Linux Audio

Check our new training course

Linux BSP upgrade and security maintenance

Need help to get security updates for your Linux BSP?
Loading...
v6.2
   1/*
   2 * Copyright (C) 2011 Red Hat, Inc.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm-btree-internal.h"
   8#include "dm-space-map.h"
   9#include "dm-transaction-manager.h"
  10
  11#include <linux/export.h>
  12#include <linux/device-mapper.h>
  13
  14#define DM_MSG_PREFIX "btree"
  15
  16/*----------------------------------------------------------------
  17 * Array manipulation
  18 *--------------------------------------------------------------*/
  19static void memcpy_disk(void *dest, const void *src, size_t len)
  20	__dm_written_to_disk(src)
  21{
  22	memcpy(dest, src, len);
  23	__dm_unbless_for_disk(src);
  24}
  25
  26static void array_insert(void *base, size_t elt_size, unsigned nr_elts,
  27			 unsigned index, void *elt)
  28	__dm_written_to_disk(elt)
  29{
  30	if (index < nr_elts)
  31		memmove(base + (elt_size * (index + 1)),
  32			base + (elt_size * index),
  33			(nr_elts - index) * elt_size);
  34
  35	memcpy_disk(base + (elt_size * index), elt, elt_size);
  36}
  37
  38/*----------------------------------------------------------------*/
  39
  40/* makes the assumption that no two keys are the same. */
  41static int bsearch(struct btree_node *n, uint64_t key, int want_hi)
  42{
  43	int lo = -1, hi = le32_to_cpu(n->header.nr_entries);
  44
  45	while (hi - lo > 1) {
  46		int mid = lo + ((hi - lo) / 2);
  47		uint64_t mid_key = le64_to_cpu(n->keys[mid]);
  48
  49		if (mid_key == key)
  50			return mid;
  51
  52		if (mid_key < key)
  53			lo = mid;
  54		else
  55			hi = mid;
  56	}
  57
  58	return want_hi ? hi : lo;
  59}
  60
  61int lower_bound(struct btree_node *n, uint64_t key)
  62{
  63	return bsearch(n, key, 0);
  64}
  65
  66static int upper_bound(struct btree_node *n, uint64_t key)
  67{
  68	return bsearch(n, key, 1);
  69}
  70
  71void inc_children(struct dm_transaction_manager *tm, struct btree_node *n,
  72		  struct dm_btree_value_type *vt)
  73{
 
  74	uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
  75
  76	if (le32_to_cpu(n->header.flags) & INTERNAL_NODE)
  77		dm_tm_with_runs(tm, value_ptr(n, 0), nr_entries, dm_tm_inc_range);
  78
  79	else if (vt->inc)
  80		vt->inc(vt->context, value_ptr(n, 0), nr_entries);
 
  81}
  82
  83static int insert_at(size_t value_size, struct btree_node *node, unsigned index,
  84		     uint64_t key, void *value)
  85	__dm_written_to_disk(value)
  86{
  87	uint32_t nr_entries = le32_to_cpu(node->header.nr_entries);
  88	uint32_t max_entries = le32_to_cpu(node->header.max_entries);
  89	__le64 key_le = cpu_to_le64(key);
  90
  91	if (index > nr_entries ||
  92	    index >= max_entries ||
  93	    nr_entries >= max_entries) {
  94		DMERR("too many entries in btree node for insert");
  95		__dm_unbless_for_disk(value);
  96		return -ENOMEM;
  97	}
  98
  99	__dm_bless_for_disk(&key_le);
 100
 101	array_insert(node->keys, sizeof(*node->keys), nr_entries, index, &key_le);
 102	array_insert(value_base(node), value_size, nr_entries, index, value);
 103	node->header.nr_entries = cpu_to_le32(nr_entries + 1);
 104
 105	return 0;
 106}
 107
 108/*----------------------------------------------------------------*/
 109
 110/*
 111 * We want 3n entries (for some n).  This works more nicely for repeated
 112 * insert remove loops than (2n + 1).
 113 */
 114static uint32_t calc_max_entries(size_t value_size, size_t block_size)
 115{
 116	uint32_t total, n;
 117	size_t elt_size = sizeof(uint64_t) + value_size; /* key + value */
 118
 119	block_size -= sizeof(struct node_header);
 120	total = block_size / elt_size;
 121	n = total / 3;		/* rounds down */
 122
 123	return 3 * n;
 124}
 125
 126int dm_btree_empty(struct dm_btree_info *info, dm_block_t *root)
 127{
 128	int r;
 129	struct dm_block *b;
 130	struct btree_node *n;
 131	size_t block_size;
 132	uint32_t max_entries;
 133
 134	r = new_block(info, &b);
 135	if (r < 0)
 136		return r;
 137
 138	block_size = dm_bm_block_size(dm_tm_get_bm(info->tm));
 139	max_entries = calc_max_entries(info->value_type.size, block_size);
 140
 141	n = dm_block_data(b);
 142	memset(n, 0, block_size);
 143	n->header.flags = cpu_to_le32(LEAF_NODE);
 144	n->header.nr_entries = cpu_to_le32(0);
 145	n->header.max_entries = cpu_to_le32(max_entries);
 146	n->header.value_size = cpu_to_le32(info->value_type.size);
 147
 148	*root = dm_block_location(b);
 149	unlock_block(info, b);
 150
 151	return 0;
 152}
 153EXPORT_SYMBOL_GPL(dm_btree_empty);
 154
 155/*----------------------------------------------------------------*/
 156
 157/*
 158 * Deletion uses a recursive algorithm, since we have limited stack space
 159 * we explicitly manage our own stack on the heap.
 160 */
 161#define MAX_SPINE_DEPTH 64
 162struct frame {
 163	struct dm_block *b;
 164	struct btree_node *n;
 165	unsigned level;
 166	unsigned nr_children;
 167	unsigned current_child;
 168};
 169
 170struct del_stack {
 171	struct dm_btree_info *info;
 172	struct dm_transaction_manager *tm;
 173	int top;
 174	struct frame spine[MAX_SPINE_DEPTH];
 175};
 176
 177static int top_frame(struct del_stack *s, struct frame **f)
 178{
 179	if (s->top < 0) {
 180		DMERR("btree deletion stack empty");
 181		return -EINVAL;
 182	}
 183
 184	*f = s->spine + s->top;
 185
 186	return 0;
 187}
 188
 189static int unprocessed_frames(struct del_stack *s)
 190{
 191	return s->top >= 0;
 192}
 193
 194static void prefetch_children(struct del_stack *s, struct frame *f)
 195{
 196	unsigned i;
 197	struct dm_block_manager *bm = dm_tm_get_bm(s->tm);
 198
 199	for (i = 0; i < f->nr_children; i++)
 200		dm_bm_prefetch(bm, value64(f->n, i));
 201}
 202
 203static bool is_internal_level(struct dm_btree_info *info, struct frame *f)
 204{
 205	return f->level < (info->levels - 1);
 206}
 207
 208static int push_frame(struct del_stack *s, dm_block_t b, unsigned level)
 209{
 210	int r;
 211	uint32_t ref_count;
 212
 213	if (s->top >= MAX_SPINE_DEPTH - 1) {
 214		DMERR("btree deletion stack out of memory");
 215		return -ENOMEM;
 216	}
 217
 218	r = dm_tm_ref(s->tm, b, &ref_count);
 219	if (r)
 220		return r;
 221
 222	if (ref_count > 1)
 223		/*
 224		 * This is a shared node, so we can just decrement it's
 225		 * reference counter and leave the children.
 226		 */
 227		dm_tm_dec(s->tm, b);
 228
 229	else {
 230		uint32_t flags;
 231		struct frame *f = s->spine + ++s->top;
 232
 233		r = dm_tm_read_lock(s->tm, b, &btree_node_validator, &f->b);
 234		if (r) {
 235			s->top--;
 236			return r;
 237		}
 238
 239		f->n = dm_block_data(f->b);
 240		f->level = level;
 241		f->nr_children = le32_to_cpu(f->n->header.nr_entries);
 242		f->current_child = 0;
 243
 244		flags = le32_to_cpu(f->n->header.flags);
 245		if (flags & INTERNAL_NODE || is_internal_level(s->info, f))
 246			prefetch_children(s, f);
 247	}
 248
 249	return 0;
 250}
 251
 252static void pop_frame(struct del_stack *s)
 253{
 254	struct frame *f = s->spine + s->top--;
 255
 256	dm_tm_dec(s->tm, dm_block_location(f->b));
 257	dm_tm_unlock(s->tm, f->b);
 258}
 259
 260static void unlock_all_frames(struct del_stack *s)
 261{
 262	struct frame *f;
 263
 264	while (unprocessed_frames(s)) {
 265		f = s->spine + s->top--;
 266		dm_tm_unlock(s->tm, f->b);
 267	}
 268}
 269
 270int dm_btree_del(struct dm_btree_info *info, dm_block_t root)
 271{
 272	int r;
 273	struct del_stack *s;
 274
 275	/*
 276	 * dm_btree_del() is called via an ioctl, as such should be
 277	 * considered an FS op.  We can't recurse back into the FS, so we
 278	 * allocate GFP_NOFS.
 279	 */
 280	s = kmalloc(sizeof(*s), GFP_NOFS);
 281	if (!s)
 282		return -ENOMEM;
 283	s->info = info;
 284	s->tm = info->tm;
 285	s->top = -1;
 286
 287	r = push_frame(s, root, 0);
 288	if (r)
 289		goto out;
 290
 291	while (unprocessed_frames(s)) {
 292		uint32_t flags;
 293		struct frame *f;
 294		dm_block_t b;
 295
 296		r = top_frame(s, &f);
 297		if (r)
 298			goto out;
 299
 300		if (f->current_child >= f->nr_children) {
 301			pop_frame(s);
 302			continue;
 303		}
 304
 305		flags = le32_to_cpu(f->n->header.flags);
 306		if (flags & INTERNAL_NODE) {
 307			b = value64(f->n, f->current_child);
 308			f->current_child++;
 309			r = push_frame(s, b, f->level);
 310			if (r)
 311				goto out;
 312
 313		} else if (is_internal_level(info, f)) {
 314			b = value64(f->n, f->current_child);
 315			f->current_child++;
 316			r = push_frame(s, b, f->level + 1);
 317			if (r)
 318				goto out;
 319
 320		} else {
 321			if (info->value_type.dec)
 322				info->value_type.dec(info->value_type.context,
 323						     value_ptr(f->n, 0), f->nr_children);
 
 
 
 
 324			pop_frame(s);
 325		}
 326	}
 327out:
 328	if (r) {
 329		/* cleanup all frames of del_stack */
 330		unlock_all_frames(s);
 331	}
 332	kfree(s);
 333
 334	return r;
 335}
 336EXPORT_SYMBOL_GPL(dm_btree_del);
 337
 338/*----------------------------------------------------------------*/
 339
 340static int btree_lookup_raw(struct ro_spine *s, dm_block_t block, uint64_t key,
 341			    int (*search_fn)(struct btree_node *, uint64_t),
 342			    uint64_t *result_key, void *v, size_t value_size)
 343{
 344	int i, r;
 345	uint32_t flags, nr_entries;
 346
 347	do {
 348		r = ro_step(s, block);
 349		if (r < 0)
 350			return r;
 351
 352		i = search_fn(ro_node(s), key);
 353
 354		flags = le32_to_cpu(ro_node(s)->header.flags);
 355		nr_entries = le32_to_cpu(ro_node(s)->header.nr_entries);
 356		if (i < 0 || i >= nr_entries)
 357			return -ENODATA;
 358
 359		if (flags & INTERNAL_NODE)
 360			block = value64(ro_node(s), i);
 361
 362	} while (!(flags & LEAF_NODE));
 363
 364	*result_key = le64_to_cpu(ro_node(s)->keys[i]);
 365	if (v)
 366		memcpy(v, value_ptr(ro_node(s), i), value_size);
 367
 368	return 0;
 369}
 370
 371int dm_btree_lookup(struct dm_btree_info *info, dm_block_t root,
 372		    uint64_t *keys, void *value_le)
 373{
 374	unsigned level, last_level = info->levels - 1;
 375	int r = -ENODATA;
 376	uint64_t rkey;
 377	__le64 internal_value_le;
 378	struct ro_spine spine;
 379
 380	init_ro_spine(&spine, info);
 381	for (level = 0; level < info->levels; level++) {
 382		size_t size;
 383		void *value_p;
 384
 385		if (level == last_level) {
 386			value_p = value_le;
 387			size = info->value_type.size;
 388
 389		} else {
 390			value_p = &internal_value_le;
 391			size = sizeof(uint64_t);
 392		}
 393
 394		r = btree_lookup_raw(&spine, root, keys[level],
 395				     lower_bound, &rkey,
 396				     value_p, size);
 397
 398		if (!r) {
 399			if (rkey != keys[level]) {
 400				exit_ro_spine(&spine);
 401				return -ENODATA;
 402			}
 403		} else {
 404			exit_ro_spine(&spine);
 405			return r;
 406		}
 407
 408		root = le64_to_cpu(internal_value_le);
 409	}
 410	exit_ro_spine(&spine);
 411
 412	return r;
 413}
 414EXPORT_SYMBOL_GPL(dm_btree_lookup);
 415
 416static int dm_btree_lookup_next_single(struct dm_btree_info *info, dm_block_t root,
 417				       uint64_t key, uint64_t *rkey, void *value_le)
 418{
 419	int r, i;
 420	uint32_t flags, nr_entries;
 421	struct dm_block *node;
 422	struct btree_node *n;
 423
 424	r = bn_read_lock(info, root, &node);
 425	if (r)
 426		return r;
 427
 428	n = dm_block_data(node);
 429	flags = le32_to_cpu(n->header.flags);
 430	nr_entries = le32_to_cpu(n->header.nr_entries);
 431
 432	if (flags & INTERNAL_NODE) {
 433		i = lower_bound(n, key);
 434		if (i < 0) {
 435			/*
 436			 * avoid early -ENODATA return when all entries are
 437			 * higher than the search @key.
 438			 */
 439			i = 0;
 440		}
 441		if (i >= nr_entries) {
 442			r = -ENODATA;
 443			goto out;
 444		}
 445
 446		r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
 447		if (r == -ENODATA && i < (nr_entries - 1)) {
 448			i++;
 449			r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
 450		}
 451
 452	} else {
 453		i = upper_bound(n, key);
 454		if (i < 0 || i >= nr_entries) {
 455			r = -ENODATA;
 456			goto out;
 457		}
 458
 459		*rkey = le64_to_cpu(n->keys[i]);
 460		memcpy(value_le, value_ptr(n, i), info->value_type.size);
 461	}
 462out:
 463	dm_tm_unlock(info->tm, node);
 464	return r;
 465}
 466
 467int dm_btree_lookup_next(struct dm_btree_info *info, dm_block_t root,
 468			 uint64_t *keys, uint64_t *rkey, void *value_le)
 469{
 470	unsigned level;
 471	int r = -ENODATA;
 472	__le64 internal_value_le;
 473	struct ro_spine spine;
 474
 475	init_ro_spine(&spine, info);
 476	for (level = 0; level < info->levels - 1u; level++) {
 477		r = btree_lookup_raw(&spine, root, keys[level],
 478				     lower_bound, rkey,
 479				     &internal_value_le, sizeof(uint64_t));
 480		if (r)
 481			goto out;
 482
 483		if (*rkey != keys[level]) {
 484			r = -ENODATA;
 485			goto out;
 486		}
 487
 488		root = le64_to_cpu(internal_value_le);
 489	}
 490
 491	r = dm_btree_lookup_next_single(info, root, keys[level], rkey, value_le);
 492out:
 493	exit_ro_spine(&spine);
 494	return r;
 495}
 496
 497EXPORT_SYMBOL_GPL(dm_btree_lookup_next);
 498
 499/*----------------------------------------------------------------*/
 500
 501/*
 502 * Copies entries from one region of a btree node to another.  The regions
 503 * must not overlap.
 504 */
 505static void copy_entries(struct btree_node *dest, unsigned dest_offset,
 506			 struct btree_node *src, unsigned src_offset,
 507			 unsigned count)
 508{
 509	size_t value_size = le32_to_cpu(dest->header.value_size);
 510	memcpy(dest->keys + dest_offset, src->keys + src_offset, count * sizeof(uint64_t));
 511	memcpy(value_ptr(dest, dest_offset), value_ptr(src, src_offset), count * value_size);
 512}
 513
 514/*
 515 * Moves entries from one region fo a btree node to another.  The regions
 516 * may overlap.
 517 */
 518static void move_entries(struct btree_node *dest, unsigned dest_offset,
 519			 struct btree_node *src, unsigned src_offset,
 520			 unsigned count)
 521{
 522	size_t value_size = le32_to_cpu(dest->header.value_size);
 523	memmove(dest->keys + dest_offset, src->keys + src_offset, count * sizeof(uint64_t));
 524	memmove(value_ptr(dest, dest_offset), value_ptr(src, src_offset), count * value_size);
 525}
 526
 527/*
 528 * Erases the first 'count' entries of a btree node, shifting following
 529 * entries down into their place.
 530 */
 531static void shift_down(struct btree_node *n, unsigned count)
 532{
 533	move_entries(n, 0, n, count, le32_to_cpu(n->header.nr_entries) - count);
 534}
 535
 536/*
 537 * Moves entries in a btree node up 'count' places, making space for
 538 * new entries at the start of the node.
 539 */
 540static void shift_up(struct btree_node *n, unsigned count)
 541{
 542	move_entries(n, count, n, 0, le32_to_cpu(n->header.nr_entries));
 543}
 544
 545/*
 546 * Redistributes entries between two btree nodes to make them
 547 * have similar numbers of entries.
 548 */
 549static void redistribute2(struct btree_node *left, struct btree_node *right)
 550{
 551	unsigned nr_left = le32_to_cpu(left->header.nr_entries);
 552	unsigned nr_right = le32_to_cpu(right->header.nr_entries);
 553	unsigned total = nr_left + nr_right;
 554	unsigned target_left = total / 2;
 555	unsigned target_right = total - target_left;
 556
 557	if (nr_left < target_left) {
 558		unsigned delta = target_left - nr_left;
 559		copy_entries(left, nr_left, right, 0, delta);
 560		shift_down(right, delta);
 561	} else if (nr_left > target_left) {
 562		unsigned delta = nr_left - target_left;
 563		if (nr_right)
 564			shift_up(right, delta);
 565		copy_entries(right, 0, left, target_left, delta);
 566	}
 567
 568	left->header.nr_entries = cpu_to_le32(target_left);
 569	right->header.nr_entries = cpu_to_le32(target_right);
 570}
 571
 572/*
 573 * Redistribute entries between three nodes.  Assumes the central
 574 * node is empty.
 575 */
 576static void redistribute3(struct btree_node *left, struct btree_node *center,
 577			  struct btree_node *right)
 578{
 579	unsigned nr_left = le32_to_cpu(left->header.nr_entries);
 580	unsigned nr_center = le32_to_cpu(center->header.nr_entries);
 581	unsigned nr_right = le32_to_cpu(right->header.nr_entries);
 582	unsigned total, target_left, target_center, target_right;
 583
 584	BUG_ON(nr_center);
 585
 586	total = nr_left + nr_right;
 587	target_left = total / 3;
 588	target_center = (total - target_left) / 2;
 589	target_right = (total - target_left - target_center);
 590
 591	if (nr_left < target_left) {
 592		unsigned left_short = target_left - nr_left;
 593		copy_entries(left, nr_left, right, 0, left_short);
 594		copy_entries(center, 0, right, left_short, target_center);
 595		shift_down(right, nr_right - target_right);
 596
 597	} else if (nr_left < (target_left + target_center)) {
 598		unsigned left_to_center = nr_left - target_left;
 599		copy_entries(center, 0, left, target_left, left_to_center);
 600		copy_entries(center, left_to_center, right, 0, target_center - left_to_center);
 601		shift_down(right, nr_right - target_right);
 602
 603	} else {
 604		unsigned right_short = target_right - nr_right;
 605		shift_up(right, right_short);
 606		copy_entries(right, 0, left, nr_left - right_short, right_short);
 607		copy_entries(center, 0, left, target_left, nr_left - target_left);
 608	}
 609
 610	left->header.nr_entries = cpu_to_le32(target_left);
 611	center->header.nr_entries = cpu_to_le32(target_center);
 612	right->header.nr_entries = cpu_to_le32(target_right);
 613}
 614
 615/*
 616 * Splits a node by creating a sibling node and shifting half the nodes
 617 * contents across.  Assumes there is a parent node, and it has room for
 618 * another child.
 619 *
 620 * Before:
 621 *	  +--------+
 622 *	  | Parent |
 623 *	  +--------+
 624 *	     |
 625 *	     v
 626 *	+----------+
 627 *	| A ++++++ |
 628 *	+----------+
 629 *
 630 *
 631 * After:
 632 *		+--------+
 633 *		| Parent |
 634 *		+--------+
 635 *		  |	|
 636 *		  v	+------+
 637 *	    +---------+	       |
 638 *	    | A* +++  |	       v
 639 *	    +---------+	  +-------+
 640 *			  | B +++ |
 641 *			  +-------+
 642 *
 643 * Where A* is a shadow of A.
 644 */
 645static int split_one_into_two(struct shadow_spine *s, unsigned parent_index,
 646			      struct dm_btree_value_type *vt, uint64_t key)
 647{
 648	int r;
 
 
 649	struct dm_block *left, *right, *parent;
 650	struct btree_node *ln, *rn, *pn;
 651	__le64 location;
 652
 653	left = shadow_current(s);
 654
 655	r = new_block(s->info, &right);
 656	if (r < 0)
 657		return r;
 658
 659	ln = dm_block_data(left);
 660	rn = dm_block_data(right);
 661
 
 
 
 
 
 662	rn->header.flags = ln->header.flags;
 663	rn->header.nr_entries = cpu_to_le32(0);
 664	rn->header.max_entries = ln->header.max_entries;
 665	rn->header.value_size = ln->header.value_size;
 666	redistribute2(ln, rn);
 667
 668	/* patch up the parent */
 
 
 
 
 
 
 
 669	parent = shadow_parent(s);
 
 670	pn = dm_block_data(parent);
 
 
 
 
 671
 672	location = cpu_to_le64(dm_block_location(right));
 673	__dm_bless_for_disk(&location);
 
 674	r = insert_at(sizeof(__le64), pn, parent_index + 1,
 675		      le64_to_cpu(rn->keys[0]), &location);
 676	if (r) {
 677		unlock_block(s->info, right);
 678		return r;
 679	}
 680
 681	/* patch up the spine */
 682	if (key < le64_to_cpu(rn->keys[0])) {
 683		unlock_block(s->info, right);
 684		s->nodes[1] = left;
 685	} else {
 686		unlock_block(s->info, left);
 687		s->nodes[1] = right;
 688	}
 689
 690	return 0;
 691}
 692
 693/*
 694 * We often need to modify a sibling node.  This function shadows a particular
 695 * child of the given parent node.  Making sure to update the parent to point
 696 * to the new shadow.
 697 */
 698static int shadow_child(struct dm_btree_info *info, struct dm_btree_value_type *vt,
 699			struct btree_node *parent, unsigned index,
 700			struct dm_block **result)
 701{
 702	int r, inc;
 703	dm_block_t root;
 704	struct btree_node *node;
 705
 706	root = value64(parent, index);
 707
 708	r = dm_tm_shadow_block(info->tm, root, &btree_node_validator,
 709			       result, &inc);
 710	if (r)
 711		return r;
 712
 713	node = dm_block_data(*result);
 714
 715	if (inc)
 716		inc_children(info->tm, node, vt);
 717
 718	*((__le64 *) value_ptr(parent, index)) =
 719		cpu_to_le64(dm_block_location(*result));
 720
 721	return 0;
 722}
 723
 724/*
 725 * Splits two nodes into three.  This is more work, but results in fuller
 726 * nodes, so saves metadata space.
 727 */
 728static int split_two_into_three(struct shadow_spine *s, unsigned parent_index,
 729                                struct dm_btree_value_type *vt, uint64_t key)
 730{
 731	int r;
 732	unsigned middle_index;
 733	struct dm_block *left, *middle, *right, *parent;
 734	struct btree_node *ln, *rn, *mn, *pn;
 735	__le64 location;
 736
 737	parent = shadow_parent(s);
 738	pn = dm_block_data(parent);
 739
 740	if (parent_index == 0) {
 741		middle_index = 1;
 742		left = shadow_current(s);
 743		r = shadow_child(s->info, vt, pn, parent_index + 1, &right);
 744		if (r)
 745			return r;
 746	} else {
 747		middle_index = parent_index;
 748		right = shadow_current(s);
 749		r = shadow_child(s->info, vt, pn, parent_index - 1, &left);
 750		if (r)
 751			return r;
 752	}
 753
 754	r = new_block(s->info, &middle);
 755	if (r < 0)
 756		return r;
 757
 758	ln = dm_block_data(left);
 759	mn = dm_block_data(middle);
 760	rn = dm_block_data(right);
 761
 762	mn->header.nr_entries = cpu_to_le32(0);
 763	mn->header.flags = ln->header.flags;
 764	mn->header.max_entries = ln->header.max_entries;
 765	mn->header.value_size = ln->header.value_size;
 766
 767	redistribute3(ln, mn, rn);
 768
 769	/* patch up the parent */
 770	pn->keys[middle_index] = rn->keys[0];
 771	location = cpu_to_le64(dm_block_location(middle));
 772	__dm_bless_for_disk(&location);
 773	r = insert_at(sizeof(__le64), pn, middle_index,
 774		      le64_to_cpu(mn->keys[0]), &location);
 775	if (r) {
 776		if (shadow_current(s) != left)
 777			unlock_block(s->info, left);
 778
 779		unlock_block(s->info, middle);
 780
 781		if (shadow_current(s) != right)
 782			unlock_block(s->info, right);
 783
 784	        return r;
 785	}
 786
 787
 788	/* patch up the spine */
 789	if (key < le64_to_cpu(mn->keys[0])) {
 790		unlock_block(s->info, middle);
 791		unlock_block(s->info, right);
 792		s->nodes[1] = left;
 793	} else if (key < le64_to_cpu(rn->keys[0])) {
 794		unlock_block(s->info, left);
 795		unlock_block(s->info, right);
 796		s->nodes[1] = middle;
 797	} else {
 798		unlock_block(s->info, left);
 799		unlock_block(s->info, middle);
 800		s->nodes[1] = right;
 801	}
 802
 803	return 0;
 804}
 805
 806/*----------------------------------------------------------------*/
 807
 808/*
 809 * Splits a node by creating two new children beneath the given node.
 810 *
 811 * Before:
 812 *	  +----------+
 813 *	  | A ++++++ |
 814 *	  +----------+
 815 *
 816 *
 817 * After:
 818 *	+------------+
 819 *	| A (shadow) |
 820 *	+------------+
 821 *	    |	|
 822 *   +------+	+----+
 823 *   |		     |
 824 *   v		     v
 825 * +-------+	 +-------+
 826 * | B +++ |	 | C +++ |
 827 * +-------+	 +-------+
 828 */
 829static int btree_split_beneath(struct shadow_spine *s, uint64_t key)
 830{
 831	int r;
 832	size_t size;
 833	unsigned nr_left, nr_right;
 834	struct dm_block *left, *right, *new_parent;
 835	struct btree_node *pn, *ln, *rn;
 836	__le64 val;
 837
 838	new_parent = shadow_current(s);
 839
 840	pn = dm_block_data(new_parent);
 841	size = le32_to_cpu(pn->header.flags) & INTERNAL_NODE ?
 842		sizeof(__le64) : s->info->value_type.size;
 843
 844	/* create & init the left block */
 845	r = new_block(s->info, &left);
 846	if (r < 0)
 847		return r;
 848
 849	ln = dm_block_data(left);
 850	nr_left = le32_to_cpu(pn->header.nr_entries) / 2;
 851
 852	ln->header.flags = pn->header.flags;
 853	ln->header.nr_entries = cpu_to_le32(nr_left);
 854	ln->header.max_entries = pn->header.max_entries;
 855	ln->header.value_size = pn->header.value_size;
 856	memcpy(ln->keys, pn->keys, nr_left * sizeof(pn->keys[0]));
 857	memcpy(value_ptr(ln, 0), value_ptr(pn, 0), nr_left * size);
 858
 859	/* create & init the right block */
 860	r = new_block(s->info, &right);
 861	if (r < 0) {
 862		unlock_block(s->info, left);
 863		return r;
 864	}
 865
 
 
 866	rn = dm_block_data(right);
 
 
 867	nr_right = le32_to_cpu(pn->header.nr_entries) - nr_left;
 868
 
 
 
 
 
 869	rn->header.flags = pn->header.flags;
 870	rn->header.nr_entries = cpu_to_le32(nr_right);
 871	rn->header.max_entries = pn->header.max_entries;
 872	rn->header.value_size = pn->header.value_size;
 
 
 873	memcpy(rn->keys, pn->keys + nr_left, nr_right * sizeof(pn->keys[0]));
 
 
 
 
 874	memcpy(value_ptr(rn, 0), value_ptr(pn, nr_left),
 875	       nr_right * size);
 876
 877	/* new_parent should just point to l and r now */
 878	pn->header.flags = cpu_to_le32(INTERNAL_NODE);
 879	pn->header.nr_entries = cpu_to_le32(2);
 880	pn->header.max_entries = cpu_to_le32(
 881		calc_max_entries(sizeof(__le64),
 882				 dm_bm_block_size(
 883					 dm_tm_get_bm(s->info->tm))));
 884	pn->header.value_size = cpu_to_le32(sizeof(__le64));
 885
 886	val = cpu_to_le64(dm_block_location(left));
 887	__dm_bless_for_disk(&val);
 888	pn->keys[0] = ln->keys[0];
 889	memcpy_disk(value_ptr(pn, 0), &val, sizeof(__le64));
 890
 891	val = cpu_to_le64(dm_block_location(right));
 892	__dm_bless_for_disk(&val);
 893	pn->keys[1] = rn->keys[0];
 894	memcpy_disk(value_ptr(pn, 1), &val, sizeof(__le64));
 895
 896	unlock_block(s->info, left);
 897	unlock_block(s->info, right);
 898	return 0;
 899}
 900
 901/*----------------------------------------------------------------*/
 902
 903/*
 904 * Redistributes a node's entries with its left sibling.
 905 */
 906static int rebalance_left(struct shadow_spine *s, struct dm_btree_value_type *vt,
 907			  unsigned parent_index, uint64_t key)
 908{
 909	int r;
 910	struct dm_block *sib;
 911	struct btree_node *left, *right, *parent = dm_block_data(shadow_parent(s));
 912
 913	r = shadow_child(s->info, vt, parent, parent_index - 1, &sib);
 914	if (r)
 915		return r;
 916
 917	left = dm_block_data(sib);
 918	right = dm_block_data(shadow_current(s));
 919	redistribute2(left, right);
 920	*key_ptr(parent, parent_index) = right->keys[0];
 921
 922	if (key < le64_to_cpu(right->keys[0])) {
 923		unlock_block(s->info, s->nodes[1]);
 924		s->nodes[1] = sib;
 925	} else {
 926		unlock_block(s->info, sib);
 927	}
 928
 929	return 0;
 930}
 931
 932/*
 933 * Redistributes a nodes entries with its right sibling.
 934 */
 935static int rebalance_right(struct shadow_spine *s, struct dm_btree_value_type *vt,
 936			   unsigned parent_index, uint64_t key)
 937{
 938	int r;
 939	struct dm_block *sib;
 940	struct btree_node *left, *right, *parent = dm_block_data(shadow_parent(s));
 941
 942	r = shadow_child(s->info, vt, parent, parent_index + 1, &sib);
 943	if (r)
 944		return r;
 945
 946	left = dm_block_data(shadow_current(s));
 947	right = dm_block_data(sib);
 948	redistribute2(left, right);
 949	*key_ptr(parent, parent_index + 1) = right->keys[0];
 950
 951	if (key < le64_to_cpu(right->keys[0])) {
 952		unlock_block(s->info, sib);
 953	} else {
 954		unlock_block(s->info, s->nodes[1]);
 955		s->nodes[1] = sib;
 956	}
 957
 958	return 0;
 959}
 960
 961/*
 962 * Returns the number of spare entries in a node.
 963 */
 964static int get_node_free_space(struct dm_btree_info *info, dm_block_t b, unsigned *space)
 965{
 966	int r;
 967	unsigned nr_entries;
 968	struct dm_block *block;
 969	struct btree_node *node;
 970
 971	r = bn_read_lock(info, b, &block);
 972	if (r)
 973		return r;
 974
 975	node = dm_block_data(block);
 976	nr_entries = le32_to_cpu(node->header.nr_entries);
 977	*space = le32_to_cpu(node->header.max_entries) - nr_entries;
 978
 979	unlock_block(info, block);
 980	return 0;
 981}
 982
 983/*
 984 * Make space in a node, either by moving some entries to a sibling,
 985 * or creating a new sibling node.  SPACE_THRESHOLD defines the minimum
 986 * number of free entries that must be in the sibling to make the move
 987 * worth while.  If the siblings are shared (eg, part of a snapshot),
 988 * then they are not touched, since this break sharing and so consume
 989 * more space than we save.
 990 */
 991#define SPACE_THRESHOLD 8
 992static int rebalance_or_split(struct shadow_spine *s, struct dm_btree_value_type *vt,
 993			      unsigned parent_index, uint64_t key)
 994{
 995	int r;
 996	struct btree_node *parent = dm_block_data(shadow_parent(s));
 997	unsigned nr_parent = le32_to_cpu(parent->header.nr_entries);
 998	unsigned free_space;
 999	int left_shared = 0, right_shared = 0;
1000
1001	/* Should we move entries to the left sibling? */
1002	if (parent_index > 0) {
1003		dm_block_t left_b = value64(parent, parent_index - 1);
1004		r = dm_tm_block_is_shared(s->info->tm, left_b, &left_shared);
1005		if (r)
1006			return r;
1007
1008		if (!left_shared) {
1009			r = get_node_free_space(s->info, left_b, &free_space);
1010			if (r)
1011				return r;
1012
1013			if (free_space >= SPACE_THRESHOLD)
1014				return rebalance_left(s, vt, parent_index, key);
1015		}
1016	}
1017
1018	/* Should we move entries to the right sibling? */
1019	if (parent_index < (nr_parent - 1)) {
1020		dm_block_t right_b = value64(parent, parent_index + 1);
1021		r = dm_tm_block_is_shared(s->info->tm, right_b, &right_shared);
1022		if (r)
1023			return r;
1024
1025		if (!right_shared) {
1026			r = get_node_free_space(s->info, right_b, &free_space);
1027			if (r)
1028				return r;
1029
1030			if (free_space >= SPACE_THRESHOLD)
1031				return rebalance_right(s, vt, parent_index, key);
1032		}
1033	}
1034
1035	/*
1036	 * We need to split the node, normally we split two nodes
1037	 * into three.	But when inserting a sequence that is either
1038	 * monotonically increasing or decreasing it's better to split
1039	 * a single node into two.
1040	 */
1041	if (left_shared || right_shared || (nr_parent <= 2) ||
1042	    (parent_index == 0) || (parent_index + 1 == nr_parent)) {
1043		return split_one_into_two(s, parent_index, vt, key);
1044	} else {
1045		return split_two_into_three(s, parent_index, vt, key);
1046	}
1047}
1048
1049/*
1050 * Does the node contain a particular key?
1051 */
1052static bool contains_key(struct btree_node *node, uint64_t key)
1053{
1054	int i = lower_bound(node, key);
1055
1056	if (i >= 0 && le64_to_cpu(node->keys[i]) == key)
1057		return true;
1058
1059	return false;
1060}
1061
1062/*
1063 * In general we preemptively make sure there's a free entry in every
1064 * node on the spine when doing an insert.  But we can avoid that with
1065 * leaf nodes if we know it's an overwrite.
1066 */
1067static bool has_space_for_insert(struct btree_node *node, uint64_t key)
1068{
1069	if (node->header.nr_entries == node->header.max_entries) {
1070		if (le32_to_cpu(node->header.flags) & LEAF_NODE) {
1071			/* we don't need space if it's an overwrite */
1072			return contains_key(node, key);
1073		}
1074
1075		return false;
1076	}
1077
1078	return true;
1079}
1080
1081static int btree_insert_raw(struct shadow_spine *s, dm_block_t root,
1082			    struct dm_btree_value_type *vt,
1083			    uint64_t key, unsigned *index)
1084{
1085	int r, i = *index, top = 1;
1086	struct btree_node *node;
1087
1088	for (;;) {
1089		r = shadow_step(s, root, vt);
1090		if (r < 0)
1091			return r;
1092
1093		node = dm_block_data(shadow_current(s));
1094
1095		/*
1096		 * We have to patch up the parent node, ugly, but I don't
1097		 * see a way to do this automatically as part of the spine
1098		 * op.
1099		 */
1100		if (shadow_has_parent(s) && i >= 0) { /* FIXME: second clause unness. */
1101			__le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
1102
1103			__dm_bless_for_disk(&location);
1104			memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i),
1105				    &location, sizeof(__le64));
1106		}
1107
1108		node = dm_block_data(shadow_current(s));
1109
1110		if (!has_space_for_insert(node, key)) {
1111			if (top)
1112				r = btree_split_beneath(s, key);
1113			else
1114				r = rebalance_or_split(s, vt, i, key);
1115
1116			if (r < 0)
1117				return r;
1118
1119			/* making space can cause the current node to change */
1120			node = dm_block_data(shadow_current(s));
1121		}
1122
 
 
1123		i = lower_bound(node, key);
1124
1125		if (le32_to_cpu(node->header.flags) & LEAF_NODE)
1126			break;
1127
1128		if (i < 0) {
1129			/* change the bounds on the lowest key */
1130			node->keys[0] = cpu_to_le64(key);
1131			i = 0;
1132		}
1133
1134		root = value64(node, i);
1135		top = 0;
1136	}
1137
1138	if (i < 0 || le64_to_cpu(node->keys[i]) != key)
1139		i++;
1140
1141	*index = i;
1142	return 0;
1143}
1144
1145static int __btree_get_overwrite_leaf(struct shadow_spine *s, dm_block_t root,
1146				      uint64_t key, int *index)
1147{
1148	int r, i = -1;
1149	struct btree_node *node;
1150
1151	*index = 0;
1152	for (;;) {
1153		r = shadow_step(s, root, &s->info->value_type);
1154		if (r < 0)
1155			return r;
1156
1157		node = dm_block_data(shadow_current(s));
1158
1159		/*
1160		 * We have to patch up the parent node, ugly, but I don't
1161		 * see a way to do this automatically as part of the spine
1162		 * op.
1163		 */
1164		if (shadow_has_parent(s) && i >= 0) {
1165			__le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
1166
1167			__dm_bless_for_disk(&location);
1168			memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i),
1169				    &location, sizeof(__le64));
1170		}
1171
1172		node = dm_block_data(shadow_current(s));
1173		i = lower_bound(node, key);
1174
1175		BUG_ON(i < 0);
1176		BUG_ON(i >= le32_to_cpu(node->header.nr_entries));
1177
1178		if (le32_to_cpu(node->header.flags) & LEAF_NODE) {
1179			if (key != le64_to_cpu(node->keys[i]))
1180				return -EINVAL;
1181			break;
1182		}
1183
1184		root = value64(node, i);
1185	}
1186
1187	*index = i;
1188	return 0;
1189}
1190
1191int btree_get_overwrite_leaf(struct dm_btree_info *info, dm_block_t root,
1192			     uint64_t key, int *index,
1193			     dm_block_t *new_root, struct dm_block **leaf)
1194{
1195	int r;
1196	struct shadow_spine spine;
1197
1198	BUG_ON(info->levels > 1);
1199	init_shadow_spine(&spine, info);
1200	r = __btree_get_overwrite_leaf(&spine, root, key, index);
1201	if (!r) {
1202		*new_root = shadow_root(&spine);
1203		*leaf = shadow_current(&spine);
1204
1205		/*
1206		 * Decrement the count so exit_shadow_spine() doesn't
1207		 * unlock the leaf.
1208		 */
1209		spine.count--;
1210	}
1211	exit_shadow_spine(&spine);
1212
1213	return r;
1214}
1215
1216static bool need_insert(struct btree_node *node, uint64_t *keys,
1217			unsigned level, unsigned index)
1218{
1219        return ((index >= le32_to_cpu(node->header.nr_entries)) ||
1220		(le64_to_cpu(node->keys[index]) != keys[level]));
1221}
1222
1223static int insert(struct dm_btree_info *info, dm_block_t root,
1224		  uint64_t *keys, void *value, dm_block_t *new_root,
1225		  int *inserted)
1226		  __dm_written_to_disk(value)
1227{
1228	int r;
1229	unsigned level, index = -1, last_level = info->levels - 1;
1230	dm_block_t block = root;
1231	struct shadow_spine spine;
1232	struct btree_node *n;
1233	struct dm_btree_value_type le64_type;
1234
1235	init_le64_type(info->tm, &le64_type);
1236	init_shadow_spine(&spine, info);
1237
1238	for (level = 0; level < (info->levels - 1); level++) {
1239		r = btree_insert_raw(&spine, block, &le64_type, keys[level], &index);
1240		if (r < 0)
1241			goto bad;
1242
1243		n = dm_block_data(shadow_current(&spine));
1244
1245		if (need_insert(n, keys, level, index)) {
1246			dm_block_t new_tree;
1247			__le64 new_le;
1248
1249			r = dm_btree_empty(info, &new_tree);
1250			if (r < 0)
1251				goto bad;
1252
1253			new_le = cpu_to_le64(new_tree);
1254			__dm_bless_for_disk(&new_le);
1255
1256			r = insert_at(sizeof(uint64_t), n, index,
1257				      keys[level], &new_le);
1258			if (r)
1259				goto bad;
1260		}
1261
1262		if (level < last_level)
1263			block = value64(n, index);
1264	}
1265
1266	r = btree_insert_raw(&spine, block, &info->value_type,
1267			     keys[level], &index);
1268	if (r < 0)
1269		goto bad;
1270
1271	n = dm_block_data(shadow_current(&spine));
1272
1273	if (need_insert(n, keys, level, index)) {
1274		if (inserted)
1275			*inserted = 1;
1276
1277		r = insert_at(info->value_type.size, n, index,
1278			      keys[level], value);
1279		if (r)
1280			goto bad_unblessed;
1281	} else {
1282		if (inserted)
1283			*inserted = 0;
1284
1285		if (info->value_type.dec &&
1286		    (!info->value_type.equal ||
1287		     !info->value_type.equal(
1288			     info->value_type.context,
1289			     value_ptr(n, index),
1290			     value))) {
1291			info->value_type.dec(info->value_type.context,
1292					     value_ptr(n, index), 1);
1293		}
1294		memcpy_disk(value_ptr(n, index),
1295			    value, info->value_type.size);
1296	}
1297
1298	*new_root = shadow_root(&spine);
1299	exit_shadow_spine(&spine);
1300
1301	return 0;
1302
1303bad:
1304	__dm_unbless_for_disk(value);
1305bad_unblessed:
1306	exit_shadow_spine(&spine);
1307	return r;
1308}
1309
1310int dm_btree_insert(struct dm_btree_info *info, dm_block_t root,
1311		    uint64_t *keys, void *value, dm_block_t *new_root)
1312		    __dm_written_to_disk(value)
1313{
1314	return insert(info, root, keys, value, new_root, NULL);
1315}
1316EXPORT_SYMBOL_GPL(dm_btree_insert);
1317
1318int dm_btree_insert_notify(struct dm_btree_info *info, dm_block_t root,
1319			   uint64_t *keys, void *value, dm_block_t *new_root,
1320			   int *inserted)
1321			   __dm_written_to_disk(value)
1322{
1323	return insert(info, root, keys, value, new_root, inserted);
1324}
1325EXPORT_SYMBOL_GPL(dm_btree_insert_notify);
1326
1327/*----------------------------------------------------------------*/
1328
1329static int find_key(struct ro_spine *s, dm_block_t block, bool find_highest,
1330		    uint64_t *result_key, dm_block_t *next_block)
1331{
1332	int i, r;
1333	uint32_t flags;
1334
1335	do {
1336		r = ro_step(s, block);
1337		if (r < 0)
1338			return r;
1339
1340		flags = le32_to_cpu(ro_node(s)->header.flags);
1341		i = le32_to_cpu(ro_node(s)->header.nr_entries);
1342		if (!i)
1343			return -ENODATA;
1344		else
1345			i--;
1346
1347		if (find_highest)
1348			*result_key = le64_to_cpu(ro_node(s)->keys[i]);
1349		else
1350			*result_key = le64_to_cpu(ro_node(s)->keys[0]);
1351
1352		if (next_block || flags & INTERNAL_NODE) {
1353			if (find_highest)
1354				block = value64(ro_node(s), i);
1355			else
1356				block = value64(ro_node(s), 0);
1357		}
1358
1359	} while (flags & INTERNAL_NODE);
1360
1361	if (next_block)
1362		*next_block = block;
1363	return 0;
1364}
1365
1366static int dm_btree_find_key(struct dm_btree_info *info, dm_block_t root,
1367			     bool find_highest, uint64_t *result_keys)
1368{
1369	int r = 0, count = 0, level;
1370	struct ro_spine spine;
1371
1372	init_ro_spine(&spine, info);
1373	for (level = 0; level < info->levels; level++) {
1374		r = find_key(&spine, root, find_highest, result_keys + level,
1375			     level == info->levels - 1 ? NULL : &root);
1376		if (r == -ENODATA) {
1377			r = 0;
1378			break;
1379
1380		} else if (r)
1381			break;
1382
1383		count++;
1384	}
1385	exit_ro_spine(&spine);
1386
1387	return r ? r : count;
1388}
1389
1390int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root,
1391			      uint64_t *result_keys)
1392{
1393	return dm_btree_find_key(info, root, true, result_keys);
1394}
1395EXPORT_SYMBOL_GPL(dm_btree_find_highest_key);
1396
1397int dm_btree_find_lowest_key(struct dm_btree_info *info, dm_block_t root,
1398			     uint64_t *result_keys)
1399{
1400	return dm_btree_find_key(info, root, false, result_keys);
1401}
1402EXPORT_SYMBOL_GPL(dm_btree_find_lowest_key);
1403
1404/*----------------------------------------------------------------*/
1405
1406/*
1407 * FIXME: We shouldn't use a recursive algorithm when we have limited stack
1408 * space.  Also this only works for single level trees.
1409 */
1410static int walk_node(struct dm_btree_info *info, dm_block_t block,
1411		     int (*fn)(void *context, uint64_t *keys, void *leaf),
1412		     void *context)
1413{
1414	int r;
1415	unsigned i, nr;
1416	struct dm_block *node;
1417	struct btree_node *n;
1418	uint64_t keys;
1419
1420	r = bn_read_lock(info, block, &node);
1421	if (r)
1422		return r;
1423
1424	n = dm_block_data(node);
1425
1426	nr = le32_to_cpu(n->header.nr_entries);
1427	for (i = 0; i < nr; i++) {
1428		if (le32_to_cpu(n->header.flags) & INTERNAL_NODE) {
1429			r = walk_node(info, value64(n, i), fn, context);
1430			if (r)
1431				goto out;
1432		} else {
1433			keys = le64_to_cpu(*key_ptr(n, i));
1434			r = fn(context, &keys, value_ptr(n, i));
1435			if (r)
1436				goto out;
1437		}
1438	}
1439
1440out:
1441	dm_tm_unlock(info->tm, node);
1442	return r;
1443}
1444
1445int dm_btree_walk(struct dm_btree_info *info, dm_block_t root,
1446		  int (*fn)(void *context, uint64_t *keys, void *leaf),
1447		  void *context)
1448{
1449	BUG_ON(info->levels > 1);
1450	return walk_node(info, root, fn, context);
1451}
1452EXPORT_SYMBOL_GPL(dm_btree_walk);
1453
1454/*----------------------------------------------------------------*/
1455
1456static void prefetch_values(struct dm_btree_cursor *c)
1457{
1458	unsigned i, nr;
1459	__le64 value_le;
1460	struct cursor_node *n = c->nodes + c->depth - 1;
1461	struct btree_node *bn = dm_block_data(n->b);
1462	struct dm_block_manager *bm = dm_tm_get_bm(c->info->tm);
1463
1464	BUG_ON(c->info->value_type.size != sizeof(value_le));
1465
1466	nr = le32_to_cpu(bn->header.nr_entries);
1467	for (i = 0; i < nr; i++) {
1468		memcpy(&value_le, value_ptr(bn, i), sizeof(value_le));
1469		dm_bm_prefetch(bm, le64_to_cpu(value_le));
1470	}
1471}
1472
1473static bool leaf_node(struct dm_btree_cursor *c)
1474{
1475	struct cursor_node *n = c->nodes + c->depth - 1;
1476	struct btree_node *bn = dm_block_data(n->b);
1477
1478	return le32_to_cpu(bn->header.flags) & LEAF_NODE;
1479}
1480
1481static int push_node(struct dm_btree_cursor *c, dm_block_t b)
1482{
1483	int r;
1484	struct cursor_node *n = c->nodes + c->depth;
1485
1486	if (c->depth >= DM_BTREE_CURSOR_MAX_DEPTH - 1) {
1487		DMERR("couldn't push cursor node, stack depth too high");
1488		return -EINVAL;
1489	}
1490
1491	r = bn_read_lock(c->info, b, &n->b);
1492	if (r)
1493		return r;
1494
1495	n->index = 0;
1496	c->depth++;
1497
1498	if (c->prefetch_leaves || !leaf_node(c))
1499		prefetch_values(c);
1500
1501	return 0;
1502}
1503
1504static void pop_node(struct dm_btree_cursor *c)
1505{
1506	c->depth--;
1507	unlock_block(c->info, c->nodes[c->depth].b);
1508}
1509
1510static int inc_or_backtrack(struct dm_btree_cursor *c)
1511{
1512	struct cursor_node *n;
1513	struct btree_node *bn;
1514
1515	for (;;) {
1516		if (!c->depth)
1517			return -ENODATA;
1518
1519		n = c->nodes + c->depth - 1;
1520		bn = dm_block_data(n->b);
1521
1522		n->index++;
1523		if (n->index < le32_to_cpu(bn->header.nr_entries))
1524			break;
1525
1526		pop_node(c);
1527	}
1528
1529	return 0;
1530}
1531
1532static int find_leaf(struct dm_btree_cursor *c)
1533{
1534	int r = 0;
1535	struct cursor_node *n;
1536	struct btree_node *bn;
1537	__le64 value_le;
1538
1539	for (;;) {
1540		n = c->nodes + c->depth - 1;
1541		bn = dm_block_data(n->b);
1542
1543		if (le32_to_cpu(bn->header.flags) & LEAF_NODE)
1544			break;
1545
1546		memcpy(&value_le, value_ptr(bn, n->index), sizeof(value_le));
1547		r = push_node(c, le64_to_cpu(value_le));
1548		if (r) {
1549			DMERR("push_node failed");
1550			break;
1551		}
1552	}
1553
1554	if (!r && (le32_to_cpu(bn->header.nr_entries) == 0))
1555		return -ENODATA;
1556
1557	return r;
1558}
1559
1560int dm_btree_cursor_begin(struct dm_btree_info *info, dm_block_t root,
1561			  bool prefetch_leaves, struct dm_btree_cursor *c)
1562{
1563	int r;
1564
1565	c->info = info;
1566	c->root = root;
1567	c->depth = 0;
1568	c->prefetch_leaves = prefetch_leaves;
1569
1570	r = push_node(c, root);
1571	if (r)
1572		return r;
1573
1574	return find_leaf(c);
1575}
1576EXPORT_SYMBOL_GPL(dm_btree_cursor_begin);
1577
1578void dm_btree_cursor_end(struct dm_btree_cursor *c)
1579{
1580	while (c->depth)
1581		pop_node(c);
1582}
1583EXPORT_SYMBOL_GPL(dm_btree_cursor_end);
1584
1585int dm_btree_cursor_next(struct dm_btree_cursor *c)
1586{
1587	int r = inc_or_backtrack(c);
1588	if (!r) {
1589		r = find_leaf(c);
1590		if (r)
1591			DMERR("find_leaf failed");
1592	}
1593
1594	return r;
1595}
1596EXPORT_SYMBOL_GPL(dm_btree_cursor_next);
1597
1598int dm_btree_cursor_skip(struct dm_btree_cursor *c, uint32_t count)
1599{
1600	int r = 0;
1601
1602	while (count-- && !r)
1603		r = dm_btree_cursor_next(c);
1604
1605	return r;
1606}
1607EXPORT_SYMBOL_GPL(dm_btree_cursor_skip);
1608
1609int dm_btree_cursor_get_value(struct dm_btree_cursor *c, uint64_t *key, void *value_le)
1610{
1611	if (c->depth) {
1612		struct cursor_node *n = c->nodes + c->depth - 1;
1613		struct btree_node *bn = dm_block_data(n->b);
1614
1615		if (le32_to_cpu(bn->header.flags) & INTERNAL_NODE)
1616			return -EINVAL;
1617
1618		*key = le64_to_cpu(*key_ptr(bn, n->index));
1619		memcpy(value_le, value_ptr(bn, n->index), c->info->value_type.size);
1620		return 0;
1621
1622	} else
1623		return -ENODATA;
1624}
1625EXPORT_SYMBOL_GPL(dm_btree_cursor_get_value);
v4.17
   1/*
   2 * Copyright (C) 2011 Red Hat, Inc.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm-btree-internal.h"
   8#include "dm-space-map.h"
   9#include "dm-transaction-manager.h"
  10
  11#include <linux/export.h>
  12#include <linux/device-mapper.h>
  13
  14#define DM_MSG_PREFIX "btree"
  15
  16/*----------------------------------------------------------------
  17 * Array manipulation
  18 *--------------------------------------------------------------*/
  19static void memcpy_disk(void *dest, const void *src, size_t len)
  20	__dm_written_to_disk(src)
  21{
  22	memcpy(dest, src, len);
  23	__dm_unbless_for_disk(src);
  24}
  25
  26static void array_insert(void *base, size_t elt_size, unsigned nr_elts,
  27			 unsigned index, void *elt)
  28	__dm_written_to_disk(elt)
  29{
  30	if (index < nr_elts)
  31		memmove(base + (elt_size * (index + 1)),
  32			base + (elt_size * index),
  33			(nr_elts - index) * elt_size);
  34
  35	memcpy_disk(base + (elt_size * index), elt, elt_size);
  36}
  37
  38/*----------------------------------------------------------------*/
  39
  40/* makes the assumption that no two keys are the same. */
  41static int bsearch(struct btree_node *n, uint64_t key, int want_hi)
  42{
  43	int lo = -1, hi = le32_to_cpu(n->header.nr_entries);
  44
  45	while (hi - lo > 1) {
  46		int mid = lo + ((hi - lo) / 2);
  47		uint64_t mid_key = le64_to_cpu(n->keys[mid]);
  48
  49		if (mid_key == key)
  50			return mid;
  51
  52		if (mid_key < key)
  53			lo = mid;
  54		else
  55			hi = mid;
  56	}
  57
  58	return want_hi ? hi : lo;
  59}
  60
  61int lower_bound(struct btree_node *n, uint64_t key)
  62{
  63	return bsearch(n, key, 0);
  64}
  65
  66static int upper_bound(struct btree_node *n, uint64_t key)
  67{
  68	return bsearch(n, key, 1);
  69}
  70
  71void inc_children(struct dm_transaction_manager *tm, struct btree_node *n,
  72		  struct dm_btree_value_type *vt)
  73{
  74	unsigned i;
  75	uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
  76
  77	if (le32_to_cpu(n->header.flags) & INTERNAL_NODE)
  78		for (i = 0; i < nr_entries; i++)
  79			dm_tm_inc(tm, value64(n, i));
  80	else if (vt->inc)
  81		for (i = 0; i < nr_entries; i++)
  82			vt->inc(vt->context, value_ptr(n, i));
  83}
  84
  85static int insert_at(size_t value_size, struct btree_node *node, unsigned index,
  86		      uint64_t key, void *value)
  87		      __dm_written_to_disk(value)
  88{
  89	uint32_t nr_entries = le32_to_cpu(node->header.nr_entries);
 
  90	__le64 key_le = cpu_to_le64(key);
  91
  92	if (index > nr_entries ||
  93	    index >= le32_to_cpu(node->header.max_entries)) {
 
  94		DMERR("too many entries in btree node for insert");
  95		__dm_unbless_for_disk(value);
  96		return -ENOMEM;
  97	}
  98
  99	__dm_bless_for_disk(&key_le);
 100
 101	array_insert(node->keys, sizeof(*node->keys), nr_entries, index, &key_le);
 102	array_insert(value_base(node), value_size, nr_entries, index, value);
 103	node->header.nr_entries = cpu_to_le32(nr_entries + 1);
 104
 105	return 0;
 106}
 107
 108/*----------------------------------------------------------------*/
 109
 110/*
 111 * We want 3n entries (for some n).  This works more nicely for repeated
 112 * insert remove loops than (2n + 1).
 113 */
 114static uint32_t calc_max_entries(size_t value_size, size_t block_size)
 115{
 116	uint32_t total, n;
 117	size_t elt_size = sizeof(uint64_t) + value_size; /* key + value */
 118
 119	block_size -= sizeof(struct node_header);
 120	total = block_size / elt_size;
 121	n = total / 3;		/* rounds down */
 122
 123	return 3 * n;
 124}
 125
 126int dm_btree_empty(struct dm_btree_info *info, dm_block_t *root)
 127{
 128	int r;
 129	struct dm_block *b;
 130	struct btree_node *n;
 131	size_t block_size;
 132	uint32_t max_entries;
 133
 134	r = new_block(info, &b);
 135	if (r < 0)
 136		return r;
 137
 138	block_size = dm_bm_block_size(dm_tm_get_bm(info->tm));
 139	max_entries = calc_max_entries(info->value_type.size, block_size);
 140
 141	n = dm_block_data(b);
 142	memset(n, 0, block_size);
 143	n->header.flags = cpu_to_le32(LEAF_NODE);
 144	n->header.nr_entries = cpu_to_le32(0);
 145	n->header.max_entries = cpu_to_le32(max_entries);
 146	n->header.value_size = cpu_to_le32(info->value_type.size);
 147
 148	*root = dm_block_location(b);
 149	unlock_block(info, b);
 150
 151	return 0;
 152}
 153EXPORT_SYMBOL_GPL(dm_btree_empty);
 154
 155/*----------------------------------------------------------------*/
 156
 157/*
 158 * Deletion uses a recursive algorithm, since we have limited stack space
 159 * we explicitly manage our own stack on the heap.
 160 */
 161#define MAX_SPINE_DEPTH 64
 162struct frame {
 163	struct dm_block *b;
 164	struct btree_node *n;
 165	unsigned level;
 166	unsigned nr_children;
 167	unsigned current_child;
 168};
 169
 170struct del_stack {
 171	struct dm_btree_info *info;
 172	struct dm_transaction_manager *tm;
 173	int top;
 174	struct frame spine[MAX_SPINE_DEPTH];
 175};
 176
 177static int top_frame(struct del_stack *s, struct frame **f)
 178{
 179	if (s->top < 0) {
 180		DMERR("btree deletion stack empty");
 181		return -EINVAL;
 182	}
 183
 184	*f = s->spine + s->top;
 185
 186	return 0;
 187}
 188
 189static int unprocessed_frames(struct del_stack *s)
 190{
 191	return s->top >= 0;
 192}
 193
 194static void prefetch_children(struct del_stack *s, struct frame *f)
 195{
 196	unsigned i;
 197	struct dm_block_manager *bm = dm_tm_get_bm(s->tm);
 198
 199	for (i = 0; i < f->nr_children; i++)
 200		dm_bm_prefetch(bm, value64(f->n, i));
 201}
 202
 203static bool is_internal_level(struct dm_btree_info *info, struct frame *f)
 204{
 205	return f->level < (info->levels - 1);
 206}
 207
 208static int push_frame(struct del_stack *s, dm_block_t b, unsigned level)
 209{
 210	int r;
 211	uint32_t ref_count;
 212
 213	if (s->top >= MAX_SPINE_DEPTH - 1) {
 214		DMERR("btree deletion stack out of memory");
 215		return -ENOMEM;
 216	}
 217
 218	r = dm_tm_ref(s->tm, b, &ref_count);
 219	if (r)
 220		return r;
 221
 222	if (ref_count > 1)
 223		/*
 224		 * This is a shared node, so we can just decrement it's
 225		 * reference counter and leave the children.
 226		 */
 227		dm_tm_dec(s->tm, b);
 228
 229	else {
 230		uint32_t flags;
 231		struct frame *f = s->spine + ++s->top;
 232
 233		r = dm_tm_read_lock(s->tm, b, &btree_node_validator, &f->b);
 234		if (r) {
 235			s->top--;
 236			return r;
 237		}
 238
 239		f->n = dm_block_data(f->b);
 240		f->level = level;
 241		f->nr_children = le32_to_cpu(f->n->header.nr_entries);
 242		f->current_child = 0;
 243
 244		flags = le32_to_cpu(f->n->header.flags);
 245		if (flags & INTERNAL_NODE || is_internal_level(s->info, f))
 246			prefetch_children(s, f);
 247	}
 248
 249	return 0;
 250}
 251
 252static void pop_frame(struct del_stack *s)
 253{
 254	struct frame *f = s->spine + s->top--;
 255
 256	dm_tm_dec(s->tm, dm_block_location(f->b));
 257	dm_tm_unlock(s->tm, f->b);
 258}
 259
 260static void unlock_all_frames(struct del_stack *s)
 261{
 262	struct frame *f;
 263
 264	while (unprocessed_frames(s)) {
 265		f = s->spine + s->top--;
 266		dm_tm_unlock(s->tm, f->b);
 267	}
 268}
 269
 270int dm_btree_del(struct dm_btree_info *info, dm_block_t root)
 271{
 272	int r;
 273	struct del_stack *s;
 274
 275	/*
 276	 * dm_btree_del() is called via an ioctl, as such should be
 277	 * considered an FS op.  We can't recurse back into the FS, so we
 278	 * allocate GFP_NOFS.
 279	 */
 280	s = kmalloc(sizeof(*s), GFP_NOFS);
 281	if (!s)
 282		return -ENOMEM;
 283	s->info = info;
 284	s->tm = info->tm;
 285	s->top = -1;
 286
 287	r = push_frame(s, root, 0);
 288	if (r)
 289		goto out;
 290
 291	while (unprocessed_frames(s)) {
 292		uint32_t flags;
 293		struct frame *f;
 294		dm_block_t b;
 295
 296		r = top_frame(s, &f);
 297		if (r)
 298			goto out;
 299
 300		if (f->current_child >= f->nr_children) {
 301			pop_frame(s);
 302			continue;
 303		}
 304
 305		flags = le32_to_cpu(f->n->header.flags);
 306		if (flags & INTERNAL_NODE) {
 307			b = value64(f->n, f->current_child);
 308			f->current_child++;
 309			r = push_frame(s, b, f->level);
 310			if (r)
 311				goto out;
 312
 313		} else if (is_internal_level(info, f)) {
 314			b = value64(f->n, f->current_child);
 315			f->current_child++;
 316			r = push_frame(s, b, f->level + 1);
 317			if (r)
 318				goto out;
 319
 320		} else {
 321			if (info->value_type.dec) {
 322				unsigned i;
 323
 324				for (i = 0; i < f->nr_children; i++)
 325					info->value_type.dec(info->value_type.context,
 326							     value_ptr(f->n, i));
 327			}
 328			pop_frame(s);
 329		}
 330	}
 331out:
 332	if (r) {
 333		/* cleanup all frames of del_stack */
 334		unlock_all_frames(s);
 335	}
 336	kfree(s);
 337
 338	return r;
 339}
 340EXPORT_SYMBOL_GPL(dm_btree_del);
 341
 342/*----------------------------------------------------------------*/
 343
 344static int btree_lookup_raw(struct ro_spine *s, dm_block_t block, uint64_t key,
 345			    int (*search_fn)(struct btree_node *, uint64_t),
 346			    uint64_t *result_key, void *v, size_t value_size)
 347{
 348	int i, r;
 349	uint32_t flags, nr_entries;
 350
 351	do {
 352		r = ro_step(s, block);
 353		if (r < 0)
 354			return r;
 355
 356		i = search_fn(ro_node(s), key);
 357
 358		flags = le32_to_cpu(ro_node(s)->header.flags);
 359		nr_entries = le32_to_cpu(ro_node(s)->header.nr_entries);
 360		if (i < 0 || i >= nr_entries)
 361			return -ENODATA;
 362
 363		if (flags & INTERNAL_NODE)
 364			block = value64(ro_node(s), i);
 365
 366	} while (!(flags & LEAF_NODE));
 367
 368	*result_key = le64_to_cpu(ro_node(s)->keys[i]);
 369	memcpy(v, value_ptr(ro_node(s), i), value_size);
 
 370
 371	return 0;
 372}
 373
 374int dm_btree_lookup(struct dm_btree_info *info, dm_block_t root,
 375		    uint64_t *keys, void *value_le)
 376{
 377	unsigned level, last_level = info->levels - 1;
 378	int r = -ENODATA;
 379	uint64_t rkey;
 380	__le64 internal_value_le;
 381	struct ro_spine spine;
 382
 383	init_ro_spine(&spine, info);
 384	for (level = 0; level < info->levels; level++) {
 385		size_t size;
 386		void *value_p;
 387
 388		if (level == last_level) {
 389			value_p = value_le;
 390			size = info->value_type.size;
 391
 392		} else {
 393			value_p = &internal_value_le;
 394			size = sizeof(uint64_t);
 395		}
 396
 397		r = btree_lookup_raw(&spine, root, keys[level],
 398				     lower_bound, &rkey,
 399				     value_p, size);
 400
 401		if (!r) {
 402			if (rkey != keys[level]) {
 403				exit_ro_spine(&spine);
 404				return -ENODATA;
 405			}
 406		} else {
 407			exit_ro_spine(&spine);
 408			return r;
 409		}
 410
 411		root = le64_to_cpu(internal_value_le);
 412	}
 413	exit_ro_spine(&spine);
 414
 415	return r;
 416}
 417EXPORT_SYMBOL_GPL(dm_btree_lookup);
 418
 419static int dm_btree_lookup_next_single(struct dm_btree_info *info, dm_block_t root,
 420				       uint64_t key, uint64_t *rkey, void *value_le)
 421{
 422	int r, i;
 423	uint32_t flags, nr_entries;
 424	struct dm_block *node;
 425	struct btree_node *n;
 426
 427	r = bn_read_lock(info, root, &node);
 428	if (r)
 429		return r;
 430
 431	n = dm_block_data(node);
 432	flags = le32_to_cpu(n->header.flags);
 433	nr_entries = le32_to_cpu(n->header.nr_entries);
 434
 435	if (flags & INTERNAL_NODE) {
 436		i = lower_bound(n, key);
 437		if (i < 0) {
 438			/*
 439			 * avoid early -ENODATA return when all entries are
 440			 * higher than the search @key.
 441			 */
 442			i = 0;
 443		}
 444		if (i >= nr_entries) {
 445			r = -ENODATA;
 446			goto out;
 447		}
 448
 449		r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
 450		if (r == -ENODATA && i < (nr_entries - 1)) {
 451			i++;
 452			r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
 453		}
 454
 455	} else {
 456		i = upper_bound(n, key);
 457		if (i < 0 || i >= nr_entries) {
 458			r = -ENODATA;
 459			goto out;
 460		}
 461
 462		*rkey = le64_to_cpu(n->keys[i]);
 463		memcpy(value_le, value_ptr(n, i), info->value_type.size);
 464	}
 465out:
 466	dm_tm_unlock(info->tm, node);
 467	return r;
 468}
 469
 470int dm_btree_lookup_next(struct dm_btree_info *info, dm_block_t root,
 471			 uint64_t *keys, uint64_t *rkey, void *value_le)
 472{
 473	unsigned level;
 474	int r = -ENODATA;
 475	__le64 internal_value_le;
 476	struct ro_spine spine;
 477
 478	init_ro_spine(&spine, info);
 479	for (level = 0; level < info->levels - 1u; level++) {
 480		r = btree_lookup_raw(&spine, root, keys[level],
 481				     lower_bound, rkey,
 482				     &internal_value_le, sizeof(uint64_t));
 483		if (r)
 484			goto out;
 485
 486		if (*rkey != keys[level]) {
 487			r = -ENODATA;
 488			goto out;
 489		}
 490
 491		root = le64_to_cpu(internal_value_le);
 492	}
 493
 494	r = dm_btree_lookup_next_single(info, root, keys[level], rkey, value_le);
 495out:
 496	exit_ro_spine(&spine);
 497	return r;
 498}
 499
 500EXPORT_SYMBOL_GPL(dm_btree_lookup_next);
 501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 502/*
 503 * Splits a node by creating a sibling node and shifting half the nodes
 504 * contents across.  Assumes there is a parent node, and it has room for
 505 * another child.
 506 *
 507 * Before:
 508 *	  +--------+
 509 *	  | Parent |
 510 *	  +--------+
 511 *	     |
 512 *	     v
 513 *	+----------+
 514 *	| A ++++++ |
 515 *	+----------+
 516 *
 517 *
 518 * After:
 519 *		+--------+
 520 *		| Parent |
 521 *		+--------+
 522 *		  |	|
 523 *		  v	+------+
 524 *	    +---------+	       |
 525 *	    | A* +++  |	       v
 526 *	    +---------+	  +-------+
 527 *			  | B +++ |
 528 *			  +-------+
 529 *
 530 * Where A* is a shadow of A.
 531 */
 532static int btree_split_sibling(struct shadow_spine *s, unsigned parent_index,
 533			       uint64_t key)
 534{
 535	int r;
 536	size_t size;
 537	unsigned nr_left, nr_right;
 538	struct dm_block *left, *right, *parent;
 539	struct btree_node *ln, *rn, *pn;
 540	__le64 location;
 541
 542	left = shadow_current(s);
 543
 544	r = new_block(s->info, &right);
 545	if (r < 0)
 546		return r;
 547
 548	ln = dm_block_data(left);
 549	rn = dm_block_data(right);
 550
 551	nr_left = le32_to_cpu(ln->header.nr_entries) / 2;
 552	nr_right = le32_to_cpu(ln->header.nr_entries) - nr_left;
 553
 554	ln->header.nr_entries = cpu_to_le32(nr_left);
 555
 556	rn->header.flags = ln->header.flags;
 557	rn->header.nr_entries = cpu_to_le32(nr_right);
 558	rn->header.max_entries = ln->header.max_entries;
 559	rn->header.value_size = ln->header.value_size;
 560	memcpy(rn->keys, ln->keys + nr_left, nr_right * sizeof(rn->keys[0]));
 561
 562	size = le32_to_cpu(ln->header.flags) & INTERNAL_NODE ?
 563		sizeof(uint64_t) : s->info->value_type.size;
 564	memcpy(value_ptr(rn, 0), value_ptr(ln, nr_left),
 565	       size * nr_right);
 566
 567	/*
 568	 * Patch up the parent
 569	 */
 570	parent = shadow_parent(s);
 571
 572	pn = dm_block_data(parent);
 573	location = cpu_to_le64(dm_block_location(left));
 574	__dm_bless_for_disk(&location);
 575	memcpy_disk(value_ptr(pn, parent_index),
 576		    &location, sizeof(__le64));
 577
 578	location = cpu_to_le64(dm_block_location(right));
 579	__dm_bless_for_disk(&location);
 580
 581	r = insert_at(sizeof(__le64), pn, parent_index + 1,
 582		      le64_to_cpu(rn->keys[0]), &location);
 583	if (r) {
 584		unlock_block(s->info, right);
 585		return r;
 586	}
 587
 
 588	if (key < le64_to_cpu(rn->keys[0])) {
 589		unlock_block(s->info, right);
 590		s->nodes[1] = left;
 591	} else {
 592		unlock_block(s->info, left);
 593		s->nodes[1] = right;
 594	}
 595
 596	return 0;
 597}
 598
 599/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 600 * Splits a node by creating two new children beneath the given node.
 601 *
 602 * Before:
 603 *	  +----------+
 604 *	  | A ++++++ |
 605 *	  +----------+
 606 *
 607 *
 608 * After:
 609 *	+------------+
 610 *	| A (shadow) |
 611 *	+------------+
 612 *	    |	|
 613 *   +------+	+----+
 614 *   |		     |
 615 *   v		     v
 616 * +-------+	 +-------+
 617 * | B +++ |	 | C +++ |
 618 * +-------+	 +-------+
 619 */
 620static int btree_split_beneath(struct shadow_spine *s, uint64_t key)
 621{
 622	int r;
 623	size_t size;
 624	unsigned nr_left, nr_right;
 625	struct dm_block *left, *right, *new_parent;
 626	struct btree_node *pn, *ln, *rn;
 627	__le64 val;
 628
 629	new_parent = shadow_current(s);
 630
 
 
 
 
 
 631	r = new_block(s->info, &left);
 632	if (r < 0)
 633		return r;
 634
 
 
 
 
 
 
 
 
 
 
 
 635	r = new_block(s->info, &right);
 636	if (r < 0) {
 637		unlock_block(s->info, left);
 638		return r;
 639	}
 640
 641	pn = dm_block_data(new_parent);
 642	ln = dm_block_data(left);
 643	rn = dm_block_data(right);
 644
 645	nr_left = le32_to_cpu(pn->header.nr_entries) / 2;
 646	nr_right = le32_to_cpu(pn->header.nr_entries) - nr_left;
 647
 648	ln->header.flags = pn->header.flags;
 649	ln->header.nr_entries = cpu_to_le32(nr_left);
 650	ln->header.max_entries = pn->header.max_entries;
 651	ln->header.value_size = pn->header.value_size;
 652
 653	rn->header.flags = pn->header.flags;
 654	rn->header.nr_entries = cpu_to_le32(nr_right);
 655	rn->header.max_entries = pn->header.max_entries;
 656	rn->header.value_size = pn->header.value_size;
 657
 658	memcpy(ln->keys, pn->keys, nr_left * sizeof(pn->keys[0]));
 659	memcpy(rn->keys, pn->keys + nr_left, nr_right * sizeof(pn->keys[0]));
 660
 661	size = le32_to_cpu(pn->header.flags) & INTERNAL_NODE ?
 662		sizeof(__le64) : s->info->value_type.size;
 663	memcpy(value_ptr(ln, 0), value_ptr(pn, 0), nr_left * size);
 664	memcpy(value_ptr(rn, 0), value_ptr(pn, nr_left),
 665	       nr_right * size);
 666
 667	/* new_parent should just point to l and r now */
 668	pn->header.flags = cpu_to_le32(INTERNAL_NODE);
 669	pn->header.nr_entries = cpu_to_le32(2);
 670	pn->header.max_entries = cpu_to_le32(
 671		calc_max_entries(sizeof(__le64),
 672				 dm_bm_block_size(
 673					 dm_tm_get_bm(s->info->tm))));
 674	pn->header.value_size = cpu_to_le32(sizeof(__le64));
 675
 676	val = cpu_to_le64(dm_block_location(left));
 677	__dm_bless_for_disk(&val);
 678	pn->keys[0] = ln->keys[0];
 679	memcpy_disk(value_ptr(pn, 0), &val, sizeof(__le64));
 680
 681	val = cpu_to_le64(dm_block_location(right));
 682	__dm_bless_for_disk(&val);
 683	pn->keys[1] = rn->keys[0];
 684	memcpy_disk(value_ptr(pn, 1), &val, sizeof(__le64));
 685
 686	unlock_block(s->info, left);
 687	unlock_block(s->info, right);
 688	return 0;
 689}
 690
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 691static int btree_insert_raw(struct shadow_spine *s, dm_block_t root,
 692			    struct dm_btree_value_type *vt,
 693			    uint64_t key, unsigned *index)
 694{
 695	int r, i = *index, top = 1;
 696	struct btree_node *node;
 697
 698	for (;;) {
 699		r = shadow_step(s, root, vt);
 700		if (r < 0)
 701			return r;
 702
 703		node = dm_block_data(shadow_current(s));
 704
 705		/*
 706		 * We have to patch up the parent node, ugly, but I don't
 707		 * see a way to do this automatically as part of the spine
 708		 * op.
 709		 */
 710		if (shadow_has_parent(s) && i >= 0) { /* FIXME: second clause unness. */
 711			__le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
 712
 713			__dm_bless_for_disk(&location);
 714			memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i),
 715				    &location, sizeof(__le64));
 716		}
 717
 718		node = dm_block_data(shadow_current(s));
 719
 720		if (node->header.nr_entries == node->header.max_entries) {
 721			if (top)
 722				r = btree_split_beneath(s, key);
 723			else
 724				r = btree_split_sibling(s, i, key);
 725
 726			if (r < 0)
 727				return r;
 
 
 
 728		}
 729
 730		node = dm_block_data(shadow_current(s));
 731
 732		i = lower_bound(node, key);
 733
 734		if (le32_to_cpu(node->header.flags) & LEAF_NODE)
 735			break;
 736
 737		if (i < 0) {
 738			/* change the bounds on the lowest key */
 739			node->keys[0] = cpu_to_le64(key);
 740			i = 0;
 741		}
 742
 743		root = value64(node, i);
 744		top = 0;
 745	}
 746
 747	if (i < 0 || le64_to_cpu(node->keys[i]) != key)
 748		i++;
 749
 750	*index = i;
 751	return 0;
 752}
 753
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 754static bool need_insert(struct btree_node *node, uint64_t *keys,
 755			unsigned level, unsigned index)
 756{
 757        return ((index >= le32_to_cpu(node->header.nr_entries)) ||
 758		(le64_to_cpu(node->keys[index]) != keys[level]));
 759}
 760
 761static int insert(struct dm_btree_info *info, dm_block_t root,
 762		  uint64_t *keys, void *value, dm_block_t *new_root,
 763		  int *inserted)
 764		  __dm_written_to_disk(value)
 765{
 766	int r;
 767	unsigned level, index = -1, last_level = info->levels - 1;
 768	dm_block_t block = root;
 769	struct shadow_spine spine;
 770	struct btree_node *n;
 771	struct dm_btree_value_type le64_type;
 772
 773	init_le64_type(info->tm, &le64_type);
 774	init_shadow_spine(&spine, info);
 775
 776	for (level = 0; level < (info->levels - 1); level++) {
 777		r = btree_insert_raw(&spine, block, &le64_type, keys[level], &index);
 778		if (r < 0)
 779			goto bad;
 780
 781		n = dm_block_data(shadow_current(&spine));
 782
 783		if (need_insert(n, keys, level, index)) {
 784			dm_block_t new_tree;
 785			__le64 new_le;
 786
 787			r = dm_btree_empty(info, &new_tree);
 788			if (r < 0)
 789				goto bad;
 790
 791			new_le = cpu_to_le64(new_tree);
 792			__dm_bless_for_disk(&new_le);
 793
 794			r = insert_at(sizeof(uint64_t), n, index,
 795				      keys[level], &new_le);
 796			if (r)
 797				goto bad;
 798		}
 799
 800		if (level < last_level)
 801			block = value64(n, index);
 802	}
 803
 804	r = btree_insert_raw(&spine, block, &info->value_type,
 805			     keys[level], &index);
 806	if (r < 0)
 807		goto bad;
 808
 809	n = dm_block_data(shadow_current(&spine));
 810
 811	if (need_insert(n, keys, level, index)) {
 812		if (inserted)
 813			*inserted = 1;
 814
 815		r = insert_at(info->value_type.size, n, index,
 816			      keys[level], value);
 817		if (r)
 818			goto bad_unblessed;
 819	} else {
 820		if (inserted)
 821			*inserted = 0;
 822
 823		if (info->value_type.dec &&
 824		    (!info->value_type.equal ||
 825		     !info->value_type.equal(
 826			     info->value_type.context,
 827			     value_ptr(n, index),
 828			     value))) {
 829			info->value_type.dec(info->value_type.context,
 830					     value_ptr(n, index));
 831		}
 832		memcpy_disk(value_ptr(n, index),
 833			    value, info->value_type.size);
 834	}
 835
 836	*new_root = shadow_root(&spine);
 837	exit_shadow_spine(&spine);
 838
 839	return 0;
 840
 841bad:
 842	__dm_unbless_for_disk(value);
 843bad_unblessed:
 844	exit_shadow_spine(&spine);
 845	return r;
 846}
 847
 848int dm_btree_insert(struct dm_btree_info *info, dm_block_t root,
 849		    uint64_t *keys, void *value, dm_block_t *new_root)
 850		    __dm_written_to_disk(value)
 851{
 852	return insert(info, root, keys, value, new_root, NULL);
 853}
 854EXPORT_SYMBOL_GPL(dm_btree_insert);
 855
 856int dm_btree_insert_notify(struct dm_btree_info *info, dm_block_t root,
 857			   uint64_t *keys, void *value, dm_block_t *new_root,
 858			   int *inserted)
 859			   __dm_written_to_disk(value)
 860{
 861	return insert(info, root, keys, value, new_root, inserted);
 862}
 863EXPORT_SYMBOL_GPL(dm_btree_insert_notify);
 864
 865/*----------------------------------------------------------------*/
 866
 867static int find_key(struct ro_spine *s, dm_block_t block, bool find_highest,
 868		    uint64_t *result_key, dm_block_t *next_block)
 869{
 870	int i, r;
 871	uint32_t flags;
 872
 873	do {
 874		r = ro_step(s, block);
 875		if (r < 0)
 876			return r;
 877
 878		flags = le32_to_cpu(ro_node(s)->header.flags);
 879		i = le32_to_cpu(ro_node(s)->header.nr_entries);
 880		if (!i)
 881			return -ENODATA;
 882		else
 883			i--;
 884
 885		if (find_highest)
 886			*result_key = le64_to_cpu(ro_node(s)->keys[i]);
 887		else
 888			*result_key = le64_to_cpu(ro_node(s)->keys[0]);
 889
 890		if (next_block || flags & INTERNAL_NODE) {
 891			if (find_highest)
 892				block = value64(ro_node(s), i);
 893			else
 894				block = value64(ro_node(s), 0);
 895		}
 896
 897	} while (flags & INTERNAL_NODE);
 898
 899	if (next_block)
 900		*next_block = block;
 901	return 0;
 902}
 903
 904static int dm_btree_find_key(struct dm_btree_info *info, dm_block_t root,
 905			     bool find_highest, uint64_t *result_keys)
 906{
 907	int r = 0, count = 0, level;
 908	struct ro_spine spine;
 909
 910	init_ro_spine(&spine, info);
 911	for (level = 0; level < info->levels; level++) {
 912		r = find_key(&spine, root, find_highest, result_keys + level,
 913			     level == info->levels - 1 ? NULL : &root);
 914		if (r == -ENODATA) {
 915			r = 0;
 916			break;
 917
 918		} else if (r)
 919			break;
 920
 921		count++;
 922	}
 923	exit_ro_spine(&spine);
 924
 925	return r ? r : count;
 926}
 927
 928int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root,
 929			      uint64_t *result_keys)
 930{
 931	return dm_btree_find_key(info, root, true, result_keys);
 932}
 933EXPORT_SYMBOL_GPL(dm_btree_find_highest_key);
 934
 935int dm_btree_find_lowest_key(struct dm_btree_info *info, dm_block_t root,
 936			     uint64_t *result_keys)
 937{
 938	return dm_btree_find_key(info, root, false, result_keys);
 939}
 940EXPORT_SYMBOL_GPL(dm_btree_find_lowest_key);
 941
 942/*----------------------------------------------------------------*/
 943
 944/*
 945 * FIXME: We shouldn't use a recursive algorithm when we have limited stack
 946 * space.  Also this only works for single level trees.
 947 */
 948static int walk_node(struct dm_btree_info *info, dm_block_t block,
 949		     int (*fn)(void *context, uint64_t *keys, void *leaf),
 950		     void *context)
 951{
 952	int r;
 953	unsigned i, nr;
 954	struct dm_block *node;
 955	struct btree_node *n;
 956	uint64_t keys;
 957
 958	r = bn_read_lock(info, block, &node);
 959	if (r)
 960		return r;
 961
 962	n = dm_block_data(node);
 963
 964	nr = le32_to_cpu(n->header.nr_entries);
 965	for (i = 0; i < nr; i++) {
 966		if (le32_to_cpu(n->header.flags) & INTERNAL_NODE) {
 967			r = walk_node(info, value64(n, i), fn, context);
 968			if (r)
 969				goto out;
 970		} else {
 971			keys = le64_to_cpu(*key_ptr(n, i));
 972			r = fn(context, &keys, value_ptr(n, i));
 973			if (r)
 974				goto out;
 975		}
 976	}
 977
 978out:
 979	dm_tm_unlock(info->tm, node);
 980	return r;
 981}
 982
 983int dm_btree_walk(struct dm_btree_info *info, dm_block_t root,
 984		  int (*fn)(void *context, uint64_t *keys, void *leaf),
 985		  void *context)
 986{
 987	BUG_ON(info->levels > 1);
 988	return walk_node(info, root, fn, context);
 989}
 990EXPORT_SYMBOL_GPL(dm_btree_walk);
 991
 992/*----------------------------------------------------------------*/
 993
 994static void prefetch_values(struct dm_btree_cursor *c)
 995{
 996	unsigned i, nr;
 997	__le64 value_le;
 998	struct cursor_node *n = c->nodes + c->depth - 1;
 999	struct btree_node *bn = dm_block_data(n->b);
1000	struct dm_block_manager *bm = dm_tm_get_bm(c->info->tm);
1001
1002	BUG_ON(c->info->value_type.size != sizeof(value_le));
1003
1004	nr = le32_to_cpu(bn->header.nr_entries);
1005	for (i = 0; i < nr; i++) {
1006		memcpy(&value_le, value_ptr(bn, i), sizeof(value_le));
1007		dm_bm_prefetch(bm, le64_to_cpu(value_le));
1008	}
1009}
1010
1011static bool leaf_node(struct dm_btree_cursor *c)
1012{
1013	struct cursor_node *n = c->nodes + c->depth - 1;
1014	struct btree_node *bn = dm_block_data(n->b);
1015
1016	return le32_to_cpu(bn->header.flags) & LEAF_NODE;
1017}
1018
1019static int push_node(struct dm_btree_cursor *c, dm_block_t b)
1020{
1021	int r;
1022	struct cursor_node *n = c->nodes + c->depth;
1023
1024	if (c->depth >= DM_BTREE_CURSOR_MAX_DEPTH - 1) {
1025		DMERR("couldn't push cursor node, stack depth too high");
1026		return -EINVAL;
1027	}
1028
1029	r = bn_read_lock(c->info, b, &n->b);
1030	if (r)
1031		return r;
1032
1033	n->index = 0;
1034	c->depth++;
1035
1036	if (c->prefetch_leaves || !leaf_node(c))
1037		prefetch_values(c);
1038
1039	return 0;
1040}
1041
1042static void pop_node(struct dm_btree_cursor *c)
1043{
1044	c->depth--;
1045	unlock_block(c->info, c->nodes[c->depth].b);
1046}
1047
1048static int inc_or_backtrack(struct dm_btree_cursor *c)
1049{
1050	struct cursor_node *n;
1051	struct btree_node *bn;
1052
1053	for (;;) {
1054		if (!c->depth)
1055			return -ENODATA;
1056
1057		n = c->nodes + c->depth - 1;
1058		bn = dm_block_data(n->b);
1059
1060		n->index++;
1061		if (n->index < le32_to_cpu(bn->header.nr_entries))
1062			break;
1063
1064		pop_node(c);
1065	}
1066
1067	return 0;
1068}
1069
1070static int find_leaf(struct dm_btree_cursor *c)
1071{
1072	int r = 0;
1073	struct cursor_node *n;
1074	struct btree_node *bn;
1075	__le64 value_le;
1076
1077	for (;;) {
1078		n = c->nodes + c->depth - 1;
1079		bn = dm_block_data(n->b);
1080
1081		if (le32_to_cpu(bn->header.flags) & LEAF_NODE)
1082			break;
1083
1084		memcpy(&value_le, value_ptr(bn, n->index), sizeof(value_le));
1085		r = push_node(c, le64_to_cpu(value_le));
1086		if (r) {
1087			DMERR("push_node failed");
1088			break;
1089		}
1090	}
1091
1092	if (!r && (le32_to_cpu(bn->header.nr_entries) == 0))
1093		return -ENODATA;
1094
1095	return r;
1096}
1097
1098int dm_btree_cursor_begin(struct dm_btree_info *info, dm_block_t root,
1099			  bool prefetch_leaves, struct dm_btree_cursor *c)
1100{
1101	int r;
1102
1103	c->info = info;
1104	c->root = root;
1105	c->depth = 0;
1106	c->prefetch_leaves = prefetch_leaves;
1107
1108	r = push_node(c, root);
1109	if (r)
1110		return r;
1111
1112	return find_leaf(c);
1113}
1114EXPORT_SYMBOL_GPL(dm_btree_cursor_begin);
1115
1116void dm_btree_cursor_end(struct dm_btree_cursor *c)
1117{
1118	while (c->depth)
1119		pop_node(c);
1120}
1121EXPORT_SYMBOL_GPL(dm_btree_cursor_end);
1122
1123int dm_btree_cursor_next(struct dm_btree_cursor *c)
1124{
1125	int r = inc_or_backtrack(c);
1126	if (!r) {
1127		r = find_leaf(c);
1128		if (r)
1129			DMERR("find_leaf failed");
1130	}
1131
1132	return r;
1133}
1134EXPORT_SYMBOL_GPL(dm_btree_cursor_next);
1135
1136int dm_btree_cursor_skip(struct dm_btree_cursor *c, uint32_t count)
1137{
1138	int r = 0;
1139
1140	while (count-- && !r)
1141		r = dm_btree_cursor_next(c);
1142
1143	return r;
1144}
1145EXPORT_SYMBOL_GPL(dm_btree_cursor_skip);
1146
1147int dm_btree_cursor_get_value(struct dm_btree_cursor *c, uint64_t *key, void *value_le)
1148{
1149	if (c->depth) {
1150		struct cursor_node *n = c->nodes + c->depth - 1;
1151		struct btree_node *bn = dm_block_data(n->b);
1152
1153		if (le32_to_cpu(bn->header.flags) & INTERNAL_NODE)
1154			return -EINVAL;
1155
1156		*key = le64_to_cpu(*key_ptr(bn, n->index));
1157		memcpy(value_le, value_ptr(bn, n->index), c->info->value_type.size);
1158		return 0;
1159
1160	} else
1161		return -ENODATA;
1162}
1163EXPORT_SYMBOL_GPL(dm_btree_cursor_get_value);