Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Process number limiting controller for cgroups.
  4 *
  5 * Used to allow a cgroup hierarchy to stop any new processes from fork()ing
  6 * after a certain limit is reached.
  7 *
  8 * Since it is trivial to hit the task limit without hitting any kmemcg limits
  9 * in place, PIDs are a fundamental resource. As such, PID exhaustion must be
 10 * preventable in the scope of a cgroup hierarchy by allowing resource limiting
 11 * of the number of tasks in a cgroup.
 12 *
 13 * In order to use the `pids` controller, set the maximum number of tasks in
 14 * pids.max (this is not available in the root cgroup for obvious reasons). The
 15 * number of processes currently in the cgroup is given by pids.current.
 16 * Organisational operations are not blocked by cgroup policies, so it is
 17 * possible to have pids.current > pids.max. However, it is not possible to
 18 * violate a cgroup policy through fork(). fork() will return -EAGAIN if forking
 19 * would cause a cgroup policy to be violated.
 20 *
 21 * To set a cgroup to have no limit, set pids.max to "max". This is the default
 22 * for all new cgroups (N.B. that PID limits are hierarchical, so the most
 23 * stringent limit in the hierarchy is followed).
 24 *
 25 * pids.current tracks all child cgroup hierarchies, so parent/pids.current is
 26 * a superset of parent/child/pids.current.
 27 *
 28 * Copyright (C) 2015 Aleksa Sarai <cyphar@cyphar.com>
 
 
 
 
 29 */
 30
 31#include <linux/kernel.h>
 32#include <linux/threads.h>
 33#include <linux/atomic.h>
 34#include <linux/cgroup.h>
 35#include <linux/slab.h>
 36#include <linux/sched/task.h>
 37
 38#define PIDS_MAX (PID_MAX_LIMIT + 1ULL)
 39#define PIDS_MAX_STR "max"
 40
 41struct pids_cgroup {
 42	struct cgroup_subsys_state	css;
 43
 44	/*
 45	 * Use 64-bit types so that we can safely represent "max" as
 46	 * %PIDS_MAX = (%PID_MAX_LIMIT + 1).
 47	 */
 48	atomic64_t			counter;
 49	atomic64_t			limit;
 50	int64_t				watermark;
 51
 52	/* Handle for "pids.events" */
 53	struct cgroup_file		events_file;
 54
 55	/* Number of times fork failed because limit was hit. */
 56	atomic64_t			events_limit;
 57};
 58
 59static struct pids_cgroup *css_pids(struct cgroup_subsys_state *css)
 60{
 61	return container_of(css, struct pids_cgroup, css);
 62}
 63
 64static struct pids_cgroup *parent_pids(struct pids_cgroup *pids)
 65{
 66	return css_pids(pids->css.parent);
 67}
 68
 69static struct cgroup_subsys_state *
 70pids_css_alloc(struct cgroup_subsys_state *parent)
 71{
 72	struct pids_cgroup *pids;
 73
 74	pids = kzalloc(sizeof(struct pids_cgroup), GFP_KERNEL);
 75	if (!pids)
 76		return ERR_PTR(-ENOMEM);
 77
 
 78	atomic64_set(&pids->counter, 0);
 79	atomic64_set(&pids->limit, PIDS_MAX);
 80	atomic64_set(&pids->events_limit, 0);
 81	return &pids->css;
 82}
 83
 84static void pids_css_free(struct cgroup_subsys_state *css)
 85{
 86	kfree(css_pids(css));
 87}
 88
 89static void pids_update_watermark(struct pids_cgroup *p, int64_t nr_pids)
 90{
 91	/*
 92	 * This is racy, but we don't need perfectly accurate tallying of
 93	 * the watermark, and this lets us avoid extra atomic overhead.
 94	 */
 95	if (nr_pids > READ_ONCE(p->watermark))
 96		WRITE_ONCE(p->watermark, nr_pids);
 97}
 98
 99/**
100 * pids_cancel - uncharge the local pid count
101 * @pids: the pid cgroup state
102 * @num: the number of pids to cancel
103 *
104 * This function will WARN if the pid count goes under 0, because such a case is
105 * a bug in the pids controller proper.
106 */
107static void pids_cancel(struct pids_cgroup *pids, int num)
108{
109	/*
110	 * A negative count (or overflow for that matter) is invalid,
111	 * and indicates a bug in the `pids` controller proper.
112	 */
113	WARN_ON_ONCE(atomic64_add_negative(-num, &pids->counter));
114}
115
116/**
117 * pids_uncharge - hierarchically uncharge the pid count
118 * @pids: the pid cgroup state
119 * @num: the number of pids to uncharge
120 */
121static void pids_uncharge(struct pids_cgroup *pids, int num)
122{
123	struct pids_cgroup *p;
124
125	for (p = pids; parent_pids(p); p = parent_pids(p))
126		pids_cancel(p, num);
127}
128
129/**
130 * pids_charge - hierarchically charge the pid count
131 * @pids: the pid cgroup state
132 * @num: the number of pids to charge
133 *
134 * This function does *not* follow the pid limit set. It cannot fail and the new
135 * pid count may exceed the limit. This is only used for reverting failed
136 * attaches, where there is no other way out than violating the limit.
137 */
138static void pids_charge(struct pids_cgroup *pids, int num)
139{
140	struct pids_cgroup *p;
141
142	for (p = pids; parent_pids(p); p = parent_pids(p)) {
143		int64_t new = atomic64_add_return(num, &p->counter);
144
145		pids_update_watermark(p, new);
146	}
147}
148
149/**
150 * pids_try_charge - hierarchically try to charge the pid count
151 * @pids: the pid cgroup state
152 * @num: the number of pids to charge
153 *
154 * This function follows the set limit. It will fail if the charge would cause
155 * the new value to exceed the hierarchical limit. Returns 0 if the charge
156 * succeeded, otherwise -EAGAIN.
157 */
158static int pids_try_charge(struct pids_cgroup *pids, int num)
159{
160	struct pids_cgroup *p, *q;
161
162	for (p = pids; parent_pids(p); p = parent_pids(p)) {
163		int64_t new = atomic64_add_return(num, &p->counter);
164		int64_t limit = atomic64_read(&p->limit);
165
166		/*
167		 * Since new is capped to the maximum number of pid_t, if
168		 * p->limit is %PIDS_MAX then we know that this test will never
169		 * fail.
170		 */
171		if (new > limit)
172			goto revert;
173
174		/*
175		 * Not technically accurate if we go over limit somewhere up
176		 * the hierarchy, but that's tolerable for the watermark.
177		 */
178		pids_update_watermark(p, new);
179	}
180
181	return 0;
182
183revert:
184	for (q = pids; q != p; q = parent_pids(q))
185		pids_cancel(q, num);
186	pids_cancel(p, num);
187
188	return -EAGAIN;
189}
190
191static int pids_can_attach(struct cgroup_taskset *tset)
192{
193	struct task_struct *task;
194	struct cgroup_subsys_state *dst_css;
195
196	cgroup_taskset_for_each(task, dst_css, tset) {
197		struct pids_cgroup *pids = css_pids(dst_css);
198		struct cgroup_subsys_state *old_css;
199		struct pids_cgroup *old_pids;
200
201		/*
202		 * No need to pin @old_css between here and cancel_attach()
203		 * because cgroup core protects it from being freed before
204		 * the migration completes or fails.
205		 */
206		old_css = task_css(task, pids_cgrp_id);
207		old_pids = css_pids(old_css);
208
209		pids_charge(pids, 1);
210		pids_uncharge(old_pids, 1);
211	}
212
213	return 0;
214}
215
216static void pids_cancel_attach(struct cgroup_taskset *tset)
217{
218	struct task_struct *task;
219	struct cgroup_subsys_state *dst_css;
220
221	cgroup_taskset_for_each(task, dst_css, tset) {
222		struct pids_cgroup *pids = css_pids(dst_css);
223		struct cgroup_subsys_state *old_css;
224		struct pids_cgroup *old_pids;
225
226		old_css = task_css(task, pids_cgrp_id);
227		old_pids = css_pids(old_css);
228
229		pids_charge(old_pids, 1);
230		pids_uncharge(pids, 1);
231	}
232}
233
234/*
235 * task_css_check(true) in pids_can_fork() and pids_cancel_fork() relies
236 * on cgroup_threadgroup_change_begin() held by the copy_process().
237 */
238static int pids_can_fork(struct task_struct *task, struct css_set *cset)
239{
240	struct cgroup_subsys_state *css;
241	struct pids_cgroup *pids;
242	int err;
243
244	if (cset)
245		css = cset->subsys[pids_cgrp_id];
246	else
247		css = task_css_check(current, pids_cgrp_id, true);
248	pids = css_pids(css);
249	err = pids_try_charge(pids, 1);
250	if (err) {
251		/* Only log the first time events_limit is incremented. */
252		if (atomic64_inc_return(&pids->events_limit) == 1) {
253			pr_info("cgroup: fork rejected by pids controller in ");
254			pr_cont_cgroup_path(css->cgroup);
255			pr_cont("\n");
256		}
257		cgroup_file_notify(&pids->events_file);
258	}
259	return err;
260}
261
262static void pids_cancel_fork(struct task_struct *task, struct css_set *cset)
263{
264	struct cgroup_subsys_state *css;
265	struct pids_cgroup *pids;
266
267	if (cset)
268		css = cset->subsys[pids_cgrp_id];
269	else
270		css = task_css_check(current, pids_cgrp_id, true);
271	pids = css_pids(css);
272	pids_uncharge(pids, 1);
273}
274
275static void pids_release(struct task_struct *task)
276{
277	struct pids_cgroup *pids = css_pids(task_css(task, pids_cgrp_id));
278
279	pids_uncharge(pids, 1);
280}
281
282static ssize_t pids_max_write(struct kernfs_open_file *of, char *buf,
283			      size_t nbytes, loff_t off)
284{
285	struct cgroup_subsys_state *css = of_css(of);
286	struct pids_cgroup *pids = css_pids(css);
287	int64_t limit;
288	int err;
289
290	buf = strstrip(buf);
291	if (!strcmp(buf, PIDS_MAX_STR)) {
292		limit = PIDS_MAX;
293		goto set_limit;
294	}
295
296	err = kstrtoll(buf, 0, &limit);
297	if (err)
298		return err;
299
300	if (limit < 0 || limit >= PIDS_MAX)
301		return -EINVAL;
302
303set_limit:
304	/*
305	 * Limit updates don't need to be mutex'd, since it isn't
306	 * critical that any racing fork()s follow the new limit.
307	 */
308	atomic64_set(&pids->limit, limit);
309	return nbytes;
310}
311
312static int pids_max_show(struct seq_file *sf, void *v)
313{
314	struct cgroup_subsys_state *css = seq_css(sf);
315	struct pids_cgroup *pids = css_pids(css);
316	int64_t limit = atomic64_read(&pids->limit);
317
318	if (limit >= PIDS_MAX)
319		seq_printf(sf, "%s\n", PIDS_MAX_STR);
320	else
321		seq_printf(sf, "%lld\n", limit);
322
323	return 0;
324}
325
326static s64 pids_current_read(struct cgroup_subsys_state *css,
327			     struct cftype *cft)
328{
329	struct pids_cgroup *pids = css_pids(css);
330
331	return atomic64_read(&pids->counter);
332}
333
334static s64 pids_peak_read(struct cgroup_subsys_state *css,
335			  struct cftype *cft)
336{
337	struct pids_cgroup *pids = css_pids(css);
338
339	return READ_ONCE(pids->watermark);
340}
341
342static int pids_events_show(struct seq_file *sf, void *v)
343{
344	struct pids_cgroup *pids = css_pids(seq_css(sf));
345
346	seq_printf(sf, "max %lld\n", (s64)atomic64_read(&pids->events_limit));
347	return 0;
348}
349
350static struct cftype pids_files[] = {
351	{
352		.name = "max",
353		.write = pids_max_write,
354		.seq_show = pids_max_show,
355		.flags = CFTYPE_NOT_ON_ROOT,
356	},
357	{
358		.name = "current",
359		.read_s64 = pids_current_read,
360		.flags = CFTYPE_NOT_ON_ROOT,
361	},
362	{
363		.name = "peak",
364		.flags = CFTYPE_NOT_ON_ROOT,
365		.read_s64 = pids_peak_read,
366	},
367	{
368		.name = "events",
369		.seq_show = pids_events_show,
370		.file_offset = offsetof(struct pids_cgroup, events_file),
371		.flags = CFTYPE_NOT_ON_ROOT,
372	},
373	{ }	/* terminate */
374};
375
376struct cgroup_subsys pids_cgrp_subsys = {
377	.css_alloc	= pids_css_alloc,
378	.css_free	= pids_css_free,
379	.can_attach 	= pids_can_attach,
380	.cancel_attach 	= pids_cancel_attach,
381	.can_fork	= pids_can_fork,
382	.cancel_fork	= pids_cancel_fork,
383	.release	= pids_release,
384	.legacy_cftypes	= pids_files,
385	.dfl_cftypes	= pids_files,
386	.threaded	= true,
387};
v4.17
 
  1/*
  2 * Process number limiting controller for cgroups.
  3 *
  4 * Used to allow a cgroup hierarchy to stop any new processes from fork()ing
  5 * after a certain limit is reached.
  6 *
  7 * Since it is trivial to hit the task limit without hitting any kmemcg limits
  8 * in place, PIDs are a fundamental resource. As such, PID exhaustion must be
  9 * preventable in the scope of a cgroup hierarchy by allowing resource limiting
 10 * of the number of tasks in a cgroup.
 11 *
 12 * In order to use the `pids` controller, set the maximum number of tasks in
 13 * pids.max (this is not available in the root cgroup for obvious reasons). The
 14 * number of processes currently in the cgroup is given by pids.current.
 15 * Organisational operations are not blocked by cgroup policies, so it is
 16 * possible to have pids.current > pids.max. However, it is not possible to
 17 * violate a cgroup policy through fork(). fork() will return -EAGAIN if forking
 18 * would cause a cgroup policy to be violated.
 19 *
 20 * To set a cgroup to have no limit, set pids.max to "max". This is the default
 21 * for all new cgroups (N.B. that PID limits are hierarchical, so the most
 22 * stringent limit in the hierarchy is followed).
 23 *
 24 * pids.current tracks all child cgroup hierarchies, so parent/pids.current is
 25 * a superset of parent/child/pids.current.
 26 *
 27 * Copyright (C) 2015 Aleksa Sarai <cyphar@cyphar.com>
 28 *
 29 * This file is subject to the terms and conditions of version 2 of the GNU
 30 * General Public License.  See the file COPYING in the main directory of the
 31 * Linux distribution for more details.
 32 */
 33
 34#include <linux/kernel.h>
 35#include <linux/threads.h>
 36#include <linux/atomic.h>
 37#include <linux/cgroup.h>
 38#include <linux/slab.h>
 
 39
 40#define PIDS_MAX (PID_MAX_LIMIT + 1ULL)
 41#define PIDS_MAX_STR "max"
 42
 43struct pids_cgroup {
 44	struct cgroup_subsys_state	css;
 45
 46	/*
 47	 * Use 64-bit types so that we can safely represent "max" as
 48	 * %PIDS_MAX = (%PID_MAX_LIMIT + 1).
 49	 */
 50	atomic64_t			counter;
 51	int64_t				limit;
 
 52
 53	/* Handle for "pids.events" */
 54	struct cgroup_file		events_file;
 55
 56	/* Number of times fork failed because limit was hit. */
 57	atomic64_t			events_limit;
 58};
 59
 60static struct pids_cgroup *css_pids(struct cgroup_subsys_state *css)
 61{
 62	return container_of(css, struct pids_cgroup, css);
 63}
 64
 65static struct pids_cgroup *parent_pids(struct pids_cgroup *pids)
 66{
 67	return css_pids(pids->css.parent);
 68}
 69
 70static struct cgroup_subsys_state *
 71pids_css_alloc(struct cgroup_subsys_state *parent)
 72{
 73	struct pids_cgroup *pids;
 74
 75	pids = kzalloc(sizeof(struct pids_cgroup), GFP_KERNEL);
 76	if (!pids)
 77		return ERR_PTR(-ENOMEM);
 78
 79	pids->limit = PIDS_MAX;
 80	atomic64_set(&pids->counter, 0);
 
 81	atomic64_set(&pids->events_limit, 0);
 82	return &pids->css;
 83}
 84
 85static void pids_css_free(struct cgroup_subsys_state *css)
 86{
 87	kfree(css_pids(css));
 88}
 89
 
 
 
 
 
 
 
 
 
 
 90/**
 91 * pids_cancel - uncharge the local pid count
 92 * @pids: the pid cgroup state
 93 * @num: the number of pids to cancel
 94 *
 95 * This function will WARN if the pid count goes under 0, because such a case is
 96 * a bug in the pids controller proper.
 97 */
 98static void pids_cancel(struct pids_cgroup *pids, int num)
 99{
100	/*
101	 * A negative count (or overflow for that matter) is invalid,
102	 * and indicates a bug in the `pids` controller proper.
103	 */
104	WARN_ON_ONCE(atomic64_add_negative(-num, &pids->counter));
105}
106
107/**
108 * pids_uncharge - hierarchically uncharge the pid count
109 * @pids: the pid cgroup state
110 * @num: the number of pids to uncharge
111 */
112static void pids_uncharge(struct pids_cgroup *pids, int num)
113{
114	struct pids_cgroup *p;
115
116	for (p = pids; parent_pids(p); p = parent_pids(p))
117		pids_cancel(p, num);
118}
119
120/**
121 * pids_charge - hierarchically charge the pid count
122 * @pids: the pid cgroup state
123 * @num: the number of pids to charge
124 *
125 * This function does *not* follow the pid limit set. It cannot fail and the new
126 * pid count may exceed the limit. This is only used for reverting failed
127 * attaches, where there is no other way out than violating the limit.
128 */
129static void pids_charge(struct pids_cgroup *pids, int num)
130{
131	struct pids_cgroup *p;
132
133	for (p = pids; parent_pids(p); p = parent_pids(p))
134		atomic64_add(num, &p->counter);
 
 
 
135}
136
137/**
138 * pids_try_charge - hierarchically try to charge the pid count
139 * @pids: the pid cgroup state
140 * @num: the number of pids to charge
141 *
142 * This function follows the set limit. It will fail if the charge would cause
143 * the new value to exceed the hierarchical limit. Returns 0 if the charge
144 * succeeded, otherwise -EAGAIN.
145 */
146static int pids_try_charge(struct pids_cgroup *pids, int num)
147{
148	struct pids_cgroup *p, *q;
149
150	for (p = pids; parent_pids(p); p = parent_pids(p)) {
151		int64_t new = atomic64_add_return(num, &p->counter);
 
152
153		/*
154		 * Since new is capped to the maximum number of pid_t, if
155		 * p->limit is %PIDS_MAX then we know that this test will never
156		 * fail.
157		 */
158		if (new > p->limit)
159			goto revert;
 
 
 
 
 
 
160	}
161
162	return 0;
163
164revert:
165	for (q = pids; q != p; q = parent_pids(q))
166		pids_cancel(q, num);
167	pids_cancel(p, num);
168
169	return -EAGAIN;
170}
171
172static int pids_can_attach(struct cgroup_taskset *tset)
173{
174	struct task_struct *task;
175	struct cgroup_subsys_state *dst_css;
176
177	cgroup_taskset_for_each(task, dst_css, tset) {
178		struct pids_cgroup *pids = css_pids(dst_css);
179		struct cgroup_subsys_state *old_css;
180		struct pids_cgroup *old_pids;
181
182		/*
183		 * No need to pin @old_css between here and cancel_attach()
184		 * because cgroup core protects it from being freed before
185		 * the migration completes or fails.
186		 */
187		old_css = task_css(task, pids_cgrp_id);
188		old_pids = css_pids(old_css);
189
190		pids_charge(pids, 1);
191		pids_uncharge(old_pids, 1);
192	}
193
194	return 0;
195}
196
197static void pids_cancel_attach(struct cgroup_taskset *tset)
198{
199	struct task_struct *task;
200	struct cgroup_subsys_state *dst_css;
201
202	cgroup_taskset_for_each(task, dst_css, tset) {
203		struct pids_cgroup *pids = css_pids(dst_css);
204		struct cgroup_subsys_state *old_css;
205		struct pids_cgroup *old_pids;
206
207		old_css = task_css(task, pids_cgrp_id);
208		old_pids = css_pids(old_css);
209
210		pids_charge(old_pids, 1);
211		pids_uncharge(pids, 1);
212	}
213}
214
215/*
216 * task_css_check(true) in pids_can_fork() and pids_cancel_fork() relies
217 * on cgroup_threadgroup_change_begin() held by the copy_process().
218 */
219static int pids_can_fork(struct task_struct *task)
220{
221	struct cgroup_subsys_state *css;
222	struct pids_cgroup *pids;
223	int err;
224
225	css = task_css_check(current, pids_cgrp_id, true);
 
 
 
226	pids = css_pids(css);
227	err = pids_try_charge(pids, 1);
228	if (err) {
229		/* Only log the first time events_limit is incremented. */
230		if (atomic64_inc_return(&pids->events_limit) == 1) {
231			pr_info("cgroup: fork rejected by pids controller in ");
232			pr_cont_cgroup_path(css->cgroup);
233			pr_cont("\n");
234		}
235		cgroup_file_notify(&pids->events_file);
236	}
237	return err;
238}
239
240static void pids_cancel_fork(struct task_struct *task)
241{
242	struct cgroup_subsys_state *css;
243	struct pids_cgroup *pids;
244
245	css = task_css_check(current, pids_cgrp_id, true);
 
 
 
246	pids = css_pids(css);
247	pids_uncharge(pids, 1);
248}
249
250static void pids_free(struct task_struct *task)
251{
252	struct pids_cgroup *pids = css_pids(task_css(task, pids_cgrp_id));
253
254	pids_uncharge(pids, 1);
255}
256
257static ssize_t pids_max_write(struct kernfs_open_file *of, char *buf,
258			      size_t nbytes, loff_t off)
259{
260	struct cgroup_subsys_state *css = of_css(of);
261	struct pids_cgroup *pids = css_pids(css);
262	int64_t limit;
263	int err;
264
265	buf = strstrip(buf);
266	if (!strcmp(buf, PIDS_MAX_STR)) {
267		limit = PIDS_MAX;
268		goto set_limit;
269	}
270
271	err = kstrtoll(buf, 0, &limit);
272	if (err)
273		return err;
274
275	if (limit < 0 || limit >= PIDS_MAX)
276		return -EINVAL;
277
278set_limit:
279	/*
280	 * Limit updates don't need to be mutex'd, since it isn't
281	 * critical that any racing fork()s follow the new limit.
282	 */
283	pids->limit = limit;
284	return nbytes;
285}
286
287static int pids_max_show(struct seq_file *sf, void *v)
288{
289	struct cgroup_subsys_state *css = seq_css(sf);
290	struct pids_cgroup *pids = css_pids(css);
291	int64_t limit = pids->limit;
292
293	if (limit >= PIDS_MAX)
294		seq_printf(sf, "%s\n", PIDS_MAX_STR);
295	else
296		seq_printf(sf, "%lld\n", limit);
297
298	return 0;
299}
300
301static s64 pids_current_read(struct cgroup_subsys_state *css,
302			     struct cftype *cft)
303{
304	struct pids_cgroup *pids = css_pids(css);
305
306	return atomic64_read(&pids->counter);
307}
308
 
 
 
 
 
 
 
 
309static int pids_events_show(struct seq_file *sf, void *v)
310{
311	struct pids_cgroup *pids = css_pids(seq_css(sf));
312
313	seq_printf(sf, "max %lld\n", (s64)atomic64_read(&pids->events_limit));
314	return 0;
315}
316
317static struct cftype pids_files[] = {
318	{
319		.name = "max",
320		.write = pids_max_write,
321		.seq_show = pids_max_show,
322		.flags = CFTYPE_NOT_ON_ROOT,
323	},
324	{
325		.name = "current",
326		.read_s64 = pids_current_read,
327		.flags = CFTYPE_NOT_ON_ROOT,
328	},
329	{
 
 
 
 
 
330		.name = "events",
331		.seq_show = pids_events_show,
332		.file_offset = offsetof(struct pids_cgroup, events_file),
333		.flags = CFTYPE_NOT_ON_ROOT,
334	},
335	{ }	/* terminate */
336};
337
338struct cgroup_subsys pids_cgrp_subsys = {
339	.css_alloc	= pids_css_alloc,
340	.css_free	= pids_css_free,
341	.can_attach 	= pids_can_attach,
342	.cancel_attach 	= pids_cancel_attach,
343	.can_fork	= pids_can_fork,
344	.cancel_fork	= pids_cancel_fork,
345	.free		= pids_free,
346	.legacy_cftypes	= pids_files,
347	.dfl_cftypes	= pids_files,
348	.threaded	= true,
349};