Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.17.
   1// SPDX-License-Identifier: GPL-2.0-only OR MIT
   2/*
   3 * Bluetooth HCI driver for Broadcom 4377/4378/4387 devices attached via PCIe
   4 *
   5 * Copyright (C) The Asahi Linux Contributors
   6 */
   7
   8#include <linux/async.h>
   9#include <linux/bitfield.h>
  10#include <linux/completion.h>
  11#include <linux/dma-mapping.h>
  12#include <linux/dmi.h>
  13#include <linux/firmware.h>
  14#include <linux/module.h>
  15#include <linux/msi.h>
  16#include <linux/of.h>
  17#include <linux/pci.h>
  18#include <linux/printk.h>
  19
  20#include <asm/unaligned.h>
  21
  22#include <net/bluetooth/bluetooth.h>
  23#include <net/bluetooth/hci_core.h>
  24
  25enum bcm4377_chip {
  26	BCM4377 = 0,
  27	BCM4378,
  28	BCM4387,
  29};
  30
  31#define BCM4377_DEVICE_ID 0x5fa0
  32#define BCM4378_DEVICE_ID 0x5f69
  33#define BCM4387_DEVICE_ID 0x5f71
  34
  35#define BCM4377_TIMEOUT 1000
  36
  37/*
  38 * These devices only support DMA transactions inside a 32bit window
  39 * (possibly to avoid 64 bit arithmetic). The window size cannot exceed
  40 * 0xffffffff but is always aligned down to the previous 0x200 byte boundary
  41 * which effectively limits the window to [start, start+0xfffffe00].
  42 * We just limit the DMA window to [0, 0xfffffe00] to make sure we don't
  43 * run into this limitation.
  44 */
  45#define BCM4377_DMA_MASK 0xfffffe00
  46
  47#define BCM4377_PCIECFG_BAR0_WINDOW1	   0x80
  48#define BCM4377_PCIECFG_BAR0_WINDOW2	   0x70
  49#define BCM4377_PCIECFG_BAR0_CORE2_WINDOW1 0x74
  50#define BCM4377_PCIECFG_BAR0_CORE2_WINDOW2 0x78
  51#define BCM4377_PCIECFG_BAR2_WINDOW	   0x84
  52
  53#define BCM4377_PCIECFG_BAR0_CORE2_WINDOW1_DEFAULT 0x18011000
  54#define BCM4377_PCIECFG_BAR2_WINDOW_DEFAULT	   0x19000000
  55
  56#define BCM4377_PCIECFG_SUBSYSTEM_CTRL 0x88
  57
  58#define BCM4377_BAR0_FW_DOORBELL 0x140
  59#define BCM4377_BAR0_RTI_CONTROL 0x144
  60
  61#define BCM4377_BAR0_SLEEP_CONTROL	      0x150
  62#define BCM4377_BAR0_SLEEP_CONTROL_UNQUIESCE  0
  63#define BCM4377_BAR0_SLEEP_CONTROL_AWAKE      2
  64#define BCM4377_BAR0_SLEEP_CONTROL_QUIESCE    3
  65
  66#define BCM4377_BAR0_DOORBELL	    0x174
  67#define BCM4377_BAR0_DOORBELL_VALUE GENMASK(31, 16)
  68#define BCM4377_BAR0_DOORBELL_IDX   GENMASK(15, 8)
  69#define BCM4377_BAR0_DOORBELL_RING  BIT(5)
  70
  71#define BCM4377_BAR0_HOST_WINDOW_LO   0x590
  72#define BCM4377_BAR0_HOST_WINDOW_HI   0x594
  73#define BCM4377_BAR0_HOST_WINDOW_SIZE 0x598
  74
  75#define BCM4377_BAR2_BOOTSTAGE 0x200454
  76
  77#define BCM4377_BAR2_FW_LO   0x200478
  78#define BCM4377_BAR2_FW_HI   0x20047c
  79#define BCM4377_BAR2_FW_SIZE 0x200480
  80
  81#define BCM4377_BAR2_CONTEXT_ADDR_LO 0x20048c
  82#define BCM4377_BAR2_CONTEXT_ADDR_HI 0x200450
  83
  84#define BCM4377_BAR2_RTI_STATUS	     0x20045c
  85#define BCM4377_BAR2_RTI_WINDOW_LO   0x200494
  86#define BCM4377_BAR2_RTI_WINDOW_HI   0x200498
  87#define BCM4377_BAR2_RTI_WINDOW_SIZE 0x20049c
  88
  89#define BCM4377_OTP_SIZE	  0xe0
  90#define BCM4377_OTP_SYS_VENDOR	  0x15
  91#define BCM4377_OTP_CIS		  0x80
  92#define BCM4377_OTP_VENDOR_HDR	  0x00000008
  93#define BCM4377_OTP_MAX_PARAM_LEN 16
  94
  95#define BCM4377_N_TRANSFER_RINGS   9
  96#define BCM4377_N_COMPLETION_RINGS 6
  97
  98#define BCM4377_MAX_RING_SIZE 256
  99
 100#define BCM4377_MSGID_GENERATION GENMASK(15, 8)
 101#define BCM4377_MSGID_ID	 GENMASK(7, 0)
 102
 103#define BCM4377_RING_N_ENTRIES 128
 104
 105#define BCM4377_CONTROL_MSG_SIZE		   0x34
 106#define BCM4377_XFER_RING_MAX_INPLACE_PAYLOAD_SIZE (4 * 0xff)
 107
 108#define MAX_ACL_PAYLOAD_SIZE   (HCI_MAX_FRAME_SIZE + HCI_ACL_HDR_SIZE)
 109#define MAX_SCO_PAYLOAD_SIZE   (HCI_MAX_SCO_SIZE + HCI_SCO_HDR_SIZE)
 110#define MAX_EVENT_PAYLOAD_SIZE (HCI_MAX_EVENT_SIZE + HCI_EVENT_HDR_SIZE)
 111
 112enum bcm4377_otp_params_type {
 113	BCM4377_OTP_BOARD_PARAMS,
 114	BCM4377_OTP_CHIP_PARAMS
 115};
 116
 117enum bcm4377_transfer_ring_id {
 118	BCM4377_XFER_RING_CONTROL = 0,
 119	BCM4377_XFER_RING_HCI_H2D = 1,
 120	BCM4377_XFER_RING_HCI_D2H = 2,
 121	BCM4377_XFER_RING_SCO_H2D = 3,
 122	BCM4377_XFER_RING_SCO_D2H = 4,
 123	BCM4377_XFER_RING_ACL_H2D = 5,
 124	BCM4377_XFER_RING_ACL_D2H = 6,
 125};
 126
 127enum bcm4377_completion_ring_id {
 128	BCM4377_ACK_RING_CONTROL = 0,
 129	BCM4377_ACK_RING_HCI_ACL = 1,
 130	BCM4377_EVENT_RING_HCI_ACL = 2,
 131	BCM4377_ACK_RING_SCO = 3,
 132	BCM4377_EVENT_RING_SCO = 4,
 133};
 134
 135enum bcm4377_doorbell {
 136	BCM4377_DOORBELL_CONTROL = 0,
 137	BCM4377_DOORBELL_HCI_H2D = 1,
 138	BCM4377_DOORBELL_HCI_D2H = 2,
 139	BCM4377_DOORBELL_ACL_H2D = 3,
 140	BCM4377_DOORBELL_ACL_D2H = 4,
 141	BCM4377_DOORBELL_SCO = 6,
 142};
 143
 144/*
 145 * Transfer ring entry
 146 *
 147 * flags: Flags to indicate if the payload is appended or mapped
 148 * len: Payload length
 149 * payload: Optional payload DMA address
 150 * id: Message id to recognize the answer in the completion ring entry
 151 */
 152struct bcm4377_xfer_ring_entry {
 153#define BCM4377_XFER_RING_FLAG_PAYLOAD_MAPPED	 BIT(0)
 154#define BCM4377_XFER_RING_FLAG_PAYLOAD_IN_FOOTER BIT(1)
 155	u8 flags;
 156	__le16 len;
 157	u8 _unk0;
 158	__le64 payload;
 159	__le16 id;
 160	u8 _unk1[2];
 161} __packed;
 162static_assert(sizeof(struct bcm4377_xfer_ring_entry) == 0x10);
 163
 164/*
 165 * Completion ring entry
 166 *
 167 * flags: Flags to indicate if the payload is appended or mapped. If the payload
 168 *        is mapped it can be found in the buffer of the corresponding transfer
 169 *        ring message.
 170 * ring_id: Transfer ring ID which required this message
 171 * msg_id: Message ID specified in transfer ring entry
 172 * len: Payload length
 173 */
 174struct bcm4377_completion_ring_entry {
 175	u8 flags;
 176	u8 _unk0;
 177	__le16 ring_id;
 178	__le16 msg_id;
 179	__le32 len;
 180	u8 _unk1[6];
 181} __packed;
 182static_assert(sizeof(struct bcm4377_completion_ring_entry) == 0x10);
 183
 184enum bcm4377_control_message_type {
 185	BCM4377_CONTROL_MSG_CREATE_XFER_RING = 1,
 186	BCM4377_CONTROL_MSG_CREATE_COMPLETION_RING = 2,
 187	BCM4377_CONTROL_MSG_DESTROY_XFER_RING = 3,
 188	BCM4377_CONTROL_MSG_DESTROY_COMPLETION_RING = 4,
 189};
 190
 191/*
 192 * Control message used to create a completion ring
 193 *
 194 * msg_type: Must be BCM4377_CONTROL_MSG_CREATE_COMPLETION_RING
 195 * header_size: Unknown, but probably reserved space in front of the entry
 196 * footer_size: Number of 32 bit words reserved for payloads after the entry
 197 * id/id_again: Completion ring index
 198 * ring_iova: DMA address of the ring buffer
 199 * n_elements: Number of elements inside the ring buffer
 200 * msi: MSI index, doesn't work for all rings though and should be zero
 201 * intmod_delay: Unknown delay
 202 * intmod_bytes: Unknown
 203 */
 204struct bcm4377_create_completion_ring_msg {
 205	u8 msg_type;
 206	u8 header_size;
 207	u8 footer_size;
 208	u8 _unk0;
 209	__le16 id;
 210	__le16 id_again;
 211	__le64 ring_iova;
 212	__le16 n_elements;
 213	__le32 unk;
 214	u8 _unk1[6];
 215	__le16 msi;
 216	__le16 intmod_delay;
 217	__le32 intmod_bytes;
 218	__le16 _unk2;
 219	__le32 _unk3;
 220	u8 _unk4[10];
 221} __packed;
 222static_assert(sizeof(struct bcm4377_create_completion_ring_msg) ==
 223	      BCM4377_CONTROL_MSG_SIZE);
 224
 225/*
 226 * Control ring message used to destroy a completion ring
 227 *
 228 * msg_type: Must be BCM4377_CONTROL_MSG_DESTROY_COMPLETION_RING
 229 * ring_id: Completion ring to be destroyed
 230 */
 231struct bcm4377_destroy_completion_ring_msg {
 232	u8 msg_type;
 233	u8 _pad0;
 234	__le16 ring_id;
 235	u8 _pad1[48];
 236} __packed;
 237static_assert(sizeof(struct bcm4377_destroy_completion_ring_msg) ==
 238	      BCM4377_CONTROL_MSG_SIZE);
 239
 240/*
 241 * Control message used to create a transfer ring
 242 *
 243 * msg_type: Must be BCM4377_CONTROL_MSG_CREATE_XFER_RING
 244 * header_size: Number of 32 bit words reserved for unknown content before the
 245 *              entry
 246 * footer_size: Number of 32 bit words reserved for payloads after the entry
 247 * ring_id/ring_id_again: Transfer ring index
 248 * ring_iova: DMA address of the ring buffer
 249 * n_elements: Number of elements inside the ring buffer
 250 * completion_ring_id: Completion ring index for acknowledgements and events
 251 * doorbell: Doorbell index used to notify device of new entries
 252 * flags: Transfer ring flags
 253 *          - virtual: set if there is no associated shared memory and only the
 254 *                     corresponding completion ring is used
 255 *          - sync: only set for the SCO rings
 256 */
 257struct bcm4377_create_transfer_ring_msg {
 258	u8 msg_type;
 259	u8 header_size;
 260	u8 footer_size;
 261	u8 _unk0;
 262	__le16 ring_id;
 263	__le16 ring_id_again;
 264	__le64 ring_iova;
 265	u8 _unk1[8];
 266	__le16 n_elements;
 267	__le16 completion_ring_id;
 268	__le16 doorbell;
 269#define BCM4377_XFER_RING_FLAG_VIRTUAL BIT(7)
 270#define BCM4377_XFER_RING_FLAG_SYNC    BIT(8)
 271	__le16 flags;
 272	u8 _unk2[20];
 273} __packed;
 274static_assert(sizeof(struct bcm4377_create_transfer_ring_msg) ==
 275	      BCM4377_CONTROL_MSG_SIZE);
 276
 277/*
 278 * Control ring message used to destroy a transfer ring
 279 *
 280 * msg_type: Must be BCM4377_CONTROL_MSG_DESTROY_XFER_RING
 281 * ring_id: Transfer ring to be destroyed
 282 */
 283struct bcm4377_destroy_transfer_ring_msg {
 284	u8 msg_type;
 285	u8 _pad0;
 286	__le16 ring_id;
 287	u8 _pad1[48];
 288} __packed;
 289static_assert(sizeof(struct bcm4377_destroy_transfer_ring_msg) ==
 290	      BCM4377_CONTROL_MSG_SIZE);
 291
 292/*
 293 * "Converged IPC" context struct used to make the device aware of all other
 294 * shared memory structures. A pointer to this structure is configured inside a
 295 * MMIO register.
 296 *
 297 * version: Protocol version, must be 2.
 298 * size: Size of this structure, must be 0x68.
 299 * enabled_caps: Enabled capabilities. Unknown bitfield but should be 2.
 300 * peripheral_info_addr: DMA address for a 0x20 buffer to which the device will
 301 *                       write unknown contents
 302 * {completion,xfer}_ring_{tails,heads}_addr: DMA pointers to ring heads/tails
 303 * n_completion_rings: Number of completion rings, the firmware only works if
 304 *                     this is set to BCM4377_N_COMPLETION_RINGS.
 305 * n_xfer_rings: Number of transfer rings, the firmware only works if
 306 *               this is set to BCM4377_N_TRANSFER_RINGS.
 307 * control_completion_ring_addr: Control completion ring buffer DMA address
 308 * control_xfer_ring_addr: Control transfer ring buffer DMA address
 309 * control_xfer_ring_n_entries: Number of control transfer ring entries
 310 * control_completion_ring_n_entries: Number of control completion ring entries
 311 * control_xfer_ring_doorbell: Control transfer ring doorbell
 312 * control_completion_ring_doorbell: Control completion ring doorbell,
 313 *                                   must be set to 0xffff
 314 * control_xfer_ring_msi: Control completion ring MSI index, must be 0
 315 * control_completion_ring_msi: Control completion ring MSI index, must be 0.
 316 * control_xfer_ring_header_size: Number of 32 bit words reserved in front of
 317 *                                every control transfer ring entry
 318 * control_xfer_ring_footer_size: Number of 32 bit words reserved after every
 319 *                                control transfer ring entry
 320 * control_completion_ring_header_size: Number of 32 bit words reserved in front
 321 *                                      of every control completion ring entry
 322 * control_completion_ring_footer_size: Number of 32 bit words reserved after
 323 *                                      every control completion ring entry
 324 * scratch_pad: Optional scratch pad DMA address
 325 * scratch_pad_size: Scratch pad size
 326 */
 327struct bcm4377_context {
 328	__le16 version;
 329	__le16 size;
 330	__le32 enabled_caps;
 331
 332	__le64 peripheral_info_addr;
 333
 334	/* ring heads and tails */
 335	__le64 completion_ring_heads_addr;
 336	__le64 xfer_ring_tails_addr;
 337	__le64 completion_ring_tails_addr;
 338	__le64 xfer_ring_heads_addr;
 339	__le16 n_completion_rings;
 340	__le16 n_xfer_rings;
 341
 342	/* control ring configuration */
 343	__le64 control_completion_ring_addr;
 344	__le64 control_xfer_ring_addr;
 345	__le16 control_xfer_ring_n_entries;
 346	__le16 control_completion_ring_n_entries;
 347	__le16 control_xfer_ring_doorbell;
 348	__le16 control_completion_ring_doorbell;
 349	__le16 control_xfer_ring_msi;
 350	__le16 control_completion_ring_msi;
 351	u8 control_xfer_ring_header_size;
 352	u8 control_xfer_ring_footer_size;
 353	u8 control_completion_ring_header_size;
 354	u8 control_completion_ring_footer_size;
 355
 356	__le16 _unk0;
 357	__le16 _unk1;
 358
 359	__le64 scratch_pad;
 360	__le32 scratch_pad_size;
 361
 362	__le32 _unk3;
 363} __packed;
 364static_assert(sizeof(struct bcm4377_context) == 0x68);
 365
 366#define BCM4378_CALIBRATION_CHUNK_SIZE 0xe6
 367struct bcm4378_hci_send_calibration_cmd {
 368	u8 unk;
 369	__le16 blocks_left;
 370	u8 data[BCM4378_CALIBRATION_CHUNK_SIZE];
 371} __packed;
 372
 373#define BCM4378_PTB_CHUNK_SIZE 0xcf
 374struct bcm4378_hci_send_ptb_cmd {
 375	__le16 blocks_left;
 376	u8 data[BCM4378_PTB_CHUNK_SIZE];
 377} __packed;
 378
 379/*
 380 * Shared memory structure used to store the ring head and tail pointers.
 381 */
 382struct bcm4377_ring_state {
 383	__le16 completion_ring_head[BCM4377_N_COMPLETION_RINGS];
 384	__le16 completion_ring_tail[BCM4377_N_COMPLETION_RINGS];
 385	__le16 xfer_ring_head[BCM4377_N_TRANSFER_RINGS];
 386	__le16 xfer_ring_tail[BCM4377_N_TRANSFER_RINGS];
 387};
 388
 389/*
 390 * A transfer ring can be used in two configurations:
 391 *  1) Send control or HCI messages to the device which are then acknowledged
 392 *     in the corresponding completion ring
 393 *  2) Receiving HCI frames from the devices. In this case the transfer ring
 394 *     itself contains empty messages that are acknowledged once data is
 395 *     available from the device. If the payloads fit inside the footers
 396 *     of the completion ring the transfer ring can be configured to be
 397 *     virtual such that it has no ring buffer.
 398 *
 399 * ring_id: ring index hardcoded in the firmware
 400 * doorbell: doorbell index to notify device of new entries
 401 * payload_size: optional in-place payload size
 402 * mapped_payload_size: optional out-of-place payload size
 403 * completion_ring: index of corresponding completion ring
 404 * n_entries: number of entries inside this ring
 405 * generation: ring generation; incremented on hci_open to detect stale messages
 406 * sync: set to true for SCO rings
 407 * virtual: set to true if this ring has no entries and is just required to
 408 *          setup a corresponding completion ring for device->host messages
 409 * d2h_buffers_only: set to true if this ring is only used to provide large
 410 *                   buffers used by device->host messages in the completion
 411 *                   ring
 412 * allow_wait: allow to wait for messages to be acknowledged
 413 * enabled: true once the ring has been created and can be used
 414 * ring: ring buffer for entries (struct bcm4377_xfer_ring_entry)
 415 * ring_dma: DMA address for ring entry buffer
 416 * payloads: payload buffer for mapped_payload_size payloads
 417 * payloads_dma:DMA address for payload buffer
 418 * events: pointer to array of completions if waiting is allowed
 419 * msgids: bitmap to keep track of used message ids
 420 * lock: Spinlock to protect access to ring structurs used in the irq handler
 421 */
 422struct bcm4377_transfer_ring {
 423	enum bcm4377_transfer_ring_id ring_id;
 424	enum bcm4377_doorbell doorbell;
 425	size_t payload_size;
 426	size_t mapped_payload_size;
 427	u8 completion_ring;
 428	u16 n_entries;
 429	u8 generation;
 430
 431	bool sync;
 432	bool virtual;
 433	bool d2h_buffers_only;
 434	bool allow_wait;
 435	bool enabled;
 436
 437	void *ring;
 438	dma_addr_t ring_dma;
 439
 440	void *payloads;
 441	dma_addr_t payloads_dma;
 442
 443	struct completion **events;
 444	DECLARE_BITMAP(msgids, BCM4377_MAX_RING_SIZE);
 445	spinlock_t lock;
 446};
 447
 448/*
 449 * A completion ring can be either used to either acknowledge messages sent in
 450 * the corresponding transfer ring or to receive messages associated with the
 451 * transfer ring. When used to receive messages the transfer ring either
 452 * has no ring buffer and is only advanced ("virtual transfer ring") or it
 453 * only contains empty DMA buffers to be used for the payloads.
 454 *
 455 * ring_id: completion ring id, hardcoded in firmware
 456 * payload_size: optional payload size after each entry
 457 * delay: unknown delay
 458 * n_entries: number of entries in this ring
 459 * enabled: true once the ring has been created and can be used
 460 * ring: ring buffer for entries (struct bcm4377_completion_ring_entry)
 461 * ring_dma: DMA address of ring buffer
 462 * transfer_rings: bitmap of corresponding transfer ring ids
 463 */
 464struct bcm4377_completion_ring {
 465	enum bcm4377_completion_ring_id ring_id;
 466	u16 payload_size;
 467	u16 delay;
 468	u16 n_entries;
 469	bool enabled;
 470
 471	void *ring;
 472	dma_addr_t ring_dma;
 473
 474	unsigned long transfer_rings;
 475};
 476
 477struct bcm4377_data;
 478
 479/*
 480 * Chip-specific configuration struct
 481 *
 482 * id: Chip id (e.g. 0x4377 for BCM4377)
 483 * otp_offset: Offset to the start of the OTP inside BAR0
 484 * bar0_window1: Backplane address mapped to the first window in BAR0
 485 * bar0_window2: Backplane address mapped to the second window in BAR0
 486 * bar0_core2_window2: Optional backplane address mapped to the second core's
 487 *                     second window in BAR0
 488 * has_bar0_core2_window2: Set to true if this chip requires the second core's
 489 *                         second window to be configured
 490 * clear_pciecfg_subsystem_ctrl_bit19: Set to true if bit 19 in the
 491 *                                     vendor-specific subsystem control
 492 *                                     register has to be cleared
 493 * disable_aspm: Set to true if ASPM must be disabled due to hardware errata
 494 * broken_ext_scan: Set to true if the chip erroneously claims to support
 495 *                  extended scanning
 496 * broken_mws_transport_config: Set to true if the chip erroneously claims to
 497 *                              support MWS Transport Configuration
 498 * send_calibration: Optional callback to send calibration data
 499 * send_ptb: Callback to send "PTB" regulatory/calibration data
 500 */
 501struct bcm4377_hw {
 502	unsigned int id;
 503
 504	u32 otp_offset;
 505
 506	u32 bar0_window1;
 507	u32 bar0_window2;
 508	u32 bar0_core2_window2;
 509
 510	unsigned long has_bar0_core2_window2 : 1;
 511	unsigned long clear_pciecfg_subsystem_ctrl_bit19 : 1;
 512	unsigned long disable_aspm : 1;
 513	unsigned long broken_ext_scan : 1;
 514	unsigned long broken_mws_transport_config : 1;
 515
 516	int (*send_calibration)(struct bcm4377_data *bcm4377);
 517	int (*send_ptb)(struct bcm4377_data *bcm4377,
 518			const struct firmware *fw);
 519};
 520
 521static const struct bcm4377_hw bcm4377_hw_variants[];
 522static const struct dmi_system_id bcm4377_dmi_board_table[];
 523
 524/*
 525 * Private struct associated with each device containing global state
 526 *
 527 * pdev: Pointer to associated struct pci_dev
 528 * hdev: Pointer to associated strucy hci_dev
 529 * bar0: iomem pointing to BAR0
 530 * bar1: iomem pointing to BAR2
 531 * bootstage: Current value of the bootstage
 532 * rti_status: Current "RTI" status value
 533 * hw: Pointer to chip-specific struct bcm4377_hw
 534 * taurus_cal_blob: "Taurus" calibration blob used for some chips
 535 * taurus_cal_size: "Taurus" calibration blob size
 536 * taurus_beamforming_cal_blob: "Taurus" beamforming calibration blob used for
 537 *                              some chips
 538 * taurus_beamforming_cal_size: "Taurus" beamforming calibration blob size
 539 * stepping: Chip stepping read from OTP; used for firmware selection
 540 * vendor: Antenna vendor read from OTP; used for firmware selection
 541 * board_type: Board type from FDT or DMI match; used for firmware selection
 542 * event: Event for changed bootstage or rti_status; used for booting firmware
 543 * ctx: "Converged IPC" context
 544 * ctx_dma: "Converged IPC" context DMA address
 545 * ring_state: Shared memory buffer containing ring head and tail indexes
 546 * ring_state_dma: DMA address for ring_state
 547 * {control,hci_acl,sco}_ack_ring: Completion rings used to acknowledge messages
 548 * {hci_acl,sco}_event_ring: Completion rings used for device->host messages
 549 * control_h2d_ring: Transfer ring used for control messages
 550 * {hci,sco,acl}_h2d_ring: Transfer ring used to transfer HCI frames
 551 * {hci,sco,acl}_d2h_ring: Transfer ring used to receive HCI frames in the
 552 *                         corresponding completion ring
 553 */
 554struct bcm4377_data {
 555	struct pci_dev *pdev;
 556	struct hci_dev *hdev;
 557
 558	void __iomem *bar0;
 559	void __iomem *bar2;
 560
 561	u32 bootstage;
 562	u32 rti_status;
 563
 564	const struct bcm4377_hw *hw;
 565
 566	const void *taurus_cal_blob;
 567	int taurus_cal_size;
 568	const void *taurus_beamforming_cal_blob;
 569	int taurus_beamforming_cal_size;
 570
 571	char stepping[BCM4377_OTP_MAX_PARAM_LEN];
 572	char vendor[BCM4377_OTP_MAX_PARAM_LEN];
 573	const char *board_type;
 574
 575	struct completion event;
 576
 577	struct bcm4377_context *ctx;
 578	dma_addr_t ctx_dma;
 579
 580	struct bcm4377_ring_state *ring_state;
 581	dma_addr_t ring_state_dma;
 582
 583	/*
 584	 * The HCI and ACL rings have to be merged because this structure is
 585	 * hardcoded in the firmware.
 586	 */
 587	struct bcm4377_completion_ring control_ack_ring;
 588	struct bcm4377_completion_ring hci_acl_ack_ring;
 589	struct bcm4377_completion_ring hci_acl_event_ring;
 590	struct bcm4377_completion_ring sco_ack_ring;
 591	struct bcm4377_completion_ring sco_event_ring;
 592
 593	struct bcm4377_transfer_ring control_h2d_ring;
 594	struct bcm4377_transfer_ring hci_h2d_ring;
 595	struct bcm4377_transfer_ring hci_d2h_ring;
 596	struct bcm4377_transfer_ring sco_h2d_ring;
 597	struct bcm4377_transfer_ring sco_d2h_ring;
 598	struct bcm4377_transfer_ring acl_h2d_ring;
 599	struct bcm4377_transfer_ring acl_d2h_ring;
 600};
 601
 602static void bcm4377_ring_doorbell(struct bcm4377_data *bcm4377, u8 doorbell,
 603				  u16 val)
 604{
 605	u32 db = 0;
 606
 607	db |= FIELD_PREP(BCM4377_BAR0_DOORBELL_VALUE, val);
 608	db |= FIELD_PREP(BCM4377_BAR0_DOORBELL_IDX, doorbell);
 609	db |= BCM4377_BAR0_DOORBELL_RING;
 610
 611	dev_dbg(&bcm4377->pdev->dev, "write %d to doorbell #%d (0x%x)\n", val,
 612		doorbell, db);
 613	iowrite32(db, bcm4377->bar0 + BCM4377_BAR0_DOORBELL);
 614}
 615
 616static int bcm4377_extract_msgid(struct bcm4377_data *bcm4377,
 617				 struct bcm4377_transfer_ring *ring,
 618				 u16 raw_msgid, u8 *msgid)
 619{
 620	u8 generation = FIELD_GET(BCM4377_MSGID_GENERATION, raw_msgid);
 621	*msgid = FIELD_GET(BCM4377_MSGID_ID, raw_msgid);
 622
 623	if (generation != ring->generation) {
 624		dev_warn(
 625			&bcm4377->pdev->dev,
 626			"invalid message generation %d should be %d in entry for ring %d\n",
 627			generation, ring->generation, ring->ring_id);
 628		return -EINVAL;
 629	}
 630
 631	if (*msgid >= ring->n_entries) {
 632		dev_warn(&bcm4377->pdev->dev,
 633			 "invalid message id in entry for ring %d: %d > %d\n",
 634			 ring->ring_id, *msgid, ring->n_entries);
 635		return -EINVAL;
 636	}
 637
 638	return 0;
 639}
 640
 641static void bcm4377_handle_event(struct bcm4377_data *bcm4377,
 642				 struct bcm4377_transfer_ring *ring,
 643				 u16 raw_msgid, u8 entry_flags, u8 type,
 644				 void *payload, size_t len)
 645{
 646	struct sk_buff *skb;
 647	u16 head;
 648	u8 msgid;
 649	unsigned long flags;
 650
 651	spin_lock_irqsave(&ring->lock, flags);
 652	if (!ring->enabled) {
 653		dev_warn(&bcm4377->pdev->dev,
 654			 "event for disabled transfer ring %d\n",
 655			 ring->ring_id);
 656		goto out;
 657	}
 658
 659	if (ring->d2h_buffers_only &&
 660	    entry_flags & BCM4377_XFER_RING_FLAG_PAYLOAD_MAPPED) {
 661		if (bcm4377_extract_msgid(bcm4377, ring, raw_msgid, &msgid))
 662			goto out;
 663
 664		if (len > ring->mapped_payload_size) {
 665			dev_warn(
 666				&bcm4377->pdev->dev,
 667				"invalid payload len in event for ring %d: %zu > %zu\n",
 668				ring->ring_id, len, ring->mapped_payload_size);
 669			goto out;
 670		}
 671
 672		payload = ring->payloads + msgid * ring->mapped_payload_size;
 673	}
 674
 675	skb = bt_skb_alloc(len, GFP_ATOMIC);
 676	if (!skb)
 677		goto out;
 678
 679	memcpy(skb_put(skb, len), payload, len);
 680	hci_skb_pkt_type(skb) = type;
 681	hci_recv_frame(bcm4377->hdev, skb);
 682
 683out:
 684	head = le16_to_cpu(bcm4377->ring_state->xfer_ring_head[ring->ring_id]);
 685	head = (head + 1) % ring->n_entries;
 686	bcm4377->ring_state->xfer_ring_head[ring->ring_id] = cpu_to_le16(head);
 687
 688	bcm4377_ring_doorbell(bcm4377, ring->doorbell, head);
 689
 690	spin_unlock_irqrestore(&ring->lock, flags);
 691}
 692
 693static void bcm4377_handle_ack(struct bcm4377_data *bcm4377,
 694			       struct bcm4377_transfer_ring *ring,
 695			       u16 raw_msgid)
 696{
 697	unsigned long flags;
 698	u8 msgid;
 699
 700	spin_lock_irqsave(&ring->lock, flags);
 701
 702	if (bcm4377_extract_msgid(bcm4377, ring, raw_msgid, &msgid))
 703		goto unlock;
 704
 705	if (!test_bit(msgid, ring->msgids)) {
 706		dev_warn(
 707			&bcm4377->pdev->dev,
 708			"invalid message id in ack for ring %d: %d is not used\n",
 709			ring->ring_id, msgid);
 710		goto unlock;
 711	}
 712
 713	if (ring->allow_wait && ring->events[msgid]) {
 714		complete(ring->events[msgid]);
 715		ring->events[msgid] = NULL;
 716	}
 717
 718	bitmap_release_region(ring->msgids, msgid, ring->n_entries);
 719
 720unlock:
 721	spin_unlock_irqrestore(&ring->lock, flags);
 722}
 723
 724static void bcm4377_handle_completion(struct bcm4377_data *bcm4377,
 725				      struct bcm4377_completion_ring *ring,
 726				      u16 pos)
 727{
 728	struct bcm4377_completion_ring_entry *entry;
 729	u16 msg_id, transfer_ring;
 730	size_t entry_size, data_len;
 731	void *data;
 732
 733	if (pos >= ring->n_entries) {
 734		dev_warn(&bcm4377->pdev->dev,
 735			 "invalid offset %d for completion ring %d\n", pos,
 736			 ring->ring_id);
 737		return;
 738	}
 739
 740	entry_size = sizeof(*entry) + ring->payload_size;
 741	entry = ring->ring + pos * entry_size;
 742	data = ring->ring + pos * entry_size + sizeof(*entry);
 743	data_len = le32_to_cpu(entry->len);
 744	msg_id = le16_to_cpu(entry->msg_id);
 745	transfer_ring = le16_to_cpu(entry->ring_id);
 746
 747	if ((ring->transfer_rings & BIT(transfer_ring)) == 0) {
 748		dev_warn(
 749			&bcm4377->pdev->dev,
 750			"invalid entry at offset %d for transfer ring %d in completion ring %d\n",
 751			pos, transfer_ring, ring->ring_id);
 752		return;
 753	}
 754
 755	dev_dbg(&bcm4377->pdev->dev,
 756		"entry in completion ring %d for transfer ring %d with msg_id %d\n",
 757		ring->ring_id, transfer_ring, msg_id);
 758
 759	switch (transfer_ring) {
 760	case BCM4377_XFER_RING_CONTROL:
 761		bcm4377_handle_ack(bcm4377, &bcm4377->control_h2d_ring, msg_id);
 762		break;
 763	case BCM4377_XFER_RING_HCI_H2D:
 764		bcm4377_handle_ack(bcm4377, &bcm4377->hci_h2d_ring, msg_id);
 765		break;
 766	case BCM4377_XFER_RING_SCO_H2D:
 767		bcm4377_handle_ack(bcm4377, &bcm4377->sco_h2d_ring, msg_id);
 768		break;
 769	case BCM4377_XFER_RING_ACL_H2D:
 770		bcm4377_handle_ack(bcm4377, &bcm4377->acl_h2d_ring, msg_id);
 771		break;
 772
 773	case BCM4377_XFER_RING_HCI_D2H:
 774		bcm4377_handle_event(bcm4377, &bcm4377->hci_d2h_ring, msg_id,
 775				     entry->flags, HCI_EVENT_PKT, data,
 776				     data_len);
 777		break;
 778	case BCM4377_XFER_RING_SCO_D2H:
 779		bcm4377_handle_event(bcm4377, &bcm4377->sco_d2h_ring, msg_id,
 780				     entry->flags, HCI_SCODATA_PKT, data,
 781				     data_len);
 782		break;
 783	case BCM4377_XFER_RING_ACL_D2H:
 784		bcm4377_handle_event(bcm4377, &bcm4377->acl_d2h_ring, msg_id,
 785				     entry->flags, HCI_ACLDATA_PKT, data,
 786				     data_len);
 787		break;
 788
 789	default:
 790		dev_warn(
 791			&bcm4377->pdev->dev,
 792			"entry in completion ring %d for unknown transfer ring %d with msg_id %d\n",
 793			ring->ring_id, transfer_ring, msg_id);
 794	}
 795}
 796
 797static void bcm4377_poll_completion_ring(struct bcm4377_data *bcm4377,
 798					 struct bcm4377_completion_ring *ring)
 799{
 800	u16 tail;
 801	__le16 *heads = bcm4377->ring_state->completion_ring_head;
 802	__le16 *tails = bcm4377->ring_state->completion_ring_tail;
 803
 804	if (!ring->enabled)
 805		return;
 806
 807	tail = le16_to_cpu(tails[ring->ring_id]);
 808	dev_dbg(&bcm4377->pdev->dev,
 809		"completion ring #%d: head: %d, tail: %d\n", ring->ring_id,
 810		le16_to_cpu(heads[ring->ring_id]), tail);
 811
 812	while (tail != le16_to_cpu(READ_ONCE(heads[ring->ring_id]))) {
 813		/*
 814		 * ensure the CPU doesn't speculate through the comparison.
 815		 * otherwise it might already read the (empty) queue entry
 816		 * before the updated head has been loaded and checked.
 817		 */
 818		dma_rmb();
 819
 820		bcm4377_handle_completion(bcm4377, ring, tail);
 821
 822		tail = (tail + 1) % ring->n_entries;
 823		tails[ring->ring_id] = cpu_to_le16(tail);
 824	}
 825}
 826
 827static irqreturn_t bcm4377_irq(int irq, void *data)
 828{
 829	struct bcm4377_data *bcm4377 = data;
 830	u32 bootstage, rti_status;
 831
 832	bootstage = ioread32(bcm4377->bar2 + BCM4377_BAR2_BOOTSTAGE);
 833	rti_status = ioread32(bcm4377->bar2 + BCM4377_BAR2_RTI_STATUS);
 834
 835	if (bootstage != bcm4377->bootstage ||
 836	    rti_status != bcm4377->rti_status) {
 837		dev_dbg(&bcm4377->pdev->dev,
 838			"bootstage = %d -> %d, rti state = %d -> %d\n",
 839			bcm4377->bootstage, bootstage, bcm4377->rti_status,
 840			rti_status);
 841		complete(&bcm4377->event);
 842		bcm4377->bootstage = bootstage;
 843		bcm4377->rti_status = rti_status;
 844	}
 845
 846	if (rti_status > 2)
 847		dev_err(&bcm4377->pdev->dev, "RTI status is %d\n", rti_status);
 848
 849	bcm4377_poll_completion_ring(bcm4377, &bcm4377->control_ack_ring);
 850	bcm4377_poll_completion_ring(bcm4377, &bcm4377->hci_acl_event_ring);
 851	bcm4377_poll_completion_ring(bcm4377, &bcm4377->hci_acl_ack_ring);
 852	bcm4377_poll_completion_ring(bcm4377, &bcm4377->sco_ack_ring);
 853	bcm4377_poll_completion_ring(bcm4377, &bcm4377->sco_event_ring);
 854
 855	return IRQ_HANDLED;
 856}
 857
 858static int bcm4377_enqueue(struct bcm4377_data *bcm4377,
 859			   struct bcm4377_transfer_ring *ring, void *data,
 860			   size_t len, bool wait)
 861{
 862	unsigned long flags;
 863	struct bcm4377_xfer_ring_entry *entry;
 864	void *payload;
 865	size_t offset;
 866	u16 head, tail, new_head;
 867	u16 raw_msgid;
 868	int ret, msgid;
 869	DECLARE_COMPLETION_ONSTACK(event);
 870
 871	if (len > ring->payload_size && len > ring->mapped_payload_size) {
 872		dev_warn(
 873			&bcm4377->pdev->dev,
 874			"payload len %zu is too large for ring %d (max is %zu or %zu)\n",
 875			len, ring->ring_id, ring->payload_size,
 876			ring->mapped_payload_size);
 877		return -EINVAL;
 878	}
 879	if (wait && !ring->allow_wait)
 880		return -EINVAL;
 881	if (ring->virtual)
 882		return -EINVAL;
 883
 884	spin_lock_irqsave(&ring->lock, flags);
 885
 886	head = le16_to_cpu(bcm4377->ring_state->xfer_ring_head[ring->ring_id]);
 887	tail = le16_to_cpu(bcm4377->ring_state->xfer_ring_tail[ring->ring_id]);
 888
 889	new_head = (head + 1) % ring->n_entries;
 890
 891	if (new_head == tail) {
 892		dev_warn(&bcm4377->pdev->dev,
 893			 "can't send message because ring %d is full\n",
 894			 ring->ring_id);
 895		ret = -EINVAL;
 896		goto out;
 897	}
 898
 899	msgid = bitmap_find_free_region(ring->msgids, ring->n_entries, 0);
 900	if (msgid < 0) {
 901		dev_warn(&bcm4377->pdev->dev,
 902			 "can't find message id for ring %d\n", ring->ring_id);
 903		ret = -EINVAL;
 904		goto out;
 905	}
 906
 907	raw_msgid = FIELD_PREP(BCM4377_MSGID_GENERATION, ring->generation);
 908	raw_msgid |= FIELD_PREP(BCM4377_MSGID_ID, msgid);
 909
 910	offset = head * (sizeof(*entry) + ring->payload_size);
 911	entry = ring->ring + offset;
 912
 913	memset(entry, 0, sizeof(*entry));
 914	entry->id = cpu_to_le16(raw_msgid);
 915	entry->len = cpu_to_le16(len);
 916
 917	if (len <= ring->payload_size) {
 918		entry->flags = BCM4377_XFER_RING_FLAG_PAYLOAD_IN_FOOTER;
 919		payload = ring->ring + offset + sizeof(*entry);
 920	} else {
 921		entry->flags = BCM4377_XFER_RING_FLAG_PAYLOAD_MAPPED;
 922		entry->payload = cpu_to_le64(ring->payloads_dma +
 923					     msgid * ring->mapped_payload_size);
 924		payload = ring->payloads + msgid * ring->mapped_payload_size;
 925	}
 926
 927	memcpy(payload, data, len);
 928
 929	if (wait)
 930		ring->events[msgid] = &event;
 931
 932	/*
 933	 * The 4377 chips stop responding to any commands as soon as they
 934	 * have been idle for a while. Poking the sleep control register here
 935	 * makes them come alive again.
 936	 */
 937	iowrite32(BCM4377_BAR0_SLEEP_CONTROL_AWAKE,
 938		  bcm4377->bar0 + BCM4377_BAR0_SLEEP_CONTROL);
 939
 940	dev_dbg(&bcm4377->pdev->dev,
 941		"updating head for transfer queue #%d to %d\n", ring->ring_id,
 942		new_head);
 943	bcm4377->ring_state->xfer_ring_head[ring->ring_id] =
 944		cpu_to_le16(new_head);
 945
 946	if (!ring->sync)
 947		bcm4377_ring_doorbell(bcm4377, ring->doorbell, new_head);
 948	ret = 0;
 949
 950out:
 951	spin_unlock_irqrestore(&ring->lock, flags);
 952
 953	if (ret == 0 && wait) {
 954		ret = wait_for_completion_interruptible_timeout(
 955			&event, BCM4377_TIMEOUT);
 956		if (ret == 0)
 957			ret = -ETIMEDOUT;
 958		else if (ret > 0)
 959			ret = 0;
 960
 961		spin_lock_irqsave(&ring->lock, flags);
 962		ring->events[msgid] = NULL;
 963		spin_unlock_irqrestore(&ring->lock, flags);
 964	}
 965
 966	return ret;
 967}
 968
 969static int bcm4377_create_completion_ring(struct bcm4377_data *bcm4377,
 970					  struct bcm4377_completion_ring *ring)
 971{
 972	struct bcm4377_create_completion_ring_msg msg;
 973	int ret;
 974
 975	if (ring->enabled) {
 976		dev_warn(&bcm4377->pdev->dev,
 977			 "completion ring %d already enabled\n", ring->ring_id);
 978		return 0;
 979	}
 980
 981	memset(ring->ring, 0,
 982	       ring->n_entries * (sizeof(struct bcm4377_completion_ring_entry) +
 983				  ring->payload_size));
 984	memset(&msg, 0, sizeof(msg));
 985	msg.msg_type = BCM4377_CONTROL_MSG_CREATE_COMPLETION_RING;
 986	msg.id = cpu_to_le16(ring->ring_id);
 987	msg.id_again = cpu_to_le16(ring->ring_id);
 988	msg.ring_iova = cpu_to_le64(ring->ring_dma);
 989	msg.n_elements = cpu_to_le16(ring->n_entries);
 990	msg.intmod_bytes = cpu_to_le32(0xffffffff);
 991	msg.unk = cpu_to_le32(0xffffffff);
 992	msg.intmod_delay = cpu_to_le16(ring->delay);
 993	msg.footer_size = ring->payload_size / 4;
 994
 995	ret = bcm4377_enqueue(bcm4377, &bcm4377->control_h2d_ring, &msg,
 996			      sizeof(msg), true);
 997	if (!ret)
 998		ring->enabled = true;
 999
1000	return ret;
1001}
1002
1003static int bcm4377_destroy_completion_ring(struct bcm4377_data *bcm4377,
1004					   struct bcm4377_completion_ring *ring)
1005{
1006	struct bcm4377_destroy_completion_ring_msg msg;
1007	int ret;
1008
1009	memset(&msg, 0, sizeof(msg));
1010	msg.msg_type = BCM4377_CONTROL_MSG_DESTROY_COMPLETION_RING;
1011	msg.ring_id = cpu_to_le16(ring->ring_id);
1012
1013	ret = bcm4377_enqueue(bcm4377, &bcm4377->control_h2d_ring, &msg,
1014			      sizeof(msg), true);
1015	if (ret)
1016		dev_warn(&bcm4377->pdev->dev,
1017			 "failed to destroy completion ring %d\n",
1018			 ring->ring_id);
1019
1020	ring->enabled = false;
1021	return ret;
1022}
1023
1024static int bcm4377_create_transfer_ring(struct bcm4377_data *bcm4377,
1025					struct bcm4377_transfer_ring *ring)
1026{
1027	struct bcm4377_create_transfer_ring_msg msg;
1028	u16 flags = 0;
1029	int ret, i;
1030	unsigned long spinlock_flags;
1031
1032	if (ring->virtual)
1033		flags |= BCM4377_XFER_RING_FLAG_VIRTUAL;
1034	if (ring->sync)
1035		flags |= BCM4377_XFER_RING_FLAG_SYNC;
1036
1037	spin_lock_irqsave(&ring->lock, spinlock_flags);
1038	memset(&msg, 0, sizeof(msg));
1039	msg.msg_type = BCM4377_CONTROL_MSG_CREATE_XFER_RING;
1040	msg.ring_id = cpu_to_le16(ring->ring_id);
1041	msg.ring_id_again = cpu_to_le16(ring->ring_id);
1042	msg.ring_iova = cpu_to_le64(ring->ring_dma);
1043	msg.n_elements = cpu_to_le16(ring->n_entries);
1044	msg.completion_ring_id = cpu_to_le16(ring->completion_ring);
1045	msg.doorbell = cpu_to_le16(ring->doorbell);
1046	msg.flags = cpu_to_le16(flags);
1047	msg.footer_size = ring->payload_size / 4;
1048
1049	bcm4377->ring_state->xfer_ring_head[ring->ring_id] = 0;
1050	bcm4377->ring_state->xfer_ring_tail[ring->ring_id] = 0;
1051	ring->generation++;
1052	spin_unlock_irqrestore(&ring->lock, spinlock_flags);
1053
1054	ret = bcm4377_enqueue(bcm4377, &bcm4377->control_h2d_ring, &msg,
1055			      sizeof(msg), true);
1056
1057	spin_lock_irqsave(&ring->lock, spinlock_flags);
1058
1059	if (ring->d2h_buffers_only) {
1060		for (i = 0; i < ring->n_entries; ++i) {
1061			struct bcm4377_xfer_ring_entry *entry =
1062				ring->ring + i * sizeof(*entry);
1063			u16 raw_msgid = FIELD_PREP(BCM4377_MSGID_GENERATION,
1064						   ring->generation);
1065			raw_msgid |= FIELD_PREP(BCM4377_MSGID_ID, i);
1066
1067			memset(entry, 0, sizeof(*entry));
1068			entry->id = cpu_to_le16(raw_msgid);
1069			entry->len = cpu_to_le16(ring->mapped_payload_size);
1070			entry->flags = BCM4377_XFER_RING_FLAG_PAYLOAD_MAPPED;
1071			entry->payload =
1072				cpu_to_le64(ring->payloads_dma +
1073					    i * ring->mapped_payload_size);
1074		}
1075	}
1076
1077	/*
1078	 * send some messages if this is a device->host ring to allow the device
1079	 * to reply by acknowledging them in the completion ring
1080	 */
1081	if (ring->virtual || ring->d2h_buffers_only) {
1082		bcm4377->ring_state->xfer_ring_head[ring->ring_id] =
1083			cpu_to_le16(0xf);
1084		bcm4377_ring_doorbell(bcm4377, ring->doorbell, 0xf);
1085	}
1086
1087	ring->enabled = true;
1088	spin_unlock_irqrestore(&ring->lock, spinlock_flags);
1089
1090	return ret;
1091}
1092
1093static int bcm4377_destroy_transfer_ring(struct bcm4377_data *bcm4377,
1094					 struct bcm4377_transfer_ring *ring)
1095{
1096	struct bcm4377_destroy_transfer_ring_msg msg;
1097	int ret;
1098
1099	memset(&msg, 0, sizeof(msg));
1100	msg.msg_type = BCM4377_CONTROL_MSG_DESTROY_XFER_RING;
1101	msg.ring_id = cpu_to_le16(ring->ring_id);
1102
1103	ret = bcm4377_enqueue(bcm4377, &bcm4377->control_h2d_ring, &msg,
1104			      sizeof(msg), true);
1105	if (ret)
1106		dev_warn(&bcm4377->pdev->dev,
1107			 "failed to destroy transfer ring %d\n", ring->ring_id);
1108
1109	ring->enabled = false;
1110	return ret;
1111}
1112
1113static int __bcm4378_send_calibration_chunk(struct bcm4377_data *bcm4377,
1114					    const void *data, size_t data_len,
1115					    u16 blocks_left)
1116{
1117	struct bcm4378_hci_send_calibration_cmd cmd;
1118	struct sk_buff *skb;
1119
1120	if (data_len > sizeof(cmd.data))
1121		return -EINVAL;
1122
1123	memset(&cmd, 0, sizeof(cmd));
1124	cmd.unk = 0x03;
1125	cmd.blocks_left = cpu_to_le16(blocks_left);
1126	memcpy(cmd.data, data, data_len);
1127
1128	skb = __hci_cmd_sync(bcm4377->hdev, 0xfd97, sizeof(cmd), &cmd,
1129			     HCI_INIT_TIMEOUT);
1130	if (IS_ERR(skb))
1131		return PTR_ERR(skb);
1132
1133	kfree_skb(skb);
1134	return 0;
1135}
1136
1137static int __bcm4378_send_calibration(struct bcm4377_data *bcm4377,
1138				      const void *data, size_t data_size)
1139{
1140	int ret;
1141	size_t i, left, transfer_len;
1142	size_t blocks =
1143		DIV_ROUND_UP(data_size, (size_t)BCM4378_CALIBRATION_CHUNK_SIZE);
1144
1145	if (!data) {
1146		dev_err(&bcm4377->pdev->dev,
1147			"no calibration data available.\n");
1148		return -ENOENT;
1149	}
1150
1151	for (i = 0, left = data_size; i < blocks; ++i, left -= transfer_len) {
1152		transfer_len =
1153			min_t(size_t, left, BCM4378_CALIBRATION_CHUNK_SIZE);
1154
1155		ret = __bcm4378_send_calibration_chunk(
1156			bcm4377, data + i * BCM4378_CALIBRATION_CHUNK_SIZE,
1157			transfer_len, blocks - i - 1);
1158		if (ret) {
1159			dev_err(&bcm4377->pdev->dev,
1160				"send calibration chunk failed with %d\n", ret);
1161			return ret;
1162		}
1163	}
1164
1165	return 0;
1166}
1167
1168static int bcm4378_send_calibration(struct bcm4377_data *bcm4377)
1169{
1170	if ((strcmp(bcm4377->stepping, "b1") == 0) ||
1171	    strcmp(bcm4377->stepping, "b3") == 0)
1172		return __bcm4378_send_calibration(
1173			bcm4377, bcm4377->taurus_beamforming_cal_blob,
1174			bcm4377->taurus_beamforming_cal_size);
1175	else
1176		return __bcm4378_send_calibration(bcm4377,
1177						  bcm4377->taurus_cal_blob,
1178						  bcm4377->taurus_cal_size);
1179}
1180
1181static int bcm4387_send_calibration(struct bcm4377_data *bcm4377)
1182{
1183	if (strcmp(bcm4377->stepping, "c2") == 0)
1184		return __bcm4378_send_calibration(
1185			bcm4377, bcm4377->taurus_beamforming_cal_blob,
1186			bcm4377->taurus_beamforming_cal_size);
1187	else
1188		return __bcm4378_send_calibration(bcm4377,
1189						  bcm4377->taurus_cal_blob,
1190						  bcm4377->taurus_cal_size);
1191}
1192
1193static const struct firmware *bcm4377_request_blob(struct bcm4377_data *bcm4377,
1194						   const char *suffix)
1195{
1196	const struct firmware *fw;
1197	char name0[64], name1[64];
1198	int ret;
1199
1200	snprintf(name0, sizeof(name0), "brcm/brcmbt%04x%s-%s-%s.%s",
1201		 bcm4377->hw->id, bcm4377->stepping, bcm4377->board_type,
1202		 bcm4377->vendor, suffix);
1203	snprintf(name1, sizeof(name1), "brcm/brcmbt%04x%s-%s.%s",
1204		 bcm4377->hw->id, bcm4377->stepping, bcm4377->board_type,
1205		 suffix);
1206	dev_dbg(&bcm4377->pdev->dev, "Trying to load firmware: '%s' or '%s'\n",
1207		name0, name1);
1208
1209	ret = firmware_request_nowarn(&fw, name0, &bcm4377->pdev->dev);
1210	if (!ret)
1211		return fw;
1212	ret = firmware_request_nowarn(&fw, name1, &bcm4377->pdev->dev);
1213	if (!ret)
1214		return fw;
1215
1216	dev_err(&bcm4377->pdev->dev,
1217		"Unable to load firmware; tried '%s' and '%s'\n", name0, name1);
1218	return NULL;
1219}
1220
1221static int bcm4377_send_ptb(struct bcm4377_data *bcm4377,
1222			    const struct firmware *fw)
1223{
1224	struct sk_buff *skb;
1225
1226	skb = __hci_cmd_sync(bcm4377->hdev, 0xfd98, fw->size, fw->data,
1227			     HCI_INIT_TIMEOUT);
1228	/*
1229	 * This command seems to always fail on more recent firmware versions
1230	 * (even in traces taken from the macOS driver). It's unclear why this
1231	 * happens but because the PTB file contains calibration and/or
1232	 * regulatory data and may be required on older firmware we still try to
1233	 * send it here just in case and just ignore if it fails.
1234	 */
1235	if (!IS_ERR(skb))
1236		kfree_skb(skb);
1237	return 0;
1238}
1239
1240static int bcm4378_send_ptb_chunk(struct bcm4377_data *bcm4377,
1241				  const void *data, size_t data_len,
1242				  u16 blocks_left)
1243{
1244	struct bcm4378_hci_send_ptb_cmd cmd;
1245	struct sk_buff *skb;
1246
1247	if (data_len > BCM4378_PTB_CHUNK_SIZE)
1248		return -EINVAL;
1249
1250	memset(&cmd, 0, sizeof(cmd));
1251	cmd.blocks_left = cpu_to_le16(blocks_left);
1252	memcpy(cmd.data, data, data_len);
1253
1254	skb = __hci_cmd_sync(bcm4377->hdev, 0xfe0d, sizeof(cmd), &cmd,
1255			     HCI_INIT_TIMEOUT);
1256	if (IS_ERR(skb))
1257		return PTR_ERR(skb);
1258
1259	kfree_skb(skb);
1260	return 0;
1261}
1262
1263static int bcm4378_send_ptb(struct bcm4377_data *bcm4377,
1264			    const struct firmware *fw)
1265{
1266	size_t chunks = DIV_ROUND_UP(fw->size, (size_t)BCM4378_PTB_CHUNK_SIZE);
1267	size_t i, left, transfer_len;
1268	int ret;
1269
1270	for (i = 0, left = fw->size; i < chunks; ++i, left -= transfer_len) {
1271		transfer_len = min_t(size_t, left, BCM4378_PTB_CHUNK_SIZE);
1272
1273		dev_dbg(&bcm4377->pdev->dev, "sending ptb chunk %zu/%zu\n",
1274			i + 1, chunks);
1275		ret = bcm4378_send_ptb_chunk(
1276			bcm4377, fw->data + i * BCM4378_PTB_CHUNK_SIZE,
1277			transfer_len, chunks - i - 1);
1278		if (ret) {
1279			dev_err(&bcm4377->pdev->dev,
1280				"sending ptb chunk %zu failed (%d)", i, ret);
1281			return ret;
1282		}
1283	}
1284
1285	return 0;
1286}
1287
1288static int bcm4377_hci_open(struct hci_dev *hdev)
1289{
1290	struct bcm4377_data *bcm4377 = hci_get_drvdata(hdev);
1291	int ret;
1292
1293	dev_dbg(&bcm4377->pdev->dev, "creating rings\n");
1294
1295	ret = bcm4377_create_completion_ring(bcm4377,
1296					     &bcm4377->hci_acl_ack_ring);
1297	if (ret)
1298		return ret;
1299	ret = bcm4377_create_completion_ring(bcm4377,
1300					     &bcm4377->hci_acl_event_ring);
1301	if (ret)
1302		goto destroy_hci_acl_ack;
1303	ret = bcm4377_create_completion_ring(bcm4377, &bcm4377->sco_ack_ring);
1304	if (ret)
1305		goto destroy_hci_acl_event;
1306	ret = bcm4377_create_completion_ring(bcm4377, &bcm4377->sco_event_ring);
1307	if (ret)
1308		goto destroy_sco_ack;
1309	dev_dbg(&bcm4377->pdev->dev,
1310		"all completion rings successfully created!\n");
1311
1312	ret = bcm4377_create_transfer_ring(bcm4377, &bcm4377->hci_h2d_ring);
1313	if (ret)
1314		goto destroy_sco_event;
1315	ret = bcm4377_create_transfer_ring(bcm4377, &bcm4377->hci_d2h_ring);
1316	if (ret)
1317		goto destroy_hci_h2d;
1318	ret = bcm4377_create_transfer_ring(bcm4377, &bcm4377->sco_h2d_ring);
1319	if (ret)
1320		goto destroy_hci_d2h;
1321	ret = bcm4377_create_transfer_ring(bcm4377, &bcm4377->sco_d2h_ring);
1322	if (ret)
1323		goto destroy_sco_h2d;
1324	ret = bcm4377_create_transfer_ring(bcm4377, &bcm4377->acl_h2d_ring);
1325	if (ret)
1326		goto destroy_sco_d2h;
1327	ret = bcm4377_create_transfer_ring(bcm4377, &bcm4377->acl_d2h_ring);
1328	if (ret)
1329		goto destroy_acl_h2d;
1330	dev_dbg(&bcm4377->pdev->dev,
1331		"all transfer rings successfully created!\n");
1332
1333	return 0;
1334
1335destroy_acl_h2d:
1336	bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->acl_h2d_ring);
1337destroy_sco_d2h:
1338	bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->sco_d2h_ring);
1339destroy_sco_h2d:
1340	bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->sco_h2d_ring);
1341destroy_hci_d2h:
1342	bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->hci_h2d_ring);
1343destroy_hci_h2d:
1344	bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->hci_d2h_ring);
1345destroy_sco_event:
1346	bcm4377_destroy_completion_ring(bcm4377, &bcm4377->sco_event_ring);
1347destroy_sco_ack:
1348	bcm4377_destroy_completion_ring(bcm4377, &bcm4377->sco_ack_ring);
1349destroy_hci_acl_event:
1350	bcm4377_destroy_completion_ring(bcm4377, &bcm4377->hci_acl_event_ring);
1351destroy_hci_acl_ack:
1352	bcm4377_destroy_completion_ring(bcm4377, &bcm4377->hci_acl_ack_ring);
1353
1354	dev_err(&bcm4377->pdev->dev, "Creating rings failed with %d\n", ret);
1355	return ret;
1356}
1357
1358static int bcm4377_hci_close(struct hci_dev *hdev)
1359{
1360	struct bcm4377_data *bcm4377 = hci_get_drvdata(hdev);
1361
1362	dev_dbg(&bcm4377->pdev->dev, "destroying rings in hci_close\n");
1363
1364	bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->acl_d2h_ring);
1365	bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->acl_h2d_ring);
1366	bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->sco_d2h_ring);
1367	bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->sco_h2d_ring);
1368	bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->hci_d2h_ring);
1369	bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->hci_h2d_ring);
1370
1371	bcm4377_destroy_completion_ring(bcm4377, &bcm4377->sco_event_ring);
1372	bcm4377_destroy_completion_ring(bcm4377, &bcm4377->sco_ack_ring);
1373	bcm4377_destroy_completion_ring(bcm4377, &bcm4377->hci_acl_event_ring);
1374	bcm4377_destroy_completion_ring(bcm4377, &bcm4377->hci_acl_ack_ring);
1375
1376	return 0;
1377}
1378
1379static bool bcm4377_is_valid_bdaddr(struct bcm4377_data *bcm4377,
1380				    bdaddr_t *addr)
1381{
1382	if (addr->b[0] != 0x93)
1383		return true;
1384	if (addr->b[1] != 0x76)
1385		return true;
1386	if (addr->b[2] != 0x00)
1387		return true;
1388	if (addr->b[4] != (bcm4377->hw->id & 0xff))
1389		return true;
1390	if (addr->b[5] != (bcm4377->hw->id >> 8))
1391		return true;
1392	return false;
1393}
1394
1395static int bcm4377_check_bdaddr(struct bcm4377_data *bcm4377)
1396{
1397	struct hci_rp_read_bd_addr *bda;
1398	struct sk_buff *skb;
1399
1400	skb = __hci_cmd_sync(bcm4377->hdev, HCI_OP_READ_BD_ADDR, 0, NULL,
1401			     HCI_INIT_TIMEOUT);
1402	if (IS_ERR(skb)) {
1403		int err = PTR_ERR(skb);
1404
1405		dev_err(&bcm4377->pdev->dev, "HCI_OP_READ_BD_ADDR failed (%d)",
1406			err);
1407		return err;
1408	}
1409
1410	if (skb->len != sizeof(*bda)) {
1411		dev_err(&bcm4377->pdev->dev,
1412			"HCI_OP_READ_BD_ADDR reply length invalid");
1413		kfree_skb(skb);
1414		return -EIO;
1415	}
1416
1417	bda = (struct hci_rp_read_bd_addr *)skb->data;
1418	if (!bcm4377_is_valid_bdaddr(bcm4377, &bda->bdaddr))
1419		set_bit(HCI_QUIRK_INVALID_BDADDR, &bcm4377->hdev->quirks);
1420
1421	kfree_skb(skb);
1422	return 0;
1423}
1424
1425static int bcm4377_hci_setup(struct hci_dev *hdev)
1426{
1427	struct bcm4377_data *bcm4377 = hci_get_drvdata(hdev);
1428	const struct firmware *fw;
1429	int ret;
1430
1431	if (bcm4377->hw->send_calibration) {
1432		ret = bcm4377->hw->send_calibration(bcm4377);
1433		if (ret)
1434			return ret;
1435	}
1436
1437	fw = bcm4377_request_blob(bcm4377, "ptb");
1438	if (!fw) {
1439		dev_err(&bcm4377->pdev->dev, "failed to load PTB data");
1440		return -ENOENT;
1441	}
1442
1443	ret = bcm4377->hw->send_ptb(bcm4377, fw);
1444	release_firmware(fw);
1445	if (ret)
1446		return ret;
1447
1448	return bcm4377_check_bdaddr(bcm4377);
1449}
1450
1451static int bcm4377_hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
1452{
1453	struct bcm4377_data *bcm4377 = hci_get_drvdata(hdev);
1454	struct bcm4377_transfer_ring *ring;
1455	int ret;
1456
1457	switch (hci_skb_pkt_type(skb)) {
1458	case HCI_COMMAND_PKT:
1459		hdev->stat.cmd_tx++;
1460		ring = &bcm4377->hci_h2d_ring;
1461		break;
1462
1463	case HCI_ACLDATA_PKT:
1464		hdev->stat.acl_tx++;
1465		ring = &bcm4377->acl_h2d_ring;
1466		break;
1467
1468	case HCI_SCODATA_PKT:
1469		hdev->stat.sco_tx++;
1470		ring = &bcm4377->sco_h2d_ring;
1471		break;
1472
1473	default:
1474		return -EILSEQ;
1475	}
1476
1477	ret = bcm4377_enqueue(bcm4377, ring, skb->data, skb->len, false);
1478	if (ret < 0) {
1479		hdev->stat.err_tx++;
1480		return ret;
1481	}
1482
1483	hdev->stat.byte_tx += skb->len;
1484	kfree_skb(skb);
1485	return ret;
1486}
1487
1488static int bcm4377_hci_set_bdaddr(struct hci_dev *hdev, const bdaddr_t *bdaddr)
1489{
1490	struct bcm4377_data *bcm4377 = hci_get_drvdata(hdev);
1491	struct sk_buff *skb;
1492	int err;
1493
1494	skb = __hci_cmd_sync(hdev, 0xfc01, 6, bdaddr, HCI_INIT_TIMEOUT);
1495	if (IS_ERR(skb)) {
1496		err = PTR_ERR(skb);
1497		dev_err(&bcm4377->pdev->dev,
1498			"Change address command failed (%d)", err);
1499		return err;
1500	}
1501	kfree_skb(skb);
1502
1503	return 0;
1504}
1505
1506static int bcm4377_alloc_transfer_ring(struct bcm4377_data *bcm4377,
1507				       struct bcm4377_transfer_ring *ring)
1508{
1509	size_t entry_size;
1510
1511	spin_lock_init(&ring->lock);
1512	ring->payload_size = ALIGN(ring->payload_size, 4);
1513	ring->mapped_payload_size = ALIGN(ring->mapped_payload_size, 4);
1514
1515	if (ring->payload_size > BCM4377_XFER_RING_MAX_INPLACE_PAYLOAD_SIZE)
1516		return -EINVAL;
1517	if (ring->n_entries > BCM4377_MAX_RING_SIZE)
1518		return -EINVAL;
1519	if (ring->virtual && ring->allow_wait)
1520		return -EINVAL;
1521
1522	if (ring->d2h_buffers_only) {
1523		if (ring->virtual)
1524			return -EINVAL;
1525		if (ring->payload_size)
1526			return -EINVAL;
1527		if (!ring->mapped_payload_size)
1528			return -EINVAL;
1529	}
1530	if (ring->virtual)
1531		return 0;
1532
1533	entry_size =
1534		ring->payload_size + sizeof(struct bcm4377_xfer_ring_entry);
1535	ring->ring = dmam_alloc_coherent(&bcm4377->pdev->dev,
1536					 ring->n_entries * entry_size,
1537					 &ring->ring_dma, GFP_KERNEL);
1538	if (!ring->ring)
1539		return -ENOMEM;
1540
1541	if (ring->allow_wait) {
1542		ring->events = devm_kcalloc(&bcm4377->pdev->dev,
1543					    ring->n_entries,
1544					    sizeof(*ring->events), GFP_KERNEL);
1545		if (!ring->events)
1546			return -ENOMEM;
1547	}
1548
1549	if (ring->mapped_payload_size) {
1550		ring->payloads = dmam_alloc_coherent(
1551			&bcm4377->pdev->dev,
1552			ring->n_entries * ring->mapped_payload_size,
1553			&ring->payloads_dma, GFP_KERNEL);
1554		if (!ring->payloads)
1555			return -ENOMEM;
1556	}
1557
1558	return 0;
1559}
1560
1561static int bcm4377_alloc_completion_ring(struct bcm4377_data *bcm4377,
1562					 struct bcm4377_completion_ring *ring)
1563{
1564	size_t entry_size;
1565
1566	ring->payload_size = ALIGN(ring->payload_size, 4);
1567	if (ring->payload_size > BCM4377_XFER_RING_MAX_INPLACE_PAYLOAD_SIZE)
1568		return -EINVAL;
1569	if (ring->n_entries > BCM4377_MAX_RING_SIZE)
1570		return -EINVAL;
1571
1572	entry_size = ring->payload_size +
1573		     sizeof(struct bcm4377_completion_ring_entry);
1574
1575	ring->ring = dmam_alloc_coherent(&bcm4377->pdev->dev,
1576					 ring->n_entries * entry_size,
1577					 &ring->ring_dma, GFP_KERNEL);
1578	if (!ring->ring)
1579		return -ENOMEM;
1580	return 0;
1581}
1582
1583static int bcm4377_init_context(struct bcm4377_data *bcm4377)
1584{
1585	struct device *dev = &bcm4377->pdev->dev;
1586	dma_addr_t peripheral_info_dma;
1587
1588	bcm4377->ctx = dmam_alloc_coherent(dev, sizeof(*bcm4377->ctx),
1589					   &bcm4377->ctx_dma, GFP_KERNEL);
1590	if (!bcm4377->ctx)
1591		return -ENOMEM;
1592	memset(bcm4377->ctx, 0, sizeof(*bcm4377->ctx));
1593
1594	bcm4377->ring_state =
1595		dmam_alloc_coherent(dev, sizeof(*bcm4377->ring_state),
1596				    &bcm4377->ring_state_dma, GFP_KERNEL);
1597	if (!bcm4377->ring_state)
1598		return -ENOMEM;
1599	memset(bcm4377->ring_state, 0, sizeof(*bcm4377->ring_state));
1600
1601	bcm4377->ctx->version = cpu_to_le16(1);
1602	bcm4377->ctx->size = cpu_to_le16(sizeof(*bcm4377->ctx));
1603	bcm4377->ctx->enabled_caps = cpu_to_le32(2);
1604
1605	/*
1606	 * The BT device will write 0x20 bytes of data to this buffer but
1607	 * the exact contents are unknown. It only needs to exist for BT
1608	 * to work such that we can just allocate and then ignore it.
1609	 */
1610	if (!dmam_alloc_coherent(&bcm4377->pdev->dev, 0x20,
1611				 &peripheral_info_dma, GFP_KERNEL))
1612		return -ENOMEM;
1613	bcm4377->ctx->peripheral_info_addr = cpu_to_le64(peripheral_info_dma);
1614
1615	bcm4377->ctx->xfer_ring_heads_addr = cpu_to_le64(
1616		bcm4377->ring_state_dma +
1617		offsetof(struct bcm4377_ring_state, xfer_ring_head));
1618	bcm4377->ctx->xfer_ring_tails_addr = cpu_to_le64(
1619		bcm4377->ring_state_dma +
1620		offsetof(struct bcm4377_ring_state, xfer_ring_tail));
1621	bcm4377->ctx->completion_ring_heads_addr = cpu_to_le64(
1622		bcm4377->ring_state_dma +
1623		offsetof(struct bcm4377_ring_state, completion_ring_head));
1624	bcm4377->ctx->completion_ring_tails_addr = cpu_to_le64(
1625		bcm4377->ring_state_dma +
1626		offsetof(struct bcm4377_ring_state, completion_ring_tail));
1627
1628	bcm4377->ctx->n_completion_rings =
1629		cpu_to_le16(BCM4377_N_COMPLETION_RINGS);
1630	bcm4377->ctx->n_xfer_rings = cpu_to_le16(BCM4377_N_TRANSFER_RINGS);
1631
1632	bcm4377->ctx->control_completion_ring_addr =
1633		cpu_to_le64(bcm4377->control_ack_ring.ring_dma);
1634	bcm4377->ctx->control_completion_ring_n_entries =
1635		cpu_to_le16(bcm4377->control_ack_ring.n_entries);
1636	bcm4377->ctx->control_completion_ring_doorbell = cpu_to_le16(0xffff);
1637	bcm4377->ctx->control_completion_ring_msi = 0;
1638	bcm4377->ctx->control_completion_ring_header_size = 0;
1639	bcm4377->ctx->control_completion_ring_footer_size = 0;
1640
1641	bcm4377->ctx->control_xfer_ring_addr =
1642		cpu_to_le64(bcm4377->control_h2d_ring.ring_dma);
1643	bcm4377->ctx->control_xfer_ring_n_entries =
1644		cpu_to_le16(bcm4377->control_h2d_ring.n_entries);
1645	bcm4377->ctx->control_xfer_ring_doorbell =
1646		cpu_to_le16(bcm4377->control_h2d_ring.doorbell);
1647	bcm4377->ctx->control_xfer_ring_msi = 0;
1648	bcm4377->ctx->control_xfer_ring_header_size = 0;
1649	bcm4377->ctx->control_xfer_ring_footer_size =
1650		bcm4377->control_h2d_ring.payload_size / 4;
1651
1652	dev_dbg(&bcm4377->pdev->dev, "context initialized at IOVA %pad",
1653		&bcm4377->ctx_dma);
1654
1655	return 0;
1656}
1657
1658static int bcm4377_prepare_rings(struct bcm4377_data *bcm4377)
1659{
1660	int ret;
1661
1662	/*
1663	 * Even though many of these settings appear to be configurable
1664	 * when sending the "create ring" messages most of these are
1665	 * actually hardcoded in some (and quite possibly all) firmware versions
1666	 * and changing them on the host has no effect.
1667	 * Specifically, this applies to at least the doorbells, the transfer
1668	 * and completion ring ids and their mapping (e.g. both HCI and ACL
1669	 * entries will always be queued in completion rings 1 and 2 no matter
1670	 * what we configure here).
1671	 */
1672	bcm4377->control_ack_ring.ring_id = BCM4377_ACK_RING_CONTROL;
1673	bcm4377->control_ack_ring.n_entries = 32;
1674	bcm4377->control_ack_ring.transfer_rings =
1675		BIT(BCM4377_XFER_RING_CONTROL);
1676
1677	bcm4377->hci_acl_ack_ring.ring_id = BCM4377_ACK_RING_HCI_ACL;
1678	bcm4377->hci_acl_ack_ring.n_entries = 2 * BCM4377_RING_N_ENTRIES;
1679	bcm4377->hci_acl_ack_ring.transfer_rings =
1680		BIT(BCM4377_XFER_RING_HCI_H2D) | BIT(BCM4377_XFER_RING_ACL_H2D);
1681	bcm4377->hci_acl_ack_ring.delay = 1000;
1682
1683	/*
1684	 * A payload size of MAX_EVENT_PAYLOAD_SIZE is enough here since large
1685	 * ACL packets will be transmitted inside buffers mapped via
1686	 * acl_d2h_ring anyway.
1687	 */
1688	bcm4377->hci_acl_event_ring.ring_id = BCM4377_EVENT_RING_HCI_ACL;
1689	bcm4377->hci_acl_event_ring.payload_size = MAX_EVENT_PAYLOAD_SIZE;
1690	bcm4377->hci_acl_event_ring.n_entries = 2 * BCM4377_RING_N_ENTRIES;
1691	bcm4377->hci_acl_event_ring.transfer_rings =
1692		BIT(BCM4377_XFER_RING_HCI_D2H) | BIT(BCM4377_XFER_RING_ACL_D2H);
1693	bcm4377->hci_acl_event_ring.delay = 1000;
1694
1695	bcm4377->sco_ack_ring.ring_id = BCM4377_ACK_RING_SCO;
1696	bcm4377->sco_ack_ring.n_entries = BCM4377_RING_N_ENTRIES;
1697	bcm4377->sco_ack_ring.transfer_rings = BIT(BCM4377_XFER_RING_SCO_H2D);
1698
1699	bcm4377->sco_event_ring.ring_id = BCM4377_EVENT_RING_SCO;
1700	bcm4377->sco_event_ring.payload_size = MAX_SCO_PAYLOAD_SIZE;
1701	bcm4377->sco_event_ring.n_entries = BCM4377_RING_N_ENTRIES;
1702	bcm4377->sco_event_ring.transfer_rings = BIT(BCM4377_XFER_RING_SCO_D2H);
1703
1704	bcm4377->control_h2d_ring.ring_id = BCM4377_XFER_RING_CONTROL;
1705	bcm4377->control_h2d_ring.doorbell = BCM4377_DOORBELL_CONTROL;
1706	bcm4377->control_h2d_ring.payload_size = BCM4377_CONTROL_MSG_SIZE;
1707	bcm4377->control_h2d_ring.completion_ring = BCM4377_ACK_RING_CONTROL;
1708	bcm4377->control_h2d_ring.allow_wait = true;
1709	bcm4377->control_h2d_ring.n_entries = BCM4377_RING_N_ENTRIES;
1710
1711	bcm4377->hci_h2d_ring.ring_id = BCM4377_XFER_RING_HCI_H2D;
1712	bcm4377->hci_h2d_ring.doorbell = BCM4377_DOORBELL_HCI_H2D;
1713	bcm4377->hci_h2d_ring.payload_size = MAX_EVENT_PAYLOAD_SIZE;
1714	bcm4377->hci_h2d_ring.completion_ring = BCM4377_ACK_RING_HCI_ACL;
1715	bcm4377->hci_h2d_ring.n_entries = BCM4377_RING_N_ENTRIES;
1716
1717	bcm4377->hci_d2h_ring.ring_id = BCM4377_XFER_RING_HCI_D2H;
1718	bcm4377->hci_d2h_ring.doorbell = BCM4377_DOORBELL_HCI_D2H;
1719	bcm4377->hci_d2h_ring.completion_ring = BCM4377_EVENT_RING_HCI_ACL;
1720	bcm4377->hci_d2h_ring.virtual = true;
1721	bcm4377->hci_d2h_ring.n_entries = BCM4377_RING_N_ENTRIES;
1722
1723	bcm4377->sco_h2d_ring.ring_id = BCM4377_XFER_RING_SCO_H2D;
1724	bcm4377->sco_h2d_ring.doorbell = BCM4377_DOORBELL_SCO;
1725	bcm4377->sco_h2d_ring.payload_size = MAX_SCO_PAYLOAD_SIZE;
1726	bcm4377->sco_h2d_ring.completion_ring = BCM4377_ACK_RING_SCO;
1727	bcm4377->sco_h2d_ring.sync = true;
1728	bcm4377->sco_h2d_ring.n_entries = BCM4377_RING_N_ENTRIES;
1729
1730	bcm4377->sco_d2h_ring.ring_id = BCM4377_XFER_RING_SCO_D2H;
1731	bcm4377->sco_d2h_ring.doorbell = BCM4377_DOORBELL_SCO;
1732	bcm4377->sco_d2h_ring.completion_ring = BCM4377_EVENT_RING_SCO;
1733	bcm4377->sco_d2h_ring.virtual = true;
1734	bcm4377->sco_d2h_ring.sync = true;
1735	bcm4377->sco_d2h_ring.n_entries = BCM4377_RING_N_ENTRIES;
1736
1737	/*
1738	 * This ring has to use mapped_payload_size because the largest ACL
1739	 * packet doesn't fit inside the largest possible footer
1740	 */
1741	bcm4377->acl_h2d_ring.ring_id = BCM4377_XFER_RING_ACL_H2D;
1742	bcm4377->acl_h2d_ring.doorbell = BCM4377_DOORBELL_ACL_H2D;
1743	bcm4377->acl_h2d_ring.mapped_payload_size = MAX_ACL_PAYLOAD_SIZE;
1744	bcm4377->acl_h2d_ring.completion_ring = BCM4377_ACK_RING_HCI_ACL;
1745	bcm4377->acl_h2d_ring.n_entries = BCM4377_RING_N_ENTRIES;
1746
1747	/*
1748	 * This ring only contains empty buffers to be used by incoming
1749	 * ACL packets that do not fit inside the footer of hci_acl_event_ring
1750	 */
1751	bcm4377->acl_d2h_ring.ring_id = BCM4377_XFER_RING_ACL_D2H;
1752	bcm4377->acl_d2h_ring.doorbell = BCM4377_DOORBELL_ACL_D2H;
1753	bcm4377->acl_d2h_ring.completion_ring = BCM4377_EVENT_RING_HCI_ACL;
1754	bcm4377->acl_d2h_ring.d2h_buffers_only = true;
1755	bcm4377->acl_d2h_ring.mapped_payload_size = MAX_ACL_PAYLOAD_SIZE;
1756	bcm4377->acl_d2h_ring.n_entries = BCM4377_RING_N_ENTRIES;
1757
1758	/*
1759	 * no need for any cleanup since this is only called from _probe
1760	 * and only devres-managed allocations are used
1761	 */
1762	ret = bcm4377_alloc_transfer_ring(bcm4377, &bcm4377->control_h2d_ring);
1763	if (ret)
1764		return ret;
1765	ret = bcm4377_alloc_transfer_ring(bcm4377, &bcm4377->hci_h2d_ring);
1766	if (ret)
1767		return ret;
1768	ret = bcm4377_alloc_transfer_ring(bcm4377, &bcm4377->hci_d2h_ring);
1769	if (ret)
1770		return ret;
1771	ret = bcm4377_alloc_transfer_ring(bcm4377, &bcm4377->sco_h2d_ring);
1772	if (ret)
1773		return ret;
1774	ret = bcm4377_alloc_transfer_ring(bcm4377, &bcm4377->sco_d2h_ring);
1775	if (ret)
1776		return ret;
1777	ret = bcm4377_alloc_transfer_ring(bcm4377, &bcm4377->acl_h2d_ring);
1778	if (ret)
1779		return ret;
1780	ret = bcm4377_alloc_transfer_ring(bcm4377, &bcm4377->acl_d2h_ring);
1781	if (ret)
1782		return ret;
1783
1784	ret = bcm4377_alloc_completion_ring(bcm4377,
1785					    &bcm4377->control_ack_ring);
1786	if (ret)
1787		return ret;
1788	ret = bcm4377_alloc_completion_ring(bcm4377,
1789					    &bcm4377->hci_acl_ack_ring);
1790	if (ret)
1791		return ret;
1792	ret = bcm4377_alloc_completion_ring(bcm4377,
1793					    &bcm4377->hci_acl_event_ring);
1794	if (ret)
1795		return ret;
1796	ret = bcm4377_alloc_completion_ring(bcm4377, &bcm4377->sco_ack_ring);
1797	if (ret)
1798		return ret;
1799	ret = bcm4377_alloc_completion_ring(bcm4377, &bcm4377->sco_event_ring);
1800	if (ret)
1801		return ret;
1802
1803	dev_dbg(&bcm4377->pdev->dev, "all rings allocated and prepared\n");
1804
1805	return 0;
1806}
1807
1808static int bcm4377_boot(struct bcm4377_data *bcm4377)
1809{
1810	const struct firmware *fw;
1811	void *bfr;
1812	dma_addr_t fw_dma;
1813	int ret = 0;
1814	u32 bootstage, rti_status;
1815
1816	bootstage = ioread32(bcm4377->bar2 + BCM4377_BAR2_BOOTSTAGE);
1817	rti_status = ioread32(bcm4377->bar2 + BCM4377_BAR2_RTI_STATUS);
1818
1819	if (bootstage != 0) {
1820		dev_err(&bcm4377->pdev->dev, "bootstage is %d and not 0\n",
1821			bootstage);
1822		return -EINVAL;
1823	}
1824
1825	if (rti_status != 0) {
1826		dev_err(&bcm4377->pdev->dev, "RTI status is %d and not 0\n",
1827			rti_status);
1828		return -EINVAL;
1829	}
1830
1831	fw = bcm4377_request_blob(bcm4377, "bin");
1832	if (!fw) {
1833		dev_err(&bcm4377->pdev->dev, "Failed to load firmware\n");
1834		return -ENOENT;
1835	}
1836
1837	bfr = dma_alloc_coherent(&bcm4377->pdev->dev, fw->size, &fw_dma,
1838				 GFP_KERNEL);
1839	if (!bfr) {
1840		ret = -ENOMEM;
1841		goto out_release_fw;
1842	}
1843
1844	memcpy(bfr, fw->data, fw->size);
1845
1846	iowrite32(0, bcm4377->bar0 + BCM4377_BAR0_HOST_WINDOW_LO);
1847	iowrite32(0, bcm4377->bar0 + BCM4377_BAR0_HOST_WINDOW_HI);
1848	iowrite32(BCM4377_DMA_MASK,
1849		  bcm4377->bar0 + BCM4377_BAR0_HOST_WINDOW_SIZE);
1850
1851	iowrite32(lower_32_bits(fw_dma), bcm4377->bar2 + BCM4377_BAR2_FW_LO);
1852	iowrite32(upper_32_bits(fw_dma), bcm4377->bar2 + BCM4377_BAR2_FW_HI);
1853	iowrite32(fw->size, bcm4377->bar2 + BCM4377_BAR2_FW_SIZE);
1854	iowrite32(0, bcm4377->bar0 + BCM4377_BAR0_FW_DOORBELL);
1855
1856	dev_dbg(&bcm4377->pdev->dev, "waiting for firmware to boot\n");
1857
1858	ret = wait_for_completion_interruptible_timeout(&bcm4377->event,
1859							BCM4377_TIMEOUT);
1860	if (ret == 0) {
1861		ret = -ETIMEDOUT;
1862		goto out_dma_free;
1863	} else if (ret < 0) {
1864		goto out_dma_free;
1865	}
1866
1867	if (bcm4377->bootstage != 2) {
1868		dev_err(&bcm4377->pdev->dev, "boostage %d != 2\n",
1869			bcm4377->bootstage);
1870		ret = -ENXIO;
1871		goto out_dma_free;
1872	}
1873
1874	dev_dbg(&bcm4377->pdev->dev, "firmware has booted (stage = %x)\n",
1875		bcm4377->bootstage);
1876	ret = 0;
1877
1878out_dma_free:
1879	dma_free_coherent(&bcm4377->pdev->dev, fw->size, bfr, fw_dma);
1880out_release_fw:
1881	release_firmware(fw);
1882	return ret;
1883}
1884
1885static int bcm4377_setup_rti(struct bcm4377_data *bcm4377)
1886{
1887	int ret;
1888
1889	dev_dbg(&bcm4377->pdev->dev, "starting RTI\n");
1890	iowrite32(1, bcm4377->bar0 + BCM4377_BAR0_RTI_CONTROL);
1891
1892	ret = wait_for_completion_interruptible_timeout(&bcm4377->event,
1893							BCM4377_TIMEOUT);
1894	if (ret == 0) {
1895		dev_err(&bcm4377->pdev->dev,
1896			"timed out while waiting for RTI to transition to state 1");
1897		return -ETIMEDOUT;
1898	} else if (ret < 0) {
1899		return ret;
1900	}
1901
1902	if (bcm4377->rti_status != 1) {
1903		dev_err(&bcm4377->pdev->dev, "RTI did not ack state 1 (%d)\n",
1904			bcm4377->rti_status);
1905		return -ENODEV;
1906	}
1907	dev_dbg(&bcm4377->pdev->dev, "RTI is in state 1\n");
1908
1909	/* allow access to the entire IOVA space again */
1910	iowrite32(0, bcm4377->bar2 + BCM4377_BAR2_RTI_WINDOW_LO);
1911	iowrite32(0, bcm4377->bar2 + BCM4377_BAR2_RTI_WINDOW_HI);
1912	iowrite32(BCM4377_DMA_MASK,
1913		  bcm4377->bar2 + BCM4377_BAR2_RTI_WINDOW_SIZE);
1914
1915	/* setup "Converged IPC" context */
1916	iowrite32(lower_32_bits(bcm4377->ctx_dma),
1917		  bcm4377->bar2 + BCM4377_BAR2_CONTEXT_ADDR_LO);
1918	iowrite32(upper_32_bits(bcm4377->ctx_dma),
1919		  bcm4377->bar2 + BCM4377_BAR2_CONTEXT_ADDR_HI);
1920	iowrite32(2, bcm4377->bar0 + BCM4377_BAR0_RTI_CONTROL);
1921
1922	ret = wait_for_completion_interruptible_timeout(&bcm4377->event,
1923							BCM4377_TIMEOUT);
1924	if (ret == 0) {
1925		dev_err(&bcm4377->pdev->dev,
1926			"timed out while waiting for RTI to transition to state 2");
1927		return -ETIMEDOUT;
1928	} else if (ret < 0) {
1929		return ret;
1930	}
1931
1932	if (bcm4377->rti_status != 2) {
1933		dev_err(&bcm4377->pdev->dev, "RTI did not ack state 2 (%d)\n",
1934			bcm4377->rti_status);
1935		return -ENODEV;
1936	}
1937
1938	dev_dbg(&bcm4377->pdev->dev,
1939		"RTI is in state 2; control ring is ready\n");
1940	bcm4377->control_ack_ring.enabled = true;
1941
1942	return 0;
1943}
1944
1945static int bcm4377_parse_otp_board_params(struct bcm4377_data *bcm4377,
1946					  char tag, const char *val, size_t len)
1947{
1948	if (tag != 'V')
1949		return 0;
1950	if (len >= sizeof(bcm4377->vendor))
1951		return -EINVAL;
1952
1953	strscpy(bcm4377->vendor, val, len + 1);
1954	return 0;
1955}
1956
1957static int bcm4377_parse_otp_chip_params(struct bcm4377_data *bcm4377, char tag,
1958					 const char *val, size_t len)
1959{
1960	size_t idx = 0;
1961
1962	if (tag != 's')
1963		return 0;
1964	if (len >= sizeof(bcm4377->stepping))
1965		return -EINVAL;
1966
1967	while (len != 0) {
1968		bcm4377->stepping[idx] = tolower(val[idx]);
1969		if (val[idx] == '\0')
1970			return 0;
1971
1972		idx++;
1973		len--;
1974	}
1975
1976	bcm4377->stepping[idx] = '\0';
1977	return 0;
1978}
1979
1980static int bcm4377_parse_otp_str(struct bcm4377_data *bcm4377, const u8 *str,
1981				 enum bcm4377_otp_params_type type)
1982{
1983	const char *p;
1984	int ret;
1985
1986	p = skip_spaces(str);
1987	while (*p) {
1988		char tag = *p++;
1989		const char *end;
1990		size_t len;
1991
1992		if (*p++ != '=') /* implicit NUL check */
1993			return -EINVAL;
1994
1995		/* *p might be NUL here, if so end == p and len == 0 */
1996		end = strchrnul(p, ' ');
1997		len = end - p;
1998
1999		/* leave 1 byte for NUL in destination string */
2000		if (len > (BCM4377_OTP_MAX_PARAM_LEN - 1))
2001			return -EINVAL;
2002
2003		switch (type) {
2004		case BCM4377_OTP_BOARD_PARAMS:
2005			ret = bcm4377_parse_otp_board_params(bcm4377, tag, p,
2006							     len);
2007			break;
2008		case BCM4377_OTP_CHIP_PARAMS:
2009			ret = bcm4377_parse_otp_chip_params(bcm4377, tag, p,
2010							    len);
2011			break;
2012		default:
2013			ret = -EINVAL;
2014			break;
2015		}
2016
2017		if (ret)
2018			return ret;
2019
2020		/* Skip to next arg, if any */
2021		p = skip_spaces(end);
2022	}
2023
2024	return 0;
2025}
2026
2027static int bcm4377_parse_otp_sys_vendor(struct bcm4377_data *bcm4377, u8 *otp,
2028					size_t size)
2029{
2030	int idx = 4;
2031	const char *chip_params;
2032	const char *board_params;
2033	int ret;
2034
2035	/* 4-byte header and two empty strings */
2036	if (size < 6)
2037		return -EINVAL;
2038
2039	if (get_unaligned_le32(otp) != BCM4377_OTP_VENDOR_HDR)
2040		return -EINVAL;
2041
2042	chip_params = &otp[idx];
2043
2044	/* Skip first string, including terminator */
2045	idx += strnlen(chip_params, size - idx) + 1;
2046	if (idx >= size)
2047		return -EINVAL;
2048
2049	board_params = &otp[idx];
2050
2051	/* Skip to terminator of second string */
2052	idx += strnlen(board_params, size - idx);
2053	if (idx >= size)
2054		return -EINVAL;
2055
2056	/* At this point both strings are guaranteed NUL-terminated */
2057	dev_dbg(&bcm4377->pdev->dev,
2058		"OTP: chip_params='%s' board_params='%s'\n", chip_params,
2059		board_params);
2060
2061	ret = bcm4377_parse_otp_str(bcm4377, chip_params,
2062				    BCM4377_OTP_CHIP_PARAMS);
2063	if (ret)
2064		return ret;
2065
2066	ret = bcm4377_parse_otp_str(bcm4377, board_params,
2067				    BCM4377_OTP_BOARD_PARAMS);
2068	if (ret)
2069		return ret;
2070
2071	if (!bcm4377->stepping[0] || !bcm4377->vendor[0])
2072		return -EINVAL;
2073
2074	dev_dbg(&bcm4377->pdev->dev, "OTP: stepping=%s, vendor=%s\n",
2075		bcm4377->stepping, bcm4377->vendor);
2076	return 0;
2077}
2078
2079static int bcm4377_parse_otp(struct bcm4377_data *bcm4377)
2080{
2081	u8 *otp;
2082	int i;
2083	int ret = -ENOENT;
2084
2085	otp = kzalloc(BCM4377_OTP_SIZE, GFP_KERNEL);
2086	if (!otp)
2087		return -ENOMEM;
2088
2089	for (i = 0; i < BCM4377_OTP_SIZE; ++i)
2090		otp[i] = ioread8(bcm4377->bar0 + bcm4377->hw->otp_offset + i);
2091
2092	i = 0;
2093	while (i < (BCM4377_OTP_SIZE - 1)) {
2094		u8 type = otp[i];
2095		u8 length = otp[i + 1];
2096
2097		if (type == 0)
2098			break;
2099
2100		if ((i + 2 + length) > BCM4377_OTP_SIZE)
2101			break;
2102
2103		switch (type) {
2104		case BCM4377_OTP_SYS_VENDOR:
2105			dev_dbg(&bcm4377->pdev->dev,
2106				"OTP @ 0x%x (%d): SYS_VENDOR", i, length);
2107			ret = bcm4377_parse_otp_sys_vendor(bcm4377, &otp[i + 2],
2108							   length);
2109			break;
2110		case BCM4377_OTP_CIS:
2111			dev_dbg(&bcm4377->pdev->dev, "OTP @ 0x%x (%d): CIS", i,
2112				length);
2113			break;
2114		default:
2115			dev_dbg(&bcm4377->pdev->dev, "OTP @ 0x%x (%d): unknown",
2116				i, length);
2117			break;
2118		}
2119
2120		i += 2 + length;
2121	}
2122
2123	kfree(otp);
2124	return ret;
2125}
2126
2127static int bcm4377_init_cfg(struct bcm4377_data *bcm4377)
2128{
2129	int ret;
2130	u32 ctrl;
2131
2132	ret = pci_write_config_dword(bcm4377->pdev,
2133				     BCM4377_PCIECFG_BAR0_WINDOW1,
2134				     bcm4377->hw->bar0_window1);
2135	if (ret)
2136		return ret;
2137
2138	ret = pci_write_config_dword(bcm4377->pdev,
2139				     BCM4377_PCIECFG_BAR0_WINDOW2,
2140				     bcm4377->hw->bar0_window2);
2141	if (ret)
2142		return ret;
2143
2144	ret = pci_write_config_dword(
2145		bcm4377->pdev, BCM4377_PCIECFG_BAR0_CORE2_WINDOW1,
2146		BCM4377_PCIECFG_BAR0_CORE2_WINDOW1_DEFAULT);
2147	if (ret)
2148		return ret;
2149
2150	if (bcm4377->hw->has_bar0_core2_window2) {
2151		ret = pci_write_config_dword(bcm4377->pdev,
2152					     BCM4377_PCIECFG_BAR0_CORE2_WINDOW2,
2153					     bcm4377->hw->bar0_core2_window2);
2154		if (ret)
2155			return ret;
2156	}
2157
2158	ret = pci_write_config_dword(bcm4377->pdev, BCM4377_PCIECFG_BAR2_WINDOW,
2159				     BCM4377_PCIECFG_BAR2_WINDOW_DEFAULT);
2160	if (ret)
2161		return ret;
2162
2163	ret = pci_read_config_dword(bcm4377->pdev,
2164				    BCM4377_PCIECFG_SUBSYSTEM_CTRL, &ctrl);
2165	if (ret)
2166		return ret;
2167
2168	if (bcm4377->hw->clear_pciecfg_subsystem_ctrl_bit19)
2169		ctrl &= ~BIT(19);
2170	ctrl |= BIT(16);
2171
2172	return pci_write_config_dword(bcm4377->pdev,
2173				      BCM4377_PCIECFG_SUBSYSTEM_CTRL, ctrl);
2174}
2175
2176static int bcm4377_probe_dmi(struct bcm4377_data *bcm4377)
2177{
2178	const struct dmi_system_id *board_type_dmi_id;
2179
2180	board_type_dmi_id = dmi_first_match(bcm4377_dmi_board_table);
2181	if (board_type_dmi_id && board_type_dmi_id->driver_data) {
2182		bcm4377->board_type = board_type_dmi_id->driver_data;
2183		dev_dbg(&bcm4377->pdev->dev,
2184			"found board type via DMI match: %s\n",
2185			bcm4377->board_type);
2186	}
2187
2188	return 0;
2189}
2190
2191static int bcm4377_probe_of(struct bcm4377_data *bcm4377)
2192{
2193	struct device_node *np = bcm4377->pdev->dev.of_node;
2194	int ret;
2195
2196	if (!np)
2197		return 0;
2198
2199	ret = of_property_read_string(np, "brcm,board-type",
2200				      &bcm4377->board_type);
2201	if (ret) {
2202		dev_err(&bcm4377->pdev->dev, "no brcm,board-type property\n");
2203		return ret;
2204	}
2205
2206	bcm4377->taurus_beamforming_cal_blob =
2207		of_get_property(np, "brcm,taurus-bf-cal-blob",
2208				&bcm4377->taurus_beamforming_cal_size);
2209	if (!bcm4377->taurus_beamforming_cal_blob) {
2210		dev_err(&bcm4377->pdev->dev,
2211			"no brcm,taurus-bf-cal-blob property\n");
2212		return -ENOENT;
2213	}
2214	bcm4377->taurus_cal_blob = of_get_property(np, "brcm,taurus-cal-blob",
2215						   &bcm4377->taurus_cal_size);
2216	if (!bcm4377->taurus_cal_blob) {
2217		dev_err(&bcm4377->pdev->dev,
2218			"no brcm,taurus-cal-blob property\n");
2219		return -ENOENT;
2220	}
2221
2222	return 0;
2223}
2224
2225static void bcm4377_disable_aspm(struct bcm4377_data *bcm4377)
2226{
2227	pci_disable_link_state(bcm4377->pdev,
2228			       PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1);
2229
2230	/*
2231	 * pci_disable_link_state can fail if either CONFIG_PCIEASPM is disabled
2232	 * or if the BIOS hasn't handed over control to us. We must *always*
2233	 * disable ASPM for this device due to hardware errata though.
2234	 */
2235	pcie_capability_clear_word(bcm4377->pdev, PCI_EXP_LNKCTL,
2236				   PCI_EXP_LNKCTL_ASPMC);
2237}
2238
2239static void bcm4377_pci_free_irq_vectors(void *data)
2240{
2241	pci_free_irq_vectors(data);
2242}
2243
2244static void bcm4377_hci_free_dev(void *data)
2245{
2246	hci_free_dev(data);
2247}
2248
2249static void bcm4377_hci_unregister_dev(void *data)
2250{
2251	hci_unregister_dev(data);
2252}
2253
2254static int bcm4377_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2255{
2256	struct bcm4377_data *bcm4377;
2257	struct hci_dev *hdev;
2258	int ret, irq;
2259
2260	ret = dma_set_mask_and_coherent(&pdev->dev, BCM4377_DMA_MASK);
2261	if (ret)
2262		return ret;
2263
2264	bcm4377 = devm_kzalloc(&pdev->dev, sizeof(*bcm4377), GFP_KERNEL);
2265	if (!bcm4377)
2266		return -ENOMEM;
2267
2268	bcm4377->pdev = pdev;
2269	bcm4377->hw = &bcm4377_hw_variants[id->driver_data];
2270	init_completion(&bcm4377->event);
2271
2272	ret = bcm4377_prepare_rings(bcm4377);
2273	if (ret)
2274		return ret;
2275
2276	ret = bcm4377_init_context(bcm4377);
2277	if (ret)
2278		return ret;
2279
2280	ret = bcm4377_probe_dmi(bcm4377);
2281	if (ret)
2282		return ret;
2283	ret = bcm4377_probe_of(bcm4377);
2284	if (ret)
2285		return ret;
2286	if (!bcm4377->board_type) {
2287		dev_err(&pdev->dev, "unable to determine board type\n");
2288		return -ENODEV;
2289	}
2290
2291	if (bcm4377->hw->disable_aspm)
2292		bcm4377_disable_aspm(bcm4377);
2293
2294	ret = pci_reset_function_locked(pdev);
2295	if (ret)
2296		dev_warn(
2297			&pdev->dev,
2298			"function level reset failed with %d; trying to continue anyway\n",
2299			ret);
2300
2301	/*
2302	 * If this number is too low and we try to access any BAR too
2303	 * early the device will crash. Experiments have shown that
2304	 * approximately 50 msec is the minimum amount we have to wait.
2305	 * Let's double that to be safe.
2306	 */
2307	msleep(100);
2308
2309	ret = pcim_enable_device(pdev);
2310	if (ret)
2311		return ret;
2312	pci_set_master(pdev);
2313
2314	ret = bcm4377_init_cfg(bcm4377);
2315	if (ret)
2316		return ret;
2317
2318	bcm4377->bar0 = pcim_iomap(pdev, 0, 0);
2319	if (!bcm4377->bar0)
2320		return -EBUSY;
2321	bcm4377->bar2 = pcim_iomap(pdev, 2, 0);
2322	if (!bcm4377->bar2)
2323		return -EBUSY;
2324
2325	ret = bcm4377_parse_otp(bcm4377);
2326	if (ret) {
2327		dev_err(&pdev->dev, "Reading OTP failed with %d\n", ret);
2328		return ret;
2329	}
2330
2331	/*
2332	 * Legacy interrupts result in an IRQ storm because we don't know where
2333	 * the interrupt mask and status registers for these chips are.
2334	 * MSIs are acked automatically instead.
2335	 */
2336	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
2337	if (ret < 0)
2338		return -ENODEV;
2339	ret = devm_add_action_or_reset(&pdev->dev, bcm4377_pci_free_irq_vectors,
2340				       pdev);
2341	if (ret)
2342		return ret;
2343
2344	irq = pci_irq_vector(pdev, 0);
2345	if (irq <= 0)
2346		return -ENODEV;
2347
2348	ret = devm_request_irq(&pdev->dev, irq, bcm4377_irq, 0, "bcm4377",
2349			       bcm4377);
2350	if (ret)
2351		return ret;
2352
2353	hdev = hci_alloc_dev();
2354	if (!hdev)
2355		return -ENOMEM;
2356	ret = devm_add_action_or_reset(&pdev->dev, bcm4377_hci_free_dev, hdev);
2357	if (ret)
2358		return ret;
2359
2360	bcm4377->hdev = hdev;
2361
2362	hdev->bus = HCI_PCI;
2363	hdev->dev_type = HCI_PRIMARY;
2364	hdev->open = bcm4377_hci_open;
2365	hdev->close = bcm4377_hci_close;
2366	hdev->send = bcm4377_hci_send_frame;
2367	hdev->set_bdaddr = bcm4377_hci_set_bdaddr;
2368	hdev->setup = bcm4377_hci_setup;
2369
2370	set_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks);
2371	if (bcm4377->hw->broken_mws_transport_config)
2372		set_bit(HCI_QUIRK_BROKEN_MWS_TRANSPORT_CONFIG, &hdev->quirks);
2373	if (bcm4377->hw->broken_ext_scan)
2374		set_bit(HCI_QUIRK_BROKEN_EXT_SCAN, &hdev->quirks);
2375
2376	pci_set_drvdata(pdev, bcm4377);
2377	hci_set_drvdata(hdev, bcm4377);
2378	SET_HCIDEV_DEV(hdev, &pdev->dev);
2379
2380	ret = bcm4377_boot(bcm4377);
2381	if (ret)
2382		return ret;
2383
2384	ret = bcm4377_setup_rti(bcm4377);
2385	if (ret)
2386		return ret;
2387
2388	ret = hci_register_dev(hdev);
2389	if (ret)
2390		return ret;
2391	return devm_add_action_or_reset(&pdev->dev, bcm4377_hci_unregister_dev,
2392					hdev);
2393}
2394
2395static int bcm4377_suspend(struct pci_dev *pdev, pm_message_t state)
2396{
2397	struct bcm4377_data *bcm4377 = pci_get_drvdata(pdev);
2398	int ret;
2399
2400	ret = hci_suspend_dev(bcm4377->hdev);
2401	if (ret)
2402		return ret;
2403
2404	iowrite32(BCM4377_BAR0_SLEEP_CONTROL_QUIESCE,
2405		  bcm4377->bar0 + BCM4377_BAR0_SLEEP_CONTROL);
2406
2407	return 0;
2408}
2409
2410static int bcm4377_resume(struct pci_dev *pdev)
2411{
2412	struct bcm4377_data *bcm4377 = pci_get_drvdata(pdev);
2413
2414	iowrite32(BCM4377_BAR0_SLEEP_CONTROL_UNQUIESCE,
2415		  bcm4377->bar0 + BCM4377_BAR0_SLEEP_CONTROL);
2416
2417	return hci_resume_dev(bcm4377->hdev);
2418}
2419
2420static const struct dmi_system_id bcm4377_dmi_board_table[] = {
2421	{
2422		.matches = {
2423			DMI_MATCH(DMI_BOARD_VENDOR, "Apple Inc."),
2424			DMI_MATCH(DMI_PRODUCT_NAME, "MacBookAir9,1"),
2425		},
2426		.driver_data = "apple,formosa",
2427	},
2428	{
2429		.matches = {
2430			DMI_MATCH(DMI_BOARD_VENDOR, "Apple Inc."),
2431			DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro15,4"),
2432		},
2433		.driver_data = "apple,formosa",
2434	},
2435	{
2436		.matches = {
2437			DMI_MATCH(DMI_BOARD_VENDOR, "Apple Inc."),
2438			DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro16,3"),
2439		},
2440		.driver_data = "apple,formosa",
2441	},
2442	{}
2443};
2444
2445static const struct bcm4377_hw bcm4377_hw_variants[] = {
2446	[BCM4377] = {
2447		.id = 0x4377,
2448		.otp_offset = 0x4120,
2449		.bar0_window1 = 0x1800b000,
2450		.bar0_window2 = 0x1810c000,
2451		.disable_aspm = true,
2452		.broken_ext_scan = true,
2453		.send_ptb = bcm4377_send_ptb,
2454	},
2455
2456	[BCM4378] = {
2457		.id = 0x4378,
2458		.otp_offset = 0x4120,
2459		.bar0_window1 = 0x18002000,
2460		.bar0_window2 = 0x1810a000,
2461		.bar0_core2_window2 = 0x18107000,
2462		.has_bar0_core2_window2 = true,
2463		.broken_mws_transport_config = true,
2464		.send_calibration = bcm4378_send_calibration,
2465		.send_ptb = bcm4378_send_ptb,
2466	},
2467
2468	[BCM4387] = {
2469		.id = 0x4387,
2470		.otp_offset = 0x413c,
2471		.bar0_window1 = 0x18002000,
2472		.bar0_window2 = 0x18109000,
2473		.bar0_core2_window2 = 0x18106000,
2474		.has_bar0_core2_window2 = true,
2475		.clear_pciecfg_subsystem_ctrl_bit19 = true,
2476		.broken_mws_transport_config = true,
2477		.send_calibration = bcm4387_send_calibration,
2478		.send_ptb = bcm4378_send_ptb,
2479	},
2480};
2481
2482#define BCM4377_DEVID_ENTRY(id)                                             \
2483	{                                                                   \
2484		PCI_VENDOR_ID_BROADCOM, BCM##id##_DEVICE_ID, PCI_ANY_ID,    \
2485			PCI_ANY_ID, PCI_CLASS_NETWORK_OTHER << 8, 0xffff00, \
2486			BCM##id                                             \
2487	}
2488
2489static const struct pci_device_id bcm4377_devid_table[] = {
2490	BCM4377_DEVID_ENTRY(4377),
2491	BCM4377_DEVID_ENTRY(4378),
2492	BCM4377_DEVID_ENTRY(4387),
2493	{},
2494};
2495MODULE_DEVICE_TABLE(pci, bcm4377_devid_table);
2496
2497static struct pci_driver bcm4377_pci_driver = {
2498	.name = "hci_bcm4377",
2499	.id_table = bcm4377_devid_table,
2500	.probe = bcm4377_probe,
2501	.suspend = bcm4377_suspend,
2502	.resume = bcm4377_resume,
2503};
2504module_pci_driver(bcm4377_pci_driver);
2505
2506MODULE_AUTHOR("Sven Peter <sven@svenpeter.dev>");
2507MODULE_DESCRIPTION("Bluetooth support for Broadcom 4377/4378/4387 devices");
2508MODULE_LICENSE("Dual MIT/GPL");
2509MODULE_FIRMWARE("brcm/brcmbt4377*.bin");
2510MODULE_FIRMWARE("brcm/brcmbt4377*.ptb");
2511MODULE_FIRMWARE("brcm/brcmbt4378*.bin");
2512MODULE_FIRMWARE("brcm/brcmbt4378*.ptb");
2513MODULE_FIRMWARE("brcm/brcmbt4387*.bin");
2514MODULE_FIRMWARE("brcm/brcmbt4387*.ptb");