Loading...
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Freescale STMP37XX/STMP378X Real Time Clock driver
4 *
5 * Copyright (c) 2007 Sigmatel, Inc.
6 * Peter Hartley, <peter.hartley@sigmatel.com>
7 *
8 * Copyright 2008 Freescale Semiconductor, Inc. All Rights Reserved.
9 * Copyright 2008 Embedded Alley Solutions, Inc All Rights Reserved.
10 * Copyright 2011 Wolfram Sang, Pengutronix e.K.
11 */
12#include <linux/kernel.h>
13#include <linux/module.h>
14#include <linux/io.h>
15#include <linux/init.h>
16#include <linux/platform_device.h>
17#include <linux/interrupt.h>
18#include <linux/delay.h>
19#include <linux/rtc.h>
20#include <linux/slab.h>
21#include <linux/of_device.h>
22#include <linux/of.h>
23#include <linux/stmp_device.h>
24#include <linux/stmp3xxx_rtc_wdt.h>
25
26#define STMP3XXX_RTC_CTRL 0x0
27#define STMP3XXX_RTC_CTRL_ALARM_IRQ_EN 0x00000001
28#define STMP3XXX_RTC_CTRL_ONEMSEC_IRQ_EN 0x00000002
29#define STMP3XXX_RTC_CTRL_ALARM_IRQ 0x00000004
30#define STMP3XXX_RTC_CTRL_WATCHDOGEN 0x00000010
31
32#define STMP3XXX_RTC_STAT 0x10
33#define STMP3XXX_RTC_STAT_STALE_SHIFT 16
34#define STMP3XXX_RTC_STAT_RTC_PRESENT 0x80000000
35#define STMP3XXX_RTC_STAT_XTAL32000_PRESENT 0x10000000
36#define STMP3XXX_RTC_STAT_XTAL32768_PRESENT 0x08000000
37
38#define STMP3XXX_RTC_SECONDS 0x30
39
40#define STMP3XXX_RTC_ALARM 0x40
41
42#define STMP3XXX_RTC_WATCHDOG 0x50
43
44#define STMP3XXX_RTC_PERSISTENT0 0x60
45#define STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE (1 << 0)
46#define STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN (1 << 1)
47#define STMP3XXX_RTC_PERSISTENT0_ALARM_EN (1 << 2)
48#define STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP (1 << 4)
49#define STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP (1 << 5)
50#define STMP3XXX_RTC_PERSISTENT0_XTAL32_FREQ (1 << 6)
51#define STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE (1 << 7)
52
53#define STMP3XXX_RTC_PERSISTENT1 0x70
54/* missing bitmask in headers */
55#define STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER 0x80000000
56
57struct stmp3xxx_rtc_data {
58 struct rtc_device *rtc;
59 void __iomem *io;
60 int irq_alarm;
61};
62
63#if IS_ENABLED(CONFIG_STMP3XXX_RTC_WATCHDOG)
64/**
65 * stmp3xxx_wdt_set_timeout - configure the watchdog inside the STMP3xxx RTC
66 * @dev: the parent device of the watchdog (= the RTC)
67 * @timeout: the desired value for the timeout register of the watchdog.
68 * 0 disables the watchdog
69 *
70 * The watchdog needs one register and two bits which are in the RTC domain.
71 * To handle the resource conflict, the RTC driver will create another
72 * platform_device for the watchdog driver as a child of the RTC device.
73 * The watchdog driver is passed the below accessor function via platform_data
74 * to configure the watchdog. Locking is not needed because accessing SET/CLR
75 * registers is atomic.
76 */
77
78static void stmp3xxx_wdt_set_timeout(struct device *dev, u32 timeout)
79{
80 struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
81
82 if (timeout) {
83 writel(timeout, rtc_data->io + STMP3XXX_RTC_WATCHDOG);
84 writel(STMP3XXX_RTC_CTRL_WATCHDOGEN,
85 rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_SET);
86 writel(STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER,
87 rtc_data->io + STMP3XXX_RTC_PERSISTENT1 + STMP_OFFSET_REG_SET);
88 } else {
89 writel(STMP3XXX_RTC_CTRL_WATCHDOGEN,
90 rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
91 writel(STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER,
92 rtc_data->io + STMP3XXX_RTC_PERSISTENT1 + STMP_OFFSET_REG_CLR);
93 }
94}
95
96static struct stmp3xxx_wdt_pdata wdt_pdata = {
97 .wdt_set_timeout = stmp3xxx_wdt_set_timeout,
98};
99
100static void stmp3xxx_wdt_register(struct platform_device *rtc_pdev)
101{
102 int rc = -1;
103 struct platform_device *wdt_pdev =
104 platform_device_alloc("stmp3xxx_rtc_wdt", rtc_pdev->id);
105
106 if (wdt_pdev) {
107 wdt_pdev->dev.parent = &rtc_pdev->dev;
108 wdt_pdev->dev.platform_data = &wdt_pdata;
109 rc = platform_device_add(wdt_pdev);
110 if (rc)
111 platform_device_put(wdt_pdev);
112 }
113
114 if (rc)
115 dev_err(&rtc_pdev->dev,
116 "failed to register stmp3xxx_rtc_wdt\n");
117}
118#else
119static void stmp3xxx_wdt_register(struct platform_device *rtc_pdev)
120{
121}
122#endif /* CONFIG_STMP3XXX_RTC_WATCHDOG */
123
124static int stmp3xxx_wait_time(struct stmp3xxx_rtc_data *rtc_data)
125{
126 int timeout = 5000; /* 3ms according to i.MX28 Ref Manual */
127 /*
128 * The i.MX28 Applications Processor Reference Manual, Rev. 1, 2010
129 * states:
130 * | The order in which registers are updated is
131 * | Persistent 0, 1, 2, 3, 4, 5, Alarm, Seconds.
132 * | (This list is in bitfield order, from LSB to MSB, as they would
133 * | appear in the STALE_REGS and NEW_REGS bitfields of the HW_RTC_STAT
134 * | register. For example, the Seconds register corresponds to
135 * | STALE_REGS or NEW_REGS containing 0x80.)
136 */
137 do {
138 if (!(readl(rtc_data->io + STMP3XXX_RTC_STAT) &
139 (0x80 << STMP3XXX_RTC_STAT_STALE_SHIFT)))
140 return 0;
141 udelay(1);
142 } while (--timeout > 0);
143 return (readl(rtc_data->io + STMP3XXX_RTC_STAT) &
144 (0x80 << STMP3XXX_RTC_STAT_STALE_SHIFT)) ? -ETIME : 0;
145}
146
147/* Time read/write */
148static int stmp3xxx_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm)
149{
150 int ret;
151 struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
152
153 ret = stmp3xxx_wait_time(rtc_data);
154 if (ret)
155 return ret;
156
157 rtc_time64_to_tm(readl(rtc_data->io + STMP3XXX_RTC_SECONDS), rtc_tm);
158 return 0;
159}
160
161static int stmp3xxx_rtc_settime(struct device *dev, struct rtc_time *rtc_tm)
162{
163 struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
164
165 writel(rtc_tm_to_time64(rtc_tm), rtc_data->io + STMP3XXX_RTC_SECONDS);
166 return stmp3xxx_wait_time(rtc_data);
167}
168
169/* interrupt(s) handler */
170static irqreturn_t stmp3xxx_rtc_interrupt(int irq, void *dev_id)
171{
172 struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev_id);
173 u32 status = readl(rtc_data->io + STMP3XXX_RTC_CTRL);
174
175 if (status & STMP3XXX_RTC_CTRL_ALARM_IRQ) {
176 writel(STMP3XXX_RTC_CTRL_ALARM_IRQ,
177 rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
178 rtc_update_irq(rtc_data->rtc, 1, RTC_AF | RTC_IRQF);
179 return IRQ_HANDLED;
180 }
181
182 return IRQ_NONE;
183}
184
185static int stmp3xxx_alarm_irq_enable(struct device *dev, unsigned int enabled)
186{
187 struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
188
189 if (enabled) {
190 writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
191 STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN,
192 rtc_data->io + STMP3XXX_RTC_PERSISTENT0 +
193 STMP_OFFSET_REG_SET);
194 writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
195 rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_SET);
196 } else {
197 writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
198 STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN,
199 rtc_data->io + STMP3XXX_RTC_PERSISTENT0 +
200 STMP_OFFSET_REG_CLR);
201 writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
202 rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
203 }
204 return 0;
205}
206
207static int stmp3xxx_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
208{
209 struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
210
211 rtc_time64_to_tm(readl(rtc_data->io + STMP3XXX_RTC_ALARM), &alm->time);
212 return 0;
213}
214
215static int stmp3xxx_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
216{
217 struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
218
219 writel(rtc_tm_to_time64(&alm->time), rtc_data->io + STMP3XXX_RTC_ALARM);
220
221 stmp3xxx_alarm_irq_enable(dev, alm->enabled);
222
223 return 0;
224}
225
226static const struct rtc_class_ops stmp3xxx_rtc_ops = {
227 .alarm_irq_enable =
228 stmp3xxx_alarm_irq_enable,
229 .read_time = stmp3xxx_rtc_gettime,
230 .set_time = stmp3xxx_rtc_settime,
231 .read_alarm = stmp3xxx_rtc_read_alarm,
232 .set_alarm = stmp3xxx_rtc_set_alarm,
233};
234
235static int stmp3xxx_rtc_remove(struct platform_device *pdev)
236{
237 struct stmp3xxx_rtc_data *rtc_data = platform_get_drvdata(pdev);
238
239 if (!rtc_data)
240 return 0;
241
242 writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
243 rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
244
245 return 0;
246}
247
248static int stmp3xxx_rtc_probe(struct platform_device *pdev)
249{
250 struct stmp3xxx_rtc_data *rtc_data;
251 struct resource *r;
252 u32 rtc_stat;
253 u32 pers0_set, pers0_clr;
254 u32 crystalfreq = 0;
255 int err;
256
257 rtc_data = devm_kzalloc(&pdev->dev, sizeof(*rtc_data), GFP_KERNEL);
258 if (!rtc_data)
259 return -ENOMEM;
260
261 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
262 if (!r) {
263 dev_err(&pdev->dev, "failed to get resource\n");
264 return -ENXIO;
265 }
266
267 rtc_data->io = devm_ioremap(&pdev->dev, r->start, resource_size(r));
268 if (!rtc_data->io) {
269 dev_err(&pdev->dev, "ioremap failed\n");
270 return -EIO;
271 }
272
273 rtc_data->irq_alarm = platform_get_irq(pdev, 0);
274
275 rtc_stat = readl(rtc_data->io + STMP3XXX_RTC_STAT);
276 if (!(rtc_stat & STMP3XXX_RTC_STAT_RTC_PRESENT)) {
277 dev_err(&pdev->dev, "no device onboard\n");
278 return -ENODEV;
279 }
280
281 platform_set_drvdata(pdev, rtc_data);
282
283 /*
284 * Resetting the rtc stops the watchdog timer that is potentially
285 * running. So (assuming it is running on purpose) don't reset if the
286 * watchdog is enabled.
287 */
288 if (readl(rtc_data->io + STMP3XXX_RTC_CTRL) &
289 STMP3XXX_RTC_CTRL_WATCHDOGEN) {
290 dev_info(&pdev->dev,
291 "Watchdog is running, skip resetting rtc\n");
292 } else {
293 err = stmp_reset_block(rtc_data->io);
294 if (err) {
295 dev_err(&pdev->dev, "stmp_reset_block failed: %d\n",
296 err);
297 return err;
298 }
299 }
300
301 /*
302 * Obviously the rtc needs a clock input to be able to run.
303 * This clock can be provided by an external 32k crystal. If that one is
304 * missing XTAL must not be disabled in suspend which consumes a
305 * lot of power. Normally the presence and exact frequency (supported
306 * are 32000 Hz and 32768 Hz) is detectable from fuses, but as reality
307 * proves these fuses are not blown correctly on all machines, so the
308 * frequency can be overridden in the device tree.
309 */
310 if (rtc_stat & STMP3XXX_RTC_STAT_XTAL32000_PRESENT)
311 crystalfreq = 32000;
312 else if (rtc_stat & STMP3XXX_RTC_STAT_XTAL32768_PRESENT)
313 crystalfreq = 32768;
314
315 of_property_read_u32(pdev->dev.of_node, "stmp,crystal-freq",
316 &crystalfreq);
317
318 switch (crystalfreq) {
319 case 32000:
320 /* keep 32kHz crystal running in low-power mode */
321 pers0_set = STMP3XXX_RTC_PERSISTENT0_XTAL32_FREQ |
322 STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP |
323 STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE;
324 pers0_clr = STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP;
325 break;
326 case 32768:
327 /* keep 32.768kHz crystal running in low-power mode */
328 pers0_set = STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP |
329 STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE;
330 pers0_clr = STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP |
331 STMP3XXX_RTC_PERSISTENT0_XTAL32_FREQ;
332 break;
333 default:
334 dev_warn(&pdev->dev,
335 "invalid crystal-freq specified in device-tree. Assuming no crystal\n");
336 fallthrough;
337 case 0:
338 /* keep XTAL on in low-power mode */
339 pers0_set = STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP;
340 pers0_clr = STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP |
341 STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE;
342 }
343
344 writel(pers0_set, rtc_data->io + STMP3XXX_RTC_PERSISTENT0 +
345 STMP_OFFSET_REG_SET);
346
347 writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
348 STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN |
349 STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE | pers0_clr,
350 rtc_data->io + STMP3XXX_RTC_PERSISTENT0 + STMP_OFFSET_REG_CLR);
351
352 writel(STMP3XXX_RTC_CTRL_ONEMSEC_IRQ_EN |
353 STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
354 rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
355
356 rtc_data->rtc = devm_rtc_allocate_device(&pdev->dev);
357 if (IS_ERR(rtc_data->rtc))
358 return PTR_ERR(rtc_data->rtc);
359
360 err = devm_request_irq(&pdev->dev, rtc_data->irq_alarm,
361 stmp3xxx_rtc_interrupt, 0, "RTC alarm", &pdev->dev);
362 if (err) {
363 dev_err(&pdev->dev, "Cannot claim IRQ%d\n",
364 rtc_data->irq_alarm);
365 return err;
366 }
367
368 rtc_data->rtc->ops = &stmp3xxx_rtc_ops;
369 rtc_data->rtc->range_max = U32_MAX;
370
371 err = devm_rtc_register_device(rtc_data->rtc);
372 if (err)
373 return err;
374
375 stmp3xxx_wdt_register(pdev);
376 return 0;
377}
378
379#ifdef CONFIG_PM_SLEEP
380static int stmp3xxx_rtc_suspend(struct device *dev)
381{
382 return 0;
383}
384
385static int stmp3xxx_rtc_resume(struct device *dev)
386{
387 struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
388
389 stmp_reset_block(rtc_data->io);
390 writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
391 STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN |
392 STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE,
393 rtc_data->io + STMP3XXX_RTC_PERSISTENT0 + STMP_OFFSET_REG_CLR);
394 return 0;
395}
396#endif
397
398static SIMPLE_DEV_PM_OPS(stmp3xxx_rtc_pm_ops, stmp3xxx_rtc_suspend,
399 stmp3xxx_rtc_resume);
400
401static const struct of_device_id rtc_dt_ids[] = {
402 { .compatible = "fsl,stmp3xxx-rtc", },
403 { /* sentinel */ }
404};
405MODULE_DEVICE_TABLE(of, rtc_dt_ids);
406
407static struct platform_driver stmp3xxx_rtcdrv = {
408 .probe = stmp3xxx_rtc_probe,
409 .remove = stmp3xxx_rtc_remove,
410 .driver = {
411 .name = "stmp3xxx-rtc",
412 .pm = &stmp3xxx_rtc_pm_ops,
413 .of_match_table = rtc_dt_ids,
414 },
415};
416
417module_platform_driver(stmp3xxx_rtcdrv);
418
419MODULE_DESCRIPTION("STMP3xxx RTC Driver");
420MODULE_AUTHOR("dmitry pervushin <dpervushin@embeddedalley.com> and "
421 "Wolfram Sang <kernel@pengutronix.de>");
422MODULE_LICENSE("GPL");
1/*
2 * Freescale STMP37XX/STMP378X Real Time Clock driver
3 *
4 * Copyright (c) 2007 Sigmatel, Inc.
5 * Peter Hartley, <peter.hartley@sigmatel.com>
6 *
7 * Copyright 2008 Freescale Semiconductor, Inc. All Rights Reserved.
8 * Copyright 2008 Embedded Alley Solutions, Inc All Rights Reserved.
9 * Copyright 2011 Wolfram Sang, Pengutronix e.K.
10 */
11
12/*
13 * The code contained herein is licensed under the GNU General Public
14 * License. You may obtain a copy of the GNU General Public License
15 * Version 2 or later at the following locations:
16 *
17 * http://www.opensource.org/licenses/gpl-license.html
18 * http://www.gnu.org/copyleft/gpl.html
19 */
20#include <linux/kernel.h>
21#include <linux/module.h>
22#include <linux/io.h>
23#include <linux/init.h>
24#include <linux/platform_device.h>
25#include <linux/interrupt.h>
26#include <linux/delay.h>
27#include <linux/rtc.h>
28#include <linux/slab.h>
29#include <linux/of_device.h>
30#include <linux/of.h>
31#include <linux/stmp_device.h>
32#include <linux/stmp3xxx_rtc_wdt.h>
33
34#define STMP3XXX_RTC_CTRL 0x0
35#define STMP3XXX_RTC_CTRL_ALARM_IRQ_EN 0x00000001
36#define STMP3XXX_RTC_CTRL_ONEMSEC_IRQ_EN 0x00000002
37#define STMP3XXX_RTC_CTRL_ALARM_IRQ 0x00000004
38#define STMP3XXX_RTC_CTRL_WATCHDOGEN 0x00000010
39
40#define STMP3XXX_RTC_STAT 0x10
41#define STMP3XXX_RTC_STAT_STALE_SHIFT 16
42#define STMP3XXX_RTC_STAT_RTC_PRESENT 0x80000000
43#define STMP3XXX_RTC_STAT_XTAL32000_PRESENT 0x10000000
44#define STMP3XXX_RTC_STAT_XTAL32768_PRESENT 0x08000000
45
46#define STMP3XXX_RTC_SECONDS 0x30
47
48#define STMP3XXX_RTC_ALARM 0x40
49
50#define STMP3XXX_RTC_WATCHDOG 0x50
51
52#define STMP3XXX_RTC_PERSISTENT0 0x60
53#define STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE (1 << 0)
54#define STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN (1 << 1)
55#define STMP3XXX_RTC_PERSISTENT0_ALARM_EN (1 << 2)
56#define STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP (1 << 4)
57#define STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP (1 << 5)
58#define STMP3XXX_RTC_PERSISTENT0_XTAL32_FREQ (1 << 6)
59#define STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE (1 << 7)
60
61#define STMP3XXX_RTC_PERSISTENT1 0x70
62/* missing bitmask in headers */
63#define STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER 0x80000000
64
65struct stmp3xxx_rtc_data {
66 struct rtc_device *rtc;
67 void __iomem *io;
68 int irq_alarm;
69};
70
71#if IS_ENABLED(CONFIG_STMP3XXX_RTC_WATCHDOG)
72/**
73 * stmp3xxx_wdt_set_timeout - configure the watchdog inside the STMP3xxx RTC
74 * @dev: the parent device of the watchdog (= the RTC)
75 * @timeout: the desired value for the timeout register of the watchdog.
76 * 0 disables the watchdog
77 *
78 * The watchdog needs one register and two bits which are in the RTC domain.
79 * To handle the resource conflict, the RTC driver will create another
80 * platform_device for the watchdog driver as a child of the RTC device.
81 * The watchdog driver is passed the below accessor function via platform_data
82 * to configure the watchdog. Locking is not needed because accessing SET/CLR
83 * registers is atomic.
84 */
85
86static void stmp3xxx_wdt_set_timeout(struct device *dev, u32 timeout)
87{
88 struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
89
90 if (timeout) {
91 writel(timeout, rtc_data->io + STMP3XXX_RTC_WATCHDOG);
92 writel(STMP3XXX_RTC_CTRL_WATCHDOGEN,
93 rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_SET);
94 writel(STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER,
95 rtc_data->io + STMP3XXX_RTC_PERSISTENT1 + STMP_OFFSET_REG_SET);
96 } else {
97 writel(STMP3XXX_RTC_CTRL_WATCHDOGEN,
98 rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
99 writel(STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER,
100 rtc_data->io + STMP3XXX_RTC_PERSISTENT1 + STMP_OFFSET_REG_CLR);
101 }
102}
103
104static struct stmp3xxx_wdt_pdata wdt_pdata = {
105 .wdt_set_timeout = stmp3xxx_wdt_set_timeout,
106};
107
108static void stmp3xxx_wdt_register(struct platform_device *rtc_pdev)
109{
110 int rc = -1;
111 struct platform_device *wdt_pdev =
112 platform_device_alloc("stmp3xxx_rtc_wdt", rtc_pdev->id);
113
114 if (wdt_pdev) {
115 wdt_pdev->dev.parent = &rtc_pdev->dev;
116 wdt_pdev->dev.platform_data = &wdt_pdata;
117 rc = platform_device_add(wdt_pdev);
118 }
119
120 if (rc)
121 dev_err(&rtc_pdev->dev,
122 "failed to register stmp3xxx_rtc_wdt\n");
123}
124#else
125static void stmp3xxx_wdt_register(struct platform_device *rtc_pdev)
126{
127}
128#endif /* CONFIG_STMP3XXX_RTC_WATCHDOG */
129
130static int stmp3xxx_wait_time(struct stmp3xxx_rtc_data *rtc_data)
131{
132 int timeout = 5000; /* 3ms according to i.MX28 Ref Manual */
133 /*
134 * The i.MX28 Applications Processor Reference Manual, Rev. 1, 2010
135 * states:
136 * | The order in which registers are updated is
137 * | Persistent 0, 1, 2, 3, 4, 5, Alarm, Seconds.
138 * | (This list is in bitfield order, from LSB to MSB, as they would
139 * | appear in the STALE_REGS and NEW_REGS bitfields of the HW_RTC_STAT
140 * | register. For example, the Seconds register corresponds to
141 * | STALE_REGS or NEW_REGS containing 0x80.)
142 */
143 do {
144 if (!(readl(rtc_data->io + STMP3XXX_RTC_STAT) &
145 (0x80 << STMP3XXX_RTC_STAT_STALE_SHIFT)))
146 return 0;
147 udelay(1);
148 } while (--timeout > 0);
149 return (readl(rtc_data->io + STMP3XXX_RTC_STAT) &
150 (0x80 << STMP3XXX_RTC_STAT_STALE_SHIFT)) ? -ETIME : 0;
151}
152
153/* Time read/write */
154static int stmp3xxx_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm)
155{
156 int ret;
157 struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
158
159 ret = stmp3xxx_wait_time(rtc_data);
160 if (ret)
161 return ret;
162
163 rtc_time_to_tm(readl(rtc_data->io + STMP3XXX_RTC_SECONDS), rtc_tm);
164 return 0;
165}
166
167static int stmp3xxx_rtc_set_mmss(struct device *dev, unsigned long t)
168{
169 struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
170
171 writel(t, rtc_data->io + STMP3XXX_RTC_SECONDS);
172 return stmp3xxx_wait_time(rtc_data);
173}
174
175/* interrupt(s) handler */
176static irqreturn_t stmp3xxx_rtc_interrupt(int irq, void *dev_id)
177{
178 struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev_id);
179 u32 status = readl(rtc_data->io + STMP3XXX_RTC_CTRL);
180
181 if (status & STMP3XXX_RTC_CTRL_ALARM_IRQ) {
182 writel(STMP3XXX_RTC_CTRL_ALARM_IRQ,
183 rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
184 rtc_update_irq(rtc_data->rtc, 1, RTC_AF | RTC_IRQF);
185 return IRQ_HANDLED;
186 }
187
188 return IRQ_NONE;
189}
190
191static int stmp3xxx_alarm_irq_enable(struct device *dev, unsigned int enabled)
192{
193 struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
194
195 if (enabled) {
196 writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
197 STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN,
198 rtc_data->io + STMP3XXX_RTC_PERSISTENT0 +
199 STMP_OFFSET_REG_SET);
200 writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
201 rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_SET);
202 } else {
203 writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
204 STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN,
205 rtc_data->io + STMP3XXX_RTC_PERSISTENT0 +
206 STMP_OFFSET_REG_CLR);
207 writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
208 rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
209 }
210 return 0;
211}
212
213static int stmp3xxx_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
214{
215 struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
216
217 rtc_time_to_tm(readl(rtc_data->io + STMP3XXX_RTC_ALARM), &alm->time);
218 return 0;
219}
220
221static int stmp3xxx_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
222{
223 unsigned long t;
224 struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
225
226 rtc_tm_to_time(&alm->time, &t);
227 writel(t, rtc_data->io + STMP3XXX_RTC_ALARM);
228
229 stmp3xxx_alarm_irq_enable(dev, alm->enabled);
230
231 return 0;
232}
233
234static const struct rtc_class_ops stmp3xxx_rtc_ops = {
235 .alarm_irq_enable =
236 stmp3xxx_alarm_irq_enable,
237 .read_time = stmp3xxx_rtc_gettime,
238 .set_mmss = stmp3xxx_rtc_set_mmss,
239 .read_alarm = stmp3xxx_rtc_read_alarm,
240 .set_alarm = stmp3xxx_rtc_set_alarm,
241};
242
243static int stmp3xxx_rtc_remove(struct platform_device *pdev)
244{
245 struct stmp3xxx_rtc_data *rtc_data = platform_get_drvdata(pdev);
246
247 if (!rtc_data)
248 return 0;
249
250 writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
251 rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
252
253 return 0;
254}
255
256static int stmp3xxx_rtc_probe(struct platform_device *pdev)
257{
258 struct stmp3xxx_rtc_data *rtc_data;
259 struct resource *r;
260 u32 rtc_stat;
261 u32 pers0_set, pers0_clr;
262 u32 crystalfreq = 0;
263 int err;
264
265 rtc_data = devm_kzalloc(&pdev->dev, sizeof(*rtc_data), GFP_KERNEL);
266 if (!rtc_data)
267 return -ENOMEM;
268
269 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
270 if (!r) {
271 dev_err(&pdev->dev, "failed to get resource\n");
272 return -ENXIO;
273 }
274
275 rtc_data->io = devm_ioremap(&pdev->dev, r->start, resource_size(r));
276 if (!rtc_data->io) {
277 dev_err(&pdev->dev, "ioremap failed\n");
278 return -EIO;
279 }
280
281 rtc_data->irq_alarm = platform_get_irq(pdev, 0);
282
283 rtc_stat = readl(rtc_data->io + STMP3XXX_RTC_STAT);
284 if (!(rtc_stat & STMP3XXX_RTC_STAT_RTC_PRESENT)) {
285 dev_err(&pdev->dev, "no device onboard\n");
286 return -ENODEV;
287 }
288
289 platform_set_drvdata(pdev, rtc_data);
290
291 err = stmp_reset_block(rtc_data->io);
292 if (err) {
293 dev_err(&pdev->dev, "stmp_reset_block failed: %d\n", err);
294 return err;
295 }
296
297 /*
298 * Obviously the rtc needs a clock input to be able to run.
299 * This clock can be provided by an external 32k crystal. If that one is
300 * missing XTAL must not be disabled in suspend which consumes a
301 * lot of power. Normally the presence and exact frequency (supported
302 * are 32000 Hz and 32768 Hz) is detectable from fuses, but as reality
303 * proves these fuses are not blown correctly on all machines, so the
304 * frequency can be overridden in the device tree.
305 */
306 if (rtc_stat & STMP3XXX_RTC_STAT_XTAL32000_PRESENT)
307 crystalfreq = 32000;
308 else if (rtc_stat & STMP3XXX_RTC_STAT_XTAL32768_PRESENT)
309 crystalfreq = 32768;
310
311 of_property_read_u32(pdev->dev.of_node, "stmp,crystal-freq",
312 &crystalfreq);
313
314 switch (crystalfreq) {
315 case 32000:
316 /* keep 32kHz crystal running in low-power mode */
317 pers0_set = STMP3XXX_RTC_PERSISTENT0_XTAL32_FREQ |
318 STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP |
319 STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE;
320 pers0_clr = STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP;
321 break;
322 case 32768:
323 /* keep 32.768kHz crystal running in low-power mode */
324 pers0_set = STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP |
325 STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE;
326 pers0_clr = STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP |
327 STMP3XXX_RTC_PERSISTENT0_XTAL32_FREQ;
328 break;
329 default:
330 dev_warn(&pdev->dev,
331 "invalid crystal-freq specified in device-tree. Assuming no crystal\n");
332 /* fall-through */
333 case 0:
334 /* keep XTAL on in low-power mode */
335 pers0_set = STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP;
336 pers0_clr = STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP |
337 STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE;
338 }
339
340 writel(pers0_set, rtc_data->io + STMP3XXX_RTC_PERSISTENT0 +
341 STMP_OFFSET_REG_SET);
342
343 writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
344 STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN |
345 STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE | pers0_clr,
346 rtc_data->io + STMP3XXX_RTC_PERSISTENT0 + STMP_OFFSET_REG_CLR);
347
348 writel(STMP3XXX_RTC_CTRL_ONEMSEC_IRQ_EN |
349 STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
350 rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
351
352 rtc_data->rtc = devm_rtc_device_register(&pdev->dev, pdev->name,
353 &stmp3xxx_rtc_ops, THIS_MODULE);
354 if (IS_ERR(rtc_data->rtc))
355 return PTR_ERR(rtc_data->rtc);
356
357 err = devm_request_irq(&pdev->dev, rtc_data->irq_alarm,
358 stmp3xxx_rtc_interrupt, 0, "RTC alarm", &pdev->dev);
359 if (err) {
360 dev_err(&pdev->dev, "Cannot claim IRQ%d\n",
361 rtc_data->irq_alarm);
362 return err;
363 }
364
365 stmp3xxx_wdt_register(pdev);
366 return 0;
367}
368
369#ifdef CONFIG_PM_SLEEP
370static int stmp3xxx_rtc_suspend(struct device *dev)
371{
372 return 0;
373}
374
375static int stmp3xxx_rtc_resume(struct device *dev)
376{
377 struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
378
379 stmp_reset_block(rtc_data->io);
380 writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
381 STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN |
382 STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE,
383 rtc_data->io + STMP3XXX_RTC_PERSISTENT0 + STMP_OFFSET_REG_CLR);
384 return 0;
385}
386#endif
387
388static SIMPLE_DEV_PM_OPS(stmp3xxx_rtc_pm_ops, stmp3xxx_rtc_suspend,
389 stmp3xxx_rtc_resume);
390
391static const struct of_device_id rtc_dt_ids[] = {
392 { .compatible = "fsl,stmp3xxx-rtc", },
393 { /* sentinel */ }
394};
395MODULE_DEVICE_TABLE(of, rtc_dt_ids);
396
397static struct platform_driver stmp3xxx_rtcdrv = {
398 .probe = stmp3xxx_rtc_probe,
399 .remove = stmp3xxx_rtc_remove,
400 .driver = {
401 .name = "stmp3xxx-rtc",
402 .pm = &stmp3xxx_rtc_pm_ops,
403 .of_match_table = rtc_dt_ids,
404 },
405};
406
407module_platform_driver(stmp3xxx_rtcdrv);
408
409MODULE_DESCRIPTION("STMP3xxx RTC Driver");
410MODULE_AUTHOR("dmitry pervushin <dpervushin@embeddedalley.com> and "
411 "Wolfram Sang <w.sang@pengutronix.de>");
412MODULE_LICENSE("GPL");