Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *	linux/kernel/resource.c
   4 *
   5 * Copyright (C) 1999	Linus Torvalds
   6 * Copyright (C) 1999	Martin Mares <mj@ucw.cz>
   7 *
   8 * Arbitrary resource management.
   9 */
  10
  11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12
  13#include <linux/export.h>
  14#include <linux/errno.h>
  15#include <linux/ioport.h>
  16#include <linux/init.h>
  17#include <linux/slab.h>
  18#include <linux/spinlock.h>
  19#include <linux/fs.h>
  20#include <linux/proc_fs.h>
  21#include <linux/pseudo_fs.h>
  22#include <linux/sched.h>
  23#include <linux/seq_file.h>
  24#include <linux/device.h>
  25#include <linux/pfn.h>
  26#include <linux/mm.h>
  27#include <linux/mount.h>
  28#include <linux/resource_ext.h>
  29#include <uapi/linux/magic.h>
  30#include <asm/io.h>
  31
  32
  33struct resource ioport_resource = {
  34	.name	= "PCI IO",
  35	.start	= 0,
  36	.end	= IO_SPACE_LIMIT,
  37	.flags	= IORESOURCE_IO,
  38};
  39EXPORT_SYMBOL(ioport_resource);
  40
  41struct resource iomem_resource = {
  42	.name	= "PCI mem",
  43	.start	= 0,
  44	.end	= -1,
  45	.flags	= IORESOURCE_MEM,
  46};
  47EXPORT_SYMBOL(iomem_resource);
  48
  49/* constraints to be met while allocating resources */
  50struct resource_constraint {
  51	resource_size_t min, max, align;
  52	resource_size_t (*alignf)(void *, const struct resource *,
  53			resource_size_t, resource_size_t);
  54	void *alignf_data;
  55};
  56
  57static DEFINE_RWLOCK(resource_lock);
  58
  59static struct resource *next_resource(struct resource *p)
  60{
 
 
 
 
 
 
 
 
 
 
 
 
  61	if (p->child)
  62		return p->child;
  63	while (!p->sibling && p->parent)
  64		p = p->parent;
  65	return p->sibling;
  66}
  67
  68static struct resource *next_resource_skip_children(struct resource *p)
  69{
  70	while (!p->sibling && p->parent)
  71		p = p->parent;
  72	return p->sibling;
  73}
  74
  75#define for_each_resource(_root, _p, _skip_children) \
  76	for ((_p) = (_root)->child; (_p); \
  77	     (_p) = (_skip_children) ? next_resource_skip_children(_p) : \
  78				       next_resource(_p))
  79
  80static void *r_next(struct seq_file *m, void *v, loff_t *pos)
  81{
  82	struct resource *p = v;
  83	(*pos)++;
  84	return (void *)next_resource(p);
  85}
  86
  87#ifdef CONFIG_PROC_FS
  88
  89enum { MAX_IORES_LEVEL = 5 };
  90
  91static void *r_start(struct seq_file *m, loff_t *pos)
  92	__acquires(resource_lock)
  93{
  94	struct resource *p = pde_data(file_inode(m->file));
  95	loff_t l = 0;
  96	read_lock(&resource_lock);
  97	for (p = p->child; p && l < *pos; p = r_next(m, p, &l))
  98		;
  99	return p;
 100}
 101
 102static void r_stop(struct seq_file *m, void *v)
 103	__releases(resource_lock)
 104{
 105	read_unlock(&resource_lock);
 106}
 107
 108static int r_show(struct seq_file *m, void *v)
 109{
 110	struct resource *root = pde_data(file_inode(m->file));
 111	struct resource *r = v, *p;
 112	unsigned long long start, end;
 113	int width = root->end < 0x10000 ? 4 : 8;
 114	int depth;
 115
 116	for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
 117		if (p->parent == root)
 118			break;
 119
 120	if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) {
 121		start = r->start;
 122		end = r->end;
 123	} else {
 124		start = end = 0;
 125	}
 126
 127	seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
 128			depth * 2, "",
 129			width, start,
 130			width, end,
 131			r->name ? r->name : "<BAD>");
 132	return 0;
 133}
 134
 135static const struct seq_operations resource_op = {
 136	.start	= r_start,
 137	.next	= r_next,
 138	.stop	= r_stop,
 139	.show	= r_show,
 140};
 141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 142static int __init ioresources_init(void)
 143{
 144	proc_create_seq_data("ioports", 0, NULL, &resource_op,
 145			&ioport_resource);
 146	proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource);
 147	return 0;
 148}
 149__initcall(ioresources_init);
 150
 151#endif /* CONFIG_PROC_FS */
 152
 153static void free_resource(struct resource *res)
 154{
 155	/**
 156	 * If the resource was allocated using memblock early during boot
 157	 * we'll leak it here: we can only return full pages back to the
 158	 * buddy and trying to be smart and reusing them eventually in
 159	 * alloc_resource() overcomplicates resource handling.
 160	 */
 161	if (res && PageSlab(virt_to_head_page(res)))
 
 
 162		kfree(res);
 
 163}
 164
 165static struct resource *alloc_resource(gfp_t flags)
 166{
 167	return kzalloc(sizeof(struct resource), flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 168}
 169
 170/* Return the conflict entry if you can't request it */
 171static struct resource * __request_resource(struct resource *root, struct resource *new)
 172{
 173	resource_size_t start = new->start;
 174	resource_size_t end = new->end;
 175	struct resource *tmp, **p;
 176
 177	if (end < start)
 178		return root;
 179	if (start < root->start)
 180		return root;
 181	if (end > root->end)
 182		return root;
 183	p = &root->child;
 184	for (;;) {
 185		tmp = *p;
 186		if (!tmp || tmp->start > end) {
 187			new->sibling = tmp;
 188			*p = new;
 189			new->parent = root;
 190			return NULL;
 191		}
 192		p = &tmp->sibling;
 193		if (tmp->end < start)
 194			continue;
 195		return tmp;
 196	}
 197}
 198
 199static int __release_resource(struct resource *old, bool release_child)
 200{
 201	struct resource *tmp, **p, *chd;
 202
 203	p = &old->parent->child;
 204	for (;;) {
 205		tmp = *p;
 206		if (!tmp)
 207			break;
 208		if (tmp == old) {
 209			if (release_child || !(tmp->child)) {
 210				*p = tmp->sibling;
 211			} else {
 212				for (chd = tmp->child;; chd = chd->sibling) {
 213					chd->parent = tmp->parent;
 214					if (!(chd->sibling))
 215						break;
 216				}
 217				*p = tmp->child;
 218				chd->sibling = tmp->sibling;
 219			}
 220			old->parent = NULL;
 221			return 0;
 222		}
 223		p = &tmp->sibling;
 224	}
 225	return -EINVAL;
 226}
 227
 228static void __release_child_resources(struct resource *r)
 229{
 230	struct resource *tmp, *p;
 231	resource_size_t size;
 232
 233	p = r->child;
 234	r->child = NULL;
 235	while (p) {
 236		tmp = p;
 237		p = p->sibling;
 238
 239		tmp->parent = NULL;
 240		tmp->sibling = NULL;
 241		__release_child_resources(tmp);
 242
 243		printk(KERN_DEBUG "release child resource %pR\n", tmp);
 244		/* need to restore size, and keep flags */
 245		size = resource_size(tmp);
 246		tmp->start = 0;
 247		tmp->end = size - 1;
 248	}
 249}
 250
 251void release_child_resources(struct resource *r)
 252{
 253	write_lock(&resource_lock);
 254	__release_child_resources(r);
 255	write_unlock(&resource_lock);
 256}
 257
 258/**
 259 * request_resource_conflict - request and reserve an I/O or memory resource
 260 * @root: root resource descriptor
 261 * @new: resource descriptor desired by caller
 262 *
 263 * Returns 0 for success, conflict resource on error.
 264 */
 265struct resource *request_resource_conflict(struct resource *root, struct resource *new)
 266{
 267	struct resource *conflict;
 268
 269	write_lock(&resource_lock);
 270	conflict = __request_resource(root, new);
 271	write_unlock(&resource_lock);
 272	return conflict;
 273}
 274
 275/**
 276 * request_resource - request and reserve an I/O or memory resource
 277 * @root: root resource descriptor
 278 * @new: resource descriptor desired by caller
 279 *
 280 * Returns 0 for success, negative error code on error.
 281 */
 282int request_resource(struct resource *root, struct resource *new)
 283{
 284	struct resource *conflict;
 285
 286	conflict = request_resource_conflict(root, new);
 287	return conflict ? -EBUSY : 0;
 288}
 289
 290EXPORT_SYMBOL(request_resource);
 291
 292/**
 293 * release_resource - release a previously reserved resource
 294 * @old: resource pointer
 295 */
 296int release_resource(struct resource *old)
 297{
 298	int retval;
 299
 300	write_lock(&resource_lock);
 301	retval = __release_resource(old, true);
 302	write_unlock(&resource_lock);
 303	return retval;
 304}
 305
 306EXPORT_SYMBOL(release_resource);
 307
 308/**
 309 * find_next_iomem_res - Finds the lowest iomem resource that covers part of
 310 *			 [@start..@end].
 311 *
 312 * If a resource is found, returns 0 and @*res is overwritten with the part
 313 * of the resource that's within [@start..@end]; if none is found, returns
 314 * -ENODEV.  Returns -EINVAL for invalid parameters.
 315 *
 316 * @start:	start address of the resource searched for
 317 * @end:	end address of same resource
 318 * @flags:	flags which the resource must have
 319 * @desc:	descriptor the resource must have
 320 * @res:	return ptr, if resource found
 321 *
 322 * The caller must specify @start, @end, @flags, and @desc
 323 * (which may be IORES_DESC_NONE).
 324 */
 325static int find_next_iomem_res(resource_size_t start, resource_size_t end,
 326			       unsigned long flags, unsigned long desc,
 327			       struct resource *res)
 328{
 
 329	struct resource *p;
 
 330
 331	if (!res)
 332		return -EINVAL;
 333
 334	if (start >= end)
 335		return -EINVAL;
 
 
 
 
 336
 337	read_lock(&resource_lock);
 338
 339	for (p = iomem_resource.child; p; p = next_resource(p)) {
 340		/* If we passed the resource we are looking for, stop */
 
 
 
 341		if (p->start > end) {
 342			p = NULL;
 343			break;
 344		}
 345
 346		/* Skip until we find a range that matches what we look for */
 347		if (p->end < start)
 348			continue;
 349
 350		if ((p->flags & flags) != flags)
 351			continue;
 352		if ((desc != IORES_DESC_NONE) && (desc != p->desc))
 353			continue;
 354
 355		/* Found a match, break */
 356		break;
 357	}
 358
 359	if (p) {
 360		/* copy data */
 361		*res = (struct resource) {
 362			.start = max(start, p->start),
 363			.end = min(end, p->end),
 364			.flags = p->flags,
 365			.desc = p->desc,
 366			.parent = p->parent,
 367		};
 368	}
 369
 370	read_unlock(&resource_lock);
 371	return p ? 0 : -ENODEV;
 
 
 
 
 
 
 
 
 
 372}
 373
 374static int __walk_iomem_res_desc(resource_size_t start, resource_size_t end,
 375				 unsigned long flags, unsigned long desc,
 376				 void *arg,
 377				 int (*func)(struct resource *, void *))
 378{
 379	struct resource res;
 380	int ret = -EINVAL;
 381
 382	while (start < end &&
 383	       !find_next_iomem_res(start, end, flags, desc, &res)) {
 384		ret = (*func)(&res, arg);
 385		if (ret)
 386			break;
 387
 388		start = res.end + 1;
 
 389	}
 390
 391	return ret;
 392}
 393
 394/**
 395 * walk_iomem_res_desc - Walks through iomem resources and calls func()
 396 *			 with matching resource ranges.
 397 * *
 
 
 398 * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check.
 399 * @flags: I/O resource flags
 400 * @start: start addr
 401 * @end: end addr
 402 * @arg: function argument for the callback @func
 403 * @func: callback function that is called for each qualifying resource area
 404 *
 405 * All the memory ranges which overlap start,end and also match flags and
 406 * desc are valid candidates.
 407 *
 408 * NOTE: For a new descriptor search, define a new IORES_DESC in
 409 * <linux/ioport.h> and set it in 'desc' of a target resource entry.
 410 */
 411int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start,
 412		u64 end, void *arg, int (*func)(struct resource *, void *))
 413{
 414	return __walk_iomem_res_desc(start, end, flags, desc, arg, func);
 
 
 
 
 
 
 415}
 416EXPORT_SYMBOL_GPL(walk_iomem_res_desc);
 417
 418/*
 419 * This function calls the @func callback against all memory ranges of type
 420 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
 421 * Now, this function is only for System RAM, it deals with full ranges and
 422 * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate
 423 * ranges.
 424 */
 425int walk_system_ram_res(u64 start, u64 end, void *arg,
 426			int (*func)(struct resource *, void *))
 427{
 428	unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 429
 430	return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg,
 431				     func);
 
 
 
 
 432}
 433
 434/*
 435 * This function calls the @func callback against all memory ranges, which
 436 * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY.
 437 */
 438int walk_mem_res(u64 start, u64 end, void *arg,
 439		 int (*func)(struct resource *, void *))
 440{
 441	unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 442
 443	return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg,
 444				     func);
 
 
 
 
 445}
 446
 
 
 447/*
 448 * This function calls the @func callback against all memory ranges of type
 449 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
 450 * It is to be used only for System RAM.
 451 */
 452int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
 453			  void *arg, int (*func)(unsigned long, unsigned long, void *))
 454{
 455	resource_size_t start, end;
 456	unsigned long flags;
 457	struct resource res;
 458	unsigned long pfn, end_pfn;
 459	int ret = -EINVAL;
 
 460
 461	start = (u64) start_pfn << PAGE_SHIFT;
 462	end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
 463	flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 464	while (start < end &&
 465	       !find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res)) {
 466		pfn = PFN_UP(res.start);
 467		end_pfn = PFN_DOWN(res.end + 1);
 
 468		if (end_pfn > pfn)
 469			ret = (*func)(pfn, end_pfn - pfn, arg);
 470		if (ret)
 471			break;
 472		start = res.end + 1;
 
 473	}
 474	return ret;
 475}
 476
 
 
 477static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
 478{
 479	return 1;
 480}
 481
 482/*
 483 * This generic page_is_ram() returns true if specified address is
 484 * registered as System RAM in iomem_resource list.
 485 */
 486int __weak page_is_ram(unsigned long pfn)
 487{
 488	return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
 489}
 490EXPORT_SYMBOL_GPL(page_is_ram);
 491
 492static int __region_intersects(struct resource *parent, resource_size_t start,
 493			       size_t size, unsigned long flags,
 494			       unsigned long desc)
 495{
 496	struct resource res;
 497	int type = 0; int other = 0;
 498	struct resource *p;
 499
 500	res.start = start;
 501	res.end = start + size - 1;
 502
 503	for (p = parent->child; p ; p = p->sibling) {
 504		bool is_type = (((p->flags & flags) == flags) &&
 505				((desc == IORES_DESC_NONE) ||
 506				 (desc == p->desc)));
 507
 508		if (resource_overlaps(p, &res))
 509			is_type ? type++ : other++;
 510	}
 511
 512	if (type == 0)
 513		return REGION_DISJOINT;
 514
 515	if (other == 0)
 516		return REGION_INTERSECTS;
 517
 518	return REGION_MIXED;
 519}
 520
 521/**
 522 * region_intersects() - determine intersection of region with known resources
 523 * @start: region start address
 524 * @size: size of region
 525 * @flags: flags of resource (in iomem_resource)
 526 * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE
 527 *
 528 * Check if the specified region partially overlaps or fully eclipses a
 529 * resource identified by @flags and @desc (optional with IORES_DESC_NONE).
 530 * Return REGION_DISJOINT if the region does not overlap @flags/@desc,
 531 * return REGION_MIXED if the region overlaps @flags/@desc and another
 532 * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc
 533 * and no other defined resource. Note that REGION_INTERSECTS is also
 534 * returned in the case when the specified region overlaps RAM and undefined
 535 * memory holes.
 536 *
 537 * region_intersect() is used by memory remapping functions to ensure
 538 * the user is not remapping RAM and is a vast speed up over walking
 539 * through the resource table page by page.
 540 */
 541int region_intersects(resource_size_t start, size_t size, unsigned long flags,
 542		      unsigned long desc)
 543{
 544	int ret;
 
 
 545
 546	read_lock(&resource_lock);
 547	ret = __region_intersects(&iomem_resource, start, size, flags, desc);
 
 
 
 
 
 
 
 
 
 
 
 548	read_unlock(&resource_lock);
 549
 550	return ret;
 
 
 
 
 
 
 551}
 552EXPORT_SYMBOL_GPL(region_intersects);
 553
 554void __weak arch_remove_reservations(struct resource *avail)
 555{
 556}
 557
 558static resource_size_t simple_align_resource(void *data,
 559					     const struct resource *avail,
 560					     resource_size_t size,
 561					     resource_size_t align)
 562{
 563	return avail->start;
 564}
 565
 566static void resource_clip(struct resource *res, resource_size_t min,
 567			  resource_size_t max)
 568{
 569	if (res->start < min)
 570		res->start = min;
 571	if (res->end > max)
 572		res->end = max;
 573}
 574
 575/*
 576 * Find empty slot in the resource tree with the given range and
 577 * alignment constraints
 578 */
 579static int __find_resource(struct resource *root, struct resource *old,
 580			 struct resource *new,
 581			 resource_size_t  size,
 582			 struct resource_constraint *constraint)
 583{
 584	struct resource *this = root->child;
 585	struct resource tmp = *new, avail, alloc;
 586
 587	tmp.start = root->start;
 588	/*
 589	 * Skip past an allocated resource that starts at 0, since the assignment
 590	 * of this->start - 1 to tmp->end below would cause an underflow.
 591	 */
 592	if (this && this->start == root->start) {
 593		tmp.start = (this == old) ? old->start : this->end + 1;
 594		this = this->sibling;
 595	}
 596	for(;;) {
 597		if (this)
 598			tmp.end = (this == old) ?  this->end : this->start - 1;
 599		else
 600			tmp.end = root->end;
 601
 602		if (tmp.end < tmp.start)
 603			goto next;
 604
 605		resource_clip(&tmp, constraint->min, constraint->max);
 606		arch_remove_reservations(&tmp);
 607
 608		/* Check for overflow after ALIGN() */
 609		avail.start = ALIGN(tmp.start, constraint->align);
 610		avail.end = tmp.end;
 611		avail.flags = new->flags & ~IORESOURCE_UNSET;
 612		if (avail.start >= tmp.start) {
 613			alloc.flags = avail.flags;
 614			alloc.start = constraint->alignf(constraint->alignf_data, &avail,
 615					size, constraint->align);
 616			alloc.end = alloc.start + size - 1;
 617			if (alloc.start <= alloc.end &&
 618			    resource_contains(&avail, &alloc)) {
 619				new->start = alloc.start;
 620				new->end = alloc.end;
 621				return 0;
 622			}
 623		}
 624
 625next:		if (!this || this->end == root->end)
 626			break;
 627
 628		if (this != old)
 629			tmp.start = this->end + 1;
 630		this = this->sibling;
 631	}
 632	return -EBUSY;
 633}
 634
 635/*
 636 * Find empty slot in the resource tree given range and alignment.
 637 */
 638static int find_resource(struct resource *root, struct resource *new,
 639			resource_size_t size,
 640			struct resource_constraint  *constraint)
 641{
 642	return  __find_resource(root, NULL, new, size, constraint);
 643}
 644
 645/**
 646 * reallocate_resource - allocate a slot in the resource tree given range & alignment.
 647 *	The resource will be relocated if the new size cannot be reallocated in the
 648 *	current location.
 649 *
 650 * @root: root resource descriptor
 651 * @old:  resource descriptor desired by caller
 652 * @newsize: new size of the resource descriptor
 653 * @constraint: the size and alignment constraints to be met.
 654 */
 655static int reallocate_resource(struct resource *root, struct resource *old,
 656			       resource_size_t newsize,
 657			       struct resource_constraint *constraint)
 658{
 659	int err=0;
 660	struct resource new = *old;
 661	struct resource *conflict;
 662
 663	write_lock(&resource_lock);
 664
 665	if ((err = __find_resource(root, old, &new, newsize, constraint)))
 666		goto out;
 667
 668	if (resource_contains(&new, old)) {
 669		old->start = new.start;
 670		old->end = new.end;
 671		goto out;
 672	}
 673
 674	if (old->child) {
 675		err = -EBUSY;
 676		goto out;
 677	}
 678
 679	if (resource_contains(old, &new)) {
 680		old->start = new.start;
 681		old->end = new.end;
 682	} else {
 683		__release_resource(old, true);
 684		*old = new;
 685		conflict = __request_resource(root, old);
 686		BUG_ON(conflict);
 687	}
 688out:
 689	write_unlock(&resource_lock);
 690	return err;
 691}
 692
 693
 694/**
 695 * allocate_resource - allocate empty slot in the resource tree given range & alignment.
 696 * 	The resource will be reallocated with a new size if it was already allocated
 697 * @root: root resource descriptor
 698 * @new: resource descriptor desired by caller
 699 * @size: requested resource region size
 700 * @min: minimum boundary to allocate
 701 * @max: maximum boundary to allocate
 702 * @align: alignment requested, in bytes
 703 * @alignf: alignment function, optional, called if not NULL
 704 * @alignf_data: arbitrary data to pass to the @alignf function
 705 */
 706int allocate_resource(struct resource *root, struct resource *new,
 707		      resource_size_t size, resource_size_t min,
 708		      resource_size_t max, resource_size_t align,
 709		      resource_size_t (*alignf)(void *,
 710						const struct resource *,
 711						resource_size_t,
 712						resource_size_t),
 713		      void *alignf_data)
 714{
 715	int err;
 716	struct resource_constraint constraint;
 717
 718	if (!alignf)
 719		alignf = simple_align_resource;
 720
 721	constraint.min = min;
 722	constraint.max = max;
 723	constraint.align = align;
 724	constraint.alignf = alignf;
 725	constraint.alignf_data = alignf_data;
 726
 727	if ( new->parent ) {
 728		/* resource is already allocated, try reallocating with
 729		   the new constraints */
 730		return reallocate_resource(root, new, size, &constraint);
 731	}
 732
 733	write_lock(&resource_lock);
 734	err = find_resource(root, new, size, &constraint);
 735	if (err >= 0 && __request_resource(root, new))
 736		err = -EBUSY;
 737	write_unlock(&resource_lock);
 738	return err;
 739}
 740
 741EXPORT_SYMBOL(allocate_resource);
 742
 743/**
 744 * lookup_resource - find an existing resource by a resource start address
 745 * @root: root resource descriptor
 746 * @start: resource start address
 747 *
 748 * Returns a pointer to the resource if found, NULL otherwise
 749 */
 750struct resource *lookup_resource(struct resource *root, resource_size_t start)
 751{
 752	struct resource *res;
 753
 754	read_lock(&resource_lock);
 755	for (res = root->child; res; res = res->sibling) {
 756		if (res->start == start)
 757			break;
 758	}
 759	read_unlock(&resource_lock);
 760
 761	return res;
 762}
 763
 764/*
 765 * Insert a resource into the resource tree. If successful, return NULL,
 766 * otherwise return the conflicting resource (compare to __request_resource())
 767 */
 768static struct resource * __insert_resource(struct resource *parent, struct resource *new)
 769{
 770	struct resource *first, *next;
 771
 772	for (;; parent = first) {
 773		first = __request_resource(parent, new);
 774		if (!first)
 775			return first;
 776
 777		if (first == parent)
 778			return first;
 779		if (WARN_ON(first == new))	/* duplicated insertion */
 780			return first;
 781
 782		if ((first->start > new->start) || (first->end < new->end))
 783			break;
 784		if ((first->start == new->start) && (first->end == new->end))
 785			break;
 786	}
 787
 788	for (next = first; ; next = next->sibling) {
 789		/* Partial overlap? Bad, and unfixable */
 790		if (next->start < new->start || next->end > new->end)
 791			return next;
 792		if (!next->sibling)
 793			break;
 794		if (next->sibling->start > new->end)
 795			break;
 796	}
 797
 798	new->parent = parent;
 799	new->sibling = next->sibling;
 800	new->child = first;
 801
 802	next->sibling = NULL;
 803	for (next = first; next; next = next->sibling)
 804		next->parent = new;
 805
 806	if (parent->child == first) {
 807		parent->child = new;
 808	} else {
 809		next = parent->child;
 810		while (next->sibling != first)
 811			next = next->sibling;
 812		next->sibling = new;
 813	}
 814	return NULL;
 815}
 816
 817/**
 818 * insert_resource_conflict - Inserts resource in the resource tree
 819 * @parent: parent of the new resource
 820 * @new: new resource to insert
 821 *
 822 * Returns 0 on success, conflict resource if the resource can't be inserted.
 823 *
 824 * This function is equivalent to request_resource_conflict when no conflict
 825 * happens. If a conflict happens, and the conflicting resources
 826 * entirely fit within the range of the new resource, then the new
 827 * resource is inserted and the conflicting resources become children of
 828 * the new resource.
 829 *
 830 * This function is intended for producers of resources, such as FW modules
 831 * and bus drivers.
 832 */
 833struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
 834{
 835	struct resource *conflict;
 836
 837	write_lock(&resource_lock);
 838	conflict = __insert_resource(parent, new);
 839	write_unlock(&resource_lock);
 840	return conflict;
 841}
 842
 843/**
 844 * insert_resource - Inserts a resource in the resource tree
 845 * @parent: parent of the new resource
 846 * @new: new resource to insert
 847 *
 848 * Returns 0 on success, -EBUSY if the resource can't be inserted.
 849 *
 850 * This function is intended for producers of resources, such as FW modules
 851 * and bus drivers.
 852 */
 853int insert_resource(struct resource *parent, struct resource *new)
 854{
 855	struct resource *conflict;
 856
 857	conflict = insert_resource_conflict(parent, new);
 858	return conflict ? -EBUSY : 0;
 859}
 860EXPORT_SYMBOL_GPL(insert_resource);
 861
 862/**
 863 * insert_resource_expand_to_fit - Insert a resource into the resource tree
 864 * @root: root resource descriptor
 865 * @new: new resource to insert
 866 *
 867 * Insert a resource into the resource tree, possibly expanding it in order
 868 * to make it encompass any conflicting resources.
 869 */
 870void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
 871{
 872	if (new->parent)
 873		return;
 874
 875	write_lock(&resource_lock);
 876	for (;;) {
 877		struct resource *conflict;
 878
 879		conflict = __insert_resource(root, new);
 880		if (!conflict)
 881			break;
 882		if (conflict == root)
 883			break;
 884
 885		/* Ok, expand resource to cover the conflict, then try again .. */
 886		if (conflict->start < new->start)
 887			new->start = conflict->start;
 888		if (conflict->end > new->end)
 889			new->end = conflict->end;
 890
 891		pr_info("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
 892	}
 893	write_unlock(&resource_lock);
 894}
 895/*
 896 * Not for general consumption, only early boot memory map parsing, PCI
 897 * resource discovery, and late discovery of CXL resources are expected
 898 * to use this interface. The former are built-in and only the latter,
 899 * CXL, is a module.
 900 */
 901EXPORT_SYMBOL_NS_GPL(insert_resource_expand_to_fit, CXL);
 902
 903/**
 904 * remove_resource - Remove a resource in the resource tree
 905 * @old: resource to remove
 906 *
 907 * Returns 0 on success, -EINVAL if the resource is not valid.
 908 *
 909 * This function removes a resource previously inserted by insert_resource()
 910 * or insert_resource_conflict(), and moves the children (if any) up to
 911 * where they were before.  insert_resource() and insert_resource_conflict()
 912 * insert a new resource, and move any conflicting resources down to the
 913 * children of the new resource.
 914 *
 915 * insert_resource(), insert_resource_conflict() and remove_resource() are
 916 * intended for producers of resources, such as FW modules and bus drivers.
 917 */
 918int remove_resource(struct resource *old)
 919{
 920	int retval;
 921
 922	write_lock(&resource_lock);
 923	retval = __release_resource(old, false);
 924	write_unlock(&resource_lock);
 925	return retval;
 926}
 927EXPORT_SYMBOL_GPL(remove_resource);
 928
 929static int __adjust_resource(struct resource *res, resource_size_t start,
 930				resource_size_t size)
 931{
 932	struct resource *tmp, *parent = res->parent;
 933	resource_size_t end = start + size - 1;
 934	int result = -EBUSY;
 935
 936	if (!parent)
 937		goto skip;
 938
 939	if ((start < parent->start) || (end > parent->end))
 940		goto out;
 941
 942	if (res->sibling && (res->sibling->start <= end))
 943		goto out;
 944
 945	tmp = parent->child;
 946	if (tmp != res) {
 947		while (tmp->sibling != res)
 948			tmp = tmp->sibling;
 949		if (start <= tmp->end)
 950			goto out;
 951	}
 952
 953skip:
 954	for (tmp = res->child; tmp; tmp = tmp->sibling)
 955		if ((tmp->start < start) || (tmp->end > end))
 956			goto out;
 957
 958	res->start = start;
 959	res->end = end;
 960	result = 0;
 961
 962 out:
 963	return result;
 964}
 965
 966/**
 967 * adjust_resource - modify a resource's start and size
 968 * @res: resource to modify
 969 * @start: new start value
 970 * @size: new size
 971 *
 972 * Given an existing resource, change its start and size to match the
 973 * arguments.  Returns 0 on success, -EBUSY if it can't fit.
 974 * Existing children of the resource are assumed to be immutable.
 975 */
 976int adjust_resource(struct resource *res, resource_size_t start,
 977		    resource_size_t size)
 978{
 979	int result;
 980
 981	write_lock(&resource_lock);
 982	result = __adjust_resource(res, start, size);
 983	write_unlock(&resource_lock);
 984	return result;
 985}
 986EXPORT_SYMBOL(adjust_resource);
 987
 988static void __init
 989__reserve_region_with_split(struct resource *root, resource_size_t start,
 990			    resource_size_t end, const char *name)
 991{
 992	struct resource *parent = root;
 993	struct resource *conflict;
 994	struct resource *res = alloc_resource(GFP_ATOMIC);
 995	struct resource *next_res = NULL;
 996	int type = resource_type(root);
 997
 998	if (!res)
 999		return;
1000
1001	res->name = name;
1002	res->start = start;
1003	res->end = end;
1004	res->flags = type | IORESOURCE_BUSY;
1005	res->desc = IORES_DESC_NONE;
1006
1007	while (1) {
1008
1009		conflict = __request_resource(parent, res);
1010		if (!conflict) {
1011			if (!next_res)
1012				break;
1013			res = next_res;
1014			next_res = NULL;
1015			continue;
1016		}
1017
1018		/* conflict covered whole area */
1019		if (conflict->start <= res->start &&
1020				conflict->end >= res->end) {
1021			free_resource(res);
1022			WARN_ON(next_res);
1023			break;
1024		}
1025
1026		/* failed, split and try again */
1027		if (conflict->start > res->start) {
1028			end = res->end;
1029			res->end = conflict->start - 1;
1030			if (conflict->end < end) {
1031				next_res = alloc_resource(GFP_ATOMIC);
1032				if (!next_res) {
1033					free_resource(res);
1034					break;
1035				}
1036				next_res->name = name;
1037				next_res->start = conflict->end + 1;
1038				next_res->end = end;
1039				next_res->flags = type | IORESOURCE_BUSY;
1040				next_res->desc = IORES_DESC_NONE;
1041			}
1042		} else {
1043			res->start = conflict->end + 1;
1044		}
1045	}
1046
1047}
1048
1049void __init
1050reserve_region_with_split(struct resource *root, resource_size_t start,
1051			  resource_size_t end, const char *name)
1052{
1053	int abort = 0;
1054
1055	write_lock(&resource_lock);
1056	if (root->start > start || root->end < end) {
1057		pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
1058		       (unsigned long long)start, (unsigned long long)end,
1059		       root);
1060		if (start > root->end || end < root->start)
1061			abort = 1;
1062		else {
1063			if (end > root->end)
1064				end = root->end;
1065			if (start < root->start)
1066				start = root->start;
1067			pr_err("fixing request to [0x%llx-0x%llx]\n",
1068			       (unsigned long long)start,
1069			       (unsigned long long)end);
1070		}
1071		dump_stack();
1072	}
1073	if (!abort)
1074		__reserve_region_with_split(root, start, end, name);
1075	write_unlock(&resource_lock);
1076}
1077
1078/**
1079 * resource_alignment - calculate resource's alignment
1080 * @res: resource pointer
1081 *
1082 * Returns alignment on success, 0 (invalid alignment) on failure.
1083 */
1084resource_size_t resource_alignment(struct resource *res)
1085{
1086	switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
1087	case IORESOURCE_SIZEALIGN:
1088		return resource_size(res);
1089	case IORESOURCE_STARTALIGN:
1090		return res->start;
1091	default:
1092		return 0;
1093	}
1094}
1095
1096/*
1097 * This is compatibility stuff for IO resources.
1098 *
1099 * Note how this, unlike the above, knows about
1100 * the IO flag meanings (busy etc).
1101 *
1102 * request_region creates a new busy region.
1103 *
1104 * release_region releases a matching busy region.
1105 */
1106
1107static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1108
1109static struct inode *iomem_inode;
1110
1111#ifdef CONFIG_IO_STRICT_DEVMEM
1112static void revoke_iomem(struct resource *res)
1113{
1114	/* pairs with smp_store_release() in iomem_init_inode() */
1115	struct inode *inode = smp_load_acquire(&iomem_inode);
1116
1117	/*
1118	 * Check that the initialization has completed. Losing the race
1119	 * is ok because it means drivers are claiming resources before
1120	 * the fs_initcall level of init and prevent iomem_get_mapping users
1121	 * from establishing mappings.
1122	 */
1123	if (!inode)
1124		return;
1125
1126	/*
1127	 * The expectation is that the driver has successfully marked
1128	 * the resource busy by this point, so devmem_is_allowed()
1129	 * should start returning false, however for performance this
1130	 * does not iterate the entire resource range.
1131	 */
1132	if (devmem_is_allowed(PHYS_PFN(res->start)) &&
1133	    devmem_is_allowed(PHYS_PFN(res->end))) {
1134		/*
1135		 * *cringe* iomem=relaxed says "go ahead, what's the
1136		 * worst that can happen?"
1137		 */
1138		return;
1139	}
1140
1141	unmap_mapping_range(inode->i_mapping, res->start, resource_size(res), 1);
1142}
1143#else
1144static void revoke_iomem(struct resource *res) {}
1145#endif
1146
1147struct address_space *iomem_get_mapping(void)
1148{
1149	/*
1150	 * This function is only called from file open paths, hence guaranteed
1151	 * that fs_initcalls have completed and no need to check for NULL. But
1152	 * since revoke_iomem can be called before the initcall we still need
1153	 * the barrier to appease checkers.
1154	 */
1155	return smp_load_acquire(&iomem_inode)->i_mapping;
1156}
1157
1158static int __request_region_locked(struct resource *res, struct resource *parent,
1159				   resource_size_t start, resource_size_t n,
1160				   const char *name, int flags)
1161{
1162	DECLARE_WAITQUEUE(wait, current);
 
 
 
 
1163
1164	res->name = name;
1165	res->start = start;
1166	res->end = start + n - 1;
1167
 
 
1168	for (;;) {
1169		struct resource *conflict;
1170
1171		res->flags = resource_type(parent) | resource_ext_type(parent);
1172		res->flags |= IORESOURCE_BUSY | flags;
1173		res->desc = parent->desc;
1174
1175		conflict = __request_resource(parent, res);
1176		if (!conflict)
1177			break;
1178		/*
1179		 * mm/hmm.c reserves physical addresses which then
1180		 * become unavailable to other users.  Conflicts are
1181		 * not expected.  Warn to aid debugging if encountered.
1182		 */
1183		if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) {
1184			pr_warn("Unaddressable device %s %pR conflicts with %pR",
1185				conflict->name, conflict, res);
1186		}
1187		if (conflict != parent) {
1188			if (!(conflict->flags & IORESOURCE_BUSY)) {
1189				parent = conflict;
1190				continue;
1191			}
1192		}
1193		if (conflict->flags & flags & IORESOURCE_MUXED) {
1194			add_wait_queue(&muxed_resource_wait, &wait);
1195			write_unlock(&resource_lock);
1196			set_current_state(TASK_UNINTERRUPTIBLE);
1197			schedule();
1198			remove_wait_queue(&muxed_resource_wait, &wait);
1199			write_lock(&resource_lock);
1200			continue;
1201		}
1202		/* Uhhuh, that didn't work out.. */
1203		return -EBUSY;
1204	}
1205
1206	return 0;
1207}
1208
1209/**
1210 * __request_region - create a new busy resource region
1211 * @parent: parent resource descriptor
1212 * @start: resource start address
1213 * @n: resource region size
1214 * @name: reserving caller's ID string
1215 * @flags: IO resource flags
1216 */
1217struct resource *__request_region(struct resource *parent,
1218				  resource_size_t start, resource_size_t n,
1219				  const char *name, int flags)
1220{
1221	struct resource *res = alloc_resource(GFP_KERNEL);
1222	int ret;
1223
1224	if (!res)
1225		return NULL;
1226
1227	write_lock(&resource_lock);
1228	ret = __request_region_locked(res, parent, start, n, name, flags);
1229	write_unlock(&resource_lock);
1230
1231	if (ret) {
1232		free_resource(res);
1233		return NULL;
 
1234	}
1235
1236	if (parent == &iomem_resource)
1237		revoke_iomem(res);
1238
1239	return res;
1240}
1241EXPORT_SYMBOL(__request_region);
1242
1243/**
1244 * __release_region - release a previously reserved resource region
1245 * @parent: parent resource descriptor
1246 * @start: resource start address
1247 * @n: resource region size
1248 *
1249 * The described resource region must match a currently busy region.
1250 */
1251void __release_region(struct resource *parent, resource_size_t start,
1252		      resource_size_t n)
1253{
1254	struct resource **p;
1255	resource_size_t end;
1256
1257	p = &parent->child;
1258	end = start + n - 1;
1259
1260	write_lock(&resource_lock);
1261
1262	for (;;) {
1263		struct resource *res = *p;
1264
1265		if (!res)
1266			break;
1267		if (res->start <= start && res->end >= end) {
1268			if (!(res->flags & IORESOURCE_BUSY)) {
1269				p = &res->child;
1270				continue;
1271			}
1272			if (res->start != start || res->end != end)
1273				break;
1274			*p = res->sibling;
1275			write_unlock(&resource_lock);
1276			if (res->flags & IORESOURCE_MUXED)
1277				wake_up(&muxed_resource_wait);
1278			free_resource(res);
1279			return;
1280		}
1281		p = &res->sibling;
1282	}
1283
1284	write_unlock(&resource_lock);
1285
1286	pr_warn("Trying to free nonexistent resource <%pa-%pa>\n", &start, &end);
 
 
1287}
1288EXPORT_SYMBOL(__release_region);
1289
1290#ifdef CONFIG_MEMORY_HOTREMOVE
1291/**
1292 * release_mem_region_adjustable - release a previously reserved memory region
 
1293 * @start: resource start address
1294 * @size: resource region size
1295 *
1296 * This interface is intended for memory hot-delete.  The requested region
1297 * is released from a currently busy memory resource.  The requested region
1298 * must either match exactly or fit into a single busy resource entry.  In
1299 * the latter case, the remaining resource is adjusted accordingly.
1300 * Existing children of the busy memory resource must be immutable in the
1301 * request.
1302 *
1303 * Note:
1304 * - Additional release conditions, such as overlapping region, can be
1305 *   supported after they are confirmed as valid cases.
1306 * - When a busy memory resource gets split into two entries, the code
1307 *   assumes that all children remain in the lower address entry for
1308 *   simplicity.  Enhance this logic when necessary.
1309 */
1310void release_mem_region_adjustable(resource_size_t start, resource_size_t size)
 
1311{
1312	struct resource *parent = &iomem_resource;
1313	struct resource *new_res = NULL;
1314	bool alloc_nofail = false;
1315	struct resource **p;
1316	struct resource *res;
 
1317	resource_size_t end;
 
1318
1319	end = start + size - 1;
1320	if (WARN_ON_ONCE((start < parent->start) || (end > parent->end)))
1321		return;
1322
1323	/*
1324	 * We free up quite a lot of memory on memory hotunplug (esp., memap),
1325	 * just before releasing the region. This is highly unlikely to
1326	 * fail - let's play save and make it never fail as the caller cannot
1327	 * perform any error handling (e.g., trying to re-add memory will fail
1328	 * similarly).
1329	 */
1330retry:
1331	new_res = alloc_resource(GFP_KERNEL | (alloc_nofail ? __GFP_NOFAIL : 0));
1332
1333	p = &parent->child;
1334	write_lock(&resource_lock);
1335
1336	while ((res = *p)) {
1337		if (res->start >= end)
1338			break;
1339
1340		/* look for the next resource if it does not fit into */
1341		if (res->start > start || res->end < end) {
1342			p = &res->sibling;
1343			continue;
1344		}
1345
1346		/*
1347		 * All memory regions added from memory-hotplug path have the
1348		 * flag IORESOURCE_SYSTEM_RAM. If the resource does not have
1349		 * this flag, we know that we are dealing with a resource coming
1350		 * from HMM/devm. HMM/devm use another mechanism to add/release
1351		 * a resource. This goes via devm_request_mem_region and
1352		 * devm_release_mem_region.
1353		 * HMM/devm take care to release their resources when they want,
1354		 * so if we are dealing with them, let us just back off here.
1355		 */
1356		if (!(res->flags & IORESOURCE_SYSRAM)) {
1357			break;
1358		}
1359
1360		if (!(res->flags & IORESOURCE_MEM))
1361			break;
1362
1363		if (!(res->flags & IORESOURCE_BUSY)) {
1364			p = &res->child;
1365			continue;
1366		}
1367
1368		/* found the target resource; let's adjust accordingly */
1369		if (res->start == start && res->end == end) {
1370			/* free the whole entry */
1371			*p = res->sibling;
1372			free_resource(res);
 
1373		} else if (res->start == start && res->end != end) {
1374			/* adjust the start */
1375			WARN_ON_ONCE(__adjust_resource(res, end + 1,
1376						       res->end - end));
1377		} else if (res->start != start && res->end == end) {
1378			/* adjust the end */
1379			WARN_ON_ONCE(__adjust_resource(res, res->start,
1380						       start - res->start));
1381		} else {
1382			/* split into two entries - we need a new resource */
1383			if (!new_res) {
1384				new_res = alloc_resource(GFP_ATOMIC);
1385				if (!new_res) {
1386					alloc_nofail = true;
1387					write_unlock(&resource_lock);
1388					goto retry;
1389				}
1390			}
1391			new_res->name = res->name;
1392			new_res->start = end + 1;
1393			new_res->end = res->end;
1394			new_res->flags = res->flags;
1395			new_res->desc = res->desc;
1396			new_res->parent = res->parent;
1397			new_res->sibling = res->sibling;
1398			new_res->child = NULL;
1399
1400			if (WARN_ON_ONCE(__adjust_resource(res, res->start,
1401							   start - res->start)))
 
1402				break;
1403			res->sibling = new_res;
1404			new_res = NULL;
1405		}
1406
1407		break;
1408	}
1409
1410	write_unlock(&resource_lock);
1411	free_resource(new_res);
 
1412}
1413#endif	/* CONFIG_MEMORY_HOTREMOVE */
1414
1415#ifdef CONFIG_MEMORY_HOTPLUG
1416static bool system_ram_resources_mergeable(struct resource *r1,
1417					   struct resource *r2)
1418{
1419	/* We assume either r1 or r2 is IORESOURCE_SYSRAM_MERGEABLE. */
1420	return r1->flags == r2->flags && r1->end + 1 == r2->start &&
1421	       r1->name == r2->name && r1->desc == r2->desc &&
1422	       !r1->child && !r2->child;
1423}
1424
1425/**
1426 * merge_system_ram_resource - mark the System RAM resource mergeable and try to
1427 *	merge it with adjacent, mergeable resources
1428 * @res: resource descriptor
1429 *
1430 * This interface is intended for memory hotplug, whereby lots of contiguous
1431 * system ram resources are added (e.g., via add_memory*()) by a driver, and
1432 * the actual resource boundaries are not of interest (e.g., it might be
1433 * relevant for DIMMs). Only resources that are marked mergeable, that have the
1434 * same parent, and that don't have any children are considered. All mergeable
1435 * resources must be immutable during the request.
1436 *
1437 * Note:
1438 * - The caller has to make sure that no pointers to resources that are
1439 *   marked mergeable are used anymore after this call - the resource might
1440 *   be freed and the pointer might be stale!
1441 * - release_mem_region_adjustable() will split on demand on memory hotunplug
1442 */
1443void merge_system_ram_resource(struct resource *res)
1444{
1445	const unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
1446	struct resource *cur;
1447
1448	if (WARN_ON_ONCE((res->flags & flags) != flags))
1449		return;
1450
1451	write_lock(&resource_lock);
1452	res->flags |= IORESOURCE_SYSRAM_MERGEABLE;
1453
1454	/* Try to merge with next item in the list. */
1455	cur = res->sibling;
1456	if (cur && system_ram_resources_mergeable(res, cur)) {
1457		res->end = cur->end;
1458		res->sibling = cur->sibling;
1459		free_resource(cur);
1460	}
1461
1462	/* Try to merge with previous item in the list. */
1463	cur = res->parent->child;
1464	while (cur && cur->sibling != res)
1465		cur = cur->sibling;
1466	if (cur && system_ram_resources_mergeable(cur, res)) {
1467		cur->end = res->end;
1468		cur->sibling = res->sibling;
1469		free_resource(res);
1470	}
1471	write_unlock(&resource_lock);
1472}
1473#endif	/* CONFIG_MEMORY_HOTPLUG */
1474
1475/*
1476 * Managed region resource
1477 */
1478static void devm_resource_release(struct device *dev, void *ptr)
1479{
1480	struct resource **r = ptr;
1481
1482	release_resource(*r);
1483}
1484
1485/**
1486 * devm_request_resource() - request and reserve an I/O or memory resource
1487 * @dev: device for which to request the resource
1488 * @root: root of the resource tree from which to request the resource
1489 * @new: descriptor of the resource to request
1490 *
1491 * This is a device-managed version of request_resource(). There is usually
1492 * no need to release resources requested by this function explicitly since
1493 * that will be taken care of when the device is unbound from its driver.
1494 * If for some reason the resource needs to be released explicitly, because
1495 * of ordering issues for example, drivers must call devm_release_resource()
1496 * rather than the regular release_resource().
1497 *
1498 * When a conflict is detected between any existing resources and the newly
1499 * requested resource, an error message will be printed.
1500 *
1501 * Returns 0 on success or a negative error code on failure.
1502 */
1503int devm_request_resource(struct device *dev, struct resource *root,
1504			  struct resource *new)
1505{
1506	struct resource *conflict, **ptr;
1507
1508	ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL);
1509	if (!ptr)
1510		return -ENOMEM;
1511
1512	*ptr = new;
1513
1514	conflict = request_resource_conflict(root, new);
1515	if (conflict) {
1516		dev_err(dev, "resource collision: %pR conflicts with %s %pR\n",
1517			new, conflict->name, conflict);
1518		devres_free(ptr);
1519		return -EBUSY;
1520	}
1521
1522	devres_add(dev, ptr);
1523	return 0;
1524}
1525EXPORT_SYMBOL(devm_request_resource);
1526
1527static int devm_resource_match(struct device *dev, void *res, void *data)
1528{
1529	struct resource **ptr = res;
1530
1531	return *ptr == data;
1532}
1533
1534/**
1535 * devm_release_resource() - release a previously requested resource
1536 * @dev: device for which to release the resource
1537 * @new: descriptor of the resource to release
1538 *
1539 * Releases a resource previously requested using devm_request_resource().
1540 */
1541void devm_release_resource(struct device *dev, struct resource *new)
1542{
1543	WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match,
1544			       new));
1545}
1546EXPORT_SYMBOL(devm_release_resource);
1547
1548struct region_devres {
1549	struct resource *parent;
1550	resource_size_t start;
1551	resource_size_t n;
1552};
1553
1554static void devm_region_release(struct device *dev, void *res)
1555{
1556	struct region_devres *this = res;
1557
1558	__release_region(this->parent, this->start, this->n);
1559}
1560
1561static int devm_region_match(struct device *dev, void *res, void *match_data)
1562{
1563	struct region_devres *this = res, *match = match_data;
1564
1565	return this->parent == match->parent &&
1566		this->start == match->start && this->n == match->n;
1567}
1568
1569struct resource *
1570__devm_request_region(struct device *dev, struct resource *parent,
1571		      resource_size_t start, resource_size_t n, const char *name)
1572{
1573	struct region_devres *dr = NULL;
1574	struct resource *res;
1575
1576	dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1577			  GFP_KERNEL);
1578	if (!dr)
1579		return NULL;
1580
1581	dr->parent = parent;
1582	dr->start = start;
1583	dr->n = n;
1584
1585	res = __request_region(parent, start, n, name, 0);
1586	if (res)
1587		devres_add(dev, dr);
1588	else
1589		devres_free(dr);
1590
1591	return res;
1592}
1593EXPORT_SYMBOL(__devm_request_region);
1594
1595void __devm_release_region(struct device *dev, struct resource *parent,
1596			   resource_size_t start, resource_size_t n)
1597{
1598	struct region_devres match_data = { parent, start, n };
1599
1600	__release_region(parent, start, n);
1601	WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1602			       &match_data));
1603}
1604EXPORT_SYMBOL(__devm_release_region);
1605
1606/*
1607 * Reserve I/O ports or memory based on "reserve=" kernel parameter.
1608 */
1609#define MAXRESERVE 4
1610static int __init reserve_setup(char *str)
1611{
1612	static int reserved;
1613	static struct resource reserve[MAXRESERVE];
1614
1615	for (;;) {
1616		unsigned int io_start, io_num;
1617		int x = reserved;
1618		struct resource *parent;
1619
1620		if (get_option(&str, &io_start) != 2)
1621			break;
1622		if (get_option(&str, &io_num) == 0)
1623			break;
1624		if (x < MAXRESERVE) {
1625			struct resource *res = reserve + x;
1626
1627			/*
1628			 * If the region starts below 0x10000, we assume it's
1629			 * I/O port space; otherwise assume it's memory.
1630			 */
1631			if (io_start < 0x10000) {
1632				res->flags = IORESOURCE_IO;
1633				parent = &ioport_resource;
1634			} else {
1635				res->flags = IORESOURCE_MEM;
1636				parent = &iomem_resource;
1637			}
1638			res->name = "reserved";
1639			res->start = io_start;
1640			res->end = io_start + io_num - 1;
1641			res->flags |= IORESOURCE_BUSY;
1642			res->desc = IORES_DESC_NONE;
1643			res->child = NULL;
1644			if (request_resource(parent, res) == 0)
1645				reserved = x+1;
1646		}
1647	}
1648	return 1;
1649}
1650__setup("reserve=", reserve_setup);
1651
1652/*
1653 * Check if the requested addr and size spans more than any slot in the
1654 * iomem resource tree.
1655 */
1656int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1657{
1658	struct resource *p = &iomem_resource;
1659	resource_size_t end = addr + size - 1;
1660	int err = 0;
1661	loff_t l;
1662
1663	read_lock(&resource_lock);
1664	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1665		/*
1666		 * We can probably skip the resources without
1667		 * IORESOURCE_IO attribute?
1668		 */
1669		if (p->start > end)
1670			continue;
1671		if (p->end < addr)
1672			continue;
1673		if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1674		    PFN_DOWN(p->end) >= PFN_DOWN(end))
1675			continue;
1676		/*
1677		 * if a resource is "BUSY", it's not a hardware resource
1678		 * but a driver mapping of such a resource; we don't want
1679		 * to warn for those; some drivers legitimately map only
1680		 * partial hardware resources. (example: vesafb)
1681		 */
1682		if (p->flags & IORESOURCE_BUSY)
1683			continue;
1684
1685		pr_warn("resource sanity check: requesting [mem %pa-%pa], which spans more than %s %pR\n",
1686			&addr, &end, p->name, p);
 
 
1687		err = -1;
1688		break;
1689	}
1690	read_unlock(&resource_lock);
1691
1692	return err;
1693}
1694
1695#ifdef CONFIG_STRICT_DEVMEM
1696static int strict_iomem_checks = 1;
1697#else
1698static int strict_iomem_checks;
1699#endif
1700
1701/*
1702 * Check if an address is exclusive to the kernel and must not be mapped to
1703 * user space, for example, via /dev/mem.
1704 *
1705 * Returns true if exclusive to the kernel, otherwise returns false.
1706 */
1707bool resource_is_exclusive(struct resource *root, u64 addr, resource_size_t size)
1708{
1709	const unsigned int exclusive_system_ram = IORESOURCE_SYSTEM_RAM |
1710						  IORESOURCE_EXCLUSIVE;
1711	bool skip_children = false, err = false;
1712	struct resource *p;
1713
1714	read_lock(&resource_lock);
1715	for_each_resource(root, p, skip_children) {
1716		if (p->start >= addr + size)
1717			break;
1718		if (p->end < addr) {
1719			skip_children = true;
1720			continue;
1721		}
1722		skip_children = false;
1723
 
 
1724		/*
1725		 * IORESOURCE_SYSTEM_RAM resources are exclusive if
1726		 * IORESOURCE_EXCLUSIVE is set, even if they
1727		 * are not busy and even if "iomem=relaxed" is set. The
1728		 * responsible driver dynamically adds/removes system RAM within
1729		 * such an area and uncontrolled access is dangerous.
1730		 */
1731		if ((p->flags & exclusive_system_ram) == exclusive_system_ram) {
1732			err = true;
1733			break;
1734		}
1735
1736		/*
1737		 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set
1738		 * or CONFIG_IO_STRICT_DEVMEM is enabled and the
1739		 * resource is busy.
1740		 */
1741		if (!strict_iomem_checks || !(p->flags & IORESOURCE_BUSY))
1742			continue;
1743		if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM)
1744				|| p->flags & IORESOURCE_EXCLUSIVE) {
1745			err = true;
1746			break;
1747		}
1748	}
1749	read_unlock(&resource_lock);
1750
1751	return err;
1752}
1753
1754bool iomem_is_exclusive(u64 addr)
1755{
1756	return resource_is_exclusive(&iomem_resource, addr & PAGE_MASK,
1757				     PAGE_SIZE);
1758}
1759
1760struct resource_entry *resource_list_create_entry(struct resource *res,
1761						  size_t extra_size)
1762{
1763	struct resource_entry *entry;
1764
1765	entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL);
1766	if (entry) {
1767		INIT_LIST_HEAD(&entry->node);
1768		entry->res = res ? res : &entry->__res;
1769	}
1770
1771	return entry;
1772}
1773EXPORT_SYMBOL(resource_list_create_entry);
1774
1775void resource_list_free(struct list_head *head)
1776{
1777	struct resource_entry *entry, *tmp;
1778
1779	list_for_each_entry_safe(entry, tmp, head, node)
1780		resource_list_destroy_entry(entry);
1781}
1782EXPORT_SYMBOL(resource_list_free);
1783
1784#ifdef CONFIG_GET_FREE_REGION
1785#define GFR_DESCENDING		(1UL << 0)
1786#define GFR_REQUEST_REGION	(1UL << 1)
1787#define GFR_DEFAULT_ALIGN (1UL << PA_SECTION_SHIFT)
1788
1789static resource_size_t gfr_start(struct resource *base, resource_size_t size,
1790				 resource_size_t align, unsigned long flags)
1791{
1792	if (flags & GFR_DESCENDING) {
1793		resource_size_t end;
1794
1795		end = min_t(resource_size_t, base->end,
1796			    (1ULL << MAX_PHYSMEM_BITS) - 1);
1797		return end - size + 1;
1798	}
1799
1800	return ALIGN(base->start, align);
1801}
1802
1803static bool gfr_continue(struct resource *base, resource_size_t addr,
1804			 resource_size_t size, unsigned long flags)
1805{
1806	if (flags & GFR_DESCENDING)
1807		return addr > size && addr >= base->start;
1808	/*
1809	 * In the ascend case be careful that the last increment by
1810	 * @size did not wrap 0.
1811	 */
1812	return addr > addr - size &&
1813	       addr <= min_t(resource_size_t, base->end,
1814			     (1ULL << MAX_PHYSMEM_BITS) - 1);
1815}
1816
1817static resource_size_t gfr_next(resource_size_t addr, resource_size_t size,
1818				unsigned long flags)
1819{
1820	if (flags & GFR_DESCENDING)
1821		return addr - size;
1822	return addr + size;
1823}
1824
1825static void remove_free_mem_region(void *_res)
1826{
1827	struct resource *res = _res;
1828
1829	if (res->parent)
1830		remove_resource(res);
1831	free_resource(res);
1832}
1833
1834static struct resource *
1835get_free_mem_region(struct device *dev, struct resource *base,
1836		    resource_size_t size, const unsigned long align,
1837		    const char *name, const unsigned long desc,
1838		    const unsigned long flags)
1839{
1840	resource_size_t addr;
1841	struct resource *res;
1842	struct region_devres *dr = NULL;
1843
1844	size = ALIGN(size, align);
1845
1846	res = alloc_resource(GFP_KERNEL);
1847	if (!res)
1848		return ERR_PTR(-ENOMEM);
1849
1850	if (dev && (flags & GFR_REQUEST_REGION)) {
1851		dr = devres_alloc(devm_region_release,
1852				sizeof(struct region_devres), GFP_KERNEL);
1853		if (!dr) {
1854			free_resource(res);
1855			return ERR_PTR(-ENOMEM);
1856		}
1857	} else if (dev) {
1858		if (devm_add_action_or_reset(dev, remove_free_mem_region, res))
1859			return ERR_PTR(-ENOMEM);
1860	}
1861
1862	write_lock(&resource_lock);
1863	for (addr = gfr_start(base, size, align, flags);
1864	     gfr_continue(base, addr, size, flags);
1865	     addr = gfr_next(addr, size, flags)) {
1866		if (__region_intersects(base, addr, size, 0, IORES_DESC_NONE) !=
1867		    REGION_DISJOINT)
1868			continue;
1869
1870		if (flags & GFR_REQUEST_REGION) {
1871			if (__request_region_locked(res, &iomem_resource, addr,
1872						    size, name, 0))
1873				break;
1874
1875			if (dev) {
1876				dr->parent = &iomem_resource;
1877				dr->start = addr;
1878				dr->n = size;
1879				devres_add(dev, dr);
1880			}
1881
1882			res->desc = desc;
1883			write_unlock(&resource_lock);
1884
1885
1886			/*
1887			 * A driver is claiming this region so revoke any
1888			 * mappings.
1889			 */
1890			revoke_iomem(res);
1891		} else {
1892			res->start = addr;
1893			res->end = addr + size - 1;
1894			res->name = name;
1895			res->desc = desc;
1896			res->flags = IORESOURCE_MEM;
1897
1898			/*
1899			 * Only succeed if the resource hosts an exclusive
1900			 * range after the insert
1901			 */
1902			if (__insert_resource(base, res) || res->child)
1903				break;
1904
1905			write_unlock(&resource_lock);
1906		}
1907
1908		return res;
1909	}
1910	write_unlock(&resource_lock);
1911
1912	if (flags & GFR_REQUEST_REGION) {
1913		free_resource(res);
1914		devres_free(dr);
1915	} else if (dev)
1916		devm_release_action(dev, remove_free_mem_region, res);
1917
1918	return ERR_PTR(-ERANGE);
1919}
1920
1921/**
1922 * devm_request_free_mem_region - find free region for device private memory
1923 *
1924 * @dev: device struct to bind the resource to
1925 * @size: size in bytes of the device memory to add
1926 * @base: resource tree to look in
1927 *
1928 * This function tries to find an empty range of physical address big enough to
1929 * contain the new resource, so that it can later be hotplugged as ZONE_DEVICE
1930 * memory, which in turn allocates struct pages.
1931 */
1932struct resource *devm_request_free_mem_region(struct device *dev,
1933		struct resource *base, unsigned long size)
1934{
1935	unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION;
1936
1937	return get_free_mem_region(dev, base, size, GFR_DEFAULT_ALIGN,
1938				   dev_name(dev),
1939				   IORES_DESC_DEVICE_PRIVATE_MEMORY, flags);
1940}
1941EXPORT_SYMBOL_GPL(devm_request_free_mem_region);
1942
1943struct resource *request_free_mem_region(struct resource *base,
1944		unsigned long size, const char *name)
1945{
1946	unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION;
1947
1948	return get_free_mem_region(NULL, base, size, GFR_DEFAULT_ALIGN, name,
1949				   IORES_DESC_DEVICE_PRIVATE_MEMORY, flags);
1950}
1951EXPORT_SYMBOL_GPL(request_free_mem_region);
1952
1953/**
1954 * alloc_free_mem_region - find a free region relative to @base
1955 * @base: resource that will parent the new resource
1956 * @size: size in bytes of memory to allocate from @base
1957 * @align: alignment requirements for the allocation
1958 * @name: resource name
1959 *
1960 * Buses like CXL, that can dynamically instantiate new memory regions,
1961 * need a method to allocate physical address space for those regions.
1962 * Allocate and insert a new resource to cover a free, unclaimed by a
1963 * descendant of @base, range in the span of @base.
1964 */
1965struct resource *alloc_free_mem_region(struct resource *base,
1966				       unsigned long size, unsigned long align,
1967				       const char *name)
1968{
1969	/* Default of ascending direction and insert resource */
1970	unsigned long flags = 0;
1971
1972	return get_free_mem_region(NULL, base, size, align, name,
1973				   IORES_DESC_NONE, flags);
1974}
1975EXPORT_SYMBOL_NS_GPL(alloc_free_mem_region, CXL);
1976#endif /* CONFIG_GET_FREE_REGION */
1977
1978static int __init strict_iomem(char *str)
1979{
1980	if (strstr(str, "relaxed"))
1981		strict_iomem_checks = 0;
1982	if (strstr(str, "strict"))
1983		strict_iomem_checks = 1;
1984	return 1;
1985}
1986
1987static int iomem_fs_init_fs_context(struct fs_context *fc)
1988{
1989	return init_pseudo(fc, DEVMEM_MAGIC) ? 0 : -ENOMEM;
1990}
1991
1992static struct file_system_type iomem_fs_type = {
1993	.name		= "iomem",
1994	.owner		= THIS_MODULE,
1995	.init_fs_context = iomem_fs_init_fs_context,
1996	.kill_sb	= kill_anon_super,
1997};
1998
1999static int __init iomem_init_inode(void)
2000{
2001	static struct vfsmount *iomem_vfs_mount;
2002	static int iomem_fs_cnt;
2003	struct inode *inode;
2004	int rc;
2005
2006	rc = simple_pin_fs(&iomem_fs_type, &iomem_vfs_mount, &iomem_fs_cnt);
2007	if (rc < 0) {
2008		pr_err("Cannot mount iomem pseudo filesystem: %d\n", rc);
2009		return rc;
2010	}
2011
2012	inode = alloc_anon_inode(iomem_vfs_mount->mnt_sb);
2013	if (IS_ERR(inode)) {
2014		rc = PTR_ERR(inode);
2015		pr_err("Cannot allocate inode for iomem: %d\n", rc);
2016		simple_release_fs(&iomem_vfs_mount, &iomem_fs_cnt);
2017		return rc;
2018	}
2019
2020	/*
2021	 * Publish iomem revocation inode initialized.
2022	 * Pairs with smp_load_acquire() in revoke_iomem().
2023	 */
2024	smp_store_release(&iomem_inode, inode);
2025
2026	return 0;
2027}
2028
2029fs_initcall(iomem_init_inode);
2030
2031__setup("iomem=", strict_iomem);
v4.17
 
   1/*
   2 *	linux/kernel/resource.c
   3 *
   4 * Copyright (C) 1999	Linus Torvalds
   5 * Copyright (C) 1999	Martin Mares <mj@ucw.cz>
   6 *
   7 * Arbitrary resource management.
   8 */
   9
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/export.h>
  13#include <linux/errno.h>
  14#include <linux/ioport.h>
  15#include <linux/init.h>
  16#include <linux/slab.h>
  17#include <linux/spinlock.h>
  18#include <linux/fs.h>
  19#include <linux/proc_fs.h>
 
  20#include <linux/sched.h>
  21#include <linux/seq_file.h>
  22#include <linux/device.h>
  23#include <linux/pfn.h>
  24#include <linux/mm.h>
 
  25#include <linux/resource_ext.h>
 
  26#include <asm/io.h>
  27
  28
  29struct resource ioport_resource = {
  30	.name	= "PCI IO",
  31	.start	= 0,
  32	.end	= IO_SPACE_LIMIT,
  33	.flags	= IORESOURCE_IO,
  34};
  35EXPORT_SYMBOL(ioport_resource);
  36
  37struct resource iomem_resource = {
  38	.name	= "PCI mem",
  39	.start	= 0,
  40	.end	= -1,
  41	.flags	= IORESOURCE_MEM,
  42};
  43EXPORT_SYMBOL(iomem_resource);
  44
  45/* constraints to be met while allocating resources */
  46struct resource_constraint {
  47	resource_size_t min, max, align;
  48	resource_size_t (*alignf)(void *, const struct resource *,
  49			resource_size_t, resource_size_t);
  50	void *alignf_data;
  51};
  52
  53static DEFINE_RWLOCK(resource_lock);
  54
  55/*
  56 * For memory hotplug, there is no way to free resource entries allocated
  57 * by boot mem after the system is up. So for reusing the resource entry
  58 * we need to remember the resource.
  59 */
  60static struct resource *bootmem_resource_free;
  61static DEFINE_SPINLOCK(bootmem_resource_lock);
  62
  63static struct resource *next_resource(struct resource *p, bool sibling_only)
  64{
  65	/* Caller wants to traverse through siblings only */
  66	if (sibling_only)
  67		return p->sibling;
  68
  69	if (p->child)
  70		return p->child;
  71	while (!p->sibling && p->parent)
  72		p = p->parent;
  73	return p->sibling;
  74}
  75
 
 
 
 
 
 
 
 
 
 
 
 
  76static void *r_next(struct seq_file *m, void *v, loff_t *pos)
  77{
  78	struct resource *p = v;
  79	(*pos)++;
  80	return (void *)next_resource(p, false);
  81}
  82
  83#ifdef CONFIG_PROC_FS
  84
  85enum { MAX_IORES_LEVEL = 5 };
  86
  87static void *r_start(struct seq_file *m, loff_t *pos)
  88	__acquires(resource_lock)
  89{
  90	struct resource *p = m->private;
  91	loff_t l = 0;
  92	read_lock(&resource_lock);
  93	for (p = p->child; p && l < *pos; p = r_next(m, p, &l))
  94		;
  95	return p;
  96}
  97
  98static void r_stop(struct seq_file *m, void *v)
  99	__releases(resource_lock)
 100{
 101	read_unlock(&resource_lock);
 102}
 103
 104static int r_show(struct seq_file *m, void *v)
 105{
 106	struct resource *root = m->private;
 107	struct resource *r = v, *p;
 108	unsigned long long start, end;
 109	int width = root->end < 0x10000 ? 4 : 8;
 110	int depth;
 111
 112	for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
 113		if (p->parent == root)
 114			break;
 115
 116	if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) {
 117		start = r->start;
 118		end = r->end;
 119	} else {
 120		start = end = 0;
 121	}
 122
 123	seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
 124			depth * 2, "",
 125			width, start,
 126			width, end,
 127			r->name ? r->name : "<BAD>");
 128	return 0;
 129}
 130
 131static const struct seq_operations resource_op = {
 132	.start	= r_start,
 133	.next	= r_next,
 134	.stop	= r_stop,
 135	.show	= r_show,
 136};
 137
 138static int ioports_open(struct inode *inode, struct file *file)
 139{
 140	int res = seq_open(file, &resource_op);
 141	if (!res) {
 142		struct seq_file *m = file->private_data;
 143		m->private = &ioport_resource;
 144	}
 145	return res;
 146}
 147
 148static int iomem_open(struct inode *inode, struct file *file)
 149{
 150	int res = seq_open(file, &resource_op);
 151	if (!res) {
 152		struct seq_file *m = file->private_data;
 153		m->private = &iomem_resource;
 154	}
 155	return res;
 156}
 157
 158static const struct file_operations proc_ioports_operations = {
 159	.open		= ioports_open,
 160	.read		= seq_read,
 161	.llseek		= seq_lseek,
 162	.release	= seq_release,
 163};
 164
 165static const struct file_operations proc_iomem_operations = {
 166	.open		= iomem_open,
 167	.read		= seq_read,
 168	.llseek		= seq_lseek,
 169	.release	= seq_release,
 170};
 171
 172static int __init ioresources_init(void)
 173{
 174	proc_create("ioports", 0, NULL, &proc_ioports_operations);
 175	proc_create("iomem", 0, NULL, &proc_iomem_operations);
 
 176	return 0;
 177}
 178__initcall(ioresources_init);
 179
 180#endif /* CONFIG_PROC_FS */
 181
 182static void free_resource(struct resource *res)
 183{
 184	if (!res)
 185		return;
 186
 187	if (!PageSlab(virt_to_head_page(res))) {
 188		spin_lock(&bootmem_resource_lock);
 189		res->sibling = bootmem_resource_free;
 190		bootmem_resource_free = res;
 191		spin_unlock(&bootmem_resource_lock);
 192	} else {
 193		kfree(res);
 194	}
 195}
 196
 197static struct resource *alloc_resource(gfp_t flags)
 198{
 199	struct resource *res = NULL;
 200
 201	spin_lock(&bootmem_resource_lock);
 202	if (bootmem_resource_free) {
 203		res = bootmem_resource_free;
 204		bootmem_resource_free = res->sibling;
 205	}
 206	spin_unlock(&bootmem_resource_lock);
 207
 208	if (res)
 209		memset(res, 0, sizeof(struct resource));
 210	else
 211		res = kzalloc(sizeof(struct resource), flags);
 212
 213	return res;
 214}
 215
 216/* Return the conflict entry if you can't request it */
 217static struct resource * __request_resource(struct resource *root, struct resource *new)
 218{
 219	resource_size_t start = new->start;
 220	resource_size_t end = new->end;
 221	struct resource *tmp, **p;
 222
 223	if (end < start)
 224		return root;
 225	if (start < root->start)
 226		return root;
 227	if (end > root->end)
 228		return root;
 229	p = &root->child;
 230	for (;;) {
 231		tmp = *p;
 232		if (!tmp || tmp->start > end) {
 233			new->sibling = tmp;
 234			*p = new;
 235			new->parent = root;
 236			return NULL;
 237		}
 238		p = &tmp->sibling;
 239		if (tmp->end < start)
 240			continue;
 241		return tmp;
 242	}
 243}
 244
 245static int __release_resource(struct resource *old, bool release_child)
 246{
 247	struct resource *tmp, **p, *chd;
 248
 249	p = &old->parent->child;
 250	for (;;) {
 251		tmp = *p;
 252		if (!tmp)
 253			break;
 254		if (tmp == old) {
 255			if (release_child || !(tmp->child)) {
 256				*p = tmp->sibling;
 257			} else {
 258				for (chd = tmp->child;; chd = chd->sibling) {
 259					chd->parent = tmp->parent;
 260					if (!(chd->sibling))
 261						break;
 262				}
 263				*p = tmp->child;
 264				chd->sibling = tmp->sibling;
 265			}
 266			old->parent = NULL;
 267			return 0;
 268		}
 269		p = &tmp->sibling;
 270	}
 271	return -EINVAL;
 272}
 273
 274static void __release_child_resources(struct resource *r)
 275{
 276	struct resource *tmp, *p;
 277	resource_size_t size;
 278
 279	p = r->child;
 280	r->child = NULL;
 281	while (p) {
 282		tmp = p;
 283		p = p->sibling;
 284
 285		tmp->parent = NULL;
 286		tmp->sibling = NULL;
 287		__release_child_resources(tmp);
 288
 289		printk(KERN_DEBUG "release child resource %pR\n", tmp);
 290		/* need to restore size, and keep flags */
 291		size = resource_size(tmp);
 292		tmp->start = 0;
 293		tmp->end = size - 1;
 294	}
 295}
 296
 297void release_child_resources(struct resource *r)
 298{
 299	write_lock(&resource_lock);
 300	__release_child_resources(r);
 301	write_unlock(&resource_lock);
 302}
 303
 304/**
 305 * request_resource_conflict - request and reserve an I/O or memory resource
 306 * @root: root resource descriptor
 307 * @new: resource descriptor desired by caller
 308 *
 309 * Returns 0 for success, conflict resource on error.
 310 */
 311struct resource *request_resource_conflict(struct resource *root, struct resource *new)
 312{
 313	struct resource *conflict;
 314
 315	write_lock(&resource_lock);
 316	conflict = __request_resource(root, new);
 317	write_unlock(&resource_lock);
 318	return conflict;
 319}
 320
 321/**
 322 * request_resource - request and reserve an I/O or memory resource
 323 * @root: root resource descriptor
 324 * @new: resource descriptor desired by caller
 325 *
 326 * Returns 0 for success, negative error code on error.
 327 */
 328int request_resource(struct resource *root, struct resource *new)
 329{
 330	struct resource *conflict;
 331
 332	conflict = request_resource_conflict(root, new);
 333	return conflict ? -EBUSY : 0;
 334}
 335
 336EXPORT_SYMBOL(request_resource);
 337
 338/**
 339 * release_resource - release a previously reserved resource
 340 * @old: resource pointer
 341 */
 342int release_resource(struct resource *old)
 343{
 344	int retval;
 345
 346	write_lock(&resource_lock);
 347	retval = __release_resource(old, true);
 348	write_unlock(&resource_lock);
 349	return retval;
 350}
 351
 352EXPORT_SYMBOL(release_resource);
 353
 354/*
 355 * Finds the lowest iomem resource existing within [res->start.res->end).
 356 * The caller must specify res->start, res->end, res->flags, and optionally
 357 * desc.  If found, returns 0, res is overwritten, if not found, returns -1.
 358 * This function walks the whole tree and not just first level children until
 359 * and unless first_level_children_only is true.
 360 */
 361static int find_next_iomem_res(struct resource *res, unsigned long desc,
 362			       bool first_level_children_only)
 
 
 
 
 
 
 
 
 
 
 
 363{
 364	resource_size_t start, end;
 365	struct resource *p;
 366	bool sibling_only = false;
 367
 368	BUG_ON(!res);
 
 369
 370	start = res->start;
 371	end = res->end;
 372	BUG_ON(start >= end);
 373
 374	if (first_level_children_only)
 375		sibling_only = true;
 376
 377	read_lock(&resource_lock);
 378
 379	for (p = iomem_resource.child; p; p = next_resource(p, sibling_only)) {
 380		if ((p->flags & res->flags) != res->flags)
 381			continue;
 382		if ((desc != IORES_DESC_NONE) && (desc != p->desc))
 383			continue;
 384		if (p->start > end) {
 385			p = NULL;
 386			break;
 387		}
 388		if ((p->end >= start) && (p->start < end))
 389			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 390	}
 391
 392	read_unlock(&resource_lock);
 393	if (!p)
 394		return -1;
 395	/* copy data */
 396	if (res->start < p->start)
 397		res->start = p->start;
 398	if (res->end > p->end)
 399		res->end = p->end;
 400	res->flags = p->flags;
 401	res->desc = p->desc;
 402	return 0;
 403}
 404
 405static int __walk_iomem_res_desc(struct resource *res, unsigned long desc,
 406				 bool first_level_children_only,
 407				 void *arg,
 408				 int (*func)(struct resource *, void *))
 409{
 410	u64 orig_end = res->end;
 411	int ret = -1;
 412
 413	while ((res->start < res->end) &&
 414	       !find_next_iomem_res(res, desc, first_level_children_only)) {
 415		ret = (*func)(res, arg);
 416		if (ret)
 417			break;
 418
 419		res->start = res->end + 1;
 420		res->end = orig_end;
 421	}
 422
 423	return ret;
 424}
 425
 426/*
 427 * Walks through iomem resources and calls func() with matching resource
 428 * ranges. This walks through whole tree and not just first level children.
 429 * All the memory ranges which overlap start,end and also match flags and
 430 * desc are valid candidates.
 431 *
 432 * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check.
 433 * @flags: I/O resource flags
 434 * @start: start addr
 435 * @end: end addr
 
 
 
 
 
 436 *
 437 * NOTE: For a new descriptor search, define a new IORES_DESC in
 438 * <linux/ioport.h> and set it in 'desc' of a target resource entry.
 439 */
 440int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start,
 441		u64 end, void *arg, int (*func)(struct resource *, void *))
 442{
 443	struct resource res;
 444
 445	res.start = start;
 446	res.end = end;
 447	res.flags = flags;
 448
 449	return __walk_iomem_res_desc(&res, desc, false, arg, func);
 450}
 
 451
 452/*
 453 * This function calls the @func callback against all memory ranges of type
 454 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
 455 * Now, this function is only for System RAM, it deals with full ranges and
 456 * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate
 457 * ranges.
 458 */
 459int walk_system_ram_res(u64 start, u64 end, void *arg,
 460				int (*func)(struct resource *, void *))
 461{
 462	struct resource res;
 463
 464	res.start = start;
 465	res.end = end;
 466	res.flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 467
 468	return __walk_iomem_res_desc(&res, IORES_DESC_NONE, true,
 469				     arg, func);
 470}
 471
 472/*
 473 * This function calls the @func callback against all memory ranges, which
 474 * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY.
 475 */
 476int walk_mem_res(u64 start, u64 end, void *arg,
 477		 int (*func)(struct resource *, void *))
 478{
 479	struct resource res;
 480
 481	res.start = start;
 482	res.end = end;
 483	res.flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 484
 485	return __walk_iomem_res_desc(&res, IORES_DESC_NONE, true,
 486				     arg, func);
 487}
 488
 489#if !defined(CONFIG_ARCH_HAS_WALK_MEMORY)
 490
 491/*
 492 * This function calls the @func callback against all memory ranges of type
 493 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
 494 * It is to be used only for System RAM.
 495 */
 496int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
 497		void *arg, int (*func)(unsigned long, unsigned long, void *))
 498{
 
 
 499	struct resource res;
 500	unsigned long pfn, end_pfn;
 501	u64 orig_end;
 502	int ret = -1;
 503
 504	res.start = (u64) start_pfn << PAGE_SHIFT;
 505	res.end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
 506	res.flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 507	orig_end = res.end;
 508	while ((res.start < res.end) &&
 509		(find_next_iomem_res(&res, IORES_DESC_NONE, true) >= 0)) {
 510		pfn = (res.start + PAGE_SIZE - 1) >> PAGE_SHIFT;
 511		end_pfn = (res.end + 1) >> PAGE_SHIFT;
 512		if (end_pfn > pfn)
 513			ret = (*func)(pfn, end_pfn - pfn, arg);
 514		if (ret)
 515			break;
 516		res.start = res.end + 1;
 517		res.end = orig_end;
 518	}
 519	return ret;
 520}
 521
 522#endif
 523
 524static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
 525{
 526	return 1;
 527}
 528
 529/*
 530 * This generic page_is_ram() returns true if specified address is
 531 * registered as System RAM in iomem_resource list.
 532 */
 533int __weak page_is_ram(unsigned long pfn)
 534{
 535	return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
 536}
 537EXPORT_SYMBOL_GPL(page_is_ram);
 538
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 539/**
 540 * region_intersects() - determine intersection of region with known resources
 541 * @start: region start address
 542 * @size: size of region
 543 * @flags: flags of resource (in iomem_resource)
 544 * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE
 545 *
 546 * Check if the specified region partially overlaps or fully eclipses a
 547 * resource identified by @flags and @desc (optional with IORES_DESC_NONE).
 548 * Return REGION_DISJOINT if the region does not overlap @flags/@desc,
 549 * return REGION_MIXED if the region overlaps @flags/@desc and another
 550 * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc
 551 * and no other defined resource. Note that REGION_INTERSECTS is also
 552 * returned in the case when the specified region overlaps RAM and undefined
 553 * memory holes.
 554 *
 555 * region_intersect() is used by memory remapping functions to ensure
 556 * the user is not remapping RAM and is a vast speed up over walking
 557 * through the resource table page by page.
 558 */
 559int region_intersects(resource_size_t start, size_t size, unsigned long flags,
 560		      unsigned long desc)
 561{
 562	resource_size_t end = start + size - 1;
 563	int type = 0; int other = 0;
 564	struct resource *p;
 565
 566	read_lock(&resource_lock);
 567	for (p = iomem_resource.child; p ; p = p->sibling) {
 568		bool is_type = (((p->flags & flags) == flags) &&
 569				((desc == IORES_DESC_NONE) ||
 570				 (desc == p->desc)));
 571
 572		if (start >= p->start && start <= p->end)
 573			is_type ? type++ : other++;
 574		if (end >= p->start && end <= p->end)
 575			is_type ? type++ : other++;
 576		if (p->start >= start && p->end <= end)
 577			is_type ? type++ : other++;
 578	}
 579	read_unlock(&resource_lock);
 580
 581	if (other == 0)
 582		return type ? REGION_INTERSECTS : REGION_DISJOINT;
 583
 584	if (type)
 585		return REGION_MIXED;
 586
 587	return REGION_DISJOINT;
 588}
 589EXPORT_SYMBOL_GPL(region_intersects);
 590
 591void __weak arch_remove_reservations(struct resource *avail)
 592{
 593}
 594
 595static resource_size_t simple_align_resource(void *data,
 596					     const struct resource *avail,
 597					     resource_size_t size,
 598					     resource_size_t align)
 599{
 600	return avail->start;
 601}
 602
 603static void resource_clip(struct resource *res, resource_size_t min,
 604			  resource_size_t max)
 605{
 606	if (res->start < min)
 607		res->start = min;
 608	if (res->end > max)
 609		res->end = max;
 610}
 611
 612/*
 613 * Find empty slot in the resource tree with the given range and
 614 * alignment constraints
 615 */
 616static int __find_resource(struct resource *root, struct resource *old,
 617			 struct resource *new,
 618			 resource_size_t  size,
 619			 struct resource_constraint *constraint)
 620{
 621	struct resource *this = root->child;
 622	struct resource tmp = *new, avail, alloc;
 623
 624	tmp.start = root->start;
 625	/*
 626	 * Skip past an allocated resource that starts at 0, since the assignment
 627	 * of this->start - 1 to tmp->end below would cause an underflow.
 628	 */
 629	if (this && this->start == root->start) {
 630		tmp.start = (this == old) ? old->start : this->end + 1;
 631		this = this->sibling;
 632	}
 633	for(;;) {
 634		if (this)
 635			tmp.end = (this == old) ?  this->end : this->start - 1;
 636		else
 637			tmp.end = root->end;
 638
 639		if (tmp.end < tmp.start)
 640			goto next;
 641
 642		resource_clip(&tmp, constraint->min, constraint->max);
 643		arch_remove_reservations(&tmp);
 644
 645		/* Check for overflow after ALIGN() */
 646		avail.start = ALIGN(tmp.start, constraint->align);
 647		avail.end = tmp.end;
 648		avail.flags = new->flags & ~IORESOURCE_UNSET;
 649		if (avail.start >= tmp.start) {
 650			alloc.flags = avail.flags;
 651			alloc.start = constraint->alignf(constraint->alignf_data, &avail,
 652					size, constraint->align);
 653			alloc.end = alloc.start + size - 1;
 654			if (alloc.start <= alloc.end &&
 655			    resource_contains(&avail, &alloc)) {
 656				new->start = alloc.start;
 657				new->end = alloc.end;
 658				return 0;
 659			}
 660		}
 661
 662next:		if (!this || this->end == root->end)
 663			break;
 664
 665		if (this != old)
 666			tmp.start = this->end + 1;
 667		this = this->sibling;
 668	}
 669	return -EBUSY;
 670}
 671
 672/*
 673 * Find empty slot in the resource tree given range and alignment.
 674 */
 675static int find_resource(struct resource *root, struct resource *new,
 676			resource_size_t size,
 677			struct resource_constraint  *constraint)
 678{
 679	return  __find_resource(root, NULL, new, size, constraint);
 680}
 681
 682/**
 683 * reallocate_resource - allocate a slot in the resource tree given range & alignment.
 684 *	The resource will be relocated if the new size cannot be reallocated in the
 685 *	current location.
 686 *
 687 * @root: root resource descriptor
 688 * @old:  resource descriptor desired by caller
 689 * @newsize: new size of the resource descriptor
 690 * @constraint: the size and alignment constraints to be met.
 691 */
 692static int reallocate_resource(struct resource *root, struct resource *old,
 693			resource_size_t newsize,
 694			struct resource_constraint  *constraint)
 695{
 696	int err=0;
 697	struct resource new = *old;
 698	struct resource *conflict;
 699
 700	write_lock(&resource_lock);
 701
 702	if ((err = __find_resource(root, old, &new, newsize, constraint)))
 703		goto out;
 704
 705	if (resource_contains(&new, old)) {
 706		old->start = new.start;
 707		old->end = new.end;
 708		goto out;
 709	}
 710
 711	if (old->child) {
 712		err = -EBUSY;
 713		goto out;
 714	}
 715
 716	if (resource_contains(old, &new)) {
 717		old->start = new.start;
 718		old->end = new.end;
 719	} else {
 720		__release_resource(old, true);
 721		*old = new;
 722		conflict = __request_resource(root, old);
 723		BUG_ON(conflict);
 724	}
 725out:
 726	write_unlock(&resource_lock);
 727	return err;
 728}
 729
 730
 731/**
 732 * allocate_resource - allocate empty slot in the resource tree given range & alignment.
 733 * 	The resource will be reallocated with a new size if it was already allocated
 734 * @root: root resource descriptor
 735 * @new: resource descriptor desired by caller
 736 * @size: requested resource region size
 737 * @min: minimum boundary to allocate
 738 * @max: maximum boundary to allocate
 739 * @align: alignment requested, in bytes
 740 * @alignf: alignment function, optional, called if not NULL
 741 * @alignf_data: arbitrary data to pass to the @alignf function
 742 */
 743int allocate_resource(struct resource *root, struct resource *new,
 744		      resource_size_t size, resource_size_t min,
 745		      resource_size_t max, resource_size_t align,
 746		      resource_size_t (*alignf)(void *,
 747						const struct resource *,
 748						resource_size_t,
 749						resource_size_t),
 750		      void *alignf_data)
 751{
 752	int err;
 753	struct resource_constraint constraint;
 754
 755	if (!alignf)
 756		alignf = simple_align_resource;
 757
 758	constraint.min = min;
 759	constraint.max = max;
 760	constraint.align = align;
 761	constraint.alignf = alignf;
 762	constraint.alignf_data = alignf_data;
 763
 764	if ( new->parent ) {
 765		/* resource is already allocated, try reallocating with
 766		   the new constraints */
 767		return reallocate_resource(root, new, size, &constraint);
 768	}
 769
 770	write_lock(&resource_lock);
 771	err = find_resource(root, new, size, &constraint);
 772	if (err >= 0 && __request_resource(root, new))
 773		err = -EBUSY;
 774	write_unlock(&resource_lock);
 775	return err;
 776}
 777
 778EXPORT_SYMBOL(allocate_resource);
 779
 780/**
 781 * lookup_resource - find an existing resource by a resource start address
 782 * @root: root resource descriptor
 783 * @start: resource start address
 784 *
 785 * Returns a pointer to the resource if found, NULL otherwise
 786 */
 787struct resource *lookup_resource(struct resource *root, resource_size_t start)
 788{
 789	struct resource *res;
 790
 791	read_lock(&resource_lock);
 792	for (res = root->child; res; res = res->sibling) {
 793		if (res->start == start)
 794			break;
 795	}
 796	read_unlock(&resource_lock);
 797
 798	return res;
 799}
 800
 801/*
 802 * Insert a resource into the resource tree. If successful, return NULL,
 803 * otherwise return the conflicting resource (compare to __request_resource())
 804 */
 805static struct resource * __insert_resource(struct resource *parent, struct resource *new)
 806{
 807	struct resource *first, *next;
 808
 809	for (;; parent = first) {
 810		first = __request_resource(parent, new);
 811		if (!first)
 812			return first;
 813
 814		if (first == parent)
 815			return first;
 816		if (WARN_ON(first == new))	/* duplicated insertion */
 817			return first;
 818
 819		if ((first->start > new->start) || (first->end < new->end))
 820			break;
 821		if ((first->start == new->start) && (first->end == new->end))
 822			break;
 823	}
 824
 825	for (next = first; ; next = next->sibling) {
 826		/* Partial overlap? Bad, and unfixable */
 827		if (next->start < new->start || next->end > new->end)
 828			return next;
 829		if (!next->sibling)
 830			break;
 831		if (next->sibling->start > new->end)
 832			break;
 833	}
 834
 835	new->parent = parent;
 836	new->sibling = next->sibling;
 837	new->child = first;
 838
 839	next->sibling = NULL;
 840	for (next = first; next; next = next->sibling)
 841		next->parent = new;
 842
 843	if (parent->child == first) {
 844		parent->child = new;
 845	} else {
 846		next = parent->child;
 847		while (next->sibling != first)
 848			next = next->sibling;
 849		next->sibling = new;
 850	}
 851	return NULL;
 852}
 853
 854/**
 855 * insert_resource_conflict - Inserts resource in the resource tree
 856 * @parent: parent of the new resource
 857 * @new: new resource to insert
 858 *
 859 * Returns 0 on success, conflict resource if the resource can't be inserted.
 860 *
 861 * This function is equivalent to request_resource_conflict when no conflict
 862 * happens. If a conflict happens, and the conflicting resources
 863 * entirely fit within the range of the new resource, then the new
 864 * resource is inserted and the conflicting resources become children of
 865 * the new resource.
 866 *
 867 * This function is intended for producers of resources, such as FW modules
 868 * and bus drivers.
 869 */
 870struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
 871{
 872	struct resource *conflict;
 873
 874	write_lock(&resource_lock);
 875	conflict = __insert_resource(parent, new);
 876	write_unlock(&resource_lock);
 877	return conflict;
 878}
 879
 880/**
 881 * insert_resource - Inserts a resource in the resource tree
 882 * @parent: parent of the new resource
 883 * @new: new resource to insert
 884 *
 885 * Returns 0 on success, -EBUSY if the resource can't be inserted.
 886 *
 887 * This function is intended for producers of resources, such as FW modules
 888 * and bus drivers.
 889 */
 890int insert_resource(struct resource *parent, struct resource *new)
 891{
 892	struct resource *conflict;
 893
 894	conflict = insert_resource_conflict(parent, new);
 895	return conflict ? -EBUSY : 0;
 896}
 897EXPORT_SYMBOL_GPL(insert_resource);
 898
 899/**
 900 * insert_resource_expand_to_fit - Insert a resource into the resource tree
 901 * @root: root resource descriptor
 902 * @new: new resource to insert
 903 *
 904 * Insert a resource into the resource tree, possibly expanding it in order
 905 * to make it encompass any conflicting resources.
 906 */
 907void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
 908{
 909	if (new->parent)
 910		return;
 911
 912	write_lock(&resource_lock);
 913	for (;;) {
 914		struct resource *conflict;
 915
 916		conflict = __insert_resource(root, new);
 917		if (!conflict)
 918			break;
 919		if (conflict == root)
 920			break;
 921
 922		/* Ok, expand resource to cover the conflict, then try again .. */
 923		if (conflict->start < new->start)
 924			new->start = conflict->start;
 925		if (conflict->end > new->end)
 926			new->end = conflict->end;
 927
 928		printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
 929	}
 930	write_unlock(&resource_lock);
 931}
 
 
 
 
 
 
 
 932
 933/**
 934 * remove_resource - Remove a resource in the resource tree
 935 * @old: resource to remove
 936 *
 937 * Returns 0 on success, -EINVAL if the resource is not valid.
 938 *
 939 * This function removes a resource previously inserted by insert_resource()
 940 * or insert_resource_conflict(), and moves the children (if any) up to
 941 * where they were before.  insert_resource() and insert_resource_conflict()
 942 * insert a new resource, and move any conflicting resources down to the
 943 * children of the new resource.
 944 *
 945 * insert_resource(), insert_resource_conflict() and remove_resource() are
 946 * intended for producers of resources, such as FW modules and bus drivers.
 947 */
 948int remove_resource(struct resource *old)
 949{
 950	int retval;
 951
 952	write_lock(&resource_lock);
 953	retval = __release_resource(old, false);
 954	write_unlock(&resource_lock);
 955	return retval;
 956}
 957EXPORT_SYMBOL_GPL(remove_resource);
 958
 959static int __adjust_resource(struct resource *res, resource_size_t start,
 960				resource_size_t size)
 961{
 962	struct resource *tmp, *parent = res->parent;
 963	resource_size_t end = start + size - 1;
 964	int result = -EBUSY;
 965
 966	if (!parent)
 967		goto skip;
 968
 969	if ((start < parent->start) || (end > parent->end))
 970		goto out;
 971
 972	if (res->sibling && (res->sibling->start <= end))
 973		goto out;
 974
 975	tmp = parent->child;
 976	if (tmp != res) {
 977		while (tmp->sibling != res)
 978			tmp = tmp->sibling;
 979		if (start <= tmp->end)
 980			goto out;
 981	}
 982
 983skip:
 984	for (tmp = res->child; tmp; tmp = tmp->sibling)
 985		if ((tmp->start < start) || (tmp->end > end))
 986			goto out;
 987
 988	res->start = start;
 989	res->end = end;
 990	result = 0;
 991
 992 out:
 993	return result;
 994}
 995
 996/**
 997 * adjust_resource - modify a resource's start and size
 998 * @res: resource to modify
 999 * @start: new start value
1000 * @size: new size
1001 *
1002 * Given an existing resource, change its start and size to match the
1003 * arguments.  Returns 0 on success, -EBUSY if it can't fit.
1004 * Existing children of the resource are assumed to be immutable.
1005 */
1006int adjust_resource(struct resource *res, resource_size_t start,
1007			resource_size_t size)
1008{
1009	int result;
1010
1011	write_lock(&resource_lock);
1012	result = __adjust_resource(res, start, size);
1013	write_unlock(&resource_lock);
1014	return result;
1015}
1016EXPORT_SYMBOL(adjust_resource);
1017
1018static void __init __reserve_region_with_split(struct resource *root,
1019		resource_size_t start, resource_size_t end,
1020		const char *name)
1021{
1022	struct resource *parent = root;
1023	struct resource *conflict;
1024	struct resource *res = alloc_resource(GFP_ATOMIC);
1025	struct resource *next_res = NULL;
1026	int type = resource_type(root);
1027
1028	if (!res)
1029		return;
1030
1031	res->name = name;
1032	res->start = start;
1033	res->end = end;
1034	res->flags = type | IORESOURCE_BUSY;
1035	res->desc = IORES_DESC_NONE;
1036
1037	while (1) {
1038
1039		conflict = __request_resource(parent, res);
1040		if (!conflict) {
1041			if (!next_res)
1042				break;
1043			res = next_res;
1044			next_res = NULL;
1045			continue;
1046		}
1047
1048		/* conflict covered whole area */
1049		if (conflict->start <= res->start &&
1050				conflict->end >= res->end) {
1051			free_resource(res);
1052			WARN_ON(next_res);
1053			break;
1054		}
1055
1056		/* failed, split and try again */
1057		if (conflict->start > res->start) {
1058			end = res->end;
1059			res->end = conflict->start - 1;
1060			if (conflict->end < end) {
1061				next_res = alloc_resource(GFP_ATOMIC);
1062				if (!next_res) {
1063					free_resource(res);
1064					break;
1065				}
1066				next_res->name = name;
1067				next_res->start = conflict->end + 1;
1068				next_res->end = end;
1069				next_res->flags = type | IORESOURCE_BUSY;
1070				next_res->desc = IORES_DESC_NONE;
1071			}
1072		} else {
1073			res->start = conflict->end + 1;
1074		}
1075	}
1076
1077}
1078
1079void __init reserve_region_with_split(struct resource *root,
1080		resource_size_t start, resource_size_t end,
1081		const char *name)
1082{
1083	int abort = 0;
1084
1085	write_lock(&resource_lock);
1086	if (root->start > start || root->end < end) {
1087		pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
1088		       (unsigned long long)start, (unsigned long long)end,
1089		       root);
1090		if (start > root->end || end < root->start)
1091			abort = 1;
1092		else {
1093			if (end > root->end)
1094				end = root->end;
1095			if (start < root->start)
1096				start = root->start;
1097			pr_err("fixing request to [0x%llx-0x%llx]\n",
1098			       (unsigned long long)start,
1099			       (unsigned long long)end);
1100		}
1101		dump_stack();
1102	}
1103	if (!abort)
1104		__reserve_region_with_split(root, start, end, name);
1105	write_unlock(&resource_lock);
1106}
1107
1108/**
1109 * resource_alignment - calculate resource's alignment
1110 * @res: resource pointer
1111 *
1112 * Returns alignment on success, 0 (invalid alignment) on failure.
1113 */
1114resource_size_t resource_alignment(struct resource *res)
1115{
1116	switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
1117	case IORESOURCE_SIZEALIGN:
1118		return resource_size(res);
1119	case IORESOURCE_STARTALIGN:
1120		return res->start;
1121	default:
1122		return 0;
1123	}
1124}
1125
1126/*
1127 * This is compatibility stuff for IO resources.
1128 *
1129 * Note how this, unlike the above, knows about
1130 * the IO flag meanings (busy etc).
1131 *
1132 * request_region creates a new busy region.
1133 *
1134 * release_region releases a matching busy region.
1135 */
1136
1137static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1138
1139/**
1140 * __request_region - create a new busy resource region
1141 * @parent: parent resource descriptor
1142 * @start: resource start address
1143 * @n: resource region size
1144 * @name: reserving caller's ID string
1145 * @flags: IO resource flags
1146 */
1147struct resource * __request_region(struct resource *parent,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1148				   resource_size_t start, resource_size_t n,
1149				   const char *name, int flags)
1150{
1151	DECLARE_WAITQUEUE(wait, current);
1152	struct resource *res = alloc_resource(GFP_KERNEL);
1153
1154	if (!res)
1155		return NULL;
1156
1157	res->name = name;
1158	res->start = start;
1159	res->end = start + n - 1;
1160
1161	write_lock(&resource_lock);
1162
1163	for (;;) {
1164		struct resource *conflict;
1165
1166		res->flags = resource_type(parent) | resource_ext_type(parent);
1167		res->flags |= IORESOURCE_BUSY | flags;
1168		res->desc = parent->desc;
1169
1170		conflict = __request_resource(parent, res);
1171		if (!conflict)
1172			break;
 
 
 
 
 
 
 
 
 
1173		if (conflict != parent) {
1174			if (!(conflict->flags & IORESOURCE_BUSY)) {
1175				parent = conflict;
1176				continue;
1177			}
1178		}
1179		if (conflict->flags & flags & IORESOURCE_MUXED) {
1180			add_wait_queue(&muxed_resource_wait, &wait);
1181			write_unlock(&resource_lock);
1182			set_current_state(TASK_UNINTERRUPTIBLE);
1183			schedule();
1184			remove_wait_queue(&muxed_resource_wait, &wait);
1185			write_lock(&resource_lock);
1186			continue;
1187		}
1188		/* Uhhuh, that didn't work out.. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1189		free_resource(res);
1190		res = NULL;
1191		break;
1192	}
1193	write_unlock(&resource_lock);
 
 
 
1194	return res;
1195}
1196EXPORT_SYMBOL(__request_region);
1197
1198/**
1199 * __release_region - release a previously reserved resource region
1200 * @parent: parent resource descriptor
1201 * @start: resource start address
1202 * @n: resource region size
1203 *
1204 * The described resource region must match a currently busy region.
1205 */
1206void __release_region(struct resource *parent, resource_size_t start,
1207			resource_size_t n)
1208{
1209	struct resource **p;
1210	resource_size_t end;
1211
1212	p = &parent->child;
1213	end = start + n - 1;
1214
1215	write_lock(&resource_lock);
1216
1217	for (;;) {
1218		struct resource *res = *p;
1219
1220		if (!res)
1221			break;
1222		if (res->start <= start && res->end >= end) {
1223			if (!(res->flags & IORESOURCE_BUSY)) {
1224				p = &res->child;
1225				continue;
1226			}
1227			if (res->start != start || res->end != end)
1228				break;
1229			*p = res->sibling;
1230			write_unlock(&resource_lock);
1231			if (res->flags & IORESOURCE_MUXED)
1232				wake_up(&muxed_resource_wait);
1233			free_resource(res);
1234			return;
1235		}
1236		p = &res->sibling;
1237	}
1238
1239	write_unlock(&resource_lock);
1240
1241	printk(KERN_WARNING "Trying to free nonexistent resource "
1242		"<%016llx-%016llx>\n", (unsigned long long)start,
1243		(unsigned long long)end);
1244}
1245EXPORT_SYMBOL(__release_region);
1246
1247#ifdef CONFIG_MEMORY_HOTREMOVE
1248/**
1249 * release_mem_region_adjustable - release a previously reserved memory region
1250 * @parent: parent resource descriptor
1251 * @start: resource start address
1252 * @size: resource region size
1253 *
1254 * This interface is intended for memory hot-delete.  The requested region
1255 * is released from a currently busy memory resource.  The requested region
1256 * must either match exactly or fit into a single busy resource entry.  In
1257 * the latter case, the remaining resource is adjusted accordingly.
1258 * Existing children of the busy memory resource must be immutable in the
1259 * request.
1260 *
1261 * Note:
1262 * - Additional release conditions, such as overlapping region, can be
1263 *   supported after they are confirmed as valid cases.
1264 * - When a busy memory resource gets split into two entries, the code
1265 *   assumes that all children remain in the lower address entry for
1266 *   simplicity.  Enhance this logic when necessary.
1267 */
1268int release_mem_region_adjustable(struct resource *parent,
1269			resource_size_t start, resource_size_t size)
1270{
 
 
 
1271	struct resource **p;
1272	struct resource *res;
1273	struct resource *new_res;
1274	resource_size_t end;
1275	int ret = -EINVAL;
1276
1277	end = start + size - 1;
1278	if ((start < parent->start) || (end > parent->end))
1279		return ret;
1280
1281	/* The alloc_resource() result gets checked later */
1282	new_res = alloc_resource(GFP_KERNEL);
 
 
 
 
 
 
 
1283
1284	p = &parent->child;
1285	write_lock(&resource_lock);
1286
1287	while ((res = *p)) {
1288		if (res->start >= end)
1289			break;
1290
1291		/* look for the next resource if it does not fit into */
1292		if (res->start > start || res->end < end) {
1293			p = &res->sibling;
1294			continue;
1295		}
1296
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1297		if (!(res->flags & IORESOURCE_MEM))
1298			break;
1299
1300		if (!(res->flags & IORESOURCE_BUSY)) {
1301			p = &res->child;
1302			continue;
1303		}
1304
1305		/* found the target resource; let's adjust accordingly */
1306		if (res->start == start && res->end == end) {
1307			/* free the whole entry */
1308			*p = res->sibling;
1309			free_resource(res);
1310			ret = 0;
1311		} else if (res->start == start && res->end != end) {
1312			/* adjust the start */
1313			ret = __adjust_resource(res, end + 1,
1314						res->end - end);
1315		} else if (res->start != start && res->end == end) {
1316			/* adjust the end */
1317			ret = __adjust_resource(res, res->start,
1318						start - res->start);
1319		} else {
1320			/* split into two entries */
1321			if (!new_res) {
1322				ret = -ENOMEM;
1323				break;
 
 
 
 
1324			}
1325			new_res->name = res->name;
1326			new_res->start = end + 1;
1327			new_res->end = res->end;
1328			new_res->flags = res->flags;
1329			new_res->desc = res->desc;
1330			new_res->parent = res->parent;
1331			new_res->sibling = res->sibling;
1332			new_res->child = NULL;
1333
1334			ret = __adjust_resource(res, res->start,
1335						start - res->start);
1336			if (ret)
1337				break;
1338			res->sibling = new_res;
1339			new_res = NULL;
1340		}
1341
1342		break;
1343	}
1344
1345	write_unlock(&resource_lock);
1346	free_resource(new_res);
1347	return ret;
1348}
1349#endif	/* CONFIG_MEMORY_HOTREMOVE */
1350
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1351/*
1352 * Managed region resource
1353 */
1354static void devm_resource_release(struct device *dev, void *ptr)
1355{
1356	struct resource **r = ptr;
1357
1358	release_resource(*r);
1359}
1360
1361/**
1362 * devm_request_resource() - request and reserve an I/O or memory resource
1363 * @dev: device for which to request the resource
1364 * @root: root of the resource tree from which to request the resource
1365 * @new: descriptor of the resource to request
1366 *
1367 * This is a device-managed version of request_resource(). There is usually
1368 * no need to release resources requested by this function explicitly since
1369 * that will be taken care of when the device is unbound from its driver.
1370 * If for some reason the resource needs to be released explicitly, because
1371 * of ordering issues for example, drivers must call devm_release_resource()
1372 * rather than the regular release_resource().
1373 *
1374 * When a conflict is detected between any existing resources and the newly
1375 * requested resource, an error message will be printed.
1376 *
1377 * Returns 0 on success or a negative error code on failure.
1378 */
1379int devm_request_resource(struct device *dev, struct resource *root,
1380			  struct resource *new)
1381{
1382	struct resource *conflict, **ptr;
1383
1384	ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL);
1385	if (!ptr)
1386		return -ENOMEM;
1387
1388	*ptr = new;
1389
1390	conflict = request_resource_conflict(root, new);
1391	if (conflict) {
1392		dev_err(dev, "resource collision: %pR conflicts with %s %pR\n",
1393			new, conflict->name, conflict);
1394		devres_free(ptr);
1395		return -EBUSY;
1396	}
1397
1398	devres_add(dev, ptr);
1399	return 0;
1400}
1401EXPORT_SYMBOL(devm_request_resource);
1402
1403static int devm_resource_match(struct device *dev, void *res, void *data)
1404{
1405	struct resource **ptr = res;
1406
1407	return *ptr == data;
1408}
1409
1410/**
1411 * devm_release_resource() - release a previously requested resource
1412 * @dev: device for which to release the resource
1413 * @new: descriptor of the resource to release
1414 *
1415 * Releases a resource previously requested using devm_request_resource().
1416 */
1417void devm_release_resource(struct device *dev, struct resource *new)
1418{
1419	WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match,
1420			       new));
1421}
1422EXPORT_SYMBOL(devm_release_resource);
1423
1424struct region_devres {
1425	struct resource *parent;
1426	resource_size_t start;
1427	resource_size_t n;
1428};
1429
1430static void devm_region_release(struct device *dev, void *res)
1431{
1432	struct region_devres *this = res;
1433
1434	__release_region(this->parent, this->start, this->n);
1435}
1436
1437static int devm_region_match(struct device *dev, void *res, void *match_data)
1438{
1439	struct region_devres *this = res, *match = match_data;
1440
1441	return this->parent == match->parent &&
1442		this->start == match->start && this->n == match->n;
1443}
1444
1445struct resource * __devm_request_region(struct device *dev,
1446				struct resource *parent, resource_size_t start,
1447				resource_size_t n, const char *name)
1448{
1449	struct region_devres *dr = NULL;
1450	struct resource *res;
1451
1452	dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1453			  GFP_KERNEL);
1454	if (!dr)
1455		return NULL;
1456
1457	dr->parent = parent;
1458	dr->start = start;
1459	dr->n = n;
1460
1461	res = __request_region(parent, start, n, name, 0);
1462	if (res)
1463		devres_add(dev, dr);
1464	else
1465		devres_free(dr);
1466
1467	return res;
1468}
1469EXPORT_SYMBOL(__devm_request_region);
1470
1471void __devm_release_region(struct device *dev, struct resource *parent,
1472			   resource_size_t start, resource_size_t n)
1473{
1474	struct region_devres match_data = { parent, start, n };
1475
1476	__release_region(parent, start, n);
1477	WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1478			       &match_data));
1479}
1480EXPORT_SYMBOL(__devm_release_region);
1481
1482/*
1483 * Reserve I/O ports or memory based on "reserve=" kernel parameter.
1484 */
1485#define MAXRESERVE 4
1486static int __init reserve_setup(char *str)
1487{
1488	static int reserved;
1489	static struct resource reserve[MAXRESERVE];
1490
1491	for (;;) {
1492		unsigned int io_start, io_num;
1493		int x = reserved;
1494		struct resource *parent;
1495
1496		if (get_option(&str, &io_start) != 2)
1497			break;
1498		if (get_option(&str, &io_num) == 0)
1499			break;
1500		if (x < MAXRESERVE) {
1501			struct resource *res = reserve + x;
1502
1503			/*
1504			 * If the region starts below 0x10000, we assume it's
1505			 * I/O port space; otherwise assume it's memory.
1506			 */
1507			if (io_start < 0x10000) {
1508				res->flags = IORESOURCE_IO;
1509				parent = &ioport_resource;
1510			} else {
1511				res->flags = IORESOURCE_MEM;
1512				parent = &iomem_resource;
1513			}
1514			res->name = "reserved";
1515			res->start = io_start;
1516			res->end = io_start + io_num - 1;
1517			res->flags |= IORESOURCE_BUSY;
1518			res->desc = IORES_DESC_NONE;
1519			res->child = NULL;
1520			if (request_resource(parent, res) == 0)
1521				reserved = x+1;
1522		}
1523	}
1524	return 1;
1525}
1526__setup("reserve=", reserve_setup);
1527
1528/*
1529 * Check if the requested addr and size spans more than any slot in the
1530 * iomem resource tree.
1531 */
1532int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1533{
1534	struct resource *p = &iomem_resource;
 
1535	int err = 0;
1536	loff_t l;
1537
1538	read_lock(&resource_lock);
1539	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1540		/*
1541		 * We can probably skip the resources without
1542		 * IORESOURCE_IO attribute?
1543		 */
1544		if (p->start >= addr + size)
1545			continue;
1546		if (p->end < addr)
1547			continue;
1548		if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1549		    PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1))
1550			continue;
1551		/*
1552		 * if a resource is "BUSY", it's not a hardware resource
1553		 * but a driver mapping of such a resource; we don't want
1554		 * to warn for those; some drivers legitimately map only
1555		 * partial hardware resources. (example: vesafb)
1556		 */
1557		if (p->flags & IORESOURCE_BUSY)
1558			continue;
1559
1560		printk(KERN_WARNING "resource sanity check: requesting [mem %#010llx-%#010llx], which spans more than %s %pR\n",
1561		       (unsigned long long)addr,
1562		       (unsigned long long)(addr + size - 1),
1563		       p->name, p);
1564		err = -1;
1565		break;
1566	}
1567	read_unlock(&resource_lock);
1568
1569	return err;
1570}
1571
1572#ifdef CONFIG_STRICT_DEVMEM
1573static int strict_iomem_checks = 1;
1574#else
1575static int strict_iomem_checks;
1576#endif
1577
1578/*
1579 * check if an address is reserved in the iomem resource tree
1580 * returns true if reserved, false if not reserved.
 
 
1581 */
1582bool iomem_is_exclusive(u64 addr)
1583{
1584	struct resource *p = &iomem_resource;
1585	bool err = false;
1586	loff_t l;
1587	int size = PAGE_SIZE;
1588
1589	if (!strict_iomem_checks)
1590		return false;
1591
1592	addr = addr & PAGE_MASK;
 
 
 
 
 
1593
1594	read_lock(&resource_lock);
1595	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1596		/*
1597		 * We can probably skip the resources without
1598		 * IORESOURCE_IO attribute?
 
 
 
1599		 */
1600		if (p->start >= addr + size)
 
1601			break;
1602		if (p->end < addr)
1603			continue;
1604		/*
1605		 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set
1606		 * or CONFIG_IO_STRICT_DEVMEM is enabled and the
1607		 * resource is busy.
1608		 */
1609		if ((p->flags & IORESOURCE_BUSY) == 0)
1610			continue;
1611		if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM)
1612				|| p->flags & IORESOURCE_EXCLUSIVE) {
1613			err = true;
1614			break;
1615		}
1616	}
1617	read_unlock(&resource_lock);
1618
1619	return err;
1620}
1621
 
 
 
 
 
 
1622struct resource_entry *resource_list_create_entry(struct resource *res,
1623						  size_t extra_size)
1624{
1625	struct resource_entry *entry;
1626
1627	entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL);
1628	if (entry) {
1629		INIT_LIST_HEAD(&entry->node);
1630		entry->res = res ? res : &entry->__res;
1631	}
1632
1633	return entry;
1634}
1635EXPORT_SYMBOL(resource_list_create_entry);
1636
1637void resource_list_free(struct list_head *head)
1638{
1639	struct resource_entry *entry, *tmp;
1640
1641	list_for_each_entry_safe(entry, tmp, head, node)
1642		resource_list_destroy_entry(entry);
1643}
1644EXPORT_SYMBOL(resource_list_free);
1645
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1646static int __init strict_iomem(char *str)
1647{
1648	if (strstr(str, "relaxed"))
1649		strict_iomem_checks = 0;
1650	if (strstr(str, "strict"))
1651		strict_iomem_checks = 1;
1652	return 1;
1653}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1654
1655__setup("iomem=", strict_iomem);