Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Released under the GPLv2 only.
   4 */
   5
   6#include <linux/module.h>
   7#include <linux/string.h>
   8#include <linux/bitops.h>
   9#include <linux/slab.h>
  10#include <linux/log2.h>
  11#include <linux/kmsan.h>
  12#include <linux/usb.h>
  13#include <linux/wait.h>
  14#include <linux/usb/hcd.h>
  15#include <linux/scatterlist.h>
  16
  17#define to_urb(d) container_of(d, struct urb, kref)
  18
  19
  20static void urb_destroy(struct kref *kref)
  21{
  22	struct urb *urb = to_urb(kref);
  23
  24	if (urb->transfer_flags & URB_FREE_BUFFER)
  25		kfree(urb->transfer_buffer);
  26
  27	kfree(urb);
  28}
  29
  30/**
  31 * usb_init_urb - initializes a urb so that it can be used by a USB driver
  32 * @urb: pointer to the urb to initialize
  33 *
  34 * Initializes a urb so that the USB subsystem can use it properly.
  35 *
  36 * If a urb is created with a call to usb_alloc_urb() it is not
  37 * necessary to call this function.  Only use this if you allocate the
  38 * space for a struct urb on your own.  If you call this function, be
  39 * careful when freeing the memory for your urb that it is no longer in
  40 * use by the USB core.
  41 *
  42 * Only use this function if you _really_ understand what you are doing.
  43 */
  44void usb_init_urb(struct urb *urb)
  45{
  46	if (urb) {
  47		memset(urb, 0, sizeof(*urb));
  48		kref_init(&urb->kref);
  49		INIT_LIST_HEAD(&urb->urb_list);
  50		INIT_LIST_HEAD(&urb->anchor_list);
  51	}
  52}
  53EXPORT_SYMBOL_GPL(usb_init_urb);
  54
  55/**
  56 * usb_alloc_urb - creates a new urb for a USB driver to use
  57 * @iso_packets: number of iso packets for this urb
  58 * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
  59 *	valid options for this.
  60 *
  61 * Creates an urb for the USB driver to use, initializes a few internal
  62 * structures, increments the usage counter, and returns a pointer to it.
  63 *
  64 * If the driver want to use this urb for interrupt, control, or bulk
  65 * endpoints, pass '0' as the number of iso packets.
  66 *
  67 * The driver must call usb_free_urb() when it is finished with the urb.
  68 *
  69 * Return: A pointer to the new urb, or %NULL if no memory is available.
  70 */
  71struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags)
  72{
  73	struct urb *urb;
  74
  75	urb = kmalloc(struct_size(urb, iso_frame_desc, iso_packets),
  76		      mem_flags);
 
  77	if (!urb)
  78		return NULL;
  79	usb_init_urb(urb);
  80	return urb;
  81}
  82EXPORT_SYMBOL_GPL(usb_alloc_urb);
  83
  84/**
  85 * usb_free_urb - frees the memory used by a urb when all users of it are finished
  86 * @urb: pointer to the urb to free, may be NULL
  87 *
  88 * Must be called when a user of a urb is finished with it.  When the last user
  89 * of the urb calls this function, the memory of the urb is freed.
  90 *
  91 * Note: The transfer buffer associated with the urb is not freed unless the
  92 * URB_FREE_BUFFER transfer flag is set.
  93 */
  94void usb_free_urb(struct urb *urb)
  95{
  96	if (urb)
  97		kref_put(&urb->kref, urb_destroy);
  98}
  99EXPORT_SYMBOL_GPL(usb_free_urb);
 100
 101/**
 102 * usb_get_urb - increments the reference count of the urb
 103 * @urb: pointer to the urb to modify, may be NULL
 104 *
 105 * This must be  called whenever a urb is transferred from a device driver to a
 106 * host controller driver.  This allows proper reference counting to happen
 107 * for urbs.
 108 *
 109 * Return: A pointer to the urb with the incremented reference counter.
 110 */
 111struct urb *usb_get_urb(struct urb *urb)
 112{
 113	if (urb)
 114		kref_get(&urb->kref);
 115	return urb;
 116}
 117EXPORT_SYMBOL_GPL(usb_get_urb);
 118
 119/**
 120 * usb_anchor_urb - anchors an URB while it is processed
 121 * @urb: pointer to the urb to anchor
 122 * @anchor: pointer to the anchor
 123 *
 124 * This can be called to have access to URBs which are to be executed
 125 * without bothering to track them
 126 */
 127void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor)
 128{
 129	unsigned long flags;
 130
 131	spin_lock_irqsave(&anchor->lock, flags);
 132	usb_get_urb(urb);
 133	list_add_tail(&urb->anchor_list, &anchor->urb_list);
 134	urb->anchor = anchor;
 135
 136	if (unlikely(anchor->poisoned))
 137		atomic_inc(&urb->reject);
 138
 139	spin_unlock_irqrestore(&anchor->lock, flags);
 140}
 141EXPORT_SYMBOL_GPL(usb_anchor_urb);
 142
 143static int usb_anchor_check_wakeup(struct usb_anchor *anchor)
 144{
 145	return atomic_read(&anchor->suspend_wakeups) == 0 &&
 146		list_empty(&anchor->urb_list);
 147}
 148
 149/* Callers must hold anchor->lock */
 150static void __usb_unanchor_urb(struct urb *urb, struct usb_anchor *anchor)
 151{
 152	urb->anchor = NULL;
 153	list_del(&urb->anchor_list);
 154	usb_put_urb(urb);
 155	if (usb_anchor_check_wakeup(anchor))
 156		wake_up(&anchor->wait);
 157}
 158
 159/**
 160 * usb_unanchor_urb - unanchors an URB
 161 * @urb: pointer to the urb to anchor
 162 *
 163 * Call this to stop the system keeping track of this URB
 164 */
 165void usb_unanchor_urb(struct urb *urb)
 166{
 167	unsigned long flags;
 168	struct usb_anchor *anchor;
 169
 170	if (!urb)
 171		return;
 172
 173	anchor = urb->anchor;
 174	if (!anchor)
 175		return;
 176
 177	spin_lock_irqsave(&anchor->lock, flags);
 178	/*
 179	 * At this point, we could be competing with another thread which
 180	 * has the same intention. To protect the urb from being unanchored
 181	 * twice, only the winner of the race gets the job.
 182	 */
 183	if (likely(anchor == urb->anchor))
 184		__usb_unanchor_urb(urb, anchor);
 185	spin_unlock_irqrestore(&anchor->lock, flags);
 186}
 187EXPORT_SYMBOL_GPL(usb_unanchor_urb);
 188
 189/*-------------------------------------------------------------------*/
 190
 191static const int pipetypes[4] = {
 192	PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
 193};
 194
 195/**
 196 * usb_pipe_type_check - sanity check of a specific pipe for a usb device
 197 * @dev: struct usb_device to be checked
 198 * @pipe: pipe to check
 199 *
 200 * This performs a light-weight sanity check for the endpoint in the
 201 * given usb device.  It returns 0 if the pipe is valid for the specific usb
 202 * device, otherwise a negative error code.
 203 */
 204int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe)
 205{
 206	const struct usb_host_endpoint *ep;
 207
 208	ep = usb_pipe_endpoint(dev, pipe);
 209	if (!ep)
 210		return -EINVAL;
 211	if (usb_pipetype(pipe) != pipetypes[usb_endpoint_type(&ep->desc)])
 212		return -EINVAL;
 213	return 0;
 214}
 215EXPORT_SYMBOL_GPL(usb_pipe_type_check);
 216
 217/**
 218 * usb_urb_ep_type_check - sanity check of endpoint in the given urb
 219 * @urb: urb to be checked
 220 *
 221 * This performs a light-weight sanity check for the endpoint in the
 222 * given urb.  It returns 0 if the urb contains a valid endpoint, otherwise
 223 * a negative error code.
 224 */
 225int usb_urb_ep_type_check(const struct urb *urb)
 226{
 227	return usb_pipe_type_check(urb->dev, urb->pipe);
 228}
 229EXPORT_SYMBOL_GPL(usb_urb_ep_type_check);
 230
 231/**
 232 * usb_submit_urb - issue an asynchronous transfer request for an endpoint
 233 * @urb: pointer to the urb describing the request
 234 * @mem_flags: the type of memory to allocate, see kmalloc() for a list
 235 *	of valid options for this.
 236 *
 237 * This submits a transfer request, and transfers control of the URB
 238 * describing that request to the USB subsystem.  Request completion will
 239 * be indicated later, asynchronously, by calling the completion handler.
 240 * The three types of completion are success, error, and unlink
 241 * (a software-induced fault, also called "request cancellation").
 242 *
 243 * URBs may be submitted in interrupt context.
 244 *
 245 * The caller must have correctly initialized the URB before submitting
 246 * it.  Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
 247 * available to ensure that most fields are correctly initialized, for
 248 * the particular kind of transfer, although they will not initialize
 249 * any transfer flags.
 250 *
 251 * If the submission is successful, the complete() callback from the URB
 252 * will be called exactly once, when the USB core and Host Controller Driver
 253 * (HCD) are finished with the URB.  When the completion function is called,
 254 * control of the URB is returned to the device driver which issued the
 255 * request.  The completion handler may then immediately free or reuse that
 256 * URB.
 257 *
 258 * With few exceptions, USB device drivers should never access URB fields
 259 * provided by usbcore or the HCD until its complete() is called.
 260 * The exceptions relate to periodic transfer scheduling.  For both
 261 * interrupt and isochronous urbs, as part of successful URB submission
 262 * urb->interval is modified to reflect the actual transfer period used
 263 * (normally some power of two units).  And for isochronous urbs,
 264 * urb->start_frame is modified to reflect when the URB's transfers were
 265 * scheduled to start.
 266 *
 267 * Not all isochronous transfer scheduling policies will work, but most
 268 * host controller drivers should easily handle ISO queues going from now
 269 * until 10-200 msec into the future.  Drivers should try to keep at
 270 * least one or two msec of data in the queue; many controllers require
 271 * that new transfers start at least 1 msec in the future when they are
 272 * added.  If the driver is unable to keep up and the queue empties out,
 273 * the behavior for new submissions is governed by the URB_ISO_ASAP flag.
 274 * If the flag is set, or if the queue is idle, then the URB is always
 275 * assigned to the first available (and not yet expired) slot in the
 276 * endpoint's schedule.  If the flag is not set and the queue is active
 277 * then the URB is always assigned to the next slot in the schedule
 278 * following the end of the endpoint's previous URB, even if that slot is
 279 * in the past.  When a packet is assigned in this way to a slot that has
 280 * already expired, the packet is not transmitted and the corresponding
 281 * usb_iso_packet_descriptor's status field will return -EXDEV.  If this
 282 * would happen to all the packets in the URB, submission fails with a
 283 * -EXDEV error code.
 284 *
 285 * For control endpoints, the synchronous usb_control_msg() call is
 286 * often used (in non-interrupt context) instead of this call.
 287 * That is often used through convenience wrappers, for the requests
 288 * that are standardized in the USB 2.0 specification.  For bulk
 289 * endpoints, a synchronous usb_bulk_msg() call is available.
 290 *
 291 * Return:
 292 * 0 on successful submissions. A negative error number otherwise.
 293 *
 294 * Request Queuing:
 295 *
 296 * URBs may be submitted to endpoints before previous ones complete, to
 297 * minimize the impact of interrupt latencies and system overhead on data
 298 * throughput.  With that queuing policy, an endpoint's queue would never
 299 * be empty.  This is required for continuous isochronous data streams,
 300 * and may also be required for some kinds of interrupt transfers. Such
 301 * queuing also maximizes bandwidth utilization by letting USB controllers
 302 * start work on later requests before driver software has finished the
 303 * completion processing for earlier (successful) requests.
 304 *
 305 * As of Linux 2.6, all USB endpoint transfer queues support depths greater
 306 * than one.  This was previously a HCD-specific behavior, except for ISO
 307 * transfers.  Non-isochronous endpoint queues are inactive during cleanup
 308 * after faults (transfer errors or cancellation).
 309 *
 310 * Reserved Bandwidth Transfers:
 311 *
 312 * Periodic transfers (interrupt or isochronous) are performed repeatedly,
 313 * using the interval specified in the urb.  Submitting the first urb to
 314 * the endpoint reserves the bandwidth necessary to make those transfers.
 315 * If the USB subsystem can't allocate sufficient bandwidth to perform
 316 * the periodic request, submitting such a periodic request should fail.
 317 *
 318 * For devices under xHCI, the bandwidth is reserved at configuration time, or
 319 * when the alt setting is selected.  If there is not enough bus bandwidth, the
 320 * configuration/alt setting request will fail.  Therefore, submissions to
 321 * periodic endpoints on devices under xHCI should never fail due to bandwidth
 322 * constraints.
 323 *
 324 * Device drivers must explicitly request that repetition, by ensuring that
 325 * some URB is always on the endpoint's queue (except possibly for short
 326 * periods during completion callbacks).  When there is no longer an urb
 327 * queued, the endpoint's bandwidth reservation is canceled.  This means
 328 * drivers can use their completion handlers to ensure they keep bandwidth
 329 * they need, by reinitializing and resubmitting the just-completed urb
 330 * until the driver longer needs that periodic bandwidth.
 331 *
 332 * Memory Flags:
 333 *
 334 * The general rules for how to decide which mem_flags to use
 335 * are the same as for kmalloc.  There are four
 336 * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
 337 * GFP_ATOMIC.
 338 *
 339 * GFP_NOFS is not ever used, as it has not been implemented yet.
 340 *
 341 * GFP_ATOMIC is used when
 342 *   (a) you are inside a completion handler, an interrupt, bottom half,
 343 *       tasklet or timer, or
 344 *   (b) you are holding a spinlock or rwlock (does not apply to
 345 *       semaphores), or
 346 *   (c) current->state != TASK_RUNNING, this is the case only after
 347 *       you've changed it.
 348 *
 349 * GFP_NOIO is used in the block io path and error handling of storage
 350 * devices.
 351 *
 352 * All other situations use GFP_KERNEL.
 353 *
 354 * Some more specific rules for mem_flags can be inferred, such as
 355 *  (1) start_xmit, timeout, and receive methods of network drivers must
 356 *      use GFP_ATOMIC (they are called with a spinlock held);
 357 *  (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
 358 *      called with a spinlock held);
 359 *  (3) If you use a kernel thread with a network driver you must use
 360 *      GFP_NOIO, unless (b) or (c) apply;
 361 *  (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
 362 *      apply or your are in a storage driver's block io path;
 363 *  (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
 364 *  (6) changing firmware on a running storage or net device uses
 365 *      GFP_NOIO, unless b) or c) apply
 366 *
 367 */
 368int usb_submit_urb(struct urb *urb, gfp_t mem_flags)
 369{
 370	int				xfertype, max;
 371	struct usb_device		*dev;
 372	struct usb_host_endpoint	*ep;
 373	int				is_out;
 374	unsigned int			allowed;
 375
 376	if (!urb || !urb->complete)
 377		return -EINVAL;
 378	if (urb->hcpriv) {
 379		WARN_ONCE(1, "URB %pK submitted while active\n", urb);
 380		return -EBUSY;
 381	}
 382
 383	dev = urb->dev;
 384	if ((!dev) || (dev->state < USB_STATE_UNAUTHENTICATED))
 385		return -ENODEV;
 386
 387	/* For now, get the endpoint from the pipe.  Eventually drivers
 388	 * will be required to set urb->ep directly and we will eliminate
 389	 * urb->pipe.
 390	 */
 391	ep = usb_pipe_endpoint(dev, urb->pipe);
 392	if (!ep)
 393		return -ENOENT;
 394
 395	urb->ep = ep;
 396	urb->status = -EINPROGRESS;
 397	urb->actual_length = 0;
 398
 399	/* Lots of sanity checks, so HCDs can rely on clean data
 400	 * and don't need to duplicate tests
 401	 */
 402	xfertype = usb_endpoint_type(&ep->desc);
 403	if (xfertype == USB_ENDPOINT_XFER_CONTROL) {
 404		struct usb_ctrlrequest *setup =
 405				(struct usb_ctrlrequest *) urb->setup_packet;
 406
 407		if (!setup)
 408			return -ENOEXEC;
 409		is_out = !(setup->bRequestType & USB_DIR_IN) ||
 410				!setup->wLength;
 411		dev_WARN_ONCE(&dev->dev, (usb_pipeout(urb->pipe) != is_out),
 412				"BOGUS control dir, pipe %x doesn't match bRequestType %x\n",
 413				urb->pipe, setup->bRequestType);
 414		if (le16_to_cpu(setup->wLength) != urb->transfer_buffer_length) {
 415			dev_dbg(&dev->dev, "BOGUS control len %d doesn't match transfer length %d\n",
 416					le16_to_cpu(setup->wLength),
 417					urb->transfer_buffer_length);
 418			return -EBADR;
 419		}
 420	} else {
 421		is_out = usb_endpoint_dir_out(&ep->desc);
 422	}
 423
 424	/* Clear the internal flags and cache the direction for later use */
 425	urb->transfer_flags &= ~(URB_DIR_MASK | URB_DMA_MAP_SINGLE |
 426			URB_DMA_MAP_PAGE | URB_DMA_MAP_SG | URB_MAP_LOCAL |
 427			URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL |
 428			URB_DMA_SG_COMBINED);
 429	urb->transfer_flags |= (is_out ? URB_DIR_OUT : URB_DIR_IN);
 430	kmsan_handle_urb(urb, is_out);
 431
 432	if (xfertype != USB_ENDPOINT_XFER_CONTROL &&
 433			dev->state < USB_STATE_CONFIGURED)
 434		return -ENODEV;
 435
 436	max = usb_endpoint_maxp(&ep->desc);
 437	if (max <= 0) {
 438		dev_dbg(&dev->dev,
 439			"bogus endpoint ep%d%s in %s (bad maxpacket %d)\n",
 440			usb_endpoint_num(&ep->desc), is_out ? "out" : "in",
 441			__func__, max);
 442		return -EMSGSIZE;
 443	}
 444
 445	/* periodic transfers limit size per frame/uframe,
 446	 * but drivers only control those sizes for ISO.
 447	 * while we're checking, initialize return status.
 448	 */
 449	if (xfertype == USB_ENDPOINT_XFER_ISOC) {
 450		int	n, len;
 451
 452		/* SuperSpeed isoc endpoints have up to 16 bursts of up to
 453		 * 3 packets each
 454		 */
 455		if (dev->speed >= USB_SPEED_SUPER) {
 456			int     burst = 1 + ep->ss_ep_comp.bMaxBurst;
 457			int     mult = USB_SS_MULT(ep->ss_ep_comp.bmAttributes);
 458			max *= burst;
 459			max *= mult;
 460		}
 461
 462		if (dev->speed == USB_SPEED_SUPER_PLUS &&
 463		    USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes)) {
 464			struct usb_ssp_isoc_ep_comp_descriptor *isoc_ep_comp;
 465
 466			isoc_ep_comp = &ep->ssp_isoc_ep_comp;
 467			max = le32_to_cpu(isoc_ep_comp->dwBytesPerInterval);
 468		}
 469
 470		/* "high bandwidth" mode, 1-3 packets/uframe? */
 471		if (dev->speed == USB_SPEED_HIGH)
 472			max *= usb_endpoint_maxp_mult(&ep->desc);
 473
 474		if (urb->number_of_packets <= 0)
 475			return -EINVAL;
 476		for (n = 0; n < urb->number_of_packets; n++) {
 477			len = urb->iso_frame_desc[n].length;
 478			if (len < 0 || len > max)
 479				return -EMSGSIZE;
 480			urb->iso_frame_desc[n].status = -EXDEV;
 481			urb->iso_frame_desc[n].actual_length = 0;
 482		}
 483	} else if (urb->num_sgs && !urb->dev->bus->no_sg_constraint &&
 484			dev->speed != USB_SPEED_WIRELESS) {
 485		struct scatterlist *sg;
 486		int i;
 487
 488		for_each_sg(urb->sg, sg, urb->num_sgs - 1, i)
 489			if (sg->length % max)
 490				return -EINVAL;
 491	}
 492
 493	/* the I/O buffer must be mapped/unmapped, except when length=0 */
 494	if (urb->transfer_buffer_length > INT_MAX)
 495		return -EMSGSIZE;
 496
 497	/*
 498	 * stuff that drivers shouldn't do, but which shouldn't
 499	 * cause problems in HCDs if they get it wrong.
 500	 */
 501
 502	/* Check that the pipe's type matches the endpoint's type */
 503	if (usb_pipe_type_check(urb->dev, urb->pipe))
 504		dev_WARN(&dev->dev, "BOGUS urb xfer, pipe %x != type %x\n",
 505			usb_pipetype(urb->pipe), pipetypes[xfertype]);
 506
 507	/* Check against a simple/standard policy */
 508	allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT | URB_DIR_MASK |
 509			URB_FREE_BUFFER);
 510	switch (xfertype) {
 511	case USB_ENDPOINT_XFER_BULK:
 512	case USB_ENDPOINT_XFER_INT:
 513		if (is_out)
 514			allowed |= URB_ZERO_PACKET;
 515		fallthrough;
 516	default:			/* all non-iso endpoints */
 517		if (!is_out)
 518			allowed |= URB_SHORT_NOT_OK;
 519		break;
 520	case USB_ENDPOINT_XFER_ISOC:
 521		allowed |= URB_ISO_ASAP;
 522		break;
 523	}
 524	allowed &= urb->transfer_flags;
 525
 526	/* warn if submitter gave bogus flags */
 527	if (allowed != urb->transfer_flags)
 528		dev_WARN(&dev->dev, "BOGUS urb flags, %x --> %x\n",
 529			urb->transfer_flags, allowed);
 530
 531	/*
 532	 * Force periodic transfer intervals to be legal values that are
 533	 * a power of two (so HCDs don't need to).
 534	 *
 535	 * FIXME want bus->{intr,iso}_sched_horizon values here.  Each HC
 536	 * supports different values... this uses EHCI/UHCI defaults (and
 537	 * EHCI can use smaller non-default values).
 538	 */
 539	switch (xfertype) {
 540	case USB_ENDPOINT_XFER_ISOC:
 541	case USB_ENDPOINT_XFER_INT:
 542		/* too small? */
 543		switch (dev->speed) {
 544		case USB_SPEED_WIRELESS:
 545			if ((urb->interval < 6)
 546				&& (xfertype == USB_ENDPOINT_XFER_INT))
 547				return -EINVAL;
 548			fallthrough;
 549		default:
 550			if (urb->interval <= 0)
 551				return -EINVAL;
 552			break;
 553		}
 554		/* too big? */
 555		switch (dev->speed) {
 556		case USB_SPEED_SUPER_PLUS:
 557		case USB_SPEED_SUPER:	/* units are 125us */
 558			/* Handle up to 2^(16-1) microframes */
 559			if (urb->interval > (1 << 15))
 560				return -EINVAL;
 561			max = 1 << 15;
 562			break;
 563		case USB_SPEED_WIRELESS:
 564			if (urb->interval > 16)
 565				return -EINVAL;
 566			break;
 567		case USB_SPEED_HIGH:	/* units are microframes */
 568			/* NOTE usb handles 2^15 */
 569			if (urb->interval > (1024 * 8))
 570				urb->interval = 1024 * 8;
 571			max = 1024 * 8;
 572			break;
 573		case USB_SPEED_FULL:	/* units are frames/msec */
 574		case USB_SPEED_LOW:
 575			if (xfertype == USB_ENDPOINT_XFER_INT) {
 576				if (urb->interval > 255)
 577					return -EINVAL;
 578				/* NOTE ohci only handles up to 32 */
 579				max = 128;
 580			} else {
 581				if (urb->interval > 1024)
 582					urb->interval = 1024;
 583				/* NOTE usb and ohci handle up to 2^15 */
 584				max = 1024;
 585			}
 586			break;
 587		default:
 588			return -EINVAL;
 589		}
 590		if (dev->speed != USB_SPEED_WIRELESS) {
 591			/* Round down to a power of 2, no more than max */
 592			urb->interval = min(max, 1 << ilog2(urb->interval));
 593		}
 594	}
 595
 596	return usb_hcd_submit_urb(urb, mem_flags);
 597}
 598EXPORT_SYMBOL_GPL(usb_submit_urb);
 599
 600/*-------------------------------------------------------------------*/
 601
 602/**
 603 * usb_unlink_urb - abort/cancel a transfer request for an endpoint
 604 * @urb: pointer to urb describing a previously submitted request,
 605 *	may be NULL
 606 *
 607 * This routine cancels an in-progress request.  URBs complete only once
 608 * per submission, and may be canceled only once per submission.
 609 * Successful cancellation means termination of @urb will be expedited
 610 * and the completion handler will be called with a status code
 611 * indicating that the request has been canceled (rather than any other
 612 * code).
 613 *
 614 * Drivers should not call this routine or related routines, such as
 615 * usb_kill_urb() or usb_unlink_anchored_urbs(), after their disconnect
 616 * method has returned.  The disconnect function should synchronize with
 617 * a driver's I/O routines to insure that all URB-related activity has
 618 * completed before it returns.
 619 *
 620 * This request is asynchronous, however the HCD might call the ->complete()
 621 * callback during unlink. Therefore when drivers call usb_unlink_urb(), they
 622 * must not hold any locks that may be taken by the completion function.
 623 * Success is indicated by returning -EINPROGRESS, at which time the URB will
 624 * probably not yet have been given back to the device driver. When it is
 625 * eventually called, the completion function will see @urb->status ==
 626 * -ECONNRESET.
 627 * Failure is indicated by usb_unlink_urb() returning any other value.
 628 * Unlinking will fail when @urb is not currently "linked" (i.e., it was
 629 * never submitted, or it was unlinked before, or the hardware is already
 630 * finished with it), even if the completion handler has not yet run.
 631 *
 632 * The URB must not be deallocated while this routine is running.  In
 633 * particular, when a driver calls this routine, it must insure that the
 634 * completion handler cannot deallocate the URB.
 635 *
 636 * Return: -EINPROGRESS on success. See description for other values on
 637 * failure.
 638 *
 639 * Unlinking and Endpoint Queues:
 640 *
 641 * [The behaviors and guarantees described below do not apply to virtual
 642 * root hubs but only to endpoint queues for physical USB devices.]
 643 *
 644 * Host Controller Drivers (HCDs) place all the URBs for a particular
 645 * endpoint in a queue.  Normally the queue advances as the controller
 646 * hardware processes each request.  But when an URB terminates with an
 647 * error its queue generally stops (see below), at least until that URB's
 648 * completion routine returns.  It is guaranteed that a stopped queue
 649 * will not restart until all its unlinked URBs have been fully retired,
 650 * with their completion routines run, even if that's not until some time
 651 * after the original completion handler returns.  The same behavior and
 652 * guarantee apply when an URB terminates because it was unlinked.
 653 *
 654 * Bulk and interrupt endpoint queues are guaranteed to stop whenever an
 655 * URB terminates with any sort of error, including -ECONNRESET, -ENOENT,
 656 * and -EREMOTEIO.  Control endpoint queues behave the same way except
 657 * that they are not guaranteed to stop for -EREMOTEIO errors.  Queues
 658 * for isochronous endpoints are treated differently, because they must
 659 * advance at fixed rates.  Such queues do not stop when an URB
 660 * encounters an error or is unlinked.  An unlinked isochronous URB may
 661 * leave a gap in the stream of packets; it is undefined whether such
 662 * gaps can be filled in.
 663 *
 664 * Note that early termination of an URB because a short packet was
 665 * received will generate a -EREMOTEIO error if and only if the
 666 * URB_SHORT_NOT_OK flag is set.  By setting this flag, USB device
 667 * drivers can build deep queues for large or complex bulk transfers
 668 * and clean them up reliably after any sort of aborted transfer by
 669 * unlinking all pending URBs at the first fault.
 670 *
 671 * When a control URB terminates with an error other than -EREMOTEIO, it
 672 * is quite likely that the status stage of the transfer will not take
 673 * place.
 674 */
 675int usb_unlink_urb(struct urb *urb)
 676{
 677	if (!urb)
 678		return -EINVAL;
 679	if (!urb->dev)
 680		return -ENODEV;
 681	if (!urb->ep)
 682		return -EIDRM;
 683	return usb_hcd_unlink_urb(urb, -ECONNRESET);
 684}
 685EXPORT_SYMBOL_GPL(usb_unlink_urb);
 686
 687/**
 688 * usb_kill_urb - cancel a transfer request and wait for it to finish
 689 * @urb: pointer to URB describing a previously submitted request,
 690 *	may be NULL
 691 *
 692 * This routine cancels an in-progress request.  It is guaranteed that
 693 * upon return all completion handlers will have finished and the URB
 694 * will be totally idle and available for reuse.  These features make
 695 * this an ideal way to stop I/O in a disconnect() callback or close()
 696 * function.  If the request has not already finished or been unlinked
 697 * the completion handler will see urb->status == -ENOENT.
 698 *
 699 * While the routine is running, attempts to resubmit the URB will fail
 700 * with error -EPERM.  Thus even if the URB's completion handler always
 701 * tries to resubmit, it will not succeed and the URB will become idle.
 702 *
 703 * The URB must not be deallocated while this routine is running.  In
 704 * particular, when a driver calls this routine, it must insure that the
 705 * completion handler cannot deallocate the URB.
 706 *
 707 * This routine may not be used in an interrupt context (such as a bottom
 708 * half or a completion handler), or when holding a spinlock, or in other
 709 * situations where the caller can't schedule().
 710 *
 711 * This routine should not be called by a driver after its disconnect
 712 * method has returned.
 713 */
 714void usb_kill_urb(struct urb *urb)
 715{
 716	might_sleep();
 717	if (!(urb && urb->dev && urb->ep))
 718		return;
 719	atomic_inc(&urb->reject);
 720	/*
 721	 * Order the write of urb->reject above before the read
 722	 * of urb->use_count below.  Pairs with the barriers in
 723	 * __usb_hcd_giveback_urb() and usb_hcd_submit_urb().
 724	 */
 725	smp_mb__after_atomic();
 726
 727	usb_hcd_unlink_urb(urb, -ENOENT);
 728	wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
 729
 730	atomic_dec(&urb->reject);
 731}
 732EXPORT_SYMBOL_GPL(usb_kill_urb);
 733
 734/**
 735 * usb_poison_urb - reliably kill a transfer and prevent further use of an URB
 736 * @urb: pointer to URB describing a previously submitted request,
 737 *	may be NULL
 738 *
 739 * This routine cancels an in-progress request.  It is guaranteed that
 740 * upon return all completion handlers will have finished and the URB
 741 * will be totally idle and cannot be reused.  These features make
 742 * this an ideal way to stop I/O in a disconnect() callback.
 743 * If the request has not already finished or been unlinked
 744 * the completion handler will see urb->status == -ENOENT.
 745 *
 746 * After and while the routine runs, attempts to resubmit the URB will fail
 747 * with error -EPERM.  Thus even if the URB's completion handler always
 748 * tries to resubmit, it will not succeed and the URB will become idle.
 749 *
 750 * The URB must not be deallocated while this routine is running.  In
 751 * particular, when a driver calls this routine, it must insure that the
 752 * completion handler cannot deallocate the URB.
 753 *
 754 * This routine may not be used in an interrupt context (such as a bottom
 755 * half or a completion handler), or when holding a spinlock, or in other
 756 * situations where the caller can't schedule().
 757 *
 758 * This routine should not be called by a driver after its disconnect
 759 * method has returned.
 760 */
 761void usb_poison_urb(struct urb *urb)
 762{
 763	might_sleep();
 764	if (!urb)
 765		return;
 766	atomic_inc(&urb->reject);
 767	/*
 768	 * Order the write of urb->reject above before the read
 769	 * of urb->use_count below.  Pairs with the barriers in
 770	 * __usb_hcd_giveback_urb() and usb_hcd_submit_urb().
 771	 */
 772	smp_mb__after_atomic();
 773
 774	if (!urb->dev || !urb->ep)
 775		return;
 776
 777	usb_hcd_unlink_urb(urb, -ENOENT);
 778	wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
 779}
 780EXPORT_SYMBOL_GPL(usb_poison_urb);
 781
 782void usb_unpoison_urb(struct urb *urb)
 783{
 784	if (!urb)
 785		return;
 786
 787	atomic_dec(&urb->reject);
 788}
 789EXPORT_SYMBOL_GPL(usb_unpoison_urb);
 790
 791/**
 792 * usb_block_urb - reliably prevent further use of an URB
 793 * @urb: pointer to URB to be blocked, may be NULL
 794 *
 795 * After the routine has run, attempts to resubmit the URB will fail
 796 * with error -EPERM.  Thus even if the URB's completion handler always
 797 * tries to resubmit, it will not succeed and the URB will become idle.
 798 *
 799 * The URB must not be deallocated while this routine is running.  In
 800 * particular, when a driver calls this routine, it must insure that the
 801 * completion handler cannot deallocate the URB.
 802 */
 803void usb_block_urb(struct urb *urb)
 804{
 805	if (!urb)
 806		return;
 807
 808	atomic_inc(&urb->reject);
 809}
 810EXPORT_SYMBOL_GPL(usb_block_urb);
 811
 812/**
 813 * usb_kill_anchored_urbs - kill all URBs associated with an anchor
 814 * @anchor: anchor the requests are bound to
 815 *
 816 * This kills all outstanding URBs starting from the back of the queue,
 817 * with guarantee that no completer callbacks will take place from the
 818 * anchor after this function returns.
 819 *
 820 * This routine should not be called by a driver after its disconnect
 821 * method has returned.
 822 */
 823void usb_kill_anchored_urbs(struct usb_anchor *anchor)
 824{
 825	struct urb *victim;
 826	int surely_empty;
 827
 828	do {
 829		spin_lock_irq(&anchor->lock);
 830		while (!list_empty(&anchor->urb_list)) {
 831			victim = list_entry(anchor->urb_list.prev,
 832					    struct urb, anchor_list);
 833			/* make sure the URB isn't freed before we kill it */
 834			usb_get_urb(victim);
 835			spin_unlock_irq(&anchor->lock);
 836			/* this will unanchor the URB */
 837			usb_kill_urb(victim);
 838			usb_put_urb(victim);
 839			spin_lock_irq(&anchor->lock);
 840		}
 841		surely_empty = usb_anchor_check_wakeup(anchor);
 842
 
 
 
 
 
 
 843		spin_unlock_irq(&anchor->lock);
 844		cpu_relax();
 845	} while (!surely_empty);
 
 
 
 
 846}
 847EXPORT_SYMBOL_GPL(usb_kill_anchored_urbs);
 848
 849
 850/**
 851 * usb_poison_anchored_urbs - cease all traffic from an anchor
 852 * @anchor: anchor the requests are bound to
 853 *
 854 * this allows all outstanding URBs to be poisoned starting
 855 * from the back of the queue. Newly added URBs will also be
 856 * poisoned
 857 *
 858 * This routine should not be called by a driver after its disconnect
 859 * method has returned.
 860 */
 861void usb_poison_anchored_urbs(struct usb_anchor *anchor)
 862{
 863	struct urb *victim;
 864	int surely_empty;
 865
 866	do {
 867		spin_lock_irq(&anchor->lock);
 868		anchor->poisoned = 1;
 869		while (!list_empty(&anchor->urb_list)) {
 870			victim = list_entry(anchor->urb_list.prev,
 871					    struct urb, anchor_list);
 872			/* make sure the URB isn't freed before we kill it */
 873			usb_get_urb(victim);
 874			spin_unlock_irq(&anchor->lock);
 875			/* this will unanchor the URB */
 876			usb_poison_urb(victim);
 877			usb_put_urb(victim);
 878			spin_lock_irq(&anchor->lock);
 879		}
 880		surely_empty = usb_anchor_check_wakeup(anchor);
 881
 
 
 
 
 
 
 
 882		spin_unlock_irq(&anchor->lock);
 883		cpu_relax();
 884	} while (!surely_empty);
 
 
 
 
 885}
 886EXPORT_SYMBOL_GPL(usb_poison_anchored_urbs);
 887
 888/**
 889 * usb_unpoison_anchored_urbs - let an anchor be used successfully again
 890 * @anchor: anchor the requests are bound to
 891 *
 892 * Reverses the effect of usb_poison_anchored_urbs
 893 * the anchor can be used normally after it returns
 894 */
 895void usb_unpoison_anchored_urbs(struct usb_anchor *anchor)
 896{
 897	unsigned long flags;
 898	struct urb *lazarus;
 899
 900	spin_lock_irqsave(&anchor->lock, flags);
 901	list_for_each_entry(lazarus, &anchor->urb_list, anchor_list) {
 902		usb_unpoison_urb(lazarus);
 903	}
 904	anchor->poisoned = 0;
 905	spin_unlock_irqrestore(&anchor->lock, flags);
 906}
 907EXPORT_SYMBOL_GPL(usb_unpoison_anchored_urbs);
 908/**
 909 * usb_unlink_anchored_urbs - asynchronously cancel transfer requests en masse
 910 * @anchor: anchor the requests are bound to
 911 *
 912 * this allows all outstanding URBs to be unlinked starting
 913 * from the back of the queue. This function is asynchronous.
 914 * The unlinking is just triggered. It may happen after this
 915 * function has returned.
 916 *
 917 * This routine should not be called by a driver after its disconnect
 918 * method has returned.
 919 */
 920void usb_unlink_anchored_urbs(struct usb_anchor *anchor)
 921{
 922	struct urb *victim;
 923
 924	while ((victim = usb_get_from_anchor(anchor)) != NULL) {
 925		usb_unlink_urb(victim);
 926		usb_put_urb(victim);
 927	}
 928}
 929EXPORT_SYMBOL_GPL(usb_unlink_anchored_urbs);
 930
 931/**
 932 * usb_anchor_suspend_wakeups
 933 * @anchor: the anchor you want to suspend wakeups on
 934 *
 935 * Call this to stop the last urb being unanchored from waking up any
 936 * usb_wait_anchor_empty_timeout waiters. This is used in the hcd urb give-
 937 * back path to delay waking up until after the completion handler has run.
 938 */
 939void usb_anchor_suspend_wakeups(struct usb_anchor *anchor)
 940{
 941	if (anchor)
 942		atomic_inc(&anchor->suspend_wakeups);
 943}
 944EXPORT_SYMBOL_GPL(usb_anchor_suspend_wakeups);
 945
 946/**
 947 * usb_anchor_resume_wakeups
 948 * @anchor: the anchor you want to resume wakeups on
 949 *
 950 * Allow usb_wait_anchor_empty_timeout waiters to be woken up again, and
 951 * wake up any current waiters if the anchor is empty.
 952 */
 953void usb_anchor_resume_wakeups(struct usb_anchor *anchor)
 954{
 955	if (!anchor)
 956		return;
 957
 958	atomic_dec(&anchor->suspend_wakeups);
 959	if (usb_anchor_check_wakeup(anchor))
 960		wake_up(&anchor->wait);
 961}
 962EXPORT_SYMBOL_GPL(usb_anchor_resume_wakeups);
 963
 964/**
 965 * usb_wait_anchor_empty_timeout - wait for an anchor to be unused
 966 * @anchor: the anchor you want to become unused
 967 * @timeout: how long you are willing to wait in milliseconds
 968 *
 969 * Call this is you want to be sure all an anchor's
 970 * URBs have finished
 971 *
 972 * Return: Non-zero if the anchor became unused. Zero on timeout.
 973 */
 974int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
 975				  unsigned int timeout)
 976{
 977	return wait_event_timeout(anchor->wait,
 978				  usb_anchor_check_wakeup(anchor),
 979				  msecs_to_jiffies(timeout));
 980}
 981EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout);
 982
 983/**
 984 * usb_get_from_anchor - get an anchor's oldest urb
 985 * @anchor: the anchor whose urb you want
 986 *
 987 * This will take the oldest urb from an anchor,
 988 * unanchor and return it
 989 *
 990 * Return: The oldest urb from @anchor, or %NULL if @anchor has no
 991 * urbs associated with it.
 992 */
 993struct urb *usb_get_from_anchor(struct usb_anchor *anchor)
 994{
 995	struct urb *victim;
 996	unsigned long flags;
 997
 998	spin_lock_irqsave(&anchor->lock, flags);
 999	if (!list_empty(&anchor->urb_list)) {
1000		victim = list_entry(anchor->urb_list.next, struct urb,
1001				    anchor_list);
1002		usb_get_urb(victim);
1003		__usb_unanchor_urb(victim, anchor);
1004	} else {
1005		victim = NULL;
1006	}
1007	spin_unlock_irqrestore(&anchor->lock, flags);
1008
1009	return victim;
1010}
1011
1012EXPORT_SYMBOL_GPL(usb_get_from_anchor);
1013
1014/**
1015 * usb_scuttle_anchored_urbs - unanchor all an anchor's urbs
1016 * @anchor: the anchor whose urbs you want to unanchor
1017 *
1018 * use this to get rid of all an anchor's urbs
1019 */
1020void usb_scuttle_anchored_urbs(struct usb_anchor *anchor)
1021{
1022	struct urb *victim;
1023	unsigned long flags;
1024	int surely_empty;
1025
1026	do {
1027		spin_lock_irqsave(&anchor->lock, flags);
1028		while (!list_empty(&anchor->urb_list)) {
1029			victim = list_entry(anchor->urb_list.prev,
1030					    struct urb, anchor_list);
1031			__usb_unanchor_urb(victim, anchor);
1032		}
1033		surely_empty = usb_anchor_check_wakeup(anchor);
1034
1035		spin_unlock_irqrestore(&anchor->lock, flags);
1036		cpu_relax();
1037	} while (!surely_empty);
 
 
 
 
1038}
1039
1040EXPORT_SYMBOL_GPL(usb_scuttle_anchored_urbs);
1041
1042/**
1043 * usb_anchor_empty - is an anchor empty
1044 * @anchor: the anchor you want to query
1045 *
1046 * Return: 1 if the anchor has no urbs associated with it.
1047 */
1048int usb_anchor_empty(struct usb_anchor *anchor)
1049{
1050	return list_empty(&anchor->urb_list);
1051}
1052
1053EXPORT_SYMBOL_GPL(usb_anchor_empty);
1054
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Released under the GPLv2 only.
  4 */
  5
  6#include <linux/module.h>
  7#include <linux/string.h>
  8#include <linux/bitops.h>
  9#include <linux/slab.h>
 10#include <linux/log2.h>
 
 11#include <linux/usb.h>
 12#include <linux/wait.h>
 13#include <linux/usb/hcd.h>
 14#include <linux/scatterlist.h>
 15
 16#define to_urb(d) container_of(d, struct urb, kref)
 17
 18
 19static void urb_destroy(struct kref *kref)
 20{
 21	struct urb *urb = to_urb(kref);
 22
 23	if (urb->transfer_flags & URB_FREE_BUFFER)
 24		kfree(urb->transfer_buffer);
 25
 26	kfree(urb);
 27}
 28
 29/**
 30 * usb_init_urb - initializes a urb so that it can be used by a USB driver
 31 * @urb: pointer to the urb to initialize
 32 *
 33 * Initializes a urb so that the USB subsystem can use it properly.
 34 *
 35 * If a urb is created with a call to usb_alloc_urb() it is not
 36 * necessary to call this function.  Only use this if you allocate the
 37 * space for a struct urb on your own.  If you call this function, be
 38 * careful when freeing the memory for your urb that it is no longer in
 39 * use by the USB core.
 40 *
 41 * Only use this function if you _really_ understand what you are doing.
 42 */
 43void usb_init_urb(struct urb *urb)
 44{
 45	if (urb) {
 46		memset(urb, 0, sizeof(*urb));
 47		kref_init(&urb->kref);
 
 48		INIT_LIST_HEAD(&urb->anchor_list);
 49	}
 50}
 51EXPORT_SYMBOL_GPL(usb_init_urb);
 52
 53/**
 54 * usb_alloc_urb - creates a new urb for a USB driver to use
 55 * @iso_packets: number of iso packets for this urb
 56 * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
 57 *	valid options for this.
 58 *
 59 * Creates an urb for the USB driver to use, initializes a few internal
 60 * structures, increments the usage counter, and returns a pointer to it.
 61 *
 62 * If the driver want to use this urb for interrupt, control, or bulk
 63 * endpoints, pass '0' as the number of iso packets.
 64 *
 65 * The driver must call usb_free_urb() when it is finished with the urb.
 66 *
 67 * Return: A pointer to the new urb, or %NULL if no memory is available.
 68 */
 69struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags)
 70{
 71	struct urb *urb;
 72
 73	urb = kmalloc(sizeof(struct urb) +
 74		iso_packets * sizeof(struct usb_iso_packet_descriptor),
 75		mem_flags);
 76	if (!urb)
 77		return NULL;
 78	usb_init_urb(urb);
 79	return urb;
 80}
 81EXPORT_SYMBOL_GPL(usb_alloc_urb);
 82
 83/**
 84 * usb_free_urb - frees the memory used by a urb when all users of it are finished
 85 * @urb: pointer to the urb to free, may be NULL
 86 *
 87 * Must be called when a user of a urb is finished with it.  When the last user
 88 * of the urb calls this function, the memory of the urb is freed.
 89 *
 90 * Note: The transfer buffer associated with the urb is not freed unless the
 91 * URB_FREE_BUFFER transfer flag is set.
 92 */
 93void usb_free_urb(struct urb *urb)
 94{
 95	if (urb)
 96		kref_put(&urb->kref, urb_destroy);
 97}
 98EXPORT_SYMBOL_GPL(usb_free_urb);
 99
100/**
101 * usb_get_urb - increments the reference count of the urb
102 * @urb: pointer to the urb to modify, may be NULL
103 *
104 * This must be  called whenever a urb is transferred from a device driver to a
105 * host controller driver.  This allows proper reference counting to happen
106 * for urbs.
107 *
108 * Return: A pointer to the urb with the incremented reference counter.
109 */
110struct urb *usb_get_urb(struct urb *urb)
111{
112	if (urb)
113		kref_get(&urb->kref);
114	return urb;
115}
116EXPORT_SYMBOL_GPL(usb_get_urb);
117
118/**
119 * usb_anchor_urb - anchors an URB while it is processed
120 * @urb: pointer to the urb to anchor
121 * @anchor: pointer to the anchor
122 *
123 * This can be called to have access to URBs which are to be executed
124 * without bothering to track them
125 */
126void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor)
127{
128	unsigned long flags;
129
130	spin_lock_irqsave(&anchor->lock, flags);
131	usb_get_urb(urb);
132	list_add_tail(&urb->anchor_list, &anchor->urb_list);
133	urb->anchor = anchor;
134
135	if (unlikely(anchor->poisoned))
136		atomic_inc(&urb->reject);
137
138	spin_unlock_irqrestore(&anchor->lock, flags);
139}
140EXPORT_SYMBOL_GPL(usb_anchor_urb);
141
142static int usb_anchor_check_wakeup(struct usb_anchor *anchor)
143{
144	return atomic_read(&anchor->suspend_wakeups) == 0 &&
145		list_empty(&anchor->urb_list);
146}
147
148/* Callers must hold anchor->lock */
149static void __usb_unanchor_urb(struct urb *urb, struct usb_anchor *anchor)
150{
151	urb->anchor = NULL;
152	list_del(&urb->anchor_list);
153	usb_put_urb(urb);
154	if (usb_anchor_check_wakeup(anchor))
155		wake_up(&anchor->wait);
156}
157
158/**
159 * usb_unanchor_urb - unanchors an URB
160 * @urb: pointer to the urb to anchor
161 *
162 * Call this to stop the system keeping track of this URB
163 */
164void usb_unanchor_urb(struct urb *urb)
165{
166	unsigned long flags;
167	struct usb_anchor *anchor;
168
169	if (!urb)
170		return;
171
172	anchor = urb->anchor;
173	if (!anchor)
174		return;
175
176	spin_lock_irqsave(&anchor->lock, flags);
177	/*
178	 * At this point, we could be competing with another thread which
179	 * has the same intention. To protect the urb from being unanchored
180	 * twice, only the winner of the race gets the job.
181	 */
182	if (likely(anchor == urb->anchor))
183		__usb_unanchor_urb(urb, anchor);
184	spin_unlock_irqrestore(&anchor->lock, flags);
185}
186EXPORT_SYMBOL_GPL(usb_unanchor_urb);
187
188/*-------------------------------------------------------------------*/
189
190static const int pipetypes[4] = {
191	PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
192};
193
194/**
195 * usb_urb_ep_type_check - sanity check of endpoint in the given urb
196 * @urb: urb to be checked
 
197 *
198 * This performs a light-weight sanity check for the endpoint in the
199 * given urb.  It returns 0 if the urb contains a valid endpoint, otherwise
200 * a negative error code.
201 */
202int usb_urb_ep_type_check(const struct urb *urb)
203{
204	const struct usb_host_endpoint *ep;
205
206	ep = usb_pipe_endpoint(urb->dev, urb->pipe);
207	if (!ep)
208		return -EINVAL;
209	if (usb_pipetype(urb->pipe) != pipetypes[usb_endpoint_type(&ep->desc)])
210		return -EINVAL;
211	return 0;
212}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
213EXPORT_SYMBOL_GPL(usb_urb_ep_type_check);
214
215/**
216 * usb_submit_urb - issue an asynchronous transfer request for an endpoint
217 * @urb: pointer to the urb describing the request
218 * @mem_flags: the type of memory to allocate, see kmalloc() for a list
219 *	of valid options for this.
220 *
221 * This submits a transfer request, and transfers control of the URB
222 * describing that request to the USB subsystem.  Request completion will
223 * be indicated later, asynchronously, by calling the completion handler.
224 * The three types of completion are success, error, and unlink
225 * (a software-induced fault, also called "request cancellation").
226 *
227 * URBs may be submitted in interrupt context.
228 *
229 * The caller must have correctly initialized the URB before submitting
230 * it.  Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
231 * available to ensure that most fields are correctly initialized, for
232 * the particular kind of transfer, although they will not initialize
233 * any transfer flags.
234 *
235 * If the submission is successful, the complete() callback from the URB
236 * will be called exactly once, when the USB core and Host Controller Driver
237 * (HCD) are finished with the URB.  When the completion function is called,
238 * control of the URB is returned to the device driver which issued the
239 * request.  The completion handler may then immediately free or reuse that
240 * URB.
241 *
242 * With few exceptions, USB device drivers should never access URB fields
243 * provided by usbcore or the HCD until its complete() is called.
244 * The exceptions relate to periodic transfer scheduling.  For both
245 * interrupt and isochronous urbs, as part of successful URB submission
246 * urb->interval is modified to reflect the actual transfer period used
247 * (normally some power of two units).  And for isochronous urbs,
248 * urb->start_frame is modified to reflect when the URB's transfers were
249 * scheduled to start.
250 *
251 * Not all isochronous transfer scheduling policies will work, but most
252 * host controller drivers should easily handle ISO queues going from now
253 * until 10-200 msec into the future.  Drivers should try to keep at
254 * least one or two msec of data in the queue; many controllers require
255 * that new transfers start at least 1 msec in the future when they are
256 * added.  If the driver is unable to keep up and the queue empties out,
257 * the behavior for new submissions is governed by the URB_ISO_ASAP flag.
258 * If the flag is set, or if the queue is idle, then the URB is always
259 * assigned to the first available (and not yet expired) slot in the
260 * endpoint's schedule.  If the flag is not set and the queue is active
261 * then the URB is always assigned to the next slot in the schedule
262 * following the end of the endpoint's previous URB, even if that slot is
263 * in the past.  When a packet is assigned in this way to a slot that has
264 * already expired, the packet is not transmitted and the corresponding
265 * usb_iso_packet_descriptor's status field will return -EXDEV.  If this
266 * would happen to all the packets in the URB, submission fails with a
267 * -EXDEV error code.
268 *
269 * For control endpoints, the synchronous usb_control_msg() call is
270 * often used (in non-interrupt context) instead of this call.
271 * That is often used through convenience wrappers, for the requests
272 * that are standardized in the USB 2.0 specification.  For bulk
273 * endpoints, a synchronous usb_bulk_msg() call is available.
274 *
275 * Return:
276 * 0 on successful submissions. A negative error number otherwise.
277 *
278 * Request Queuing:
279 *
280 * URBs may be submitted to endpoints before previous ones complete, to
281 * minimize the impact of interrupt latencies and system overhead on data
282 * throughput.  With that queuing policy, an endpoint's queue would never
283 * be empty.  This is required for continuous isochronous data streams,
284 * and may also be required for some kinds of interrupt transfers. Such
285 * queuing also maximizes bandwidth utilization by letting USB controllers
286 * start work on later requests before driver software has finished the
287 * completion processing for earlier (successful) requests.
288 *
289 * As of Linux 2.6, all USB endpoint transfer queues support depths greater
290 * than one.  This was previously a HCD-specific behavior, except for ISO
291 * transfers.  Non-isochronous endpoint queues are inactive during cleanup
292 * after faults (transfer errors or cancellation).
293 *
294 * Reserved Bandwidth Transfers:
295 *
296 * Periodic transfers (interrupt or isochronous) are performed repeatedly,
297 * using the interval specified in the urb.  Submitting the first urb to
298 * the endpoint reserves the bandwidth necessary to make those transfers.
299 * If the USB subsystem can't allocate sufficient bandwidth to perform
300 * the periodic request, submitting such a periodic request should fail.
301 *
302 * For devices under xHCI, the bandwidth is reserved at configuration time, or
303 * when the alt setting is selected.  If there is not enough bus bandwidth, the
304 * configuration/alt setting request will fail.  Therefore, submissions to
305 * periodic endpoints on devices under xHCI should never fail due to bandwidth
306 * constraints.
307 *
308 * Device drivers must explicitly request that repetition, by ensuring that
309 * some URB is always on the endpoint's queue (except possibly for short
310 * periods during completion callbacks).  When there is no longer an urb
311 * queued, the endpoint's bandwidth reservation is canceled.  This means
312 * drivers can use their completion handlers to ensure they keep bandwidth
313 * they need, by reinitializing and resubmitting the just-completed urb
314 * until the driver longer needs that periodic bandwidth.
315 *
316 * Memory Flags:
317 *
318 * The general rules for how to decide which mem_flags to use
319 * are the same as for kmalloc.  There are four
320 * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
321 * GFP_ATOMIC.
322 *
323 * GFP_NOFS is not ever used, as it has not been implemented yet.
324 *
325 * GFP_ATOMIC is used when
326 *   (a) you are inside a completion handler, an interrupt, bottom half,
327 *       tasklet or timer, or
328 *   (b) you are holding a spinlock or rwlock (does not apply to
329 *       semaphores), or
330 *   (c) current->state != TASK_RUNNING, this is the case only after
331 *       you've changed it.
332 *
333 * GFP_NOIO is used in the block io path and error handling of storage
334 * devices.
335 *
336 * All other situations use GFP_KERNEL.
337 *
338 * Some more specific rules for mem_flags can be inferred, such as
339 *  (1) start_xmit, timeout, and receive methods of network drivers must
340 *      use GFP_ATOMIC (they are called with a spinlock held);
341 *  (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
342 *      called with a spinlock held);
343 *  (3) If you use a kernel thread with a network driver you must use
344 *      GFP_NOIO, unless (b) or (c) apply;
345 *  (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
346 *      apply or your are in a storage driver's block io path;
347 *  (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
348 *  (6) changing firmware on a running storage or net device uses
349 *      GFP_NOIO, unless b) or c) apply
350 *
351 */
352int usb_submit_urb(struct urb *urb, gfp_t mem_flags)
353{
354	int				xfertype, max;
355	struct usb_device		*dev;
356	struct usb_host_endpoint	*ep;
357	int				is_out;
358	unsigned int			allowed;
359
360	if (!urb || !urb->complete)
361		return -EINVAL;
362	if (urb->hcpriv) {
363		WARN_ONCE(1, "URB %pK submitted while active\n", urb);
364		return -EBUSY;
365	}
366
367	dev = urb->dev;
368	if ((!dev) || (dev->state < USB_STATE_UNAUTHENTICATED))
369		return -ENODEV;
370
371	/* For now, get the endpoint from the pipe.  Eventually drivers
372	 * will be required to set urb->ep directly and we will eliminate
373	 * urb->pipe.
374	 */
375	ep = usb_pipe_endpoint(dev, urb->pipe);
376	if (!ep)
377		return -ENOENT;
378
379	urb->ep = ep;
380	urb->status = -EINPROGRESS;
381	urb->actual_length = 0;
382
383	/* Lots of sanity checks, so HCDs can rely on clean data
384	 * and don't need to duplicate tests
385	 */
386	xfertype = usb_endpoint_type(&ep->desc);
387	if (xfertype == USB_ENDPOINT_XFER_CONTROL) {
388		struct usb_ctrlrequest *setup =
389				(struct usb_ctrlrequest *) urb->setup_packet;
390
391		if (!setup)
392			return -ENOEXEC;
393		is_out = !(setup->bRequestType & USB_DIR_IN) ||
394				!setup->wLength;
 
 
 
 
 
 
 
 
 
395	} else {
396		is_out = usb_endpoint_dir_out(&ep->desc);
397	}
398
399	/* Clear the internal flags and cache the direction for later use */
400	urb->transfer_flags &= ~(URB_DIR_MASK | URB_DMA_MAP_SINGLE |
401			URB_DMA_MAP_PAGE | URB_DMA_MAP_SG | URB_MAP_LOCAL |
402			URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL |
403			URB_DMA_SG_COMBINED);
404	urb->transfer_flags |= (is_out ? URB_DIR_OUT : URB_DIR_IN);
 
405
406	if (xfertype != USB_ENDPOINT_XFER_CONTROL &&
407			dev->state < USB_STATE_CONFIGURED)
408		return -ENODEV;
409
410	max = usb_endpoint_maxp(&ep->desc);
411	if (max <= 0) {
412		dev_dbg(&dev->dev,
413			"bogus endpoint ep%d%s in %s (bad maxpacket %d)\n",
414			usb_endpoint_num(&ep->desc), is_out ? "out" : "in",
415			__func__, max);
416		return -EMSGSIZE;
417	}
418
419	/* periodic transfers limit size per frame/uframe,
420	 * but drivers only control those sizes for ISO.
421	 * while we're checking, initialize return status.
422	 */
423	if (xfertype == USB_ENDPOINT_XFER_ISOC) {
424		int	n, len;
425
426		/* SuperSpeed isoc endpoints have up to 16 bursts of up to
427		 * 3 packets each
428		 */
429		if (dev->speed >= USB_SPEED_SUPER) {
430			int     burst = 1 + ep->ss_ep_comp.bMaxBurst;
431			int     mult = USB_SS_MULT(ep->ss_ep_comp.bmAttributes);
432			max *= burst;
433			max *= mult;
434		}
435
436		if (dev->speed == USB_SPEED_SUPER_PLUS &&
437		    USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes)) {
438			struct usb_ssp_isoc_ep_comp_descriptor *isoc_ep_comp;
439
440			isoc_ep_comp = &ep->ssp_isoc_ep_comp;
441			max = le32_to_cpu(isoc_ep_comp->dwBytesPerInterval);
442		}
443
444		/* "high bandwidth" mode, 1-3 packets/uframe? */
445		if (dev->speed == USB_SPEED_HIGH)
446			max *= usb_endpoint_maxp_mult(&ep->desc);
447
448		if (urb->number_of_packets <= 0)
449			return -EINVAL;
450		for (n = 0; n < urb->number_of_packets; n++) {
451			len = urb->iso_frame_desc[n].length;
452			if (len < 0 || len > max)
453				return -EMSGSIZE;
454			urb->iso_frame_desc[n].status = -EXDEV;
455			urb->iso_frame_desc[n].actual_length = 0;
456		}
457	} else if (urb->num_sgs && !urb->dev->bus->no_sg_constraint &&
458			dev->speed != USB_SPEED_WIRELESS) {
459		struct scatterlist *sg;
460		int i;
461
462		for_each_sg(urb->sg, sg, urb->num_sgs - 1, i)
463			if (sg->length % max)
464				return -EINVAL;
465	}
466
467	/* the I/O buffer must be mapped/unmapped, except when length=0 */
468	if (urb->transfer_buffer_length > INT_MAX)
469		return -EMSGSIZE;
470
471	/*
472	 * stuff that drivers shouldn't do, but which shouldn't
473	 * cause problems in HCDs if they get it wrong.
474	 */
475
476	/* Check that the pipe's type matches the endpoint's type */
477	if (usb_urb_ep_type_check(urb))
478		dev_WARN(&dev->dev, "BOGUS urb xfer, pipe %x != type %x\n",
479			usb_pipetype(urb->pipe), pipetypes[xfertype]);
480
481	/* Check against a simple/standard policy */
482	allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT | URB_DIR_MASK |
483			URB_FREE_BUFFER);
484	switch (xfertype) {
485	case USB_ENDPOINT_XFER_BULK:
486	case USB_ENDPOINT_XFER_INT:
487		if (is_out)
488			allowed |= URB_ZERO_PACKET;
489		/* FALLTHROUGH */
490	default:			/* all non-iso endpoints */
491		if (!is_out)
492			allowed |= URB_SHORT_NOT_OK;
493		break;
494	case USB_ENDPOINT_XFER_ISOC:
495		allowed |= URB_ISO_ASAP;
496		break;
497	}
498	allowed &= urb->transfer_flags;
499
500	/* warn if submitter gave bogus flags */
501	if (allowed != urb->transfer_flags)
502		dev_WARN(&dev->dev, "BOGUS urb flags, %x --> %x\n",
503			urb->transfer_flags, allowed);
504
505	/*
506	 * Force periodic transfer intervals to be legal values that are
507	 * a power of two (so HCDs don't need to).
508	 *
509	 * FIXME want bus->{intr,iso}_sched_horizon values here.  Each HC
510	 * supports different values... this uses EHCI/UHCI defaults (and
511	 * EHCI can use smaller non-default values).
512	 */
513	switch (xfertype) {
514	case USB_ENDPOINT_XFER_ISOC:
515	case USB_ENDPOINT_XFER_INT:
516		/* too small? */
517		switch (dev->speed) {
518		case USB_SPEED_WIRELESS:
519			if ((urb->interval < 6)
520				&& (xfertype == USB_ENDPOINT_XFER_INT))
521				return -EINVAL;
522			/* fall through */
523		default:
524			if (urb->interval <= 0)
525				return -EINVAL;
526			break;
527		}
528		/* too big? */
529		switch (dev->speed) {
530		case USB_SPEED_SUPER_PLUS:
531		case USB_SPEED_SUPER:	/* units are 125us */
532			/* Handle up to 2^(16-1) microframes */
533			if (urb->interval > (1 << 15))
534				return -EINVAL;
535			max = 1 << 15;
536			break;
537		case USB_SPEED_WIRELESS:
538			if (urb->interval > 16)
539				return -EINVAL;
540			break;
541		case USB_SPEED_HIGH:	/* units are microframes */
542			/* NOTE usb handles 2^15 */
543			if (urb->interval > (1024 * 8))
544				urb->interval = 1024 * 8;
545			max = 1024 * 8;
546			break;
547		case USB_SPEED_FULL:	/* units are frames/msec */
548		case USB_SPEED_LOW:
549			if (xfertype == USB_ENDPOINT_XFER_INT) {
550				if (urb->interval > 255)
551					return -EINVAL;
552				/* NOTE ohci only handles up to 32 */
553				max = 128;
554			} else {
555				if (urb->interval > 1024)
556					urb->interval = 1024;
557				/* NOTE usb and ohci handle up to 2^15 */
558				max = 1024;
559			}
560			break;
561		default:
562			return -EINVAL;
563		}
564		if (dev->speed != USB_SPEED_WIRELESS) {
565			/* Round down to a power of 2, no more than max */
566			urb->interval = min(max, 1 << ilog2(urb->interval));
567		}
568	}
569
570	return usb_hcd_submit_urb(urb, mem_flags);
571}
572EXPORT_SYMBOL_GPL(usb_submit_urb);
573
574/*-------------------------------------------------------------------*/
575
576/**
577 * usb_unlink_urb - abort/cancel a transfer request for an endpoint
578 * @urb: pointer to urb describing a previously submitted request,
579 *	may be NULL
580 *
581 * This routine cancels an in-progress request.  URBs complete only once
582 * per submission, and may be canceled only once per submission.
583 * Successful cancellation means termination of @urb will be expedited
584 * and the completion handler will be called with a status code
585 * indicating that the request has been canceled (rather than any other
586 * code).
587 *
588 * Drivers should not call this routine or related routines, such as
589 * usb_kill_urb() or usb_unlink_anchored_urbs(), after their disconnect
590 * method has returned.  The disconnect function should synchronize with
591 * a driver's I/O routines to insure that all URB-related activity has
592 * completed before it returns.
593 *
594 * This request is asynchronous, however the HCD might call the ->complete()
595 * callback during unlink. Therefore when drivers call usb_unlink_urb(), they
596 * must not hold any locks that may be taken by the completion function.
597 * Success is indicated by returning -EINPROGRESS, at which time the URB will
598 * probably not yet have been given back to the device driver. When it is
599 * eventually called, the completion function will see @urb->status ==
600 * -ECONNRESET.
601 * Failure is indicated by usb_unlink_urb() returning any other value.
602 * Unlinking will fail when @urb is not currently "linked" (i.e., it was
603 * never submitted, or it was unlinked before, or the hardware is already
604 * finished with it), even if the completion handler has not yet run.
605 *
606 * The URB must not be deallocated while this routine is running.  In
607 * particular, when a driver calls this routine, it must insure that the
608 * completion handler cannot deallocate the URB.
609 *
610 * Return: -EINPROGRESS on success. See description for other values on
611 * failure.
612 *
613 * Unlinking and Endpoint Queues:
614 *
615 * [The behaviors and guarantees described below do not apply to virtual
616 * root hubs but only to endpoint queues for physical USB devices.]
617 *
618 * Host Controller Drivers (HCDs) place all the URBs for a particular
619 * endpoint in a queue.  Normally the queue advances as the controller
620 * hardware processes each request.  But when an URB terminates with an
621 * error its queue generally stops (see below), at least until that URB's
622 * completion routine returns.  It is guaranteed that a stopped queue
623 * will not restart until all its unlinked URBs have been fully retired,
624 * with their completion routines run, even if that's not until some time
625 * after the original completion handler returns.  The same behavior and
626 * guarantee apply when an URB terminates because it was unlinked.
627 *
628 * Bulk and interrupt endpoint queues are guaranteed to stop whenever an
629 * URB terminates with any sort of error, including -ECONNRESET, -ENOENT,
630 * and -EREMOTEIO.  Control endpoint queues behave the same way except
631 * that they are not guaranteed to stop for -EREMOTEIO errors.  Queues
632 * for isochronous endpoints are treated differently, because they must
633 * advance at fixed rates.  Such queues do not stop when an URB
634 * encounters an error or is unlinked.  An unlinked isochronous URB may
635 * leave a gap in the stream of packets; it is undefined whether such
636 * gaps can be filled in.
637 *
638 * Note that early termination of an URB because a short packet was
639 * received will generate a -EREMOTEIO error if and only if the
640 * URB_SHORT_NOT_OK flag is set.  By setting this flag, USB device
641 * drivers can build deep queues for large or complex bulk transfers
642 * and clean them up reliably after any sort of aborted transfer by
643 * unlinking all pending URBs at the first fault.
644 *
645 * When a control URB terminates with an error other than -EREMOTEIO, it
646 * is quite likely that the status stage of the transfer will not take
647 * place.
648 */
649int usb_unlink_urb(struct urb *urb)
650{
651	if (!urb)
652		return -EINVAL;
653	if (!urb->dev)
654		return -ENODEV;
655	if (!urb->ep)
656		return -EIDRM;
657	return usb_hcd_unlink_urb(urb, -ECONNRESET);
658}
659EXPORT_SYMBOL_GPL(usb_unlink_urb);
660
661/**
662 * usb_kill_urb - cancel a transfer request and wait for it to finish
663 * @urb: pointer to URB describing a previously submitted request,
664 *	may be NULL
665 *
666 * This routine cancels an in-progress request.  It is guaranteed that
667 * upon return all completion handlers will have finished and the URB
668 * will be totally idle and available for reuse.  These features make
669 * this an ideal way to stop I/O in a disconnect() callback or close()
670 * function.  If the request has not already finished or been unlinked
671 * the completion handler will see urb->status == -ENOENT.
672 *
673 * While the routine is running, attempts to resubmit the URB will fail
674 * with error -EPERM.  Thus even if the URB's completion handler always
675 * tries to resubmit, it will not succeed and the URB will become idle.
676 *
677 * The URB must not be deallocated while this routine is running.  In
678 * particular, when a driver calls this routine, it must insure that the
679 * completion handler cannot deallocate the URB.
680 *
681 * This routine may not be used in an interrupt context (such as a bottom
682 * half or a completion handler), or when holding a spinlock, or in other
683 * situations where the caller can't schedule().
684 *
685 * This routine should not be called by a driver after its disconnect
686 * method has returned.
687 */
688void usb_kill_urb(struct urb *urb)
689{
690	might_sleep();
691	if (!(urb && urb->dev && urb->ep))
692		return;
693	atomic_inc(&urb->reject);
 
 
 
 
 
 
694
695	usb_hcd_unlink_urb(urb, -ENOENT);
696	wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
697
698	atomic_dec(&urb->reject);
699}
700EXPORT_SYMBOL_GPL(usb_kill_urb);
701
702/**
703 * usb_poison_urb - reliably kill a transfer and prevent further use of an URB
704 * @urb: pointer to URB describing a previously submitted request,
705 *	may be NULL
706 *
707 * This routine cancels an in-progress request.  It is guaranteed that
708 * upon return all completion handlers will have finished and the URB
709 * will be totally idle and cannot be reused.  These features make
710 * this an ideal way to stop I/O in a disconnect() callback.
711 * If the request has not already finished or been unlinked
712 * the completion handler will see urb->status == -ENOENT.
713 *
714 * After and while the routine runs, attempts to resubmit the URB will fail
715 * with error -EPERM.  Thus even if the URB's completion handler always
716 * tries to resubmit, it will not succeed and the URB will become idle.
717 *
718 * The URB must not be deallocated while this routine is running.  In
719 * particular, when a driver calls this routine, it must insure that the
720 * completion handler cannot deallocate the URB.
721 *
722 * This routine may not be used in an interrupt context (such as a bottom
723 * half or a completion handler), or when holding a spinlock, or in other
724 * situations where the caller can't schedule().
725 *
726 * This routine should not be called by a driver after its disconnect
727 * method has returned.
728 */
729void usb_poison_urb(struct urb *urb)
730{
731	might_sleep();
732	if (!urb)
733		return;
734	atomic_inc(&urb->reject);
 
 
 
 
 
 
735
736	if (!urb->dev || !urb->ep)
737		return;
738
739	usb_hcd_unlink_urb(urb, -ENOENT);
740	wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
741}
742EXPORT_SYMBOL_GPL(usb_poison_urb);
743
744void usb_unpoison_urb(struct urb *urb)
745{
746	if (!urb)
747		return;
748
749	atomic_dec(&urb->reject);
750}
751EXPORT_SYMBOL_GPL(usb_unpoison_urb);
752
753/**
754 * usb_block_urb - reliably prevent further use of an URB
755 * @urb: pointer to URB to be blocked, may be NULL
756 *
757 * After the routine has run, attempts to resubmit the URB will fail
758 * with error -EPERM.  Thus even if the URB's completion handler always
759 * tries to resubmit, it will not succeed and the URB will become idle.
760 *
761 * The URB must not be deallocated while this routine is running.  In
762 * particular, when a driver calls this routine, it must insure that the
763 * completion handler cannot deallocate the URB.
764 */
765void usb_block_urb(struct urb *urb)
766{
767	if (!urb)
768		return;
769
770	atomic_inc(&urb->reject);
771}
772EXPORT_SYMBOL_GPL(usb_block_urb);
773
774/**
775 * usb_kill_anchored_urbs - cancel transfer requests en masse
776 * @anchor: anchor the requests are bound to
777 *
778 * this allows all outstanding URBs to be killed starting
779 * from the back of the queue
 
780 *
781 * This routine should not be called by a driver after its disconnect
782 * method has returned.
783 */
784void usb_kill_anchored_urbs(struct usb_anchor *anchor)
785{
786	struct urb *victim;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
787
788	spin_lock_irq(&anchor->lock);
789	while (!list_empty(&anchor->urb_list)) {
790		victim = list_entry(anchor->urb_list.prev, struct urb,
791				    anchor_list);
792		/* we must make sure the URB isn't freed before we kill it*/
793		usb_get_urb(victim);
794		spin_unlock_irq(&anchor->lock);
795		/* this will unanchor the URB */
796		usb_kill_urb(victim);
797		usb_put_urb(victim);
798		spin_lock_irq(&anchor->lock);
799	}
800	spin_unlock_irq(&anchor->lock);
801}
802EXPORT_SYMBOL_GPL(usb_kill_anchored_urbs);
803
804
805/**
806 * usb_poison_anchored_urbs - cease all traffic from an anchor
807 * @anchor: anchor the requests are bound to
808 *
809 * this allows all outstanding URBs to be poisoned starting
810 * from the back of the queue. Newly added URBs will also be
811 * poisoned
812 *
813 * This routine should not be called by a driver after its disconnect
814 * method has returned.
815 */
816void usb_poison_anchored_urbs(struct usb_anchor *anchor)
817{
818	struct urb *victim;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
819
820	spin_lock_irq(&anchor->lock);
821	anchor->poisoned = 1;
822	while (!list_empty(&anchor->urb_list)) {
823		victim = list_entry(anchor->urb_list.prev, struct urb,
824				    anchor_list);
825		/* we must make sure the URB isn't freed before we kill it*/
826		usb_get_urb(victim);
827		spin_unlock_irq(&anchor->lock);
828		/* this will unanchor the URB */
829		usb_poison_urb(victim);
830		usb_put_urb(victim);
831		spin_lock_irq(&anchor->lock);
832	}
833	spin_unlock_irq(&anchor->lock);
834}
835EXPORT_SYMBOL_GPL(usb_poison_anchored_urbs);
836
837/**
838 * usb_unpoison_anchored_urbs - let an anchor be used successfully again
839 * @anchor: anchor the requests are bound to
840 *
841 * Reverses the effect of usb_poison_anchored_urbs
842 * the anchor can be used normally after it returns
843 */
844void usb_unpoison_anchored_urbs(struct usb_anchor *anchor)
845{
846	unsigned long flags;
847	struct urb *lazarus;
848
849	spin_lock_irqsave(&anchor->lock, flags);
850	list_for_each_entry(lazarus, &anchor->urb_list, anchor_list) {
851		usb_unpoison_urb(lazarus);
852	}
853	anchor->poisoned = 0;
854	spin_unlock_irqrestore(&anchor->lock, flags);
855}
856EXPORT_SYMBOL_GPL(usb_unpoison_anchored_urbs);
857/**
858 * usb_unlink_anchored_urbs - asynchronously cancel transfer requests en masse
859 * @anchor: anchor the requests are bound to
860 *
861 * this allows all outstanding URBs to be unlinked starting
862 * from the back of the queue. This function is asynchronous.
863 * The unlinking is just triggered. It may happen after this
864 * function has returned.
865 *
866 * This routine should not be called by a driver after its disconnect
867 * method has returned.
868 */
869void usb_unlink_anchored_urbs(struct usb_anchor *anchor)
870{
871	struct urb *victim;
872
873	while ((victim = usb_get_from_anchor(anchor)) != NULL) {
874		usb_unlink_urb(victim);
875		usb_put_urb(victim);
876	}
877}
878EXPORT_SYMBOL_GPL(usb_unlink_anchored_urbs);
879
880/**
881 * usb_anchor_suspend_wakeups
882 * @anchor: the anchor you want to suspend wakeups on
883 *
884 * Call this to stop the last urb being unanchored from waking up any
885 * usb_wait_anchor_empty_timeout waiters. This is used in the hcd urb give-
886 * back path to delay waking up until after the completion handler has run.
887 */
888void usb_anchor_suspend_wakeups(struct usb_anchor *anchor)
889{
890	if (anchor)
891		atomic_inc(&anchor->suspend_wakeups);
892}
893EXPORT_SYMBOL_GPL(usb_anchor_suspend_wakeups);
894
895/**
896 * usb_anchor_resume_wakeups
897 * @anchor: the anchor you want to resume wakeups on
898 *
899 * Allow usb_wait_anchor_empty_timeout waiters to be woken up again, and
900 * wake up any current waiters if the anchor is empty.
901 */
902void usb_anchor_resume_wakeups(struct usb_anchor *anchor)
903{
904	if (!anchor)
905		return;
906
907	atomic_dec(&anchor->suspend_wakeups);
908	if (usb_anchor_check_wakeup(anchor))
909		wake_up(&anchor->wait);
910}
911EXPORT_SYMBOL_GPL(usb_anchor_resume_wakeups);
912
913/**
914 * usb_wait_anchor_empty_timeout - wait for an anchor to be unused
915 * @anchor: the anchor you want to become unused
916 * @timeout: how long you are willing to wait in milliseconds
917 *
918 * Call this is you want to be sure all an anchor's
919 * URBs have finished
920 *
921 * Return: Non-zero if the anchor became unused. Zero on timeout.
922 */
923int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
924				  unsigned int timeout)
925{
926	return wait_event_timeout(anchor->wait,
927				  usb_anchor_check_wakeup(anchor),
928				  msecs_to_jiffies(timeout));
929}
930EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout);
931
932/**
933 * usb_get_from_anchor - get an anchor's oldest urb
934 * @anchor: the anchor whose urb you want
935 *
936 * This will take the oldest urb from an anchor,
937 * unanchor and return it
938 *
939 * Return: The oldest urb from @anchor, or %NULL if @anchor has no
940 * urbs associated with it.
941 */
942struct urb *usb_get_from_anchor(struct usb_anchor *anchor)
943{
944	struct urb *victim;
945	unsigned long flags;
946
947	spin_lock_irqsave(&anchor->lock, flags);
948	if (!list_empty(&anchor->urb_list)) {
949		victim = list_entry(anchor->urb_list.next, struct urb,
950				    anchor_list);
951		usb_get_urb(victim);
952		__usb_unanchor_urb(victim, anchor);
953	} else {
954		victim = NULL;
955	}
956	spin_unlock_irqrestore(&anchor->lock, flags);
957
958	return victim;
959}
960
961EXPORT_SYMBOL_GPL(usb_get_from_anchor);
962
963/**
964 * usb_scuttle_anchored_urbs - unanchor all an anchor's urbs
965 * @anchor: the anchor whose urbs you want to unanchor
966 *
967 * use this to get rid of all an anchor's urbs
968 */
969void usb_scuttle_anchored_urbs(struct usb_anchor *anchor)
970{
971	struct urb *victim;
972	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
973
974	spin_lock_irqsave(&anchor->lock, flags);
975	while (!list_empty(&anchor->urb_list)) {
976		victim = list_entry(anchor->urb_list.prev, struct urb,
977				    anchor_list);
978		__usb_unanchor_urb(victim, anchor);
979	}
980	spin_unlock_irqrestore(&anchor->lock, flags);
981}
982
983EXPORT_SYMBOL_GPL(usb_scuttle_anchored_urbs);
984
985/**
986 * usb_anchor_empty - is an anchor empty
987 * @anchor: the anchor you want to query
988 *
989 * Return: 1 if the anchor has no urbs associated with it.
990 */
991int usb_anchor_empty(struct usb_anchor *anchor)
992{
993	return list_empty(&anchor->urb_list);
994}
995
996EXPORT_SYMBOL_GPL(usb_anchor_empty);
997