_safe(segs, segs, nskb) {
 477			skb_mark_not_on_list(segs);
 478			qdisc_skb_cb(segs)->pkt_len = segs->len;
 479			slen += segs->len;
 480
 481			ret = taprio_enqueue_one(segs, sch, child, to_free);
 482			if (ret != NET_XMIT_SUCCESS) {
 483				if (net_xmit_drop_count(ret))
 484					qdisc_qstats_drop(sch);
 485			} else {
 486				numsegs++;
 487			}
 488		}
 489
 490		if (numsegs > 1)
 491			qdisc_tree_reduce_backlog(sch, 1 - numsegs, len - slen);
 492		consume_skb(skb);
 493
 494		return numsegs > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP;
 495	}
 496
 497	return taprio_enqueue_one(skb, sch, child, to_free);
 498}
 499
 500/* Will not be called in the full offload case, since the TX queues are
 501 * attached to the Qdisc created using qdisc_create_dflt()
 502 */
 503static struct sk_buff *taprio_peek(struct Qdisc *sch)
 504{
 505	struct taprio_sched *q = qdisc_priv(sch);
 506	struct net_device *dev = qdisc_dev(sch);
 507	struct sched_entry *entry;
 508	struct sk_buff *skb;
 509	u32 gate_mask;
 510	int i;
 511
 512	rcu_read_lock();
 513	entry = rcu_dereference(q->current_entry);
 514	gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
 515	rcu_read_unlock();
 516
 517	if (!gate_mask)
 518		return NULL;
 519
 520	for (i = 0; i < dev->num_tx_queues; i++) {
 521		struct Qdisc *child = q->qdiscs[i];
 522		int prio;
 523		u8 tc;
 524
 525		if (unlikely(!child))
 526			continue;
 527
 528		skb = child->ops->peek(child);
 529		if (!skb)
 530			continue;
 531
 532		if (TXTIME_ASSIST_IS_ENABLED(q->flags))
 533			return skb;
 534
 535		prio = skb->priority;
 536		tc = netdev_get_prio_tc_map(dev, prio);
 537
 538		if (!(gate_mask & BIT(tc)))
 539			continue;
 540
 541		return skb;
 542	}
 543
 544	return NULL;
 545}
 546
 547static void taprio_set_budget(struct taprio_sched *q, struct sched_entry *entry)
 548{
 549	atomic_set(&entry->budget,
 550		   div64_u64((u64)entry->interval * PSEC_PER_NSEC,
 551			     atomic64_read(&q->picos_per_byte)));
 552}
 553
 554/* Will not be called in the full offload case, since the TX queues are
 555 * attached to the Qdisc created using qdisc_create_dflt()
 556 */
 557static struct sk_buff *taprio_dequeue(struct Qdisc *sch)
 558{
 559	struct taprio_sched *q = qdisc_priv(sch);
 560	struct net_device *dev = qdisc_dev(sch);
 561	struct sk_buff *skb = NULL;
 562	struct sched_entry *entry;
 563	u32 gate_mask;
 564	int i;
 565
 566	rcu_read_lock();
 567	entry = rcu_dereference(q->current_entry);
 568	/* if there's no entry, it means that the schedule didn't
 569	 * start yet, so force all gates to be open, this is in
 570	 * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5
 571	 * "AdminGateStates"
 572	 */
 573	gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
 574
 575	if (!gate_mask)
 576		goto done;
 577
 578	for (i = 0; i < dev->num_tx_queues; i++) {
 579		struct Qdisc *child = q->qdiscs[i];
 580		ktime_t guard;
 581		int prio;
 582		int len;
 583		u8 tc;
 584
 585		if (unlikely(!child))
 586			continue;
 587
 588		if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
 589			skb = child->ops->dequeue(child);
 590			if (!skb)
 591				continue;
 592			goto skb_found;
 593		}
 594
 595		skb = child->ops->peek(child);
 596		if (!skb)
 597			continue;
 598
 599		prio = skb->priority;
 600		tc = netdev_get_prio_tc_map(dev, prio);
 601
 602		if (!(gate_mask & BIT(tc))) {
 603			skb = NULL;
 604			continue;
 605		}
 606
 607		len = qdisc_pkt_len(skb);
 608		guard = ktime_add_ns(taprio_get_time(q),
 609				     length_to_duration(q, len));
 610
 611		/* In the case that there's no gate entry, there's no
 612		 * guard band ...
 613		 */
 614		if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
 615		    ktime_after(guard, entry->close_time)) {
 616			skb = NULL;
 617			continue;
 618		}
 619
 620		/* ... and no budget. */
 621		if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
 622		    atomic_sub_return(len, &entry->budget) < 0) {
 623			skb = NULL;
 624			continue;
 625		}
 626
 627		skb = child->ops->dequeue(child);
 628		if (unlikely(!skb))
 629			goto done;
 630
 631skb_found:
 632		qdisc_bstats_update(sch, skb);
 633		qdisc_qstats_backlog_dec(sch, skb);
 634		sch->q.qlen--;
 635
 636		goto done;
 637	}
 638
 639done:
 640	rcu_read_unlock();
 641
 642	return skb;
 643}
 644
 645static bool should_restart_cycle(const struct sched_gate_list *oper,
 646				 const struct sched_entry *entry)
 647{
 648	if (list_is_last(&entry->list, &oper->entries))
 649		return true;
 650
 651	if (ktime_compare(entry->close_time, oper->cycle_close_time) == 0)
 652		return true;
 653
 654	return false;
 655}
 656
 657static bool should_change_schedules(const struct sched_gate_list *admin,
 658				    const struct sched_gate_list *oper,
 659				    ktime_t close_time)
 660{
 661	ktime_t next_base_time, extension_time;
 662
 663	if (!admin)
 664		return false;
 665
 666	next_base_time = sched_base_time(admin);
 667
 668	/* This is the simple case, the close_time would fall after
 669	 * the next schedule base_time.
 670	 */
 671	if (ktime_compare(next_base_time, close_time) <= 0)
 672		return true;
 673
 674	/* This is the cycle_time_extension case, if the close_time
 675	 * plus the amount that can be extended would fall after the
 676	 * next schedule base_time, we can extend the current schedule
 677	 * for that amount.
 678	 */
 679	extension_time = ktime_add_ns(close_time, oper->cycle_time_extension);
 680
 681	/* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about
 682	 * how precisely the extension should be made. So after
 683	 * conformance testing, this logic may change.
 684	 */
 685	if (ktime_compare(next_base_time, extension_time) <= 0)
 686		return true;
 687
 688	return false;
 689}
 690
 691static enum hrtimer_restart advance_sched(struct hrtimer *timer)
 692{
 693	struct taprio_sched *q = container_of(timer, struct taprio_sched,
 694					      advance_timer);
 695	struct sched_gate_list *oper, *admin;
 696	struct sched_entry *entry, *next;
 697	struct Qdisc *sch = q->root;
 698	ktime_t close_time;
 699
 700	spin_lock(&q->current_entry_lock);
 701	entry = rcu_dereference_protected(q->current_entry,
 702					  lockdep_is_held(&q->current_entry_lock));
 703	oper = rcu_dereference_protected(q->oper_sched,
 704					 lockdep_is_held(&q->current_entry_lock));
 705	admin = rcu_dereference_protected(q->admin_sched,
 706					  lockdep_is_held(&q->current_entry_lock));
 707
 708	if (!oper)
 709		switch_schedules(q, &admin, &oper);
 710
 711	/* This can happen in two cases: 1. this is the very first run
 712	 * of this function (i.e. we weren't running any schedule
 713	 * previously); 2. The previous schedule just ended. The first
 714	 * entry of all schedules are pre-calculated during the
 715	 * schedule initialization.
 716	 */
 717	if (unlikely(!entry || entry->close_time == oper->base_time)) {
 718		next = list_first_entry(&oper->entries, struct sched_entry,
 719					list);
 720		close_time = next->close_time;
 721		goto first_run;
 722	}
 723
 724	if (should_restart_cycle(oper, entry)) {
 725		next = list_first_entry(&oper->entries, struct sched_entry,
 726					list);
 727		oper->cycle_close_time = ktime_add_ns(oper->cycle_close_time,
 728						      oper->cycle_time);
 729	} else {
 730		next = list_next_entry(entry, list);
 731	}
 732
 733	close_time = ktime_add_ns(entry->close_time, next->interval);
 734	close_time = min_t(ktime_t, close_time, oper->cycle_close_time);
 735
 736	if (should_change_schedules(admin, oper, close_time)) {
 737		/* Set things so the next time this runs, the new
 738		 * schedule runs.
 739		 */
 740		close_time = sched_base_time(admin);
 741		switch_schedules(q, &admin, &oper);
 742	}
 743
 744	next->close_time = close_time;
 745	taprio_set_budget(q, next);
 746
 747first_run:
 748	rcu_assign_pointer(q->current_entry, next);
 749	spin_unlock(&q->current_entry_lock);
 750
 751	hrtimer_set_expires(&q->advance_timer, close_time);
 752
 753	rcu_read_lock();
 754	__netif_schedule(sch);
 755	rcu_read_unlock();
 756
 757	return HRTIMER_RESTART;
 758}
 759
 760static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = {
 761	[TCA_TAPRIO_SCHED_ENTRY_INDEX]	   = { .type = NLA_U32 },
 762	[TCA_TAPRIO_SCHED_ENTRY_CMD]	   = { .type = NLA_U8 },
 763	[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 },
 764	[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]  = { .type = NLA_U32 },
 765};
 766
 767static const struct nla_policy taprio_tc_policy[TCA_TAPRIO_TC_ENTRY_MAX + 1] = {
 768	[TCA_TAPRIO_TC_ENTRY_INDEX]	   = { .type = NLA_U32 },
 769	[TCA_TAPRIO_TC_ENTRY_MAX_SDU]	   = { .type = NLA_U32 },
 770};
 771
 772static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = {
 773	[TCA_TAPRIO_ATTR_PRIOMAP]	       = {
 774		.len = sizeof(struct tc_mqprio_qopt)
 775	},
 776	[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]           = { .type = NLA_NESTED },
 777	[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]            = { .type = NLA_S64 },
 778	[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]         = { .type = NLA_NESTED },
 779	[TCA_TAPRIO_ATTR_SCHED_CLOCKID]              = { .type = NLA_S32 },
 780	[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]           = { .type = NLA_S64 },
 781	[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 },
 782	[TCA_TAPRIO_ATTR_FLAGS]                      = { .type = NLA_U32 },
 783	[TCA_TAPRIO_ATTR_TXTIME_DELAY]		     = { .type = NLA_U32 },
 784	[TCA_TAPRIO_ATTR_TC_ENTRY]		     = { .type = NLA_NESTED },
 785};
 786
 787static int fill_sched_entry(struct taprio_sched *q, struct nlattr **tb,
 788			    struct sched_entry *entry,
 789			    struct netlink_ext_ack *extack)
 790{
 791	int min_duration = length_to_duration(q, ETH_ZLEN);
 792	u32 interval = 0;
 793
 794	if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD])
 795		entry->command = nla_get_u8(
 796			tb[TCA_TAPRIO_SCHED_ENTRY_CMD]);
 797
 798	if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK])
 799		entry->gate_mask = nla_get_u32(
 800			tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]);
 801
 802	if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL])
 803		interval = nla_get_u32(
 804			tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]);
 805
 806	/* The interval should allow at least the minimum ethernet
 807	 * frame to go out.
 808	 */
 809	if (interval < min_duration) {
 810		NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry");
 811		return -EINVAL;
 812	}
 813
 814	entry->interval = interval;
 815
 816	return 0;
 817}
 818
 819static int parse_sched_entry(struct taprio_sched *q, struct nlattr *n,
 820			     struct sched_entry *entry, int index,
 821			     struct netlink_ext_ack *extack)
 822{
 823	struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { };
 824	int err;
 825
 826	err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n,
 827					  entry_policy, NULL);
 828	if (err < 0) {
 829		NL_SET_ERR_MSG(extack, "Could not parse nested entry");
 830		return -EINVAL;
 831	}
 832
 833	entry->index = index;
 834
 835	return fill_sched_entry(q, tb, entry, extack);
 836}
 837
 838static int parse_sched_list(struct taprio_sched *q, struct nlattr *list,
 839			    struct sched_gate_list *sched,
 840			    struct netlink_ext_ack *extack)
 841{
 842	struct nlattr *n;
 843	int err, rem;
 844	int i = 0;
 845
 846	if (!list)
 847		return -EINVAL;
 848
 849	nla_for_each_nested(n, list, rem) {
 850		struct sched_entry *entry;
 851
 852		if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) {
 853			NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'");
 854			continue;
 855		}
 856
 857		entry = kzalloc(sizeof(*entry), GFP_KERNEL);
 858		if (!entry) {
 859			NL_SET_ERR_MSG(extack, "Not enough memory for entry");
 860			return -ENOMEM;
 861		}
 862
 863		err = parse_sched_entry(q, n, entry, i, extack);
 864		if (err < 0) {
 865			kfree(entry);
 866			return err;
 867		}
 868
 869		list_add_tail(&entry->list, &sched->entries);
 870		i++;
 871	}
 872
 873	sched->num_entries = i;
 874
 875	return i;
 876}
 877
 878static int parse_taprio_schedule(struct taprio_sched *q, struct nlattr **tb,
 879				 struct sched_gate_list *new,
 880				 struct netlink_ext_ack *extack)
 881{
 882	int err = 0;
 883
 884	if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) {
 885		NL_SET_ERR_MSG(extack, "Adding a single entry is not supported");
 886		return -ENOTSUPP;
 887	}
 888
 889	if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME])
 890		new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]);
 891
 892	if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION])
 893		new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]);
 894
 895	if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME])
 896		new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]);
 897
 898	if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST])
 899		err = parse_sched_list(q, tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST],
 900				       new, extack);
 901	if (err < 0)
 902		return err;
 903
 904	if (!new->cycle_time) {
 905		struct sched_entry *entry;
 906		ktime_t cycle = 0;
 907
 908		list_for_each_entry(entry, &new->entries, list)
 909			cycle = ktime_add_ns(cycle, entry->interval);
 910
 911		if (!cycle) {
 912			NL_SET_ERR_MSG(extack, "'cycle_time' can never be 0");
 913			return -EINVAL;
 914		}
 915
 916		new->cycle_time = cycle;
 917	}
 918
 919	return 0;
 920}
 921
 922static int taprio_parse_mqprio_opt(struct net_device *dev,
 923				   struct tc_mqprio_qopt *qopt,
 924				   struct netlink_ext_ack *extack,
 925				   u32 taprio_flags)
 926{
 927	int i, j;
 928
 929	if (!qopt && !dev->num_tc) {
 930		NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary");
 931		return -EINVAL;
 932	}
 933
 934	/* If num_tc is already set, it means that the user already
 935	 * configured the mqprio part
 936	 */
 937	if (dev->num_tc)
 938		return 0;
 939
 940	/* Verify num_tc is not out of max range */
 941	if (qopt->num_tc > TC_MAX_QUEUE) {
 942		NL_SET_ERR_MSG(extack, "Number of traffic classes is outside valid range");
 943		return -EINVAL;
 944	}
 945
 946	/* taprio imposes that traffic classes map 1:n to tx queues */
 947	if (qopt->num_tc > dev->num_tx_queues) {
 948		NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues");
 949		return -EINVAL;
 950	}
 951
 952	/* Verify priority mapping uses valid tcs */
 953	for (i = 0; i <= TC_BITMASK; i++) {
 954		if (qopt->prio_tc_map[i] >= qopt->num_tc) {
 955			NL_SET_ERR_MSG(extack, "Invalid traffic class in priority to traffic class mapping");
 956			return -EINVAL;
 957		}
 958	}
 959
 960	for (i = 0; i < qopt->num_tc; i++) {
 961		unsigned int last = qopt->offset[i] + qopt->count[i];
 962
 963		/* Verify the queue count is in tx range being equal to the
 964		 * real_num_tx_queues indicates the last queue is in use.
 965		 */
 966		if (qopt->offset[i] >= dev->num_tx_queues ||
 967		    !qopt->count[i] ||
 968		    last > dev->real_num_tx_queues) {
 969			NL_SET_ERR_MSG(extack, "Invalid queue in traffic class to queue mapping");
 970			return -EINVAL;
 971		}
 972
 973		if (TXTIME_ASSIST_IS_ENABLED(taprio_flags))
 974			continue;
 975
 976		/* Verify that the offset and counts do not overlap */
 977		for (j = i + 1; j < qopt->num_tc; j++) {
 978			if (last > qopt->offset[j]) {
 979				NL_SET_ERR_MSG(extack, "Detected overlap in the traffic class to queue mapping");
 980				return -EINVAL;
 981			}
 982		}
 983	}
 984
 985	return 0;
 986}
 987
 988static int taprio_get_start_time(struct Qdisc *sch,
 989				 struct sched_gate_list *sched,
 990				 ktime_t *start)
 991{
 992	struct taprio_sched *q = qdisc_priv(sch);
 993	ktime_t now, base, cycle;
 994	s64 n;
 995
 996	base = sched_base_time(sched);
 997	now = taprio_get_time(q);
 998
 999	if (ktime_after(base, now)) {
1000		*start = base;
1001		return 0;
1002	}
1003
1004	cycle = sched->cycle_time;
1005
1006	/* The qdisc is expected to have at least one sched_entry.  Moreover,
1007	 * any entry must have 'interval' > 0. Thus if the cycle time is zero,
1008	 * something went really wrong. In that case, we should warn about this
1009	 * inconsistent state and return error.
1010	 */
1011	if (WARN_ON(!cycle))
1012		return -EFAULT;
1013
1014	/* Schedule the start time for the beginning of the next
1015	 * cycle.
1016	 */
1017	n = div64_s64(ktime_sub_ns(now, base), cycle);
1018	*start = ktime_add_ns(base, (n + 1) * cycle);
1019	return 0;
1020}
1021
1022static void setup_first_close_time(struct taprio_sched *q,
1023				   struct sched_gate_list *sched, ktime_t base)
1024{
1025	struct sched_entry *first;
1026	ktime_t cycle;
1027
1028	first = list_first_entry(&sched->entries,
1029				 struct sched_entry, list);
1030
1031	cycle = sched->cycle_time;
1032
1033	/* FIXME: find a better place to do this */
1034	sched->cycle_close_time = ktime_add_ns(base, cycle);
1035
1036	first->close_time = ktime_add_ns(base, first->interval);
1037	taprio_set_budget(q, first);
1038	rcu_assign_pointer(q->current_entry, NULL);
1039}
1040
1041static void taprio_start_sched(struct Qdisc *sch,
1042			       ktime_t start, struct sched_gate_list *new)
1043{
1044	struct taprio_sched *q = qdisc_priv(sch);
1045	ktime_t expires;
1046
1047	if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1048		return;
1049
1050	expires = hrtimer_get_expires(&q->advance_timer);
1051	if (expires == 0)
1052		expires = KTIME_MAX;
1053
1054	/* If the new schedule starts before the next expiration, we
1055	 * reprogram it to the earliest one, so we change the admin
1056	 * schedule to the operational one at the right time.
1057	 */
1058	start = min_t(ktime_t, start, expires);
1059
1060	hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS);
1061}
1062
1063static void taprio_set_picos_per_byte(struct net_device *dev,
1064				      struct taprio_sched *q)
1065{
1066	struct ethtool_link_ksettings ecmd;
1067	int speed = SPEED_10;
1068	int picos_per_byte;
1069	int err;
1070
1071	err = __ethtool_get_link_ksettings(dev, &ecmd);
1072	if (err < 0)
1073		goto skip;
1074
1075	if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN)
1076		speed = ecmd.base.speed;
1077
1078skip:
1079	picos_per_byte = (USEC_PER_SEC * 8) / speed;
1080
1081	atomic64_set(&q->picos_per_byte, picos_per_byte);
1082	netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n",
1083		   dev->name, (long long)atomic64_read(&q->picos_per_byte),
1084		   ecmd.base.speed);
1085}
1086
1087static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event,
1088			       void *ptr)
1089{
1090	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1091	struct taprio_sched *q;
1092
1093	ASSERT_RTNL();
1094
1095	if (event != NETDEV_UP && event != NETDEV_CHANGE)
1096		return NOTIFY_DONE;
1097
1098	list_for_each_entry(q, &taprio_list, taprio_list) {
1099		if (dev != qdisc_dev(q->root))
1100			continue;
1101
1102		taprio_set_picos_per_byte(dev, q);
1103		break;
1104	}
1105
1106	return NOTIFY_DONE;
1107}
1108
1109static void setup_txtime(struct taprio_sched *q,
1110			 struct sched_gate_list *sched, ktime_t base)
1111{
1112	struct sched_entry *entry;
1113	u32 interval = 0;
1114
1115	list_for_each_entry(entry, &sched->entries, list) {
1116		entry->next_txtime = ktime_add_ns(base, interval);
1117		interval += entry->interval;
1118	}
1119}
1120
1121static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries)
1122{
1123	struct __tc_taprio_qopt_offload *__offload;
1124
1125	__offload = kzalloc(struct_size(__offload, offload.entries, num_entries),
1126			    GFP_KERNEL);
1127	if (!__offload)
1128		return NULL;
1129
1130	refcount_set(&__offload->users, 1);
1131
1132	return &__offload->offload;
1133}
1134
1135struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload
1136						  *offload)
1137{
1138	struct __tc_taprio_qopt_offload *__offload;
1139
1140	__offload = container_of(offload, struct __tc_taprio_qopt_offload,
1141				 offload);
1142
1143	refcount_inc(&__offload->users);
1144
1145	return offload;
1146}
1147EXPORT_SYMBOL_GPL(taprio_offload_get);
1148
1149void taprio_offload_free(struct tc_taprio_qopt_offload *offload)
1150{
1151	struct __tc_taprio_qopt_offload *__offload;
1152
1153	__offload = container_of(offload, struct __tc_taprio_qopt_offload,
1154				 offload);
1155
1156	if (!refcount_dec_and_test(&__offload->users))
1157		return;
1158
1159	kfree(__offload);
1160}
1161EXPORT_SYMBOL_GPL(taprio_offload_free);
1162
1163/* The function will only serve to keep the pointers to the "oper" and "admin"
1164 * schedules valid in relation to their base times, so when calling dump() the
1165 * users looks at the right schedules.
1166 * When using full offload, the admin configuration is promoted to oper at the
1167 * base_time in the PHC time domain.  But because the system time is not
1168 * necessarily in sync with that, we can't just trigger a hrtimer to call
1169 * switch_schedules at the right hardware time.
1170 * At the moment we call this by hand right away from taprio, but in the future
1171 * it will be useful to create a mechanism for drivers to notify taprio of the
1172 * offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump().
1173 * This is left as TODO.
1174 */
1175static void taprio_offload_config_changed(struct taprio_sched *q)
1176{
1177	struct sched_gate_list *oper, *admin;
1178
1179	oper = rtnl_dereference(q->oper_sched);
1180	admin = rtnl_dereference(q->admin_sched);
1181
1182	switch_schedules(q, &admin, &oper);
1183}
1184
1185static u32 tc_map_to_queue_mask(struct net_device *dev, u32 tc_mask)
1186{
1187	u32 i, queue_mask = 0;
1188
1189	for (i = 0; i < dev->num_tc; i++) {
1190		u32 offset, count;
1191
1192		if (!(tc_mask & BIT(i)))
1193			continue;
1194
1195		offset = dev->tc_to_txq[i].offset;
1196		count = dev->tc_to_txq[i].count;
1197
1198		queue_mask |= GENMASK(offset + count - 1, offset);
1199	}
1200
1201	return queue_mask;
1202}
1203
1204static void taprio_sched_to_offload(struct net_device *dev,
1205				    struct sched_gate_list *sched,
1206				    struct tc_taprio_qopt_offload *offload)
1207{
1208	struct sched_entry *entry;
1209	int i = 0;
1210
1211	offload->base_time = sched->base_time;
1212	offload->cycle_time = sched->cycle_time;
1213	offload->cycle_time_extension = sched->cycle_time_extension;
1214
1215	list_for_each_entry(entry, &sched->entries, list) {
1216		struct tc_taprio_sched_entry *e = &offload->entries[i];
1217
1218		e->command = entry->command;
1219		e->interval = entry->interval;
1220		e->gate_mask = tc_map_to_queue_mask(dev, entry->gate_mask);
1221
1222		i++;
1223	}
1224
1225	offload->num_entries = i;
1226}
1227
1228static int taprio_enable_offload(struct net_device *dev,
1229				 struct taprio_sched *q,
1230				 struct sched_gate_list *sched,
1231				 struct netlink_ext_ack *extack)
1232{
1233	const struct net_device_ops *ops = dev->netdev_ops;
1234	struct tc_taprio_qopt_offload *offload;
1235	struct tc_taprio_caps caps;
1236	int tc, err = 0;
1237
1238	if (!ops->ndo_setup_tc) {
1239		NL_SET_ERR_MSG(extack,
1240			       "Device does not support taprio offload");
1241		return -EOPNOTSUPP;
1242	}
1243
1244	qdisc_offload_query_caps(dev, TC_SETUP_QDISC_TAPRIO,
1245				 &caps, sizeof(caps));
1246
1247	if (!caps.supports_queue_max_sdu) {
1248		for (tc = 0; tc < TC_MAX_QUEUE; tc++) {
1249			if (q->max_sdu[tc]) {
1250				NL_SET_ERR_MSG_MOD(extack,
1251						   "Device does not handle queueMaxSDU");
1252				return -EOPNOTSUPP;
1253			}
1254		}
1255	}
1256
1257	offload = taprio_offload_alloc(sched->num_entries);
1258	if (!offload) {
1259		NL_SET_ERR_MSG(extack,
1260			       "Not enough memory for enabling offload mode");
1261		return -ENOMEM;
1262	}
1263	offload->enable = 1;
1264	taprio_sched_to_offload(dev, sched, offload);
1265
1266	for (tc = 0; tc < TC_MAX_QUEUE; tc++)
1267		offload->max_sdu[tc] = q->max_sdu[tc];
1268
1269	err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1270	if (err < 0) {
1271		NL_SET_ERR_MSG(extack,
1272			       "Device failed to setup taprio offload");
1273		goto done;
1274	}
1275
1276	q->offloaded = true;
1277
1278done:
1279	taprio_offload_free(offload);
1280
1281	return err;
1282}
1283
1284static int taprio_disable_offload(struct net_device *dev,
1285				  struct taprio_sched *q,
1286				  struct netlink_ext_ack *extack)
1287{
1288	const struct net_device_ops *ops = dev->netdev_ops;
1289	struct tc_taprio_qopt_offload *offload;
1290	int err;
1291
1292	if (!q->offloaded)
1293		return 0;
1294
1295	offload = taprio_offload_alloc(0);
1296	if (!offload) {
1297		NL_SET_ERR_MSG(extack,
1298			       "Not enough memory to disable offload mode");
1299		return -ENOMEM;
1300	}
1301	offload->enable = 0;
1302
1303	err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1304	if (err < 0) {
1305		NL_SET_ERR_MSG(extack,
1306			       "Device failed to disable offload");
1307		goto out;
1308	}
1309
1310	q->offloaded = false;
1311
1312out:
1313	taprio_offload_free(offload);
1314
1315	return err;
1316}
1317
1318/* If full offload is enabled, the only possible clockid is the net device's
1319 * PHC. For that reason, specifying a clockid through netlink is incorrect.
1320 * For txtime-assist, it is implicitly assumed that the device's PHC is kept
1321 * in sync with the specified clockid via a user space daemon such as phc2sys.
1322 * For both software taprio and txtime-assist, the clockid is used for the
1323 * hrtimer that advances the schedule and hence mandatory.
1324 */
1325static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb,
1326				struct netlink_ext_ack *extack)
1327{
1328	struct taprio_sched *q = qdisc_priv(sch);
1329	struct net_device *dev = qdisc_dev(sch);
1330	int err = -EINVAL;
1331
1332	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1333		const struct ethtool_ops *ops = dev->ethtool_ops;
1334		struct ethtool_ts_info info = {
1335			.cmd = ETHTOOL_GET_TS_INFO,
1336			.phc_index = -1,
1337		};
1338
1339		if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1340			NL_SET_ERR_MSG(extack,
1341				       "The 'clockid' cannot be specified for full offload");
1342			goto out;
1343		}
1344
1345		if (ops && ops->get_ts_info)
1346			err = ops->get_ts_info(dev, &info);
1347
1348		if (err || info.phc_index < 0) {
1349			NL_SET_ERR_MSG(extack,
1350				       "Device does not have a PTP clock");
1351			err = -ENOTSUPP;
1352			goto out;
1353		}
1354	} else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1355		int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]);
1356		enum tk_offsets tk_offset;
1357
1358		/* We only support static clockids and we don't allow
1359		 * for it to be modified after the first init.
1360		 */
1361		if (clockid < 0 ||
1362		    (q->clockid != -1 && q->clockid != clockid)) {
1363			NL_SET_ERR_MSG(extack,
1364				       "Changing the 'clockid' of a running schedule is not supported");
1365			err = -ENOTSUPP;
1366			goto out;
1367		}
1368
1369		switch (clockid) {
1370		case CLOCK_REALTIME:
1371			tk_offset = TK_OFFS_REAL;
1372			break;
1373		case CLOCK_MONOTONIC:
1374			tk_offset = TK_OFFS_MAX;
1375			break;
1376		case CLOCK_BOOTTIME:
1377			tk_offset = TK_OFFS_BOOT;
1378			break;
1379		case CLOCK_TAI:
1380			tk_offset = TK_OFFS_TAI;
1381			break;
1382		default:
1383			NL_SET_ERR_MSG(extack, "Invalid 'clockid'");
1384			err = -EINVAL;
1385			goto out;
1386		}
1387		/* This pairs with READ_ONCE() in taprio_mono_to_any */
1388		WRITE_ONCE(q->tk_offset, tk_offset);
1389
1390		q->clockid = clockid;
1391	} else {
1392		NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory");
1393		goto out;
1394	}
1395
1396	/* Everything went ok, return success. */
1397	err = 0;
1398
1399out:
1400	return err;
1401}
1402
1403static int taprio_parse_tc_entry(struct Qdisc *sch,
1404				 struct nlattr *opt,
1405				 u32 max_sdu[TC_QOPT_MAX_QUEUE],
1406				 unsigned long *seen_tcs,
1407				 struct netlink_ext_ack *extack)
1408{
1409	struct nlattr *tb[TCA_TAPRIO_TC_ENTRY_MAX + 1] = { };
1410	struct net_device *dev = qdisc_dev(sch);
1411	u32 val = 0;
1412	int err, tc;
1413
1414	err = nla_parse_nested(tb, TCA_TAPRIO_TC_ENTRY_MAX, opt,
1415			       taprio_tc_policy, extack);
1416	if (err < 0)
1417		return err;
1418
1419	if (!tb[TCA_TAPRIO_TC_ENTRY_INDEX]) {
1420		NL_SET_ERR_MSG_MOD(extack, "TC entry index missing");
1421		return -EINVAL;
1422	}
1423
1424	tc = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_INDEX]);
1425	if (tc >= TC_QOPT_MAX_QUEUE) {
1426		NL_SET_ERR_MSG_MOD(extack, "TC entry index out of range");
1427		return -ERANGE;
1428	}
1429
1430	if (*seen_tcs & BIT(tc)) {
1431		NL_SET_ERR_MSG_MOD(extack, "Duplicate TC entry");
1432		return -EINVAL;
1433	}
1434
1435	*seen_tcs |= BIT(tc);
1436
1437	if (tb[TCA_TAPRIO_TC_ENTRY_MAX_SDU])
1438		val = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_MAX_SDU]);
1439
1440	if (val > dev->max_mtu) {
1441		NL_SET_ERR_MSG_MOD(extack, "TC max SDU exceeds device max MTU");
1442		return -ERANGE;
1443	}
1444
1445	max_sdu[tc] = val;
1446
1447	return 0;
1448}
1449
1450static int taprio_parse_tc_entries(struct Qdisc *sch,
1451				   struct nlattr *opt,
1452				   struct netlink_ext_ack *extack)
1453{
1454	struct taprio_sched *q = qdisc_priv(sch);
1455	struct net_device *dev = qdisc_dev(sch);
1456	u32 max_sdu[TC_QOPT_MAX_QUEUE];
1457	unsigned long seen_tcs = 0;
1458	struct nlattr *n;
1459	int tc, rem;
1460	int err = 0;
1461
1462	for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++)
1463		max_sdu[tc] = q->max_sdu[tc];
1464
1465	nla_for_each_nested(n, opt, rem) {
1466		if (nla_type(n) != TCA_TAPRIO_ATTR_TC_ENTRY)
1467			continue;
1468
1469		err = taprio_parse_tc_entry(sch, n, max_sdu, &seen_tcs, extack);
1470		if (err)
1471			goto out;
1472	}
1473
1474	for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) {
1475		q->max_sdu[tc] = max_sdu[tc];
1476		if (max_sdu[tc])
1477			q->max_frm_len[tc] = max_sdu[tc] + dev->hard_header_len;
1478		else
1479			q->max_frm_len[tc] = U32_MAX; /* never oversized */
1480	}
1481
1482out:
1483	return err;
1484}
1485
1486static int taprio_mqprio_cmp(const struct net_device *dev,
1487			     const struct tc_mqprio_qopt *mqprio)
1488{
1489	int i;
1490
1491	if (!mqprio || mqprio->num_tc != dev->num_tc)
1492		return -1;
1493
1494	for (i = 0; i < mqprio->num_tc; i++)
1495		if (dev->tc_to_txq[i].count != mqprio->count[i] ||
1496		    dev->tc_to_txq[i].offset != mqprio->offset[i])
1497			return -1;
1498
1499	for (i = 0; i <= TC_BITMASK; i++)
1500		if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i])
1501			return -1;
1502
1503	return 0;
1504}
1505
1506/* The semantics of the 'flags' argument in relation to 'change()'
1507 * requests, are interpreted following two rules (which are applied in
1508 * this order): (1) an omitted 'flags' argument is interpreted as
1509 * zero; (2) the 'flags' of a "running" taprio instance cannot be
1510 * changed.
1511 */
1512static int taprio_new_flags(const struct nlattr *attr, u32 old,
1513			    struct netlink_ext_ack *extack)
1514{
1515	u32 new = 0;
1516
1517	if (attr)
1518		new = nla_get_u32(attr);
1519
1520	if (old != TAPRIO_FLAGS_INVALID && old != new) {
1521		NL_SET_ERR_MSG_MOD(extack, "Changing 'flags' of a running schedule is not supported");
1522		return -EOPNOTSUPP;
1523	}
1524
1525	if (!taprio_flags_valid(new)) {
1526		NL_SET_ERR_MSG_MOD(extack, "Specified 'flags' are not valid");
1527		return -EINVAL;
1528	}
1529
1530	return new;
1531}
1532
1533static int taprio_change(struct Qdisc *sch, struct nlattr *opt,
1534			 struct netlink_ext_ack *extack)
1535{
1536	struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { };
1537	struct sched_gate_list *oper, *admin, *new_admin;
1538	struct taprio_sched *q = qdisc_priv(sch);
1539	struct net_device *dev = qdisc_dev(sch);
1540	struct tc_mqprio_qopt *mqprio = NULL;
1541	unsigned long flags;
1542	ktime_t start;
1543	int i, err;
1544
1545	err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt,
1546					  taprio_policy, extack);
1547	if (err < 0)
1548		return err;
1549
1550	if (tb[TCA_TAPRIO_ATTR_PRIOMAP])
1551		mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]);
1552
1553	err = taprio_new_flags(tb[TCA_TAPRIO_ATTR_FLAGS],
1554			       q->flags, extack);
1555	if (err < 0)
1556		return err;
1557
1558	q->flags = err;
1559
1560	err = taprio_parse_mqprio_opt(dev, mqprio, extack, q->flags);
1561	if (err < 0)
1562		return err;
1563
1564	err = taprio_parse_tc_entries(sch, opt, extack);
1565	if (err)
1566		return err;
1567
1568	new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL);
1569	if (!new_admin) {
1570		NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule");
1571		return -ENOMEM;
1572	}
1573	INIT_LIST_HEAD(&new_admin->entries);
1574
1575	oper = rtnl_dereference(q->oper_sched);
1576	admin = rtnl_dereference(q->admin_sched);
1577
1578	/* no changes - no new mqprio settings */
1579	if (!taprio_mqprio_cmp(dev, mqprio))
1580		mqprio = NULL;
1581
1582	if (mqprio && (oper || admin)) {
1583		NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported");
1584		err = -ENOTSUPP;
1585		goto free_sched;
1586	}
1587
1588	err = parse_taprio_schedule(q, tb, new_admin, extack);
1589	if (err < 0)
1590		goto free_sched;
1591
1592	if (new_admin->num_entries == 0) {
1593		NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule");
1594		err = -EINVAL;
1595		goto free_sched;
1596	}
1597
1598	err = taprio_parse_clockid(sch, tb, extack);
1599	if (err < 0)
1600		goto free_sched;
1601
1602	taprio_set_picos_per_byte(dev, q);
1603
1604	if (mqprio) {
1605		err = netdev_set_num_tc(dev, mqprio->num_tc);
1606		if (err)
1607			goto free_sched;
1608		for (i = 0; i < mqprio->num_tc; i++)
1609			netdev_set_tc_queue(dev, i,
1610					    mqprio->count[i],
1611					    mqprio->offset[i]);
1612
1613		/* Always use supplied priority mappings */
1614		for (i = 0; i <= TC_BITMASK; i++)
1615			netdev_set_prio_tc_map(dev, i,
1616					       mqprio->prio_tc_map[i]);
1617	}
1618
1619	if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1620		err = taprio_enable_offload(dev, q, new_admin, extack);
1621	else
1622		err = taprio_disable_offload(dev, q, extack);
1623	if (err)
1624		goto free_sched;
1625
1626	/* Protects against enqueue()/dequeue() */
1627	spin_lock_bh(qdisc_lock(sch));
1628
1629	if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) {
1630		if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1631			NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled");
1632			err = -EINVAL;
1633			goto unlock;
1634		}
1635
1636		q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]);
1637	}
1638
1639	if (!TXTIME_ASSIST_IS_ENABLED(q->flags) &&
1640	    !FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1641	    !hrtimer_active(&q->advance_timer)) {
1642		hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS);
1643		q->advance_timer.function = advance_sched;
1644	}
1645
1646	err = taprio_get_start_time(sch, new_admin, &start);
1647	if (err < 0) {
1648		NL_SET_ERR_MSG(extack, "Internal error: failed get start time");
1649		goto unlock;
1650	}
1651
1652	setup_txtime(q, new_admin, start);
1653
1654	if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1655		if (!oper) {
1656			rcu_assign_pointer(q->oper_sched, new_admin);
1657			err = 0;
1658			new_admin = NULL;
1659			goto unlock;
1660		}
1661
1662		rcu_assign_pointer(q->admin_sched, new_admin);
1663		if (admin)
1664			call_rcu(&admin->rcu, taprio_free_sched_cb);
1665	} else {
1666		setup_first_close_time(q, new_admin, start);
1667
1668		/* Protects against advance_sched() */
1669		spin_lock_irqsave(&q->current_entry_lock, flags);
1670
1671		taprio_start_sched(sch, start, new_admin);
1672
1673		rcu_assign_pointer(q->admin_sched, new_admin);
1674		if (admin)
1675			call_rcu(&admin->rcu, taprio_free_sched_cb);
1676
1677		spin_unlock_irqrestore(&q->current_entry_lock, flags);
1678
1679		if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1680			taprio_offload_config_changed(q);
1681	}
1682
1683	new_admin = NULL;
1684	err = 0;
1685
1686unlock:
1687	spin_unlock_bh(qdisc_lock(sch));
1688
1689free_sched:
1690	if (new_admin)
1691		call_rcu(&new_admin->rcu, taprio_free_sched_cb);
1692
1693	return err;
1694}
1695
1696static void taprio_reset(struct Qdisc *sch)
1697{
1698	struct taprio_sched *q = qdisc_priv(sch);
1699	struct net_device *dev = qdisc_dev(sch);
1700	int i;
1701
1702	hrtimer_cancel(&q->advance_timer);
1703
1704	if (q->qdiscs) {
1705		for (i = 0; i < dev->num_tx_queues; i++)
1706			if (q->qdiscs[i])
1707				qdisc_reset(q->qdiscs[i]);
1708	}
1709}
1710
1711static void taprio_destroy(struct Qdisc *sch)
1712{
1713	struct taprio_sched *q = qdisc_priv(sch);
1714	struct net_device *dev = qdisc_dev(sch);
1715	struct sched_gate_list *oper, *admin;
1716	unsigned int i;
1717
1718	list_del(&q->taprio_list);
1719
1720	/* Note that taprio_reset() might not be called if an error
1721	 * happens in qdisc_create(), after taprio_init() has been called.
1722	 */
1723	hrtimer_cancel(&q->advance_timer);
1724	qdisc_synchronize(sch);
1725
1726	taprio_disable_offload(dev, q, NULL);
1727
1728	if (q->qdiscs) {
1729		for (i = 0; i < dev->num_tx_queues; i++)
1730			qdisc_put(q->qdiscs[i]);
1731
1732		kfree(q->qdiscs);
1733	}
1734	q->qdiscs = NULL;
1735
1736	netdev_reset_tc(dev);
1737
1738	oper = rtnl_dereference(q->oper_sched);
1739	admin = rtnl_dereference(q->admin_sched);
1740
1741	if (oper)
1742		call_rcu(&oper->rcu, taprio_free_sched_cb);
1743
1744	if (admin)
1745		call_rcu(&admin->rcu, taprio_free_sched_cb);
1746}
1747
1748static int taprio_init(struct Qdisc *sch, struct nlattr *opt,
1749		       struct netlink_ext_ack *extack)
1750{
1751	struct taprio_sched *q = qdisc_priv(sch);
1752	struct net_device *dev = qdisc_dev(sch);
1753	int i;
1754
1755	spin_lock_init(&q->current_entry_lock);
1756
1757	hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS);
1758	q->advance_timer.function = advance_sched;
1759
1760	q->root = sch;
1761
1762	/* We only support static clockids. Use an invalid value as default
1763	 * and get the valid one on taprio_change().
1764	 */
1765	q->clockid = -1;
1766	q->flags = TAPRIO_FLAGS_INVALID;
1767
1768	list_add(&q->taprio_list, &taprio_list);
1769
1770	if (sch->parent != TC_H_ROOT) {
1771		NL_SET_ERR_MSG_MOD(extack, "Can only be attached as root qdisc");
1772		return -EOPNOTSUPP;
1773	}
1774
1775	if (!netif_is_multiqueue(dev)) {
1776		NL_SET_ERR_MSG_MOD(extack, "Multi-queue device is required");
1777		return -EOPNOTSUPP;
1778	}
1779
1780	/* pre-allocate qdisc, attachment can't fail */
1781	q->qdiscs = kcalloc(dev->num_tx_queues,
1782			    sizeof(q->qdiscs[0]),
1783			    GFP_KERNEL);
1784
1785	if (!q->qdiscs)
1786		return -ENOMEM;
1787
1788	if (!opt)
1789		return -EINVAL;
1790
1791	for (i = 0; i < dev->num_tx_queues; i++) {
1792		struct netdev_queue *dev_queue;
1793		struct Qdisc *qdisc;
1794
1795		dev_queue = netdev_get_tx_queue(dev, i);
1796		qdisc = qdisc_create_dflt(dev_queue,
1797					  &pfifo_qdisc_ops,
1798					  TC_H_MAKE(TC_H_MAJ(sch->handle),
1799						    TC_H_MIN(i + 1)),
1800					  extack);
1801		if (!qdisc)
1802			return -ENOMEM;
1803
1804		if (i < dev->real_num_tx_queues)
1805			qdisc_hash_add(qdisc, false);
1806
1807		q->qdiscs[i] = qdisc;
1808	}
1809
1810	return taprio_change(sch, opt, extack);
1811}
1812
1813static void taprio_attach(struct Qdisc *sch)
1814{
1815	struct taprio_sched *q = qdisc_priv(sch);
1816	struct net_device *dev = qdisc_dev(sch);
1817	unsigned int ntx;
1818
1819	/* Attach underlying qdisc */
1820	for (ntx = 0; ntx < dev->num_tx_queues; ntx++) {
1821		struct Qdisc *qdisc = q->qdiscs[ntx];
1822		struct Qdisc *old;
1823
1824		if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1825			qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1826			old = dev_graft_qdisc(qdisc->dev_queue, qdisc);
1827		} else {
1828			old = dev_graft_qdisc(qdisc->dev_queue, sch);
1829			qdisc_refcount_inc(sch);
1830		}
1831		if (old)
1832			qdisc_put(old);
1833	}
1834
1835	/* access to the child qdiscs is not needed in offload mode */
1836	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1837		kfree(q->qdiscs);
1838		q->qdiscs = NULL;
1839	}
1840}
1841
1842static struct netdev_queue *taprio_queue_get(struct Qdisc *sch,
1843					     unsigned long cl)
1844{
1845	struct net_device *dev = qdisc_dev(sch);
1846	unsigned long ntx = cl - 1;
1847
1848	if (ntx >= dev->num_tx_queues)
1849		return NULL;
1850
1851	return netdev_get_tx_queue(dev, ntx);
1852}
1853
1854static int taprio_graft(struct Qdisc *sch, unsigned long cl,
1855			struct Qdisc *new, struct Qdisc **old,
1856			struct netlink_ext_ack *extack)
1857{
1858	struct taprio_sched *q = qdisc_priv(sch);
1859	struct net_device *dev = qdisc_dev(sch);
1860	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1861
1862	if (!dev_queue)
1863		return -EINVAL;
1864
1865	if (dev->flags & IFF_UP)
1866		dev_deactivate(dev);
1867
1868	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1869		*old = dev_graft_qdisc(dev_queue, new);
1870	} else {
1871		*old = q->qdiscs[cl - 1];
1872		q->qdiscs[cl - 1] = new;
1873	}
1874
1875	if (new)
1876		new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1877
1878	if (dev->flags & IFF_UP)
1879		dev_activate(dev);
1880
1881	return 0;
1882}
1883
1884static int dump_entry(struct sk_buff *msg,
1885		      const struct sched_entry *entry)
1886{
1887	struct nlattr *item;
1888
1889	item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY);
1890	if (!item)
1891		return -ENOSPC;
1892
1893	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index))
1894		goto nla_put_failure;
1895
1896	if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command))
1897		goto nla_put_failure;
1898
1899	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK,
1900			entry->gate_mask))
1901		goto nla_put_failure;
1902
1903	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL,
1904			entry->interval))
1905		goto nla_put_failure;
1906
1907	return nla_nest_end(msg, item);
1908
1909nla_put_failure:
1910	nla_nest_cancel(msg, item);
1911	return -1;
1912}
1913
1914static int dump_schedule(struct sk_buff *msg,
1915			 const struct sched_gate_list *root)
1916{
1917	struct nlattr *entry_list;
1918	struct sched_entry *entry;
1919
1920	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME,
1921			root->base_time, TCA_TAPRIO_PAD))
1922		return -1;
1923
1924	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME,
1925			root->cycle_time, TCA_TAPRIO_PAD))
1926		return -1;
1927
1928	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION,
1929			root->cycle_time_extension, TCA_TAPRIO_PAD))
1930		return -1;
1931
1932	entry_list = nla_nest_start_noflag(msg,
1933					   TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST);
1934	if (!entry_list)
1935		goto error_nest;
1936
1937	list_for_each_entry(entry, &root->entries, list) {
1938		if (dump_entry(msg, entry) < 0)
1939			goto error_nest;
1940	}
1941
1942	nla_nest_end(msg, entry_list);
1943	return 0;
1944
1945error_nest:
1946	nla_nest_cancel(msg, entry_list);
1947	return -1;
1948}
1949
1950static int taprio_dump_tc_entries(struct taprio_sched *q, struct sk_buff *skb)
1951{
1952	struct nlattr *n;
1953	int tc;
1954
1955	for (tc = 0; tc < TC_MAX_QUEUE; tc++) {
1956		n = nla_nest_start(skb, TCA_TAPRIO_ATTR_TC_ENTRY);
1957		if (!n)
1958			return -EMSGSIZE;
1959
1960		if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_INDEX, tc))
1961			goto nla_put_failure;
1962
1963		if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_MAX_SDU,
1964				q->max_sdu[tc]))
1965			goto nla_put_failure;
1966
1967		nla_nest_end(skb, n);
1968	}
1969
1970	return 0;
1971
1972nla_put_failure:
1973	nla_nest_cancel(skb, n);
1974	return -EMSGSIZE;
1975}
1976
1977static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb)
1978{
1979	struct taprio_sched *q = qdisc_priv(sch);
1980	struct net_device *dev = qdisc_dev(sch);
1981	struct sched_gate_list *oper, *admin;
1982	struct tc_mqprio_qopt opt = { 0 };
1983	struct nlattr *nest, *sched_nest;
1984	unsigned int i;
1985
1986	oper = rtnl_dereference(q->oper_sched);
1987	admin = rtnl_dereference(q->admin_sched);
1988
1989	opt.num_tc = netdev_get_num_tc(dev);
1990	memcpy(opt.prio_tc_map, dev->prio_tc_map, sizeof(opt.prio_tc_map));
1991
1992	for (i = 0; i < netdev_get_num_tc(dev); i++) {
1993		opt.count[i] = dev->tc_to_txq[i].count;
1994		opt.offset[i] = dev->tc_to_txq[i].offset;
1995	}
1996
1997	nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
1998	if (!nest)
1999		goto start_error;
2000
2001	if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt))
2002		goto options_error;
2003
2004	if (!FULL_OFFLOAD_IS_ENABLED(q->flags) &&
2005	    nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid))
2006		goto options_error;
2007
2008	if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags))
2009		goto options_error;
2010
2011	if (q->txtime_delay &&
2012	    nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay))
2013		goto options_error;
2014
2015	if (taprio_dump_tc_entries(q, skb))
2016		goto options_error;
2017
2018	if (oper && dump_schedule(skb, oper))
2019		goto options_error;
2020
2021	if (!admin)
2022		goto done;
2023
2024	sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED);
2025	if (!sched_nest)
2026		goto options_error;
2027
2028	if (dump_schedule(skb, admin))
2029		goto admin_error;
2030
2031	nla_nest_end(skb, sched_nest);
2032
2033done:
2034	return nla_nest_end(skb, nest);
2035
2036admin_error:
2037	nla_nest_cancel(skb, sched_nest);
2038
2039options_error:
2040	nla_nest_cancel(skb, nest);
2041
2042start_error:
2043	return -ENOSPC;
2044}
2045
2046static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl)
2047{
2048	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
2049
2050	if (!dev_queue)
2051		return NULL;
2052
2053	return dev_queue->qdisc_sleeping;
2054}
2055
2056static unsigned long taprio_find(struct Qdisc *sch, u32 classid)
2057{
2058	unsigned int ntx = TC_H_MIN(classid);
2059
2060	if (!taprio_queue_get(sch, ntx))
2061		return 0;
2062	return ntx;
2063}
2064
2065static int taprio_dump_class(struct Qdisc *sch, unsigned long cl,
2066			     struct sk_buff *skb, struct tcmsg *tcm)
2067{
2068	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
2069
2070	tcm->tcm_parent = TC_H_ROOT;
2071	tcm->tcm_handle |= TC_H_MIN(cl);
2072	tcm->tcm_info = dev_queue->qdisc_sleeping->handle;
2073
2074	return 0;
2075}
2076
2077static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl,
2078				   struct gnet_dump *d)
2079	__releases(d->lock)
2080	__acquires(d->lock)
2081{
2082	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
2083
2084	sch = dev_queue->qdisc_sleeping;
2085	if (gnet_stats_copy_basic(d, NULL, &sch->bstats, true) < 0 ||
2086	    qdisc_qstats_copy(d, sch) < 0)
2087		return -1;
2088	return 0;
2089}
2090
2091static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg)
2092{
2093	struct net_device *dev = qdisc_dev(sch);
2094	unsigned long ntx;
2095
2096	if (arg->stop)
2097		return;
2098
2099	arg->count = arg->skip;
2100	for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) {
2101		if (!tc_qdisc_stats_dump(sch, ntx + 1, arg))
2102			break;
2103	}
2104}
2105
2106static struct netdev_queue *taprio_select_queue(struct Qdisc *sch,
2107						struct tcmsg *tcm)
2108{
2109	return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent));
2110}
2111
2112static const struct Qdisc_class_ops taprio_class_ops = {
2113	.graft		= taprio_graft,
2114	.leaf		= taprio_leaf,
2115	.find		= taprio_find,
2116	.walk		= taprio_walk,
2117	.dump		= taprio_dump_class,
2118	.dump_stats	= taprio_dump_class_stats,
2119	.select_queue	= taprio_select_queue,
2120};
2121
2122static struct Qdisc_ops taprio_qdisc_ops __read_mostly = {
2123	.cl_ops		= &taprio_class_ops,
2124	.id		= "taprio",
2125	.priv_size	= sizeof(struct taprio_sched),
2126	.init		= taprio_init,
2127	.change		= taprio_change,
2128	.destroy	= taprio_destroy,
2129	.reset		= taprio_reset,
2130	.attach		= taprio_attach,
2131	.peek		= taprio_peek,
2132	.dequeue	= taprio_dequeue,
2133	.enqueue	= taprio_enqueue,
2134	.dump		= taprio_dump,
2135	.owner		= THIS_MODULE,
2136};
2137
2138static struct notifier_block taprio_device_notifier = {
2139	.notifier_call = taprio_dev_notifier,
2140};
2141
2142static int __init taprio_module_init(void)
2143{
2144	int err = register_netdevice_notifier(&taprio_device_notifier);
2145
2146	if (err)
2147		return err;
2148
2149	return register_qdisc(&taprio_qdisc_ops);
2150}
2151
2152static void __exit taprio_module_exit(void)
2153{
2154	unregister_qdisc(&taprio_qdisc_ops);
2155	unregister_netdevice_notifier(&taprio_device_notifier);
2156}
2157
2158module_init(taprio_module_init);
2159module_exit(taprio_module_exit);
2160MODULE_LICENSE("GPL");