Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2017 Spreadtrum Communications Inc.
  4 *
 
  5 */
  6
  7#include <linux/bitops.h>
  8#include <linux/delay.h>
  9#include <linux/err.h>
 10#include <linux/module.h>
 11#include <linux/of.h>
 12#include <linux/platform_device.h>
 13#include <linux/regmap.h>
 14#include <linux/rtc.h>
 15
 16#define SPRD_RTC_SEC_CNT_VALUE		0x0
 17#define SPRD_RTC_MIN_CNT_VALUE		0x4
 18#define SPRD_RTC_HOUR_CNT_VALUE		0x8
 19#define SPRD_RTC_DAY_CNT_VALUE		0xc
 20#define SPRD_RTC_SEC_CNT_UPD		0x10
 21#define SPRD_RTC_MIN_CNT_UPD		0x14
 22#define SPRD_RTC_HOUR_CNT_UPD		0x18
 23#define SPRD_RTC_DAY_CNT_UPD		0x1c
 24#define SPRD_RTC_SEC_ALM_UPD		0x20
 25#define SPRD_RTC_MIN_ALM_UPD		0x24
 26#define SPRD_RTC_HOUR_ALM_UPD		0x28
 27#define SPRD_RTC_DAY_ALM_UPD		0x2c
 28#define SPRD_RTC_INT_EN			0x30
 29#define SPRD_RTC_INT_RAW_STS		0x34
 30#define SPRD_RTC_INT_CLR		0x38
 31#define SPRD_RTC_INT_MASK_STS		0x3C
 32#define SPRD_RTC_SEC_ALM_VALUE		0x40
 33#define SPRD_RTC_MIN_ALM_VALUE		0x44
 34#define SPRD_RTC_HOUR_ALM_VALUE		0x48
 35#define SPRD_RTC_DAY_ALM_VALUE		0x4c
 36#define SPRD_RTC_SPG_VALUE		0x50
 37#define SPRD_RTC_SPG_UPD		0x54
 38#define SPRD_RTC_PWR_CTRL		0x58
 39#define SPRD_RTC_PWR_STS		0x5c
 40#define SPRD_RTC_SEC_AUXALM_UPD		0x60
 41#define SPRD_RTC_MIN_AUXALM_UPD		0x64
 42#define SPRD_RTC_HOUR_AUXALM_UPD	0x68
 43#define SPRD_RTC_DAY_AUXALM_UPD		0x6c
 44
 45/* BIT & MASK definition for SPRD_RTC_INT_* registers */
 46#define SPRD_RTC_SEC_EN			BIT(0)
 47#define SPRD_RTC_MIN_EN			BIT(1)
 48#define SPRD_RTC_HOUR_EN		BIT(2)
 49#define SPRD_RTC_DAY_EN			BIT(3)
 50#define SPRD_RTC_ALARM_EN		BIT(4)
 51#define SPRD_RTC_HRS_FORMAT_EN		BIT(5)
 52#define SPRD_RTC_AUXALM_EN		BIT(6)
 53#define SPRD_RTC_SPG_UPD_EN		BIT(7)
 54#define SPRD_RTC_SEC_UPD_EN		BIT(8)
 55#define SPRD_RTC_MIN_UPD_EN		BIT(9)
 56#define SPRD_RTC_HOUR_UPD_EN		BIT(10)
 57#define SPRD_RTC_DAY_UPD_EN		BIT(11)
 58#define SPRD_RTC_ALMSEC_UPD_EN		BIT(12)
 59#define SPRD_RTC_ALMMIN_UPD_EN		BIT(13)
 60#define SPRD_RTC_ALMHOUR_UPD_EN		BIT(14)
 61#define SPRD_RTC_ALMDAY_UPD_EN		BIT(15)
 62#define SPRD_RTC_INT_MASK		GENMASK(15, 0)
 63
 64#define SPRD_RTC_TIME_INT_MASK				\
 65	(SPRD_RTC_SEC_UPD_EN | SPRD_RTC_MIN_UPD_EN |	\
 66	 SPRD_RTC_HOUR_UPD_EN | SPRD_RTC_DAY_UPD_EN)
 67
 68#define SPRD_RTC_ALMTIME_INT_MASK				\
 69	(SPRD_RTC_ALMSEC_UPD_EN | SPRD_RTC_ALMMIN_UPD_EN |	\
 70	 SPRD_RTC_ALMHOUR_UPD_EN | SPRD_RTC_ALMDAY_UPD_EN)
 71
 72#define SPRD_RTC_ALM_INT_MASK			\
 73	(SPRD_RTC_SEC_EN | SPRD_RTC_MIN_EN |	\
 74	 SPRD_RTC_HOUR_EN | SPRD_RTC_DAY_EN |	\
 75	 SPRD_RTC_ALARM_EN | SPRD_RTC_AUXALM_EN)
 76
 77/* second/minute/hour/day values mask definition */
 78#define SPRD_RTC_SEC_MASK		GENMASK(5, 0)
 79#define SPRD_RTC_MIN_MASK		GENMASK(5, 0)
 80#define SPRD_RTC_HOUR_MASK		GENMASK(4, 0)
 81#define SPRD_RTC_DAY_MASK		GENMASK(15, 0)
 82
 83/* alarm lock definition for SPRD_RTC_SPG_UPD register */
 84#define SPRD_RTC_ALMLOCK_MASK		GENMASK(7, 0)
 85#define SPRD_RTC_ALM_UNLOCK		0xa5
 86#define SPRD_RTC_ALM_LOCK		(~SPRD_RTC_ALM_UNLOCK &	\
 87					 SPRD_RTC_ALMLOCK_MASK)
 88
 89/* SPG values definition for SPRD_RTC_SPG_UPD register */
 90#define SPRD_RTC_POWEROFF_ALM_FLAG	BIT(8)
 91
 92/* power control/status definition */
 93#define SPRD_RTC_POWER_RESET_VALUE	0x96
 94#define SPRD_RTC_POWER_STS_CLEAR	GENMASK(7, 0)
 95#define SPRD_RTC_POWER_STS_SHIFT	8
 96#define SPRD_RTC_POWER_STS_VALID	\
 97	(~SPRD_RTC_POWER_RESET_VALUE << SPRD_RTC_POWER_STS_SHIFT)
 98
 99/* timeout of synchronizing time and alarm registers (us) */
100#define SPRD_RTC_POLL_TIMEOUT		200000
101#define SPRD_RTC_POLL_DELAY_US		20000
102
103struct sprd_rtc {
104	struct rtc_device	*rtc;
105	struct regmap		*regmap;
106	struct device		*dev;
107	u32			base;
108	int			irq;
109	bool			valid;
110};
111
112/*
113 * The Spreadtrum RTC controller has 3 groups registers, including time, normal
114 * alarm and auxiliary alarm. The time group registers are used to set RTC time,
115 * the normal alarm registers are used to set normal alarm, and the auxiliary
116 * alarm registers are used to set auxiliary alarm. Both alarm event and
117 * auxiliary alarm event can wake up system from deep sleep, but only alarm
118 * event can power up system from power down status.
119 */
120enum sprd_rtc_reg_types {
121	SPRD_RTC_TIME,
122	SPRD_RTC_ALARM,
123	SPRD_RTC_AUX_ALARM,
124};
125
126static int sprd_rtc_clear_alarm_ints(struct sprd_rtc *rtc)
127{
128	return regmap_write(rtc->regmap, rtc->base + SPRD_RTC_INT_CLR,
129			    SPRD_RTC_ALM_INT_MASK);
130}
131
 
 
 
 
 
 
 
 
 
 
 
 
 
132static int sprd_rtc_lock_alarm(struct sprd_rtc *rtc, bool lock)
133{
134	int ret;
135	u32 val;
136
137	ret = regmap_read(rtc->regmap, rtc->base + SPRD_RTC_SPG_VALUE, &val);
138	if (ret)
139		return ret;
140
141	val &= ~SPRD_RTC_ALMLOCK_MASK;
142	if (lock)
143		val |= SPRD_RTC_ALM_LOCK;
144	else
145		val |= SPRD_RTC_ALM_UNLOCK | SPRD_RTC_POWEROFF_ALM_FLAG;
146
147	ret = regmap_write(rtc->regmap, rtc->base + SPRD_RTC_SPG_UPD, val);
148	if (ret)
149		return ret;
150
151	/* wait until the SPG value is updated successfully */
152	ret = regmap_read_poll_timeout(rtc->regmap,
153				       rtc->base + SPRD_RTC_INT_RAW_STS, val,
154				       (val & SPRD_RTC_SPG_UPD_EN),
155				       SPRD_RTC_POLL_DELAY_US,
156				       SPRD_RTC_POLL_TIMEOUT);
157	if (ret) {
158		dev_err(rtc->dev, "failed to update SPG value:%d\n", ret);
159		return ret;
160	}
161
162	return regmap_write(rtc->regmap, rtc->base + SPRD_RTC_INT_CLR,
163			    SPRD_RTC_SPG_UPD_EN);
164}
165
166static int sprd_rtc_get_secs(struct sprd_rtc *rtc, enum sprd_rtc_reg_types type,
167			     time64_t *secs)
168{
169	u32 sec_reg, min_reg, hour_reg, day_reg;
170	u32 val, sec, min, hour, day;
171	int ret;
172
173	switch (type) {
174	case SPRD_RTC_TIME:
175		sec_reg = SPRD_RTC_SEC_CNT_VALUE;
176		min_reg = SPRD_RTC_MIN_CNT_VALUE;
177		hour_reg = SPRD_RTC_HOUR_CNT_VALUE;
178		day_reg = SPRD_RTC_DAY_CNT_VALUE;
179		break;
180	case SPRD_RTC_ALARM:
181		sec_reg = SPRD_RTC_SEC_ALM_VALUE;
182		min_reg = SPRD_RTC_MIN_ALM_VALUE;
183		hour_reg = SPRD_RTC_HOUR_ALM_VALUE;
184		day_reg = SPRD_RTC_DAY_ALM_VALUE;
185		break;
186	case SPRD_RTC_AUX_ALARM:
187		sec_reg = SPRD_RTC_SEC_AUXALM_UPD;
188		min_reg = SPRD_RTC_MIN_AUXALM_UPD;
189		hour_reg = SPRD_RTC_HOUR_AUXALM_UPD;
190		day_reg = SPRD_RTC_DAY_AUXALM_UPD;
191		break;
192	default:
193		return -EINVAL;
194	}
195
196	ret = regmap_read(rtc->regmap, rtc->base + sec_reg, &val);
197	if (ret)
198		return ret;
199
200	sec = val & SPRD_RTC_SEC_MASK;
201
202	ret = regmap_read(rtc->regmap, rtc->base + min_reg, &val);
203	if (ret)
204		return ret;
205
206	min = val & SPRD_RTC_MIN_MASK;
207
208	ret = regmap_read(rtc->regmap, rtc->base + hour_reg, &val);
209	if (ret)
210		return ret;
211
212	hour = val & SPRD_RTC_HOUR_MASK;
213
214	ret = regmap_read(rtc->regmap, rtc->base + day_reg, &val);
215	if (ret)
216		return ret;
217
218	day = val & SPRD_RTC_DAY_MASK;
219	*secs = (((time64_t)(day * 24) + hour) * 60 + min) * 60 + sec;
220	return 0;
221}
222
223static int sprd_rtc_set_secs(struct sprd_rtc *rtc, enum sprd_rtc_reg_types type,
224			     time64_t secs)
225{
226	u32 sec_reg, min_reg, hour_reg, day_reg, sts_mask;
227	u32 sec, min, hour, day, val;
228	int ret, rem;
229
230	/* convert seconds to RTC time format */
231	day = div_s64_rem(secs, 86400, &rem);
232	hour = rem / 3600;
233	rem -= hour * 3600;
234	min = rem / 60;
235	sec = rem - min * 60;
236
237	switch (type) {
238	case SPRD_RTC_TIME:
239		sec_reg = SPRD_RTC_SEC_CNT_UPD;
240		min_reg = SPRD_RTC_MIN_CNT_UPD;
241		hour_reg = SPRD_RTC_HOUR_CNT_UPD;
242		day_reg = SPRD_RTC_DAY_CNT_UPD;
243		sts_mask = SPRD_RTC_TIME_INT_MASK;
244		break;
245	case SPRD_RTC_ALARM:
246		sec_reg = SPRD_RTC_SEC_ALM_UPD;
247		min_reg = SPRD_RTC_MIN_ALM_UPD;
248		hour_reg = SPRD_RTC_HOUR_ALM_UPD;
249		day_reg = SPRD_RTC_DAY_ALM_UPD;
250		sts_mask = SPRD_RTC_ALMTIME_INT_MASK;
251		break;
252	case SPRD_RTC_AUX_ALARM:
253		sec_reg = SPRD_RTC_SEC_AUXALM_UPD;
254		min_reg = SPRD_RTC_MIN_AUXALM_UPD;
255		hour_reg = SPRD_RTC_HOUR_AUXALM_UPD;
256		day_reg = SPRD_RTC_DAY_AUXALM_UPD;
257		sts_mask = 0;
258		break;
259	default:
260		return -EINVAL;
261	}
262
263	ret = regmap_write(rtc->regmap, rtc->base + sec_reg, sec);
264	if (ret)
265		return ret;
266
267	ret = regmap_write(rtc->regmap, rtc->base + min_reg, min);
268	if (ret)
269		return ret;
270
271	ret = regmap_write(rtc->regmap, rtc->base + hour_reg, hour);
272	if (ret)
273		return ret;
274
275	ret = regmap_write(rtc->regmap, rtc->base + day_reg, day);
276	if (ret)
277		return ret;
278
279	if (type == SPRD_RTC_AUX_ALARM)
280		return 0;
281
282	/*
283	 * Since the time and normal alarm registers are put in always-power-on
284	 * region supplied by VDDRTC, then these registers changing time will
285	 * be very long, about 125ms. Thus here we should wait until all
286	 * values are updated successfully.
287	 */
288	ret = regmap_read_poll_timeout(rtc->regmap,
289				       rtc->base + SPRD_RTC_INT_RAW_STS, val,
290				       ((val & sts_mask) == sts_mask),
291				       SPRD_RTC_POLL_DELAY_US,
292				       SPRD_RTC_POLL_TIMEOUT);
293	if (ret < 0) {
294		dev_err(rtc->dev, "set time/alarm values timeout\n");
295		return ret;
296	}
297
298	return regmap_write(rtc->regmap, rtc->base + SPRD_RTC_INT_CLR,
299			    sts_mask);
300}
301
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
302static int sprd_rtc_set_aux_alarm(struct device *dev, struct rtc_wkalrm *alrm)
303{
304	struct sprd_rtc *rtc = dev_get_drvdata(dev);
305	time64_t secs = rtc_tm_to_time64(&alrm->time);
306	int ret;
307
308	/* clear the auxiliary alarm interrupt status */
309	ret = regmap_write(rtc->regmap, rtc->base + SPRD_RTC_INT_CLR,
310			   SPRD_RTC_AUXALM_EN);
311	if (ret)
312		return ret;
313
314	ret = sprd_rtc_set_secs(rtc, SPRD_RTC_AUX_ALARM, secs);
315	if (ret)
316		return ret;
317
318	if (alrm->enabled) {
319		ret = regmap_update_bits(rtc->regmap,
320					 rtc->base + SPRD_RTC_INT_EN,
321					 SPRD_RTC_AUXALM_EN,
322					 SPRD_RTC_AUXALM_EN);
323	} else {
324		ret = regmap_update_bits(rtc->regmap,
325					 rtc->base + SPRD_RTC_INT_EN,
326					 SPRD_RTC_AUXALM_EN, 0);
327	}
328
329	return ret;
330}
331
332static int sprd_rtc_read_time(struct device *dev, struct rtc_time *tm)
333{
334	struct sprd_rtc *rtc = dev_get_drvdata(dev);
335	time64_t secs;
336	int ret;
337
338	if (!rtc->valid) {
339		dev_warn(dev, "RTC values are invalid\n");
340		return -EINVAL;
341	}
342
343	ret = sprd_rtc_get_secs(rtc, SPRD_RTC_TIME, &secs);
344	if (ret)
345		return ret;
346
347	rtc_time64_to_tm(secs, tm);
348	return 0;
349}
350
351static int sprd_rtc_set_time(struct device *dev, struct rtc_time *tm)
352{
353	struct sprd_rtc *rtc = dev_get_drvdata(dev);
354	time64_t secs = rtc_tm_to_time64(tm);
 
355	int ret;
356
357	ret = sprd_rtc_set_secs(rtc, SPRD_RTC_TIME, secs);
358	if (ret)
359		return ret;
360
361	if (!rtc->valid) {
362		/* Clear RTC power status firstly */
363		ret = regmap_write(rtc->regmap, rtc->base + SPRD_RTC_PWR_CTRL,
364				   SPRD_RTC_POWER_STS_CLEAR);
365		if (ret)
366			return ret;
367
368		/*
369		 * Set RTC power status to indicate now RTC has valid time
370		 * values.
371		 */
372		ret = regmap_write(rtc->regmap, rtc->base + SPRD_RTC_PWR_CTRL,
373				   SPRD_RTC_POWER_STS_VALID);
 
 
374		if (ret)
375			return ret;
376
 
 
 
 
 
 
 
 
 
 
 
377		rtc->valid = true;
378	}
379
380	return 0;
381}
382
383static int sprd_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
384{
385	struct sprd_rtc *rtc = dev_get_drvdata(dev);
386	time64_t secs;
387	int ret;
388	u32 val;
389
390	/*
391	 * The RTC core checks to see if there is an alarm already set in RTC
392	 * hardware, and we always read the normal alarm at this time.
393	 */
 
 
 
394	ret = sprd_rtc_get_secs(rtc, SPRD_RTC_ALARM, &secs);
395	if (ret)
396		return ret;
397
398	rtc_time64_to_tm(secs, &alrm->time);
399
400	ret = regmap_read(rtc->regmap, rtc->base + SPRD_RTC_INT_EN, &val);
401	if (ret)
402		return ret;
403
404	alrm->enabled = !!(val & SPRD_RTC_ALARM_EN);
405
406	ret = regmap_read(rtc->regmap, rtc->base + SPRD_RTC_INT_RAW_STS, &val);
407	if (ret)
408		return ret;
409
410	alrm->pending = !!(val & SPRD_RTC_ALARM_EN);
411	return 0;
412}
413
414static int sprd_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
415{
416	struct sprd_rtc *rtc = dev_get_drvdata(dev);
417	time64_t secs = rtc_tm_to_time64(&alrm->time);
418	struct rtc_time aie_time =
419		rtc_ktime_to_tm(rtc->rtc->aie_timer.node.expires);
420	int ret;
421
422	/*
423	 * We have 2 groups alarms: normal alarm and auxiliary alarm. Since
424	 * both normal alarm event and auxiliary alarm event can wake up system
425	 * from deep sleep, but only alarm event can power up system from power
426	 * down status. Moreover we do not need to poll about 125ms when
427	 * updating auxiliary alarm registers. Thus we usually set auxiliary
428	 * alarm when wake up system from deep sleep, and for other scenarios,
429	 * we should set normal alarm with polling status.
430	 *
431	 * So here we check if the alarm time is set by aie_timer, if yes, we
432	 * should set normal alarm, if not, we should set auxiliary alarm which
433	 * means it is just a wake event.
434	 */
435	if (!rtc->rtc->aie_timer.enabled || rtc_tm_sub(&aie_time, &alrm->time))
436		return sprd_rtc_set_aux_alarm(dev, alrm);
437
438	/* clear the alarm interrupt status firstly */
439	ret = regmap_write(rtc->regmap, rtc->base + SPRD_RTC_INT_CLR,
440			   SPRD_RTC_ALARM_EN);
441	if (ret)
442		return ret;
443
444	ret = sprd_rtc_set_secs(rtc, SPRD_RTC_ALARM, secs);
445	if (ret)
446		return ret;
447
448	if (alrm->enabled) {
449		ret = regmap_update_bits(rtc->regmap,
450					 rtc->base + SPRD_RTC_INT_EN,
451					 SPRD_RTC_ALARM_EN,
452					 SPRD_RTC_ALARM_EN);
453		if (ret)
454			return ret;
455
456		/* unlock the alarm to enable the alarm function. */
457		ret = sprd_rtc_lock_alarm(rtc, false);
458	} else {
459		regmap_update_bits(rtc->regmap,
460				   rtc->base + SPRD_RTC_INT_EN,
461				   SPRD_RTC_ALARM_EN, 0);
462
463		/*
464		 * Lock the alarm function in case fake alarm event will power
465		 * up systems.
466		 */
467		ret = sprd_rtc_lock_alarm(rtc, true);
468	}
469
470	return ret;
471}
472
473static int sprd_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
474{
475	struct sprd_rtc *rtc = dev_get_drvdata(dev);
476	int ret;
477
478	if (enabled) {
479		ret = regmap_update_bits(rtc->regmap,
480					 rtc->base + SPRD_RTC_INT_EN,
481					 SPRD_RTC_ALARM_EN | SPRD_RTC_AUXALM_EN,
482					 SPRD_RTC_ALARM_EN | SPRD_RTC_AUXALM_EN);
483		if (ret)
484			return ret;
485
486		ret = sprd_rtc_lock_alarm(rtc, false);
487	} else {
488		regmap_update_bits(rtc->regmap, rtc->base + SPRD_RTC_INT_EN,
489				   SPRD_RTC_ALARM_EN | SPRD_RTC_AUXALM_EN, 0);
490
491		ret = sprd_rtc_lock_alarm(rtc, true);
492	}
493
494	return ret;
495}
496
497static const struct rtc_class_ops sprd_rtc_ops = {
498	.read_time = sprd_rtc_read_time,
499	.set_time = sprd_rtc_set_time,
500	.read_alarm = sprd_rtc_read_alarm,
501	.set_alarm = sprd_rtc_set_alarm,
502	.alarm_irq_enable = sprd_rtc_alarm_irq_enable,
503};
504
505static irqreturn_t sprd_rtc_handler(int irq, void *dev_id)
506{
507	struct sprd_rtc *rtc = dev_id;
508	int ret;
509
510	ret = sprd_rtc_clear_alarm_ints(rtc);
511	if (ret)
512		return IRQ_RETVAL(ret);
513
514	rtc_update_irq(rtc->rtc, 1, RTC_AF | RTC_IRQF);
515	return IRQ_HANDLED;
516}
517
518static int sprd_rtc_check_power_down(struct sprd_rtc *rtc)
519{
520	u32 val;
521	int ret;
522
523	ret = regmap_read(rtc->regmap, rtc->base + SPRD_RTC_PWR_STS, &val);
524	if (ret)
525		return ret;
526
527	/*
528	 * If the RTC power status value is SPRD_RTC_POWER_RESET_VALUE, which
529	 * means the RTC has been powered down, so the RTC time values are
530	 * invalid.
531	 */
532	rtc->valid = val != SPRD_RTC_POWER_RESET_VALUE;
533	return 0;
534}
535
536static int sprd_rtc_check_alarm_int(struct sprd_rtc *rtc)
537{
538	u32 val;
539	int ret;
540
541	ret = regmap_read(rtc->regmap, rtc->base + SPRD_RTC_SPG_VALUE, &val);
542	if (ret)
543		return ret;
544
545	/*
546	 * The SPRD_RTC_INT_EN register is not put in always-power-on region
547	 * supplied by VDDRTC, so we should check if we need enable the alarm
548	 * interrupt when system booting.
549	 *
550	 * If we have set SPRD_RTC_POWEROFF_ALM_FLAG which is saved in
551	 * always-power-on region, that means we have set one alarm last time,
552	 * so we should enable the alarm interrupt to help RTC core to see if
553	 * there is an alarm already set in RTC hardware.
554	 */
555	if (!(val & SPRD_RTC_POWEROFF_ALM_FLAG))
556		return 0;
557
558	return regmap_update_bits(rtc->regmap, rtc->base + SPRD_RTC_INT_EN,
559				  SPRD_RTC_ALARM_EN, SPRD_RTC_ALARM_EN);
560}
561
562static int sprd_rtc_probe(struct platform_device *pdev)
563{
564	struct device_node *node = pdev->dev.of_node;
565	struct sprd_rtc *rtc;
566	int ret;
567
568	rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
569	if (!rtc)
570		return -ENOMEM;
571
572	rtc->regmap = dev_get_regmap(pdev->dev.parent, NULL);
573	if (!rtc->regmap)
574		return -ENODEV;
575
576	ret = of_property_read_u32(node, "reg", &rtc->base);
577	if (ret) {
578		dev_err(&pdev->dev, "failed to get RTC base address\n");
579		return ret;
580	}
581
582	rtc->irq = platform_get_irq(pdev, 0);
583	if (rtc->irq < 0)
 
584		return rtc->irq;
585
586	rtc->rtc = devm_rtc_allocate_device(&pdev->dev);
587	if (IS_ERR(rtc->rtc))
588		return PTR_ERR(rtc->rtc);
589
590	rtc->dev = &pdev->dev;
591	platform_set_drvdata(pdev, rtc);
592
593	/* check if we need set the alarm interrupt */
594	ret = sprd_rtc_check_alarm_int(rtc);
595	if (ret) {
596		dev_err(&pdev->dev, "failed to check RTC alarm interrupt\n");
597		return ret;
598	}
599
600	/* check if RTC time values are valid */
601	ret = sprd_rtc_check_power_down(rtc);
602	if (ret) {
603		dev_err(&pdev->dev, "failed to check RTC time values\n");
604		return ret;
605	}
606
607	ret = devm_request_threaded_irq(&pdev->dev, rtc->irq, NULL,
608					sprd_rtc_handler,
609					IRQF_ONESHOT | IRQF_EARLY_RESUME,
610					pdev->name, rtc);
611	if (ret < 0) {
612		dev_err(&pdev->dev, "failed to request RTC irq\n");
613		return ret;
614	}
615
616	device_init_wakeup(&pdev->dev, 1);
 
 
 
617
618	rtc->rtc->ops = &sprd_rtc_ops;
619	rtc->rtc->range_min = 0;
620	rtc->rtc->range_max = 5662310399LL;
621	ret = devm_rtc_register_device(rtc->rtc);
622	if (ret) {
623		device_init_wakeup(&pdev->dev, 0);
624		return ret;
625	}
626
 
 
 
627	return 0;
628}
629
630static const struct of_device_id sprd_rtc_of_match[] = {
631	{ .compatible = "sprd,sc2731-rtc", },
632	{ },
633};
634MODULE_DEVICE_TABLE(of, sprd_rtc_of_match);
635
636static struct platform_driver sprd_rtc_driver = {
637	.driver = {
638		.name = "sprd-rtc",
639		.of_match_table = sprd_rtc_of_match,
640	},
641	.probe	= sprd_rtc_probe,
 
642};
643module_platform_driver(sprd_rtc_driver);
644
645MODULE_LICENSE("GPL v2");
646MODULE_DESCRIPTION("Spreadtrum RTC Device Driver");
647MODULE_AUTHOR("Baolin Wang <baolin.wang@spreadtrum.com>");
v4.17
 
  1/*
  2 * Copyright (C) 2017 Spreadtrum Communications Inc.
  3 *
  4 * SPDX-License-Identifier: GPL-2.0
  5 */
  6
  7#include <linux/bitops.h>
  8#include <linux/delay.h>
  9#include <linux/err.h>
 10#include <linux/module.h>
 11#include <linux/of.h>
 12#include <linux/platform_device.h>
 13#include <linux/regmap.h>
 14#include <linux/rtc.h>
 15
 16#define SPRD_RTC_SEC_CNT_VALUE		0x0
 17#define SPRD_RTC_MIN_CNT_VALUE		0x4
 18#define SPRD_RTC_HOUR_CNT_VALUE		0x8
 19#define SPRD_RTC_DAY_CNT_VALUE		0xc
 20#define SPRD_RTC_SEC_CNT_UPD		0x10
 21#define SPRD_RTC_MIN_CNT_UPD		0x14
 22#define SPRD_RTC_HOUR_CNT_UPD		0x18
 23#define SPRD_RTC_DAY_CNT_UPD		0x1c
 24#define SPRD_RTC_SEC_ALM_UPD		0x20
 25#define SPRD_RTC_MIN_ALM_UPD		0x24
 26#define SPRD_RTC_HOUR_ALM_UPD		0x28
 27#define SPRD_RTC_DAY_ALM_UPD		0x2c
 28#define SPRD_RTC_INT_EN			0x30
 29#define SPRD_RTC_INT_RAW_STS		0x34
 30#define SPRD_RTC_INT_CLR		0x38
 31#define SPRD_RTC_INT_MASK_STS		0x3C
 32#define SPRD_RTC_SEC_ALM_VALUE		0x40
 33#define SPRD_RTC_MIN_ALM_VALUE		0x44
 34#define SPRD_RTC_HOUR_ALM_VALUE		0x48
 35#define SPRD_RTC_DAY_ALM_VALUE		0x4c
 36#define SPRD_RTC_SPG_VALUE		0x50
 37#define SPRD_RTC_SPG_UPD		0x54
 
 
 38#define SPRD_RTC_SEC_AUXALM_UPD		0x60
 39#define SPRD_RTC_MIN_AUXALM_UPD		0x64
 40#define SPRD_RTC_HOUR_AUXALM_UPD	0x68
 41#define SPRD_RTC_DAY_AUXALM_UPD		0x6c
 42
 43/* BIT & MASK definition for SPRD_RTC_INT_* registers */
 44#define SPRD_RTC_SEC_EN			BIT(0)
 45#define SPRD_RTC_MIN_EN			BIT(1)
 46#define SPRD_RTC_HOUR_EN		BIT(2)
 47#define SPRD_RTC_DAY_EN			BIT(3)
 48#define SPRD_RTC_ALARM_EN		BIT(4)
 49#define SPRD_RTC_HRS_FORMAT_EN		BIT(5)
 50#define SPRD_RTC_AUXALM_EN		BIT(6)
 51#define SPRD_RTC_SPG_UPD_EN		BIT(7)
 52#define SPRD_RTC_SEC_UPD_EN		BIT(8)
 53#define SPRD_RTC_MIN_UPD_EN		BIT(9)
 54#define SPRD_RTC_HOUR_UPD_EN		BIT(10)
 55#define SPRD_RTC_DAY_UPD_EN		BIT(11)
 56#define SPRD_RTC_ALMSEC_UPD_EN		BIT(12)
 57#define SPRD_RTC_ALMMIN_UPD_EN		BIT(13)
 58#define SPRD_RTC_ALMHOUR_UPD_EN		BIT(14)
 59#define SPRD_RTC_ALMDAY_UPD_EN		BIT(15)
 60#define SPRD_RTC_INT_MASK		GENMASK(15, 0)
 61
 62#define SPRD_RTC_TIME_INT_MASK				\
 63	(SPRD_RTC_SEC_UPD_EN | SPRD_RTC_MIN_UPD_EN |	\
 64	 SPRD_RTC_HOUR_UPD_EN | SPRD_RTC_DAY_UPD_EN)
 65
 66#define SPRD_RTC_ALMTIME_INT_MASK				\
 67	(SPRD_RTC_ALMSEC_UPD_EN | SPRD_RTC_ALMMIN_UPD_EN |	\
 68	 SPRD_RTC_ALMHOUR_UPD_EN | SPRD_RTC_ALMDAY_UPD_EN)
 69
 70#define SPRD_RTC_ALM_INT_MASK			\
 71	(SPRD_RTC_SEC_EN | SPRD_RTC_MIN_EN |	\
 72	 SPRD_RTC_HOUR_EN | SPRD_RTC_DAY_EN |	\
 73	 SPRD_RTC_ALARM_EN | SPRD_RTC_AUXALM_EN)
 74
 75/* second/minute/hour/day values mask definition */
 76#define SPRD_RTC_SEC_MASK		GENMASK(5, 0)
 77#define SPRD_RTC_MIN_MASK		GENMASK(5, 0)
 78#define SPRD_RTC_HOUR_MASK		GENMASK(4, 0)
 79#define SPRD_RTC_DAY_MASK		GENMASK(15, 0)
 80
 81/* alarm lock definition for SPRD_RTC_SPG_UPD register */
 82#define SPRD_RTC_ALMLOCK_MASK		GENMASK(7, 0)
 83#define SPRD_RTC_ALM_UNLOCK		0xa5
 84#define SPRD_RTC_ALM_LOCK		(~SPRD_RTC_ALM_UNLOCK &	\
 85					 SPRD_RTC_ALMLOCK_MASK)
 86
 87/* SPG values definition for SPRD_RTC_SPG_UPD register */
 88#define SPRD_RTC_POWEROFF_ALM_FLAG	BIT(8)
 89#define SPRD_RTC_POWER_RESET_FLAG	BIT(9)
 
 
 
 
 
 
 90
 91/* timeout of synchronizing time and alarm registers (us) */
 92#define SPRD_RTC_POLL_TIMEOUT		200000
 93#define SPRD_RTC_POLL_DELAY_US		20000
 94
 95struct sprd_rtc {
 96	struct rtc_device	*rtc;
 97	struct regmap		*regmap;
 98	struct device		*dev;
 99	u32			base;
100	int			irq;
101	bool			valid;
102};
103
104/*
105 * The Spreadtrum RTC controller has 3 groups registers, including time, normal
106 * alarm and auxiliary alarm. The time group registers are used to set RTC time,
107 * the normal alarm registers are used to set normal alarm, and the auxiliary
108 * alarm registers are used to set auxiliary alarm. Both alarm event and
109 * auxiliary alarm event can wake up system from deep sleep, but only alarm
110 * event can power up system from power down status.
111 */
112enum sprd_rtc_reg_types {
113	SPRD_RTC_TIME,
114	SPRD_RTC_ALARM,
115	SPRD_RTC_AUX_ALARM,
116};
117
118static int sprd_rtc_clear_alarm_ints(struct sprd_rtc *rtc)
119{
120	return regmap_write(rtc->regmap, rtc->base + SPRD_RTC_INT_CLR,
121			    SPRD_RTC_ALM_INT_MASK);
122}
123
124static int sprd_rtc_disable_ints(struct sprd_rtc *rtc)
125{
126	int ret;
127
128	ret = regmap_update_bits(rtc->regmap, rtc->base + SPRD_RTC_INT_EN,
129				 SPRD_RTC_INT_MASK, 0);
130	if (ret)
131		return ret;
132
133	return regmap_write(rtc->regmap, rtc->base + SPRD_RTC_INT_CLR,
134			    SPRD_RTC_INT_MASK);
135}
136
137static int sprd_rtc_lock_alarm(struct sprd_rtc *rtc, bool lock)
138{
139	int ret;
140	u32 val;
141
142	ret = regmap_read(rtc->regmap, rtc->base + SPRD_RTC_SPG_VALUE, &val);
143	if (ret)
144		return ret;
145
146	val &= ~(SPRD_RTC_ALMLOCK_MASK | SPRD_RTC_POWEROFF_ALM_FLAG);
147	if (lock)
148		val |= SPRD_RTC_ALM_LOCK;
149	else
150		val |= SPRD_RTC_ALM_UNLOCK | SPRD_RTC_POWEROFF_ALM_FLAG;
151
152	ret = regmap_write(rtc->regmap, rtc->base + SPRD_RTC_SPG_UPD, val);
153	if (ret)
154		return ret;
155
156	/* wait until the SPG value is updated successfully */
157	ret = regmap_read_poll_timeout(rtc->regmap,
158				       rtc->base + SPRD_RTC_INT_RAW_STS, val,
159				       (val & SPRD_RTC_SPG_UPD_EN),
160				       SPRD_RTC_POLL_DELAY_US,
161				       SPRD_RTC_POLL_TIMEOUT);
162	if (ret) {
163		dev_err(rtc->dev, "failed to update SPG value:%d\n", ret);
164		return ret;
165	}
166
167	return 0;
 
168}
169
170static int sprd_rtc_get_secs(struct sprd_rtc *rtc, enum sprd_rtc_reg_types type,
171			     time64_t *secs)
172{
173	u32 sec_reg, min_reg, hour_reg, day_reg;
174	u32 val, sec, min, hour, day;
175	int ret;
176
177	switch (type) {
178	case SPRD_RTC_TIME:
179		sec_reg = SPRD_RTC_SEC_CNT_VALUE;
180		min_reg = SPRD_RTC_MIN_CNT_VALUE;
181		hour_reg = SPRD_RTC_HOUR_CNT_VALUE;
182		day_reg = SPRD_RTC_DAY_CNT_VALUE;
183		break;
184	case SPRD_RTC_ALARM:
185		sec_reg = SPRD_RTC_SEC_ALM_VALUE;
186		min_reg = SPRD_RTC_MIN_ALM_VALUE;
187		hour_reg = SPRD_RTC_HOUR_ALM_VALUE;
188		day_reg = SPRD_RTC_DAY_ALM_VALUE;
189		break;
190	case SPRD_RTC_AUX_ALARM:
191		sec_reg = SPRD_RTC_SEC_AUXALM_UPD;
192		min_reg = SPRD_RTC_MIN_AUXALM_UPD;
193		hour_reg = SPRD_RTC_HOUR_AUXALM_UPD;
194		day_reg = SPRD_RTC_DAY_AUXALM_UPD;
195		break;
196	default:
197		return -EINVAL;
198	}
199
200	ret = regmap_read(rtc->regmap, rtc->base + sec_reg, &val);
201	if (ret)
202		return ret;
203
204	sec = val & SPRD_RTC_SEC_MASK;
205
206	ret = regmap_read(rtc->regmap, rtc->base + min_reg, &val);
207	if (ret)
208		return ret;
209
210	min = val & SPRD_RTC_MIN_MASK;
211
212	ret = regmap_read(rtc->regmap, rtc->base + hour_reg, &val);
213	if (ret)
214		return ret;
215
216	hour = val & SPRD_RTC_HOUR_MASK;
217
218	ret = regmap_read(rtc->regmap, rtc->base + day_reg, &val);
219	if (ret)
220		return ret;
221
222	day = val & SPRD_RTC_DAY_MASK;
223	*secs = (((time64_t)(day * 24) + hour) * 60 + min) * 60 + sec;
224	return 0;
225}
226
227static int sprd_rtc_set_secs(struct sprd_rtc *rtc, enum sprd_rtc_reg_types type,
228			     time64_t secs)
229{
230	u32 sec_reg, min_reg, hour_reg, day_reg, sts_mask;
231	u32 sec, min, hour, day, val;
232	int ret, rem;
233
234	/* convert seconds to RTC time format */
235	day = div_s64_rem(secs, 86400, &rem);
236	hour = rem / 3600;
237	rem -= hour * 3600;
238	min = rem / 60;
239	sec = rem - min * 60;
240
241	switch (type) {
242	case SPRD_RTC_TIME:
243		sec_reg = SPRD_RTC_SEC_CNT_UPD;
244		min_reg = SPRD_RTC_MIN_CNT_UPD;
245		hour_reg = SPRD_RTC_HOUR_CNT_UPD;
246		day_reg = SPRD_RTC_DAY_CNT_UPD;
247		sts_mask = SPRD_RTC_TIME_INT_MASK;
248		break;
249	case SPRD_RTC_ALARM:
250		sec_reg = SPRD_RTC_SEC_ALM_UPD;
251		min_reg = SPRD_RTC_MIN_ALM_UPD;
252		hour_reg = SPRD_RTC_HOUR_ALM_UPD;
253		day_reg = SPRD_RTC_DAY_ALM_UPD;
254		sts_mask = SPRD_RTC_ALMTIME_INT_MASK;
255		break;
256	case SPRD_RTC_AUX_ALARM:
257		sec_reg = SPRD_RTC_SEC_AUXALM_UPD;
258		min_reg = SPRD_RTC_MIN_AUXALM_UPD;
259		hour_reg = SPRD_RTC_HOUR_AUXALM_UPD;
260		day_reg = SPRD_RTC_DAY_AUXALM_UPD;
261		sts_mask = 0;
262		break;
263	default:
264		return -EINVAL;
265	}
266
267	ret = regmap_write(rtc->regmap, rtc->base + sec_reg, sec);
268	if (ret)
269		return ret;
270
271	ret = regmap_write(rtc->regmap, rtc->base + min_reg, min);
272	if (ret)
273		return ret;
274
275	ret = regmap_write(rtc->regmap, rtc->base + hour_reg, hour);
276	if (ret)
277		return ret;
278
279	ret = regmap_write(rtc->regmap, rtc->base + day_reg, day);
280	if (ret)
281		return ret;
282
283	if (type == SPRD_RTC_AUX_ALARM)
284		return 0;
285
286	/*
287	 * Since the time and normal alarm registers are put in always-power-on
288	 * region supplied by VDDRTC, then these registers changing time will
289	 * be very long, about 125ms. Thus here we should wait until all
290	 * values are updated successfully.
291	 */
292	ret = regmap_read_poll_timeout(rtc->regmap,
293				       rtc->base + SPRD_RTC_INT_RAW_STS, val,
294				       ((val & sts_mask) == sts_mask),
295				       SPRD_RTC_POLL_DELAY_US,
296				       SPRD_RTC_POLL_TIMEOUT);
297	if (ret < 0) {
298		dev_err(rtc->dev, "set time/alarm values timeout\n");
299		return ret;
300	}
301
302	return regmap_write(rtc->regmap, rtc->base + SPRD_RTC_INT_CLR,
303			    sts_mask);
304}
305
306static int sprd_rtc_read_aux_alarm(struct device *dev, struct rtc_wkalrm *alrm)
307{
308	struct sprd_rtc *rtc = dev_get_drvdata(dev);
309	time64_t secs;
310	u32 val;
311	int ret;
312
313	ret = sprd_rtc_get_secs(rtc, SPRD_RTC_AUX_ALARM, &secs);
314	if (ret)
315		return ret;
316
317	rtc_time64_to_tm(secs, &alrm->time);
318
319	ret = regmap_read(rtc->regmap, rtc->base + SPRD_RTC_INT_EN, &val);
320	if (ret)
321		return ret;
322
323	alrm->enabled = !!(val & SPRD_RTC_AUXALM_EN);
324
325	ret = regmap_read(rtc->regmap, rtc->base + SPRD_RTC_INT_RAW_STS, &val);
326	if (ret)
327		return ret;
328
329	alrm->pending = !!(val & SPRD_RTC_AUXALM_EN);
330	return 0;
331}
332
333static int sprd_rtc_set_aux_alarm(struct device *dev, struct rtc_wkalrm *alrm)
334{
335	struct sprd_rtc *rtc = dev_get_drvdata(dev);
336	time64_t secs = rtc_tm_to_time64(&alrm->time);
337	int ret;
338
339	/* clear the auxiliary alarm interrupt status */
340	ret = regmap_write(rtc->regmap, rtc->base + SPRD_RTC_INT_CLR,
341			   SPRD_RTC_AUXALM_EN);
342	if (ret)
343		return ret;
344
345	ret = sprd_rtc_set_secs(rtc, SPRD_RTC_AUX_ALARM, secs);
346	if (ret)
347		return ret;
348
349	if (alrm->enabled) {
350		ret = regmap_update_bits(rtc->regmap,
351					 rtc->base + SPRD_RTC_INT_EN,
352					 SPRD_RTC_AUXALM_EN,
353					 SPRD_RTC_AUXALM_EN);
354	} else {
355		ret = regmap_update_bits(rtc->regmap,
356					 rtc->base + SPRD_RTC_INT_EN,
357					 SPRD_RTC_AUXALM_EN, 0);
358	}
359
360	return ret;
361}
362
363static int sprd_rtc_read_time(struct device *dev, struct rtc_time *tm)
364{
365	struct sprd_rtc *rtc = dev_get_drvdata(dev);
366	time64_t secs;
367	int ret;
368
369	if (!rtc->valid) {
370		dev_warn(dev, "RTC values are invalid\n");
371		return -EINVAL;
372	}
373
374	ret = sprd_rtc_get_secs(rtc, SPRD_RTC_TIME, &secs);
375	if (ret)
376		return ret;
377
378	rtc_time64_to_tm(secs, tm);
379	return 0;
380}
381
382static int sprd_rtc_set_time(struct device *dev, struct rtc_time *tm)
383{
384	struct sprd_rtc *rtc = dev_get_drvdata(dev);
385	time64_t secs = rtc_tm_to_time64(tm);
386	u32 val;
387	int ret;
388
389	ret = sprd_rtc_set_secs(rtc, SPRD_RTC_TIME, secs);
390	if (ret)
391		return ret;
392
393	if (!rtc->valid) {
 
 
 
 
 
 
394		/*
395		 * Set SPRD_RTC_POWER_RESET_FLAG to indicate now RTC has valid
396		 * time values.
397		 */
398		ret = regmap_update_bits(rtc->regmap,
399					 rtc->base + SPRD_RTC_SPG_UPD,
400					 SPRD_RTC_POWER_RESET_FLAG,
401					 SPRD_RTC_POWER_RESET_FLAG);
402		if (ret)
403			return ret;
404
405		ret = regmap_read_poll_timeout(rtc->regmap,
406					       rtc->base + SPRD_RTC_INT_RAW_STS,
407					       val, (val & SPRD_RTC_SPG_UPD_EN),
408					       SPRD_RTC_POLL_DELAY_US,
409					       SPRD_RTC_POLL_TIMEOUT);
410		if (ret) {
411			dev_err(rtc->dev, "failed to update SPG value:%d\n",
412				ret);
413			return ret;
414		}
415
416		rtc->valid = true;
417	}
418
419	return 0;
420}
421
422static int sprd_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
423{
424	struct sprd_rtc *rtc = dev_get_drvdata(dev);
425	time64_t secs;
426	int ret;
427	u32 val;
428
429	/*
430	 * If aie_timer is enabled, we should get the normal alarm time.
431	 * Otherwise we should get auxiliary alarm time.
432	 */
433	if (rtc->rtc && rtc->rtc->aie_timer.enabled == 0)
434		return sprd_rtc_read_aux_alarm(dev, alrm);
435
436	ret = sprd_rtc_get_secs(rtc, SPRD_RTC_ALARM, &secs);
437	if (ret)
438		return ret;
439
440	rtc_time64_to_tm(secs, &alrm->time);
441
442	ret = regmap_read(rtc->regmap, rtc->base + SPRD_RTC_INT_EN, &val);
443	if (ret)
444		return ret;
445
446	alrm->enabled = !!(val & SPRD_RTC_ALARM_EN);
447
448	ret = regmap_read(rtc->regmap, rtc->base + SPRD_RTC_INT_RAW_STS, &val);
449	if (ret)
450		return ret;
451
452	alrm->pending = !!(val & SPRD_RTC_ALARM_EN);
453	return 0;
454}
455
456static int sprd_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
457{
458	struct sprd_rtc *rtc = dev_get_drvdata(dev);
459	time64_t secs = rtc_tm_to_time64(&alrm->time);
460	struct rtc_time aie_time =
461		rtc_ktime_to_tm(rtc->rtc->aie_timer.node.expires);
462	int ret;
463
464	/*
465	 * We have 2 groups alarms: normal alarm and auxiliary alarm. Since
466	 * both normal alarm event and auxiliary alarm event can wake up system
467	 * from deep sleep, but only alarm event can power up system from power
468	 * down status. Moreover we do not need to poll about 125ms when
469	 * updating auxiliary alarm registers. Thus we usually set auxiliary
470	 * alarm when wake up system from deep sleep, and for other scenarios,
471	 * we should set normal alarm with polling status.
472	 *
473	 * So here we check if the alarm time is set by aie_timer, if yes, we
474	 * should set normal alarm, if not, we should set auxiliary alarm which
475	 * means it is just a wake event.
476	 */
477	if (!rtc->rtc->aie_timer.enabled || rtc_tm_sub(&aie_time, &alrm->time))
478		return sprd_rtc_set_aux_alarm(dev, alrm);
479
480	/* clear the alarm interrupt status firstly */
481	ret = regmap_write(rtc->regmap, rtc->base + SPRD_RTC_INT_CLR,
482			   SPRD_RTC_ALARM_EN);
483	if (ret)
484		return ret;
485
486	ret = sprd_rtc_set_secs(rtc, SPRD_RTC_ALARM, secs);
487	if (ret)
488		return ret;
489
490	if (alrm->enabled) {
491		ret = regmap_update_bits(rtc->regmap,
492					 rtc->base + SPRD_RTC_INT_EN,
493					 SPRD_RTC_ALARM_EN,
494					 SPRD_RTC_ALARM_EN);
495		if (ret)
496			return ret;
497
498		/* unlock the alarm to enable the alarm function. */
499		ret = sprd_rtc_lock_alarm(rtc, false);
500	} else {
501		regmap_update_bits(rtc->regmap,
502				   rtc->base + SPRD_RTC_INT_EN,
503				   SPRD_RTC_ALARM_EN, 0);
504
505		/*
506		 * Lock the alarm function in case fake alarm event will power
507		 * up systems.
508		 */
509		ret = sprd_rtc_lock_alarm(rtc, true);
510	}
511
512	return ret;
513}
514
515static int sprd_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
516{
517	struct sprd_rtc *rtc = dev_get_drvdata(dev);
518	int ret;
519
520	if (enabled) {
521		ret = regmap_update_bits(rtc->regmap,
522					 rtc->base + SPRD_RTC_INT_EN,
523					 SPRD_RTC_ALARM_EN | SPRD_RTC_AUXALM_EN,
524					 SPRD_RTC_ALARM_EN | SPRD_RTC_AUXALM_EN);
525		if (ret)
526			return ret;
527
528		ret = sprd_rtc_lock_alarm(rtc, false);
529	} else {
530		regmap_update_bits(rtc->regmap, rtc->base + SPRD_RTC_INT_EN,
531				   SPRD_RTC_ALARM_EN | SPRD_RTC_AUXALM_EN, 0);
532
533		ret = sprd_rtc_lock_alarm(rtc, true);
534	}
535
536	return ret;
537}
538
539static const struct rtc_class_ops sprd_rtc_ops = {
540	.read_time = sprd_rtc_read_time,
541	.set_time = sprd_rtc_set_time,
542	.read_alarm = sprd_rtc_read_alarm,
543	.set_alarm = sprd_rtc_set_alarm,
544	.alarm_irq_enable = sprd_rtc_alarm_irq_enable,
545};
546
547static irqreturn_t sprd_rtc_handler(int irq, void *dev_id)
548{
549	struct sprd_rtc *rtc = dev_id;
550	int ret;
551
552	ret = sprd_rtc_clear_alarm_ints(rtc);
553	if (ret)
554		return IRQ_RETVAL(ret);
555
556	rtc_update_irq(rtc->rtc, 1, RTC_AF | RTC_IRQF);
557	return IRQ_HANDLED;
558}
559
560static int sprd_rtc_check_power_down(struct sprd_rtc *rtc)
561{
562	u32 val;
563	int ret;
564
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
565	ret = regmap_read(rtc->regmap, rtc->base + SPRD_RTC_SPG_VALUE, &val);
566	if (ret)
567		return ret;
568
569	/*
570	 * If the SPRD_RTC_POWER_RESET_FLAG was not set, which means the RTC has
571	 * been powered down, so the RTC time values are invalid.
 
 
 
 
 
 
572	 */
573	rtc->valid = (val & SPRD_RTC_POWER_RESET_FLAG) ? true : false;
574	return 0;
 
 
 
575}
576
577static int sprd_rtc_probe(struct platform_device *pdev)
578{
579	struct device_node *node = pdev->dev.of_node;
580	struct sprd_rtc *rtc;
581	int ret;
582
583	rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
584	if (!rtc)
585		return -ENOMEM;
586
587	rtc->regmap = dev_get_regmap(pdev->dev.parent, NULL);
588	if (!rtc->regmap)
589		return -ENODEV;
590
591	ret = of_property_read_u32(node, "reg", &rtc->base);
592	if (ret) {
593		dev_err(&pdev->dev, "failed to get RTC base address\n");
594		return ret;
595	}
596
597	rtc->irq = platform_get_irq(pdev, 0);
598	if (rtc->irq < 0) {
599		dev_err(&pdev->dev, "failed to get RTC irq number\n");
600		return rtc->irq;
601	}
 
 
 
602
603	rtc->dev = &pdev->dev;
604	platform_set_drvdata(pdev, rtc);
605
606	/* clear all RTC interrupts and disable all RTC interrupts */
607	ret = sprd_rtc_disable_ints(rtc);
608	if (ret) {
609		dev_err(&pdev->dev, "failed to disable RTC interrupts\n");
610		return ret;
611	}
612
613	/* check if RTC time values are valid */
614	ret = sprd_rtc_check_power_down(rtc);
615	if (ret) {
616		dev_err(&pdev->dev, "failed to check RTC time values\n");
617		return ret;
618	}
619
620	ret = devm_request_threaded_irq(&pdev->dev, rtc->irq, NULL,
621					sprd_rtc_handler,
622					IRQF_ONESHOT | IRQF_EARLY_RESUME,
623					pdev->name, rtc);
624	if (ret < 0) {
625		dev_err(&pdev->dev, "failed to request RTC irq\n");
626		return ret;
627	}
628
629	rtc->rtc = devm_rtc_device_register(&pdev->dev, pdev->name,
630					    &sprd_rtc_ops, THIS_MODULE);
631	if (IS_ERR(rtc->rtc))
632		return PTR_ERR(rtc->rtc);
633
634	device_init_wakeup(&pdev->dev, 1);
635	return 0;
636}
 
 
 
 
 
637
638static int sprd_rtc_remove(struct platform_device *pdev)
639{
640	device_init_wakeup(&pdev->dev, 0);
641	return 0;
642}
643
644static const struct of_device_id sprd_rtc_of_match[] = {
645	{ .compatible = "sprd,sc2731-rtc", },
646	{ },
647};
648MODULE_DEVICE_TABLE(of, sprd_rtc_of_match);
649
650static struct platform_driver sprd_rtc_driver = {
651	.driver = {
652		.name = "sprd-rtc",
653		.of_match_table = sprd_rtc_of_match,
654	},
655	.probe	= sprd_rtc_probe,
656	.remove = sprd_rtc_remove,
657};
658module_platform_driver(sprd_rtc_driver);
659
660MODULE_LICENSE("GPL v2");
661MODULE_DESCRIPTION("Spreadtrum RTC Device Driver");
662MODULE_AUTHOR("Baolin Wang <baolin.wang@spreadtrum.com>");