Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2#include "cgroup-internal.h"
   3
   4#include <linux/ctype.h>
   5#include <linux/kmod.h>
   6#include <linux/sort.h>
   7#include <linux/delay.h>
   8#include <linux/mm.h>
   9#include <linux/sched/signal.h>
  10#include <linux/sched/task.h>
  11#include <linux/magic.h>
  12#include <linux/slab.h>
  13#include <linux/vmalloc.h>
  14#include <linux/delayacct.h>
  15#include <linux/pid_namespace.h>
  16#include <linux/cgroupstats.h>
  17#include <linux/fs_parser.h>
  18
  19#include <trace/events/cgroup.h>
  20
  21/*
  22 * pidlists linger the following amount before being destroyed.  The goal
  23 * is avoiding frequent destruction in the middle of consecutive read calls
  24 * Expiring in the middle is a performance problem not a correctness one.
  25 * 1 sec should be enough.
  26 */
  27#define CGROUP_PIDLIST_DESTROY_DELAY	HZ
  28
  29/* Controllers blocked by the commandline in v1 */
  30static u16 cgroup_no_v1_mask;
  31
  32/* disable named v1 mounts */
  33static bool cgroup_no_v1_named;
  34
  35/*
  36 * pidlist destructions need to be flushed on cgroup destruction.  Use a
  37 * separate workqueue as flush domain.
  38 */
  39static struct workqueue_struct *cgroup_pidlist_destroy_wq;
  40
  41/* protects cgroup_subsys->release_agent_path */
 
 
 
  42static DEFINE_SPINLOCK(release_agent_path_lock);
  43
  44bool cgroup1_ssid_disabled(int ssid)
  45{
  46	return cgroup_no_v1_mask & (1 << ssid);
  47}
  48
  49/**
  50 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
  51 * @from: attach to all cgroups of a given task
  52 * @tsk: the task to be attached
  53 *
  54 * Return: %0 on success or a negative errno code on failure
  55 */
  56int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
  57{
  58	struct cgroup_root *root;
  59	int retval = 0;
  60
  61	mutex_lock(&cgroup_mutex);
  62	cgroup_attach_lock(true);
  63	for_each_root(root) {
  64		struct cgroup *from_cgrp;
  65
 
 
 
  66		spin_lock_irq(&css_set_lock);
  67		from_cgrp = task_cgroup_from_root(from, root);
  68		spin_unlock_irq(&css_set_lock);
  69
  70		retval = cgroup_attach_task(from_cgrp, tsk, false);
  71		if (retval)
  72			break;
  73	}
  74	cgroup_attach_unlock(true);
  75	mutex_unlock(&cgroup_mutex);
  76
  77	return retval;
  78}
  79EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
  80
  81/**
  82 * cgroup_transfer_tasks - move tasks from one cgroup to another
  83 * @to: cgroup to which the tasks will be moved
  84 * @from: cgroup in which the tasks currently reside
  85 *
  86 * Locking rules between cgroup_post_fork() and the migration path
  87 * guarantee that, if a task is forking while being migrated, the new child
  88 * is guaranteed to be either visible in the source cgroup after the
  89 * parent's migration is complete or put into the target cgroup.  No task
  90 * can slip out of migration through forking.
  91 *
  92 * Return: %0 on success or a negative errno code on failure
  93 */
  94int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
  95{
  96	DEFINE_CGROUP_MGCTX(mgctx);
  97	struct cgrp_cset_link *link;
  98	struct css_task_iter it;
  99	struct task_struct *task;
 100	int ret;
 101
 102	if (cgroup_on_dfl(to))
 103		return -EINVAL;
 104
 105	ret = cgroup_migrate_vet_dst(to);
 106	if (ret)
 107		return ret;
 108
 109	mutex_lock(&cgroup_mutex);
 110
 111	percpu_down_write(&cgroup_threadgroup_rwsem);
 112
 113	/* all tasks in @from are being moved, all csets are source */
 114	spin_lock_irq(&css_set_lock);
 115	list_for_each_entry(link, &from->cset_links, cset_link)
 116		cgroup_migrate_add_src(link->cset, to, &mgctx);
 117	spin_unlock_irq(&css_set_lock);
 118
 119	ret = cgroup_migrate_prepare_dst(&mgctx);
 120	if (ret)
 121		goto out_err;
 122
 123	/*
 124	 * Migrate tasks one-by-one until @from is empty.  This fails iff
 125	 * ->can_attach() fails.
 126	 */
 127	do {
 128		css_task_iter_start(&from->self, 0, &it);
 129
 130		do {
 131			task = css_task_iter_next(&it);
 132		} while (task && (task->flags & PF_EXITING));
 133
 134		if (task)
 135			get_task_struct(task);
 136		css_task_iter_end(&it);
 137
 138		if (task) {
 139			ret = cgroup_migrate(task, false, &mgctx);
 140			if (!ret)
 141				TRACE_CGROUP_PATH(transfer_tasks, to, task, false);
 142			put_task_struct(task);
 143		}
 144	} while (task && !ret);
 145out_err:
 146	cgroup_migrate_finish(&mgctx);
 147	percpu_up_write(&cgroup_threadgroup_rwsem);
 148	mutex_unlock(&cgroup_mutex);
 149	return ret;
 150}
 151
 152/*
 153 * Stuff for reading the 'tasks'/'procs' files.
 154 *
 155 * Reading this file can return large amounts of data if a cgroup has
 156 * *lots* of attached tasks. So it may need several calls to read(),
 157 * but we cannot guarantee that the information we produce is correct
 158 * unless we produce it entirely atomically.
 159 *
 160 */
 161
 162/* which pidlist file are we talking about? */
 163enum cgroup_filetype {
 164	CGROUP_FILE_PROCS,
 165	CGROUP_FILE_TASKS,
 166};
 167
 168/*
 169 * A pidlist is a list of pids that virtually represents the contents of one
 170 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
 171 * a pair (one each for procs, tasks) for each pid namespace that's relevant
 172 * to the cgroup.
 173 */
 174struct cgroup_pidlist {
 175	/*
 176	 * used to find which pidlist is wanted. doesn't change as long as
 177	 * this particular list stays in the list.
 178	*/
 179	struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
 180	/* array of xids */
 181	pid_t *list;
 182	/* how many elements the above list has */
 183	int length;
 184	/* each of these stored in a list by its cgroup */
 185	struct list_head links;
 186	/* pointer to the cgroup we belong to, for list removal purposes */
 187	struct cgroup *owner;
 188	/* for delayed destruction */
 189	struct delayed_work destroy_dwork;
 190};
 191
 192/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 193 * Used to destroy all pidlists lingering waiting for destroy timer.  None
 194 * should be left afterwards.
 195 */
 196void cgroup1_pidlist_destroy_all(struct cgroup *cgrp)
 197{
 198	struct cgroup_pidlist *l, *tmp_l;
 199
 200	mutex_lock(&cgrp->pidlist_mutex);
 201	list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
 202		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
 203	mutex_unlock(&cgrp->pidlist_mutex);
 204
 205	flush_workqueue(cgroup_pidlist_destroy_wq);
 206	BUG_ON(!list_empty(&cgrp->pidlists));
 207}
 208
 209static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
 210{
 211	struct delayed_work *dwork = to_delayed_work(work);
 212	struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
 213						destroy_dwork);
 214	struct cgroup_pidlist *tofree = NULL;
 215
 216	mutex_lock(&l->owner->pidlist_mutex);
 217
 218	/*
 219	 * Destroy iff we didn't get queued again.  The state won't change
 220	 * as destroy_dwork can only be queued while locked.
 221	 */
 222	if (!delayed_work_pending(dwork)) {
 223		list_del(&l->links);
 224		kvfree(l->list);
 225		put_pid_ns(l->key.ns);
 226		tofree = l;
 227	}
 228
 229	mutex_unlock(&l->owner->pidlist_mutex);
 230	kfree(tofree);
 231}
 232
 233/*
 234 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
 235 * Returns the number of unique elements.
 236 */
 237static int pidlist_uniq(pid_t *list, int length)
 238{
 239	int src, dest = 1;
 240
 241	/*
 242	 * we presume the 0th element is unique, so i starts at 1. trivial
 243	 * edge cases first; no work needs to be done for either
 244	 */
 245	if (length == 0 || length == 1)
 246		return length;
 247	/* src and dest walk down the list; dest counts unique elements */
 248	for (src = 1; src < length; src++) {
 249		/* find next unique element */
 250		while (list[src] == list[src-1]) {
 251			src++;
 252			if (src == length)
 253				goto after;
 254		}
 255		/* dest always points to where the next unique element goes */
 256		list[dest] = list[src];
 257		dest++;
 258	}
 259after:
 260	return dest;
 261}
 262
 263/*
 264 * The two pid files - task and cgroup.procs - guaranteed that the result
 265 * is sorted, which forced this whole pidlist fiasco.  As pid order is
 266 * different per namespace, each namespace needs differently sorted list,
 267 * making it impossible to use, for example, single rbtree of member tasks
 268 * sorted by task pointer.  As pidlists can be fairly large, allocating one
 269 * per open file is dangerous, so cgroup had to implement shared pool of
 270 * pidlists keyed by cgroup and namespace.
 271 */
 272static int cmppid(const void *a, const void *b)
 273{
 274	return *(pid_t *)a - *(pid_t *)b;
 275}
 276
 277static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
 278						  enum cgroup_filetype type)
 279{
 280	struct cgroup_pidlist *l;
 281	/* don't need task_nsproxy() if we're looking at ourself */
 282	struct pid_namespace *ns = task_active_pid_ns(current);
 283
 284	lockdep_assert_held(&cgrp->pidlist_mutex);
 285
 286	list_for_each_entry(l, &cgrp->pidlists, links)
 287		if (l->key.type == type && l->key.ns == ns)
 288			return l;
 289	return NULL;
 290}
 291
 292/*
 293 * find the appropriate pidlist for our purpose (given procs vs tasks)
 294 * returns with the lock on that pidlist already held, and takes care
 295 * of the use count, or returns NULL with no locks held if we're out of
 296 * memory.
 297 */
 298static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
 299						enum cgroup_filetype type)
 300{
 301	struct cgroup_pidlist *l;
 302
 303	lockdep_assert_held(&cgrp->pidlist_mutex);
 304
 305	l = cgroup_pidlist_find(cgrp, type);
 306	if (l)
 307		return l;
 308
 309	/* entry not found; create a new one */
 310	l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
 311	if (!l)
 312		return l;
 313
 314	INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
 315	l->key.type = type;
 316	/* don't need task_nsproxy() if we're looking at ourself */
 317	l->key.ns = get_pid_ns(task_active_pid_ns(current));
 318	l->owner = cgrp;
 319	list_add(&l->links, &cgrp->pidlists);
 320	return l;
 321}
 322
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 323/*
 324 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
 325 */
 326static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
 327			      struct cgroup_pidlist **lp)
 328{
 329	pid_t *array;
 330	int length;
 331	int pid, n = 0; /* used for populating the array */
 332	struct css_task_iter it;
 333	struct task_struct *tsk;
 334	struct cgroup_pidlist *l;
 335
 336	lockdep_assert_held(&cgrp->pidlist_mutex);
 337
 338	/*
 339	 * If cgroup gets more users after we read count, we won't have
 340	 * enough space - tough.  This race is indistinguishable to the
 341	 * caller from the case that the additional cgroup users didn't
 342	 * show up until sometime later on.
 343	 */
 344	length = cgroup_task_count(cgrp);
 345	array = kvmalloc_array(length, sizeof(pid_t), GFP_KERNEL);
 346	if (!array)
 347		return -ENOMEM;
 348	/* now, populate the array */
 349	css_task_iter_start(&cgrp->self, 0, &it);
 350	while ((tsk = css_task_iter_next(&it))) {
 351		if (unlikely(n == length))
 352			break;
 353		/* get tgid or pid for procs or tasks file respectively */
 354		if (type == CGROUP_FILE_PROCS)
 355			pid = task_tgid_vnr(tsk);
 356		else
 357			pid = task_pid_vnr(tsk);
 358		if (pid > 0) /* make sure to only use valid results */
 359			array[n++] = pid;
 360	}
 361	css_task_iter_end(&it);
 362	length = n;
 363	/* now sort & (if procs) strip out duplicates */
 364	sort(array, length, sizeof(pid_t), cmppid, NULL);
 365	if (type == CGROUP_FILE_PROCS)
 366		length = pidlist_uniq(array, length);
 367
 368	l = cgroup_pidlist_find_create(cgrp, type);
 369	if (!l) {
 370		kvfree(array);
 371		return -ENOMEM;
 372	}
 373
 374	/* store array, freeing old if necessary */
 375	kvfree(l->list);
 376	l->list = array;
 377	l->length = length;
 378	*lp = l;
 379	return 0;
 380}
 381
 382/*
 383 * seq_file methods for the tasks/procs files. The seq_file position is the
 384 * next pid to display; the seq_file iterator is a pointer to the pid
 385 * in the cgroup->l->list array.
 386 */
 387
 388static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
 389{
 390	/*
 391	 * Initially we receive a position value that corresponds to
 392	 * one more than the last pid shown (or 0 on the first call or
 393	 * after a seek to the start). Use a binary-search to find the
 394	 * next pid to display, if any
 395	 */
 396	struct kernfs_open_file *of = s->private;
 397	struct cgroup_file_ctx *ctx = of->priv;
 398	struct cgroup *cgrp = seq_css(s)->cgroup;
 399	struct cgroup_pidlist *l;
 400	enum cgroup_filetype type = seq_cft(s)->private;
 401	int index = 0, pid = *pos;
 402	int *iter, ret;
 403
 404	mutex_lock(&cgrp->pidlist_mutex);
 405
 406	/*
 407	 * !NULL @ctx->procs1.pidlist indicates that this isn't the first
 408	 * start() after open. If the matching pidlist is around, we can use
 409	 * that. Look for it. Note that @ctx->procs1.pidlist can't be used
 410	 * directly. It could already have been destroyed.
 411	 */
 412	if (ctx->procs1.pidlist)
 413		ctx->procs1.pidlist = cgroup_pidlist_find(cgrp, type);
 414
 415	/*
 416	 * Either this is the first start() after open or the matching
 417	 * pidlist has been destroyed inbetween.  Create a new one.
 418	 */
 419	if (!ctx->procs1.pidlist) {
 420		ret = pidlist_array_load(cgrp, type, &ctx->procs1.pidlist);
 
 421		if (ret)
 422			return ERR_PTR(ret);
 423	}
 424	l = ctx->procs1.pidlist;
 425
 426	if (pid) {
 427		int end = l->length;
 428
 429		while (index < end) {
 430			int mid = (index + end) / 2;
 431			if (l->list[mid] == pid) {
 432				index = mid;
 433				break;
 434			} else if (l->list[mid] <= pid)
 435				index = mid + 1;
 436			else
 437				end = mid;
 438		}
 439	}
 440	/* If we're off the end of the array, we're done */
 441	if (index >= l->length)
 442		return NULL;
 443	/* Update the abstract position to be the actual pid that we found */
 444	iter = l->list + index;
 445	*pos = *iter;
 446	return iter;
 447}
 448
 449static void cgroup_pidlist_stop(struct seq_file *s, void *v)
 450{
 451	struct kernfs_open_file *of = s->private;
 452	struct cgroup_file_ctx *ctx = of->priv;
 453	struct cgroup_pidlist *l = ctx->procs1.pidlist;
 454
 455	if (l)
 456		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
 457				 CGROUP_PIDLIST_DESTROY_DELAY);
 458	mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
 459}
 460
 461static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
 462{
 463	struct kernfs_open_file *of = s->private;
 464	struct cgroup_file_ctx *ctx = of->priv;
 465	struct cgroup_pidlist *l = ctx->procs1.pidlist;
 466	pid_t *p = v;
 467	pid_t *end = l->list + l->length;
 468	/*
 469	 * Advance to the next pid in the array. If this goes off the
 470	 * end, we're done
 471	 */
 472	p++;
 473	if (p >= end) {
 474		(*pos)++;
 475		return NULL;
 476	} else {
 477		*pos = *p;
 478		return p;
 479	}
 480}
 481
 482static int cgroup_pidlist_show(struct seq_file *s, void *v)
 483{
 484	seq_printf(s, "%d\n", *(int *)v);
 485
 486	return 0;
 487}
 488
 489static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of,
 490				     char *buf, size_t nbytes, loff_t off,
 491				     bool threadgroup)
 492{
 493	struct cgroup *cgrp;
 494	struct task_struct *task;
 495	const struct cred *cred, *tcred;
 496	ssize_t ret;
 497	bool locked;
 498
 499	cgrp = cgroup_kn_lock_live(of->kn, false);
 500	if (!cgrp)
 501		return -ENODEV;
 502
 503	task = cgroup_procs_write_start(buf, threadgroup, &locked);
 504	ret = PTR_ERR_OR_ZERO(task);
 505	if (ret)
 506		goto out_unlock;
 507
 508	/*
 509	 * Even if we're attaching all tasks in the thread group, we only need
 510	 * to check permissions on one of them. Check permissions using the
 511	 * credentials from file open to protect against inherited fd attacks.
 512	 */
 513	cred = of->file->f_cred;
 514	tcred = get_task_cred(task);
 515	if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
 516	    !uid_eq(cred->euid, tcred->uid) &&
 517	    !uid_eq(cred->euid, tcred->suid))
 518		ret = -EACCES;
 519	put_cred(tcred);
 520	if (ret)
 521		goto out_finish;
 522
 523	ret = cgroup_attach_task(cgrp, task, threadgroup);
 524
 525out_finish:
 526	cgroup_procs_write_finish(task, locked);
 527out_unlock:
 528	cgroup_kn_unlock(of->kn);
 529
 530	return ret ?: nbytes;
 531}
 532
 533static ssize_t cgroup1_procs_write(struct kernfs_open_file *of,
 534				   char *buf, size_t nbytes, loff_t off)
 535{
 536	return __cgroup1_procs_write(of, buf, nbytes, off, true);
 537}
 538
 539static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of,
 540				   char *buf, size_t nbytes, loff_t off)
 541{
 542	return __cgroup1_procs_write(of, buf, nbytes, off, false);
 543}
 544
 545static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
 546					  char *buf, size_t nbytes, loff_t off)
 547{
 548	struct cgroup *cgrp;
 549	struct cgroup_file_ctx *ctx;
 550
 551	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
 552
 553	/*
 554	 * Release agent gets called with all capabilities,
 555	 * require capabilities to set release agent.
 556	 */
 557	ctx = of->priv;
 558	if ((ctx->ns->user_ns != &init_user_ns) ||
 559	    !file_ns_capable(of->file, &init_user_ns, CAP_SYS_ADMIN))
 560		return -EPERM;
 561
 562	cgrp = cgroup_kn_lock_live(of->kn, false);
 563	if (!cgrp)
 564		return -ENODEV;
 565	spin_lock(&release_agent_path_lock);
 566	strlcpy(cgrp->root->release_agent_path, strstrip(buf),
 567		sizeof(cgrp->root->release_agent_path));
 568	spin_unlock(&release_agent_path_lock);
 569	cgroup_kn_unlock(of->kn);
 570	return nbytes;
 571}
 572
 573static int cgroup_release_agent_show(struct seq_file *seq, void *v)
 574{
 575	struct cgroup *cgrp = seq_css(seq)->cgroup;
 576
 577	spin_lock(&release_agent_path_lock);
 578	seq_puts(seq, cgrp->root->release_agent_path);
 579	spin_unlock(&release_agent_path_lock);
 580	seq_putc(seq, '\n');
 581	return 0;
 582}
 583
 584static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
 585{
 586	seq_puts(seq, "0\n");
 587	return 0;
 588}
 589
 590static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
 591					 struct cftype *cft)
 592{
 593	return notify_on_release(css->cgroup);
 594}
 595
 596static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
 597					  struct cftype *cft, u64 val)
 598{
 599	if (val)
 600		set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
 601	else
 602		clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
 603	return 0;
 604}
 605
 606static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
 607				      struct cftype *cft)
 608{
 609	return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
 610}
 611
 612static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
 613				       struct cftype *cft, u64 val)
 614{
 615	if (val)
 616		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
 617	else
 618		clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
 619	return 0;
 620}
 621
 622/* cgroup core interface files for the legacy hierarchies */
 623struct cftype cgroup1_base_files[] = {
 624	{
 625		.name = "cgroup.procs",
 626		.seq_start = cgroup_pidlist_start,
 627		.seq_next = cgroup_pidlist_next,
 628		.seq_stop = cgroup_pidlist_stop,
 629		.seq_show = cgroup_pidlist_show,
 630		.private = CGROUP_FILE_PROCS,
 631		.write = cgroup1_procs_write,
 632	},
 633	{
 634		.name = "cgroup.clone_children",
 635		.read_u64 = cgroup_clone_children_read,
 636		.write_u64 = cgroup_clone_children_write,
 637	},
 638	{
 639		.name = "cgroup.sane_behavior",
 640		.flags = CFTYPE_ONLY_ON_ROOT,
 641		.seq_show = cgroup_sane_behavior_show,
 642	},
 643	{
 644		.name = "tasks",
 645		.seq_start = cgroup_pidlist_start,
 646		.seq_next = cgroup_pidlist_next,
 647		.seq_stop = cgroup_pidlist_stop,
 648		.seq_show = cgroup_pidlist_show,
 649		.private = CGROUP_FILE_TASKS,
 650		.write = cgroup1_tasks_write,
 651	},
 652	{
 653		.name = "notify_on_release",
 654		.read_u64 = cgroup_read_notify_on_release,
 655		.write_u64 = cgroup_write_notify_on_release,
 656	},
 657	{
 658		.name = "release_agent",
 659		.flags = CFTYPE_ONLY_ON_ROOT,
 660		.seq_show = cgroup_release_agent_show,
 661		.write = cgroup_release_agent_write,
 662		.max_write_len = PATH_MAX - 1,
 663	},
 664	{ }	/* terminate */
 665};
 666
 667/* Display information about each subsystem and each hierarchy */
 668int proc_cgroupstats_show(struct seq_file *m, void *v)
 669{
 670	struct cgroup_subsys *ss;
 671	int i;
 672
 673	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
 674	/*
 675	 * Grab the subsystems state racily. No need to add avenue to
 676	 * cgroup_mutex contention.
 
 677	 */
 
 678
 679	for_each_subsys(ss, i)
 680		seq_printf(m, "%s\t%d\t%d\t%d\n",
 681			   ss->legacy_name, ss->root->hierarchy_id,
 682			   atomic_read(&ss->root->nr_cgrps),
 683			   cgroup_ssid_enabled(i));
 684
 
 685	return 0;
 686}
 687
 
 
 
 
 
 
 
 
 
 
 
 
 688/**
 689 * cgroupstats_build - build and fill cgroupstats
 690 * @stats: cgroupstats to fill information into
 691 * @dentry: A dentry entry belonging to the cgroup for which stats have
 692 * been requested.
 693 *
 694 * Build and fill cgroupstats so that taskstats can export it to user
 695 * space.
 696 *
 697 * Return: %0 on success or a negative errno code on failure
 698 */
 699int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
 700{
 701	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
 702	struct cgroup *cgrp;
 703	struct css_task_iter it;
 704	struct task_struct *tsk;
 705
 706	/* it should be kernfs_node belonging to cgroupfs and is a directory */
 707	if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
 708	    kernfs_type(kn) != KERNFS_DIR)
 709		return -EINVAL;
 710
 
 
 711	/*
 712	 * We aren't being called from kernfs and there's no guarantee on
 713	 * @kn->priv's validity.  For this and css_tryget_online_from_dir(),
 714	 * @kn->priv is RCU safe.  Let's do the RCU dancing.
 715	 */
 716	rcu_read_lock();
 717	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
 718	if (!cgrp || !cgroup_tryget(cgrp)) {
 719		rcu_read_unlock();
 
 720		return -ENOENT;
 721	}
 722	rcu_read_unlock();
 723
 724	css_task_iter_start(&cgrp->self, 0, &it);
 725	while ((tsk = css_task_iter_next(&it))) {
 726		switch (READ_ONCE(tsk->__state)) {
 727		case TASK_RUNNING:
 728			stats->nr_running++;
 729			break;
 730		case TASK_INTERRUPTIBLE:
 731			stats->nr_sleeping++;
 732			break;
 733		case TASK_UNINTERRUPTIBLE:
 734			stats->nr_uninterruptible++;
 735			break;
 736		case TASK_STOPPED:
 737			stats->nr_stopped++;
 738			break;
 739		default:
 740			if (tsk->in_iowait)
 741				stats->nr_io_wait++;
 742			break;
 743		}
 744	}
 745	css_task_iter_end(&it);
 746
 747	cgroup_put(cgrp);
 748	return 0;
 749}
 750
 751void cgroup1_check_for_release(struct cgroup *cgrp)
 752{
 753	if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
 754	    !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
 755		schedule_work(&cgrp->release_agent_work);
 756}
 757
 758/*
 759 * Notify userspace when a cgroup is released, by running the
 760 * configured release agent with the name of the cgroup (path
 761 * relative to the root of cgroup file system) as the argument.
 762 *
 763 * Most likely, this user command will try to rmdir this cgroup.
 764 *
 765 * This races with the possibility that some other task will be
 766 * attached to this cgroup before it is removed, or that some other
 767 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
 768 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
 769 * unused, and this cgroup will be reprieved from its death sentence,
 770 * to continue to serve a useful existence.  Next time it's released,
 771 * we will get notified again, if it still has 'notify_on_release' set.
 772 *
 773 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
 774 * means only wait until the task is successfully execve()'d.  The
 775 * separate release agent task is forked by call_usermodehelper(),
 776 * then control in this thread returns here, without waiting for the
 777 * release agent task.  We don't bother to wait because the caller of
 778 * this routine has no use for the exit status of the release agent
 779 * task, so no sense holding our caller up for that.
 780 */
 781void cgroup1_release_agent(struct work_struct *work)
 782{
 783	struct cgroup *cgrp =
 784		container_of(work, struct cgroup, release_agent_work);
 785	char *pathbuf, *agentbuf;
 786	char *argv[3], *envp[3];
 787	int ret;
 788
 789	/* snoop agent path and exit early if empty */
 790	if (!cgrp->root->release_agent_path[0])
 791		return;
 792
 793	/* prepare argument buffers */
 794	pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
 795	agentbuf = kmalloc(PATH_MAX, GFP_KERNEL);
 796	if (!pathbuf || !agentbuf)
 797		goto out_free;
 798
 799	spin_lock(&release_agent_path_lock);
 800	strlcpy(agentbuf, cgrp->root->release_agent_path, PATH_MAX);
 801	spin_unlock(&release_agent_path_lock);
 802	if (!agentbuf[0])
 803		goto out_free;
 804
 805	ret = cgroup_path_ns(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
 
 
 806	if (ret < 0 || ret >= PATH_MAX)
 807		goto out_free;
 808
 809	argv[0] = agentbuf;
 810	argv[1] = pathbuf;
 811	argv[2] = NULL;
 812
 813	/* minimal command environment */
 814	envp[0] = "HOME=/";
 815	envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
 816	envp[2] = NULL;
 817
 
 818	call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
 
 
 
 819out_free:
 820	kfree(agentbuf);
 821	kfree(pathbuf);
 822}
 823
 824/*
 825 * cgroup_rename - Only allow simple rename of directories in place.
 826 */
 827static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
 828			  const char *new_name_str)
 829{
 830	struct cgroup *cgrp = kn->priv;
 831	int ret;
 832
 833	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
 834	if (strchr(new_name_str, '\n'))
 835		return -EINVAL;
 836
 837	if (kernfs_type(kn) != KERNFS_DIR)
 838		return -ENOTDIR;
 839	if (kn->parent != new_parent)
 840		return -EIO;
 841
 842	/*
 843	 * We're gonna grab cgroup_mutex which nests outside kernfs
 844	 * active_ref.  kernfs_rename() doesn't require active_ref
 845	 * protection.  Break them before grabbing cgroup_mutex.
 846	 */
 847	kernfs_break_active_protection(new_parent);
 848	kernfs_break_active_protection(kn);
 849
 850	mutex_lock(&cgroup_mutex);
 851
 852	ret = kernfs_rename(kn, new_parent, new_name_str);
 853	if (!ret)
 854		TRACE_CGROUP_PATH(rename, cgrp);
 855
 856	mutex_unlock(&cgroup_mutex);
 857
 858	kernfs_unbreak_active_protection(kn);
 859	kernfs_unbreak_active_protection(new_parent);
 860	return ret;
 861}
 862
 863static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
 864{
 865	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
 866	struct cgroup_subsys *ss;
 867	int ssid;
 868
 869	for_each_subsys(ss, ssid)
 870		if (root->subsys_mask & (1 << ssid))
 871			seq_show_option(seq, ss->legacy_name, NULL);
 872	if (root->flags & CGRP_ROOT_NOPREFIX)
 873		seq_puts(seq, ",noprefix");
 874	if (root->flags & CGRP_ROOT_XATTR)
 875		seq_puts(seq, ",xattr");
 876	if (root->flags & CGRP_ROOT_CPUSET_V2_MODE)
 877		seq_puts(seq, ",cpuset_v2_mode");
 878	if (root->flags & CGRP_ROOT_FAVOR_DYNMODS)
 879		seq_puts(seq, ",favordynmods");
 880
 881	spin_lock(&release_agent_path_lock);
 882	if (strlen(root->release_agent_path))
 883		seq_show_option(seq, "release_agent",
 884				root->release_agent_path);
 885	spin_unlock(&release_agent_path_lock);
 886
 887	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
 888		seq_puts(seq, ",clone_children");
 889	if (strlen(root->name))
 890		seq_show_option(seq, "name", root->name);
 891	return 0;
 892}
 893
 894enum cgroup1_param {
 895	Opt_all,
 896	Opt_clone_children,
 897	Opt_cpuset_v2_mode,
 898	Opt_name,
 899	Opt_none,
 900	Opt_noprefix,
 901	Opt_release_agent,
 902	Opt_xattr,
 903	Opt_favordynmods,
 904	Opt_nofavordynmods,
 905};
 906
 907const struct fs_parameter_spec cgroup1_fs_parameters[] = {
 908	fsparam_flag  ("all",		Opt_all),
 909	fsparam_flag  ("clone_children", Opt_clone_children),
 910	fsparam_flag  ("cpuset_v2_mode", Opt_cpuset_v2_mode),
 911	fsparam_string("name",		Opt_name),
 912	fsparam_flag  ("none",		Opt_none),
 913	fsparam_flag  ("noprefix",	Opt_noprefix),
 914	fsparam_string("release_agent",	Opt_release_agent),
 915	fsparam_flag  ("xattr",		Opt_xattr),
 916	fsparam_flag  ("favordynmods",	Opt_favordynmods),
 917	fsparam_flag  ("nofavordynmods", Opt_nofavordynmods),
 918	{}
 919};
 920
 921int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param)
 922{
 923	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
 924	struct cgroup_subsys *ss;
 925	struct fs_parse_result result;
 926	int opt, i;
 927
 928	opt = fs_parse(fc, cgroup1_fs_parameters, param, &result);
 929	if (opt == -ENOPARAM) {
 930		int ret;
 931
 932		ret = vfs_parse_fs_param_source(fc, param);
 933		if (ret != -ENOPARAM)
 934			return ret;
 935		for_each_subsys(ss, i) {
 936			if (strcmp(param->key, ss->legacy_name))
 937				continue;
 938			if (!cgroup_ssid_enabled(i) || cgroup1_ssid_disabled(i))
 939				return invalfc(fc, "Disabled controller '%s'",
 940					       param->key);
 941			ctx->subsys_mask |= (1 << i);
 942			return 0;
 943		}
 944		return invalfc(fc, "Unknown subsys name '%s'", param->key);
 945	}
 946	if (opt < 0)
 947		return opt;
 948
 949	switch (opt) {
 950	case Opt_none:
 951		/* Explicitly have no subsystems */
 952		ctx->none = true;
 953		break;
 954	case Opt_all:
 955		ctx->all_ss = true;
 956		break;
 957	case Opt_noprefix:
 958		ctx->flags |= CGRP_ROOT_NOPREFIX;
 959		break;
 960	case Opt_clone_children:
 961		ctx->cpuset_clone_children = true;
 962		break;
 963	case Opt_cpuset_v2_mode:
 964		ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE;
 965		break;
 966	case Opt_xattr:
 967		ctx->flags |= CGRP_ROOT_XATTR;
 968		break;
 969	case Opt_favordynmods:
 970		ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
 971		break;
 972	case Opt_nofavordynmods:
 973		ctx->flags &= ~CGRP_ROOT_FAVOR_DYNMODS;
 974		break;
 975	case Opt_release_agent:
 976		/* Specifying two release agents is forbidden */
 977		if (ctx->release_agent)
 978			return invalfc(fc, "release_agent respecified");
 979		/*
 980		 * Release agent gets called with all capabilities,
 981		 * require capabilities to set release agent.
 982		 */
 983		if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN))
 984			return invalfc(fc, "Setting release_agent not allowed");
 985		ctx->release_agent = param->string;
 986		param->string = NULL;
 987		break;
 988	case Opt_name:
 989		/* blocked by boot param? */
 990		if (cgroup_no_v1_named)
 991			return -ENOENT;
 992		/* Can't specify an empty name */
 993		if (!param->size)
 994			return invalfc(fc, "Empty name");
 995		if (param->size > MAX_CGROUP_ROOT_NAMELEN - 1)
 996			return invalfc(fc, "Name too long");
 997		/* Must match [\w.-]+ */
 998		for (i = 0; i < param->size; i++) {
 999			char c = param->string[i];
1000			if (isalnum(c))
1001				continue;
1002			if ((c == '.') || (c == '-') || (c == '_'))
1003				continue;
1004			return invalfc(fc, "Invalid name");
1005		}
1006		/* Specifying two names is forbidden */
1007		if (ctx->name)
1008			return invalfc(fc, "name respecified");
1009		ctx->name = param->string;
1010		param->string = NULL;
1011		break;
1012	}
1013	return 0;
1014}
1015
1016static int check_cgroupfs_options(struct fs_context *fc)
1017{
1018	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1019	u16 mask = U16_MAX;
1020	u16 enabled = 0;
1021	struct cgroup_subsys *ss;
 
1022	int i;
1023
1024#ifdef CONFIG_CPUSETS
1025	mask = ~((u16)1 << cpuset_cgrp_id);
1026#endif
1027	for_each_subsys(ss, i)
1028		if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i))
1029			enabled |= 1 << i;
1030
1031	ctx->subsys_mask &= enabled;
1032
1033	/*
1034	 * In absence of 'none', 'name=' and subsystem name options,
1035	 * let's default to 'all'.
1036	 */
1037	if (!ctx->subsys_mask && !ctx->none && !ctx->name)
1038		ctx->all_ss = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1039
1040	if (ctx->all_ss) {
1041		/* Mutually exclusive option 'all' + subsystem name */
1042		if (ctx->subsys_mask)
1043			return invalfc(fc, "subsys name conflicts with all");
1044		/* 'all' => select all the subsystems */
1045		ctx->subsys_mask = enabled;
1046	}
1047
1048	/*
 
 
 
 
 
 
 
 
 
 
1049	 * We either have to specify by name or by subsystems. (So all
1050	 * empty hierarchies must have a name).
1051	 */
1052	if (!ctx->subsys_mask && !ctx->name)
1053		return invalfc(fc, "Need name or subsystem set");
1054
1055	/*
1056	 * Option noprefix was introduced just for backward compatibility
1057	 * with the old cpuset, so we allow noprefix only if mounting just
1058	 * the cpuset subsystem.
1059	 */
1060	if ((ctx->flags & CGRP_ROOT_NOPREFIX) && (ctx->subsys_mask & mask))
1061		return invalfc(fc, "noprefix used incorrectly");
1062
1063	/* Can't specify "none" and some subsystems */
1064	if (ctx->subsys_mask && ctx->none)
1065		return invalfc(fc, "none used incorrectly");
1066
1067	return 0;
1068}
1069
1070int cgroup1_reconfigure(struct fs_context *fc)
1071{
1072	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1073	struct kernfs_root *kf_root = kernfs_root_from_sb(fc->root->d_sb);
1074	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1075	int ret = 0;
 
 
1076	u16 added_mask, removed_mask;
1077
1078	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1079
1080	/* See what subsystems are wanted */
1081	ret = check_cgroupfs_options(fc);
1082	if (ret)
1083		goto out_unlock;
1084
1085	if (ctx->subsys_mask != root->subsys_mask || ctx->release_agent)
1086		pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1087			task_tgid_nr(current), current->comm);
1088
1089	added_mask = ctx->subsys_mask & ~root->subsys_mask;
1090	removed_mask = root->subsys_mask & ~ctx->subsys_mask;
1091
1092	/* Don't allow flags or name to change at remount */
1093	if ((ctx->flags ^ root->flags) ||
1094	    (ctx->name && strcmp(ctx->name, root->name))) {
1095		errorfc(fc, "option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"",
1096		       ctx->flags, ctx->name ?: "", root->flags, root->name);
1097		ret = -EINVAL;
1098		goto out_unlock;
1099	}
1100
1101	/* remounting is not allowed for populated hierarchies */
1102	if (!list_empty(&root->cgrp.self.children)) {
1103		ret = -EBUSY;
1104		goto out_unlock;
1105	}
1106
1107	ret = rebind_subsystems(root, added_mask);
1108	if (ret)
1109		goto out_unlock;
1110
1111	WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1112
1113	if (ctx->release_agent) {
1114		spin_lock(&release_agent_path_lock);
1115		strcpy(root->release_agent_path, ctx->release_agent);
1116		spin_unlock(&release_agent_path_lock);
1117	}
1118
1119	trace_cgroup_remount(root);
1120
1121 out_unlock:
 
 
1122	mutex_unlock(&cgroup_mutex);
1123	return ret;
1124}
1125
1126struct kernfs_syscall_ops cgroup1_kf_syscall_ops = {
1127	.rename			= cgroup1_rename,
1128	.show_options		= cgroup1_show_options,
 
1129	.mkdir			= cgroup_mkdir,
1130	.rmdir			= cgroup_rmdir,
1131	.show_path		= cgroup_show_path,
1132};
1133
1134/*
1135 * The guts of cgroup1 mount - find or create cgroup_root to use.
1136 * Called with cgroup_mutex held; returns 0 on success, -E... on
1137 * error and positive - in case when the candidate is busy dying.
1138 * On success it stashes a reference to cgroup_root into given
1139 * cgroup_fs_context; that reference is *NOT* counting towards the
1140 * cgroup_root refcount.
1141 */
1142static int cgroup1_root_to_use(struct fs_context *fc)
1143{
1144	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
 
1145	struct cgroup_root *root;
1146	struct cgroup_subsys *ss;
 
1147	int i, ret;
 
 
 
1148
1149	/* First find the desired set of subsystems */
1150	ret = check_cgroupfs_options(fc);
1151	if (ret)
1152		return ret;
1153
1154	/*
1155	 * Destruction of cgroup root is asynchronous, so subsystems may
1156	 * still be dying after the previous unmount.  Let's drain the
1157	 * dying subsystems.  We just need to ensure that the ones
1158	 * unmounted previously finish dying and don't care about new ones
1159	 * starting.  Testing ref liveliness is good enough.
1160	 */
1161	for_each_subsys(ss, i) {
1162		if (!(ctx->subsys_mask & (1 << i)) ||
1163		    ss->root == &cgrp_dfl_root)
1164			continue;
1165
1166		if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt))
1167			return 1;	/* restart */
 
 
 
 
1168		cgroup_put(&ss->root->cgrp);
1169	}
1170
1171	for_each_root(root) {
1172		bool name_match = false;
1173
1174		if (root == &cgrp_dfl_root)
1175			continue;
1176
1177		/*
1178		 * If we asked for a name then it must match.  Also, if
1179		 * name matches but sybsys_mask doesn't, we should fail.
1180		 * Remember whether name matched.
1181		 */
1182		if (ctx->name) {
1183			if (strcmp(ctx->name, root->name))
1184				continue;
1185			name_match = true;
1186		}
1187
1188		/*
1189		 * If we asked for subsystems (or explicitly for no
1190		 * subsystems) then they must match.
1191		 */
1192		if ((ctx->subsys_mask || ctx->none) &&
1193		    (ctx->subsys_mask != root->subsys_mask)) {
1194			if (!name_match)
1195				continue;
1196			return -EBUSY;
 
1197		}
1198
1199		if (root->flags ^ ctx->flags)
1200			pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1201
1202		ctx->root = root;
1203		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1204	}
1205
1206	/*
1207	 * No such thing, create a new one.  name= matching without subsys
1208	 * specification is allowed for already existing hierarchies but we
1209	 * can't create new one without subsys specification.
1210	 */
1211	if (!ctx->subsys_mask && !ctx->none)
1212		return invalfc(fc, "No subsys list or none specified");
 
 
1213
1214	/* Hierarchies may only be created in the initial cgroup namespace. */
1215	if (ctx->ns != &init_cgroup_ns)
1216		return -EPERM;
 
 
1217
1218	root = kzalloc(sizeof(*root), GFP_KERNEL);
1219	if (!root)
1220		return -ENOMEM;
 
 
 
1221
1222	ctx->root = root;
1223	init_cgroup_root(ctx);
1224
1225	ret = cgroup_setup_root(root, ctx->subsys_mask);
1226	if (!ret)
1227		cgroup_favor_dynmods(root, ctx->flags & CGRP_ROOT_FAVOR_DYNMODS);
1228	else
1229		cgroup_free_root(root);
1230
1231	return ret;
1232}
1233
1234int cgroup1_get_tree(struct fs_context *fc)
1235{
1236	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1237	int ret;
1238
1239	/* Check if the caller has permission to mount. */
1240	if (!ns_capable(ctx->ns->user_ns, CAP_SYS_ADMIN))
1241		return -EPERM;
1242
1243	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1244
1245	ret = cgroup1_root_to_use(fc);
1246	if (!ret && !percpu_ref_tryget_live(&ctx->root->cgrp.self.refcnt))
1247		ret = 1;	/* restart */
1248
1249	mutex_unlock(&cgroup_mutex);
 
 
 
1250
1251	if (!ret)
1252		ret = cgroup_do_get_tree(fc);
1253
1254	if (!ret && percpu_ref_is_dying(&ctx->root->cgrp.self.refcnt)) {
1255		fc_drop_locked(fc);
1256		ret = 1;
1257	}
1258
1259	if (unlikely(ret > 0)) {
1260		msleep(10);
1261		return restart_syscall();
 
 
 
 
 
 
 
1262	}
1263	return ret;
 
 
 
 
 
 
 
 
1264}
1265
1266static int __init cgroup1_wq_init(void)
1267{
1268	/*
1269	 * Used to destroy pidlists and separate to serve as flush domain.
1270	 * Cap @max_active to 1 too.
1271	 */
1272	cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
1273						    0, 1);
1274	BUG_ON(!cgroup_pidlist_destroy_wq);
1275	return 0;
1276}
1277core_initcall(cgroup1_wq_init);
1278
1279static int __init cgroup_no_v1(char *str)
1280{
1281	struct cgroup_subsys *ss;
1282	char *token;
1283	int i;
1284
1285	while ((token = strsep(&str, ",")) != NULL) {
1286		if (!*token)
1287			continue;
1288
1289		if (!strcmp(token, "all")) {
1290			cgroup_no_v1_mask = U16_MAX;
1291			continue;
1292		}
1293
1294		if (!strcmp(token, "named")) {
1295			cgroup_no_v1_named = true;
1296			continue;
1297		}
1298
1299		for_each_subsys(ss, i) {
1300			if (strcmp(token, ss->name) &&
1301			    strcmp(token, ss->legacy_name))
1302				continue;
1303
1304			cgroup_no_v1_mask |= 1 << i;
1305		}
1306	}
1307	return 1;
1308}
1309__setup("cgroup_no_v1=", cgroup_no_v1);
v4.17
 
   1#include "cgroup-internal.h"
   2
   3#include <linux/ctype.h>
   4#include <linux/kmod.h>
   5#include <linux/sort.h>
   6#include <linux/delay.h>
   7#include <linux/mm.h>
   8#include <linux/sched/signal.h>
   9#include <linux/sched/task.h>
  10#include <linux/magic.h>
  11#include <linux/slab.h>
  12#include <linux/vmalloc.h>
  13#include <linux/delayacct.h>
  14#include <linux/pid_namespace.h>
  15#include <linux/cgroupstats.h>
 
  16
  17#include <trace/events/cgroup.h>
  18
  19/*
  20 * pidlists linger the following amount before being destroyed.  The goal
  21 * is avoiding frequent destruction in the middle of consecutive read calls
  22 * Expiring in the middle is a performance problem not a correctness one.
  23 * 1 sec should be enough.
  24 */
  25#define CGROUP_PIDLIST_DESTROY_DELAY	HZ
  26
  27/* Controllers blocked by the commandline in v1 */
  28static u16 cgroup_no_v1_mask;
  29
 
 
 
  30/*
  31 * pidlist destructions need to be flushed on cgroup destruction.  Use a
  32 * separate workqueue as flush domain.
  33 */
  34static struct workqueue_struct *cgroup_pidlist_destroy_wq;
  35
  36/*
  37 * Protects cgroup_subsys->release_agent_path.  Modifying it also requires
  38 * cgroup_mutex.  Reading requires either cgroup_mutex or this spinlock.
  39 */
  40static DEFINE_SPINLOCK(release_agent_path_lock);
  41
  42bool cgroup1_ssid_disabled(int ssid)
  43{
  44	return cgroup_no_v1_mask & (1 << ssid);
  45}
  46
  47/**
  48 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
  49 * @from: attach to all cgroups of a given task
  50 * @tsk: the task to be attached
 
 
  51 */
  52int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
  53{
  54	struct cgroup_root *root;
  55	int retval = 0;
  56
  57	mutex_lock(&cgroup_mutex);
  58	percpu_down_write(&cgroup_threadgroup_rwsem);
  59	for_each_root(root) {
  60		struct cgroup *from_cgrp;
  61
  62		if (root == &cgrp_dfl_root)
  63			continue;
  64
  65		spin_lock_irq(&css_set_lock);
  66		from_cgrp = task_cgroup_from_root(from, root);
  67		spin_unlock_irq(&css_set_lock);
  68
  69		retval = cgroup_attach_task(from_cgrp, tsk, false);
  70		if (retval)
  71			break;
  72	}
  73	percpu_up_write(&cgroup_threadgroup_rwsem);
  74	mutex_unlock(&cgroup_mutex);
  75
  76	return retval;
  77}
  78EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
  79
  80/**
  81 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
  82 * @to: cgroup to which the tasks will be moved
  83 * @from: cgroup in which the tasks currently reside
  84 *
  85 * Locking rules between cgroup_post_fork() and the migration path
  86 * guarantee that, if a task is forking while being migrated, the new child
  87 * is guaranteed to be either visible in the source cgroup after the
  88 * parent's migration is complete or put into the target cgroup.  No task
  89 * can slip out of migration through forking.
 
 
  90 */
  91int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
  92{
  93	DEFINE_CGROUP_MGCTX(mgctx);
  94	struct cgrp_cset_link *link;
  95	struct css_task_iter it;
  96	struct task_struct *task;
  97	int ret;
  98
  99	if (cgroup_on_dfl(to))
 100		return -EINVAL;
 101
 102	ret = cgroup_migrate_vet_dst(to);
 103	if (ret)
 104		return ret;
 105
 106	mutex_lock(&cgroup_mutex);
 107
 108	percpu_down_write(&cgroup_threadgroup_rwsem);
 109
 110	/* all tasks in @from are being moved, all csets are source */
 111	spin_lock_irq(&css_set_lock);
 112	list_for_each_entry(link, &from->cset_links, cset_link)
 113		cgroup_migrate_add_src(link->cset, to, &mgctx);
 114	spin_unlock_irq(&css_set_lock);
 115
 116	ret = cgroup_migrate_prepare_dst(&mgctx);
 117	if (ret)
 118		goto out_err;
 119
 120	/*
 121	 * Migrate tasks one-by-one until @from is empty.  This fails iff
 122	 * ->can_attach() fails.
 123	 */
 124	do {
 125		css_task_iter_start(&from->self, 0, &it);
 126
 127		do {
 128			task = css_task_iter_next(&it);
 129		} while (task && (task->flags & PF_EXITING));
 130
 131		if (task)
 132			get_task_struct(task);
 133		css_task_iter_end(&it);
 134
 135		if (task) {
 136			ret = cgroup_migrate(task, false, &mgctx);
 137			if (!ret)
 138				trace_cgroup_transfer_tasks(to, task, false);
 139			put_task_struct(task);
 140		}
 141	} while (task && !ret);
 142out_err:
 143	cgroup_migrate_finish(&mgctx);
 144	percpu_up_write(&cgroup_threadgroup_rwsem);
 145	mutex_unlock(&cgroup_mutex);
 146	return ret;
 147}
 148
 149/*
 150 * Stuff for reading the 'tasks'/'procs' files.
 151 *
 152 * Reading this file can return large amounts of data if a cgroup has
 153 * *lots* of attached tasks. So it may need several calls to read(),
 154 * but we cannot guarantee that the information we produce is correct
 155 * unless we produce it entirely atomically.
 156 *
 157 */
 158
 159/* which pidlist file are we talking about? */
 160enum cgroup_filetype {
 161	CGROUP_FILE_PROCS,
 162	CGROUP_FILE_TASKS,
 163};
 164
 165/*
 166 * A pidlist is a list of pids that virtually represents the contents of one
 167 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
 168 * a pair (one each for procs, tasks) for each pid namespace that's relevant
 169 * to the cgroup.
 170 */
 171struct cgroup_pidlist {
 172	/*
 173	 * used to find which pidlist is wanted. doesn't change as long as
 174	 * this particular list stays in the list.
 175	*/
 176	struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
 177	/* array of xids */
 178	pid_t *list;
 179	/* how many elements the above list has */
 180	int length;
 181	/* each of these stored in a list by its cgroup */
 182	struct list_head links;
 183	/* pointer to the cgroup we belong to, for list removal purposes */
 184	struct cgroup *owner;
 185	/* for delayed destruction */
 186	struct delayed_work destroy_dwork;
 187};
 188
 189/*
 190 * The following two functions "fix" the issue where there are more pids
 191 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
 192 * TODO: replace with a kernel-wide solution to this problem
 193 */
 194#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
 195static void *pidlist_allocate(int count)
 196{
 197	if (PIDLIST_TOO_LARGE(count))
 198		return vmalloc(count * sizeof(pid_t));
 199	else
 200		return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
 201}
 202
 203static void pidlist_free(void *p)
 204{
 205	kvfree(p);
 206}
 207
 208/*
 209 * Used to destroy all pidlists lingering waiting for destroy timer.  None
 210 * should be left afterwards.
 211 */
 212void cgroup1_pidlist_destroy_all(struct cgroup *cgrp)
 213{
 214	struct cgroup_pidlist *l, *tmp_l;
 215
 216	mutex_lock(&cgrp->pidlist_mutex);
 217	list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
 218		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
 219	mutex_unlock(&cgrp->pidlist_mutex);
 220
 221	flush_workqueue(cgroup_pidlist_destroy_wq);
 222	BUG_ON(!list_empty(&cgrp->pidlists));
 223}
 224
 225static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
 226{
 227	struct delayed_work *dwork = to_delayed_work(work);
 228	struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
 229						destroy_dwork);
 230	struct cgroup_pidlist *tofree = NULL;
 231
 232	mutex_lock(&l->owner->pidlist_mutex);
 233
 234	/*
 235	 * Destroy iff we didn't get queued again.  The state won't change
 236	 * as destroy_dwork can only be queued while locked.
 237	 */
 238	if (!delayed_work_pending(dwork)) {
 239		list_del(&l->links);
 240		pidlist_free(l->list);
 241		put_pid_ns(l->key.ns);
 242		tofree = l;
 243	}
 244
 245	mutex_unlock(&l->owner->pidlist_mutex);
 246	kfree(tofree);
 247}
 248
 249/*
 250 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
 251 * Returns the number of unique elements.
 252 */
 253static int pidlist_uniq(pid_t *list, int length)
 254{
 255	int src, dest = 1;
 256
 257	/*
 258	 * we presume the 0th element is unique, so i starts at 1. trivial
 259	 * edge cases first; no work needs to be done for either
 260	 */
 261	if (length == 0 || length == 1)
 262		return length;
 263	/* src and dest walk down the list; dest counts unique elements */
 264	for (src = 1; src < length; src++) {
 265		/* find next unique element */
 266		while (list[src] == list[src-1]) {
 267			src++;
 268			if (src == length)
 269				goto after;
 270		}
 271		/* dest always points to where the next unique element goes */
 272		list[dest] = list[src];
 273		dest++;
 274	}
 275after:
 276	return dest;
 277}
 278
 279/*
 280 * The two pid files - task and cgroup.procs - guaranteed that the result
 281 * is sorted, which forced this whole pidlist fiasco.  As pid order is
 282 * different per namespace, each namespace needs differently sorted list,
 283 * making it impossible to use, for example, single rbtree of member tasks
 284 * sorted by task pointer.  As pidlists can be fairly large, allocating one
 285 * per open file is dangerous, so cgroup had to implement shared pool of
 286 * pidlists keyed by cgroup and namespace.
 287 */
 288static int cmppid(const void *a, const void *b)
 289{
 290	return *(pid_t *)a - *(pid_t *)b;
 291}
 292
 293static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
 294						  enum cgroup_filetype type)
 295{
 296	struct cgroup_pidlist *l;
 297	/* don't need task_nsproxy() if we're looking at ourself */
 298	struct pid_namespace *ns = task_active_pid_ns(current);
 299
 300	lockdep_assert_held(&cgrp->pidlist_mutex);
 301
 302	list_for_each_entry(l, &cgrp->pidlists, links)
 303		if (l->key.type == type && l->key.ns == ns)
 304			return l;
 305	return NULL;
 306}
 307
 308/*
 309 * find the appropriate pidlist for our purpose (given procs vs tasks)
 310 * returns with the lock on that pidlist already held, and takes care
 311 * of the use count, or returns NULL with no locks held if we're out of
 312 * memory.
 313 */
 314static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
 315						enum cgroup_filetype type)
 316{
 317	struct cgroup_pidlist *l;
 318
 319	lockdep_assert_held(&cgrp->pidlist_mutex);
 320
 321	l = cgroup_pidlist_find(cgrp, type);
 322	if (l)
 323		return l;
 324
 325	/* entry not found; create a new one */
 326	l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
 327	if (!l)
 328		return l;
 329
 330	INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
 331	l->key.type = type;
 332	/* don't need task_nsproxy() if we're looking at ourself */
 333	l->key.ns = get_pid_ns(task_active_pid_ns(current));
 334	l->owner = cgrp;
 335	list_add(&l->links, &cgrp->pidlists);
 336	return l;
 337}
 338
 339/**
 340 * cgroup_task_count - count the number of tasks in a cgroup.
 341 * @cgrp: the cgroup in question
 342 */
 343int cgroup_task_count(const struct cgroup *cgrp)
 344{
 345	int count = 0;
 346	struct cgrp_cset_link *link;
 347
 348	spin_lock_irq(&css_set_lock);
 349	list_for_each_entry(link, &cgrp->cset_links, cset_link)
 350		count += link->cset->nr_tasks;
 351	spin_unlock_irq(&css_set_lock);
 352	return count;
 353}
 354
 355/*
 356 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
 357 */
 358static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
 359			      struct cgroup_pidlist **lp)
 360{
 361	pid_t *array;
 362	int length;
 363	int pid, n = 0; /* used for populating the array */
 364	struct css_task_iter it;
 365	struct task_struct *tsk;
 366	struct cgroup_pidlist *l;
 367
 368	lockdep_assert_held(&cgrp->pidlist_mutex);
 369
 370	/*
 371	 * If cgroup gets more users after we read count, we won't have
 372	 * enough space - tough.  This race is indistinguishable to the
 373	 * caller from the case that the additional cgroup users didn't
 374	 * show up until sometime later on.
 375	 */
 376	length = cgroup_task_count(cgrp);
 377	array = pidlist_allocate(length);
 378	if (!array)
 379		return -ENOMEM;
 380	/* now, populate the array */
 381	css_task_iter_start(&cgrp->self, 0, &it);
 382	while ((tsk = css_task_iter_next(&it))) {
 383		if (unlikely(n == length))
 384			break;
 385		/* get tgid or pid for procs or tasks file respectively */
 386		if (type == CGROUP_FILE_PROCS)
 387			pid = task_tgid_vnr(tsk);
 388		else
 389			pid = task_pid_vnr(tsk);
 390		if (pid > 0) /* make sure to only use valid results */
 391			array[n++] = pid;
 392	}
 393	css_task_iter_end(&it);
 394	length = n;
 395	/* now sort & (if procs) strip out duplicates */
 396	sort(array, length, sizeof(pid_t), cmppid, NULL);
 397	if (type == CGROUP_FILE_PROCS)
 398		length = pidlist_uniq(array, length);
 399
 400	l = cgroup_pidlist_find_create(cgrp, type);
 401	if (!l) {
 402		pidlist_free(array);
 403		return -ENOMEM;
 404	}
 405
 406	/* store array, freeing old if necessary */
 407	pidlist_free(l->list);
 408	l->list = array;
 409	l->length = length;
 410	*lp = l;
 411	return 0;
 412}
 413
 414/*
 415 * seq_file methods for the tasks/procs files. The seq_file position is the
 416 * next pid to display; the seq_file iterator is a pointer to the pid
 417 * in the cgroup->l->list array.
 418 */
 419
 420static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
 421{
 422	/*
 423	 * Initially we receive a position value that corresponds to
 424	 * one more than the last pid shown (or 0 on the first call or
 425	 * after a seek to the start). Use a binary-search to find the
 426	 * next pid to display, if any
 427	 */
 428	struct kernfs_open_file *of = s->private;
 
 429	struct cgroup *cgrp = seq_css(s)->cgroup;
 430	struct cgroup_pidlist *l;
 431	enum cgroup_filetype type = seq_cft(s)->private;
 432	int index = 0, pid = *pos;
 433	int *iter, ret;
 434
 435	mutex_lock(&cgrp->pidlist_mutex);
 436
 437	/*
 438	 * !NULL @of->priv indicates that this isn't the first start()
 439	 * after open.  If the matching pidlist is around, we can use that.
 440	 * Look for it.  Note that @of->priv can't be used directly.  It
 441	 * could already have been destroyed.
 442	 */
 443	if (of->priv)
 444		of->priv = cgroup_pidlist_find(cgrp, type);
 445
 446	/*
 447	 * Either this is the first start() after open or the matching
 448	 * pidlist has been destroyed inbetween.  Create a new one.
 449	 */
 450	if (!of->priv) {
 451		ret = pidlist_array_load(cgrp, type,
 452					 (struct cgroup_pidlist **)&of->priv);
 453		if (ret)
 454			return ERR_PTR(ret);
 455	}
 456	l = of->priv;
 457
 458	if (pid) {
 459		int end = l->length;
 460
 461		while (index < end) {
 462			int mid = (index + end) / 2;
 463			if (l->list[mid] == pid) {
 464				index = mid;
 465				break;
 466			} else if (l->list[mid] <= pid)
 467				index = mid + 1;
 468			else
 469				end = mid;
 470		}
 471	}
 472	/* If we're off the end of the array, we're done */
 473	if (index >= l->length)
 474		return NULL;
 475	/* Update the abstract position to be the actual pid that we found */
 476	iter = l->list + index;
 477	*pos = *iter;
 478	return iter;
 479}
 480
 481static void cgroup_pidlist_stop(struct seq_file *s, void *v)
 482{
 483	struct kernfs_open_file *of = s->private;
 484	struct cgroup_pidlist *l = of->priv;
 
 485
 486	if (l)
 487		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
 488				 CGROUP_PIDLIST_DESTROY_DELAY);
 489	mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
 490}
 491
 492static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
 493{
 494	struct kernfs_open_file *of = s->private;
 495	struct cgroup_pidlist *l = of->priv;
 
 496	pid_t *p = v;
 497	pid_t *end = l->list + l->length;
 498	/*
 499	 * Advance to the next pid in the array. If this goes off the
 500	 * end, we're done
 501	 */
 502	p++;
 503	if (p >= end) {
 
 504		return NULL;
 505	} else {
 506		*pos = *p;
 507		return p;
 508	}
 509}
 510
 511static int cgroup_pidlist_show(struct seq_file *s, void *v)
 512{
 513	seq_printf(s, "%d\n", *(int *)v);
 514
 515	return 0;
 516}
 517
 518static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of,
 519				     char *buf, size_t nbytes, loff_t off,
 520				     bool threadgroup)
 521{
 522	struct cgroup *cgrp;
 523	struct task_struct *task;
 524	const struct cred *cred, *tcred;
 525	ssize_t ret;
 
 526
 527	cgrp = cgroup_kn_lock_live(of->kn, false);
 528	if (!cgrp)
 529		return -ENODEV;
 530
 531	task = cgroup_procs_write_start(buf, threadgroup);
 532	ret = PTR_ERR_OR_ZERO(task);
 533	if (ret)
 534		goto out_unlock;
 535
 536	/*
 537	 * Even if we're attaching all tasks in the thread group, we only
 538	 * need to check permissions on one of them.
 
 539	 */
 540	cred = current_cred();
 541	tcred = get_task_cred(task);
 542	if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
 543	    !uid_eq(cred->euid, tcred->uid) &&
 544	    !uid_eq(cred->euid, tcred->suid))
 545		ret = -EACCES;
 546	put_cred(tcred);
 547	if (ret)
 548		goto out_finish;
 549
 550	ret = cgroup_attach_task(cgrp, task, threadgroup);
 551
 552out_finish:
 553	cgroup_procs_write_finish(task);
 554out_unlock:
 555	cgroup_kn_unlock(of->kn);
 556
 557	return ret ?: nbytes;
 558}
 559
 560static ssize_t cgroup1_procs_write(struct kernfs_open_file *of,
 561				   char *buf, size_t nbytes, loff_t off)
 562{
 563	return __cgroup1_procs_write(of, buf, nbytes, off, true);
 564}
 565
 566static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of,
 567				   char *buf, size_t nbytes, loff_t off)
 568{
 569	return __cgroup1_procs_write(of, buf, nbytes, off, false);
 570}
 571
 572static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
 573					  char *buf, size_t nbytes, loff_t off)
 574{
 575	struct cgroup *cgrp;
 
 576
 577	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
 578
 
 
 
 
 
 
 
 
 
 579	cgrp = cgroup_kn_lock_live(of->kn, false);
 580	if (!cgrp)
 581		return -ENODEV;
 582	spin_lock(&release_agent_path_lock);
 583	strlcpy(cgrp->root->release_agent_path, strstrip(buf),
 584		sizeof(cgrp->root->release_agent_path));
 585	spin_unlock(&release_agent_path_lock);
 586	cgroup_kn_unlock(of->kn);
 587	return nbytes;
 588}
 589
 590static int cgroup_release_agent_show(struct seq_file *seq, void *v)
 591{
 592	struct cgroup *cgrp = seq_css(seq)->cgroup;
 593
 594	spin_lock(&release_agent_path_lock);
 595	seq_puts(seq, cgrp->root->release_agent_path);
 596	spin_unlock(&release_agent_path_lock);
 597	seq_putc(seq, '\n');
 598	return 0;
 599}
 600
 601static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
 602{
 603	seq_puts(seq, "0\n");
 604	return 0;
 605}
 606
 607static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
 608					 struct cftype *cft)
 609{
 610	return notify_on_release(css->cgroup);
 611}
 612
 613static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
 614					  struct cftype *cft, u64 val)
 615{
 616	if (val)
 617		set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
 618	else
 619		clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
 620	return 0;
 621}
 622
 623static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
 624				      struct cftype *cft)
 625{
 626	return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
 627}
 628
 629static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
 630				       struct cftype *cft, u64 val)
 631{
 632	if (val)
 633		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
 634	else
 635		clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
 636	return 0;
 637}
 638
 639/* cgroup core interface files for the legacy hierarchies */
 640struct cftype cgroup1_base_files[] = {
 641	{
 642		.name = "cgroup.procs",
 643		.seq_start = cgroup_pidlist_start,
 644		.seq_next = cgroup_pidlist_next,
 645		.seq_stop = cgroup_pidlist_stop,
 646		.seq_show = cgroup_pidlist_show,
 647		.private = CGROUP_FILE_PROCS,
 648		.write = cgroup1_procs_write,
 649	},
 650	{
 651		.name = "cgroup.clone_children",
 652		.read_u64 = cgroup_clone_children_read,
 653		.write_u64 = cgroup_clone_children_write,
 654	},
 655	{
 656		.name = "cgroup.sane_behavior",
 657		.flags = CFTYPE_ONLY_ON_ROOT,
 658		.seq_show = cgroup_sane_behavior_show,
 659	},
 660	{
 661		.name = "tasks",
 662		.seq_start = cgroup_pidlist_start,
 663		.seq_next = cgroup_pidlist_next,
 664		.seq_stop = cgroup_pidlist_stop,
 665		.seq_show = cgroup_pidlist_show,
 666		.private = CGROUP_FILE_TASKS,
 667		.write = cgroup1_tasks_write,
 668	},
 669	{
 670		.name = "notify_on_release",
 671		.read_u64 = cgroup_read_notify_on_release,
 672		.write_u64 = cgroup_write_notify_on_release,
 673	},
 674	{
 675		.name = "release_agent",
 676		.flags = CFTYPE_ONLY_ON_ROOT,
 677		.seq_show = cgroup_release_agent_show,
 678		.write = cgroup_release_agent_write,
 679		.max_write_len = PATH_MAX - 1,
 680	},
 681	{ }	/* terminate */
 682};
 683
 684/* Display information about each subsystem and each hierarchy */
 685static int proc_cgroupstats_show(struct seq_file *m, void *v)
 686{
 687	struct cgroup_subsys *ss;
 688	int i;
 689
 690	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
 691	/*
 692	 * ideally we don't want subsystems moving around while we do this.
 693	 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
 694	 * subsys/hierarchy state.
 695	 */
 696	mutex_lock(&cgroup_mutex);
 697
 698	for_each_subsys(ss, i)
 699		seq_printf(m, "%s\t%d\t%d\t%d\n",
 700			   ss->legacy_name, ss->root->hierarchy_id,
 701			   atomic_read(&ss->root->nr_cgrps),
 702			   cgroup_ssid_enabled(i));
 703
 704	mutex_unlock(&cgroup_mutex);
 705	return 0;
 706}
 707
 708static int cgroupstats_open(struct inode *inode, struct file *file)
 709{
 710	return single_open(file, proc_cgroupstats_show, NULL);
 711}
 712
 713const struct file_operations proc_cgroupstats_operations = {
 714	.open = cgroupstats_open,
 715	.read = seq_read,
 716	.llseek = seq_lseek,
 717	.release = single_release,
 718};
 719
 720/**
 721 * cgroupstats_build - build and fill cgroupstats
 722 * @stats: cgroupstats to fill information into
 723 * @dentry: A dentry entry belonging to the cgroup for which stats have
 724 * been requested.
 725 *
 726 * Build and fill cgroupstats so that taskstats can export it to user
 727 * space.
 
 
 728 */
 729int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
 730{
 731	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
 732	struct cgroup *cgrp;
 733	struct css_task_iter it;
 734	struct task_struct *tsk;
 735
 736	/* it should be kernfs_node belonging to cgroupfs and is a directory */
 737	if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
 738	    kernfs_type(kn) != KERNFS_DIR)
 739		return -EINVAL;
 740
 741	mutex_lock(&cgroup_mutex);
 742
 743	/*
 744	 * We aren't being called from kernfs and there's no guarantee on
 745	 * @kn->priv's validity.  For this and css_tryget_online_from_dir(),
 746	 * @kn->priv is RCU safe.  Let's do the RCU dancing.
 747	 */
 748	rcu_read_lock();
 749	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
 750	if (!cgrp || cgroup_is_dead(cgrp)) {
 751		rcu_read_unlock();
 752		mutex_unlock(&cgroup_mutex);
 753		return -ENOENT;
 754	}
 755	rcu_read_unlock();
 756
 757	css_task_iter_start(&cgrp->self, 0, &it);
 758	while ((tsk = css_task_iter_next(&it))) {
 759		switch (tsk->state) {
 760		case TASK_RUNNING:
 761			stats->nr_running++;
 762			break;
 763		case TASK_INTERRUPTIBLE:
 764			stats->nr_sleeping++;
 765			break;
 766		case TASK_UNINTERRUPTIBLE:
 767			stats->nr_uninterruptible++;
 768			break;
 769		case TASK_STOPPED:
 770			stats->nr_stopped++;
 771			break;
 772		default:
 773			if (delayacct_is_task_waiting_on_io(tsk))
 774				stats->nr_io_wait++;
 775			break;
 776		}
 777	}
 778	css_task_iter_end(&it);
 779
 780	mutex_unlock(&cgroup_mutex);
 781	return 0;
 782}
 783
 784void cgroup1_check_for_release(struct cgroup *cgrp)
 785{
 786	if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
 787	    !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
 788		schedule_work(&cgrp->release_agent_work);
 789}
 790
 791/*
 792 * Notify userspace when a cgroup is released, by running the
 793 * configured release agent with the name of the cgroup (path
 794 * relative to the root of cgroup file system) as the argument.
 795 *
 796 * Most likely, this user command will try to rmdir this cgroup.
 797 *
 798 * This races with the possibility that some other task will be
 799 * attached to this cgroup before it is removed, or that some other
 800 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
 801 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
 802 * unused, and this cgroup will be reprieved from its death sentence,
 803 * to continue to serve a useful existence.  Next time it's released,
 804 * we will get notified again, if it still has 'notify_on_release' set.
 805 *
 806 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
 807 * means only wait until the task is successfully execve()'d.  The
 808 * separate release agent task is forked by call_usermodehelper(),
 809 * then control in this thread returns here, without waiting for the
 810 * release agent task.  We don't bother to wait because the caller of
 811 * this routine has no use for the exit status of the release agent
 812 * task, so no sense holding our caller up for that.
 813 */
 814void cgroup1_release_agent(struct work_struct *work)
 815{
 816	struct cgroup *cgrp =
 817		container_of(work, struct cgroup, release_agent_work);
 818	char *pathbuf = NULL, *agentbuf = NULL;
 819	char *argv[3], *envp[3];
 820	int ret;
 821
 822	mutex_lock(&cgroup_mutex);
 
 
 823
 
 824	pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
 825	agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
 826	if (!pathbuf || !agentbuf)
 827		goto out;
 
 
 
 
 
 
 828
 829	spin_lock_irq(&css_set_lock);
 830	ret = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
 831	spin_unlock_irq(&css_set_lock);
 832	if (ret < 0 || ret >= PATH_MAX)
 833		goto out;
 834
 835	argv[0] = agentbuf;
 836	argv[1] = pathbuf;
 837	argv[2] = NULL;
 838
 839	/* minimal command environment */
 840	envp[0] = "HOME=/";
 841	envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
 842	envp[2] = NULL;
 843
 844	mutex_unlock(&cgroup_mutex);
 845	call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
 846	goto out_free;
 847out:
 848	mutex_unlock(&cgroup_mutex);
 849out_free:
 850	kfree(agentbuf);
 851	kfree(pathbuf);
 852}
 853
 854/*
 855 * cgroup_rename - Only allow simple rename of directories in place.
 856 */
 857static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
 858			  const char *new_name_str)
 859{
 860	struct cgroup *cgrp = kn->priv;
 861	int ret;
 862
 
 
 
 
 863	if (kernfs_type(kn) != KERNFS_DIR)
 864		return -ENOTDIR;
 865	if (kn->parent != new_parent)
 866		return -EIO;
 867
 868	/*
 869	 * We're gonna grab cgroup_mutex which nests outside kernfs
 870	 * active_ref.  kernfs_rename() doesn't require active_ref
 871	 * protection.  Break them before grabbing cgroup_mutex.
 872	 */
 873	kernfs_break_active_protection(new_parent);
 874	kernfs_break_active_protection(kn);
 875
 876	mutex_lock(&cgroup_mutex);
 877
 878	ret = kernfs_rename(kn, new_parent, new_name_str);
 879	if (!ret)
 880		trace_cgroup_rename(cgrp);
 881
 882	mutex_unlock(&cgroup_mutex);
 883
 884	kernfs_unbreak_active_protection(kn);
 885	kernfs_unbreak_active_protection(new_parent);
 886	return ret;
 887}
 888
 889static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
 890{
 891	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
 892	struct cgroup_subsys *ss;
 893	int ssid;
 894
 895	for_each_subsys(ss, ssid)
 896		if (root->subsys_mask & (1 << ssid))
 897			seq_show_option(seq, ss->legacy_name, NULL);
 898	if (root->flags & CGRP_ROOT_NOPREFIX)
 899		seq_puts(seq, ",noprefix");
 900	if (root->flags & CGRP_ROOT_XATTR)
 901		seq_puts(seq, ",xattr");
 902	if (root->flags & CGRP_ROOT_CPUSET_V2_MODE)
 903		seq_puts(seq, ",cpuset_v2_mode");
 
 
 904
 905	spin_lock(&release_agent_path_lock);
 906	if (strlen(root->release_agent_path))
 907		seq_show_option(seq, "release_agent",
 908				root->release_agent_path);
 909	spin_unlock(&release_agent_path_lock);
 910
 911	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
 912		seq_puts(seq, ",clone_children");
 913	if (strlen(root->name))
 914		seq_show_option(seq, "name", root->name);
 915	return 0;
 916}
 917
 918static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 919{
 920	char *token, *o = data;
 921	bool all_ss = false, one_ss = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 922	u16 mask = U16_MAX;
 
 923	struct cgroup_subsys *ss;
 924	int nr_opts = 0;
 925	int i;
 926
 927#ifdef CONFIG_CPUSETS
 928	mask = ~((u16)1 << cpuset_cgrp_id);
 929#endif
 
 
 
 930
 931	memset(opts, 0, sizeof(*opts));
 932
 933	while ((token = strsep(&o, ",")) != NULL) {
 934		nr_opts++;
 935
 936		if (!*token)
 937			return -EINVAL;
 938		if (!strcmp(token, "none")) {
 939			/* Explicitly have no subsystems */
 940			opts->none = true;
 941			continue;
 942		}
 943		if (!strcmp(token, "all")) {
 944			/* Mutually exclusive option 'all' + subsystem name */
 945			if (one_ss)
 946				return -EINVAL;
 947			all_ss = true;
 948			continue;
 949		}
 950		if (!strcmp(token, "noprefix")) {
 951			opts->flags |= CGRP_ROOT_NOPREFIX;
 952			continue;
 953		}
 954		if (!strcmp(token, "clone_children")) {
 955			opts->cpuset_clone_children = true;
 956			continue;
 957		}
 958		if (!strcmp(token, "cpuset_v2_mode")) {
 959			opts->flags |= CGRP_ROOT_CPUSET_V2_MODE;
 960			continue;
 961		}
 962		if (!strcmp(token, "xattr")) {
 963			opts->flags |= CGRP_ROOT_XATTR;
 964			continue;
 965		}
 966		if (!strncmp(token, "release_agent=", 14)) {
 967			/* Specifying two release agents is forbidden */
 968			if (opts->release_agent)
 969				return -EINVAL;
 970			opts->release_agent =
 971				kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
 972			if (!opts->release_agent)
 973				return -ENOMEM;
 974			continue;
 975		}
 976		if (!strncmp(token, "name=", 5)) {
 977			const char *name = token + 5;
 978			/* Can't specify an empty name */
 979			if (!strlen(name))
 980				return -EINVAL;
 981			/* Must match [\w.-]+ */
 982			for (i = 0; i < strlen(name); i++) {
 983				char c = name[i];
 984				if (isalnum(c))
 985					continue;
 986				if ((c == '.') || (c == '-') || (c == '_'))
 987					continue;
 988				return -EINVAL;
 989			}
 990			/* Specifying two names is forbidden */
 991			if (opts->name)
 992				return -EINVAL;
 993			opts->name = kstrndup(name,
 994					      MAX_CGROUP_ROOT_NAMELEN - 1,
 995					      GFP_KERNEL);
 996			if (!opts->name)
 997				return -ENOMEM;
 998
 999			continue;
1000		}
1001
1002		for_each_subsys(ss, i) {
1003			if (strcmp(token, ss->legacy_name))
1004				continue;
1005			if (!cgroup_ssid_enabled(i))
1006				continue;
1007			if (cgroup1_ssid_disabled(i))
1008				continue;
1009
1010			/* Mutually exclusive option 'all' + subsystem name */
1011			if (all_ss)
1012				return -EINVAL;
1013			opts->subsys_mask |= (1 << i);
1014			one_ss = true;
1015
1016			break;
1017		}
1018		if (i == CGROUP_SUBSYS_COUNT)
1019			return -ENOENT;
 
 
1020	}
1021
1022	/*
1023	 * If the 'all' option was specified select all the subsystems,
1024	 * otherwise if 'none', 'name=' and a subsystem name options were
1025	 * not specified, let's default to 'all'
1026	 */
1027	if (all_ss || (!one_ss && !opts->none && !opts->name))
1028		for_each_subsys(ss, i)
1029			if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i))
1030				opts->subsys_mask |= (1 << i);
1031
1032	/*
1033	 * We either have to specify by name or by subsystems. (So all
1034	 * empty hierarchies must have a name).
1035	 */
1036	if (!opts->subsys_mask && !opts->name)
1037		return -EINVAL;
1038
1039	/*
1040	 * Option noprefix was introduced just for backward compatibility
1041	 * with the old cpuset, so we allow noprefix only if mounting just
1042	 * the cpuset subsystem.
1043	 */
1044	if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1045		return -EINVAL;
1046
1047	/* Can't specify "none" and some subsystems */
1048	if (opts->subsys_mask && opts->none)
1049		return -EINVAL;
1050
1051	return 0;
1052}
1053
1054static int cgroup1_remount(struct kernfs_root *kf_root, int *flags, char *data)
1055{
 
 
 
1056	int ret = 0;
1057	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1058	struct cgroup_sb_opts opts;
1059	u16 added_mask, removed_mask;
1060
1061	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1062
1063	/* See what subsystems are wanted */
1064	ret = parse_cgroupfs_options(data, &opts);
1065	if (ret)
1066		goto out_unlock;
1067
1068	if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1069		pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1070			task_tgid_nr(current), current->comm);
1071
1072	added_mask = opts.subsys_mask & ~root->subsys_mask;
1073	removed_mask = root->subsys_mask & ~opts.subsys_mask;
1074
1075	/* Don't allow flags or name to change at remount */
1076	if ((opts.flags ^ root->flags) ||
1077	    (opts.name && strcmp(opts.name, root->name))) {
1078		pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1079		       opts.flags, opts.name ?: "", root->flags, root->name);
1080		ret = -EINVAL;
1081		goto out_unlock;
1082	}
1083
1084	/* remounting is not allowed for populated hierarchies */
1085	if (!list_empty(&root->cgrp.self.children)) {
1086		ret = -EBUSY;
1087		goto out_unlock;
1088	}
1089
1090	ret = rebind_subsystems(root, added_mask);
1091	if (ret)
1092		goto out_unlock;
1093
1094	WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1095
1096	if (opts.release_agent) {
1097		spin_lock(&release_agent_path_lock);
1098		strcpy(root->release_agent_path, opts.release_agent);
1099		spin_unlock(&release_agent_path_lock);
1100	}
1101
1102	trace_cgroup_remount(root);
1103
1104 out_unlock:
1105	kfree(opts.release_agent);
1106	kfree(opts.name);
1107	mutex_unlock(&cgroup_mutex);
1108	return ret;
1109}
1110
1111struct kernfs_syscall_ops cgroup1_kf_syscall_ops = {
1112	.rename			= cgroup1_rename,
1113	.show_options		= cgroup1_show_options,
1114	.remount_fs		= cgroup1_remount,
1115	.mkdir			= cgroup_mkdir,
1116	.rmdir			= cgroup_rmdir,
1117	.show_path		= cgroup_show_path,
1118};
1119
1120struct dentry *cgroup1_mount(struct file_system_type *fs_type, int flags,
1121			     void *data, unsigned long magic,
1122			     struct cgroup_namespace *ns)
 
 
 
 
 
 
1123{
1124	struct super_block *pinned_sb = NULL;
1125	struct cgroup_sb_opts opts;
1126	struct cgroup_root *root;
1127	struct cgroup_subsys *ss;
1128	struct dentry *dentry;
1129	int i, ret;
1130	bool new_root = false;
1131
1132	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1133
1134	/* First find the desired set of subsystems */
1135	ret = parse_cgroupfs_options(data, &opts);
1136	if (ret)
1137		goto out_unlock;
1138
1139	/*
1140	 * Destruction of cgroup root is asynchronous, so subsystems may
1141	 * still be dying after the previous unmount.  Let's drain the
1142	 * dying subsystems.  We just need to ensure that the ones
1143	 * unmounted previously finish dying and don't care about new ones
1144	 * starting.  Testing ref liveliness is good enough.
1145	 */
1146	for_each_subsys(ss, i) {
1147		if (!(opts.subsys_mask & (1 << i)) ||
1148		    ss->root == &cgrp_dfl_root)
1149			continue;
1150
1151		if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
1152			mutex_unlock(&cgroup_mutex);
1153			msleep(10);
1154			ret = restart_syscall();
1155			goto out_free;
1156		}
1157		cgroup_put(&ss->root->cgrp);
1158	}
1159
1160	for_each_root(root) {
1161		bool name_match = false;
1162
1163		if (root == &cgrp_dfl_root)
1164			continue;
1165
1166		/*
1167		 * If we asked for a name then it must match.  Also, if
1168		 * name matches but sybsys_mask doesn't, we should fail.
1169		 * Remember whether name matched.
1170		 */
1171		if (opts.name) {
1172			if (strcmp(opts.name, root->name))
1173				continue;
1174			name_match = true;
1175		}
1176
1177		/*
1178		 * If we asked for subsystems (or explicitly for no
1179		 * subsystems) then they must match.
1180		 */
1181		if ((opts.subsys_mask || opts.none) &&
1182		    (opts.subsys_mask != root->subsys_mask)) {
1183			if (!name_match)
1184				continue;
1185			ret = -EBUSY;
1186			goto out_unlock;
1187		}
1188
1189		if (root->flags ^ opts.flags)
1190			pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1191
1192		/*
1193		 * We want to reuse @root whose lifetime is governed by its
1194		 * ->cgrp.  Let's check whether @root is alive and keep it
1195		 * that way.  As cgroup_kill_sb() can happen anytime, we
1196		 * want to block it by pinning the sb so that @root doesn't
1197		 * get killed before mount is complete.
1198		 *
1199		 * With the sb pinned, tryget_live can reliably indicate
1200		 * whether @root can be reused.  If it's being killed,
1201		 * drain it.  We can use wait_queue for the wait but this
1202		 * path is super cold.  Let's just sleep a bit and retry.
1203		 */
1204		pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
1205		if (IS_ERR(pinned_sb) ||
1206		    !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
1207			mutex_unlock(&cgroup_mutex);
1208			if (!IS_ERR_OR_NULL(pinned_sb))
1209				deactivate_super(pinned_sb);
1210			msleep(10);
1211			ret = restart_syscall();
1212			goto out_free;
1213		}
1214
1215		ret = 0;
1216		goto out_unlock;
1217	}
1218
1219	/*
1220	 * No such thing, create a new one.  name= matching without subsys
1221	 * specification is allowed for already existing hierarchies but we
1222	 * can't create new one without subsys specification.
1223	 */
1224	if (!opts.subsys_mask && !opts.none) {
1225		ret = -EINVAL;
1226		goto out_unlock;
1227	}
1228
1229	/* Hierarchies may only be created in the initial cgroup namespace. */
1230	if (ns != &init_cgroup_ns) {
1231		ret = -EPERM;
1232		goto out_unlock;
1233	}
1234
1235	root = kzalloc(sizeof(*root), GFP_KERNEL);
1236	if (!root) {
1237		ret = -ENOMEM;
1238		goto out_unlock;
1239	}
1240	new_root = true;
1241
1242	init_cgroup_root(root, &opts);
 
1243
1244	ret = cgroup_setup_root(root, opts.subsys_mask, PERCPU_REF_INIT_DEAD);
1245	if (ret)
 
 
1246		cgroup_free_root(root);
1247
1248out_unlock:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1249	mutex_unlock(&cgroup_mutex);
1250out_free:
1251	kfree(opts.release_agent);
1252	kfree(opts.name);
1253
1254	if (ret)
1255		return ERR_PTR(ret);
1256
1257	dentry = cgroup_do_mount(&cgroup_fs_type, flags, root,
1258				 CGROUP_SUPER_MAGIC, ns);
 
 
1259
1260	/*
1261	 * There's a race window after we release cgroup_mutex and before
1262	 * allocating a superblock. Make sure a concurrent process won't
1263	 * be able to re-use the root during this window by delaying the
1264	 * initialization of root refcnt.
1265	 */
1266	if (new_root) {
1267		mutex_lock(&cgroup_mutex);
1268		percpu_ref_reinit(&root->cgrp.self.refcnt);
1269		mutex_unlock(&cgroup_mutex);
1270	}
1271
1272	/*
1273	 * If @pinned_sb, we're reusing an existing root and holding an
1274	 * extra ref on its sb.  Mount is complete.  Put the extra ref.
1275	 */
1276	if (pinned_sb)
1277		deactivate_super(pinned_sb);
1278
1279	return dentry;
1280}
1281
1282static int __init cgroup1_wq_init(void)
1283{
1284	/*
1285	 * Used to destroy pidlists and separate to serve as flush domain.
1286	 * Cap @max_active to 1 too.
1287	 */
1288	cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
1289						    0, 1);
1290	BUG_ON(!cgroup_pidlist_destroy_wq);
1291	return 0;
1292}
1293core_initcall(cgroup1_wq_init);
1294
1295static int __init cgroup_no_v1(char *str)
1296{
1297	struct cgroup_subsys *ss;
1298	char *token;
1299	int i;
1300
1301	while ((token = strsep(&str, ",")) != NULL) {
1302		if (!*token)
1303			continue;
1304
1305		if (!strcmp(token, "all")) {
1306			cgroup_no_v1_mask = U16_MAX;
1307			break;
 
 
 
 
 
1308		}
1309
1310		for_each_subsys(ss, i) {
1311			if (strcmp(token, ss->name) &&
1312			    strcmp(token, ss->legacy_name))
1313				continue;
1314
1315			cgroup_no_v1_mask |= 1 << i;
1316		}
1317	}
1318	return 1;
1319}
1320__setup("cgroup_no_v1=", cgroup_no_v1);