Loading...
1/*
2 * Copyright (C) 2011 Red Hat, Inc.
3 *
4 * This file is released under the GPL.
5 */
6
7#include "dm-btree-internal.h"
8#include "dm-space-map.h"
9#include "dm-transaction-manager.h"
10
11#include <linux/export.h>
12#include <linux/device-mapper.h>
13
14#define DM_MSG_PREFIX "btree"
15
16/*----------------------------------------------------------------
17 * Array manipulation
18 *--------------------------------------------------------------*/
19static void memcpy_disk(void *dest, const void *src, size_t len)
20 __dm_written_to_disk(src)
21{
22 memcpy(dest, src, len);
23 __dm_unbless_for_disk(src);
24}
25
26static void array_insert(void *base, size_t elt_size, unsigned nr_elts,
27 unsigned index, void *elt)
28 __dm_written_to_disk(elt)
29{
30 if (index < nr_elts)
31 memmove(base + (elt_size * (index + 1)),
32 base + (elt_size * index),
33 (nr_elts - index) * elt_size);
34
35 memcpy_disk(base + (elt_size * index), elt, elt_size);
36}
37
38/*----------------------------------------------------------------*/
39
40/* makes the assumption that no two keys are the same. */
41static int bsearch(struct btree_node *n, uint64_t key, int want_hi)
42{
43 int lo = -1, hi = le32_to_cpu(n->header.nr_entries);
44
45 while (hi - lo > 1) {
46 int mid = lo + ((hi - lo) / 2);
47 uint64_t mid_key = le64_to_cpu(n->keys[mid]);
48
49 if (mid_key == key)
50 return mid;
51
52 if (mid_key < key)
53 lo = mid;
54 else
55 hi = mid;
56 }
57
58 return want_hi ? hi : lo;
59}
60
61int lower_bound(struct btree_node *n, uint64_t key)
62{
63 return bsearch(n, key, 0);
64}
65
66static int upper_bound(struct btree_node *n, uint64_t key)
67{
68 return bsearch(n, key, 1);
69}
70
71void inc_children(struct dm_transaction_manager *tm, struct btree_node *n,
72 struct dm_btree_value_type *vt)
73{
74 uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
75
76 if (le32_to_cpu(n->header.flags) & INTERNAL_NODE)
77 dm_tm_with_runs(tm, value_ptr(n, 0), nr_entries, dm_tm_inc_range);
78
79 else if (vt->inc)
80 vt->inc(vt->context, value_ptr(n, 0), nr_entries);
81}
82
83static int insert_at(size_t value_size, struct btree_node *node, unsigned index,
84 uint64_t key, void *value)
85 __dm_written_to_disk(value)
86{
87 uint32_t nr_entries = le32_to_cpu(node->header.nr_entries);
88 uint32_t max_entries = le32_to_cpu(node->header.max_entries);
89 __le64 key_le = cpu_to_le64(key);
90
91 if (index > nr_entries ||
92 index >= max_entries ||
93 nr_entries >= max_entries) {
94 DMERR("too many entries in btree node for insert");
95 __dm_unbless_for_disk(value);
96 return -ENOMEM;
97 }
98
99 __dm_bless_for_disk(&key_le);
100
101 array_insert(node->keys, sizeof(*node->keys), nr_entries, index, &key_le);
102 array_insert(value_base(node), value_size, nr_entries, index, value);
103 node->header.nr_entries = cpu_to_le32(nr_entries + 1);
104
105 return 0;
106}
107
108/*----------------------------------------------------------------*/
109
110/*
111 * We want 3n entries (for some n). This works more nicely for repeated
112 * insert remove loops than (2n + 1).
113 */
114static uint32_t calc_max_entries(size_t value_size, size_t block_size)
115{
116 uint32_t total, n;
117 size_t elt_size = sizeof(uint64_t) + value_size; /* key + value */
118
119 block_size -= sizeof(struct node_header);
120 total = block_size / elt_size;
121 n = total / 3; /* rounds down */
122
123 return 3 * n;
124}
125
126int dm_btree_empty(struct dm_btree_info *info, dm_block_t *root)
127{
128 int r;
129 struct dm_block *b;
130 struct btree_node *n;
131 size_t block_size;
132 uint32_t max_entries;
133
134 r = new_block(info, &b);
135 if (r < 0)
136 return r;
137
138 block_size = dm_bm_block_size(dm_tm_get_bm(info->tm));
139 max_entries = calc_max_entries(info->value_type.size, block_size);
140
141 n = dm_block_data(b);
142 memset(n, 0, block_size);
143 n->header.flags = cpu_to_le32(LEAF_NODE);
144 n->header.nr_entries = cpu_to_le32(0);
145 n->header.max_entries = cpu_to_le32(max_entries);
146 n->header.value_size = cpu_to_le32(info->value_type.size);
147
148 *root = dm_block_location(b);
149 unlock_block(info, b);
150
151 return 0;
152}
153EXPORT_SYMBOL_GPL(dm_btree_empty);
154
155/*----------------------------------------------------------------*/
156
157/*
158 * Deletion uses a recursive algorithm, since we have limited stack space
159 * we explicitly manage our own stack on the heap.
160 */
161#define MAX_SPINE_DEPTH 64
162struct frame {
163 struct dm_block *b;
164 struct btree_node *n;
165 unsigned level;
166 unsigned nr_children;
167 unsigned current_child;
168};
169
170struct del_stack {
171 struct dm_btree_info *info;
172 struct dm_transaction_manager *tm;
173 int top;
174 struct frame spine[MAX_SPINE_DEPTH];
175};
176
177static int top_frame(struct del_stack *s, struct frame **f)
178{
179 if (s->top < 0) {
180 DMERR("btree deletion stack empty");
181 return -EINVAL;
182 }
183
184 *f = s->spine + s->top;
185
186 return 0;
187}
188
189static int unprocessed_frames(struct del_stack *s)
190{
191 return s->top >= 0;
192}
193
194static void prefetch_children(struct del_stack *s, struct frame *f)
195{
196 unsigned i;
197 struct dm_block_manager *bm = dm_tm_get_bm(s->tm);
198
199 for (i = 0; i < f->nr_children; i++)
200 dm_bm_prefetch(bm, value64(f->n, i));
201}
202
203static bool is_internal_level(struct dm_btree_info *info, struct frame *f)
204{
205 return f->level < (info->levels - 1);
206}
207
208static int push_frame(struct del_stack *s, dm_block_t b, unsigned level)
209{
210 int r;
211 uint32_t ref_count;
212
213 if (s->top >= MAX_SPINE_DEPTH - 1) {
214 DMERR("btree deletion stack out of memory");
215 return -ENOMEM;
216 }
217
218 r = dm_tm_ref(s->tm, b, &ref_count);
219 if (r)
220 return r;
221
222 if (ref_count > 1)
223 /*
224 * This is a shared node, so we can just decrement it's
225 * reference counter and leave the children.
226 */
227 dm_tm_dec(s->tm, b);
228
229 else {
230 uint32_t flags;
231 struct frame *f = s->spine + ++s->top;
232
233 r = dm_tm_read_lock(s->tm, b, &btree_node_validator, &f->b);
234 if (r) {
235 s->top--;
236 return r;
237 }
238
239 f->n = dm_block_data(f->b);
240 f->level = level;
241 f->nr_children = le32_to_cpu(f->n->header.nr_entries);
242 f->current_child = 0;
243
244 flags = le32_to_cpu(f->n->header.flags);
245 if (flags & INTERNAL_NODE || is_internal_level(s->info, f))
246 prefetch_children(s, f);
247 }
248
249 return 0;
250}
251
252static void pop_frame(struct del_stack *s)
253{
254 struct frame *f = s->spine + s->top--;
255
256 dm_tm_dec(s->tm, dm_block_location(f->b));
257 dm_tm_unlock(s->tm, f->b);
258}
259
260static void unlock_all_frames(struct del_stack *s)
261{
262 struct frame *f;
263
264 while (unprocessed_frames(s)) {
265 f = s->spine + s->top--;
266 dm_tm_unlock(s->tm, f->b);
267 }
268}
269
270int dm_btree_del(struct dm_btree_info *info, dm_block_t root)
271{
272 int r;
273 struct del_stack *s;
274
275 /*
276 * dm_btree_del() is called via an ioctl, as such should be
277 * considered an FS op. We can't recurse back into the FS, so we
278 * allocate GFP_NOFS.
279 */
280 s = kmalloc(sizeof(*s), GFP_NOFS);
281 if (!s)
282 return -ENOMEM;
283 s->info = info;
284 s->tm = info->tm;
285 s->top = -1;
286
287 r = push_frame(s, root, 0);
288 if (r)
289 goto out;
290
291 while (unprocessed_frames(s)) {
292 uint32_t flags;
293 struct frame *f;
294 dm_block_t b;
295
296 r = top_frame(s, &f);
297 if (r)
298 goto out;
299
300 if (f->current_child >= f->nr_children) {
301 pop_frame(s);
302 continue;
303 }
304
305 flags = le32_to_cpu(f->n->header.flags);
306 if (flags & INTERNAL_NODE) {
307 b = value64(f->n, f->current_child);
308 f->current_child++;
309 r = push_frame(s, b, f->level);
310 if (r)
311 goto out;
312
313 } else if (is_internal_level(info, f)) {
314 b = value64(f->n, f->current_child);
315 f->current_child++;
316 r = push_frame(s, b, f->level + 1);
317 if (r)
318 goto out;
319
320 } else {
321 if (info->value_type.dec)
322 info->value_type.dec(info->value_type.context,
323 value_ptr(f->n, 0), f->nr_children);
324 pop_frame(s);
325 }
326 }
327out:
328 if (r) {
329 /* cleanup all frames of del_stack */
330 unlock_all_frames(s);
331 }
332 kfree(s);
333
334 return r;
335}
336EXPORT_SYMBOL_GPL(dm_btree_del);
337
338/*----------------------------------------------------------------*/
339
340static int btree_lookup_raw(struct ro_spine *s, dm_block_t block, uint64_t key,
341 int (*search_fn)(struct btree_node *, uint64_t),
342 uint64_t *result_key, void *v, size_t value_size)
343{
344 int i, r;
345 uint32_t flags, nr_entries;
346
347 do {
348 r = ro_step(s, block);
349 if (r < 0)
350 return r;
351
352 i = search_fn(ro_node(s), key);
353
354 flags = le32_to_cpu(ro_node(s)->header.flags);
355 nr_entries = le32_to_cpu(ro_node(s)->header.nr_entries);
356 if (i < 0 || i >= nr_entries)
357 return -ENODATA;
358
359 if (flags & INTERNAL_NODE)
360 block = value64(ro_node(s), i);
361
362 } while (!(flags & LEAF_NODE));
363
364 *result_key = le64_to_cpu(ro_node(s)->keys[i]);
365 if (v)
366 memcpy(v, value_ptr(ro_node(s), i), value_size);
367
368 return 0;
369}
370
371int dm_btree_lookup(struct dm_btree_info *info, dm_block_t root,
372 uint64_t *keys, void *value_le)
373{
374 unsigned level, last_level = info->levels - 1;
375 int r = -ENODATA;
376 uint64_t rkey;
377 __le64 internal_value_le;
378 struct ro_spine spine;
379
380 init_ro_spine(&spine, info);
381 for (level = 0; level < info->levels; level++) {
382 size_t size;
383 void *value_p;
384
385 if (level == last_level) {
386 value_p = value_le;
387 size = info->value_type.size;
388
389 } else {
390 value_p = &internal_value_le;
391 size = sizeof(uint64_t);
392 }
393
394 r = btree_lookup_raw(&spine, root, keys[level],
395 lower_bound, &rkey,
396 value_p, size);
397
398 if (!r) {
399 if (rkey != keys[level]) {
400 exit_ro_spine(&spine);
401 return -ENODATA;
402 }
403 } else {
404 exit_ro_spine(&spine);
405 return r;
406 }
407
408 root = le64_to_cpu(internal_value_le);
409 }
410 exit_ro_spine(&spine);
411
412 return r;
413}
414EXPORT_SYMBOL_GPL(dm_btree_lookup);
415
416static int dm_btree_lookup_next_single(struct dm_btree_info *info, dm_block_t root,
417 uint64_t key, uint64_t *rkey, void *value_le)
418{
419 int r, i;
420 uint32_t flags, nr_entries;
421 struct dm_block *node;
422 struct btree_node *n;
423
424 r = bn_read_lock(info, root, &node);
425 if (r)
426 return r;
427
428 n = dm_block_data(node);
429 flags = le32_to_cpu(n->header.flags);
430 nr_entries = le32_to_cpu(n->header.nr_entries);
431
432 if (flags & INTERNAL_NODE) {
433 i = lower_bound(n, key);
434 if (i < 0) {
435 /*
436 * avoid early -ENODATA return when all entries are
437 * higher than the search @key.
438 */
439 i = 0;
440 }
441 if (i >= nr_entries) {
442 r = -ENODATA;
443 goto out;
444 }
445
446 r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
447 if (r == -ENODATA && i < (nr_entries - 1)) {
448 i++;
449 r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
450 }
451
452 } else {
453 i = upper_bound(n, key);
454 if (i < 0 || i >= nr_entries) {
455 r = -ENODATA;
456 goto out;
457 }
458
459 *rkey = le64_to_cpu(n->keys[i]);
460 memcpy(value_le, value_ptr(n, i), info->value_type.size);
461 }
462out:
463 dm_tm_unlock(info->tm, node);
464 return r;
465}
466
467int dm_btree_lookup_next(struct dm_btree_info *info, dm_block_t root,
468 uint64_t *keys, uint64_t *rkey, void *value_le)
469{
470 unsigned level;
471 int r = -ENODATA;
472 __le64 internal_value_le;
473 struct ro_spine spine;
474
475 init_ro_spine(&spine, info);
476 for (level = 0; level < info->levels - 1u; level++) {
477 r = btree_lookup_raw(&spine, root, keys[level],
478 lower_bound, rkey,
479 &internal_value_le, sizeof(uint64_t));
480 if (r)
481 goto out;
482
483 if (*rkey != keys[level]) {
484 r = -ENODATA;
485 goto out;
486 }
487
488 root = le64_to_cpu(internal_value_le);
489 }
490
491 r = dm_btree_lookup_next_single(info, root, keys[level], rkey, value_le);
492out:
493 exit_ro_spine(&spine);
494 return r;
495}
496
497EXPORT_SYMBOL_GPL(dm_btree_lookup_next);
498
499/*----------------------------------------------------------------*/
500
501/*
502 * Copies entries from one region of a btree node to another. The regions
503 * must not overlap.
504 */
505static void copy_entries(struct btree_node *dest, unsigned dest_offset,
506 struct btree_node *src, unsigned src_offset,
507 unsigned count)
508{
509 size_t value_size = le32_to_cpu(dest->header.value_size);
510 memcpy(dest->keys + dest_offset, src->keys + src_offset, count * sizeof(uint64_t));
511 memcpy(value_ptr(dest, dest_offset), value_ptr(src, src_offset), count * value_size);
512}
513
514/*
515 * Moves entries from one region fo a btree node to another. The regions
516 * may overlap.
517 */
518static void move_entries(struct btree_node *dest, unsigned dest_offset,
519 struct btree_node *src, unsigned src_offset,
520 unsigned count)
521{
522 size_t value_size = le32_to_cpu(dest->header.value_size);
523 memmove(dest->keys + dest_offset, src->keys + src_offset, count * sizeof(uint64_t));
524 memmove(value_ptr(dest, dest_offset), value_ptr(src, src_offset), count * value_size);
525}
526
527/*
528 * Erases the first 'count' entries of a btree node, shifting following
529 * entries down into their place.
530 */
531static void shift_down(struct btree_node *n, unsigned count)
532{
533 move_entries(n, 0, n, count, le32_to_cpu(n->header.nr_entries) - count);
534}
535
536/*
537 * Moves entries in a btree node up 'count' places, making space for
538 * new entries at the start of the node.
539 */
540static void shift_up(struct btree_node *n, unsigned count)
541{
542 move_entries(n, count, n, 0, le32_to_cpu(n->header.nr_entries));
543}
544
545/*
546 * Redistributes entries between two btree nodes to make them
547 * have similar numbers of entries.
548 */
549static void redistribute2(struct btree_node *left, struct btree_node *right)
550{
551 unsigned nr_left = le32_to_cpu(left->header.nr_entries);
552 unsigned nr_right = le32_to_cpu(right->header.nr_entries);
553 unsigned total = nr_left + nr_right;
554 unsigned target_left = total / 2;
555 unsigned target_right = total - target_left;
556
557 if (nr_left < target_left) {
558 unsigned delta = target_left - nr_left;
559 copy_entries(left, nr_left, right, 0, delta);
560 shift_down(right, delta);
561 } else if (nr_left > target_left) {
562 unsigned delta = nr_left - target_left;
563 if (nr_right)
564 shift_up(right, delta);
565 copy_entries(right, 0, left, target_left, delta);
566 }
567
568 left->header.nr_entries = cpu_to_le32(target_left);
569 right->header.nr_entries = cpu_to_le32(target_right);
570}
571
572/*
573 * Redistribute entries between three nodes. Assumes the central
574 * node is empty.
575 */
576static void redistribute3(struct btree_node *left, struct btree_node *center,
577 struct btree_node *right)
578{
579 unsigned nr_left = le32_to_cpu(left->header.nr_entries);
580 unsigned nr_center = le32_to_cpu(center->header.nr_entries);
581 unsigned nr_right = le32_to_cpu(right->header.nr_entries);
582 unsigned total, target_left, target_center, target_right;
583
584 BUG_ON(nr_center);
585
586 total = nr_left + nr_right;
587 target_left = total / 3;
588 target_center = (total - target_left) / 2;
589 target_right = (total - target_left - target_center);
590
591 if (nr_left < target_left) {
592 unsigned left_short = target_left - nr_left;
593 copy_entries(left, nr_left, right, 0, left_short);
594 copy_entries(center, 0, right, left_short, target_center);
595 shift_down(right, nr_right - target_right);
596
597 } else if (nr_left < (target_left + target_center)) {
598 unsigned left_to_center = nr_left - target_left;
599 copy_entries(center, 0, left, target_left, left_to_center);
600 copy_entries(center, left_to_center, right, 0, target_center - left_to_center);
601 shift_down(right, nr_right - target_right);
602
603 } else {
604 unsigned right_short = target_right - nr_right;
605 shift_up(right, right_short);
606 copy_entries(right, 0, left, nr_left - right_short, right_short);
607 copy_entries(center, 0, left, target_left, nr_left - target_left);
608 }
609
610 left->header.nr_entries = cpu_to_le32(target_left);
611 center->header.nr_entries = cpu_to_le32(target_center);
612 right->header.nr_entries = cpu_to_le32(target_right);
613}
614
615/*
616 * Splits a node by creating a sibling node and shifting half the nodes
617 * contents across. Assumes there is a parent node, and it has room for
618 * another child.
619 *
620 * Before:
621 * +--------+
622 * | Parent |
623 * +--------+
624 * |
625 * v
626 * +----------+
627 * | A ++++++ |
628 * +----------+
629 *
630 *
631 * After:
632 * +--------+
633 * | Parent |
634 * +--------+
635 * | |
636 * v +------+
637 * +---------+ |
638 * | A* +++ | v
639 * +---------+ +-------+
640 * | B +++ |
641 * +-------+
642 *
643 * Where A* is a shadow of A.
644 */
645static int split_one_into_two(struct shadow_spine *s, unsigned parent_index,
646 struct dm_btree_value_type *vt, uint64_t key)
647{
648 int r;
649 struct dm_block *left, *right, *parent;
650 struct btree_node *ln, *rn, *pn;
651 __le64 location;
652
653 left = shadow_current(s);
654
655 r = new_block(s->info, &right);
656 if (r < 0)
657 return r;
658
659 ln = dm_block_data(left);
660 rn = dm_block_data(right);
661
662 rn->header.flags = ln->header.flags;
663 rn->header.nr_entries = cpu_to_le32(0);
664 rn->header.max_entries = ln->header.max_entries;
665 rn->header.value_size = ln->header.value_size;
666 redistribute2(ln, rn);
667
668 /* patch up the parent */
669 parent = shadow_parent(s);
670 pn = dm_block_data(parent);
671
672 location = cpu_to_le64(dm_block_location(right));
673 __dm_bless_for_disk(&location);
674 r = insert_at(sizeof(__le64), pn, parent_index + 1,
675 le64_to_cpu(rn->keys[0]), &location);
676 if (r) {
677 unlock_block(s->info, right);
678 return r;
679 }
680
681 /* patch up the spine */
682 if (key < le64_to_cpu(rn->keys[0])) {
683 unlock_block(s->info, right);
684 s->nodes[1] = left;
685 } else {
686 unlock_block(s->info, left);
687 s->nodes[1] = right;
688 }
689
690 return 0;
691}
692
693/*
694 * We often need to modify a sibling node. This function shadows a particular
695 * child of the given parent node. Making sure to update the parent to point
696 * to the new shadow.
697 */
698static int shadow_child(struct dm_btree_info *info, struct dm_btree_value_type *vt,
699 struct btree_node *parent, unsigned index,
700 struct dm_block **result)
701{
702 int r, inc;
703 dm_block_t root;
704 struct btree_node *node;
705
706 root = value64(parent, index);
707
708 r = dm_tm_shadow_block(info->tm, root, &btree_node_validator,
709 result, &inc);
710 if (r)
711 return r;
712
713 node = dm_block_data(*result);
714
715 if (inc)
716 inc_children(info->tm, node, vt);
717
718 *((__le64 *) value_ptr(parent, index)) =
719 cpu_to_le64(dm_block_location(*result));
720
721 return 0;
722}
723
724/*
725 * Splits two nodes into three. This is more work, but results in fuller
726 * nodes, so saves metadata space.
727 */
728static int split_two_into_three(struct shadow_spine *s, unsigned parent_index,
729 struct dm_btree_value_type *vt, uint64_t key)
730{
731 int r;
732 unsigned middle_index;
733 struct dm_block *left, *middle, *right, *parent;
734 struct btree_node *ln, *rn, *mn, *pn;
735 __le64 location;
736
737 parent = shadow_parent(s);
738 pn = dm_block_data(parent);
739
740 if (parent_index == 0) {
741 middle_index = 1;
742 left = shadow_current(s);
743 r = shadow_child(s->info, vt, pn, parent_index + 1, &right);
744 if (r)
745 return r;
746 } else {
747 middle_index = parent_index;
748 right = shadow_current(s);
749 r = shadow_child(s->info, vt, pn, parent_index - 1, &left);
750 if (r)
751 return r;
752 }
753
754 r = new_block(s->info, &middle);
755 if (r < 0)
756 return r;
757
758 ln = dm_block_data(left);
759 mn = dm_block_data(middle);
760 rn = dm_block_data(right);
761
762 mn->header.nr_entries = cpu_to_le32(0);
763 mn->header.flags = ln->header.flags;
764 mn->header.max_entries = ln->header.max_entries;
765 mn->header.value_size = ln->header.value_size;
766
767 redistribute3(ln, mn, rn);
768
769 /* patch up the parent */
770 pn->keys[middle_index] = rn->keys[0];
771 location = cpu_to_le64(dm_block_location(middle));
772 __dm_bless_for_disk(&location);
773 r = insert_at(sizeof(__le64), pn, middle_index,
774 le64_to_cpu(mn->keys[0]), &location);
775 if (r) {
776 if (shadow_current(s) != left)
777 unlock_block(s->info, left);
778
779 unlock_block(s->info, middle);
780
781 if (shadow_current(s) != right)
782 unlock_block(s->info, right);
783
784 return r;
785 }
786
787
788 /* patch up the spine */
789 if (key < le64_to_cpu(mn->keys[0])) {
790 unlock_block(s->info, middle);
791 unlock_block(s->info, right);
792 s->nodes[1] = left;
793 } else if (key < le64_to_cpu(rn->keys[0])) {
794 unlock_block(s->info, left);
795 unlock_block(s->info, right);
796 s->nodes[1] = middle;
797 } else {
798 unlock_block(s->info, left);
799 unlock_block(s->info, middle);
800 s->nodes[1] = right;
801 }
802
803 return 0;
804}
805
806/*----------------------------------------------------------------*/
807
808/*
809 * Splits a node by creating two new children beneath the given node.
810 *
811 * Before:
812 * +----------+
813 * | A ++++++ |
814 * +----------+
815 *
816 *
817 * After:
818 * +------------+
819 * | A (shadow) |
820 * +------------+
821 * | |
822 * +------+ +----+
823 * | |
824 * v v
825 * +-------+ +-------+
826 * | B +++ | | C +++ |
827 * +-------+ +-------+
828 */
829static int btree_split_beneath(struct shadow_spine *s, uint64_t key)
830{
831 int r;
832 size_t size;
833 unsigned nr_left, nr_right;
834 struct dm_block *left, *right, *new_parent;
835 struct btree_node *pn, *ln, *rn;
836 __le64 val;
837
838 new_parent = shadow_current(s);
839
840 pn = dm_block_data(new_parent);
841 size = le32_to_cpu(pn->header.flags) & INTERNAL_NODE ?
842 sizeof(__le64) : s->info->value_type.size;
843
844 /* create & init the left block */
845 r = new_block(s->info, &left);
846 if (r < 0)
847 return r;
848
849 ln = dm_block_data(left);
850 nr_left = le32_to_cpu(pn->header.nr_entries) / 2;
851
852 ln->header.flags = pn->header.flags;
853 ln->header.nr_entries = cpu_to_le32(nr_left);
854 ln->header.max_entries = pn->header.max_entries;
855 ln->header.value_size = pn->header.value_size;
856 memcpy(ln->keys, pn->keys, nr_left * sizeof(pn->keys[0]));
857 memcpy(value_ptr(ln, 0), value_ptr(pn, 0), nr_left * size);
858
859 /* create & init the right block */
860 r = new_block(s->info, &right);
861 if (r < 0) {
862 unlock_block(s->info, left);
863 return r;
864 }
865
866 rn = dm_block_data(right);
867 nr_right = le32_to_cpu(pn->header.nr_entries) - nr_left;
868
869 rn->header.flags = pn->header.flags;
870 rn->header.nr_entries = cpu_to_le32(nr_right);
871 rn->header.max_entries = pn->header.max_entries;
872 rn->header.value_size = pn->header.value_size;
873 memcpy(rn->keys, pn->keys + nr_left, nr_right * sizeof(pn->keys[0]));
874 memcpy(value_ptr(rn, 0), value_ptr(pn, nr_left),
875 nr_right * size);
876
877 /* new_parent should just point to l and r now */
878 pn->header.flags = cpu_to_le32(INTERNAL_NODE);
879 pn->header.nr_entries = cpu_to_le32(2);
880 pn->header.max_entries = cpu_to_le32(
881 calc_max_entries(sizeof(__le64),
882 dm_bm_block_size(
883 dm_tm_get_bm(s->info->tm))));
884 pn->header.value_size = cpu_to_le32(sizeof(__le64));
885
886 val = cpu_to_le64(dm_block_location(left));
887 __dm_bless_for_disk(&val);
888 pn->keys[0] = ln->keys[0];
889 memcpy_disk(value_ptr(pn, 0), &val, sizeof(__le64));
890
891 val = cpu_to_le64(dm_block_location(right));
892 __dm_bless_for_disk(&val);
893 pn->keys[1] = rn->keys[0];
894 memcpy_disk(value_ptr(pn, 1), &val, sizeof(__le64));
895
896 unlock_block(s->info, left);
897 unlock_block(s->info, right);
898 return 0;
899}
900
901/*----------------------------------------------------------------*/
902
903/*
904 * Redistributes a node's entries with its left sibling.
905 */
906static int rebalance_left(struct shadow_spine *s, struct dm_btree_value_type *vt,
907 unsigned parent_index, uint64_t key)
908{
909 int r;
910 struct dm_block *sib;
911 struct btree_node *left, *right, *parent = dm_block_data(shadow_parent(s));
912
913 r = shadow_child(s->info, vt, parent, parent_index - 1, &sib);
914 if (r)
915 return r;
916
917 left = dm_block_data(sib);
918 right = dm_block_data(shadow_current(s));
919 redistribute2(left, right);
920 *key_ptr(parent, parent_index) = right->keys[0];
921
922 if (key < le64_to_cpu(right->keys[0])) {
923 unlock_block(s->info, s->nodes[1]);
924 s->nodes[1] = sib;
925 } else {
926 unlock_block(s->info, sib);
927 }
928
929 return 0;
930}
931
932/*
933 * Redistributes a nodes entries with its right sibling.
934 */
935static int rebalance_right(struct shadow_spine *s, struct dm_btree_value_type *vt,
936 unsigned parent_index, uint64_t key)
937{
938 int r;
939 struct dm_block *sib;
940 struct btree_node *left, *right, *parent = dm_block_data(shadow_parent(s));
941
942 r = shadow_child(s->info, vt, parent, parent_index + 1, &sib);
943 if (r)
944 return r;
945
946 left = dm_block_data(shadow_current(s));
947 right = dm_block_data(sib);
948 redistribute2(left, right);
949 *key_ptr(parent, parent_index + 1) = right->keys[0];
950
951 if (key < le64_to_cpu(right->keys[0])) {
952 unlock_block(s->info, sib);
953 } else {
954 unlock_block(s->info, s->nodes[1]);
955 s->nodes[1] = sib;
956 }
957
958 return 0;
959}
960
961/*
962 * Returns the number of spare entries in a node.
963 */
964static int get_node_free_space(struct dm_btree_info *info, dm_block_t b, unsigned *space)
965{
966 int r;
967 unsigned nr_entries;
968 struct dm_block *block;
969 struct btree_node *node;
970
971 r = bn_read_lock(info, b, &block);
972 if (r)
973 return r;
974
975 node = dm_block_data(block);
976 nr_entries = le32_to_cpu(node->header.nr_entries);
977 *space = le32_to_cpu(node->header.max_entries) - nr_entries;
978
979 unlock_block(info, block);
980 return 0;
981}
982
983/*
984 * Make space in a node, either by moving some entries to a sibling,
985 * or creating a new sibling node. SPACE_THRESHOLD defines the minimum
986 * number of free entries that must be in the sibling to make the move
987 * worth while. If the siblings are shared (eg, part of a snapshot),
988 * then they are not touched, since this break sharing and so consume
989 * more space than we save.
990 */
991#define SPACE_THRESHOLD 8
992static int rebalance_or_split(struct shadow_spine *s, struct dm_btree_value_type *vt,
993 unsigned parent_index, uint64_t key)
994{
995 int r;
996 struct btree_node *parent = dm_block_data(shadow_parent(s));
997 unsigned nr_parent = le32_to_cpu(parent->header.nr_entries);
998 unsigned free_space;
999 int left_shared = 0, right_shared = 0;
1000
1001 /* Should we move entries to the left sibling? */
1002 if (parent_index > 0) {
1003 dm_block_t left_b = value64(parent, parent_index - 1);
1004 r = dm_tm_block_is_shared(s->info->tm, left_b, &left_shared);
1005 if (r)
1006 return r;
1007
1008 if (!left_shared) {
1009 r = get_node_free_space(s->info, left_b, &free_space);
1010 if (r)
1011 return r;
1012
1013 if (free_space >= SPACE_THRESHOLD)
1014 return rebalance_left(s, vt, parent_index, key);
1015 }
1016 }
1017
1018 /* Should we move entries to the right sibling? */
1019 if (parent_index < (nr_parent - 1)) {
1020 dm_block_t right_b = value64(parent, parent_index + 1);
1021 r = dm_tm_block_is_shared(s->info->tm, right_b, &right_shared);
1022 if (r)
1023 return r;
1024
1025 if (!right_shared) {
1026 r = get_node_free_space(s->info, right_b, &free_space);
1027 if (r)
1028 return r;
1029
1030 if (free_space >= SPACE_THRESHOLD)
1031 return rebalance_right(s, vt, parent_index, key);
1032 }
1033 }
1034
1035 /*
1036 * We need to split the node, normally we split two nodes
1037 * into three. But when inserting a sequence that is either
1038 * monotonically increasing or decreasing it's better to split
1039 * a single node into two.
1040 */
1041 if (left_shared || right_shared || (nr_parent <= 2) ||
1042 (parent_index == 0) || (parent_index + 1 == nr_parent)) {
1043 return split_one_into_two(s, parent_index, vt, key);
1044 } else {
1045 return split_two_into_three(s, parent_index, vt, key);
1046 }
1047}
1048
1049/*
1050 * Does the node contain a particular key?
1051 */
1052static bool contains_key(struct btree_node *node, uint64_t key)
1053{
1054 int i = lower_bound(node, key);
1055
1056 if (i >= 0 && le64_to_cpu(node->keys[i]) == key)
1057 return true;
1058
1059 return false;
1060}
1061
1062/*
1063 * In general we preemptively make sure there's a free entry in every
1064 * node on the spine when doing an insert. But we can avoid that with
1065 * leaf nodes if we know it's an overwrite.
1066 */
1067static bool has_space_for_insert(struct btree_node *node, uint64_t key)
1068{
1069 if (node->header.nr_entries == node->header.max_entries) {
1070 if (le32_to_cpu(node->header.flags) & LEAF_NODE) {
1071 /* we don't need space if it's an overwrite */
1072 return contains_key(node, key);
1073 }
1074
1075 return false;
1076 }
1077
1078 return true;
1079}
1080
1081static int btree_insert_raw(struct shadow_spine *s, dm_block_t root,
1082 struct dm_btree_value_type *vt,
1083 uint64_t key, unsigned *index)
1084{
1085 int r, i = *index, top = 1;
1086 struct btree_node *node;
1087
1088 for (;;) {
1089 r = shadow_step(s, root, vt);
1090 if (r < 0)
1091 return r;
1092
1093 node = dm_block_data(shadow_current(s));
1094
1095 /*
1096 * We have to patch up the parent node, ugly, but I don't
1097 * see a way to do this automatically as part of the spine
1098 * op.
1099 */
1100 if (shadow_has_parent(s) && i >= 0) { /* FIXME: second clause unness. */
1101 __le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
1102
1103 __dm_bless_for_disk(&location);
1104 memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i),
1105 &location, sizeof(__le64));
1106 }
1107
1108 node = dm_block_data(shadow_current(s));
1109
1110 if (!has_space_for_insert(node, key)) {
1111 if (top)
1112 r = btree_split_beneath(s, key);
1113 else
1114 r = rebalance_or_split(s, vt, i, key);
1115
1116 if (r < 0)
1117 return r;
1118
1119 /* making space can cause the current node to change */
1120 node = dm_block_data(shadow_current(s));
1121 }
1122
1123 i = lower_bound(node, key);
1124
1125 if (le32_to_cpu(node->header.flags) & LEAF_NODE)
1126 break;
1127
1128 if (i < 0) {
1129 /* change the bounds on the lowest key */
1130 node->keys[0] = cpu_to_le64(key);
1131 i = 0;
1132 }
1133
1134 root = value64(node, i);
1135 top = 0;
1136 }
1137
1138 if (i < 0 || le64_to_cpu(node->keys[i]) != key)
1139 i++;
1140
1141 *index = i;
1142 return 0;
1143}
1144
1145static int __btree_get_overwrite_leaf(struct shadow_spine *s, dm_block_t root,
1146 uint64_t key, int *index)
1147{
1148 int r, i = -1;
1149 struct btree_node *node;
1150
1151 *index = 0;
1152 for (;;) {
1153 r = shadow_step(s, root, &s->info->value_type);
1154 if (r < 0)
1155 return r;
1156
1157 node = dm_block_data(shadow_current(s));
1158
1159 /*
1160 * We have to patch up the parent node, ugly, but I don't
1161 * see a way to do this automatically as part of the spine
1162 * op.
1163 */
1164 if (shadow_has_parent(s) && i >= 0) {
1165 __le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
1166
1167 __dm_bless_for_disk(&location);
1168 memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i),
1169 &location, sizeof(__le64));
1170 }
1171
1172 node = dm_block_data(shadow_current(s));
1173 i = lower_bound(node, key);
1174
1175 BUG_ON(i < 0);
1176 BUG_ON(i >= le32_to_cpu(node->header.nr_entries));
1177
1178 if (le32_to_cpu(node->header.flags) & LEAF_NODE) {
1179 if (key != le64_to_cpu(node->keys[i]))
1180 return -EINVAL;
1181 break;
1182 }
1183
1184 root = value64(node, i);
1185 }
1186
1187 *index = i;
1188 return 0;
1189}
1190
1191int btree_get_overwrite_leaf(struct dm_btree_info *info, dm_block_t root,
1192 uint64_t key, int *index,
1193 dm_block_t *new_root, struct dm_block **leaf)
1194{
1195 int r;
1196 struct shadow_spine spine;
1197
1198 BUG_ON(info->levels > 1);
1199 init_shadow_spine(&spine, info);
1200 r = __btree_get_overwrite_leaf(&spine, root, key, index);
1201 if (!r) {
1202 *new_root = shadow_root(&spine);
1203 *leaf = shadow_current(&spine);
1204
1205 /*
1206 * Decrement the count so exit_shadow_spine() doesn't
1207 * unlock the leaf.
1208 */
1209 spine.count--;
1210 }
1211 exit_shadow_spine(&spine);
1212
1213 return r;
1214}
1215
1216static bool need_insert(struct btree_node *node, uint64_t *keys,
1217 unsigned level, unsigned index)
1218{
1219 return ((index >= le32_to_cpu(node->header.nr_entries)) ||
1220 (le64_to_cpu(node->keys[index]) != keys[level]));
1221}
1222
1223static int insert(struct dm_btree_info *info, dm_block_t root,
1224 uint64_t *keys, void *value, dm_block_t *new_root,
1225 int *inserted)
1226 __dm_written_to_disk(value)
1227{
1228 int r;
1229 unsigned level, index = -1, last_level = info->levels - 1;
1230 dm_block_t block = root;
1231 struct shadow_spine spine;
1232 struct btree_node *n;
1233 struct dm_btree_value_type le64_type;
1234
1235 init_le64_type(info->tm, &le64_type);
1236 init_shadow_spine(&spine, info);
1237
1238 for (level = 0; level < (info->levels - 1); level++) {
1239 r = btree_insert_raw(&spine, block, &le64_type, keys[level], &index);
1240 if (r < 0)
1241 goto bad;
1242
1243 n = dm_block_data(shadow_current(&spine));
1244
1245 if (need_insert(n, keys, level, index)) {
1246 dm_block_t new_tree;
1247 __le64 new_le;
1248
1249 r = dm_btree_empty(info, &new_tree);
1250 if (r < 0)
1251 goto bad;
1252
1253 new_le = cpu_to_le64(new_tree);
1254 __dm_bless_for_disk(&new_le);
1255
1256 r = insert_at(sizeof(uint64_t), n, index,
1257 keys[level], &new_le);
1258 if (r)
1259 goto bad;
1260 }
1261
1262 if (level < last_level)
1263 block = value64(n, index);
1264 }
1265
1266 r = btree_insert_raw(&spine, block, &info->value_type,
1267 keys[level], &index);
1268 if (r < 0)
1269 goto bad;
1270
1271 n = dm_block_data(shadow_current(&spine));
1272
1273 if (need_insert(n, keys, level, index)) {
1274 if (inserted)
1275 *inserted = 1;
1276
1277 r = insert_at(info->value_type.size, n, index,
1278 keys[level], value);
1279 if (r)
1280 goto bad_unblessed;
1281 } else {
1282 if (inserted)
1283 *inserted = 0;
1284
1285 if (info->value_type.dec &&
1286 (!info->value_type.equal ||
1287 !info->value_type.equal(
1288 info->value_type.context,
1289 value_ptr(n, index),
1290 value))) {
1291 info->value_type.dec(info->value_type.context,
1292 value_ptr(n, index), 1);
1293 }
1294 memcpy_disk(value_ptr(n, index),
1295 value, info->value_type.size);
1296 }
1297
1298 *new_root = shadow_root(&spine);
1299 exit_shadow_spine(&spine);
1300
1301 return 0;
1302
1303bad:
1304 __dm_unbless_for_disk(value);
1305bad_unblessed:
1306 exit_shadow_spine(&spine);
1307 return r;
1308}
1309
1310int dm_btree_insert(struct dm_btree_info *info, dm_block_t root,
1311 uint64_t *keys, void *value, dm_block_t *new_root)
1312 __dm_written_to_disk(value)
1313{
1314 return insert(info, root, keys, value, new_root, NULL);
1315}
1316EXPORT_SYMBOL_GPL(dm_btree_insert);
1317
1318int dm_btree_insert_notify(struct dm_btree_info *info, dm_block_t root,
1319 uint64_t *keys, void *value, dm_block_t *new_root,
1320 int *inserted)
1321 __dm_written_to_disk(value)
1322{
1323 return insert(info, root, keys, value, new_root, inserted);
1324}
1325EXPORT_SYMBOL_GPL(dm_btree_insert_notify);
1326
1327/*----------------------------------------------------------------*/
1328
1329static int find_key(struct ro_spine *s, dm_block_t block, bool find_highest,
1330 uint64_t *result_key, dm_block_t *next_block)
1331{
1332 int i, r;
1333 uint32_t flags;
1334
1335 do {
1336 r = ro_step(s, block);
1337 if (r < 0)
1338 return r;
1339
1340 flags = le32_to_cpu(ro_node(s)->header.flags);
1341 i = le32_to_cpu(ro_node(s)->header.nr_entries);
1342 if (!i)
1343 return -ENODATA;
1344 else
1345 i--;
1346
1347 if (find_highest)
1348 *result_key = le64_to_cpu(ro_node(s)->keys[i]);
1349 else
1350 *result_key = le64_to_cpu(ro_node(s)->keys[0]);
1351
1352 if (next_block || flags & INTERNAL_NODE) {
1353 if (find_highest)
1354 block = value64(ro_node(s), i);
1355 else
1356 block = value64(ro_node(s), 0);
1357 }
1358
1359 } while (flags & INTERNAL_NODE);
1360
1361 if (next_block)
1362 *next_block = block;
1363 return 0;
1364}
1365
1366static int dm_btree_find_key(struct dm_btree_info *info, dm_block_t root,
1367 bool find_highest, uint64_t *result_keys)
1368{
1369 int r = 0, count = 0, level;
1370 struct ro_spine spine;
1371
1372 init_ro_spine(&spine, info);
1373 for (level = 0; level < info->levels; level++) {
1374 r = find_key(&spine, root, find_highest, result_keys + level,
1375 level == info->levels - 1 ? NULL : &root);
1376 if (r == -ENODATA) {
1377 r = 0;
1378 break;
1379
1380 } else if (r)
1381 break;
1382
1383 count++;
1384 }
1385 exit_ro_spine(&spine);
1386
1387 return r ? r : count;
1388}
1389
1390int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root,
1391 uint64_t *result_keys)
1392{
1393 return dm_btree_find_key(info, root, true, result_keys);
1394}
1395EXPORT_SYMBOL_GPL(dm_btree_find_highest_key);
1396
1397int dm_btree_find_lowest_key(struct dm_btree_info *info, dm_block_t root,
1398 uint64_t *result_keys)
1399{
1400 return dm_btree_find_key(info, root, false, result_keys);
1401}
1402EXPORT_SYMBOL_GPL(dm_btree_find_lowest_key);
1403
1404/*----------------------------------------------------------------*/
1405
1406/*
1407 * FIXME: We shouldn't use a recursive algorithm when we have limited stack
1408 * space. Also this only works for single level trees.
1409 */
1410static int walk_node(struct dm_btree_info *info, dm_block_t block,
1411 int (*fn)(void *context, uint64_t *keys, void *leaf),
1412 void *context)
1413{
1414 int r;
1415 unsigned i, nr;
1416 struct dm_block *node;
1417 struct btree_node *n;
1418 uint64_t keys;
1419
1420 r = bn_read_lock(info, block, &node);
1421 if (r)
1422 return r;
1423
1424 n = dm_block_data(node);
1425
1426 nr = le32_to_cpu(n->header.nr_entries);
1427 for (i = 0; i < nr; i++) {
1428 if (le32_to_cpu(n->header.flags) & INTERNAL_NODE) {
1429 r = walk_node(info, value64(n, i), fn, context);
1430 if (r)
1431 goto out;
1432 } else {
1433 keys = le64_to_cpu(*key_ptr(n, i));
1434 r = fn(context, &keys, value_ptr(n, i));
1435 if (r)
1436 goto out;
1437 }
1438 }
1439
1440out:
1441 dm_tm_unlock(info->tm, node);
1442 return r;
1443}
1444
1445int dm_btree_walk(struct dm_btree_info *info, dm_block_t root,
1446 int (*fn)(void *context, uint64_t *keys, void *leaf),
1447 void *context)
1448{
1449 BUG_ON(info->levels > 1);
1450 return walk_node(info, root, fn, context);
1451}
1452EXPORT_SYMBOL_GPL(dm_btree_walk);
1453
1454/*----------------------------------------------------------------*/
1455
1456static void prefetch_values(struct dm_btree_cursor *c)
1457{
1458 unsigned i, nr;
1459 __le64 value_le;
1460 struct cursor_node *n = c->nodes + c->depth - 1;
1461 struct btree_node *bn = dm_block_data(n->b);
1462 struct dm_block_manager *bm = dm_tm_get_bm(c->info->tm);
1463
1464 BUG_ON(c->info->value_type.size != sizeof(value_le));
1465
1466 nr = le32_to_cpu(bn->header.nr_entries);
1467 for (i = 0; i < nr; i++) {
1468 memcpy(&value_le, value_ptr(bn, i), sizeof(value_le));
1469 dm_bm_prefetch(bm, le64_to_cpu(value_le));
1470 }
1471}
1472
1473static bool leaf_node(struct dm_btree_cursor *c)
1474{
1475 struct cursor_node *n = c->nodes + c->depth - 1;
1476 struct btree_node *bn = dm_block_data(n->b);
1477
1478 return le32_to_cpu(bn->header.flags) & LEAF_NODE;
1479}
1480
1481static int push_node(struct dm_btree_cursor *c, dm_block_t b)
1482{
1483 int r;
1484 struct cursor_node *n = c->nodes + c->depth;
1485
1486 if (c->depth >= DM_BTREE_CURSOR_MAX_DEPTH - 1) {
1487 DMERR("couldn't push cursor node, stack depth too high");
1488 return -EINVAL;
1489 }
1490
1491 r = bn_read_lock(c->info, b, &n->b);
1492 if (r)
1493 return r;
1494
1495 n->index = 0;
1496 c->depth++;
1497
1498 if (c->prefetch_leaves || !leaf_node(c))
1499 prefetch_values(c);
1500
1501 return 0;
1502}
1503
1504static void pop_node(struct dm_btree_cursor *c)
1505{
1506 c->depth--;
1507 unlock_block(c->info, c->nodes[c->depth].b);
1508}
1509
1510static int inc_or_backtrack(struct dm_btree_cursor *c)
1511{
1512 struct cursor_node *n;
1513 struct btree_node *bn;
1514
1515 for (;;) {
1516 if (!c->depth)
1517 return -ENODATA;
1518
1519 n = c->nodes + c->depth - 1;
1520 bn = dm_block_data(n->b);
1521
1522 n->index++;
1523 if (n->index < le32_to_cpu(bn->header.nr_entries))
1524 break;
1525
1526 pop_node(c);
1527 }
1528
1529 return 0;
1530}
1531
1532static int find_leaf(struct dm_btree_cursor *c)
1533{
1534 int r = 0;
1535 struct cursor_node *n;
1536 struct btree_node *bn;
1537 __le64 value_le;
1538
1539 for (;;) {
1540 n = c->nodes + c->depth - 1;
1541 bn = dm_block_data(n->b);
1542
1543 if (le32_to_cpu(bn->header.flags) & LEAF_NODE)
1544 break;
1545
1546 memcpy(&value_le, value_ptr(bn, n->index), sizeof(value_le));
1547 r = push_node(c, le64_to_cpu(value_le));
1548 if (r) {
1549 DMERR("push_node failed");
1550 break;
1551 }
1552 }
1553
1554 if (!r && (le32_to_cpu(bn->header.nr_entries) == 0))
1555 return -ENODATA;
1556
1557 return r;
1558}
1559
1560int dm_btree_cursor_begin(struct dm_btree_info *info, dm_block_t root,
1561 bool prefetch_leaves, struct dm_btree_cursor *c)
1562{
1563 int r;
1564
1565 c->info = info;
1566 c->root = root;
1567 c->depth = 0;
1568 c->prefetch_leaves = prefetch_leaves;
1569
1570 r = push_node(c, root);
1571 if (r)
1572 return r;
1573
1574 return find_leaf(c);
1575}
1576EXPORT_SYMBOL_GPL(dm_btree_cursor_begin);
1577
1578void dm_btree_cursor_end(struct dm_btree_cursor *c)
1579{
1580 while (c->depth)
1581 pop_node(c);
1582}
1583EXPORT_SYMBOL_GPL(dm_btree_cursor_end);
1584
1585int dm_btree_cursor_next(struct dm_btree_cursor *c)
1586{
1587 int r = inc_or_backtrack(c);
1588 if (!r) {
1589 r = find_leaf(c);
1590 if (r)
1591 DMERR("find_leaf failed");
1592 }
1593
1594 return r;
1595}
1596EXPORT_SYMBOL_GPL(dm_btree_cursor_next);
1597
1598int dm_btree_cursor_skip(struct dm_btree_cursor *c, uint32_t count)
1599{
1600 int r = 0;
1601
1602 while (count-- && !r)
1603 r = dm_btree_cursor_next(c);
1604
1605 return r;
1606}
1607EXPORT_SYMBOL_GPL(dm_btree_cursor_skip);
1608
1609int dm_btree_cursor_get_value(struct dm_btree_cursor *c, uint64_t *key, void *value_le)
1610{
1611 if (c->depth) {
1612 struct cursor_node *n = c->nodes + c->depth - 1;
1613 struct btree_node *bn = dm_block_data(n->b);
1614
1615 if (le32_to_cpu(bn->header.flags) & INTERNAL_NODE)
1616 return -EINVAL;
1617
1618 *key = le64_to_cpu(*key_ptr(bn, n->index));
1619 memcpy(value_le, value_ptr(bn, n->index), c->info->value_type.size);
1620 return 0;
1621
1622 } else
1623 return -ENODATA;
1624}
1625EXPORT_SYMBOL_GPL(dm_btree_cursor_get_value);
1/*
2 * Copyright (C) 2011 Red Hat, Inc.
3 *
4 * This file is released under the GPL.
5 */
6
7#include "dm-btree-internal.h"
8#include "dm-space-map.h"
9#include "dm-transaction-manager.h"
10
11#include <linux/export.h>
12#include <linux/device-mapper.h>
13
14#define DM_MSG_PREFIX "btree"
15
16/*----------------------------------------------------------------
17 * Array manipulation
18 *--------------------------------------------------------------*/
19static void memcpy_disk(void *dest, const void *src, size_t len)
20 __dm_written_to_disk(src)
21{
22 memcpy(dest, src, len);
23 __dm_unbless_for_disk(src);
24}
25
26static void array_insert(void *base, size_t elt_size, unsigned nr_elts,
27 unsigned index, void *elt)
28 __dm_written_to_disk(elt)
29{
30 if (index < nr_elts)
31 memmove(base + (elt_size * (index + 1)),
32 base + (elt_size * index),
33 (nr_elts - index) * elt_size);
34
35 memcpy_disk(base + (elt_size * index), elt, elt_size);
36}
37
38/*----------------------------------------------------------------*/
39
40/* makes the assumption that no two keys are the same. */
41static int bsearch(struct btree_node *n, uint64_t key, int want_hi)
42{
43 int lo = -1, hi = le32_to_cpu(n->header.nr_entries);
44
45 while (hi - lo > 1) {
46 int mid = lo + ((hi - lo) / 2);
47 uint64_t mid_key = le64_to_cpu(n->keys[mid]);
48
49 if (mid_key == key)
50 return mid;
51
52 if (mid_key < key)
53 lo = mid;
54 else
55 hi = mid;
56 }
57
58 return want_hi ? hi : lo;
59}
60
61int lower_bound(struct btree_node *n, uint64_t key)
62{
63 return bsearch(n, key, 0);
64}
65
66static int upper_bound(struct btree_node *n, uint64_t key)
67{
68 return bsearch(n, key, 1);
69}
70
71void inc_children(struct dm_transaction_manager *tm, struct btree_node *n,
72 struct dm_btree_value_type *vt)
73{
74 unsigned i;
75 uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
76
77 if (le32_to_cpu(n->header.flags) & INTERNAL_NODE)
78 for (i = 0; i < nr_entries; i++)
79 dm_tm_inc(tm, value64(n, i));
80 else if (vt->inc)
81 for (i = 0; i < nr_entries; i++)
82 vt->inc(vt->context, value_ptr(n, i));
83}
84
85static int insert_at(size_t value_size, struct btree_node *node, unsigned index,
86 uint64_t key, void *value)
87 __dm_written_to_disk(value)
88{
89 uint32_t nr_entries = le32_to_cpu(node->header.nr_entries);
90 __le64 key_le = cpu_to_le64(key);
91
92 if (index > nr_entries ||
93 index >= le32_to_cpu(node->header.max_entries)) {
94 DMERR("too many entries in btree node for insert");
95 __dm_unbless_for_disk(value);
96 return -ENOMEM;
97 }
98
99 __dm_bless_for_disk(&key_le);
100
101 array_insert(node->keys, sizeof(*node->keys), nr_entries, index, &key_le);
102 array_insert(value_base(node), value_size, nr_entries, index, value);
103 node->header.nr_entries = cpu_to_le32(nr_entries + 1);
104
105 return 0;
106}
107
108/*----------------------------------------------------------------*/
109
110/*
111 * We want 3n entries (for some n). This works more nicely for repeated
112 * insert remove loops than (2n + 1).
113 */
114static uint32_t calc_max_entries(size_t value_size, size_t block_size)
115{
116 uint32_t total, n;
117 size_t elt_size = sizeof(uint64_t) + value_size; /* key + value */
118
119 block_size -= sizeof(struct node_header);
120 total = block_size / elt_size;
121 n = total / 3; /* rounds down */
122
123 return 3 * n;
124}
125
126int dm_btree_empty(struct dm_btree_info *info, dm_block_t *root)
127{
128 int r;
129 struct dm_block *b;
130 struct btree_node *n;
131 size_t block_size;
132 uint32_t max_entries;
133
134 r = new_block(info, &b);
135 if (r < 0)
136 return r;
137
138 block_size = dm_bm_block_size(dm_tm_get_bm(info->tm));
139 max_entries = calc_max_entries(info->value_type.size, block_size);
140
141 n = dm_block_data(b);
142 memset(n, 0, block_size);
143 n->header.flags = cpu_to_le32(LEAF_NODE);
144 n->header.nr_entries = cpu_to_le32(0);
145 n->header.max_entries = cpu_to_le32(max_entries);
146 n->header.value_size = cpu_to_le32(info->value_type.size);
147
148 *root = dm_block_location(b);
149 unlock_block(info, b);
150
151 return 0;
152}
153EXPORT_SYMBOL_GPL(dm_btree_empty);
154
155/*----------------------------------------------------------------*/
156
157/*
158 * Deletion uses a recursive algorithm, since we have limited stack space
159 * we explicitly manage our own stack on the heap.
160 */
161#define MAX_SPINE_DEPTH 64
162struct frame {
163 struct dm_block *b;
164 struct btree_node *n;
165 unsigned level;
166 unsigned nr_children;
167 unsigned current_child;
168};
169
170struct del_stack {
171 struct dm_btree_info *info;
172 struct dm_transaction_manager *tm;
173 int top;
174 struct frame spine[MAX_SPINE_DEPTH];
175};
176
177static int top_frame(struct del_stack *s, struct frame **f)
178{
179 if (s->top < 0) {
180 DMERR("btree deletion stack empty");
181 return -EINVAL;
182 }
183
184 *f = s->spine + s->top;
185
186 return 0;
187}
188
189static int unprocessed_frames(struct del_stack *s)
190{
191 return s->top >= 0;
192}
193
194static void prefetch_children(struct del_stack *s, struct frame *f)
195{
196 unsigned i;
197 struct dm_block_manager *bm = dm_tm_get_bm(s->tm);
198
199 for (i = 0; i < f->nr_children; i++)
200 dm_bm_prefetch(bm, value64(f->n, i));
201}
202
203static bool is_internal_level(struct dm_btree_info *info, struct frame *f)
204{
205 return f->level < (info->levels - 1);
206}
207
208static int push_frame(struct del_stack *s, dm_block_t b, unsigned level)
209{
210 int r;
211 uint32_t ref_count;
212
213 if (s->top >= MAX_SPINE_DEPTH - 1) {
214 DMERR("btree deletion stack out of memory");
215 return -ENOMEM;
216 }
217
218 r = dm_tm_ref(s->tm, b, &ref_count);
219 if (r)
220 return r;
221
222 if (ref_count > 1)
223 /*
224 * This is a shared node, so we can just decrement it's
225 * reference counter and leave the children.
226 */
227 dm_tm_dec(s->tm, b);
228
229 else {
230 uint32_t flags;
231 struct frame *f = s->spine + ++s->top;
232
233 r = dm_tm_read_lock(s->tm, b, &btree_node_validator, &f->b);
234 if (r) {
235 s->top--;
236 return r;
237 }
238
239 f->n = dm_block_data(f->b);
240 f->level = level;
241 f->nr_children = le32_to_cpu(f->n->header.nr_entries);
242 f->current_child = 0;
243
244 flags = le32_to_cpu(f->n->header.flags);
245 if (flags & INTERNAL_NODE || is_internal_level(s->info, f))
246 prefetch_children(s, f);
247 }
248
249 return 0;
250}
251
252static void pop_frame(struct del_stack *s)
253{
254 struct frame *f = s->spine + s->top--;
255
256 dm_tm_dec(s->tm, dm_block_location(f->b));
257 dm_tm_unlock(s->tm, f->b);
258}
259
260static void unlock_all_frames(struct del_stack *s)
261{
262 struct frame *f;
263
264 while (unprocessed_frames(s)) {
265 f = s->spine + s->top--;
266 dm_tm_unlock(s->tm, f->b);
267 }
268}
269
270int dm_btree_del(struct dm_btree_info *info, dm_block_t root)
271{
272 int r;
273 struct del_stack *s;
274
275 /*
276 * dm_btree_del() is called via an ioctl, as such should be
277 * considered an FS op. We can't recurse back into the FS, so we
278 * allocate GFP_NOFS.
279 */
280 s = kmalloc(sizeof(*s), GFP_NOFS);
281 if (!s)
282 return -ENOMEM;
283 s->info = info;
284 s->tm = info->tm;
285 s->top = -1;
286
287 r = push_frame(s, root, 0);
288 if (r)
289 goto out;
290
291 while (unprocessed_frames(s)) {
292 uint32_t flags;
293 struct frame *f;
294 dm_block_t b;
295
296 r = top_frame(s, &f);
297 if (r)
298 goto out;
299
300 if (f->current_child >= f->nr_children) {
301 pop_frame(s);
302 continue;
303 }
304
305 flags = le32_to_cpu(f->n->header.flags);
306 if (flags & INTERNAL_NODE) {
307 b = value64(f->n, f->current_child);
308 f->current_child++;
309 r = push_frame(s, b, f->level);
310 if (r)
311 goto out;
312
313 } else if (is_internal_level(info, f)) {
314 b = value64(f->n, f->current_child);
315 f->current_child++;
316 r = push_frame(s, b, f->level + 1);
317 if (r)
318 goto out;
319
320 } else {
321 if (info->value_type.dec) {
322 unsigned i;
323
324 for (i = 0; i < f->nr_children; i++)
325 info->value_type.dec(info->value_type.context,
326 value_ptr(f->n, i));
327 }
328 pop_frame(s);
329 }
330 }
331out:
332 if (r) {
333 /* cleanup all frames of del_stack */
334 unlock_all_frames(s);
335 }
336 kfree(s);
337
338 return r;
339}
340EXPORT_SYMBOL_GPL(dm_btree_del);
341
342/*----------------------------------------------------------------*/
343
344static int btree_lookup_raw(struct ro_spine *s, dm_block_t block, uint64_t key,
345 int (*search_fn)(struct btree_node *, uint64_t),
346 uint64_t *result_key, void *v, size_t value_size)
347{
348 int i, r;
349 uint32_t flags, nr_entries;
350
351 do {
352 r = ro_step(s, block);
353 if (r < 0)
354 return r;
355
356 i = search_fn(ro_node(s), key);
357
358 flags = le32_to_cpu(ro_node(s)->header.flags);
359 nr_entries = le32_to_cpu(ro_node(s)->header.nr_entries);
360 if (i < 0 || i >= nr_entries)
361 return -ENODATA;
362
363 if (flags & INTERNAL_NODE)
364 block = value64(ro_node(s), i);
365
366 } while (!(flags & LEAF_NODE));
367
368 *result_key = le64_to_cpu(ro_node(s)->keys[i]);
369 memcpy(v, value_ptr(ro_node(s), i), value_size);
370
371 return 0;
372}
373
374int dm_btree_lookup(struct dm_btree_info *info, dm_block_t root,
375 uint64_t *keys, void *value_le)
376{
377 unsigned level, last_level = info->levels - 1;
378 int r = -ENODATA;
379 uint64_t rkey;
380 __le64 internal_value_le;
381 struct ro_spine spine;
382
383 init_ro_spine(&spine, info);
384 for (level = 0; level < info->levels; level++) {
385 size_t size;
386 void *value_p;
387
388 if (level == last_level) {
389 value_p = value_le;
390 size = info->value_type.size;
391
392 } else {
393 value_p = &internal_value_le;
394 size = sizeof(uint64_t);
395 }
396
397 r = btree_lookup_raw(&spine, root, keys[level],
398 lower_bound, &rkey,
399 value_p, size);
400
401 if (!r) {
402 if (rkey != keys[level]) {
403 exit_ro_spine(&spine);
404 return -ENODATA;
405 }
406 } else {
407 exit_ro_spine(&spine);
408 return r;
409 }
410
411 root = le64_to_cpu(internal_value_le);
412 }
413 exit_ro_spine(&spine);
414
415 return r;
416}
417EXPORT_SYMBOL_GPL(dm_btree_lookup);
418
419static int dm_btree_lookup_next_single(struct dm_btree_info *info, dm_block_t root,
420 uint64_t key, uint64_t *rkey, void *value_le)
421{
422 int r, i;
423 uint32_t flags, nr_entries;
424 struct dm_block *node;
425 struct btree_node *n;
426
427 r = bn_read_lock(info, root, &node);
428 if (r)
429 return r;
430
431 n = dm_block_data(node);
432 flags = le32_to_cpu(n->header.flags);
433 nr_entries = le32_to_cpu(n->header.nr_entries);
434
435 if (flags & INTERNAL_NODE) {
436 i = lower_bound(n, key);
437 if (i < 0) {
438 /*
439 * avoid early -ENODATA return when all entries are
440 * higher than the search @key.
441 */
442 i = 0;
443 }
444 if (i >= nr_entries) {
445 r = -ENODATA;
446 goto out;
447 }
448
449 r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
450 if (r == -ENODATA && i < (nr_entries - 1)) {
451 i++;
452 r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
453 }
454
455 } else {
456 i = upper_bound(n, key);
457 if (i < 0 || i >= nr_entries) {
458 r = -ENODATA;
459 goto out;
460 }
461
462 *rkey = le64_to_cpu(n->keys[i]);
463 memcpy(value_le, value_ptr(n, i), info->value_type.size);
464 }
465out:
466 dm_tm_unlock(info->tm, node);
467 return r;
468}
469
470int dm_btree_lookup_next(struct dm_btree_info *info, dm_block_t root,
471 uint64_t *keys, uint64_t *rkey, void *value_le)
472{
473 unsigned level;
474 int r = -ENODATA;
475 __le64 internal_value_le;
476 struct ro_spine spine;
477
478 init_ro_spine(&spine, info);
479 for (level = 0; level < info->levels - 1u; level++) {
480 r = btree_lookup_raw(&spine, root, keys[level],
481 lower_bound, rkey,
482 &internal_value_le, sizeof(uint64_t));
483 if (r)
484 goto out;
485
486 if (*rkey != keys[level]) {
487 r = -ENODATA;
488 goto out;
489 }
490
491 root = le64_to_cpu(internal_value_le);
492 }
493
494 r = dm_btree_lookup_next_single(info, root, keys[level], rkey, value_le);
495out:
496 exit_ro_spine(&spine);
497 return r;
498}
499
500EXPORT_SYMBOL_GPL(dm_btree_lookup_next);
501
502/*
503 * Splits a node by creating a sibling node and shifting half the nodes
504 * contents across. Assumes there is a parent node, and it has room for
505 * another child.
506 *
507 * Before:
508 * +--------+
509 * | Parent |
510 * +--------+
511 * |
512 * v
513 * +----------+
514 * | A ++++++ |
515 * +----------+
516 *
517 *
518 * After:
519 * +--------+
520 * | Parent |
521 * +--------+
522 * | |
523 * v +------+
524 * +---------+ |
525 * | A* +++ | v
526 * +---------+ +-------+
527 * | B +++ |
528 * +-------+
529 *
530 * Where A* is a shadow of A.
531 */
532static int btree_split_sibling(struct shadow_spine *s, unsigned parent_index,
533 uint64_t key)
534{
535 int r;
536 size_t size;
537 unsigned nr_left, nr_right;
538 struct dm_block *left, *right, *parent;
539 struct btree_node *ln, *rn, *pn;
540 __le64 location;
541
542 left = shadow_current(s);
543
544 r = new_block(s->info, &right);
545 if (r < 0)
546 return r;
547
548 ln = dm_block_data(left);
549 rn = dm_block_data(right);
550
551 nr_left = le32_to_cpu(ln->header.nr_entries) / 2;
552 nr_right = le32_to_cpu(ln->header.nr_entries) - nr_left;
553
554 ln->header.nr_entries = cpu_to_le32(nr_left);
555
556 rn->header.flags = ln->header.flags;
557 rn->header.nr_entries = cpu_to_le32(nr_right);
558 rn->header.max_entries = ln->header.max_entries;
559 rn->header.value_size = ln->header.value_size;
560 memcpy(rn->keys, ln->keys + nr_left, nr_right * sizeof(rn->keys[0]));
561
562 size = le32_to_cpu(ln->header.flags) & INTERNAL_NODE ?
563 sizeof(uint64_t) : s->info->value_type.size;
564 memcpy(value_ptr(rn, 0), value_ptr(ln, nr_left),
565 size * nr_right);
566
567 /*
568 * Patch up the parent
569 */
570 parent = shadow_parent(s);
571
572 pn = dm_block_data(parent);
573 location = cpu_to_le64(dm_block_location(left));
574 __dm_bless_for_disk(&location);
575 memcpy_disk(value_ptr(pn, parent_index),
576 &location, sizeof(__le64));
577
578 location = cpu_to_le64(dm_block_location(right));
579 __dm_bless_for_disk(&location);
580
581 r = insert_at(sizeof(__le64), pn, parent_index + 1,
582 le64_to_cpu(rn->keys[0]), &location);
583 if (r) {
584 unlock_block(s->info, right);
585 return r;
586 }
587
588 if (key < le64_to_cpu(rn->keys[0])) {
589 unlock_block(s->info, right);
590 s->nodes[1] = left;
591 } else {
592 unlock_block(s->info, left);
593 s->nodes[1] = right;
594 }
595
596 return 0;
597}
598
599/*
600 * Splits a node by creating two new children beneath the given node.
601 *
602 * Before:
603 * +----------+
604 * | A ++++++ |
605 * +----------+
606 *
607 *
608 * After:
609 * +------------+
610 * | A (shadow) |
611 * +------------+
612 * | |
613 * +------+ +----+
614 * | |
615 * v v
616 * +-------+ +-------+
617 * | B +++ | | C +++ |
618 * +-------+ +-------+
619 */
620static int btree_split_beneath(struct shadow_spine *s, uint64_t key)
621{
622 int r;
623 size_t size;
624 unsigned nr_left, nr_right;
625 struct dm_block *left, *right, *new_parent;
626 struct btree_node *pn, *ln, *rn;
627 __le64 val;
628
629 new_parent = shadow_current(s);
630
631 r = new_block(s->info, &left);
632 if (r < 0)
633 return r;
634
635 r = new_block(s->info, &right);
636 if (r < 0) {
637 unlock_block(s->info, left);
638 return r;
639 }
640
641 pn = dm_block_data(new_parent);
642 ln = dm_block_data(left);
643 rn = dm_block_data(right);
644
645 nr_left = le32_to_cpu(pn->header.nr_entries) / 2;
646 nr_right = le32_to_cpu(pn->header.nr_entries) - nr_left;
647
648 ln->header.flags = pn->header.flags;
649 ln->header.nr_entries = cpu_to_le32(nr_left);
650 ln->header.max_entries = pn->header.max_entries;
651 ln->header.value_size = pn->header.value_size;
652
653 rn->header.flags = pn->header.flags;
654 rn->header.nr_entries = cpu_to_le32(nr_right);
655 rn->header.max_entries = pn->header.max_entries;
656 rn->header.value_size = pn->header.value_size;
657
658 memcpy(ln->keys, pn->keys, nr_left * sizeof(pn->keys[0]));
659 memcpy(rn->keys, pn->keys + nr_left, nr_right * sizeof(pn->keys[0]));
660
661 size = le32_to_cpu(pn->header.flags) & INTERNAL_NODE ?
662 sizeof(__le64) : s->info->value_type.size;
663 memcpy(value_ptr(ln, 0), value_ptr(pn, 0), nr_left * size);
664 memcpy(value_ptr(rn, 0), value_ptr(pn, nr_left),
665 nr_right * size);
666
667 /* new_parent should just point to l and r now */
668 pn->header.flags = cpu_to_le32(INTERNAL_NODE);
669 pn->header.nr_entries = cpu_to_le32(2);
670 pn->header.max_entries = cpu_to_le32(
671 calc_max_entries(sizeof(__le64),
672 dm_bm_block_size(
673 dm_tm_get_bm(s->info->tm))));
674 pn->header.value_size = cpu_to_le32(sizeof(__le64));
675
676 val = cpu_to_le64(dm_block_location(left));
677 __dm_bless_for_disk(&val);
678 pn->keys[0] = ln->keys[0];
679 memcpy_disk(value_ptr(pn, 0), &val, sizeof(__le64));
680
681 val = cpu_to_le64(dm_block_location(right));
682 __dm_bless_for_disk(&val);
683 pn->keys[1] = rn->keys[0];
684 memcpy_disk(value_ptr(pn, 1), &val, sizeof(__le64));
685
686 unlock_block(s->info, left);
687 unlock_block(s->info, right);
688 return 0;
689}
690
691static int btree_insert_raw(struct shadow_spine *s, dm_block_t root,
692 struct dm_btree_value_type *vt,
693 uint64_t key, unsigned *index)
694{
695 int r, i = *index, top = 1;
696 struct btree_node *node;
697
698 for (;;) {
699 r = shadow_step(s, root, vt);
700 if (r < 0)
701 return r;
702
703 node = dm_block_data(shadow_current(s));
704
705 /*
706 * We have to patch up the parent node, ugly, but I don't
707 * see a way to do this automatically as part of the spine
708 * op.
709 */
710 if (shadow_has_parent(s) && i >= 0) { /* FIXME: second clause unness. */
711 __le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
712
713 __dm_bless_for_disk(&location);
714 memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i),
715 &location, sizeof(__le64));
716 }
717
718 node = dm_block_data(shadow_current(s));
719
720 if (node->header.nr_entries == node->header.max_entries) {
721 if (top)
722 r = btree_split_beneath(s, key);
723 else
724 r = btree_split_sibling(s, i, key);
725
726 if (r < 0)
727 return r;
728 }
729
730 node = dm_block_data(shadow_current(s));
731
732 i = lower_bound(node, key);
733
734 if (le32_to_cpu(node->header.flags) & LEAF_NODE)
735 break;
736
737 if (i < 0) {
738 /* change the bounds on the lowest key */
739 node->keys[0] = cpu_to_le64(key);
740 i = 0;
741 }
742
743 root = value64(node, i);
744 top = 0;
745 }
746
747 if (i < 0 || le64_to_cpu(node->keys[i]) != key)
748 i++;
749
750 *index = i;
751 return 0;
752}
753
754static bool need_insert(struct btree_node *node, uint64_t *keys,
755 unsigned level, unsigned index)
756{
757 return ((index >= le32_to_cpu(node->header.nr_entries)) ||
758 (le64_to_cpu(node->keys[index]) != keys[level]));
759}
760
761static int insert(struct dm_btree_info *info, dm_block_t root,
762 uint64_t *keys, void *value, dm_block_t *new_root,
763 int *inserted)
764 __dm_written_to_disk(value)
765{
766 int r;
767 unsigned level, index = -1, last_level = info->levels - 1;
768 dm_block_t block = root;
769 struct shadow_spine spine;
770 struct btree_node *n;
771 struct dm_btree_value_type le64_type;
772
773 init_le64_type(info->tm, &le64_type);
774 init_shadow_spine(&spine, info);
775
776 for (level = 0; level < (info->levels - 1); level++) {
777 r = btree_insert_raw(&spine, block, &le64_type, keys[level], &index);
778 if (r < 0)
779 goto bad;
780
781 n = dm_block_data(shadow_current(&spine));
782
783 if (need_insert(n, keys, level, index)) {
784 dm_block_t new_tree;
785 __le64 new_le;
786
787 r = dm_btree_empty(info, &new_tree);
788 if (r < 0)
789 goto bad;
790
791 new_le = cpu_to_le64(new_tree);
792 __dm_bless_for_disk(&new_le);
793
794 r = insert_at(sizeof(uint64_t), n, index,
795 keys[level], &new_le);
796 if (r)
797 goto bad;
798 }
799
800 if (level < last_level)
801 block = value64(n, index);
802 }
803
804 r = btree_insert_raw(&spine, block, &info->value_type,
805 keys[level], &index);
806 if (r < 0)
807 goto bad;
808
809 n = dm_block_data(shadow_current(&spine));
810
811 if (need_insert(n, keys, level, index)) {
812 if (inserted)
813 *inserted = 1;
814
815 r = insert_at(info->value_type.size, n, index,
816 keys[level], value);
817 if (r)
818 goto bad_unblessed;
819 } else {
820 if (inserted)
821 *inserted = 0;
822
823 if (info->value_type.dec &&
824 (!info->value_type.equal ||
825 !info->value_type.equal(
826 info->value_type.context,
827 value_ptr(n, index),
828 value))) {
829 info->value_type.dec(info->value_type.context,
830 value_ptr(n, index));
831 }
832 memcpy_disk(value_ptr(n, index),
833 value, info->value_type.size);
834 }
835
836 *new_root = shadow_root(&spine);
837 exit_shadow_spine(&spine);
838
839 return 0;
840
841bad:
842 __dm_unbless_for_disk(value);
843bad_unblessed:
844 exit_shadow_spine(&spine);
845 return r;
846}
847
848int dm_btree_insert(struct dm_btree_info *info, dm_block_t root,
849 uint64_t *keys, void *value, dm_block_t *new_root)
850 __dm_written_to_disk(value)
851{
852 return insert(info, root, keys, value, new_root, NULL);
853}
854EXPORT_SYMBOL_GPL(dm_btree_insert);
855
856int dm_btree_insert_notify(struct dm_btree_info *info, dm_block_t root,
857 uint64_t *keys, void *value, dm_block_t *new_root,
858 int *inserted)
859 __dm_written_to_disk(value)
860{
861 return insert(info, root, keys, value, new_root, inserted);
862}
863EXPORT_SYMBOL_GPL(dm_btree_insert_notify);
864
865/*----------------------------------------------------------------*/
866
867static int find_key(struct ro_spine *s, dm_block_t block, bool find_highest,
868 uint64_t *result_key, dm_block_t *next_block)
869{
870 int i, r;
871 uint32_t flags;
872
873 do {
874 r = ro_step(s, block);
875 if (r < 0)
876 return r;
877
878 flags = le32_to_cpu(ro_node(s)->header.flags);
879 i = le32_to_cpu(ro_node(s)->header.nr_entries);
880 if (!i)
881 return -ENODATA;
882 else
883 i--;
884
885 if (find_highest)
886 *result_key = le64_to_cpu(ro_node(s)->keys[i]);
887 else
888 *result_key = le64_to_cpu(ro_node(s)->keys[0]);
889
890 if (next_block || flags & INTERNAL_NODE) {
891 if (find_highest)
892 block = value64(ro_node(s), i);
893 else
894 block = value64(ro_node(s), 0);
895 }
896
897 } while (flags & INTERNAL_NODE);
898
899 if (next_block)
900 *next_block = block;
901 return 0;
902}
903
904static int dm_btree_find_key(struct dm_btree_info *info, dm_block_t root,
905 bool find_highest, uint64_t *result_keys)
906{
907 int r = 0, count = 0, level;
908 struct ro_spine spine;
909
910 init_ro_spine(&spine, info);
911 for (level = 0; level < info->levels; level++) {
912 r = find_key(&spine, root, find_highest, result_keys + level,
913 level == info->levels - 1 ? NULL : &root);
914 if (r == -ENODATA) {
915 r = 0;
916 break;
917
918 } else if (r)
919 break;
920
921 count++;
922 }
923 exit_ro_spine(&spine);
924
925 return r ? r : count;
926}
927
928int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root,
929 uint64_t *result_keys)
930{
931 return dm_btree_find_key(info, root, true, result_keys);
932}
933EXPORT_SYMBOL_GPL(dm_btree_find_highest_key);
934
935int dm_btree_find_lowest_key(struct dm_btree_info *info, dm_block_t root,
936 uint64_t *result_keys)
937{
938 return dm_btree_find_key(info, root, false, result_keys);
939}
940EXPORT_SYMBOL_GPL(dm_btree_find_lowest_key);
941
942/*----------------------------------------------------------------*/
943
944/*
945 * FIXME: We shouldn't use a recursive algorithm when we have limited stack
946 * space. Also this only works for single level trees.
947 */
948static int walk_node(struct dm_btree_info *info, dm_block_t block,
949 int (*fn)(void *context, uint64_t *keys, void *leaf),
950 void *context)
951{
952 int r;
953 unsigned i, nr;
954 struct dm_block *node;
955 struct btree_node *n;
956 uint64_t keys;
957
958 r = bn_read_lock(info, block, &node);
959 if (r)
960 return r;
961
962 n = dm_block_data(node);
963
964 nr = le32_to_cpu(n->header.nr_entries);
965 for (i = 0; i < nr; i++) {
966 if (le32_to_cpu(n->header.flags) & INTERNAL_NODE) {
967 r = walk_node(info, value64(n, i), fn, context);
968 if (r)
969 goto out;
970 } else {
971 keys = le64_to_cpu(*key_ptr(n, i));
972 r = fn(context, &keys, value_ptr(n, i));
973 if (r)
974 goto out;
975 }
976 }
977
978out:
979 dm_tm_unlock(info->tm, node);
980 return r;
981}
982
983int dm_btree_walk(struct dm_btree_info *info, dm_block_t root,
984 int (*fn)(void *context, uint64_t *keys, void *leaf),
985 void *context)
986{
987 BUG_ON(info->levels > 1);
988 return walk_node(info, root, fn, context);
989}
990EXPORT_SYMBOL_GPL(dm_btree_walk);
991
992/*----------------------------------------------------------------*/
993
994static void prefetch_values(struct dm_btree_cursor *c)
995{
996 unsigned i, nr;
997 __le64 value_le;
998 struct cursor_node *n = c->nodes + c->depth - 1;
999 struct btree_node *bn = dm_block_data(n->b);
1000 struct dm_block_manager *bm = dm_tm_get_bm(c->info->tm);
1001
1002 BUG_ON(c->info->value_type.size != sizeof(value_le));
1003
1004 nr = le32_to_cpu(bn->header.nr_entries);
1005 for (i = 0; i < nr; i++) {
1006 memcpy(&value_le, value_ptr(bn, i), sizeof(value_le));
1007 dm_bm_prefetch(bm, le64_to_cpu(value_le));
1008 }
1009}
1010
1011static bool leaf_node(struct dm_btree_cursor *c)
1012{
1013 struct cursor_node *n = c->nodes + c->depth - 1;
1014 struct btree_node *bn = dm_block_data(n->b);
1015
1016 return le32_to_cpu(bn->header.flags) & LEAF_NODE;
1017}
1018
1019static int push_node(struct dm_btree_cursor *c, dm_block_t b)
1020{
1021 int r;
1022 struct cursor_node *n = c->nodes + c->depth;
1023
1024 if (c->depth >= DM_BTREE_CURSOR_MAX_DEPTH - 1) {
1025 DMERR("couldn't push cursor node, stack depth too high");
1026 return -EINVAL;
1027 }
1028
1029 r = bn_read_lock(c->info, b, &n->b);
1030 if (r)
1031 return r;
1032
1033 n->index = 0;
1034 c->depth++;
1035
1036 if (c->prefetch_leaves || !leaf_node(c))
1037 prefetch_values(c);
1038
1039 return 0;
1040}
1041
1042static void pop_node(struct dm_btree_cursor *c)
1043{
1044 c->depth--;
1045 unlock_block(c->info, c->nodes[c->depth].b);
1046}
1047
1048static int inc_or_backtrack(struct dm_btree_cursor *c)
1049{
1050 struct cursor_node *n;
1051 struct btree_node *bn;
1052
1053 for (;;) {
1054 if (!c->depth)
1055 return -ENODATA;
1056
1057 n = c->nodes + c->depth - 1;
1058 bn = dm_block_data(n->b);
1059
1060 n->index++;
1061 if (n->index < le32_to_cpu(bn->header.nr_entries))
1062 break;
1063
1064 pop_node(c);
1065 }
1066
1067 return 0;
1068}
1069
1070static int find_leaf(struct dm_btree_cursor *c)
1071{
1072 int r = 0;
1073 struct cursor_node *n;
1074 struct btree_node *bn;
1075 __le64 value_le;
1076
1077 for (;;) {
1078 n = c->nodes + c->depth - 1;
1079 bn = dm_block_data(n->b);
1080
1081 if (le32_to_cpu(bn->header.flags) & LEAF_NODE)
1082 break;
1083
1084 memcpy(&value_le, value_ptr(bn, n->index), sizeof(value_le));
1085 r = push_node(c, le64_to_cpu(value_le));
1086 if (r) {
1087 DMERR("push_node failed");
1088 break;
1089 }
1090 }
1091
1092 if (!r && (le32_to_cpu(bn->header.nr_entries) == 0))
1093 return -ENODATA;
1094
1095 return r;
1096}
1097
1098int dm_btree_cursor_begin(struct dm_btree_info *info, dm_block_t root,
1099 bool prefetch_leaves, struct dm_btree_cursor *c)
1100{
1101 int r;
1102
1103 c->info = info;
1104 c->root = root;
1105 c->depth = 0;
1106 c->prefetch_leaves = prefetch_leaves;
1107
1108 r = push_node(c, root);
1109 if (r)
1110 return r;
1111
1112 return find_leaf(c);
1113}
1114EXPORT_SYMBOL_GPL(dm_btree_cursor_begin);
1115
1116void dm_btree_cursor_end(struct dm_btree_cursor *c)
1117{
1118 while (c->depth)
1119 pop_node(c);
1120}
1121EXPORT_SYMBOL_GPL(dm_btree_cursor_end);
1122
1123int dm_btree_cursor_next(struct dm_btree_cursor *c)
1124{
1125 int r = inc_or_backtrack(c);
1126 if (!r) {
1127 r = find_leaf(c);
1128 if (r)
1129 DMERR("find_leaf failed");
1130 }
1131
1132 return r;
1133}
1134EXPORT_SYMBOL_GPL(dm_btree_cursor_next);
1135
1136int dm_btree_cursor_skip(struct dm_btree_cursor *c, uint32_t count)
1137{
1138 int r = 0;
1139
1140 while (count-- && !r)
1141 r = dm_btree_cursor_next(c);
1142
1143 return r;
1144}
1145EXPORT_SYMBOL_GPL(dm_btree_cursor_skip);
1146
1147int dm_btree_cursor_get_value(struct dm_btree_cursor *c, uint64_t *key, void *value_le)
1148{
1149 if (c->depth) {
1150 struct cursor_node *n = c->nodes + c->depth - 1;
1151 struct btree_node *bn = dm_block_data(n->b);
1152
1153 if (le32_to_cpu(bn->header.flags) & INTERNAL_NODE)
1154 return -EINVAL;
1155
1156 *key = le64_to_cpu(*key_ptr(bn, n->index));
1157 memcpy(value_le, value_ptr(bn, n->index), c->info->value_type.size);
1158 return 0;
1159
1160 } else
1161 return -ENODATA;
1162}
1163EXPORT_SYMBOL_GPL(dm_btree_cursor_get_value);