Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * An RTC driver for Allwinner A31/A23
  4 *
  5 * Copyright (c) 2014, Chen-Yu Tsai <wens@csie.org>
  6 *
  7 * based on rtc-sunxi.c
  8 *
  9 * An RTC driver for Allwinner A10/A20
 10 *
 11 * Copyright (c) 2013, Carlo Caione <carlo.caione@gmail.com>
 
 
 
 
 
 
 
 
 
 
 12 */
 13
 14#include <linux/clk.h>
 15#include <linux/clk-provider.h>
 16#include <linux/clk/sunxi-ng.h>
 17#include <linux/delay.h>
 18#include <linux/err.h>
 19#include <linux/fs.h>
 20#include <linux/init.h>
 21#include <linux/interrupt.h>
 22#include <linux/io.h>
 23#include <linux/kernel.h>
 24#include <linux/module.h>
 25#include <linux/of.h>
 26#include <linux/of_address.h>
 27#include <linux/of_device.h>
 28#include <linux/platform_device.h>
 29#include <linux/rtc.h>
 30#include <linux/slab.h>
 31#include <linux/types.h>
 32
 33/* Control register */
 34#define SUN6I_LOSC_CTRL				0x0000
 35#define SUN6I_LOSC_CTRL_KEY			(0x16aa << 16)
 36#define SUN6I_LOSC_CTRL_AUTO_SWT_BYPASS		BIT(15)
 37#define SUN6I_LOSC_CTRL_ALM_DHMS_ACC		BIT(9)
 38#define SUN6I_LOSC_CTRL_RTC_HMS_ACC		BIT(8)
 39#define SUN6I_LOSC_CTRL_RTC_YMD_ACC		BIT(7)
 40#define SUN6I_LOSC_CTRL_EXT_LOSC_EN		BIT(4)
 41#define SUN6I_LOSC_CTRL_EXT_OSC			BIT(0)
 42#define SUN6I_LOSC_CTRL_ACC_MASK		GENMASK(9, 7)
 43
 44#define SUN6I_LOSC_CLK_PRESCAL			0x0008
 45
 46/* RTC */
 47#define SUN6I_RTC_YMD				0x0010
 48#define SUN6I_RTC_HMS				0x0014
 49
 50/* Alarm 0 (counter) */
 51#define SUN6I_ALRM_COUNTER			0x0020
 52/* This holds the remaining alarm seconds on older SoCs (current value) */
 53#define SUN6I_ALRM_COUNTER_HMS			0x0024
 54#define SUN6I_ALRM_EN				0x0028
 55#define SUN6I_ALRM_EN_CNT_EN			BIT(0)
 56#define SUN6I_ALRM_IRQ_EN			0x002c
 57#define SUN6I_ALRM_IRQ_EN_CNT_IRQ_EN		BIT(0)
 58#define SUN6I_ALRM_IRQ_STA			0x0030
 59#define SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND		BIT(0)
 60
 61/* Alarm 1 (wall clock) */
 62#define SUN6I_ALRM1_EN				0x0044
 63#define SUN6I_ALRM1_IRQ_EN			0x0048
 64#define SUN6I_ALRM1_IRQ_STA			0x004c
 65#define SUN6I_ALRM1_IRQ_STA_WEEK_IRQ_PEND	BIT(0)
 66
 67/* Alarm config */
 68#define SUN6I_ALARM_CONFIG			0x0050
 69#define SUN6I_ALARM_CONFIG_WAKEUP		BIT(0)
 70
 71#define SUN6I_LOSC_OUT_GATING			0x0060
 72#define SUN6I_LOSC_OUT_GATING_EN_OFFSET		0
 73
 74/* General-purpose data */
 75#define SUN6I_GP_DATA				0x0100
 76#define SUN6I_GP_DATA_SIZE			0x20
 77
 78/*
 79 * Get date values
 80 */
 81#define SUN6I_DATE_GET_DAY_VALUE(x)		((x)  & 0x0000001f)
 82#define SUN6I_DATE_GET_MON_VALUE(x)		(((x) & 0x00000f00) >> 8)
 83#define SUN6I_DATE_GET_YEAR_VALUE(x)		(((x) & 0x003f0000) >> 16)
 84#define SUN6I_LEAP_GET_VALUE(x)			(((x) & 0x00400000) >> 22)
 85
 86/*
 87 * Get time values
 88 */
 89#define SUN6I_TIME_GET_SEC_VALUE(x)		((x)  & 0x0000003f)
 90#define SUN6I_TIME_GET_MIN_VALUE(x)		(((x) & 0x00003f00) >> 8)
 91#define SUN6I_TIME_GET_HOUR_VALUE(x)		(((x) & 0x001f0000) >> 16)
 92
 93/*
 94 * Set date values
 95 */
 96#define SUN6I_DATE_SET_DAY_VALUE(x)		((x)       & 0x0000001f)
 97#define SUN6I_DATE_SET_MON_VALUE(x)		((x) <<  8 & 0x00000f00)
 98#define SUN6I_DATE_SET_YEAR_VALUE(x)		((x) << 16 & 0x003f0000)
 99#define SUN6I_LEAP_SET_VALUE(x)			((x) << 22 & 0x00400000)
100
101/*
102 * Set time values
103 */
104#define SUN6I_TIME_SET_SEC_VALUE(x)		((x)       & 0x0000003f)
105#define SUN6I_TIME_SET_MIN_VALUE(x)		((x) <<  8 & 0x00003f00)
106#define SUN6I_TIME_SET_HOUR_VALUE(x)		((x) << 16 & 0x001f0000)
107
108/*
109 * The year parameter passed to the driver is usually an offset relative to
110 * the year 1900. This macro is used to convert this offset to another one
111 * relative to the minimum year allowed by the hardware.
112 *
113 * The year range is 1970 - 2033. This range is selected to match Allwinner's
114 * driver, even though it is somewhat limited.
115 */
116#define SUN6I_YEAR_MIN				1970
 
117#define SUN6I_YEAR_OFF				(SUN6I_YEAR_MIN - 1900)
118
119#define SECS_PER_DAY				(24 * 3600ULL)
120
121/*
122 * There are other differences between models, including:
123 *
124 *   - number of GPIO pins that can be configured to hold a certain level
125 *   - crypto-key related registers (H5, H6)
126 *   - boot process related (super standby, secondary processor entry address)
127 *     registers (R40, H6)
128 *   - SYS power domain controls (R40)
129 *   - DCXO controls (H6)
130 *   - RC oscillator calibration (H6)
131 *
132 * These functions are not covered by this driver.
133 */
134struct sun6i_rtc_clk_data {
135	unsigned long rc_osc_rate;
136	unsigned int fixed_prescaler : 16;
137	unsigned int has_prescaler : 1;
138	unsigned int has_out_clk : 1;
139	unsigned int export_iosc : 1;
140	unsigned int has_losc_en : 1;
141	unsigned int has_auto_swt : 1;
142};
143
144#define RTC_LINEAR_DAY	BIT(0)
145
146struct sun6i_rtc_dev {
147	struct rtc_device *rtc;
148	const struct sun6i_rtc_clk_data *data;
149	void __iomem *base;
150	int irq;
151	time64_t alarm;
152	unsigned long flags;
153
154	struct clk_hw hw;
155	struct clk_hw *int_osc;
156	struct clk *losc;
157	struct clk *ext_losc;
158
159	spinlock_t lock;
160};
161
162static struct sun6i_rtc_dev *sun6i_rtc;
163
164static unsigned long sun6i_rtc_osc_recalc_rate(struct clk_hw *hw,
165					       unsigned long parent_rate)
166{
167	struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
168	u32 val = 0;
169
170	val = readl(rtc->base + SUN6I_LOSC_CTRL);
171	if (val & SUN6I_LOSC_CTRL_EXT_OSC)
172		return parent_rate;
173
174	if (rtc->data->fixed_prescaler)
175		parent_rate /= rtc->data->fixed_prescaler;
176
177	if (rtc->data->has_prescaler) {
178		val = readl(rtc->base + SUN6I_LOSC_CLK_PRESCAL);
179		val &= GENMASK(4, 0);
180	}
181
182	return parent_rate / (val + 1);
183}
184
185static u8 sun6i_rtc_osc_get_parent(struct clk_hw *hw)
186{
187	struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
188
189	return readl(rtc->base + SUN6I_LOSC_CTRL) & SUN6I_LOSC_CTRL_EXT_OSC;
190}
191
192static int sun6i_rtc_osc_set_parent(struct clk_hw *hw, u8 index)
193{
194	struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
195	unsigned long flags;
196	u32 val;
197
198	if (index > 1)
199		return -EINVAL;
200
201	spin_lock_irqsave(&rtc->lock, flags);
202	val = readl(rtc->base + SUN6I_LOSC_CTRL);
203	val &= ~SUN6I_LOSC_CTRL_EXT_OSC;
204	val |= SUN6I_LOSC_CTRL_KEY;
205	val |= index ? SUN6I_LOSC_CTRL_EXT_OSC : 0;
206	if (rtc->data->has_losc_en) {
207		val &= ~SUN6I_LOSC_CTRL_EXT_LOSC_EN;
208		val |= index ? SUN6I_LOSC_CTRL_EXT_LOSC_EN : 0;
209	}
210	writel(val, rtc->base + SUN6I_LOSC_CTRL);
211	spin_unlock_irqrestore(&rtc->lock, flags);
212
213	return 0;
214}
215
216static const struct clk_ops sun6i_rtc_osc_ops = {
217	.recalc_rate	= sun6i_rtc_osc_recalc_rate,
218
219	.get_parent	= sun6i_rtc_osc_get_parent,
220	.set_parent	= sun6i_rtc_osc_set_parent,
221};
222
223static void __init sun6i_rtc_clk_init(struct device_node *node,
224				      const struct sun6i_rtc_clk_data *data)
225{
226	struct clk_hw_onecell_data *clk_data;
227	struct sun6i_rtc_dev *rtc;
228	struct clk_init_data init = {
229		.ops		= &sun6i_rtc_osc_ops,
230		.name		= "losc",
231	};
232	const char *iosc_name = "rtc-int-osc";
233	const char *clkout_name = "osc32k-out";
234	const char *parents[2];
235	u32 reg;
236
237	rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
238	if (!rtc)
239		return;
240
241	rtc->data = data;
242	clk_data = kzalloc(struct_size(clk_data, hws, 3), GFP_KERNEL);
243	if (!clk_data) {
244		kfree(rtc);
245		return;
246	}
247
248	spin_lock_init(&rtc->lock);
249
250	rtc->base = of_io_request_and_map(node, 0, of_node_full_name(node));
251	if (IS_ERR(rtc->base)) {
252		pr_crit("Can't map RTC registers");
253		goto err;
254	}
255
256	reg = SUN6I_LOSC_CTRL_KEY;
257	if (rtc->data->has_auto_swt) {
258		/* Bypass auto-switch to int osc, on ext losc failure */
259		reg |= SUN6I_LOSC_CTRL_AUTO_SWT_BYPASS;
260		writel(reg, rtc->base + SUN6I_LOSC_CTRL);
261	}
262
263	/* Switch to the external, more precise, oscillator, if present */
264	if (of_get_property(node, "clocks", NULL)) {
265		reg |= SUN6I_LOSC_CTRL_EXT_OSC;
266		if (rtc->data->has_losc_en)
267			reg |= SUN6I_LOSC_CTRL_EXT_LOSC_EN;
268	}
269	writel(reg, rtc->base + SUN6I_LOSC_CTRL);
270
271	/* Yes, I know, this is ugly. */
272	sun6i_rtc = rtc;
273
274	/* Only read IOSC name from device tree if it is exported */
275	if (rtc->data->export_iosc)
276		of_property_read_string_index(node, "clock-output-names", 2,
277					      &iosc_name);
278
279	rtc->int_osc = clk_hw_register_fixed_rate_with_accuracy(NULL,
280								iosc_name,
281								NULL, 0,
282								rtc->data->rc_osc_rate,
283								300000000);
284	if (IS_ERR(rtc->int_osc)) {
285		pr_crit("Couldn't register the internal oscillator\n");
286		goto err;
287	}
288
289	parents[0] = clk_hw_get_name(rtc->int_osc);
290	/* If there is no external oscillator, this will be NULL and ... */
291	parents[1] = of_clk_get_parent_name(node, 0);
292
293	rtc->hw.init = &init;
294
295	init.parent_names = parents;
296	/* ... number of clock parents will be 1. */
297	init.num_parents = of_clk_get_parent_count(node) + 1;
298	of_property_read_string_index(node, "clock-output-names", 0,
299				      &init.name);
300
301	rtc->losc = clk_register(NULL, &rtc->hw);
302	if (IS_ERR(rtc->losc)) {
303		pr_crit("Couldn't register the LOSC clock\n");
304		goto err_register;
305	}
306
307	of_property_read_string_index(node, "clock-output-names", 1,
308				      &clkout_name);
309	rtc->ext_losc = clk_register_gate(NULL, clkout_name, init.name,
310					  0, rtc->base + SUN6I_LOSC_OUT_GATING,
311					  SUN6I_LOSC_OUT_GATING_EN_OFFSET, 0,
312					  &rtc->lock);
313	if (IS_ERR(rtc->ext_losc)) {
314		pr_crit("Couldn't register the LOSC external gate\n");
315		goto err_register;
316	}
317
318	clk_data->num = 2;
319	clk_data->hws[0] = &rtc->hw;
320	clk_data->hws[1] = __clk_get_hw(rtc->ext_losc);
321	if (rtc->data->export_iosc) {
322		clk_data->hws[2] = rtc->int_osc;
323		clk_data->num = 3;
324	}
325	of_clk_add_hw_provider(node, of_clk_hw_onecell_get, clk_data);
326	return;
327
328err_register:
329	clk_hw_unregister_fixed_rate(rtc->int_osc);
330err:
331	kfree(clk_data);
332}
333
334static const struct sun6i_rtc_clk_data sun6i_a31_rtc_data = {
335	.rc_osc_rate = 667000, /* datasheet says 600 ~ 700 KHz */
336	.has_prescaler = 1,
337};
338
339static void __init sun6i_a31_rtc_clk_init(struct device_node *node)
340{
341	sun6i_rtc_clk_init(node, &sun6i_a31_rtc_data);
342}
343CLK_OF_DECLARE_DRIVER(sun6i_a31_rtc_clk, "allwinner,sun6i-a31-rtc",
344		      sun6i_a31_rtc_clk_init);
345
346static const struct sun6i_rtc_clk_data sun8i_a23_rtc_data = {
347	.rc_osc_rate = 667000, /* datasheet says 600 ~ 700 KHz */
348	.has_prescaler = 1,
349	.has_out_clk = 1,
350};
351
352static void __init sun8i_a23_rtc_clk_init(struct device_node *node)
353{
354	sun6i_rtc_clk_init(node, &sun8i_a23_rtc_data);
355}
356CLK_OF_DECLARE_DRIVER(sun8i_a23_rtc_clk, "allwinner,sun8i-a23-rtc",
357		      sun8i_a23_rtc_clk_init);
358
359static const struct sun6i_rtc_clk_data sun8i_h3_rtc_data = {
360	.rc_osc_rate = 16000000,
361	.fixed_prescaler = 32,
362	.has_prescaler = 1,
363	.has_out_clk = 1,
364	.export_iosc = 1,
365};
366
367static void __init sun8i_h3_rtc_clk_init(struct device_node *node)
368{
369	sun6i_rtc_clk_init(node, &sun8i_h3_rtc_data);
370}
371CLK_OF_DECLARE_DRIVER(sun8i_h3_rtc_clk, "allwinner,sun8i-h3-rtc",
372		      sun8i_h3_rtc_clk_init);
373/* As far as we are concerned, clocks for H5 are the same as H3 */
374CLK_OF_DECLARE_DRIVER(sun50i_h5_rtc_clk, "allwinner,sun50i-h5-rtc",
375		      sun8i_h3_rtc_clk_init);
376
377static const struct sun6i_rtc_clk_data sun50i_h6_rtc_data = {
378	.rc_osc_rate = 16000000,
379	.fixed_prescaler = 32,
380	.has_prescaler = 1,
381	.has_out_clk = 1,
382	.export_iosc = 1,
383	.has_losc_en = 1,
384	.has_auto_swt = 1,
385};
386
387static void __init sun50i_h6_rtc_clk_init(struct device_node *node)
388{
389	sun6i_rtc_clk_init(node, &sun50i_h6_rtc_data);
390}
391CLK_OF_DECLARE_DRIVER(sun50i_h6_rtc_clk, "allwinner,sun50i-h6-rtc",
392		      sun50i_h6_rtc_clk_init);
393
394/*
395 * The R40 user manual is self-conflicting on whether the prescaler is
396 * fixed or configurable. The clock diagram shows it as fixed, but there
397 * is also a configurable divider in the RTC block.
398 */
399static const struct sun6i_rtc_clk_data sun8i_r40_rtc_data = {
400	.rc_osc_rate = 16000000,
401	.fixed_prescaler = 512,
402};
403static void __init sun8i_r40_rtc_clk_init(struct device_node *node)
404{
405	sun6i_rtc_clk_init(node, &sun8i_r40_rtc_data);
406}
407CLK_OF_DECLARE_DRIVER(sun8i_r40_rtc_clk, "allwinner,sun8i-r40-rtc",
408		      sun8i_r40_rtc_clk_init);
409
410static const struct sun6i_rtc_clk_data sun8i_v3_rtc_data = {
411	.rc_osc_rate = 32000,
412	.has_out_clk = 1,
413};
414
415static void __init sun8i_v3_rtc_clk_init(struct device_node *node)
416{
417	sun6i_rtc_clk_init(node, &sun8i_v3_rtc_data);
418}
419CLK_OF_DECLARE_DRIVER(sun8i_v3_rtc_clk, "allwinner,sun8i-v3-rtc",
420		      sun8i_v3_rtc_clk_init);
421
422static irqreturn_t sun6i_rtc_alarmirq(int irq, void *id)
423{
424	struct sun6i_rtc_dev *chip = (struct sun6i_rtc_dev *) id;
425	irqreturn_t ret = IRQ_NONE;
426	u32 val;
427
428	spin_lock(&chip->lock);
429	val = readl(chip->base + SUN6I_ALRM_IRQ_STA);
430
431	if (val & SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND) {
432		val |= SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND;
433		writel(val, chip->base + SUN6I_ALRM_IRQ_STA);
434
435		rtc_update_irq(chip->rtc, 1, RTC_AF | RTC_IRQF);
436
437		ret = IRQ_HANDLED;
438	}
439	spin_unlock(&chip->lock);
440
441	return ret;
442}
443
444static void sun6i_rtc_setaie(int to, struct sun6i_rtc_dev *chip)
445{
446	u32 alrm_val = 0;
447	u32 alrm_irq_val = 0;
448	u32 alrm_wake_val = 0;
449	unsigned long flags;
450
451	if (to) {
452		alrm_val = SUN6I_ALRM_EN_CNT_EN;
453		alrm_irq_val = SUN6I_ALRM_IRQ_EN_CNT_IRQ_EN;
454		alrm_wake_val = SUN6I_ALARM_CONFIG_WAKEUP;
455	} else {
456		writel(SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND,
457		       chip->base + SUN6I_ALRM_IRQ_STA);
458	}
459
460	spin_lock_irqsave(&chip->lock, flags);
461	writel(alrm_val, chip->base + SUN6I_ALRM_EN);
462	writel(alrm_irq_val, chip->base + SUN6I_ALRM_IRQ_EN);
463	writel(alrm_wake_val, chip->base + SUN6I_ALARM_CONFIG);
464	spin_unlock_irqrestore(&chip->lock, flags);
465}
466
467static int sun6i_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm)
468{
469	struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
470	u32 date, time;
471
472	/*
473	 * read again in case it changes
474	 */
475	do {
476		date = readl(chip->base + SUN6I_RTC_YMD);
477		time = readl(chip->base + SUN6I_RTC_HMS);
478	} while ((date != readl(chip->base + SUN6I_RTC_YMD)) ||
479		 (time != readl(chip->base + SUN6I_RTC_HMS)));
480
481	if (chip->flags & RTC_LINEAR_DAY) {
482		/*
483		 * Newer chips store a linear day number, the manual
484		 * does not mandate any epoch base. The BSP driver uses
485		 * the UNIX epoch, let's just copy that, as it's the
486		 * easiest anyway.
487		 */
488		rtc_time64_to_tm((date & 0xffff) * SECS_PER_DAY, rtc_tm);
489	} else {
490		rtc_tm->tm_mday = SUN6I_DATE_GET_DAY_VALUE(date);
491		rtc_tm->tm_mon  = SUN6I_DATE_GET_MON_VALUE(date) - 1;
492		rtc_tm->tm_year = SUN6I_DATE_GET_YEAR_VALUE(date);
493
494		/*
495		 * switch from (data_year->min)-relative offset to
496		 * a (1900)-relative one
497		 */
498		rtc_tm->tm_year += SUN6I_YEAR_OFF;
499	}
500
501	rtc_tm->tm_sec  = SUN6I_TIME_GET_SEC_VALUE(time);
502	rtc_tm->tm_min  = SUN6I_TIME_GET_MIN_VALUE(time);
503	rtc_tm->tm_hour = SUN6I_TIME_GET_HOUR_VALUE(time);
504
 
 
 
 
 
 
 
 
 
 
 
 
505	return 0;
506}
507
508static int sun6i_rtc_getalarm(struct device *dev, struct rtc_wkalrm *wkalrm)
509{
510	struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
511	unsigned long flags;
512	u32 alrm_st;
513	u32 alrm_en;
514
515	spin_lock_irqsave(&chip->lock, flags);
516	alrm_en = readl(chip->base + SUN6I_ALRM_IRQ_EN);
517	alrm_st = readl(chip->base + SUN6I_ALRM_IRQ_STA);
518	spin_unlock_irqrestore(&chip->lock, flags);
519
520	wkalrm->enabled = !!(alrm_en & SUN6I_ALRM_EN_CNT_EN);
521	wkalrm->pending = !!(alrm_st & SUN6I_ALRM_EN_CNT_EN);
522	rtc_time64_to_tm(chip->alarm, &wkalrm->time);
523
524	return 0;
525}
526
527static int sun6i_rtc_setalarm(struct device *dev, struct rtc_wkalrm *wkalrm)
528{
529	struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
530	struct rtc_time *alrm_tm = &wkalrm->time;
531	struct rtc_time tm_now;
532	time64_t time_set;
533	u32 counter_val, counter_val_hms;
534	int ret;
535
536	time_set = rtc_tm_to_time64(alrm_tm);
 
 
 
 
 
537
538	if (chip->flags & RTC_LINEAR_DAY) {
539		/*
540		 * The alarm registers hold the actual alarm time, encoded
541		 * in the same way (linear day + HMS) as the current time.
542		 */
543		counter_val_hms = SUN6I_TIME_SET_SEC_VALUE(alrm_tm->tm_sec)  |
544				  SUN6I_TIME_SET_MIN_VALUE(alrm_tm->tm_min)  |
545				  SUN6I_TIME_SET_HOUR_VALUE(alrm_tm->tm_hour);
546		/* The division will cut off the H:M:S part of alrm_tm. */
547		counter_val = div_u64(rtc_tm_to_time64(alrm_tm), SECS_PER_DAY);
548	} else {
549		/* The alarm register holds the number of seconds left. */
550		time64_t time_now;
551
552		ret = sun6i_rtc_gettime(dev, &tm_now);
553		if (ret < 0) {
554			dev_err(dev, "Error in getting time\n");
555			return -EINVAL;
556		}
557
558		time_now = rtc_tm_to_time64(&tm_now);
559		if (time_set <= time_now) {
560			dev_err(dev, "Date to set in the past\n");
561			return -EINVAL;
562		}
563		if ((time_set - time_now) > U32_MAX) {
564			dev_err(dev, "Date too far in the future\n");
565			return -EINVAL;
566		}
567
568		counter_val = time_set - time_now;
 
 
569	}
570
571	sun6i_rtc_setaie(0, chip);
572	writel(0, chip->base + SUN6I_ALRM_COUNTER);
573	if (chip->flags & RTC_LINEAR_DAY)
574		writel(0, chip->base + SUN6I_ALRM_COUNTER_HMS);
575	usleep_range(100, 300);
576
577	writel(counter_val, chip->base + SUN6I_ALRM_COUNTER);
578	if (chip->flags & RTC_LINEAR_DAY)
579		writel(counter_val_hms, chip->base + SUN6I_ALRM_COUNTER_HMS);
580	chip->alarm = time_set;
581
582	sun6i_rtc_setaie(wkalrm->enabled, chip);
583
584	return 0;
585}
586
587static int sun6i_rtc_wait(struct sun6i_rtc_dev *chip, int offset,
588			  unsigned int mask, unsigned int ms_timeout)
589{
590	const unsigned long timeout = jiffies + msecs_to_jiffies(ms_timeout);
591	u32 reg;
592
593	do {
594		reg = readl(chip->base + offset);
595		reg &= mask;
596
597		if (!reg)
598			return 0;
599
600	} while (time_before(jiffies, timeout));
601
602	return -ETIMEDOUT;
603}
604
605static int sun6i_rtc_settime(struct device *dev, struct rtc_time *rtc_tm)
606{
607	struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
608	u32 date = 0;
609	u32 time = 0;
 
610
611	time = SUN6I_TIME_SET_SEC_VALUE(rtc_tm->tm_sec)  |
612		SUN6I_TIME_SET_MIN_VALUE(rtc_tm->tm_min)  |
613		SUN6I_TIME_SET_HOUR_VALUE(rtc_tm->tm_hour);
 
 
 
614
615	if (chip->flags & RTC_LINEAR_DAY) {
616		/* The division will cut off the H:M:S part of rtc_tm. */
617		date = div_u64(rtc_tm_to_time64(rtc_tm), SECS_PER_DAY);
618	} else {
619		rtc_tm->tm_year -= SUN6I_YEAR_OFF;
620		rtc_tm->tm_mon += 1;
621
622		date = SUN6I_DATE_SET_DAY_VALUE(rtc_tm->tm_mday) |
623			SUN6I_DATE_SET_MON_VALUE(rtc_tm->tm_mon)  |
624			SUN6I_DATE_SET_YEAR_VALUE(rtc_tm->tm_year);
625
626		if (is_leap_year(rtc_tm->tm_year + SUN6I_YEAR_MIN))
627			date |= SUN6I_LEAP_SET_VALUE(1);
628	}
 
 
 
629
630	/* Check whether registers are writable */
631	if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
632			   SUN6I_LOSC_CTRL_ACC_MASK, 50)) {
633		dev_err(dev, "rtc is still busy.\n");
634		return -EBUSY;
635	}
636
637	writel(time, chip->base + SUN6I_RTC_HMS);
638
639	/*
640	 * After writing the RTC HH-MM-SS register, the
641	 * SUN6I_LOSC_CTRL_RTC_HMS_ACC bit is set and it will not
642	 * be cleared until the real writing operation is finished
643	 */
644
645	if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
646			   SUN6I_LOSC_CTRL_RTC_HMS_ACC, 50)) {
647		dev_err(dev, "Failed to set rtc time.\n");
648		return -ETIMEDOUT;
649	}
650
651	writel(date, chip->base + SUN6I_RTC_YMD);
652
653	/*
654	 * After writing the RTC YY-MM-DD register, the
655	 * SUN6I_LOSC_CTRL_RTC_YMD_ACC bit is set and it will not
656	 * be cleared until the real writing operation is finished
657	 */
658
659	if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
660			   SUN6I_LOSC_CTRL_RTC_YMD_ACC, 50)) {
661		dev_err(dev, "Failed to set rtc time.\n");
662		return -ETIMEDOUT;
663	}
664
665	return 0;
666}
667
668static int sun6i_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
669{
670	struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
671
672	if (!enabled)
673		sun6i_rtc_setaie(enabled, chip);
674
675	return 0;
676}
677
678static const struct rtc_class_ops sun6i_rtc_ops = {
679	.read_time		= sun6i_rtc_gettime,
680	.set_time		= sun6i_rtc_settime,
681	.read_alarm		= sun6i_rtc_getalarm,
682	.set_alarm		= sun6i_rtc_setalarm,
683	.alarm_irq_enable	= sun6i_rtc_alarm_irq_enable
684};
685
686static int sun6i_rtc_nvmem_read(void *priv, unsigned int offset, void *_val, size_t bytes)
687{
688	struct sun6i_rtc_dev *chip = priv;
689	u32 *val = _val;
690	int i;
691
692	for (i = 0; i < bytes / 4; ++i)
693		val[i] = readl(chip->base + SUN6I_GP_DATA + offset + 4 * i);
694
695	return 0;
696}
697
698static int sun6i_rtc_nvmem_write(void *priv, unsigned int offset, void *_val, size_t bytes)
699{
700	struct sun6i_rtc_dev *chip = priv;
701	u32 *val = _val;
702	int i;
703
704	for (i = 0; i < bytes / 4; ++i)
705		writel(val[i], chip->base + SUN6I_GP_DATA + offset + 4 * i);
706
707	return 0;
708}
709
710static struct nvmem_config sun6i_rtc_nvmem_cfg = {
711	.type		= NVMEM_TYPE_BATTERY_BACKED,
712	.reg_read	= sun6i_rtc_nvmem_read,
713	.reg_write	= sun6i_rtc_nvmem_write,
714	.size		= SUN6I_GP_DATA_SIZE,
715	.word_size	= 4,
716	.stride		= 4,
717};
718
719#ifdef CONFIG_PM_SLEEP
720/* Enable IRQ wake on suspend, to wake up from RTC. */
721static int sun6i_rtc_suspend(struct device *dev)
722{
723	struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
724
725	if (device_may_wakeup(dev))
726		enable_irq_wake(chip->irq);
727
728	return 0;
729}
730
731/* Disable IRQ wake on resume. */
732static int sun6i_rtc_resume(struct device *dev)
733{
734	struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
735
736	if (device_may_wakeup(dev))
737		disable_irq_wake(chip->irq);
738
739	return 0;
740}
741#endif
742
743static SIMPLE_DEV_PM_OPS(sun6i_rtc_pm_ops,
744	sun6i_rtc_suspend, sun6i_rtc_resume);
745
746static void sun6i_rtc_bus_clk_cleanup(void *data)
747{
748	struct clk *bus_clk = data;
749
750	clk_disable_unprepare(bus_clk);
751}
752
753static int sun6i_rtc_probe(struct platform_device *pdev)
754{
755	struct sun6i_rtc_dev *chip = sun6i_rtc;
756	struct device *dev = &pdev->dev;
757	struct clk *bus_clk;
758	int ret;
759
760	bus_clk = devm_clk_get_optional(dev, "bus");
761	if (IS_ERR(bus_clk))
762		return PTR_ERR(bus_clk);
763
764	if (bus_clk) {
765		ret = clk_prepare_enable(bus_clk);
766		if (ret)
767			return ret;
768
769		ret = devm_add_action_or_reset(dev, sun6i_rtc_bus_clk_cleanup,
770					       bus_clk);
771		if (ret)
772			return ret;
773	}
774
775	if (!chip) {
776		chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL);
777		if (!chip)
778			return -ENOMEM;
779
780		spin_lock_init(&chip->lock);
781
782		chip->base = devm_platform_ioremap_resource(pdev, 0);
783		if (IS_ERR(chip->base))
784			return PTR_ERR(chip->base);
785
786		if (IS_REACHABLE(CONFIG_SUN6I_RTC_CCU)) {
787			ret = sun6i_rtc_ccu_probe(dev, chip->base);
788			if (ret)
789				return ret;
790		}
791	}
792
793	platform_set_drvdata(pdev, chip);
794
795	chip->flags = (unsigned long)of_device_get_match_data(&pdev->dev);
796
797	chip->irq = platform_get_irq(pdev, 0);
798	if (chip->irq < 0)
 
799		return chip->irq;
 
800
801	ret = devm_request_irq(&pdev->dev, chip->irq, sun6i_rtc_alarmirq,
802			       0, dev_name(&pdev->dev), chip);
803	if (ret) {
804		dev_err(&pdev->dev, "Could not request IRQ\n");
805		return ret;
806	}
807
808	/* clear the alarm counter value */
809	writel(0, chip->base + SUN6I_ALRM_COUNTER);
810
811	/* disable counter alarm */
812	writel(0, chip->base + SUN6I_ALRM_EN);
813
814	/* disable counter alarm interrupt */
815	writel(0, chip->base + SUN6I_ALRM_IRQ_EN);
816
817	/* disable week alarm */
818	writel(0, chip->base + SUN6I_ALRM1_EN);
819
820	/* disable week alarm interrupt */
821	writel(0, chip->base + SUN6I_ALRM1_IRQ_EN);
822
823	/* clear counter alarm pending interrupts */
824	writel(SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND,
825	       chip->base + SUN6I_ALRM_IRQ_STA);
826
827	/* clear week alarm pending interrupts */
828	writel(SUN6I_ALRM1_IRQ_STA_WEEK_IRQ_PEND,
829	       chip->base + SUN6I_ALRM1_IRQ_STA);
830
831	/* disable alarm wakeup */
832	writel(0, chip->base + SUN6I_ALARM_CONFIG);
833
834	clk_prepare_enable(chip->losc);
835
836	device_init_wakeup(&pdev->dev, 1);
837
838	chip->rtc = devm_rtc_allocate_device(&pdev->dev);
839	if (IS_ERR(chip->rtc))
840		return PTR_ERR(chip->rtc);
841
842	chip->rtc->ops = &sun6i_rtc_ops;
843	if (chip->flags & RTC_LINEAR_DAY)
844		chip->rtc->range_max = (65536 * SECS_PER_DAY) - 1;
845	else
846		chip->rtc->range_max = 2019686399LL; /* 2033-12-31 23:59:59 */
847
848	ret = devm_rtc_register_device(chip->rtc);
849	if (ret)
850		return ret;
851
852	sun6i_rtc_nvmem_cfg.priv = chip;
853	ret = devm_rtc_nvmem_register(chip->rtc, &sun6i_rtc_nvmem_cfg);
854	if (ret)
855		return ret;
856
857	dev_info(&pdev->dev, "RTC enabled\n");
858
859	return 0;
860}
861
862/*
863 * As far as RTC functionality goes, all models are the same. The
864 * datasheets claim that different models have different number of
865 * registers available for non-volatile storage, but experiments show
866 * that all SoCs have 16 registers available for this purpose.
867 */
868static const struct of_device_id sun6i_rtc_dt_ids[] = {
869	{ .compatible = "allwinner,sun6i-a31-rtc" },
870	{ .compatible = "allwinner,sun8i-a23-rtc" },
871	{ .compatible = "allwinner,sun8i-h3-rtc" },
872	{ .compatible = "allwinner,sun8i-r40-rtc" },
873	{ .compatible = "allwinner,sun8i-v3-rtc" },
874	{ .compatible = "allwinner,sun50i-h5-rtc" },
875	{ .compatible = "allwinner,sun50i-h6-rtc" },
876	{ .compatible = "allwinner,sun50i-h616-rtc",
877		.data = (void *)RTC_LINEAR_DAY },
878	{ .compatible = "allwinner,sun50i-r329-rtc",
879		.data = (void *)RTC_LINEAR_DAY },
880	{ /* sentinel */ },
881};
882MODULE_DEVICE_TABLE(of, sun6i_rtc_dt_ids);
883
884static struct platform_driver sun6i_rtc_driver = {
885	.probe		= sun6i_rtc_probe,
886	.driver		= {
887		.name		= "sun6i-rtc",
888		.of_match_table = sun6i_rtc_dt_ids,
889		.pm = &sun6i_rtc_pm_ops,
890	},
891};
892builtin_platform_driver(sun6i_rtc_driver);
v4.17
 
  1/*
  2 * An RTC driver for Allwinner A31/A23
  3 *
  4 * Copyright (c) 2014, Chen-Yu Tsai <wens@csie.org>
  5 *
  6 * based on rtc-sunxi.c
  7 *
  8 * An RTC driver for Allwinner A10/A20
  9 *
 10 * Copyright (c) 2013, Carlo Caione <carlo.caione@gmail.com>
 11 *
 12 * This program is free software; you can redistribute it and/or modify
 13 * it under the terms of the GNU General Public License as published by
 14 * the Free Software Foundation; either version 2 of the License, or
 15 * (at your option) any later version.
 16 *
 17 * This program is distributed in the hope that it will be useful, but WITHOUT
 18 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 19 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 20 * more details.
 21 */
 22
 23#include <linux/clk.h>
 24#include <linux/clk-provider.h>
 
 25#include <linux/delay.h>
 26#include <linux/err.h>
 27#include <linux/fs.h>
 28#include <linux/init.h>
 29#include <linux/interrupt.h>
 30#include <linux/io.h>
 31#include <linux/kernel.h>
 32#include <linux/module.h>
 33#include <linux/of.h>
 34#include <linux/of_address.h>
 35#include <linux/of_device.h>
 36#include <linux/platform_device.h>
 37#include <linux/rtc.h>
 38#include <linux/slab.h>
 39#include <linux/types.h>
 40
 41/* Control register */
 42#define SUN6I_LOSC_CTRL				0x0000
 43#define SUN6I_LOSC_CTRL_KEY			(0x16aa << 16)
 
 44#define SUN6I_LOSC_CTRL_ALM_DHMS_ACC		BIT(9)
 45#define SUN6I_LOSC_CTRL_RTC_HMS_ACC		BIT(8)
 46#define SUN6I_LOSC_CTRL_RTC_YMD_ACC		BIT(7)
 
 47#define SUN6I_LOSC_CTRL_EXT_OSC			BIT(0)
 48#define SUN6I_LOSC_CTRL_ACC_MASK		GENMASK(9, 7)
 49
 50#define SUN6I_LOSC_CLK_PRESCAL			0x0008
 51
 52/* RTC */
 53#define SUN6I_RTC_YMD				0x0010
 54#define SUN6I_RTC_HMS				0x0014
 55
 56/* Alarm 0 (counter) */
 57#define SUN6I_ALRM_COUNTER			0x0020
 58#define SUN6I_ALRM_CUR_VAL			0x0024
 
 59#define SUN6I_ALRM_EN				0x0028
 60#define SUN6I_ALRM_EN_CNT_EN			BIT(0)
 61#define SUN6I_ALRM_IRQ_EN			0x002c
 62#define SUN6I_ALRM_IRQ_EN_CNT_IRQ_EN		BIT(0)
 63#define SUN6I_ALRM_IRQ_STA			0x0030
 64#define SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND		BIT(0)
 65
 66/* Alarm 1 (wall clock) */
 67#define SUN6I_ALRM1_EN				0x0044
 68#define SUN6I_ALRM1_IRQ_EN			0x0048
 69#define SUN6I_ALRM1_IRQ_STA			0x004c
 70#define SUN6I_ALRM1_IRQ_STA_WEEK_IRQ_PEND	BIT(0)
 71
 72/* Alarm config */
 73#define SUN6I_ALARM_CONFIG			0x0050
 74#define SUN6I_ALARM_CONFIG_WAKEUP		BIT(0)
 75
 76#define SUN6I_LOSC_OUT_GATING			0x0060
 77#define SUN6I_LOSC_OUT_GATING_EN		BIT(0)
 
 
 
 
 78
 79/*
 80 * Get date values
 81 */
 82#define SUN6I_DATE_GET_DAY_VALUE(x)		((x)  & 0x0000001f)
 83#define SUN6I_DATE_GET_MON_VALUE(x)		(((x) & 0x00000f00) >> 8)
 84#define SUN6I_DATE_GET_YEAR_VALUE(x)		(((x) & 0x003f0000) >> 16)
 85#define SUN6I_LEAP_GET_VALUE(x)			(((x) & 0x00400000) >> 22)
 86
 87/*
 88 * Get time values
 89 */
 90#define SUN6I_TIME_GET_SEC_VALUE(x)		((x)  & 0x0000003f)
 91#define SUN6I_TIME_GET_MIN_VALUE(x)		(((x) & 0x00003f00) >> 8)
 92#define SUN6I_TIME_GET_HOUR_VALUE(x)		(((x) & 0x001f0000) >> 16)
 93
 94/*
 95 * Set date values
 96 */
 97#define SUN6I_DATE_SET_DAY_VALUE(x)		((x)       & 0x0000001f)
 98#define SUN6I_DATE_SET_MON_VALUE(x)		((x) <<  8 & 0x00000f00)
 99#define SUN6I_DATE_SET_YEAR_VALUE(x)		((x) << 16 & 0x003f0000)
100#define SUN6I_LEAP_SET_VALUE(x)			((x) << 22 & 0x00400000)
101
102/*
103 * Set time values
104 */
105#define SUN6I_TIME_SET_SEC_VALUE(x)		((x)       & 0x0000003f)
106#define SUN6I_TIME_SET_MIN_VALUE(x)		((x) <<  8 & 0x00003f00)
107#define SUN6I_TIME_SET_HOUR_VALUE(x)		((x) << 16 & 0x001f0000)
108
109/*
110 * The year parameter passed to the driver is usually an offset relative to
111 * the year 1900. This macro is used to convert this offset to another one
112 * relative to the minimum year allowed by the hardware.
113 *
114 * The year range is 1970 - 2033. This range is selected to match Allwinner's
115 * driver, even though it is somewhat limited.
116 */
117#define SUN6I_YEAR_MIN				1970
118#define SUN6I_YEAR_MAX				2033
119#define SUN6I_YEAR_OFF				(SUN6I_YEAR_MIN - 1900)
120
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
121struct sun6i_rtc_dev {
122	struct rtc_device *rtc;
123	struct device *dev;
124	void __iomem *base;
125	int irq;
126	unsigned long alarm;
 
127
128	struct clk_hw hw;
129	struct clk_hw *int_osc;
130	struct clk *losc;
131	struct clk *ext_losc;
132
133	spinlock_t lock;
134};
135
136static struct sun6i_rtc_dev *sun6i_rtc;
137
138static unsigned long sun6i_rtc_osc_recalc_rate(struct clk_hw *hw,
139					       unsigned long parent_rate)
140{
141	struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
142	u32 val;
143
144	val = readl(rtc->base + SUN6I_LOSC_CTRL);
145	if (val & SUN6I_LOSC_CTRL_EXT_OSC)
146		return parent_rate;
147
148	val = readl(rtc->base + SUN6I_LOSC_CLK_PRESCAL);
149	val &= GENMASK(4, 0);
 
 
 
 
 
150
151	return parent_rate / (val + 1);
152}
153
154static u8 sun6i_rtc_osc_get_parent(struct clk_hw *hw)
155{
156	struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
157
158	return readl(rtc->base + SUN6I_LOSC_CTRL) & SUN6I_LOSC_CTRL_EXT_OSC;
159}
160
161static int sun6i_rtc_osc_set_parent(struct clk_hw *hw, u8 index)
162{
163	struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
164	unsigned long flags;
165	u32 val;
166
167	if (index > 1)
168		return -EINVAL;
169
170	spin_lock_irqsave(&rtc->lock, flags);
171	val = readl(rtc->base + SUN6I_LOSC_CTRL);
172	val &= ~SUN6I_LOSC_CTRL_EXT_OSC;
173	val |= SUN6I_LOSC_CTRL_KEY;
174	val |= index ? SUN6I_LOSC_CTRL_EXT_OSC : 0;
 
 
 
 
175	writel(val, rtc->base + SUN6I_LOSC_CTRL);
176	spin_unlock_irqrestore(&rtc->lock, flags);
177
178	return 0;
179}
180
181static const struct clk_ops sun6i_rtc_osc_ops = {
182	.recalc_rate	= sun6i_rtc_osc_recalc_rate,
183
184	.get_parent	= sun6i_rtc_osc_get_parent,
185	.set_parent	= sun6i_rtc_osc_set_parent,
186};
187
188static void __init sun6i_rtc_clk_init(struct device_node *node)
 
189{
190	struct clk_hw_onecell_data *clk_data;
191	struct sun6i_rtc_dev *rtc;
192	struct clk_init_data init = {
193		.ops		= &sun6i_rtc_osc_ops,
 
194	};
 
195	const char *clkout_name = "osc32k-out";
196	const char *parents[2];
 
197
198	rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
199	if (!rtc)
200		return;
201
202	clk_data = kzalloc(sizeof(*clk_data) + (sizeof(*clk_data->hws) * 2),
203			   GFP_KERNEL);
204	if (!clk_data) {
205		kfree(rtc);
206		return;
207	}
208
209	spin_lock_init(&rtc->lock);
210
211	rtc->base = of_io_request_and_map(node, 0, of_node_full_name(node));
212	if (IS_ERR(rtc->base)) {
213		pr_crit("Can't map RTC registers");
214		goto err;
215	}
216
217	/* Switch to the external, more precise, oscillator */
218	writel(SUN6I_LOSC_CTRL_KEY | SUN6I_LOSC_CTRL_EXT_OSC,
219	       rtc->base + SUN6I_LOSC_CTRL);
 
 
 
 
 
 
 
 
 
 
 
220
221	/* Yes, I know, this is ugly. */
222	sun6i_rtc = rtc;
223
224	/* Deal with old DTs */
225	if (!of_get_property(node, "clocks", NULL))
226		goto err;
 
227
228	rtc->int_osc = clk_hw_register_fixed_rate_with_accuracy(NULL,
229								"rtc-int-osc",
230								NULL, 0,
231								667000,
232								300000000);
233	if (IS_ERR(rtc->int_osc)) {
234		pr_crit("Couldn't register the internal oscillator\n");
235		return;
236	}
237
238	parents[0] = clk_hw_get_name(rtc->int_osc);
 
239	parents[1] = of_clk_get_parent_name(node, 0);
240
241	rtc->hw.init = &init;
242
243	init.parent_names = parents;
 
244	init.num_parents = of_clk_get_parent_count(node) + 1;
245	of_property_read_string_index(node, "clock-output-names", 0,
246				      &init.name);
247
248	rtc->losc = clk_register(NULL, &rtc->hw);
249	if (IS_ERR(rtc->losc)) {
250		pr_crit("Couldn't register the LOSC clock\n");
251		return;
252	}
253
254	of_property_read_string_index(node, "clock-output-names", 1,
255				      &clkout_name);
256	rtc->ext_losc = clk_register_gate(NULL, clkout_name, rtc->hw.init->name,
257					  0, rtc->base + SUN6I_LOSC_OUT_GATING,
258					  SUN6I_LOSC_OUT_GATING_EN, 0,
259					  &rtc->lock);
260	if (IS_ERR(rtc->ext_losc)) {
261		pr_crit("Couldn't register the LOSC external gate\n");
262		return;
263	}
264
265	clk_data->num = 2;
266	clk_data->hws[0] = &rtc->hw;
267	clk_data->hws[1] = __clk_get_hw(rtc->ext_losc);
 
 
 
 
268	of_clk_add_hw_provider(node, of_clk_hw_onecell_get, clk_data);
269	return;
270
 
 
271err:
272	kfree(clk_data);
273}
274CLK_OF_DECLARE_DRIVER(sun6i_rtc_clk, "allwinner,sun6i-a31-rtc",
275		      sun6i_rtc_clk_init);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
276
277static irqreturn_t sun6i_rtc_alarmirq(int irq, void *id)
278{
279	struct sun6i_rtc_dev *chip = (struct sun6i_rtc_dev *) id;
280	irqreturn_t ret = IRQ_NONE;
281	u32 val;
282
283	spin_lock(&chip->lock);
284	val = readl(chip->base + SUN6I_ALRM_IRQ_STA);
285
286	if (val & SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND) {
287		val |= SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND;
288		writel(val, chip->base + SUN6I_ALRM_IRQ_STA);
289
290		rtc_update_irq(chip->rtc, 1, RTC_AF | RTC_IRQF);
291
292		ret = IRQ_HANDLED;
293	}
294	spin_unlock(&chip->lock);
295
296	return ret;
297}
298
299static void sun6i_rtc_setaie(int to, struct sun6i_rtc_dev *chip)
300{
301	u32 alrm_val = 0;
302	u32 alrm_irq_val = 0;
303	u32 alrm_wake_val = 0;
304	unsigned long flags;
305
306	if (to) {
307		alrm_val = SUN6I_ALRM_EN_CNT_EN;
308		alrm_irq_val = SUN6I_ALRM_IRQ_EN_CNT_IRQ_EN;
309		alrm_wake_val = SUN6I_ALARM_CONFIG_WAKEUP;
310	} else {
311		writel(SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND,
312		       chip->base + SUN6I_ALRM_IRQ_STA);
313	}
314
315	spin_lock_irqsave(&chip->lock, flags);
316	writel(alrm_val, chip->base + SUN6I_ALRM_EN);
317	writel(alrm_irq_val, chip->base + SUN6I_ALRM_IRQ_EN);
318	writel(alrm_wake_val, chip->base + SUN6I_ALARM_CONFIG);
319	spin_unlock_irqrestore(&chip->lock, flags);
320}
321
322static int sun6i_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm)
323{
324	struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
325	u32 date, time;
326
327	/*
328	 * read again in case it changes
329	 */
330	do {
331		date = readl(chip->base + SUN6I_RTC_YMD);
332		time = readl(chip->base + SUN6I_RTC_HMS);
333	} while ((date != readl(chip->base + SUN6I_RTC_YMD)) ||
334		 (time != readl(chip->base + SUN6I_RTC_HMS)));
335
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
336	rtc_tm->tm_sec  = SUN6I_TIME_GET_SEC_VALUE(time);
337	rtc_tm->tm_min  = SUN6I_TIME_GET_MIN_VALUE(time);
338	rtc_tm->tm_hour = SUN6I_TIME_GET_HOUR_VALUE(time);
339
340	rtc_tm->tm_mday = SUN6I_DATE_GET_DAY_VALUE(date);
341	rtc_tm->tm_mon  = SUN6I_DATE_GET_MON_VALUE(date);
342	rtc_tm->tm_year = SUN6I_DATE_GET_YEAR_VALUE(date);
343
344	rtc_tm->tm_mon  -= 1;
345
346	/*
347	 * switch from (data_year->min)-relative offset to
348	 * a (1900)-relative one
349	 */
350	rtc_tm->tm_year += SUN6I_YEAR_OFF;
351
352	return 0;
353}
354
355static int sun6i_rtc_getalarm(struct device *dev, struct rtc_wkalrm *wkalrm)
356{
357	struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
358	unsigned long flags;
359	u32 alrm_st;
360	u32 alrm_en;
361
362	spin_lock_irqsave(&chip->lock, flags);
363	alrm_en = readl(chip->base + SUN6I_ALRM_IRQ_EN);
364	alrm_st = readl(chip->base + SUN6I_ALRM_IRQ_STA);
365	spin_unlock_irqrestore(&chip->lock, flags);
366
367	wkalrm->enabled = !!(alrm_en & SUN6I_ALRM_EN_CNT_EN);
368	wkalrm->pending = !!(alrm_st & SUN6I_ALRM_EN_CNT_EN);
369	rtc_time_to_tm(chip->alarm, &wkalrm->time);
370
371	return 0;
372}
373
374static int sun6i_rtc_setalarm(struct device *dev, struct rtc_wkalrm *wkalrm)
375{
376	struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
377	struct rtc_time *alrm_tm = &wkalrm->time;
378	struct rtc_time tm_now;
379	unsigned long time_now = 0;
380	unsigned long time_set = 0;
381	unsigned long time_gap = 0;
382	int ret = 0;
383
384	ret = sun6i_rtc_gettime(dev, &tm_now);
385	if (ret < 0) {
386		dev_err(dev, "Error in getting time\n");
387		return -EINVAL;
388	}
389
390	rtc_tm_to_time(alrm_tm, &time_set);
391	rtc_tm_to_time(&tm_now, &time_now);
392	if (time_set <= time_now) {
393		dev_err(dev, "Date to set in the past\n");
394		return -EINVAL;
395	}
 
 
 
 
 
 
 
396
397	time_gap = time_set - time_now;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
398
399	if (time_gap > U32_MAX) {
400		dev_err(dev, "Date too far in the future\n");
401		return -EINVAL;
402	}
403
404	sun6i_rtc_setaie(0, chip);
405	writel(0, chip->base + SUN6I_ALRM_COUNTER);
 
 
406	usleep_range(100, 300);
407
408	writel(time_gap, chip->base + SUN6I_ALRM_COUNTER);
 
 
409	chip->alarm = time_set;
410
411	sun6i_rtc_setaie(wkalrm->enabled, chip);
412
413	return 0;
414}
415
416static int sun6i_rtc_wait(struct sun6i_rtc_dev *chip, int offset,
417			  unsigned int mask, unsigned int ms_timeout)
418{
419	const unsigned long timeout = jiffies + msecs_to_jiffies(ms_timeout);
420	u32 reg;
421
422	do {
423		reg = readl(chip->base + offset);
424		reg &= mask;
425
426		if (!reg)
427			return 0;
428
429	} while (time_before(jiffies, timeout));
430
431	return -ETIMEDOUT;
432}
433
434static int sun6i_rtc_settime(struct device *dev, struct rtc_time *rtc_tm)
435{
436	struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
437	u32 date = 0;
438	u32 time = 0;
439	int year;
440
441	year = rtc_tm->tm_year + 1900;
442	if (year < SUN6I_YEAR_MIN || year > SUN6I_YEAR_MAX) {
443		dev_err(dev, "rtc only supports year in range %d - %d\n",
444			SUN6I_YEAR_MIN, SUN6I_YEAR_MAX);
445		return -EINVAL;
446	}
447
448	rtc_tm->tm_year -= SUN6I_YEAR_OFF;
449	rtc_tm->tm_mon += 1;
 
 
 
 
450
451	date = SUN6I_DATE_SET_DAY_VALUE(rtc_tm->tm_mday) |
452		SUN6I_DATE_SET_MON_VALUE(rtc_tm->tm_mon)  |
453		SUN6I_DATE_SET_YEAR_VALUE(rtc_tm->tm_year);
454
455	if (is_leap_year(year))
456		date |= SUN6I_LEAP_SET_VALUE(1);
457
458	time = SUN6I_TIME_SET_SEC_VALUE(rtc_tm->tm_sec)  |
459		SUN6I_TIME_SET_MIN_VALUE(rtc_tm->tm_min)  |
460		SUN6I_TIME_SET_HOUR_VALUE(rtc_tm->tm_hour);
461
462	/* Check whether registers are writable */
463	if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
464			   SUN6I_LOSC_CTRL_ACC_MASK, 50)) {
465		dev_err(dev, "rtc is still busy.\n");
466		return -EBUSY;
467	}
468
469	writel(time, chip->base + SUN6I_RTC_HMS);
470
471	/*
472	 * After writing the RTC HH-MM-SS register, the
473	 * SUN6I_LOSC_CTRL_RTC_HMS_ACC bit is set and it will not
474	 * be cleared until the real writing operation is finished
475	 */
476
477	if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
478			   SUN6I_LOSC_CTRL_RTC_HMS_ACC, 50)) {
479		dev_err(dev, "Failed to set rtc time.\n");
480		return -ETIMEDOUT;
481	}
482
483	writel(date, chip->base + SUN6I_RTC_YMD);
484
485	/*
486	 * After writing the RTC YY-MM-DD register, the
487	 * SUN6I_LOSC_CTRL_RTC_YMD_ACC bit is set and it will not
488	 * be cleared until the real writing operation is finished
489	 */
490
491	if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
492			   SUN6I_LOSC_CTRL_RTC_YMD_ACC, 50)) {
493		dev_err(dev, "Failed to set rtc time.\n");
494		return -ETIMEDOUT;
495	}
496
497	return 0;
498}
499
500static int sun6i_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
501{
502	struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
503
504	if (!enabled)
505		sun6i_rtc_setaie(enabled, chip);
506
507	return 0;
508}
509
510static const struct rtc_class_ops sun6i_rtc_ops = {
511	.read_time		= sun6i_rtc_gettime,
512	.set_time		= sun6i_rtc_settime,
513	.read_alarm		= sun6i_rtc_getalarm,
514	.set_alarm		= sun6i_rtc_setalarm,
515	.alarm_irq_enable	= sun6i_rtc_alarm_irq_enable
516};
517
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
518static int sun6i_rtc_probe(struct platform_device *pdev)
519{
520	struct sun6i_rtc_dev *chip = sun6i_rtc;
 
 
521	int ret;
522
523	if (!chip)
524		return -ENODEV;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
525
526	platform_set_drvdata(pdev, chip);
527	chip->dev = &pdev->dev;
 
528
529	chip->irq = platform_get_irq(pdev, 0);
530	if (chip->irq < 0) {
531		dev_err(&pdev->dev, "No IRQ resource\n");
532		return chip->irq;
533	}
534
535	ret = devm_request_irq(&pdev->dev, chip->irq, sun6i_rtc_alarmirq,
536			       0, dev_name(&pdev->dev), chip);
537	if (ret) {
538		dev_err(&pdev->dev, "Could not request IRQ\n");
539		return ret;
540	}
541
542	/* clear the alarm counter value */
543	writel(0, chip->base + SUN6I_ALRM_COUNTER);
544
545	/* disable counter alarm */
546	writel(0, chip->base + SUN6I_ALRM_EN);
547
548	/* disable counter alarm interrupt */
549	writel(0, chip->base + SUN6I_ALRM_IRQ_EN);
550
551	/* disable week alarm */
552	writel(0, chip->base + SUN6I_ALRM1_EN);
553
554	/* disable week alarm interrupt */
555	writel(0, chip->base + SUN6I_ALRM1_IRQ_EN);
556
557	/* clear counter alarm pending interrupts */
558	writel(SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND,
559	       chip->base + SUN6I_ALRM_IRQ_STA);
560
561	/* clear week alarm pending interrupts */
562	writel(SUN6I_ALRM1_IRQ_STA_WEEK_IRQ_PEND,
563	       chip->base + SUN6I_ALRM1_IRQ_STA);
564
565	/* disable alarm wakeup */
566	writel(0, chip->base + SUN6I_ALARM_CONFIG);
567
568	clk_prepare_enable(chip->losc);
569
570	chip->rtc = devm_rtc_device_register(&pdev->dev, "rtc-sun6i",
571					     &sun6i_rtc_ops, THIS_MODULE);
572	if (IS_ERR(chip->rtc)) {
573		dev_err(&pdev->dev, "unable to register device\n");
574		return PTR_ERR(chip->rtc);
575	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
576
577	dev_info(&pdev->dev, "RTC enabled\n");
578
579	return 0;
580}
581
 
 
 
 
 
 
582static const struct of_device_id sun6i_rtc_dt_ids[] = {
583	{ .compatible = "allwinner,sun6i-a31-rtc" },
 
 
 
 
 
 
 
 
 
 
584	{ /* sentinel */ },
585};
586MODULE_DEVICE_TABLE(of, sun6i_rtc_dt_ids);
587
588static struct platform_driver sun6i_rtc_driver = {
589	.probe		= sun6i_rtc_probe,
590	.driver		= {
591		.name		= "sun6i-rtc",
592		.of_match_table = sun6i_rtc_dt_ids,
 
593	},
594};
595builtin_platform_driver(sun6i_rtc_driver);