Loading...
1// SPDX-License-Identifier: GPL-2.0+
2//
3// Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
4
5#include <linux/io.h>
6#include <linux/rtc.h>
7#include <linux/module.h>
8#include <linux/slab.h>
9#include <linux/interrupt.h>
10#include <linux/platform_device.h>
11#include <linux/pm_wakeirq.h>
12#include <linux/clk.h>
13#include <linux/of.h>
14#include <linux/of_device.h>
15
16#define RTC_INPUT_CLK_32768HZ (0x00 << 5)
17#define RTC_INPUT_CLK_32000HZ (0x01 << 5)
18#define RTC_INPUT_CLK_38400HZ (0x02 << 5)
19
20#define RTC_SW_BIT (1 << 0)
21#define RTC_ALM_BIT (1 << 2)
22#define RTC_1HZ_BIT (1 << 4)
23#define RTC_2HZ_BIT (1 << 7)
24#define RTC_SAM0_BIT (1 << 8)
25#define RTC_SAM1_BIT (1 << 9)
26#define RTC_SAM2_BIT (1 << 10)
27#define RTC_SAM3_BIT (1 << 11)
28#define RTC_SAM4_BIT (1 << 12)
29#define RTC_SAM5_BIT (1 << 13)
30#define RTC_SAM6_BIT (1 << 14)
31#define RTC_SAM7_BIT (1 << 15)
32#define PIT_ALL_ON (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
33 RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
34 RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
35
36#define RTC_ENABLE_BIT (1 << 7)
37
38#define MAX_PIE_NUM 9
39#define MAX_PIE_FREQ 512
40
41#define MXC_RTC_TIME 0
42#define MXC_RTC_ALARM 1
43
44#define RTC_HOURMIN 0x00 /* 32bit rtc hour/min counter reg */
45#define RTC_SECOND 0x04 /* 32bit rtc seconds counter reg */
46#define RTC_ALRM_HM 0x08 /* 32bit rtc alarm hour/min reg */
47#define RTC_ALRM_SEC 0x0C /* 32bit rtc alarm seconds reg */
48#define RTC_RTCCTL 0x10 /* 32bit rtc control reg */
49#define RTC_RTCISR 0x14 /* 32bit rtc interrupt status reg */
50#define RTC_RTCIENR 0x18 /* 32bit rtc interrupt enable reg */
51#define RTC_STPWCH 0x1C /* 32bit rtc stopwatch min reg */
52#define RTC_DAYR 0x20 /* 32bit rtc days counter reg */
53#define RTC_DAYALARM 0x24 /* 32bit rtc day alarm reg */
54#define RTC_TEST1 0x28 /* 32bit rtc test reg 1 */
55#define RTC_TEST2 0x2C /* 32bit rtc test reg 2 */
56#define RTC_TEST3 0x30 /* 32bit rtc test reg 3 */
57
58enum imx_rtc_type {
59 IMX1_RTC,
60 IMX21_RTC,
61};
62
63struct rtc_plat_data {
64 struct rtc_device *rtc;
65 void __iomem *ioaddr;
66 int irq;
67 struct clk *clk_ref;
68 struct clk *clk_ipg;
69 struct rtc_time g_rtc_alarm;
70 enum imx_rtc_type devtype;
71};
72
73static const struct of_device_id imx_rtc_dt_ids[] = {
74 { .compatible = "fsl,imx1-rtc", .data = (const void *)IMX1_RTC },
75 { .compatible = "fsl,imx21-rtc", .data = (const void *)IMX21_RTC },
76 {}
77};
78MODULE_DEVICE_TABLE(of, imx_rtc_dt_ids);
79
80static inline int is_imx1_rtc(struct rtc_plat_data *data)
81{
82 return data->devtype == IMX1_RTC;
83}
84
85/*
86 * This function is used to obtain the RTC time or the alarm value in
87 * second.
88 */
89static time64_t get_alarm_or_time(struct device *dev, int time_alarm)
90{
91 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
92 void __iomem *ioaddr = pdata->ioaddr;
93 u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0;
94
95 switch (time_alarm) {
96 case MXC_RTC_TIME:
97 day = readw(ioaddr + RTC_DAYR);
98 hr_min = readw(ioaddr + RTC_HOURMIN);
99 sec = readw(ioaddr + RTC_SECOND);
100 break;
101 case MXC_RTC_ALARM:
102 day = readw(ioaddr + RTC_DAYALARM);
103 hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff;
104 sec = readw(ioaddr + RTC_ALRM_SEC);
105 break;
106 }
107
108 hr = hr_min >> 8;
109 min = hr_min & 0xff;
110
111 return ((((time64_t)day * 24 + hr) * 60) + min) * 60 + sec;
112}
113
114/*
115 * This function sets the RTC alarm value or the time value.
116 */
117static void set_alarm_or_time(struct device *dev, int time_alarm, time64_t time)
118{
119 u32 tod, day, hr, min, sec, temp;
120 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
121 void __iomem *ioaddr = pdata->ioaddr;
122
123 day = div_s64_rem(time, 86400, &tod);
124
125 /* time is within a day now */
126 hr = tod / 3600;
127 tod -= hr * 3600;
128
129 /* time is within an hour now */
130 min = tod / 60;
131 sec = tod - min * 60;
132
133 temp = (hr << 8) + min;
134
135 switch (time_alarm) {
136 case MXC_RTC_TIME:
137 writew(day, ioaddr + RTC_DAYR);
138 writew(sec, ioaddr + RTC_SECOND);
139 writew(temp, ioaddr + RTC_HOURMIN);
140 break;
141 case MXC_RTC_ALARM:
142 writew(day, ioaddr + RTC_DAYALARM);
143 writew(sec, ioaddr + RTC_ALRM_SEC);
144 writew(temp, ioaddr + RTC_ALRM_HM);
145 break;
146 }
147}
148
149/*
150 * This function updates the RTC alarm registers and then clears all the
151 * interrupt status bits.
152 */
153static void rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
154{
155 time64_t time;
156 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
157 void __iomem *ioaddr = pdata->ioaddr;
158
159 time = rtc_tm_to_time64(alrm);
160
161 /* clear all the interrupt status bits */
162 writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
163 set_alarm_or_time(dev, MXC_RTC_ALARM, time);
164}
165
166static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit,
167 unsigned int enabled)
168{
169 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
170 void __iomem *ioaddr = pdata->ioaddr;
171 u32 reg;
172 unsigned long flags;
173
174 spin_lock_irqsave(&pdata->rtc->irq_lock, flags);
175 reg = readw(ioaddr + RTC_RTCIENR);
176
177 if (enabled)
178 reg |= bit;
179 else
180 reg &= ~bit;
181
182 writew(reg, ioaddr + RTC_RTCIENR);
183 spin_unlock_irqrestore(&pdata->rtc->irq_lock, flags);
184}
185
186/* This function is the RTC interrupt service routine. */
187static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
188{
189 struct platform_device *pdev = dev_id;
190 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
191 void __iomem *ioaddr = pdata->ioaddr;
192 u32 status;
193 u32 events = 0;
194
195 spin_lock(&pdata->rtc->irq_lock);
196 status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
197 /* clear interrupt sources */
198 writew(status, ioaddr + RTC_RTCISR);
199
200 /* update irq data & counter */
201 if (status & RTC_ALM_BIT) {
202 events |= (RTC_AF | RTC_IRQF);
203 /* RTC alarm should be one-shot */
204 mxc_rtc_irq_enable(&pdev->dev, RTC_ALM_BIT, 0);
205 }
206
207 if (status & PIT_ALL_ON)
208 events |= (RTC_PF | RTC_IRQF);
209
210 rtc_update_irq(pdata->rtc, 1, events);
211 spin_unlock(&pdata->rtc->irq_lock);
212
213 return IRQ_HANDLED;
214}
215
216static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
217{
218 mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled);
219 return 0;
220}
221
222/*
223 * This function reads the current RTC time into tm in Gregorian date.
224 */
225static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
226{
227 time64_t val;
228
229 /* Avoid roll-over from reading the different registers */
230 do {
231 val = get_alarm_or_time(dev, MXC_RTC_TIME);
232 } while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
233
234 rtc_time64_to_tm(val, tm);
235
236 return 0;
237}
238
239/*
240 * This function sets the internal RTC time based on tm in Gregorian date.
241 */
242static int mxc_rtc_set_time(struct device *dev, struct rtc_time *tm)
243{
244 time64_t time = rtc_tm_to_time64(tm);
245
246 /* Avoid roll-over from reading the different registers */
247 do {
248 set_alarm_or_time(dev, MXC_RTC_TIME, time);
249 } while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
250
251 return 0;
252}
253
254/*
255 * This function reads the current alarm value into the passed in 'alrm'
256 * argument. It updates the alrm's pending field value based on the whether
257 * an alarm interrupt occurs or not.
258 */
259static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
260{
261 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
262 void __iomem *ioaddr = pdata->ioaddr;
263
264 rtc_time64_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
265 alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0;
266
267 return 0;
268}
269
270/*
271 * This function sets the RTC alarm based on passed in alrm.
272 */
273static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
274{
275 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
276
277 rtc_update_alarm(dev, &alrm->time);
278
279 memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
280 mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled);
281
282 return 0;
283}
284
285/* RTC layer */
286static const struct rtc_class_ops mxc_rtc_ops = {
287 .read_time = mxc_rtc_read_time,
288 .set_time = mxc_rtc_set_time,
289 .read_alarm = mxc_rtc_read_alarm,
290 .set_alarm = mxc_rtc_set_alarm,
291 .alarm_irq_enable = mxc_rtc_alarm_irq_enable,
292};
293
294static int mxc_rtc_probe(struct platform_device *pdev)
295{
296 struct rtc_device *rtc;
297 struct rtc_plat_data *pdata = NULL;
298 u32 reg;
299 unsigned long rate;
300 int ret;
301
302 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
303 if (!pdata)
304 return -ENOMEM;
305
306 pdata->devtype = (uintptr_t)of_device_get_match_data(&pdev->dev);
307
308 pdata->ioaddr = devm_platform_ioremap_resource(pdev, 0);
309 if (IS_ERR(pdata->ioaddr))
310 return PTR_ERR(pdata->ioaddr);
311
312 rtc = devm_rtc_allocate_device(&pdev->dev);
313 if (IS_ERR(rtc))
314 return PTR_ERR(rtc);
315
316 pdata->rtc = rtc;
317 rtc->ops = &mxc_rtc_ops;
318 if (is_imx1_rtc(pdata)) {
319 struct rtc_time tm;
320
321 /* 9bit days + hours minutes seconds */
322 rtc->range_max = (1 << 9) * 86400 - 1;
323
324 /*
325 * Set the start date as beginning of the current year. This can
326 * be overridden using device tree.
327 */
328 rtc_time64_to_tm(ktime_get_real_seconds(), &tm);
329 rtc->start_secs = mktime64(tm.tm_year, 1, 1, 0, 0, 0);
330 rtc->set_start_time = true;
331 } else {
332 /* 16bit days + hours minutes seconds */
333 rtc->range_max = (1 << 16) * 86400ULL - 1;
334 }
335
336 pdata->clk_ipg = devm_clk_get_enabled(&pdev->dev, "ipg");
337 if (IS_ERR(pdata->clk_ipg)) {
338 dev_err(&pdev->dev, "unable to get ipg clock!\n");
339 return PTR_ERR(pdata->clk_ipg);
340 }
341
342 pdata->clk_ref = devm_clk_get_enabled(&pdev->dev, "ref");
343 if (IS_ERR(pdata->clk_ref)) {
344 dev_err(&pdev->dev, "unable to get ref clock!\n");
345 return PTR_ERR(pdata->clk_ref);
346 }
347
348 rate = clk_get_rate(pdata->clk_ref);
349
350 if (rate == 32768)
351 reg = RTC_INPUT_CLK_32768HZ;
352 else if (rate == 32000)
353 reg = RTC_INPUT_CLK_32000HZ;
354 else if (rate == 38400)
355 reg = RTC_INPUT_CLK_38400HZ;
356 else {
357 dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate);
358 return -EINVAL;
359 }
360
361 reg |= RTC_ENABLE_BIT;
362 writew(reg, (pdata->ioaddr + RTC_RTCCTL));
363 if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
364 dev_err(&pdev->dev, "hardware module can't be enabled!\n");
365 return -EIO;
366 }
367
368 platform_set_drvdata(pdev, pdata);
369
370 /* Configure and enable the RTC */
371 pdata->irq = platform_get_irq(pdev, 0);
372
373 if (pdata->irq >= 0 &&
374 devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt,
375 IRQF_SHARED, pdev->name, pdev) < 0) {
376 dev_warn(&pdev->dev, "interrupt not available.\n");
377 pdata->irq = -1;
378 }
379
380 if (pdata->irq >= 0) {
381 device_init_wakeup(&pdev->dev, 1);
382 ret = dev_pm_set_wake_irq(&pdev->dev, pdata->irq);
383 if (ret)
384 dev_err(&pdev->dev, "failed to enable irq wake\n");
385 }
386
387 ret = devm_rtc_register_device(rtc);
388
389 return ret;
390}
391
392static struct platform_driver mxc_rtc_driver = {
393 .driver = {
394 .name = "mxc_rtc",
395 .of_match_table = imx_rtc_dt_ids,
396 },
397 .probe = mxc_rtc_probe,
398};
399
400module_platform_driver(mxc_rtc_driver)
401
402MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
403MODULE_DESCRIPTION("RTC driver for Freescale MXC");
404MODULE_LICENSE("GPL");
405
1/*
2 * Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
3 *
4 * The code contained herein is licensed under the GNU General Public
5 * License. You may obtain a copy of the GNU General Public License
6 * Version 2 or later at the following locations:
7 *
8 * http://www.opensource.org/licenses/gpl-license.html
9 * http://www.gnu.org/copyleft/gpl.html
10 */
11
12#include <linux/io.h>
13#include <linux/rtc.h>
14#include <linux/module.h>
15#include <linux/slab.h>
16#include <linux/interrupt.h>
17#include <linux/platform_device.h>
18#include <linux/clk.h>
19#include <linux/of.h>
20#include <linux/of_device.h>
21
22#define RTC_INPUT_CLK_32768HZ (0x00 << 5)
23#define RTC_INPUT_CLK_32000HZ (0x01 << 5)
24#define RTC_INPUT_CLK_38400HZ (0x02 << 5)
25
26#define RTC_SW_BIT (1 << 0)
27#define RTC_ALM_BIT (1 << 2)
28#define RTC_1HZ_BIT (1 << 4)
29#define RTC_2HZ_BIT (1 << 7)
30#define RTC_SAM0_BIT (1 << 8)
31#define RTC_SAM1_BIT (1 << 9)
32#define RTC_SAM2_BIT (1 << 10)
33#define RTC_SAM3_BIT (1 << 11)
34#define RTC_SAM4_BIT (1 << 12)
35#define RTC_SAM5_BIT (1 << 13)
36#define RTC_SAM6_BIT (1 << 14)
37#define RTC_SAM7_BIT (1 << 15)
38#define PIT_ALL_ON (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
39 RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
40 RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
41
42#define RTC_ENABLE_BIT (1 << 7)
43
44#define MAX_PIE_NUM 9
45#define MAX_PIE_FREQ 512
46
47#define MXC_RTC_TIME 0
48#define MXC_RTC_ALARM 1
49
50#define RTC_HOURMIN 0x00 /* 32bit rtc hour/min counter reg */
51#define RTC_SECOND 0x04 /* 32bit rtc seconds counter reg */
52#define RTC_ALRM_HM 0x08 /* 32bit rtc alarm hour/min reg */
53#define RTC_ALRM_SEC 0x0C /* 32bit rtc alarm seconds reg */
54#define RTC_RTCCTL 0x10 /* 32bit rtc control reg */
55#define RTC_RTCISR 0x14 /* 32bit rtc interrupt status reg */
56#define RTC_RTCIENR 0x18 /* 32bit rtc interrupt enable reg */
57#define RTC_STPWCH 0x1C /* 32bit rtc stopwatch min reg */
58#define RTC_DAYR 0x20 /* 32bit rtc days counter reg */
59#define RTC_DAYALARM 0x24 /* 32bit rtc day alarm reg */
60#define RTC_TEST1 0x28 /* 32bit rtc test reg 1 */
61#define RTC_TEST2 0x2C /* 32bit rtc test reg 2 */
62#define RTC_TEST3 0x30 /* 32bit rtc test reg 3 */
63
64enum imx_rtc_type {
65 IMX1_RTC,
66 IMX21_RTC,
67};
68
69struct rtc_plat_data {
70 struct rtc_device *rtc;
71 void __iomem *ioaddr;
72 int irq;
73 struct clk *clk_ref;
74 struct clk *clk_ipg;
75 struct rtc_time g_rtc_alarm;
76 enum imx_rtc_type devtype;
77};
78
79static const struct platform_device_id imx_rtc_devtype[] = {
80 {
81 .name = "imx1-rtc",
82 .driver_data = IMX1_RTC,
83 }, {
84 .name = "imx21-rtc",
85 .driver_data = IMX21_RTC,
86 }, {
87 /* sentinel */
88 }
89};
90MODULE_DEVICE_TABLE(platform, imx_rtc_devtype);
91
92#ifdef CONFIG_OF
93static const struct of_device_id imx_rtc_dt_ids[] = {
94 { .compatible = "fsl,imx1-rtc", .data = (const void *)IMX1_RTC },
95 { .compatible = "fsl,imx21-rtc", .data = (const void *)IMX21_RTC },
96 {}
97};
98MODULE_DEVICE_TABLE(of, imx_rtc_dt_ids);
99#endif
100
101static inline int is_imx1_rtc(struct rtc_plat_data *data)
102{
103 return data->devtype == IMX1_RTC;
104}
105
106/*
107 * This function is used to obtain the RTC time or the alarm value in
108 * second.
109 */
110static time64_t get_alarm_or_time(struct device *dev, int time_alarm)
111{
112 struct platform_device *pdev = to_platform_device(dev);
113 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
114 void __iomem *ioaddr = pdata->ioaddr;
115 u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0;
116
117 switch (time_alarm) {
118 case MXC_RTC_TIME:
119 day = readw(ioaddr + RTC_DAYR);
120 hr_min = readw(ioaddr + RTC_HOURMIN);
121 sec = readw(ioaddr + RTC_SECOND);
122 break;
123 case MXC_RTC_ALARM:
124 day = readw(ioaddr + RTC_DAYALARM);
125 hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff;
126 sec = readw(ioaddr + RTC_ALRM_SEC);
127 break;
128 }
129
130 hr = hr_min >> 8;
131 min = hr_min & 0xff;
132
133 return ((((time64_t)day * 24 + hr) * 60) + min) * 60 + sec;
134}
135
136/*
137 * This function sets the RTC alarm value or the time value.
138 */
139static void set_alarm_or_time(struct device *dev, int time_alarm, time64_t time)
140{
141 u32 tod, day, hr, min, sec, temp;
142 struct platform_device *pdev = to_platform_device(dev);
143 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
144 void __iomem *ioaddr = pdata->ioaddr;
145
146 day = div_s64_rem(time, 86400, &tod);
147
148 /* time is within a day now */
149 hr = tod / 3600;
150 tod -= hr * 3600;
151
152 /* time is within an hour now */
153 min = tod / 60;
154 sec = tod - min * 60;
155
156 temp = (hr << 8) + min;
157
158 switch (time_alarm) {
159 case MXC_RTC_TIME:
160 writew(day, ioaddr + RTC_DAYR);
161 writew(sec, ioaddr + RTC_SECOND);
162 writew(temp, ioaddr + RTC_HOURMIN);
163 break;
164 case MXC_RTC_ALARM:
165 writew(day, ioaddr + RTC_DAYALARM);
166 writew(sec, ioaddr + RTC_ALRM_SEC);
167 writew(temp, ioaddr + RTC_ALRM_HM);
168 break;
169 }
170}
171
172/*
173 * This function updates the RTC alarm registers and then clears all the
174 * interrupt status bits.
175 */
176static void rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
177{
178 time64_t time;
179 struct platform_device *pdev = to_platform_device(dev);
180 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
181 void __iomem *ioaddr = pdata->ioaddr;
182
183 time = rtc_tm_to_time64(alrm);
184
185 /* clear all the interrupt status bits */
186 writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
187 set_alarm_or_time(dev, MXC_RTC_ALARM, time);
188}
189
190static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit,
191 unsigned int enabled)
192{
193 struct platform_device *pdev = to_platform_device(dev);
194 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
195 void __iomem *ioaddr = pdata->ioaddr;
196 u32 reg;
197
198 spin_lock_irq(&pdata->rtc->irq_lock);
199 reg = readw(ioaddr + RTC_RTCIENR);
200
201 if (enabled)
202 reg |= bit;
203 else
204 reg &= ~bit;
205
206 writew(reg, ioaddr + RTC_RTCIENR);
207 spin_unlock_irq(&pdata->rtc->irq_lock);
208}
209
210/* This function is the RTC interrupt service routine. */
211static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
212{
213 struct platform_device *pdev = dev_id;
214 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
215 void __iomem *ioaddr = pdata->ioaddr;
216 unsigned long flags;
217 u32 status;
218 u32 events = 0;
219
220 spin_lock_irqsave(&pdata->rtc->irq_lock, flags);
221 status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
222 /* clear interrupt sources */
223 writew(status, ioaddr + RTC_RTCISR);
224
225 /* update irq data & counter */
226 if (status & RTC_ALM_BIT) {
227 events |= (RTC_AF | RTC_IRQF);
228 /* RTC alarm should be one-shot */
229 mxc_rtc_irq_enable(&pdev->dev, RTC_ALM_BIT, 0);
230 }
231
232 if (status & PIT_ALL_ON)
233 events |= (RTC_PF | RTC_IRQF);
234
235 rtc_update_irq(pdata->rtc, 1, events);
236 spin_unlock_irqrestore(&pdata->rtc->irq_lock, flags);
237
238 return IRQ_HANDLED;
239}
240
241static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
242{
243 mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled);
244 return 0;
245}
246
247/*
248 * This function reads the current RTC time into tm in Gregorian date.
249 */
250static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
251{
252 time64_t val;
253
254 /* Avoid roll-over from reading the different registers */
255 do {
256 val = get_alarm_or_time(dev, MXC_RTC_TIME);
257 } while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
258
259 rtc_time64_to_tm(val, tm);
260
261 return 0;
262}
263
264/*
265 * This function sets the internal RTC time based on tm in Gregorian date.
266 */
267static int mxc_rtc_set_mmss(struct device *dev, time64_t time)
268{
269 struct platform_device *pdev = to_platform_device(dev);
270 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
271
272 /*
273 * TTC_DAYR register is 9-bit in MX1 SoC, save time and day of year only
274 */
275 if (is_imx1_rtc(pdata)) {
276 struct rtc_time tm;
277
278 rtc_time64_to_tm(time, &tm);
279 tm.tm_year = 70;
280 time = rtc_tm_to_time64(&tm);
281 }
282
283 /* Avoid roll-over from reading the different registers */
284 do {
285 set_alarm_or_time(dev, MXC_RTC_TIME, time);
286 } while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
287
288 return 0;
289}
290
291/*
292 * This function reads the current alarm value into the passed in 'alrm'
293 * argument. It updates the alrm's pending field value based on the whether
294 * an alarm interrupt occurs or not.
295 */
296static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
297{
298 struct platform_device *pdev = to_platform_device(dev);
299 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
300 void __iomem *ioaddr = pdata->ioaddr;
301
302 rtc_time64_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
303 alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0;
304
305 return 0;
306}
307
308/*
309 * This function sets the RTC alarm based on passed in alrm.
310 */
311static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
312{
313 struct platform_device *pdev = to_platform_device(dev);
314 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
315
316 rtc_update_alarm(dev, &alrm->time);
317
318 memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
319 mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled);
320
321 return 0;
322}
323
324/* RTC layer */
325static const struct rtc_class_ops mxc_rtc_ops = {
326 .read_time = mxc_rtc_read_time,
327 .set_mmss64 = mxc_rtc_set_mmss,
328 .read_alarm = mxc_rtc_read_alarm,
329 .set_alarm = mxc_rtc_set_alarm,
330 .alarm_irq_enable = mxc_rtc_alarm_irq_enable,
331};
332
333static int mxc_rtc_probe(struct platform_device *pdev)
334{
335 struct resource *res;
336 struct rtc_device *rtc;
337 struct rtc_plat_data *pdata = NULL;
338 u32 reg;
339 unsigned long rate;
340 int ret;
341 const struct of_device_id *of_id;
342
343 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
344 if (!pdata)
345 return -ENOMEM;
346
347 of_id = of_match_device(imx_rtc_dt_ids, &pdev->dev);
348 if (of_id)
349 pdata->devtype = (enum imx_rtc_type)of_id->data;
350 else
351 pdata->devtype = pdev->id_entry->driver_data;
352
353 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
354 pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
355 if (IS_ERR(pdata->ioaddr))
356 return PTR_ERR(pdata->ioaddr);
357
358 pdata->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
359 if (IS_ERR(pdata->clk_ipg)) {
360 dev_err(&pdev->dev, "unable to get ipg clock!\n");
361 return PTR_ERR(pdata->clk_ipg);
362 }
363
364 ret = clk_prepare_enable(pdata->clk_ipg);
365 if (ret)
366 return ret;
367
368 pdata->clk_ref = devm_clk_get(&pdev->dev, "ref");
369 if (IS_ERR(pdata->clk_ref)) {
370 dev_err(&pdev->dev, "unable to get ref clock!\n");
371 ret = PTR_ERR(pdata->clk_ref);
372 goto exit_put_clk_ipg;
373 }
374
375 ret = clk_prepare_enable(pdata->clk_ref);
376 if (ret)
377 goto exit_put_clk_ipg;
378
379 rate = clk_get_rate(pdata->clk_ref);
380
381 if (rate == 32768)
382 reg = RTC_INPUT_CLK_32768HZ;
383 else if (rate == 32000)
384 reg = RTC_INPUT_CLK_32000HZ;
385 else if (rate == 38400)
386 reg = RTC_INPUT_CLK_38400HZ;
387 else {
388 dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate);
389 ret = -EINVAL;
390 goto exit_put_clk_ref;
391 }
392
393 reg |= RTC_ENABLE_BIT;
394 writew(reg, (pdata->ioaddr + RTC_RTCCTL));
395 if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
396 dev_err(&pdev->dev, "hardware module can't be enabled!\n");
397 ret = -EIO;
398 goto exit_put_clk_ref;
399 }
400
401 platform_set_drvdata(pdev, pdata);
402
403 /* Configure and enable the RTC */
404 pdata->irq = platform_get_irq(pdev, 0);
405
406 if (pdata->irq >= 0 &&
407 devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt,
408 IRQF_SHARED, pdev->name, pdev) < 0) {
409 dev_warn(&pdev->dev, "interrupt not available.\n");
410 pdata->irq = -1;
411 }
412
413 if (pdata->irq >= 0)
414 device_init_wakeup(&pdev->dev, 1);
415
416 rtc = devm_rtc_device_register(&pdev->dev, pdev->name, &mxc_rtc_ops,
417 THIS_MODULE);
418 if (IS_ERR(rtc)) {
419 ret = PTR_ERR(rtc);
420 goto exit_put_clk_ref;
421 }
422
423 pdata->rtc = rtc;
424
425 return 0;
426
427exit_put_clk_ref:
428 clk_disable_unprepare(pdata->clk_ref);
429exit_put_clk_ipg:
430 clk_disable_unprepare(pdata->clk_ipg);
431
432 return ret;
433}
434
435static int mxc_rtc_remove(struct platform_device *pdev)
436{
437 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
438
439 clk_disable_unprepare(pdata->clk_ref);
440 clk_disable_unprepare(pdata->clk_ipg);
441
442 return 0;
443}
444
445#ifdef CONFIG_PM_SLEEP
446static int mxc_rtc_suspend(struct device *dev)
447{
448 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
449
450 if (device_may_wakeup(dev))
451 enable_irq_wake(pdata->irq);
452
453 return 0;
454}
455
456static int mxc_rtc_resume(struct device *dev)
457{
458 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
459
460 if (device_may_wakeup(dev))
461 disable_irq_wake(pdata->irq);
462
463 return 0;
464}
465#endif
466
467static SIMPLE_DEV_PM_OPS(mxc_rtc_pm_ops, mxc_rtc_suspend, mxc_rtc_resume);
468
469static struct platform_driver mxc_rtc_driver = {
470 .driver = {
471 .name = "mxc_rtc",
472 .of_match_table = of_match_ptr(imx_rtc_dt_ids),
473 .pm = &mxc_rtc_pm_ops,
474 },
475 .id_table = imx_rtc_devtype,
476 .probe = mxc_rtc_probe,
477 .remove = mxc_rtc_remove,
478};
479
480module_platform_driver(mxc_rtc_driver)
481
482MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
483MODULE_DESCRIPTION("RTC driver for Freescale MXC");
484MODULE_LICENSE("GPL");
485