Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0+
  2//
  3// Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
 
 
 
 
 
 
 
  4
  5#include <linux/io.h>
  6#include <linux/rtc.h>
  7#include <linux/module.h>
  8#include <linux/slab.h>
  9#include <linux/interrupt.h>
 10#include <linux/platform_device.h>
 11#include <linux/pm_wakeirq.h>
 12#include <linux/clk.h>
 13#include <linux/of.h>
 14#include <linux/of_device.h>
 15
 16#define RTC_INPUT_CLK_32768HZ	(0x00 << 5)
 17#define RTC_INPUT_CLK_32000HZ	(0x01 << 5)
 18#define RTC_INPUT_CLK_38400HZ	(0x02 << 5)
 19
 20#define RTC_SW_BIT      (1 << 0)
 21#define RTC_ALM_BIT     (1 << 2)
 22#define RTC_1HZ_BIT     (1 << 4)
 23#define RTC_2HZ_BIT     (1 << 7)
 24#define RTC_SAM0_BIT    (1 << 8)
 25#define RTC_SAM1_BIT    (1 << 9)
 26#define RTC_SAM2_BIT    (1 << 10)
 27#define RTC_SAM3_BIT    (1 << 11)
 28#define RTC_SAM4_BIT    (1 << 12)
 29#define RTC_SAM5_BIT    (1 << 13)
 30#define RTC_SAM6_BIT    (1 << 14)
 31#define RTC_SAM7_BIT    (1 << 15)
 32#define PIT_ALL_ON      (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
 33			 RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
 34			 RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
 35
 36#define RTC_ENABLE_BIT  (1 << 7)
 37
 38#define MAX_PIE_NUM     9
 39#define MAX_PIE_FREQ    512
 40
 41#define MXC_RTC_TIME	0
 42#define MXC_RTC_ALARM	1
 43
 44#define RTC_HOURMIN	0x00	/*  32bit rtc hour/min counter reg */
 45#define RTC_SECOND	0x04	/*  32bit rtc seconds counter reg */
 46#define RTC_ALRM_HM	0x08	/*  32bit rtc alarm hour/min reg */
 47#define RTC_ALRM_SEC	0x0C	/*  32bit rtc alarm seconds reg */
 48#define RTC_RTCCTL	0x10	/*  32bit rtc control reg */
 49#define RTC_RTCISR	0x14	/*  32bit rtc interrupt status reg */
 50#define RTC_RTCIENR	0x18	/*  32bit rtc interrupt enable reg */
 51#define RTC_STPWCH	0x1C	/*  32bit rtc stopwatch min reg */
 52#define RTC_DAYR	0x20	/*  32bit rtc days counter reg */
 53#define RTC_DAYALARM	0x24	/*  32bit rtc day alarm reg */
 54#define RTC_TEST1	0x28	/*  32bit rtc test reg 1 */
 55#define RTC_TEST2	0x2C	/*  32bit rtc test reg 2 */
 56#define RTC_TEST3	0x30	/*  32bit rtc test reg 3 */
 57
 58enum imx_rtc_type {
 59	IMX1_RTC,
 60	IMX21_RTC,
 61};
 62
 63struct rtc_plat_data {
 64	struct rtc_device *rtc;
 65	void __iomem *ioaddr;
 66	int irq;
 67	struct clk *clk_ref;
 68	struct clk *clk_ipg;
 69	struct rtc_time g_rtc_alarm;
 70	enum imx_rtc_type devtype;
 71};
 72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 73static const struct of_device_id imx_rtc_dt_ids[] = {
 74	{ .compatible = "fsl,imx1-rtc", .data = (const void *)IMX1_RTC },
 75	{ .compatible = "fsl,imx21-rtc", .data = (const void *)IMX21_RTC },
 76	{}
 77};
 78MODULE_DEVICE_TABLE(of, imx_rtc_dt_ids);
 
 79
 80static inline int is_imx1_rtc(struct rtc_plat_data *data)
 81{
 82	return data->devtype == IMX1_RTC;
 83}
 84
 85/*
 86 * This function is used to obtain the RTC time or the alarm value in
 87 * second.
 88 */
 89static time64_t get_alarm_or_time(struct device *dev, int time_alarm)
 90{
 91	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
 
 92	void __iomem *ioaddr = pdata->ioaddr;
 93	u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0;
 94
 95	switch (time_alarm) {
 96	case MXC_RTC_TIME:
 97		day = readw(ioaddr + RTC_DAYR);
 98		hr_min = readw(ioaddr + RTC_HOURMIN);
 99		sec = readw(ioaddr + RTC_SECOND);
100		break;
101	case MXC_RTC_ALARM:
102		day = readw(ioaddr + RTC_DAYALARM);
103		hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff;
104		sec = readw(ioaddr + RTC_ALRM_SEC);
105		break;
106	}
107
108	hr = hr_min >> 8;
109	min = hr_min & 0xff;
110
111	return ((((time64_t)day * 24 + hr) * 60) + min) * 60 + sec;
112}
113
114/*
115 * This function sets the RTC alarm value or the time value.
116 */
117static void set_alarm_or_time(struct device *dev, int time_alarm, time64_t time)
118{
119	u32 tod, day, hr, min, sec, temp;
120	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
 
121	void __iomem *ioaddr = pdata->ioaddr;
122
123	day = div_s64_rem(time, 86400, &tod);
124
125	/* time is within a day now */
126	hr = tod / 3600;
127	tod -= hr * 3600;
128
129	/* time is within an hour now */
130	min = tod / 60;
131	sec = tod - min * 60;
132
133	temp = (hr << 8) + min;
134
135	switch (time_alarm) {
136	case MXC_RTC_TIME:
137		writew(day, ioaddr + RTC_DAYR);
138		writew(sec, ioaddr + RTC_SECOND);
139		writew(temp, ioaddr + RTC_HOURMIN);
140		break;
141	case MXC_RTC_ALARM:
142		writew(day, ioaddr + RTC_DAYALARM);
143		writew(sec, ioaddr + RTC_ALRM_SEC);
144		writew(temp, ioaddr + RTC_ALRM_HM);
145		break;
146	}
147}
148
149/*
150 * This function updates the RTC alarm registers and then clears all the
151 * interrupt status bits.
152 */
153static void rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
154{
155	time64_t time;
156	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
 
157	void __iomem *ioaddr = pdata->ioaddr;
158
159	time = rtc_tm_to_time64(alrm);
160
161	/* clear all the interrupt status bits */
162	writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
163	set_alarm_or_time(dev, MXC_RTC_ALARM, time);
164}
165
166static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit,
167				unsigned int enabled)
168{
169	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
 
170	void __iomem *ioaddr = pdata->ioaddr;
171	u32 reg;
172	unsigned long flags;
173
174	spin_lock_irqsave(&pdata->rtc->irq_lock, flags);
175	reg = readw(ioaddr + RTC_RTCIENR);
176
177	if (enabled)
178		reg |= bit;
179	else
180		reg &= ~bit;
181
182	writew(reg, ioaddr + RTC_RTCIENR);
183	spin_unlock_irqrestore(&pdata->rtc->irq_lock, flags);
184}
185
186/* This function is the RTC interrupt service routine. */
187static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
188{
189	struct platform_device *pdev = dev_id;
190	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
191	void __iomem *ioaddr = pdata->ioaddr;
 
192	u32 status;
193	u32 events = 0;
194
195	spin_lock(&pdata->rtc->irq_lock);
196	status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
197	/* clear interrupt sources */
198	writew(status, ioaddr + RTC_RTCISR);
199
200	/* update irq data & counter */
201	if (status & RTC_ALM_BIT) {
202		events |= (RTC_AF | RTC_IRQF);
203		/* RTC alarm should be one-shot */
204		mxc_rtc_irq_enable(&pdev->dev, RTC_ALM_BIT, 0);
205	}
206
207	if (status & PIT_ALL_ON)
208		events |= (RTC_PF | RTC_IRQF);
209
210	rtc_update_irq(pdata->rtc, 1, events);
211	spin_unlock(&pdata->rtc->irq_lock);
212
213	return IRQ_HANDLED;
214}
215
216static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
217{
218	mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled);
219	return 0;
220}
221
222/*
223 * This function reads the current RTC time into tm in Gregorian date.
224 */
225static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
226{
227	time64_t val;
228
229	/* Avoid roll-over from reading the different registers */
230	do {
231		val = get_alarm_or_time(dev, MXC_RTC_TIME);
232	} while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
233
234	rtc_time64_to_tm(val, tm);
235
236	return 0;
237}
238
239/*
240 * This function sets the internal RTC time based on tm in Gregorian date.
241 */
242static int mxc_rtc_set_time(struct device *dev, struct rtc_time *tm)
243{
244	time64_t time = rtc_tm_to_time64(tm);
 
 
 
 
 
 
 
 
 
 
 
 
245
246	/* Avoid roll-over from reading the different registers */
247	do {
248		set_alarm_or_time(dev, MXC_RTC_TIME, time);
249	} while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
250
251	return 0;
252}
253
254/*
255 * This function reads the current alarm value into the passed in 'alrm'
256 * argument. It updates the alrm's pending field value based on the whether
257 * an alarm interrupt occurs or not.
258 */
259static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
260{
261	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
 
262	void __iomem *ioaddr = pdata->ioaddr;
263
264	rtc_time64_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
265	alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0;
266
267	return 0;
268}
269
270/*
271 * This function sets the RTC alarm based on passed in alrm.
272 */
273static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
274{
275	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
 
276
277	rtc_update_alarm(dev, &alrm->time);
278
279	memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
280	mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled);
281
282	return 0;
283}
284
285/* RTC layer */
286static const struct rtc_class_ops mxc_rtc_ops = {
287	.read_time		= mxc_rtc_read_time,
288	.set_time		= mxc_rtc_set_time,
289	.read_alarm		= mxc_rtc_read_alarm,
290	.set_alarm		= mxc_rtc_set_alarm,
291	.alarm_irq_enable	= mxc_rtc_alarm_irq_enable,
292};
293
294static int mxc_rtc_probe(struct platform_device *pdev)
295{
 
296	struct rtc_device *rtc;
297	struct rtc_plat_data *pdata = NULL;
298	u32 reg;
299	unsigned long rate;
300	int ret;
 
301
302	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
303	if (!pdata)
304		return -ENOMEM;
305
306	pdata->devtype = (uintptr_t)of_device_get_match_data(&pdev->dev);
 
 
 
 
307
308	pdata->ioaddr = devm_platform_ioremap_resource(pdev, 0);
 
309	if (IS_ERR(pdata->ioaddr))
310		return PTR_ERR(pdata->ioaddr);
311
312	rtc = devm_rtc_allocate_device(&pdev->dev);
313	if (IS_ERR(rtc))
314		return PTR_ERR(rtc);
315
316	pdata->rtc = rtc;
317	rtc->ops = &mxc_rtc_ops;
318	if (is_imx1_rtc(pdata)) {
319		struct rtc_time tm;
320
321		/* 9bit days + hours minutes seconds */
322		rtc->range_max = (1 << 9) * 86400 - 1;
323
324		/*
325		 * Set the start date as beginning of the current year. This can
326		 * be overridden using device tree.
327		 */
328		rtc_time64_to_tm(ktime_get_real_seconds(), &tm);
329		rtc->start_secs =  mktime64(tm.tm_year, 1, 1, 0, 0, 0);
330		rtc->set_start_time = true;
331	} else {
332		/* 16bit days + hours minutes seconds */
333		rtc->range_max = (1 << 16) * 86400ULL - 1;
334	}
335
336	pdata->clk_ipg = devm_clk_get_enabled(&pdev->dev, "ipg");
337	if (IS_ERR(pdata->clk_ipg)) {
338		dev_err(&pdev->dev, "unable to get ipg clock!\n");
339		return PTR_ERR(pdata->clk_ipg);
340	}
341
342	pdata->clk_ref = devm_clk_get_enabled(&pdev->dev, "ref");
 
 
 
 
343	if (IS_ERR(pdata->clk_ref)) {
344		dev_err(&pdev->dev, "unable to get ref clock!\n");
345		return PTR_ERR(pdata->clk_ref);
 
346	}
347
 
 
 
 
348	rate = clk_get_rate(pdata->clk_ref);
349
350	if (rate == 32768)
351		reg = RTC_INPUT_CLK_32768HZ;
352	else if (rate == 32000)
353		reg = RTC_INPUT_CLK_32000HZ;
354	else if (rate == 38400)
355		reg = RTC_INPUT_CLK_38400HZ;
356	else {
357		dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate);
358		return -EINVAL;
 
359	}
360
361	reg |= RTC_ENABLE_BIT;
362	writew(reg, (pdata->ioaddr + RTC_RTCCTL));
363	if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
364		dev_err(&pdev->dev, "hardware module can't be enabled!\n");
365		return -EIO;
 
366	}
367
368	platform_set_drvdata(pdev, pdata);
369
370	/* Configure and enable the RTC */
371	pdata->irq = platform_get_irq(pdev, 0);
372
373	if (pdata->irq >= 0 &&
374	    devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt,
375			     IRQF_SHARED, pdev->name, pdev) < 0) {
376		dev_warn(&pdev->dev, "interrupt not available.\n");
377		pdata->irq = -1;
378	}
379
380	if (pdata->irq >= 0) {
381		device_init_wakeup(&pdev->dev, 1);
382		ret = dev_pm_set_wake_irq(&pdev->dev, pdata->irq);
383		if (ret)
384			dev_err(&pdev->dev, "failed to enable irq wake\n");
 
 
 
385	}
386
387	ret = devm_rtc_register_device(rtc);
 
 
 
 
 
 
 
388
389	return ret;
390}
391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
392static struct platform_driver mxc_rtc_driver = {
393	.driver = {
394		   .name	= "mxc_rtc",
395		   .of_match_table = imx_rtc_dt_ids,
 
396	},
 
397	.probe = mxc_rtc_probe,
 
398};
399
400module_platform_driver(mxc_rtc_driver)
401
402MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
403MODULE_DESCRIPTION("RTC driver for Freescale MXC");
404MODULE_LICENSE("GPL");
405
v4.17
  1/*
  2 * Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
  3 *
  4 * The code contained herein is licensed under the GNU General Public
  5 * License. You may obtain a copy of the GNU General Public License
  6 * Version 2 or later at the following locations:
  7 *
  8 * http://www.opensource.org/licenses/gpl-license.html
  9 * http://www.gnu.org/copyleft/gpl.html
 10 */
 11
 12#include <linux/io.h>
 13#include <linux/rtc.h>
 14#include <linux/module.h>
 15#include <linux/slab.h>
 16#include <linux/interrupt.h>
 17#include <linux/platform_device.h>
 
 18#include <linux/clk.h>
 19#include <linux/of.h>
 20#include <linux/of_device.h>
 21
 22#define RTC_INPUT_CLK_32768HZ	(0x00 << 5)
 23#define RTC_INPUT_CLK_32000HZ	(0x01 << 5)
 24#define RTC_INPUT_CLK_38400HZ	(0x02 << 5)
 25
 26#define RTC_SW_BIT      (1 << 0)
 27#define RTC_ALM_BIT     (1 << 2)
 28#define RTC_1HZ_BIT     (1 << 4)
 29#define RTC_2HZ_BIT     (1 << 7)
 30#define RTC_SAM0_BIT    (1 << 8)
 31#define RTC_SAM1_BIT    (1 << 9)
 32#define RTC_SAM2_BIT    (1 << 10)
 33#define RTC_SAM3_BIT    (1 << 11)
 34#define RTC_SAM4_BIT    (1 << 12)
 35#define RTC_SAM5_BIT    (1 << 13)
 36#define RTC_SAM6_BIT    (1 << 14)
 37#define RTC_SAM7_BIT    (1 << 15)
 38#define PIT_ALL_ON      (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
 39			 RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
 40			 RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
 41
 42#define RTC_ENABLE_BIT  (1 << 7)
 43
 44#define MAX_PIE_NUM     9
 45#define MAX_PIE_FREQ    512
 46
 47#define MXC_RTC_TIME	0
 48#define MXC_RTC_ALARM	1
 49
 50#define RTC_HOURMIN	0x00	/*  32bit rtc hour/min counter reg */
 51#define RTC_SECOND	0x04	/*  32bit rtc seconds counter reg */
 52#define RTC_ALRM_HM	0x08	/*  32bit rtc alarm hour/min reg */
 53#define RTC_ALRM_SEC	0x0C	/*  32bit rtc alarm seconds reg */
 54#define RTC_RTCCTL	0x10	/*  32bit rtc control reg */
 55#define RTC_RTCISR	0x14	/*  32bit rtc interrupt status reg */
 56#define RTC_RTCIENR	0x18	/*  32bit rtc interrupt enable reg */
 57#define RTC_STPWCH	0x1C	/*  32bit rtc stopwatch min reg */
 58#define RTC_DAYR	0x20	/*  32bit rtc days counter reg */
 59#define RTC_DAYALARM	0x24	/*  32bit rtc day alarm reg */
 60#define RTC_TEST1	0x28	/*  32bit rtc test reg 1 */
 61#define RTC_TEST2	0x2C	/*  32bit rtc test reg 2 */
 62#define RTC_TEST3	0x30	/*  32bit rtc test reg 3 */
 63
 64enum imx_rtc_type {
 65	IMX1_RTC,
 66	IMX21_RTC,
 67};
 68
 69struct rtc_plat_data {
 70	struct rtc_device *rtc;
 71	void __iomem *ioaddr;
 72	int irq;
 73	struct clk *clk_ref;
 74	struct clk *clk_ipg;
 75	struct rtc_time g_rtc_alarm;
 76	enum imx_rtc_type devtype;
 77};
 78
 79static const struct platform_device_id imx_rtc_devtype[] = {
 80	{
 81		.name = "imx1-rtc",
 82		.driver_data = IMX1_RTC,
 83	}, {
 84		.name = "imx21-rtc",
 85		.driver_data = IMX21_RTC,
 86	}, {
 87		/* sentinel */
 88	}
 89};
 90MODULE_DEVICE_TABLE(platform, imx_rtc_devtype);
 91
 92#ifdef CONFIG_OF
 93static const struct of_device_id imx_rtc_dt_ids[] = {
 94	{ .compatible = "fsl,imx1-rtc", .data = (const void *)IMX1_RTC },
 95	{ .compatible = "fsl,imx21-rtc", .data = (const void *)IMX21_RTC },
 96	{}
 97};
 98MODULE_DEVICE_TABLE(of, imx_rtc_dt_ids);
 99#endif
100
101static inline int is_imx1_rtc(struct rtc_plat_data *data)
102{
103	return data->devtype == IMX1_RTC;
104}
105
106/*
107 * This function is used to obtain the RTC time or the alarm value in
108 * second.
109 */
110static time64_t get_alarm_or_time(struct device *dev, int time_alarm)
111{
112	struct platform_device *pdev = to_platform_device(dev);
113	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
114	void __iomem *ioaddr = pdata->ioaddr;
115	u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0;
116
117	switch (time_alarm) {
118	case MXC_RTC_TIME:
119		day = readw(ioaddr + RTC_DAYR);
120		hr_min = readw(ioaddr + RTC_HOURMIN);
121		sec = readw(ioaddr + RTC_SECOND);
122		break;
123	case MXC_RTC_ALARM:
124		day = readw(ioaddr + RTC_DAYALARM);
125		hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff;
126		sec = readw(ioaddr + RTC_ALRM_SEC);
127		break;
128	}
129
130	hr = hr_min >> 8;
131	min = hr_min & 0xff;
132
133	return ((((time64_t)day * 24 + hr) * 60) + min) * 60 + sec;
134}
135
136/*
137 * This function sets the RTC alarm value or the time value.
138 */
139static void set_alarm_or_time(struct device *dev, int time_alarm, time64_t time)
140{
141	u32 tod, day, hr, min, sec, temp;
142	struct platform_device *pdev = to_platform_device(dev);
143	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
144	void __iomem *ioaddr = pdata->ioaddr;
145
146	day = div_s64_rem(time, 86400, &tod);
147
148	/* time is within a day now */
149	hr = tod / 3600;
150	tod -= hr * 3600;
151
152	/* time is within an hour now */
153	min = tod / 60;
154	sec = tod - min * 60;
155
156	temp = (hr << 8) + min;
157
158	switch (time_alarm) {
159	case MXC_RTC_TIME:
160		writew(day, ioaddr + RTC_DAYR);
161		writew(sec, ioaddr + RTC_SECOND);
162		writew(temp, ioaddr + RTC_HOURMIN);
163		break;
164	case MXC_RTC_ALARM:
165		writew(day, ioaddr + RTC_DAYALARM);
166		writew(sec, ioaddr + RTC_ALRM_SEC);
167		writew(temp, ioaddr + RTC_ALRM_HM);
168		break;
169	}
170}
171
172/*
173 * This function updates the RTC alarm registers and then clears all the
174 * interrupt status bits.
175 */
176static void rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
177{
178	time64_t time;
179	struct platform_device *pdev = to_platform_device(dev);
180	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
181	void __iomem *ioaddr = pdata->ioaddr;
182
183	time = rtc_tm_to_time64(alrm);
184
185	/* clear all the interrupt status bits */
186	writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
187	set_alarm_or_time(dev, MXC_RTC_ALARM, time);
188}
189
190static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit,
191				unsigned int enabled)
192{
193	struct platform_device *pdev = to_platform_device(dev);
194	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
195	void __iomem *ioaddr = pdata->ioaddr;
196	u32 reg;
 
197
198	spin_lock_irq(&pdata->rtc->irq_lock);
199	reg = readw(ioaddr + RTC_RTCIENR);
200
201	if (enabled)
202		reg |= bit;
203	else
204		reg &= ~bit;
205
206	writew(reg, ioaddr + RTC_RTCIENR);
207	spin_unlock_irq(&pdata->rtc->irq_lock);
208}
209
210/* This function is the RTC interrupt service routine. */
211static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
212{
213	struct platform_device *pdev = dev_id;
214	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
215	void __iomem *ioaddr = pdata->ioaddr;
216	unsigned long flags;
217	u32 status;
218	u32 events = 0;
219
220	spin_lock_irqsave(&pdata->rtc->irq_lock, flags);
221	status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
222	/* clear interrupt sources */
223	writew(status, ioaddr + RTC_RTCISR);
224
225	/* update irq data & counter */
226	if (status & RTC_ALM_BIT) {
227		events |= (RTC_AF | RTC_IRQF);
228		/* RTC alarm should be one-shot */
229		mxc_rtc_irq_enable(&pdev->dev, RTC_ALM_BIT, 0);
230	}
231
232	if (status & PIT_ALL_ON)
233		events |= (RTC_PF | RTC_IRQF);
234
235	rtc_update_irq(pdata->rtc, 1, events);
236	spin_unlock_irqrestore(&pdata->rtc->irq_lock, flags);
237
238	return IRQ_HANDLED;
239}
240
241static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
242{
243	mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled);
244	return 0;
245}
246
247/*
248 * This function reads the current RTC time into tm in Gregorian date.
249 */
250static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
251{
252	time64_t val;
253
254	/* Avoid roll-over from reading the different registers */
255	do {
256		val = get_alarm_or_time(dev, MXC_RTC_TIME);
257	} while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
258
259	rtc_time64_to_tm(val, tm);
260
261	return 0;
262}
263
264/*
265 * This function sets the internal RTC time based on tm in Gregorian date.
266 */
267static int mxc_rtc_set_mmss(struct device *dev, time64_t time)
268{
269	struct platform_device *pdev = to_platform_device(dev);
270	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
271
272	/*
273	 * TTC_DAYR register is 9-bit in MX1 SoC, save time and day of year only
274	 */
275	if (is_imx1_rtc(pdata)) {
276		struct rtc_time tm;
277
278		rtc_time64_to_tm(time, &tm);
279		tm.tm_year = 70;
280		time = rtc_tm_to_time64(&tm);
281	}
282
283	/* Avoid roll-over from reading the different registers */
284	do {
285		set_alarm_or_time(dev, MXC_RTC_TIME, time);
286	} while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
287
288	return 0;
289}
290
291/*
292 * This function reads the current alarm value into the passed in 'alrm'
293 * argument. It updates the alrm's pending field value based on the whether
294 * an alarm interrupt occurs or not.
295 */
296static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
297{
298	struct platform_device *pdev = to_platform_device(dev);
299	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
300	void __iomem *ioaddr = pdata->ioaddr;
301
302	rtc_time64_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
303	alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0;
304
305	return 0;
306}
307
308/*
309 * This function sets the RTC alarm based on passed in alrm.
310 */
311static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
312{
313	struct platform_device *pdev = to_platform_device(dev);
314	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
315
316	rtc_update_alarm(dev, &alrm->time);
317
318	memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
319	mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled);
320
321	return 0;
322}
323
324/* RTC layer */
325static const struct rtc_class_ops mxc_rtc_ops = {
326	.read_time		= mxc_rtc_read_time,
327	.set_mmss64		= mxc_rtc_set_mmss,
328	.read_alarm		= mxc_rtc_read_alarm,
329	.set_alarm		= mxc_rtc_set_alarm,
330	.alarm_irq_enable	= mxc_rtc_alarm_irq_enable,
331};
332
333static int mxc_rtc_probe(struct platform_device *pdev)
334{
335	struct resource *res;
336	struct rtc_device *rtc;
337	struct rtc_plat_data *pdata = NULL;
338	u32 reg;
339	unsigned long rate;
340	int ret;
341	const struct of_device_id *of_id;
342
343	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
344	if (!pdata)
345		return -ENOMEM;
346
347	of_id = of_match_device(imx_rtc_dt_ids, &pdev->dev);
348	if (of_id)
349		pdata->devtype = (enum imx_rtc_type)of_id->data;
350	else
351		pdata->devtype = pdev->id_entry->driver_data;
352
353	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
354	pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
355	if (IS_ERR(pdata->ioaddr))
356		return PTR_ERR(pdata->ioaddr);
357
358	pdata->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
359	if (IS_ERR(pdata->clk_ipg)) {
360		dev_err(&pdev->dev, "unable to get ipg clock!\n");
361		return PTR_ERR(pdata->clk_ipg);
362	}
363
364	ret = clk_prepare_enable(pdata->clk_ipg);
365	if (ret)
366		return ret;
367
368	pdata->clk_ref = devm_clk_get(&pdev->dev, "ref");
369	if (IS_ERR(pdata->clk_ref)) {
370		dev_err(&pdev->dev, "unable to get ref clock!\n");
371		ret = PTR_ERR(pdata->clk_ref);
372		goto exit_put_clk_ipg;
373	}
374
375	ret = clk_prepare_enable(pdata->clk_ref);
376	if (ret)
377		goto exit_put_clk_ipg;
378
379	rate = clk_get_rate(pdata->clk_ref);
380
381	if (rate == 32768)
382		reg = RTC_INPUT_CLK_32768HZ;
383	else if (rate == 32000)
384		reg = RTC_INPUT_CLK_32000HZ;
385	else if (rate == 38400)
386		reg = RTC_INPUT_CLK_38400HZ;
387	else {
388		dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate);
389		ret = -EINVAL;
390		goto exit_put_clk_ref;
391	}
392
393	reg |= RTC_ENABLE_BIT;
394	writew(reg, (pdata->ioaddr + RTC_RTCCTL));
395	if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
396		dev_err(&pdev->dev, "hardware module can't be enabled!\n");
397		ret = -EIO;
398		goto exit_put_clk_ref;
399	}
400
401	platform_set_drvdata(pdev, pdata);
402
403	/* Configure and enable the RTC */
404	pdata->irq = platform_get_irq(pdev, 0);
405
406	if (pdata->irq >= 0 &&
407	    devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt,
408			     IRQF_SHARED, pdev->name, pdev) < 0) {
409		dev_warn(&pdev->dev, "interrupt not available.\n");
410		pdata->irq = -1;
411	}
412
413	if (pdata->irq >= 0)
414		device_init_wakeup(&pdev->dev, 1);
415
416	rtc = devm_rtc_device_register(&pdev->dev, pdev->name, &mxc_rtc_ops,
417				  THIS_MODULE);
418	if (IS_ERR(rtc)) {
419		ret = PTR_ERR(rtc);
420		goto exit_put_clk_ref;
421	}
422
423	pdata->rtc = rtc;
424
425	return 0;
426
427exit_put_clk_ref:
428	clk_disable_unprepare(pdata->clk_ref);
429exit_put_clk_ipg:
430	clk_disable_unprepare(pdata->clk_ipg);
431
432	return ret;
433}
434
435static int mxc_rtc_remove(struct platform_device *pdev)
436{
437	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
438
439	clk_disable_unprepare(pdata->clk_ref);
440	clk_disable_unprepare(pdata->clk_ipg);
441
442	return 0;
443}
444
445#ifdef CONFIG_PM_SLEEP
446static int mxc_rtc_suspend(struct device *dev)
447{
448	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
449
450	if (device_may_wakeup(dev))
451		enable_irq_wake(pdata->irq);
452
453	return 0;
454}
455
456static int mxc_rtc_resume(struct device *dev)
457{
458	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
459
460	if (device_may_wakeup(dev))
461		disable_irq_wake(pdata->irq);
462
463	return 0;
464}
465#endif
466
467static SIMPLE_DEV_PM_OPS(mxc_rtc_pm_ops, mxc_rtc_suspend, mxc_rtc_resume);
468
469static struct platform_driver mxc_rtc_driver = {
470	.driver = {
471		   .name	= "mxc_rtc",
472		   .of_match_table = of_match_ptr(imx_rtc_dt_ids),
473		   .pm		= &mxc_rtc_pm_ops,
474	},
475	.id_table = imx_rtc_devtype,
476	.probe = mxc_rtc_probe,
477	.remove = mxc_rtc_remove,
478};
479
480module_platform_driver(mxc_rtc_driver)
481
482MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
483MODULE_DESCRIPTION("RTC driver for Freescale MXC");
484MODULE_LICENSE("GPL");
485