Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* Kerberos-based RxRPC security
3 *
4 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
7
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10#include <crypto/skcipher.h>
11#include <linux/module.h>
12#include <linux/net.h>
13#include <linux/skbuff.h>
14#include <linux/udp.h>
15#include <linux/scatterlist.h>
16#include <linux/ctype.h>
17#include <linux/slab.h>
18#include <linux/key-type.h>
19#include <net/sock.h>
20#include <net/af_rxrpc.h>
21#include <keys/rxrpc-type.h>
22#include "ar-internal.h"
23
24#define RXKAD_VERSION 2
25#define MAXKRB5TICKETLEN 1024
26#define RXKAD_TKT_TYPE_KERBEROS_V5 256
27#define ANAME_SZ 40 /* size of authentication name */
28#define INST_SZ 40 /* size of principal's instance */
29#define REALM_SZ 40 /* size of principal's auth domain */
30#define SNAME_SZ 40 /* size of service name */
31#define RXKAD_ALIGN 8
32
33struct rxkad_level1_hdr {
34 __be32 data_size; /* true data size (excluding padding) */
35};
36
37struct rxkad_level2_hdr {
38 __be32 data_size; /* true data size (excluding padding) */
39 __be32 checksum; /* decrypted data checksum */
40};
41
42static int rxkad_prime_packet_security(struct rxrpc_connection *conn,
43 struct crypto_sync_skcipher *ci);
44
45/*
46 * this holds a pinned cipher so that keventd doesn't get called by the cipher
47 * alloc routine, but since we have it to hand, we use it to decrypt RESPONSE
48 * packets
49 */
50static struct crypto_sync_skcipher *rxkad_ci;
51static struct skcipher_request *rxkad_ci_req;
52static DEFINE_MUTEX(rxkad_ci_mutex);
53
54/*
55 * Parse the information from a server key
56 *
57 * The data should be the 8-byte secret key.
58 */
59static int rxkad_preparse_server_key(struct key_preparsed_payload *prep)
60{
61 struct crypto_skcipher *ci;
62
63 if (prep->datalen != 8)
64 return -EINVAL;
65
66 memcpy(&prep->payload.data[2], prep->data, 8);
67
68 ci = crypto_alloc_skcipher("pcbc(des)", 0, CRYPTO_ALG_ASYNC);
69 if (IS_ERR(ci)) {
70 _leave(" = %ld", PTR_ERR(ci));
71 return PTR_ERR(ci);
72 }
73
74 if (crypto_skcipher_setkey(ci, prep->data, 8) < 0)
75 BUG();
76
77 prep->payload.data[0] = ci;
78 _leave(" = 0");
79 return 0;
80}
81
82static void rxkad_free_preparse_server_key(struct key_preparsed_payload *prep)
83{
84
85 if (prep->payload.data[0])
86 crypto_free_skcipher(prep->payload.data[0]);
87}
88
89static void rxkad_destroy_server_key(struct key *key)
90{
91 if (key->payload.data[0]) {
92 crypto_free_skcipher(key->payload.data[0]);
93 key->payload.data[0] = NULL;
94 }
95}
96
97/*
98 * initialise connection security
99 */
100static int rxkad_init_connection_security(struct rxrpc_connection *conn,
101 struct rxrpc_key_token *token)
102{
103 struct crypto_sync_skcipher *ci;
104 int ret;
105
106 _enter("{%d},{%x}", conn->debug_id, key_serial(conn->key));
107
108 conn->security_ix = token->security_index;
109
110 ci = crypto_alloc_sync_skcipher("pcbc(fcrypt)", 0, 0);
111 if (IS_ERR(ci)) {
112 _debug("no cipher");
113 ret = PTR_ERR(ci);
114 goto error;
115 }
116
117 if (crypto_sync_skcipher_setkey(ci, token->kad->session_key,
118 sizeof(token->kad->session_key)) < 0)
119 BUG();
120
121 switch (conn->security_level) {
122 case RXRPC_SECURITY_PLAIN:
123 case RXRPC_SECURITY_AUTH:
124 case RXRPC_SECURITY_ENCRYPT:
125 break;
126 default:
127 ret = -EKEYREJECTED;
128 goto error;
129 }
130
131 ret = rxkad_prime_packet_security(conn, ci);
132 if (ret < 0)
133 goto error_ci;
134
135 conn->rxkad.cipher = ci;
136 return 0;
137
138error_ci:
139 crypto_free_sync_skcipher(ci);
140error:
141 _leave(" = %d", ret);
142 return ret;
143}
144
145/*
146 * Work out how much data we can put in a packet.
147 */
148static int rxkad_how_much_data(struct rxrpc_call *call, size_t remain,
149 size_t *_buf_size, size_t *_data_size, size_t *_offset)
150{
151 size_t shdr, buf_size, chunk;
152
153 switch (call->conn->security_level) {
154 default:
155 buf_size = chunk = min_t(size_t, remain, RXRPC_JUMBO_DATALEN);
156 shdr = 0;
157 goto out;
158 case RXRPC_SECURITY_AUTH:
159 shdr = sizeof(struct rxkad_level1_hdr);
160 break;
161 case RXRPC_SECURITY_ENCRYPT:
162 shdr = sizeof(struct rxkad_level2_hdr);
163 break;
164 }
165
166 buf_size = round_down(RXRPC_JUMBO_DATALEN, RXKAD_ALIGN);
167
168 chunk = buf_size - shdr;
169 if (remain < chunk)
170 buf_size = round_up(shdr + remain, RXKAD_ALIGN);
171
172out:
173 *_buf_size = buf_size;
174 *_data_size = chunk;
175 *_offset = shdr;
176 return 0;
177}
178
179/*
180 * prime the encryption state with the invariant parts of a connection's
181 * description
182 */
183static int rxkad_prime_packet_security(struct rxrpc_connection *conn,
184 struct crypto_sync_skcipher *ci)
185{
186 struct skcipher_request *req;
187 struct rxrpc_key_token *token;
188 struct scatterlist sg;
189 struct rxrpc_crypt iv;
190 __be32 *tmpbuf;
191 size_t tmpsize = 4 * sizeof(__be32);
192
193 _enter("");
194
195 if (!conn->key)
196 return 0;
197
198 tmpbuf = kmalloc(tmpsize, GFP_KERNEL);
199 if (!tmpbuf)
200 return -ENOMEM;
201
202 req = skcipher_request_alloc(&ci->base, GFP_NOFS);
203 if (!req) {
204 kfree(tmpbuf);
205 return -ENOMEM;
206 }
207
208 token = conn->key->payload.data[0];
209 memcpy(&iv, token->kad->session_key, sizeof(iv));
210
211 tmpbuf[0] = htonl(conn->proto.epoch);
212 tmpbuf[1] = htonl(conn->proto.cid);
213 tmpbuf[2] = 0;
214 tmpbuf[3] = htonl(conn->security_ix);
215
216 sg_init_one(&sg, tmpbuf, tmpsize);
217 skcipher_request_set_sync_tfm(req, ci);
218 skcipher_request_set_callback(req, 0, NULL, NULL);
219 skcipher_request_set_crypt(req, &sg, &sg, tmpsize, iv.x);
220 crypto_skcipher_encrypt(req);
221 skcipher_request_free(req);
222
223 memcpy(&conn->rxkad.csum_iv, tmpbuf + 2, sizeof(conn->rxkad.csum_iv));
224 kfree(tmpbuf);
225 _leave(" = 0");
226 return 0;
227}
228
229/*
230 * Allocate and prepare the crypto request on a call. For any particular call,
231 * this is called serially for the packets, so no lock should be necessary.
232 */
233static struct skcipher_request *rxkad_get_call_crypto(struct rxrpc_call *call)
234{
235 struct crypto_skcipher *tfm = &call->conn->rxkad.cipher->base;
236
237 return skcipher_request_alloc(tfm, GFP_NOFS);
238}
239
240/*
241 * Clean up the crypto on a call.
242 */
243static void rxkad_free_call_crypto(struct rxrpc_call *call)
244{
245}
246
247/*
248 * partially encrypt a packet (level 1 security)
249 */
250static int rxkad_secure_packet_auth(const struct rxrpc_call *call,
251 struct rxrpc_txbuf *txb,
252 struct skcipher_request *req)
253{
254 struct rxkad_level1_hdr *hdr = (void *)txb->data;
255 struct rxrpc_crypt iv;
256 struct scatterlist sg;
257 size_t pad;
258 u16 check;
259
260 _enter("");
261
262 check = txb->seq ^ ntohl(txb->wire.callNumber);
263 hdr->data_size = htonl((u32)check << 16 | txb->len);
264
265 txb->len += sizeof(struct rxkad_level1_hdr);
266 pad = txb->len;
267 pad = RXKAD_ALIGN - pad;
268 pad &= RXKAD_ALIGN - 1;
269 if (pad) {
270 memset(txb->data + txb->offset, 0, pad);
271 txb->len += pad;
272 }
273
274 /* start the encryption afresh */
275 memset(&iv, 0, sizeof(iv));
276
277 sg_init_one(&sg, txb->data, 8);
278 skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
279 skcipher_request_set_callback(req, 0, NULL, NULL);
280 skcipher_request_set_crypt(req, &sg, &sg, 8, iv.x);
281 crypto_skcipher_encrypt(req);
282 skcipher_request_zero(req);
283
284 _leave(" = 0");
285 return 0;
286}
287
288/*
289 * wholly encrypt a packet (level 2 security)
290 */
291static int rxkad_secure_packet_encrypt(const struct rxrpc_call *call,
292 struct rxrpc_txbuf *txb,
293 struct skcipher_request *req)
294{
295 const struct rxrpc_key_token *token;
296 struct rxkad_level2_hdr *rxkhdr = (void *)txb->data;
297 struct rxrpc_crypt iv;
298 struct scatterlist sg;
299 size_t pad;
300 u16 check;
301 int ret;
302
303 _enter("");
304
305 check = txb->seq ^ ntohl(txb->wire.callNumber);
306
307 rxkhdr->data_size = htonl(txb->len | (u32)check << 16);
308 rxkhdr->checksum = 0;
309
310 txb->len += sizeof(struct rxkad_level2_hdr);
311 pad = txb->len;
312 pad = RXKAD_ALIGN - pad;
313 pad &= RXKAD_ALIGN - 1;
314 if (pad) {
315 memset(txb->data + txb->offset, 0, pad);
316 txb->len += pad;
317 }
318
319 /* encrypt from the session key */
320 token = call->conn->key->payload.data[0];
321 memcpy(&iv, token->kad->session_key, sizeof(iv));
322
323 sg_init_one(&sg, txb->data, txb->len);
324 skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
325 skcipher_request_set_callback(req, 0, NULL, NULL);
326 skcipher_request_set_crypt(req, &sg, &sg, txb->len, iv.x);
327 ret = crypto_skcipher_encrypt(req);
328 skcipher_request_zero(req);
329 return ret;
330}
331
332/*
333 * checksum an RxRPC packet header
334 */
335static int rxkad_secure_packet(struct rxrpc_call *call, struct rxrpc_txbuf *txb)
336{
337 struct skcipher_request *req;
338 struct rxrpc_crypt iv;
339 struct scatterlist sg;
340 union {
341 __be32 buf[2];
342 } crypto __aligned(8);
343 u32 x, y;
344 int ret;
345
346 _enter("{%d{%x}},{#%u},%u,",
347 call->debug_id, key_serial(call->conn->key),
348 txb->seq, txb->len);
349
350 if (!call->conn->rxkad.cipher)
351 return 0;
352
353 ret = key_validate(call->conn->key);
354 if (ret < 0)
355 return ret;
356
357 req = rxkad_get_call_crypto(call);
358 if (!req)
359 return -ENOMEM;
360
361 /* continue encrypting from where we left off */
362 memcpy(&iv, call->conn->rxkad.csum_iv.x, sizeof(iv));
363
364 /* calculate the security checksum */
365 x = (ntohl(txb->wire.cid) & RXRPC_CHANNELMASK) << (32 - RXRPC_CIDSHIFT);
366 x |= txb->seq & 0x3fffffff;
367 crypto.buf[0] = txb->wire.callNumber;
368 crypto.buf[1] = htonl(x);
369
370 sg_init_one(&sg, crypto.buf, 8);
371 skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
372 skcipher_request_set_callback(req, 0, NULL, NULL);
373 skcipher_request_set_crypt(req, &sg, &sg, 8, iv.x);
374 crypto_skcipher_encrypt(req);
375 skcipher_request_zero(req);
376
377 y = ntohl(crypto.buf[1]);
378 y = (y >> 16) & 0xffff;
379 if (y == 0)
380 y = 1; /* zero checksums are not permitted */
381 txb->wire.cksum = htons(y);
382
383 switch (call->conn->security_level) {
384 case RXRPC_SECURITY_PLAIN:
385 ret = 0;
386 break;
387 case RXRPC_SECURITY_AUTH:
388 ret = rxkad_secure_packet_auth(call, txb, req);
389 break;
390 case RXRPC_SECURITY_ENCRYPT:
391 ret = rxkad_secure_packet_encrypt(call, txb, req);
392 break;
393 default:
394 ret = -EPERM;
395 break;
396 }
397
398 skcipher_request_free(req);
399 _leave(" = %d [set %x]", ret, y);
400 return ret;
401}
402
403/*
404 * decrypt partial encryption on a packet (level 1 security)
405 */
406static int rxkad_verify_packet_1(struct rxrpc_call *call, struct sk_buff *skb,
407 rxrpc_seq_t seq,
408 struct skcipher_request *req)
409{
410 struct rxkad_level1_hdr sechdr;
411 struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
412 struct rxrpc_crypt iv;
413 struct scatterlist sg[16];
414 u32 data_size, buf;
415 u16 check;
416 int ret;
417
418 _enter("");
419
420 if (sp->len < 8)
421 return rxrpc_abort_eproto(call, skb, RXKADSEALEDINCON,
422 rxkad_abort_1_short_header);
423
424 /* Decrypt the skbuff in-place. TODO: We really want to decrypt
425 * directly into the target buffer.
426 */
427 sg_init_table(sg, ARRAY_SIZE(sg));
428 ret = skb_to_sgvec(skb, sg, sp->offset, 8);
429 if (unlikely(ret < 0))
430 return ret;
431
432 /* start the decryption afresh */
433 memset(&iv, 0, sizeof(iv));
434
435 skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
436 skcipher_request_set_callback(req, 0, NULL, NULL);
437 skcipher_request_set_crypt(req, sg, sg, 8, iv.x);
438 crypto_skcipher_decrypt(req);
439 skcipher_request_zero(req);
440
441 /* Extract the decrypted packet length */
442 if (skb_copy_bits(skb, sp->offset, &sechdr, sizeof(sechdr)) < 0)
443 return rxrpc_abort_eproto(call, skb, RXKADDATALEN,
444 rxkad_abort_1_short_encdata);
445 sp->offset += sizeof(sechdr);
446 sp->len -= sizeof(sechdr);
447
448 buf = ntohl(sechdr.data_size);
449 data_size = buf & 0xffff;
450
451 check = buf >> 16;
452 check ^= seq ^ call->call_id;
453 check &= 0xffff;
454 if (check != 0)
455 return rxrpc_abort_eproto(call, skb, RXKADSEALEDINCON,
456 rxkad_abort_1_short_check);
457 if (data_size > sp->len)
458 return rxrpc_abort_eproto(call, skb, RXKADDATALEN,
459 rxkad_abort_1_short_data);
460 sp->len = data_size;
461
462 _leave(" = 0 [dlen=%x]", data_size);
463 return 0;
464}
465
466/*
467 * wholly decrypt a packet (level 2 security)
468 */
469static int rxkad_verify_packet_2(struct rxrpc_call *call, struct sk_buff *skb,
470 rxrpc_seq_t seq,
471 struct skcipher_request *req)
472{
473 const struct rxrpc_key_token *token;
474 struct rxkad_level2_hdr sechdr;
475 struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
476 struct rxrpc_crypt iv;
477 struct scatterlist _sg[4], *sg;
478 u32 data_size, buf;
479 u16 check;
480 int nsg, ret;
481
482 _enter(",{%d}", sp->len);
483
484 if (sp->len < 8)
485 return rxrpc_abort_eproto(call, skb, RXKADSEALEDINCON,
486 rxkad_abort_2_short_header);
487
488 /* Decrypt the skbuff in-place. TODO: We really want to decrypt
489 * directly into the target buffer.
490 */
491 sg = _sg;
492 nsg = skb_shinfo(skb)->nr_frags + 1;
493 if (nsg <= 4) {
494 nsg = 4;
495 } else {
496 sg = kmalloc_array(nsg, sizeof(*sg), GFP_NOIO);
497 if (!sg)
498 return -ENOMEM;
499 }
500
501 sg_init_table(sg, nsg);
502 ret = skb_to_sgvec(skb, sg, sp->offset, sp->len);
503 if (unlikely(ret < 0)) {
504 if (sg != _sg)
505 kfree(sg);
506 return ret;
507 }
508
509 /* decrypt from the session key */
510 token = call->conn->key->payload.data[0];
511 memcpy(&iv, token->kad->session_key, sizeof(iv));
512
513 skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
514 skcipher_request_set_callback(req, 0, NULL, NULL);
515 skcipher_request_set_crypt(req, sg, sg, sp->len, iv.x);
516 crypto_skcipher_decrypt(req);
517 skcipher_request_zero(req);
518 if (sg != _sg)
519 kfree(sg);
520
521 /* Extract the decrypted packet length */
522 if (skb_copy_bits(skb, sp->offset, &sechdr, sizeof(sechdr)) < 0)
523 return rxrpc_abort_eproto(call, skb, RXKADDATALEN,
524 rxkad_abort_2_short_len);
525 sp->offset += sizeof(sechdr);
526 sp->len -= sizeof(sechdr);
527
528 buf = ntohl(sechdr.data_size);
529 data_size = buf & 0xffff;
530
531 check = buf >> 16;
532 check ^= seq ^ call->call_id;
533 check &= 0xffff;
534 if (check != 0)
535 return rxrpc_abort_eproto(call, skb, RXKADSEALEDINCON,
536 rxkad_abort_2_short_check);
537
538 if (data_size > sp->len)
539 return rxrpc_abort_eproto(call, skb, RXKADDATALEN,
540 rxkad_abort_2_short_data);
541
542 sp->len = data_size;
543 _leave(" = 0 [dlen=%x]", data_size);
544 return 0;
545}
546
547/*
548 * Verify the security on a received packet and the subpackets therein.
549 */
550static int rxkad_verify_packet(struct rxrpc_call *call, struct sk_buff *skb)
551{
552 struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
553 struct skcipher_request *req;
554 struct rxrpc_crypt iv;
555 struct scatterlist sg;
556 union {
557 __be32 buf[2];
558 } crypto __aligned(8);
559 rxrpc_seq_t seq = sp->hdr.seq;
560 int ret;
561 u16 cksum;
562 u32 x, y;
563
564 _enter("{%d{%x}},{#%u}",
565 call->debug_id, key_serial(call->conn->key), seq);
566
567 if (!call->conn->rxkad.cipher)
568 return 0;
569
570 req = rxkad_get_call_crypto(call);
571 if (!req)
572 return -ENOMEM;
573
574 /* continue encrypting from where we left off */
575 memcpy(&iv, call->conn->rxkad.csum_iv.x, sizeof(iv));
576
577 /* validate the security checksum */
578 x = (call->cid & RXRPC_CHANNELMASK) << (32 - RXRPC_CIDSHIFT);
579 x |= seq & 0x3fffffff;
580 crypto.buf[0] = htonl(call->call_id);
581 crypto.buf[1] = htonl(x);
582
583 sg_init_one(&sg, crypto.buf, 8);
584 skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
585 skcipher_request_set_callback(req, 0, NULL, NULL);
586 skcipher_request_set_crypt(req, &sg, &sg, 8, iv.x);
587 crypto_skcipher_encrypt(req);
588 skcipher_request_zero(req);
589
590 y = ntohl(crypto.buf[1]);
591 cksum = (y >> 16) & 0xffff;
592 if (cksum == 0)
593 cksum = 1; /* zero checksums are not permitted */
594
595 if (cksum != sp->hdr.cksum) {
596 ret = rxrpc_abort_eproto(call, skb, RXKADSEALEDINCON,
597 rxkad_abort_bad_checksum);
598 goto out;
599 }
600
601 switch (call->conn->security_level) {
602 case RXRPC_SECURITY_PLAIN:
603 ret = 0;
604 break;
605 case RXRPC_SECURITY_AUTH:
606 ret = rxkad_verify_packet_1(call, skb, seq, req);
607 break;
608 case RXRPC_SECURITY_ENCRYPT:
609 ret = rxkad_verify_packet_2(call, skb, seq, req);
610 break;
611 default:
612 ret = -ENOANO;
613 break;
614 }
615
616out:
617 skcipher_request_free(req);
618 return ret;
619}
620
621/*
622 * issue a challenge
623 */
624static int rxkad_issue_challenge(struct rxrpc_connection *conn)
625{
626 struct rxkad_challenge challenge;
627 struct rxrpc_wire_header whdr;
628 struct msghdr msg;
629 struct kvec iov[2];
630 size_t len;
631 u32 serial;
632 int ret;
633
634 _enter("{%d}", conn->debug_id);
635
636 get_random_bytes(&conn->rxkad.nonce, sizeof(conn->rxkad.nonce));
637
638 challenge.version = htonl(2);
639 challenge.nonce = htonl(conn->rxkad.nonce);
640 challenge.min_level = htonl(0);
641 challenge.__padding = 0;
642
643 msg.msg_name = &conn->peer->srx.transport;
644 msg.msg_namelen = conn->peer->srx.transport_len;
645 msg.msg_control = NULL;
646 msg.msg_controllen = 0;
647 msg.msg_flags = 0;
648
649 whdr.epoch = htonl(conn->proto.epoch);
650 whdr.cid = htonl(conn->proto.cid);
651 whdr.callNumber = 0;
652 whdr.seq = 0;
653 whdr.type = RXRPC_PACKET_TYPE_CHALLENGE;
654 whdr.flags = conn->out_clientflag;
655 whdr.userStatus = 0;
656 whdr.securityIndex = conn->security_ix;
657 whdr._rsvd = 0;
658 whdr.serviceId = htons(conn->service_id);
659
660 iov[0].iov_base = &whdr;
661 iov[0].iov_len = sizeof(whdr);
662 iov[1].iov_base = &challenge;
663 iov[1].iov_len = sizeof(challenge);
664
665 len = iov[0].iov_len + iov[1].iov_len;
666
667 serial = atomic_inc_return(&conn->serial);
668 whdr.serial = htonl(serial);
669
670 ret = kernel_sendmsg(conn->local->socket, &msg, iov, 2, len);
671 if (ret < 0) {
672 trace_rxrpc_tx_fail(conn->debug_id, serial, ret,
673 rxrpc_tx_point_rxkad_challenge);
674 return -EAGAIN;
675 }
676
677 conn->peer->last_tx_at = ktime_get_seconds();
678 trace_rxrpc_tx_packet(conn->debug_id, &whdr,
679 rxrpc_tx_point_rxkad_challenge);
680 _leave(" = 0");
681 return 0;
682}
683
684/*
685 * send a Kerberos security response
686 */
687static int rxkad_send_response(struct rxrpc_connection *conn,
688 struct rxrpc_host_header *hdr,
689 struct rxkad_response *resp,
690 const struct rxkad_key *s2)
691{
692 struct rxrpc_wire_header whdr;
693 struct msghdr msg;
694 struct kvec iov[3];
695 size_t len;
696 u32 serial;
697 int ret;
698
699 _enter("");
700
701 msg.msg_name = &conn->peer->srx.transport;
702 msg.msg_namelen = conn->peer->srx.transport_len;
703 msg.msg_control = NULL;
704 msg.msg_controllen = 0;
705 msg.msg_flags = 0;
706
707 memset(&whdr, 0, sizeof(whdr));
708 whdr.epoch = htonl(hdr->epoch);
709 whdr.cid = htonl(hdr->cid);
710 whdr.type = RXRPC_PACKET_TYPE_RESPONSE;
711 whdr.flags = conn->out_clientflag;
712 whdr.securityIndex = hdr->securityIndex;
713 whdr.serviceId = htons(hdr->serviceId);
714
715 iov[0].iov_base = &whdr;
716 iov[0].iov_len = sizeof(whdr);
717 iov[1].iov_base = resp;
718 iov[1].iov_len = sizeof(*resp);
719 iov[2].iov_base = (void *)s2->ticket;
720 iov[2].iov_len = s2->ticket_len;
721
722 len = iov[0].iov_len + iov[1].iov_len + iov[2].iov_len;
723
724 serial = atomic_inc_return(&conn->serial);
725 whdr.serial = htonl(serial);
726
727 ret = kernel_sendmsg(conn->local->socket, &msg, iov, 3, len);
728 if (ret < 0) {
729 trace_rxrpc_tx_fail(conn->debug_id, serial, ret,
730 rxrpc_tx_point_rxkad_response);
731 return -EAGAIN;
732 }
733
734 conn->peer->last_tx_at = ktime_get_seconds();
735 _leave(" = 0");
736 return 0;
737}
738
739/*
740 * calculate the response checksum
741 */
742static void rxkad_calc_response_checksum(struct rxkad_response *response)
743{
744 u32 csum = 1000003;
745 int loop;
746 u8 *p = (u8 *) response;
747
748 for (loop = sizeof(*response); loop > 0; loop--)
749 csum = csum * 0x10204081 + *p++;
750
751 response->encrypted.checksum = htonl(csum);
752}
753
754/*
755 * encrypt the response packet
756 */
757static int rxkad_encrypt_response(struct rxrpc_connection *conn,
758 struct rxkad_response *resp,
759 const struct rxkad_key *s2)
760{
761 struct skcipher_request *req;
762 struct rxrpc_crypt iv;
763 struct scatterlist sg[1];
764
765 req = skcipher_request_alloc(&conn->rxkad.cipher->base, GFP_NOFS);
766 if (!req)
767 return -ENOMEM;
768
769 /* continue encrypting from where we left off */
770 memcpy(&iv, s2->session_key, sizeof(iv));
771
772 sg_init_table(sg, 1);
773 sg_set_buf(sg, &resp->encrypted, sizeof(resp->encrypted));
774 skcipher_request_set_sync_tfm(req, conn->rxkad.cipher);
775 skcipher_request_set_callback(req, 0, NULL, NULL);
776 skcipher_request_set_crypt(req, sg, sg, sizeof(resp->encrypted), iv.x);
777 crypto_skcipher_encrypt(req);
778 skcipher_request_free(req);
779 return 0;
780}
781
782/*
783 * respond to a challenge packet
784 */
785static int rxkad_respond_to_challenge(struct rxrpc_connection *conn,
786 struct sk_buff *skb)
787{
788 const struct rxrpc_key_token *token;
789 struct rxkad_challenge challenge;
790 struct rxkad_response *resp;
791 struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
792 u32 version, nonce, min_level;
793 int ret = -EPROTO;
794
795 _enter("{%d,%x}", conn->debug_id, key_serial(conn->key));
796
797 if (!conn->key)
798 return rxrpc_abort_conn(conn, skb, RX_PROTOCOL_ERROR, -EPROTO,
799 rxkad_abort_chall_no_key);
800
801 ret = key_validate(conn->key);
802 if (ret < 0)
803 return rxrpc_abort_conn(conn, skb, RXKADEXPIRED, ret,
804 rxkad_abort_chall_key_expired);
805
806 if (skb_copy_bits(skb, sizeof(struct rxrpc_wire_header),
807 &challenge, sizeof(challenge)) < 0)
808 return rxrpc_abort_conn(conn, skb, RXKADPACKETSHORT, -EPROTO,
809 rxkad_abort_chall_short);
810
811 version = ntohl(challenge.version);
812 nonce = ntohl(challenge.nonce);
813 min_level = ntohl(challenge.min_level);
814
815 trace_rxrpc_rx_challenge(conn, sp->hdr.serial, version, nonce, min_level);
816
817 if (version != RXKAD_VERSION)
818 return rxrpc_abort_conn(conn, skb, RXKADINCONSISTENCY, -EPROTO,
819 rxkad_abort_chall_version);
820
821 if (conn->security_level < min_level)
822 return rxrpc_abort_conn(conn, skb, RXKADLEVELFAIL, -EACCES,
823 rxkad_abort_chall_level);
824
825 token = conn->key->payload.data[0];
826
827 /* build the response packet */
828 resp = kzalloc(sizeof(struct rxkad_response), GFP_NOFS);
829 if (!resp)
830 return -ENOMEM;
831
832 resp->version = htonl(RXKAD_VERSION);
833 resp->encrypted.epoch = htonl(conn->proto.epoch);
834 resp->encrypted.cid = htonl(conn->proto.cid);
835 resp->encrypted.securityIndex = htonl(conn->security_ix);
836 resp->encrypted.inc_nonce = htonl(nonce + 1);
837 resp->encrypted.level = htonl(conn->security_level);
838 resp->kvno = htonl(token->kad->kvno);
839 resp->ticket_len = htonl(token->kad->ticket_len);
840 resp->encrypted.call_id[0] = htonl(conn->channels[0].call_counter);
841 resp->encrypted.call_id[1] = htonl(conn->channels[1].call_counter);
842 resp->encrypted.call_id[2] = htonl(conn->channels[2].call_counter);
843 resp->encrypted.call_id[3] = htonl(conn->channels[3].call_counter);
844
845 /* calculate the response checksum and then do the encryption */
846 rxkad_calc_response_checksum(resp);
847 ret = rxkad_encrypt_response(conn, resp, token->kad);
848 if (ret == 0)
849 ret = rxkad_send_response(conn, &sp->hdr, resp, token->kad);
850 kfree(resp);
851 return ret;
852}
853
854/*
855 * decrypt the kerberos IV ticket in the response
856 */
857static int rxkad_decrypt_ticket(struct rxrpc_connection *conn,
858 struct key *server_key,
859 struct sk_buff *skb,
860 void *ticket, size_t ticket_len,
861 struct rxrpc_crypt *_session_key,
862 time64_t *_expiry)
863{
864 struct skcipher_request *req;
865 struct rxrpc_crypt iv, key;
866 struct scatterlist sg[1];
867 struct in_addr addr;
868 unsigned int life;
869 time64_t issue, now;
870 bool little_endian;
871 u8 *p, *q, *name, *end;
872
873 _enter("{%d},{%x}", conn->debug_id, key_serial(server_key));
874
875 *_expiry = 0;
876
877 ASSERT(server_key->payload.data[0] != NULL);
878 ASSERTCMP((unsigned long) ticket & 7UL, ==, 0);
879
880 memcpy(&iv, &server_key->payload.data[2], sizeof(iv));
881
882 req = skcipher_request_alloc(server_key->payload.data[0], GFP_NOFS);
883 if (!req)
884 return -ENOMEM;
885
886 sg_init_one(&sg[0], ticket, ticket_len);
887 skcipher_request_set_callback(req, 0, NULL, NULL);
888 skcipher_request_set_crypt(req, sg, sg, ticket_len, iv.x);
889 crypto_skcipher_decrypt(req);
890 skcipher_request_free(req);
891
892 p = ticket;
893 end = p + ticket_len;
894
895#define Z(field, fieldl) \
896 ({ \
897 u8 *__str = p; \
898 q = memchr(p, 0, end - p); \
899 if (!q || q - p > field##_SZ) \
900 return rxrpc_abort_conn( \
901 conn, skb, RXKADBADTICKET, -EPROTO, \
902 rxkad_abort_resp_tkt_##fieldl); \
903 for (; p < q; p++) \
904 if (!isprint(*p)) \
905 return rxrpc_abort_conn( \
906 conn, skb, RXKADBADTICKET, -EPROTO, \
907 rxkad_abort_resp_tkt_##fieldl); \
908 p++; \
909 __str; \
910 })
911
912 /* extract the ticket flags */
913 _debug("KIV FLAGS: %x", *p);
914 little_endian = *p & 1;
915 p++;
916
917 /* extract the authentication name */
918 name = Z(ANAME, aname);
919 _debug("KIV ANAME: %s", name);
920
921 /* extract the principal's instance */
922 name = Z(INST, inst);
923 _debug("KIV INST : %s", name);
924
925 /* extract the principal's authentication domain */
926 name = Z(REALM, realm);
927 _debug("KIV REALM: %s", name);
928
929 if (end - p < 4 + 8 + 4 + 2)
930 return rxrpc_abort_conn(conn, skb, RXKADBADTICKET, -EPROTO,
931 rxkad_abort_resp_tkt_short);
932
933 /* get the IPv4 address of the entity that requested the ticket */
934 memcpy(&addr, p, sizeof(addr));
935 p += 4;
936 _debug("KIV ADDR : %pI4", &addr);
937
938 /* get the session key from the ticket */
939 memcpy(&key, p, sizeof(key));
940 p += 8;
941 _debug("KIV KEY : %08x %08x", ntohl(key.n[0]), ntohl(key.n[1]));
942 memcpy(_session_key, &key, sizeof(key));
943
944 /* get the ticket's lifetime */
945 life = *p++ * 5 * 60;
946 _debug("KIV LIFE : %u", life);
947
948 /* get the issue time of the ticket */
949 if (little_endian) {
950 __le32 stamp;
951 memcpy(&stamp, p, 4);
952 issue = rxrpc_u32_to_time64(le32_to_cpu(stamp));
953 } else {
954 __be32 stamp;
955 memcpy(&stamp, p, 4);
956 issue = rxrpc_u32_to_time64(be32_to_cpu(stamp));
957 }
958 p += 4;
959 now = ktime_get_real_seconds();
960 _debug("KIV ISSUE: %llx [%llx]", issue, now);
961
962 /* check the ticket is in date */
963 if (issue > now)
964 return rxrpc_abort_conn(conn, skb, RXKADNOAUTH, -EKEYREJECTED,
965 rxkad_abort_resp_tkt_future);
966 if (issue < now - life)
967 return rxrpc_abort_conn(conn, skb, RXKADEXPIRED, -EKEYEXPIRED,
968 rxkad_abort_resp_tkt_expired);
969
970 *_expiry = issue + life;
971
972 /* get the service name */
973 name = Z(SNAME, sname);
974 _debug("KIV SNAME: %s", name);
975
976 /* get the service instance name */
977 name = Z(INST, sinst);
978 _debug("KIV SINST: %s", name);
979 return 0;
980}
981
982/*
983 * decrypt the response packet
984 */
985static void rxkad_decrypt_response(struct rxrpc_connection *conn,
986 struct rxkad_response *resp,
987 const struct rxrpc_crypt *session_key)
988{
989 struct skcipher_request *req = rxkad_ci_req;
990 struct scatterlist sg[1];
991 struct rxrpc_crypt iv;
992
993 _enter(",,%08x%08x",
994 ntohl(session_key->n[0]), ntohl(session_key->n[1]));
995
996 mutex_lock(&rxkad_ci_mutex);
997 if (crypto_sync_skcipher_setkey(rxkad_ci, session_key->x,
998 sizeof(*session_key)) < 0)
999 BUG();
1000
1001 memcpy(&iv, session_key, sizeof(iv));
1002
1003 sg_init_table(sg, 1);
1004 sg_set_buf(sg, &resp->encrypted, sizeof(resp->encrypted));
1005 skcipher_request_set_sync_tfm(req, rxkad_ci);
1006 skcipher_request_set_callback(req, 0, NULL, NULL);
1007 skcipher_request_set_crypt(req, sg, sg, sizeof(resp->encrypted), iv.x);
1008 crypto_skcipher_decrypt(req);
1009 skcipher_request_zero(req);
1010
1011 mutex_unlock(&rxkad_ci_mutex);
1012
1013 _leave("");
1014}
1015
1016/*
1017 * verify a response
1018 */
1019static int rxkad_verify_response(struct rxrpc_connection *conn,
1020 struct sk_buff *skb)
1021{
1022 struct rxkad_response *response;
1023 struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
1024 struct rxrpc_crypt session_key;
1025 struct key *server_key;
1026 time64_t expiry;
1027 void *ticket;
1028 u32 version, kvno, ticket_len, level;
1029 __be32 csum;
1030 int ret, i;
1031
1032 _enter("{%d}", conn->debug_id);
1033
1034 server_key = rxrpc_look_up_server_security(conn, skb, 0, 0);
1035 if (IS_ERR(server_key)) {
1036 ret = PTR_ERR(server_key);
1037 switch (ret) {
1038 case -ENOKEY:
1039 return rxrpc_abort_conn(conn, skb, RXKADUNKNOWNKEY, ret,
1040 rxkad_abort_resp_nokey);
1041 case -EKEYEXPIRED:
1042 return rxrpc_abort_conn(conn, skb, RXKADEXPIRED, ret,
1043 rxkad_abort_resp_key_expired);
1044 default:
1045 return rxrpc_abort_conn(conn, skb, RXKADNOAUTH, ret,
1046 rxkad_abort_resp_key_rejected);
1047 }
1048 }
1049
1050 ret = -ENOMEM;
1051 response = kzalloc(sizeof(struct rxkad_response), GFP_NOFS);
1052 if (!response)
1053 goto temporary_error;
1054
1055 if (skb_copy_bits(skb, sizeof(struct rxrpc_wire_header),
1056 response, sizeof(*response)) < 0) {
1057 rxrpc_abort_conn(conn, skb, RXKADPACKETSHORT, -EPROTO,
1058 rxkad_abort_resp_short);
1059 goto protocol_error;
1060 }
1061
1062 version = ntohl(response->version);
1063 ticket_len = ntohl(response->ticket_len);
1064 kvno = ntohl(response->kvno);
1065
1066 trace_rxrpc_rx_response(conn, sp->hdr.serial, version, kvno, ticket_len);
1067
1068 if (version != RXKAD_VERSION) {
1069 rxrpc_abort_conn(conn, skb, RXKADINCONSISTENCY, -EPROTO,
1070 rxkad_abort_resp_version);
1071 goto protocol_error;
1072 }
1073
1074 if (ticket_len < 4 || ticket_len > MAXKRB5TICKETLEN) {
1075 rxrpc_abort_conn(conn, skb, RXKADTICKETLEN, -EPROTO,
1076 rxkad_abort_resp_tkt_len);
1077 goto protocol_error;
1078 }
1079
1080 if (kvno >= RXKAD_TKT_TYPE_KERBEROS_V5) {
1081 rxrpc_abort_conn(conn, skb, RXKADUNKNOWNKEY, -EPROTO,
1082 rxkad_abort_resp_unknown_tkt);
1083 goto protocol_error;
1084 }
1085
1086 /* extract the kerberos ticket and decrypt and decode it */
1087 ret = -ENOMEM;
1088 ticket = kmalloc(ticket_len, GFP_NOFS);
1089 if (!ticket)
1090 goto temporary_error_free_resp;
1091
1092 if (skb_copy_bits(skb, sizeof(struct rxrpc_wire_header) + sizeof(*response),
1093 ticket, ticket_len) < 0) {
1094 rxrpc_abort_conn(conn, skb, RXKADPACKETSHORT, -EPROTO,
1095 rxkad_abort_resp_short_tkt);
1096 goto protocol_error;
1097 }
1098
1099 ret = rxkad_decrypt_ticket(conn, server_key, skb, ticket, ticket_len,
1100 &session_key, &expiry);
1101 if (ret < 0)
1102 goto temporary_error_free_ticket;
1103
1104 /* use the session key from inside the ticket to decrypt the
1105 * response */
1106 rxkad_decrypt_response(conn, response, &session_key);
1107
1108 if (ntohl(response->encrypted.epoch) != conn->proto.epoch ||
1109 ntohl(response->encrypted.cid) != conn->proto.cid ||
1110 ntohl(response->encrypted.securityIndex) != conn->security_ix) {
1111 rxrpc_abort_conn(conn, skb, RXKADSEALEDINCON, -EPROTO,
1112 rxkad_abort_resp_bad_param);
1113 goto protocol_error_free;
1114 }
1115
1116 csum = response->encrypted.checksum;
1117 response->encrypted.checksum = 0;
1118 rxkad_calc_response_checksum(response);
1119 if (response->encrypted.checksum != csum) {
1120 rxrpc_abort_conn(conn, skb, RXKADSEALEDINCON, -EPROTO,
1121 rxkad_abort_resp_bad_checksum);
1122 goto protocol_error_free;
1123 }
1124
1125 for (i = 0; i < RXRPC_MAXCALLS; i++) {
1126 u32 call_id = ntohl(response->encrypted.call_id[i]);
1127 u32 counter = READ_ONCE(conn->channels[i].call_counter);
1128
1129 if (call_id > INT_MAX) {
1130 rxrpc_abort_conn(conn, skb, RXKADSEALEDINCON, -EPROTO,
1131 rxkad_abort_resp_bad_callid);
1132 goto protocol_error_free;
1133 }
1134
1135 if (call_id < counter) {
1136 rxrpc_abort_conn(conn, skb, RXKADSEALEDINCON, -EPROTO,
1137 rxkad_abort_resp_call_ctr);
1138 goto protocol_error_free;
1139 }
1140
1141 if (call_id > counter) {
1142 if (conn->channels[i].call) {
1143 rxrpc_abort_conn(conn, skb, RXKADSEALEDINCON, -EPROTO,
1144 rxkad_abort_resp_call_state);
1145 goto protocol_error_free;
1146 }
1147 conn->channels[i].call_counter = call_id;
1148 }
1149 }
1150
1151 if (ntohl(response->encrypted.inc_nonce) != conn->rxkad.nonce + 1) {
1152 rxrpc_abort_conn(conn, skb, RXKADOUTOFSEQUENCE, -EPROTO,
1153 rxkad_abort_resp_ooseq);
1154 goto protocol_error_free;
1155 }
1156
1157 level = ntohl(response->encrypted.level);
1158 if (level > RXRPC_SECURITY_ENCRYPT) {
1159 rxrpc_abort_conn(conn, skb, RXKADLEVELFAIL, -EPROTO,
1160 rxkad_abort_resp_level);
1161 goto protocol_error_free;
1162 }
1163 conn->security_level = level;
1164
1165 /* create a key to hold the security data and expiration time - after
1166 * this the connection security can be handled in exactly the same way
1167 * as for a client connection */
1168 ret = rxrpc_get_server_data_key(conn, &session_key, expiry, kvno);
1169 if (ret < 0)
1170 goto temporary_error_free_ticket;
1171
1172 kfree(ticket);
1173 kfree(response);
1174 _leave(" = 0");
1175 return 0;
1176
1177protocol_error_free:
1178 kfree(ticket);
1179protocol_error:
1180 kfree(response);
1181 key_put(server_key);
1182 return -EPROTO;
1183
1184temporary_error_free_ticket:
1185 kfree(ticket);
1186temporary_error_free_resp:
1187 kfree(response);
1188temporary_error:
1189 /* Ignore the response packet if we got a temporary error such as
1190 * ENOMEM. We just want to send the challenge again. Note that we
1191 * also come out this way if the ticket decryption fails.
1192 */
1193 key_put(server_key);
1194 return ret;
1195}
1196
1197/*
1198 * clear the connection security
1199 */
1200static void rxkad_clear(struct rxrpc_connection *conn)
1201{
1202 _enter("");
1203
1204 if (conn->rxkad.cipher)
1205 crypto_free_sync_skcipher(conn->rxkad.cipher);
1206}
1207
1208/*
1209 * Initialise the rxkad security service.
1210 */
1211static int rxkad_init(void)
1212{
1213 struct crypto_sync_skcipher *tfm;
1214 struct skcipher_request *req;
1215
1216 /* pin the cipher we need so that the crypto layer doesn't invoke
1217 * keventd to go get it */
1218 tfm = crypto_alloc_sync_skcipher("pcbc(fcrypt)", 0, 0);
1219 if (IS_ERR(tfm))
1220 return PTR_ERR(tfm);
1221
1222 req = skcipher_request_alloc(&tfm->base, GFP_KERNEL);
1223 if (!req)
1224 goto nomem_tfm;
1225
1226 rxkad_ci_req = req;
1227 rxkad_ci = tfm;
1228 return 0;
1229
1230nomem_tfm:
1231 crypto_free_sync_skcipher(tfm);
1232 return -ENOMEM;
1233}
1234
1235/*
1236 * Clean up the rxkad security service.
1237 */
1238static void rxkad_exit(void)
1239{
1240 crypto_free_sync_skcipher(rxkad_ci);
1241 skcipher_request_free(rxkad_ci_req);
1242}
1243
1244/*
1245 * RxRPC Kerberos-based security
1246 */
1247const struct rxrpc_security rxkad = {
1248 .name = "rxkad",
1249 .security_index = RXRPC_SECURITY_RXKAD,
1250 .no_key_abort = RXKADUNKNOWNKEY,
1251 .init = rxkad_init,
1252 .exit = rxkad_exit,
1253 .preparse_server_key = rxkad_preparse_server_key,
1254 .free_preparse_server_key = rxkad_free_preparse_server_key,
1255 .destroy_server_key = rxkad_destroy_server_key,
1256 .init_connection_security = rxkad_init_connection_security,
1257 .how_much_data = rxkad_how_much_data,
1258 .secure_packet = rxkad_secure_packet,
1259 .verify_packet = rxkad_verify_packet,
1260 .free_call_crypto = rxkad_free_call_crypto,
1261 .issue_challenge = rxkad_issue_challenge,
1262 .respond_to_challenge = rxkad_respond_to_challenge,
1263 .verify_response = rxkad_verify_response,
1264 .clear = rxkad_clear,
1265};
1/* Kerberos-based RxRPC security
2 *
3 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14#include <crypto/skcipher.h>
15#include <linux/module.h>
16#include <linux/net.h>
17#include <linux/skbuff.h>
18#include <linux/udp.h>
19#include <linux/scatterlist.h>
20#include <linux/ctype.h>
21#include <linux/slab.h>
22#include <net/sock.h>
23#include <net/af_rxrpc.h>
24#include <keys/rxrpc-type.h>
25#include "ar-internal.h"
26
27#define RXKAD_VERSION 2
28#define MAXKRB5TICKETLEN 1024
29#define RXKAD_TKT_TYPE_KERBEROS_V5 256
30#define ANAME_SZ 40 /* size of authentication name */
31#define INST_SZ 40 /* size of principal's instance */
32#define REALM_SZ 40 /* size of principal's auth domain */
33#define SNAME_SZ 40 /* size of service name */
34
35struct rxkad_level1_hdr {
36 __be32 data_size; /* true data size (excluding padding) */
37};
38
39struct rxkad_level2_hdr {
40 __be32 data_size; /* true data size (excluding padding) */
41 __be32 checksum; /* decrypted data checksum */
42};
43
44/*
45 * this holds a pinned cipher so that keventd doesn't get called by the cipher
46 * alloc routine, but since we have it to hand, we use it to decrypt RESPONSE
47 * packets
48 */
49static struct crypto_skcipher *rxkad_ci;
50static DEFINE_MUTEX(rxkad_ci_mutex);
51
52/*
53 * initialise connection security
54 */
55static int rxkad_init_connection_security(struct rxrpc_connection *conn)
56{
57 struct crypto_skcipher *ci;
58 struct rxrpc_key_token *token;
59 int ret;
60
61 _enter("{%d},{%x}", conn->debug_id, key_serial(conn->params.key));
62
63 token = conn->params.key->payload.data[0];
64 conn->security_ix = token->security_index;
65
66 ci = crypto_alloc_skcipher("pcbc(fcrypt)", 0, CRYPTO_ALG_ASYNC);
67 if (IS_ERR(ci)) {
68 _debug("no cipher");
69 ret = PTR_ERR(ci);
70 goto error;
71 }
72
73 if (crypto_skcipher_setkey(ci, token->kad->session_key,
74 sizeof(token->kad->session_key)) < 0)
75 BUG();
76
77 switch (conn->params.security_level) {
78 case RXRPC_SECURITY_PLAIN:
79 break;
80 case RXRPC_SECURITY_AUTH:
81 conn->size_align = 8;
82 conn->security_size = sizeof(struct rxkad_level1_hdr);
83 break;
84 case RXRPC_SECURITY_ENCRYPT:
85 conn->size_align = 8;
86 conn->security_size = sizeof(struct rxkad_level2_hdr);
87 break;
88 default:
89 ret = -EKEYREJECTED;
90 goto error;
91 }
92
93 conn->cipher = ci;
94 ret = 0;
95error:
96 _leave(" = %d", ret);
97 return ret;
98}
99
100/*
101 * prime the encryption state with the invariant parts of a connection's
102 * description
103 */
104static int rxkad_prime_packet_security(struct rxrpc_connection *conn)
105{
106 struct rxrpc_key_token *token;
107 SKCIPHER_REQUEST_ON_STACK(req, conn->cipher);
108 struct scatterlist sg;
109 struct rxrpc_crypt iv;
110 __be32 *tmpbuf;
111 size_t tmpsize = 4 * sizeof(__be32);
112
113 _enter("");
114
115 if (!conn->params.key)
116 return 0;
117
118 tmpbuf = kmalloc(tmpsize, GFP_KERNEL);
119 if (!tmpbuf)
120 return -ENOMEM;
121
122 token = conn->params.key->payload.data[0];
123 memcpy(&iv, token->kad->session_key, sizeof(iv));
124
125 tmpbuf[0] = htonl(conn->proto.epoch);
126 tmpbuf[1] = htonl(conn->proto.cid);
127 tmpbuf[2] = 0;
128 tmpbuf[3] = htonl(conn->security_ix);
129
130 sg_init_one(&sg, tmpbuf, tmpsize);
131 skcipher_request_set_tfm(req, conn->cipher);
132 skcipher_request_set_callback(req, 0, NULL, NULL);
133 skcipher_request_set_crypt(req, &sg, &sg, tmpsize, iv.x);
134 crypto_skcipher_encrypt(req);
135 skcipher_request_zero(req);
136
137 memcpy(&conn->csum_iv, tmpbuf + 2, sizeof(conn->csum_iv));
138 kfree(tmpbuf);
139 _leave(" = 0");
140 return 0;
141}
142
143/*
144 * partially encrypt a packet (level 1 security)
145 */
146static int rxkad_secure_packet_auth(const struct rxrpc_call *call,
147 struct sk_buff *skb,
148 u32 data_size,
149 void *sechdr)
150{
151 struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
152 SKCIPHER_REQUEST_ON_STACK(req, call->conn->cipher);
153 struct rxkad_level1_hdr hdr;
154 struct rxrpc_crypt iv;
155 struct scatterlist sg;
156 u16 check;
157
158 _enter("");
159
160 check = sp->hdr.seq ^ call->call_id;
161 data_size |= (u32)check << 16;
162
163 hdr.data_size = htonl(data_size);
164 memcpy(sechdr, &hdr, sizeof(hdr));
165
166 /* start the encryption afresh */
167 memset(&iv, 0, sizeof(iv));
168
169 sg_init_one(&sg, sechdr, 8);
170 skcipher_request_set_tfm(req, call->conn->cipher);
171 skcipher_request_set_callback(req, 0, NULL, NULL);
172 skcipher_request_set_crypt(req, &sg, &sg, 8, iv.x);
173 crypto_skcipher_encrypt(req);
174 skcipher_request_zero(req);
175
176 _leave(" = 0");
177 return 0;
178}
179
180/*
181 * wholly encrypt a packet (level 2 security)
182 */
183static int rxkad_secure_packet_encrypt(const struct rxrpc_call *call,
184 struct sk_buff *skb,
185 u32 data_size,
186 void *sechdr)
187{
188 const struct rxrpc_key_token *token;
189 struct rxkad_level2_hdr rxkhdr;
190 struct rxrpc_skb_priv *sp;
191 SKCIPHER_REQUEST_ON_STACK(req, call->conn->cipher);
192 struct rxrpc_crypt iv;
193 struct scatterlist sg[16];
194 struct sk_buff *trailer;
195 unsigned int len;
196 u16 check;
197 int nsg;
198 int err;
199
200 sp = rxrpc_skb(skb);
201
202 _enter("");
203
204 check = sp->hdr.seq ^ call->call_id;
205
206 rxkhdr.data_size = htonl(data_size | (u32)check << 16);
207 rxkhdr.checksum = 0;
208 memcpy(sechdr, &rxkhdr, sizeof(rxkhdr));
209
210 /* encrypt from the session key */
211 token = call->conn->params.key->payload.data[0];
212 memcpy(&iv, token->kad->session_key, sizeof(iv));
213
214 sg_init_one(&sg[0], sechdr, sizeof(rxkhdr));
215 skcipher_request_set_tfm(req, call->conn->cipher);
216 skcipher_request_set_callback(req, 0, NULL, NULL);
217 skcipher_request_set_crypt(req, &sg[0], &sg[0], sizeof(rxkhdr), iv.x);
218 crypto_skcipher_encrypt(req);
219
220 /* we want to encrypt the skbuff in-place */
221 nsg = skb_cow_data(skb, 0, &trailer);
222 err = -ENOMEM;
223 if (nsg < 0 || nsg > 16)
224 goto out;
225
226 len = data_size + call->conn->size_align - 1;
227 len &= ~(call->conn->size_align - 1);
228
229 sg_init_table(sg, nsg);
230 err = skb_to_sgvec(skb, sg, 0, len);
231 if (unlikely(err < 0))
232 goto out;
233 skcipher_request_set_crypt(req, sg, sg, len, iv.x);
234 crypto_skcipher_encrypt(req);
235
236 _leave(" = 0");
237 err = 0;
238
239out:
240 skcipher_request_zero(req);
241 return err;
242}
243
244/*
245 * checksum an RxRPC packet header
246 */
247static int rxkad_secure_packet(struct rxrpc_call *call,
248 struct sk_buff *skb,
249 size_t data_size,
250 void *sechdr)
251{
252 struct rxrpc_skb_priv *sp;
253 SKCIPHER_REQUEST_ON_STACK(req, call->conn->cipher);
254 struct rxrpc_crypt iv;
255 struct scatterlist sg;
256 u32 x, y;
257 int ret;
258
259 sp = rxrpc_skb(skb);
260
261 _enter("{%d{%x}},{#%u},%zu,",
262 call->debug_id, key_serial(call->conn->params.key),
263 sp->hdr.seq, data_size);
264
265 if (!call->conn->cipher)
266 return 0;
267
268 ret = key_validate(call->conn->params.key);
269 if (ret < 0)
270 return ret;
271
272 /* continue encrypting from where we left off */
273 memcpy(&iv, call->conn->csum_iv.x, sizeof(iv));
274
275 /* calculate the security checksum */
276 x = (call->cid & RXRPC_CHANNELMASK) << (32 - RXRPC_CIDSHIFT);
277 x |= sp->hdr.seq & 0x3fffffff;
278 call->crypto_buf[0] = htonl(call->call_id);
279 call->crypto_buf[1] = htonl(x);
280
281 sg_init_one(&sg, call->crypto_buf, 8);
282 skcipher_request_set_tfm(req, call->conn->cipher);
283 skcipher_request_set_callback(req, 0, NULL, NULL);
284 skcipher_request_set_crypt(req, &sg, &sg, 8, iv.x);
285 crypto_skcipher_encrypt(req);
286 skcipher_request_zero(req);
287
288 y = ntohl(call->crypto_buf[1]);
289 y = (y >> 16) & 0xffff;
290 if (y == 0)
291 y = 1; /* zero checksums are not permitted */
292 sp->hdr.cksum = y;
293
294 switch (call->conn->params.security_level) {
295 case RXRPC_SECURITY_PLAIN:
296 ret = 0;
297 break;
298 case RXRPC_SECURITY_AUTH:
299 ret = rxkad_secure_packet_auth(call, skb, data_size, sechdr);
300 break;
301 case RXRPC_SECURITY_ENCRYPT:
302 ret = rxkad_secure_packet_encrypt(call, skb, data_size,
303 sechdr);
304 break;
305 default:
306 ret = -EPERM;
307 break;
308 }
309
310 _leave(" = %d [set %hx]", ret, y);
311 return ret;
312}
313
314/*
315 * decrypt partial encryption on a packet (level 1 security)
316 */
317static int rxkad_verify_packet_1(struct rxrpc_call *call, struct sk_buff *skb,
318 unsigned int offset, unsigned int len,
319 rxrpc_seq_t seq)
320{
321 struct rxkad_level1_hdr sechdr;
322 SKCIPHER_REQUEST_ON_STACK(req, call->conn->cipher);
323 struct rxrpc_crypt iv;
324 struct scatterlist sg[16];
325 struct sk_buff *trailer;
326 bool aborted;
327 u32 data_size, buf;
328 u16 check;
329 int nsg, ret;
330
331 _enter("");
332
333 if (len < 8) {
334 aborted = rxrpc_abort_eproto(call, skb, "rxkad_1_hdr", "V1H",
335 RXKADSEALEDINCON);
336 goto protocol_error;
337 }
338
339 /* Decrypt the skbuff in-place. TODO: We really want to decrypt
340 * directly into the target buffer.
341 */
342 nsg = skb_cow_data(skb, 0, &trailer);
343 if (nsg < 0 || nsg > 16)
344 goto nomem;
345
346 sg_init_table(sg, nsg);
347 ret = skb_to_sgvec(skb, sg, offset, 8);
348 if (unlikely(ret < 0))
349 return ret;
350
351 /* start the decryption afresh */
352 memset(&iv, 0, sizeof(iv));
353
354 skcipher_request_set_tfm(req, call->conn->cipher);
355 skcipher_request_set_callback(req, 0, NULL, NULL);
356 skcipher_request_set_crypt(req, sg, sg, 8, iv.x);
357 crypto_skcipher_decrypt(req);
358 skcipher_request_zero(req);
359
360 /* Extract the decrypted packet length */
361 if (skb_copy_bits(skb, offset, &sechdr, sizeof(sechdr)) < 0) {
362 aborted = rxrpc_abort_eproto(call, skb, "rxkad_1_len", "XV1",
363 RXKADDATALEN);
364 goto protocol_error;
365 }
366 offset += sizeof(sechdr);
367 len -= sizeof(sechdr);
368
369 buf = ntohl(sechdr.data_size);
370 data_size = buf & 0xffff;
371
372 check = buf >> 16;
373 check ^= seq ^ call->call_id;
374 check &= 0xffff;
375 if (check != 0) {
376 aborted = rxrpc_abort_eproto(call, skb, "rxkad_1_check", "V1C",
377 RXKADSEALEDINCON);
378 goto protocol_error;
379 }
380
381 if (data_size > len) {
382 aborted = rxrpc_abort_eproto(call, skb, "rxkad_1_datalen", "V1L",
383 RXKADDATALEN);
384 goto protocol_error;
385 }
386
387 _leave(" = 0 [dlen=%x]", data_size);
388 return 0;
389
390protocol_error:
391 if (aborted)
392 rxrpc_send_abort_packet(call);
393 return -EPROTO;
394
395nomem:
396 _leave(" = -ENOMEM");
397 return -ENOMEM;
398}
399
400/*
401 * wholly decrypt a packet (level 2 security)
402 */
403static int rxkad_verify_packet_2(struct rxrpc_call *call, struct sk_buff *skb,
404 unsigned int offset, unsigned int len,
405 rxrpc_seq_t seq)
406{
407 const struct rxrpc_key_token *token;
408 struct rxkad_level2_hdr sechdr;
409 SKCIPHER_REQUEST_ON_STACK(req, call->conn->cipher);
410 struct rxrpc_crypt iv;
411 struct scatterlist _sg[4], *sg;
412 struct sk_buff *trailer;
413 bool aborted;
414 u32 data_size, buf;
415 u16 check;
416 int nsg, ret;
417
418 _enter(",{%d}", skb->len);
419
420 if (len < 8) {
421 aborted = rxrpc_abort_eproto(call, skb, "rxkad_2_hdr", "V2H",
422 RXKADSEALEDINCON);
423 goto protocol_error;
424 }
425
426 /* Decrypt the skbuff in-place. TODO: We really want to decrypt
427 * directly into the target buffer.
428 */
429 nsg = skb_cow_data(skb, 0, &trailer);
430 if (nsg < 0)
431 goto nomem;
432
433 sg = _sg;
434 if (unlikely(nsg > 4)) {
435 sg = kmalloc(sizeof(*sg) * nsg, GFP_NOIO);
436 if (!sg)
437 goto nomem;
438 }
439
440 sg_init_table(sg, nsg);
441 ret = skb_to_sgvec(skb, sg, offset, len);
442 if (unlikely(ret < 0)) {
443 if (sg != _sg)
444 kfree(sg);
445 return ret;
446 }
447
448 /* decrypt from the session key */
449 token = call->conn->params.key->payload.data[0];
450 memcpy(&iv, token->kad->session_key, sizeof(iv));
451
452 skcipher_request_set_tfm(req, call->conn->cipher);
453 skcipher_request_set_callback(req, 0, NULL, NULL);
454 skcipher_request_set_crypt(req, sg, sg, len, iv.x);
455 crypto_skcipher_decrypt(req);
456 skcipher_request_zero(req);
457 if (sg != _sg)
458 kfree(sg);
459
460 /* Extract the decrypted packet length */
461 if (skb_copy_bits(skb, offset, &sechdr, sizeof(sechdr)) < 0) {
462 aborted = rxrpc_abort_eproto(call, skb, "rxkad_2_len", "XV2",
463 RXKADDATALEN);
464 goto protocol_error;
465 }
466 offset += sizeof(sechdr);
467 len -= sizeof(sechdr);
468
469 buf = ntohl(sechdr.data_size);
470 data_size = buf & 0xffff;
471
472 check = buf >> 16;
473 check ^= seq ^ call->call_id;
474 check &= 0xffff;
475 if (check != 0) {
476 aborted = rxrpc_abort_eproto(call, skb, "rxkad_2_check", "V2C",
477 RXKADSEALEDINCON);
478 goto protocol_error;
479 }
480
481 if (data_size > len) {
482 aborted = rxrpc_abort_eproto(call, skb, "rxkad_2_datalen", "V2L",
483 RXKADDATALEN);
484 goto protocol_error;
485 }
486
487 _leave(" = 0 [dlen=%x]", data_size);
488 return 0;
489
490protocol_error:
491 if (aborted)
492 rxrpc_send_abort_packet(call);
493 return -EPROTO;
494
495nomem:
496 _leave(" = -ENOMEM");
497 return -ENOMEM;
498}
499
500/*
501 * Verify the security on a received packet or subpacket (if part of a
502 * jumbo packet).
503 */
504static int rxkad_verify_packet(struct rxrpc_call *call, struct sk_buff *skb,
505 unsigned int offset, unsigned int len,
506 rxrpc_seq_t seq, u16 expected_cksum)
507{
508 SKCIPHER_REQUEST_ON_STACK(req, call->conn->cipher);
509 struct rxrpc_crypt iv;
510 struct scatterlist sg;
511 bool aborted;
512 u16 cksum;
513 u32 x, y;
514
515 _enter("{%d{%x}},{#%u}",
516 call->debug_id, key_serial(call->conn->params.key), seq);
517
518 if (!call->conn->cipher)
519 return 0;
520
521 /* continue encrypting from where we left off */
522 memcpy(&iv, call->conn->csum_iv.x, sizeof(iv));
523
524 /* validate the security checksum */
525 x = (call->cid & RXRPC_CHANNELMASK) << (32 - RXRPC_CIDSHIFT);
526 x |= seq & 0x3fffffff;
527 call->crypto_buf[0] = htonl(call->call_id);
528 call->crypto_buf[1] = htonl(x);
529
530 sg_init_one(&sg, call->crypto_buf, 8);
531 skcipher_request_set_tfm(req, call->conn->cipher);
532 skcipher_request_set_callback(req, 0, NULL, NULL);
533 skcipher_request_set_crypt(req, &sg, &sg, 8, iv.x);
534 crypto_skcipher_encrypt(req);
535 skcipher_request_zero(req);
536
537 y = ntohl(call->crypto_buf[1]);
538 cksum = (y >> 16) & 0xffff;
539 if (cksum == 0)
540 cksum = 1; /* zero checksums are not permitted */
541
542 if (cksum != expected_cksum) {
543 aborted = rxrpc_abort_eproto(call, skb, "rxkad_csum", "VCK",
544 RXKADSEALEDINCON);
545 goto protocol_error;
546 }
547
548 switch (call->conn->params.security_level) {
549 case RXRPC_SECURITY_PLAIN:
550 return 0;
551 case RXRPC_SECURITY_AUTH:
552 return rxkad_verify_packet_1(call, skb, offset, len, seq);
553 case RXRPC_SECURITY_ENCRYPT:
554 return rxkad_verify_packet_2(call, skb, offset, len, seq);
555 default:
556 return -ENOANO;
557 }
558
559protocol_error:
560 if (aborted)
561 rxrpc_send_abort_packet(call);
562 return -EPROTO;
563}
564
565/*
566 * Locate the data contained in a packet that was partially encrypted.
567 */
568static void rxkad_locate_data_1(struct rxrpc_call *call, struct sk_buff *skb,
569 unsigned int *_offset, unsigned int *_len)
570{
571 struct rxkad_level1_hdr sechdr;
572
573 if (skb_copy_bits(skb, *_offset, &sechdr, sizeof(sechdr)) < 0)
574 BUG();
575 *_offset += sizeof(sechdr);
576 *_len = ntohl(sechdr.data_size) & 0xffff;
577}
578
579/*
580 * Locate the data contained in a packet that was completely encrypted.
581 */
582static void rxkad_locate_data_2(struct rxrpc_call *call, struct sk_buff *skb,
583 unsigned int *_offset, unsigned int *_len)
584{
585 struct rxkad_level2_hdr sechdr;
586
587 if (skb_copy_bits(skb, *_offset, &sechdr, sizeof(sechdr)) < 0)
588 BUG();
589 *_offset += sizeof(sechdr);
590 *_len = ntohl(sechdr.data_size) & 0xffff;
591}
592
593/*
594 * Locate the data contained in an already decrypted packet.
595 */
596static void rxkad_locate_data(struct rxrpc_call *call, struct sk_buff *skb,
597 unsigned int *_offset, unsigned int *_len)
598{
599 switch (call->conn->params.security_level) {
600 case RXRPC_SECURITY_AUTH:
601 rxkad_locate_data_1(call, skb, _offset, _len);
602 return;
603 case RXRPC_SECURITY_ENCRYPT:
604 rxkad_locate_data_2(call, skb, _offset, _len);
605 return;
606 default:
607 return;
608 }
609}
610
611/*
612 * issue a challenge
613 */
614static int rxkad_issue_challenge(struct rxrpc_connection *conn)
615{
616 struct rxkad_challenge challenge;
617 struct rxrpc_wire_header whdr;
618 struct msghdr msg;
619 struct kvec iov[2];
620 size_t len;
621 u32 serial;
622 int ret;
623
624 _enter("{%d,%x}", conn->debug_id, key_serial(conn->params.key));
625
626 ret = key_validate(conn->params.key);
627 if (ret < 0)
628 return ret;
629
630 get_random_bytes(&conn->security_nonce, sizeof(conn->security_nonce));
631
632 challenge.version = htonl(2);
633 challenge.nonce = htonl(conn->security_nonce);
634 challenge.min_level = htonl(0);
635 challenge.__padding = 0;
636
637 msg.msg_name = &conn->params.peer->srx.transport;
638 msg.msg_namelen = conn->params.peer->srx.transport_len;
639 msg.msg_control = NULL;
640 msg.msg_controllen = 0;
641 msg.msg_flags = 0;
642
643 whdr.epoch = htonl(conn->proto.epoch);
644 whdr.cid = htonl(conn->proto.cid);
645 whdr.callNumber = 0;
646 whdr.seq = 0;
647 whdr.type = RXRPC_PACKET_TYPE_CHALLENGE;
648 whdr.flags = conn->out_clientflag;
649 whdr.userStatus = 0;
650 whdr.securityIndex = conn->security_ix;
651 whdr._rsvd = 0;
652 whdr.serviceId = htons(conn->service_id);
653
654 iov[0].iov_base = &whdr;
655 iov[0].iov_len = sizeof(whdr);
656 iov[1].iov_base = &challenge;
657 iov[1].iov_len = sizeof(challenge);
658
659 len = iov[0].iov_len + iov[1].iov_len;
660
661 serial = atomic_inc_return(&conn->serial);
662 whdr.serial = htonl(serial);
663 _proto("Tx CHALLENGE %%%u", serial);
664
665 ret = kernel_sendmsg(conn->params.local->socket, &msg, iov, 2, len);
666 if (ret < 0) {
667 trace_rxrpc_tx_fail(conn->debug_id, serial, ret,
668 rxrpc_tx_fail_conn_challenge);
669 return -EAGAIN;
670 }
671
672 conn->params.peer->last_tx_at = ktime_get_real();
673 _leave(" = 0");
674 return 0;
675}
676
677/*
678 * send a Kerberos security response
679 */
680static int rxkad_send_response(struct rxrpc_connection *conn,
681 struct rxrpc_host_header *hdr,
682 struct rxkad_response *resp,
683 const struct rxkad_key *s2)
684{
685 struct rxrpc_wire_header whdr;
686 struct msghdr msg;
687 struct kvec iov[3];
688 size_t len;
689 u32 serial;
690 int ret;
691
692 _enter("");
693
694 msg.msg_name = &conn->params.peer->srx.transport;
695 msg.msg_namelen = conn->params.peer->srx.transport_len;
696 msg.msg_control = NULL;
697 msg.msg_controllen = 0;
698 msg.msg_flags = 0;
699
700 memset(&whdr, 0, sizeof(whdr));
701 whdr.epoch = htonl(hdr->epoch);
702 whdr.cid = htonl(hdr->cid);
703 whdr.type = RXRPC_PACKET_TYPE_RESPONSE;
704 whdr.flags = conn->out_clientflag;
705 whdr.securityIndex = hdr->securityIndex;
706 whdr.serviceId = htons(hdr->serviceId);
707
708 iov[0].iov_base = &whdr;
709 iov[0].iov_len = sizeof(whdr);
710 iov[1].iov_base = resp;
711 iov[1].iov_len = sizeof(*resp);
712 iov[2].iov_base = (void *)s2->ticket;
713 iov[2].iov_len = s2->ticket_len;
714
715 len = iov[0].iov_len + iov[1].iov_len + iov[2].iov_len;
716
717 serial = atomic_inc_return(&conn->serial);
718 whdr.serial = htonl(serial);
719 _proto("Tx RESPONSE %%%u", serial);
720
721 ret = kernel_sendmsg(conn->params.local->socket, &msg, iov, 3, len);
722 if (ret < 0) {
723 trace_rxrpc_tx_fail(conn->debug_id, serial, ret,
724 rxrpc_tx_fail_conn_response);
725 return -EAGAIN;
726 }
727
728 conn->params.peer->last_tx_at = ktime_get_real();
729 _leave(" = 0");
730 return 0;
731}
732
733/*
734 * calculate the response checksum
735 */
736static void rxkad_calc_response_checksum(struct rxkad_response *response)
737{
738 u32 csum = 1000003;
739 int loop;
740 u8 *p = (u8 *) response;
741
742 for (loop = sizeof(*response); loop > 0; loop--)
743 csum = csum * 0x10204081 + *p++;
744
745 response->encrypted.checksum = htonl(csum);
746}
747
748/*
749 * encrypt the response packet
750 */
751static void rxkad_encrypt_response(struct rxrpc_connection *conn,
752 struct rxkad_response *resp,
753 const struct rxkad_key *s2)
754{
755 SKCIPHER_REQUEST_ON_STACK(req, conn->cipher);
756 struct rxrpc_crypt iv;
757 struct scatterlist sg[1];
758
759 /* continue encrypting from where we left off */
760 memcpy(&iv, s2->session_key, sizeof(iv));
761
762 sg_init_table(sg, 1);
763 sg_set_buf(sg, &resp->encrypted, sizeof(resp->encrypted));
764 skcipher_request_set_tfm(req, conn->cipher);
765 skcipher_request_set_callback(req, 0, NULL, NULL);
766 skcipher_request_set_crypt(req, sg, sg, sizeof(resp->encrypted), iv.x);
767 crypto_skcipher_encrypt(req);
768 skcipher_request_zero(req);
769}
770
771/*
772 * respond to a challenge packet
773 */
774static int rxkad_respond_to_challenge(struct rxrpc_connection *conn,
775 struct sk_buff *skb,
776 u32 *_abort_code)
777{
778 const struct rxrpc_key_token *token;
779 struct rxkad_challenge challenge;
780 struct rxkad_response *resp;
781 struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
782 const char *eproto;
783 u32 version, nonce, min_level, abort_code;
784 int ret;
785
786 _enter("{%d,%x}", conn->debug_id, key_serial(conn->params.key));
787
788 eproto = tracepoint_string("chall_no_key");
789 abort_code = RX_PROTOCOL_ERROR;
790 if (!conn->params.key)
791 goto protocol_error;
792
793 abort_code = RXKADEXPIRED;
794 ret = key_validate(conn->params.key);
795 if (ret < 0)
796 goto other_error;
797
798 eproto = tracepoint_string("chall_short");
799 abort_code = RXKADPACKETSHORT;
800 if (skb_copy_bits(skb, sizeof(struct rxrpc_wire_header),
801 &challenge, sizeof(challenge)) < 0)
802 goto protocol_error;
803
804 version = ntohl(challenge.version);
805 nonce = ntohl(challenge.nonce);
806 min_level = ntohl(challenge.min_level);
807
808 _proto("Rx CHALLENGE %%%u { v=%u n=%u ml=%u }",
809 sp->hdr.serial, version, nonce, min_level);
810
811 eproto = tracepoint_string("chall_ver");
812 abort_code = RXKADINCONSISTENCY;
813 if (version != RXKAD_VERSION)
814 goto protocol_error;
815
816 abort_code = RXKADLEVELFAIL;
817 ret = -EACCES;
818 if (conn->params.security_level < min_level)
819 goto other_error;
820
821 token = conn->params.key->payload.data[0];
822
823 /* build the response packet */
824 resp = kzalloc(sizeof(struct rxkad_response), GFP_NOFS);
825 if (!resp)
826 return -ENOMEM;
827
828 resp->version = htonl(RXKAD_VERSION);
829 resp->encrypted.epoch = htonl(conn->proto.epoch);
830 resp->encrypted.cid = htonl(conn->proto.cid);
831 resp->encrypted.securityIndex = htonl(conn->security_ix);
832 resp->encrypted.inc_nonce = htonl(nonce + 1);
833 resp->encrypted.level = htonl(conn->params.security_level);
834 resp->kvno = htonl(token->kad->kvno);
835 resp->ticket_len = htonl(token->kad->ticket_len);
836 resp->encrypted.call_id[0] = htonl(conn->channels[0].call_counter);
837 resp->encrypted.call_id[1] = htonl(conn->channels[1].call_counter);
838 resp->encrypted.call_id[2] = htonl(conn->channels[2].call_counter);
839 resp->encrypted.call_id[3] = htonl(conn->channels[3].call_counter);
840
841 /* calculate the response checksum and then do the encryption */
842 rxkad_calc_response_checksum(resp);
843 rxkad_encrypt_response(conn, resp, token->kad);
844 ret = rxkad_send_response(conn, &sp->hdr, resp, token->kad);
845 kfree(resp);
846 return ret;
847
848protocol_error:
849 trace_rxrpc_rx_eproto(NULL, sp->hdr.serial, eproto);
850 ret = -EPROTO;
851other_error:
852 *_abort_code = abort_code;
853 return ret;
854}
855
856/*
857 * decrypt the kerberos IV ticket in the response
858 */
859static int rxkad_decrypt_ticket(struct rxrpc_connection *conn,
860 struct sk_buff *skb,
861 void *ticket, size_t ticket_len,
862 struct rxrpc_crypt *_session_key,
863 time64_t *_expiry,
864 u32 *_abort_code)
865{
866 struct skcipher_request *req;
867 struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
868 struct rxrpc_crypt iv, key;
869 struct scatterlist sg[1];
870 struct in_addr addr;
871 unsigned int life;
872 const char *eproto;
873 time64_t issue, now;
874 bool little_endian;
875 int ret;
876 u32 abort_code;
877 u8 *p, *q, *name, *end;
878
879 _enter("{%d},{%x}", conn->debug_id, key_serial(conn->server_key));
880
881 *_expiry = 0;
882
883 ret = key_validate(conn->server_key);
884 if (ret < 0) {
885 switch (ret) {
886 case -EKEYEXPIRED:
887 abort_code = RXKADEXPIRED;
888 goto other_error;
889 default:
890 abort_code = RXKADNOAUTH;
891 goto other_error;
892 }
893 }
894
895 ASSERT(conn->server_key->payload.data[0] != NULL);
896 ASSERTCMP((unsigned long) ticket & 7UL, ==, 0);
897
898 memcpy(&iv, &conn->server_key->payload.data[2], sizeof(iv));
899
900 ret = -ENOMEM;
901 req = skcipher_request_alloc(conn->server_key->payload.data[0],
902 GFP_NOFS);
903 if (!req)
904 goto temporary_error;
905
906 sg_init_one(&sg[0], ticket, ticket_len);
907 skcipher_request_set_callback(req, 0, NULL, NULL);
908 skcipher_request_set_crypt(req, sg, sg, ticket_len, iv.x);
909 crypto_skcipher_decrypt(req);
910 skcipher_request_free(req);
911
912 p = ticket;
913 end = p + ticket_len;
914
915#define Z(field) \
916 ({ \
917 u8 *__str = p; \
918 eproto = tracepoint_string("rxkad_bad_"#field); \
919 q = memchr(p, 0, end - p); \
920 if (!q || q - p > (field##_SZ)) \
921 goto bad_ticket; \
922 for (; p < q; p++) \
923 if (!isprint(*p)) \
924 goto bad_ticket; \
925 p++; \
926 __str; \
927 })
928
929 /* extract the ticket flags */
930 _debug("KIV FLAGS: %x", *p);
931 little_endian = *p & 1;
932 p++;
933
934 /* extract the authentication name */
935 name = Z(ANAME);
936 _debug("KIV ANAME: %s", name);
937
938 /* extract the principal's instance */
939 name = Z(INST);
940 _debug("KIV INST : %s", name);
941
942 /* extract the principal's authentication domain */
943 name = Z(REALM);
944 _debug("KIV REALM: %s", name);
945
946 eproto = tracepoint_string("rxkad_bad_len");
947 if (end - p < 4 + 8 + 4 + 2)
948 goto bad_ticket;
949
950 /* get the IPv4 address of the entity that requested the ticket */
951 memcpy(&addr, p, sizeof(addr));
952 p += 4;
953 _debug("KIV ADDR : %pI4", &addr);
954
955 /* get the session key from the ticket */
956 memcpy(&key, p, sizeof(key));
957 p += 8;
958 _debug("KIV KEY : %08x %08x", ntohl(key.n[0]), ntohl(key.n[1]));
959 memcpy(_session_key, &key, sizeof(key));
960
961 /* get the ticket's lifetime */
962 life = *p++ * 5 * 60;
963 _debug("KIV LIFE : %u", life);
964
965 /* get the issue time of the ticket */
966 if (little_endian) {
967 __le32 stamp;
968 memcpy(&stamp, p, 4);
969 issue = rxrpc_u32_to_time64(le32_to_cpu(stamp));
970 } else {
971 __be32 stamp;
972 memcpy(&stamp, p, 4);
973 issue = rxrpc_u32_to_time64(be32_to_cpu(stamp));
974 }
975 p += 4;
976 now = ktime_get_real_seconds();
977 _debug("KIV ISSUE: %llx [%llx]", issue, now);
978
979 /* check the ticket is in date */
980 if (issue > now) {
981 abort_code = RXKADNOAUTH;
982 ret = -EKEYREJECTED;
983 goto other_error;
984 }
985
986 if (issue < now - life) {
987 abort_code = RXKADEXPIRED;
988 ret = -EKEYEXPIRED;
989 goto other_error;
990 }
991
992 *_expiry = issue + life;
993
994 /* get the service name */
995 name = Z(SNAME);
996 _debug("KIV SNAME: %s", name);
997
998 /* get the service instance name */
999 name = Z(INST);
1000 _debug("KIV SINST: %s", name);
1001 return 0;
1002
1003bad_ticket:
1004 trace_rxrpc_rx_eproto(NULL, sp->hdr.serial, eproto);
1005 abort_code = RXKADBADTICKET;
1006 ret = -EPROTO;
1007other_error:
1008 *_abort_code = abort_code;
1009 return ret;
1010temporary_error:
1011 return ret;
1012}
1013
1014/*
1015 * decrypt the response packet
1016 */
1017static void rxkad_decrypt_response(struct rxrpc_connection *conn,
1018 struct rxkad_response *resp,
1019 const struct rxrpc_crypt *session_key)
1020{
1021 SKCIPHER_REQUEST_ON_STACK(req, rxkad_ci);
1022 struct scatterlist sg[1];
1023 struct rxrpc_crypt iv;
1024
1025 _enter(",,%08x%08x",
1026 ntohl(session_key->n[0]), ntohl(session_key->n[1]));
1027
1028 ASSERT(rxkad_ci != NULL);
1029
1030 mutex_lock(&rxkad_ci_mutex);
1031 if (crypto_skcipher_setkey(rxkad_ci, session_key->x,
1032 sizeof(*session_key)) < 0)
1033 BUG();
1034
1035 memcpy(&iv, session_key, sizeof(iv));
1036
1037 sg_init_table(sg, 1);
1038 sg_set_buf(sg, &resp->encrypted, sizeof(resp->encrypted));
1039 skcipher_request_set_tfm(req, rxkad_ci);
1040 skcipher_request_set_callback(req, 0, NULL, NULL);
1041 skcipher_request_set_crypt(req, sg, sg, sizeof(resp->encrypted), iv.x);
1042 crypto_skcipher_decrypt(req);
1043 skcipher_request_zero(req);
1044
1045 mutex_unlock(&rxkad_ci_mutex);
1046
1047 _leave("");
1048}
1049
1050/*
1051 * verify a response
1052 */
1053static int rxkad_verify_response(struct rxrpc_connection *conn,
1054 struct sk_buff *skb,
1055 u32 *_abort_code)
1056{
1057 struct rxkad_response *response;
1058 struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
1059 struct rxrpc_crypt session_key;
1060 const char *eproto;
1061 time64_t expiry;
1062 void *ticket;
1063 u32 abort_code, version, kvno, ticket_len, level;
1064 __be32 csum;
1065 int ret, i;
1066
1067 _enter("{%d,%x}", conn->debug_id, key_serial(conn->server_key));
1068
1069 ret = -ENOMEM;
1070 response = kzalloc(sizeof(struct rxkad_response), GFP_NOFS);
1071 if (!response)
1072 goto temporary_error;
1073
1074 eproto = tracepoint_string("rxkad_rsp_short");
1075 abort_code = RXKADPACKETSHORT;
1076 if (skb_copy_bits(skb, sizeof(struct rxrpc_wire_header),
1077 response, sizeof(*response)) < 0)
1078 goto protocol_error;
1079 if (!pskb_pull(skb, sizeof(*response)))
1080 BUG();
1081
1082 version = ntohl(response->version);
1083 ticket_len = ntohl(response->ticket_len);
1084 kvno = ntohl(response->kvno);
1085 _proto("Rx RESPONSE %%%u { v=%u kv=%u tl=%u }",
1086 sp->hdr.serial, version, kvno, ticket_len);
1087
1088 eproto = tracepoint_string("rxkad_rsp_ver");
1089 abort_code = RXKADINCONSISTENCY;
1090 if (version != RXKAD_VERSION)
1091 goto protocol_error;
1092
1093 eproto = tracepoint_string("rxkad_rsp_tktlen");
1094 abort_code = RXKADTICKETLEN;
1095 if (ticket_len < 4 || ticket_len > MAXKRB5TICKETLEN)
1096 goto protocol_error;
1097
1098 eproto = tracepoint_string("rxkad_rsp_unkkey");
1099 abort_code = RXKADUNKNOWNKEY;
1100 if (kvno >= RXKAD_TKT_TYPE_KERBEROS_V5)
1101 goto protocol_error;
1102
1103 /* extract the kerberos ticket and decrypt and decode it */
1104 ret = -ENOMEM;
1105 ticket = kmalloc(ticket_len, GFP_NOFS);
1106 if (!ticket)
1107 goto temporary_error;
1108
1109 eproto = tracepoint_string("rxkad_tkt_short");
1110 abort_code = RXKADPACKETSHORT;
1111 if (skb_copy_bits(skb, sizeof(struct rxrpc_wire_header),
1112 ticket, ticket_len) < 0)
1113 goto protocol_error_free;
1114
1115 ret = rxkad_decrypt_ticket(conn, skb, ticket, ticket_len, &session_key,
1116 &expiry, _abort_code);
1117 if (ret < 0)
1118 goto temporary_error_free_resp;
1119
1120 /* use the session key from inside the ticket to decrypt the
1121 * response */
1122 rxkad_decrypt_response(conn, response, &session_key);
1123
1124 eproto = tracepoint_string("rxkad_rsp_param");
1125 abort_code = RXKADSEALEDINCON;
1126 if (ntohl(response->encrypted.epoch) != conn->proto.epoch)
1127 goto protocol_error_free;
1128 if (ntohl(response->encrypted.cid) != conn->proto.cid)
1129 goto protocol_error_free;
1130 if (ntohl(response->encrypted.securityIndex) != conn->security_ix)
1131 goto protocol_error_free;
1132 csum = response->encrypted.checksum;
1133 response->encrypted.checksum = 0;
1134 rxkad_calc_response_checksum(response);
1135 eproto = tracepoint_string("rxkad_rsp_csum");
1136 if (response->encrypted.checksum != csum)
1137 goto protocol_error_free;
1138
1139 spin_lock(&conn->channel_lock);
1140 for (i = 0; i < RXRPC_MAXCALLS; i++) {
1141 struct rxrpc_call *call;
1142 u32 call_id = ntohl(response->encrypted.call_id[i]);
1143
1144 eproto = tracepoint_string("rxkad_rsp_callid");
1145 if (call_id > INT_MAX)
1146 goto protocol_error_unlock;
1147
1148 eproto = tracepoint_string("rxkad_rsp_callctr");
1149 if (call_id < conn->channels[i].call_counter)
1150 goto protocol_error_unlock;
1151
1152 eproto = tracepoint_string("rxkad_rsp_callst");
1153 if (call_id > conn->channels[i].call_counter) {
1154 call = rcu_dereference_protected(
1155 conn->channels[i].call,
1156 lockdep_is_held(&conn->channel_lock));
1157 if (call && call->state < RXRPC_CALL_COMPLETE)
1158 goto protocol_error_unlock;
1159 conn->channels[i].call_counter = call_id;
1160 }
1161 }
1162 spin_unlock(&conn->channel_lock);
1163
1164 eproto = tracepoint_string("rxkad_rsp_seq");
1165 abort_code = RXKADOUTOFSEQUENCE;
1166 if (ntohl(response->encrypted.inc_nonce) != conn->security_nonce + 1)
1167 goto protocol_error_free;
1168
1169 eproto = tracepoint_string("rxkad_rsp_level");
1170 abort_code = RXKADLEVELFAIL;
1171 level = ntohl(response->encrypted.level);
1172 if (level > RXRPC_SECURITY_ENCRYPT)
1173 goto protocol_error_free;
1174 conn->params.security_level = level;
1175
1176 /* create a key to hold the security data and expiration time - after
1177 * this the connection security can be handled in exactly the same way
1178 * as for a client connection */
1179 ret = rxrpc_get_server_data_key(conn, &session_key, expiry, kvno);
1180 if (ret < 0)
1181 goto temporary_error_free_ticket;
1182
1183 kfree(ticket);
1184 kfree(response);
1185 _leave(" = 0");
1186 return 0;
1187
1188protocol_error_unlock:
1189 spin_unlock(&conn->channel_lock);
1190protocol_error_free:
1191 kfree(ticket);
1192protocol_error:
1193 kfree(response);
1194 trace_rxrpc_rx_eproto(NULL, sp->hdr.serial, eproto);
1195 *_abort_code = abort_code;
1196 return -EPROTO;
1197
1198temporary_error_free_ticket:
1199 kfree(ticket);
1200temporary_error_free_resp:
1201 kfree(response);
1202temporary_error:
1203 /* Ignore the response packet if we got a temporary error such as
1204 * ENOMEM. We just want to send the challenge again. Note that we
1205 * also come out this way if the ticket decryption fails.
1206 */
1207 return ret;
1208}
1209
1210/*
1211 * clear the connection security
1212 */
1213static void rxkad_clear(struct rxrpc_connection *conn)
1214{
1215 _enter("");
1216
1217 if (conn->cipher)
1218 crypto_free_skcipher(conn->cipher);
1219}
1220
1221/*
1222 * Initialise the rxkad security service.
1223 */
1224static int rxkad_init(void)
1225{
1226 /* pin the cipher we need so that the crypto layer doesn't invoke
1227 * keventd to go get it */
1228 rxkad_ci = crypto_alloc_skcipher("pcbc(fcrypt)", 0, CRYPTO_ALG_ASYNC);
1229 return PTR_ERR_OR_ZERO(rxkad_ci);
1230}
1231
1232/*
1233 * Clean up the rxkad security service.
1234 */
1235static void rxkad_exit(void)
1236{
1237 if (rxkad_ci)
1238 crypto_free_skcipher(rxkad_ci);
1239}
1240
1241/*
1242 * RxRPC Kerberos-based security
1243 */
1244const struct rxrpc_security rxkad = {
1245 .name = "rxkad",
1246 .security_index = RXRPC_SECURITY_RXKAD,
1247 .init = rxkad_init,
1248 .exit = rxkad_exit,
1249 .init_connection_security = rxkad_init_connection_security,
1250 .prime_packet_security = rxkad_prime_packet_security,
1251 .secure_packet = rxkad_secure_packet,
1252 .verify_packet = rxkad_verify_packet,
1253 .locate_data = rxkad_locate_data,
1254 .issue_challenge = rxkad_issue_challenge,
1255 .respond_to_challenge = rxkad_respond_to_challenge,
1256 .verify_response = rxkad_verify_response,
1257 .clear = rxkad_clear,
1258};