Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * property.c - Unified device property interface.
   4 *
   5 * Copyright (C) 2014, Intel Corporation
   6 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
   7 *          Mika Westerberg <mika.westerberg@linux.intel.com>
   8 */
   9
  10#include <linux/acpi.h>
  11#include <linux/export.h>
  12#include <linux/kernel.h>
  13#include <linux/of.h>
  14#include <linux/of_address.h>
  15#include <linux/of_graph.h>
  16#include <linux/of_irq.h>
  17#include <linux/property.h>
 
  18#include <linux/phy.h>
  19
  20struct fwnode_handle *__dev_fwnode(struct device *dev)
 
 
 
 
 
 
 
 
  21{
  22	return IS_ENABLED(CONFIG_OF) && dev->of_node ?
  23		of_fwnode_handle(dev->of_node) : dev->fwnode;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  24}
  25EXPORT_SYMBOL_GPL(__dev_fwnode);
  26
  27const struct fwnode_handle *__dev_fwnode_const(const struct device *dev)
  28{
  29	return IS_ENABLED(CONFIG_OF) && dev->of_node ?
  30		of_fwnode_handle(dev->of_node) : dev->fwnode;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  31}
  32EXPORT_SYMBOL_GPL(__dev_fwnode_const);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  33
  34/**
  35 * device_property_present - check if a property of a device is present
  36 * @dev: Device whose property is being checked
  37 * @propname: Name of the property
  38 *
  39 * Check if property @propname is present in the device firmware description.
  40 */
  41bool device_property_present(struct device *dev, const char *propname)
  42{
  43	return fwnode_property_present(dev_fwnode(dev), propname);
  44}
  45EXPORT_SYMBOL_GPL(device_property_present);
  46
  47/**
  48 * fwnode_property_present - check if a property of a firmware node is present
  49 * @fwnode: Firmware node whose property to check
  50 * @propname: Name of the property
  51 */
  52bool fwnode_property_present(const struct fwnode_handle *fwnode,
  53			     const char *propname)
  54{
  55	bool ret;
  56
  57	if (IS_ERR_OR_NULL(fwnode))
  58		return false;
  59
  60	ret = fwnode_call_bool_op(fwnode, property_present, propname);
  61	if (ret)
  62		return ret;
  63
  64	return fwnode_call_bool_op(fwnode->secondary, property_present, propname);
 
  65}
  66EXPORT_SYMBOL_GPL(fwnode_property_present);
  67
  68/**
  69 * device_property_read_u8_array - return a u8 array property of a device
  70 * @dev: Device to get the property of
  71 * @propname: Name of the property
  72 * @val: The values are stored here or %NULL to return the number of values
  73 * @nval: Size of the @val array
  74 *
  75 * Function reads an array of u8 properties with @propname from the device
  76 * firmware description and stores them to @val if found.
  77 *
  78 * It's recommended to call device_property_count_u8() instead of calling
  79 * this function with @val equals %NULL and @nval equals 0.
  80 *
  81 * Return: number of values if @val was %NULL,
  82 *         %0 if the property was found (success),
  83 *	   %-EINVAL if given arguments are not valid,
  84 *	   %-ENODATA if the property does not have a value,
  85 *	   %-EPROTO if the property is not an array of numbers,
  86 *	   %-EOVERFLOW if the size of the property is not as expected.
  87 *	   %-ENXIO if no suitable firmware interface is present.
  88 */
  89int device_property_read_u8_array(struct device *dev, const char *propname,
  90				  u8 *val, size_t nval)
  91{
  92	return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
  93}
  94EXPORT_SYMBOL_GPL(device_property_read_u8_array);
  95
  96/**
  97 * device_property_read_u16_array - return a u16 array property of a device
  98 * @dev: Device to get the property of
  99 * @propname: Name of the property
 100 * @val: The values are stored here or %NULL to return the number of values
 101 * @nval: Size of the @val array
 102 *
 103 * Function reads an array of u16 properties with @propname from the device
 104 * firmware description and stores them to @val if found.
 105 *
 106 * It's recommended to call device_property_count_u16() instead of calling
 107 * this function with @val equals %NULL and @nval equals 0.
 108 *
 109 * Return: number of values if @val was %NULL,
 110 *         %0 if the property was found (success),
 111 *	   %-EINVAL if given arguments are not valid,
 112 *	   %-ENODATA if the property does not have a value,
 113 *	   %-EPROTO if the property is not an array of numbers,
 114 *	   %-EOVERFLOW if the size of the property is not as expected.
 115 *	   %-ENXIO if no suitable firmware interface is present.
 116 */
 117int device_property_read_u16_array(struct device *dev, const char *propname,
 118				   u16 *val, size_t nval)
 119{
 120	return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
 121}
 122EXPORT_SYMBOL_GPL(device_property_read_u16_array);
 123
 124/**
 125 * device_property_read_u32_array - return a u32 array property of a device
 126 * @dev: Device to get the property of
 127 * @propname: Name of the property
 128 * @val: The values are stored here or %NULL to return the number of values
 129 * @nval: Size of the @val array
 130 *
 131 * Function reads an array of u32 properties with @propname from the device
 132 * firmware description and stores them to @val if found.
 133 *
 134 * It's recommended to call device_property_count_u32() instead of calling
 135 * this function with @val equals %NULL and @nval equals 0.
 136 *
 137 * Return: number of values if @val was %NULL,
 138 *         %0 if the property was found (success),
 139 *	   %-EINVAL if given arguments are not valid,
 140 *	   %-ENODATA if the property does not have a value,
 141 *	   %-EPROTO if the property is not an array of numbers,
 142 *	   %-EOVERFLOW if the size of the property is not as expected.
 143 *	   %-ENXIO if no suitable firmware interface is present.
 144 */
 145int device_property_read_u32_array(struct device *dev, const char *propname,
 146				   u32 *val, size_t nval)
 147{
 148	return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
 149}
 150EXPORT_SYMBOL_GPL(device_property_read_u32_array);
 151
 152/**
 153 * device_property_read_u64_array - return a u64 array property of a device
 154 * @dev: Device to get the property of
 155 * @propname: Name of the property
 156 * @val: The values are stored here or %NULL to return the number of values
 157 * @nval: Size of the @val array
 158 *
 159 * Function reads an array of u64 properties with @propname from the device
 160 * firmware description and stores them to @val if found.
 161 *
 162 * It's recommended to call device_property_count_u64() instead of calling
 163 * this function with @val equals %NULL and @nval equals 0.
 164 *
 165 * Return: number of values if @val was %NULL,
 166 *         %0 if the property was found (success),
 167 *	   %-EINVAL if given arguments are not valid,
 168 *	   %-ENODATA if the property does not have a value,
 169 *	   %-EPROTO if the property is not an array of numbers,
 170 *	   %-EOVERFLOW if the size of the property is not as expected.
 171 *	   %-ENXIO if no suitable firmware interface is present.
 172 */
 173int device_property_read_u64_array(struct device *dev, const char *propname,
 174				   u64 *val, size_t nval)
 175{
 176	return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
 177}
 178EXPORT_SYMBOL_GPL(device_property_read_u64_array);
 179
 180/**
 181 * device_property_read_string_array - return a string array property of device
 182 * @dev: Device to get the property of
 183 * @propname: Name of the property
 184 * @val: The values are stored here or %NULL to return the number of values
 185 * @nval: Size of the @val array
 186 *
 187 * Function reads an array of string properties with @propname from the device
 188 * firmware description and stores them to @val if found.
 189 *
 190 * It's recommended to call device_property_string_array_count() instead of calling
 191 * this function with @val equals %NULL and @nval equals 0.
 192 *
 193 * Return: number of values read on success if @val is non-NULL,
 194 *	   number of values available on success if @val is NULL,
 195 *	   %-EINVAL if given arguments are not valid,
 196 *	   %-ENODATA if the property does not have a value,
 197 *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
 198 *	   %-EOVERFLOW if the size of the property is not as expected.
 199 *	   %-ENXIO if no suitable firmware interface is present.
 200 */
 201int device_property_read_string_array(struct device *dev, const char *propname,
 202				      const char **val, size_t nval)
 203{
 204	return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
 205}
 206EXPORT_SYMBOL_GPL(device_property_read_string_array);
 207
 208/**
 209 * device_property_read_string - return a string property of a device
 210 * @dev: Device to get the property of
 211 * @propname: Name of the property
 212 * @val: The value is stored here
 213 *
 214 * Function reads property @propname from the device firmware description and
 215 * stores the value into @val if found. The value is checked to be a string.
 216 *
 217 * Return: %0 if the property was found (success),
 218 *	   %-EINVAL if given arguments are not valid,
 219 *	   %-ENODATA if the property does not have a value,
 220 *	   %-EPROTO or %-EILSEQ if the property type is not a string.
 221 *	   %-ENXIO if no suitable firmware interface is present.
 222 */
 223int device_property_read_string(struct device *dev, const char *propname,
 224				const char **val)
 225{
 226	return fwnode_property_read_string(dev_fwnode(dev), propname, val);
 227}
 228EXPORT_SYMBOL_GPL(device_property_read_string);
 229
 230/**
 231 * device_property_match_string - find a string in an array and return index
 232 * @dev: Device to get the property of
 233 * @propname: Name of the property holding the array
 234 * @string: String to look for
 235 *
 236 * Find a given string in a string array and if it is found return the
 237 * index back.
 238 *
 239 * Return: index, starting from %0, if the property was found (success),
 240 *	   %-EINVAL if given arguments are not valid,
 241 *	   %-ENODATA if the property does not have a value,
 242 *	   %-EPROTO if the property is not an array of strings,
 243 *	   %-ENXIO if no suitable firmware interface is present.
 244 */
 245int device_property_match_string(struct device *dev, const char *propname,
 246				 const char *string)
 247{
 248	return fwnode_property_match_string(dev_fwnode(dev), propname, string);
 249}
 250EXPORT_SYMBOL_GPL(device_property_match_string);
 251
 252static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
 253					  const char *propname,
 254					  unsigned int elem_size, void *val,
 255					  size_t nval)
 256{
 257	int ret;
 258
 259	if (IS_ERR_OR_NULL(fwnode))
 260		return -EINVAL;
 261
 262	ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
 263				 elem_size, val, nval);
 264	if (ret != -EINVAL)
 265		return ret;
 
 
 
 266
 267	return fwnode_call_int_op(fwnode->secondary, property_read_int_array, propname,
 268				  elem_size, val, nval);
 269}
 270
 271/**
 272 * fwnode_property_read_u8_array - return a u8 array property of firmware node
 273 * @fwnode: Firmware node to get the property of
 274 * @propname: Name of the property
 275 * @val: The values are stored here or %NULL to return the number of values
 276 * @nval: Size of the @val array
 277 *
 278 * Read an array of u8 properties with @propname from @fwnode and stores them to
 279 * @val if found.
 280 *
 281 * It's recommended to call fwnode_property_count_u8() instead of calling
 282 * this function with @val equals %NULL and @nval equals 0.
 283 *
 284 * Return: number of values if @val was %NULL,
 285 *         %0 if the property was found (success),
 286 *	   %-EINVAL if given arguments are not valid,
 287 *	   %-ENODATA if the property does not have a value,
 288 *	   %-EPROTO if the property is not an array of numbers,
 289 *	   %-EOVERFLOW if the size of the property is not as expected,
 290 *	   %-ENXIO if no suitable firmware interface is present.
 291 */
 292int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
 293				  const char *propname, u8 *val, size_t nval)
 294{
 295	return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
 296					      val, nval);
 297}
 298EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
 299
 300/**
 301 * fwnode_property_read_u16_array - return a u16 array property of firmware node
 302 * @fwnode: Firmware node to get the property of
 303 * @propname: Name of the property
 304 * @val: The values are stored here or %NULL to return the number of values
 305 * @nval: Size of the @val array
 306 *
 307 * Read an array of u16 properties with @propname from @fwnode and store them to
 308 * @val if found.
 309 *
 310 * It's recommended to call fwnode_property_count_u16() instead of calling
 311 * this function with @val equals %NULL and @nval equals 0.
 312 *
 313 * Return: number of values if @val was %NULL,
 314 *         %0 if the property was found (success),
 315 *	   %-EINVAL if given arguments are not valid,
 316 *	   %-ENODATA if the property does not have a value,
 317 *	   %-EPROTO if the property is not an array of numbers,
 318 *	   %-EOVERFLOW if the size of the property is not as expected,
 319 *	   %-ENXIO if no suitable firmware interface is present.
 320 */
 321int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
 322				   const char *propname, u16 *val, size_t nval)
 323{
 324	return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
 325					      val, nval);
 326}
 327EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
 328
 329/**
 330 * fwnode_property_read_u32_array - return a u32 array property of firmware node
 331 * @fwnode: Firmware node to get the property of
 332 * @propname: Name of the property
 333 * @val: The values are stored here or %NULL to return the number of values
 334 * @nval: Size of the @val array
 335 *
 336 * Read an array of u32 properties with @propname from @fwnode store them to
 337 * @val if found.
 338 *
 339 * It's recommended to call fwnode_property_count_u32() instead of calling
 340 * this function with @val equals %NULL and @nval equals 0.
 341 *
 342 * Return: number of values if @val was %NULL,
 343 *         %0 if the property was found (success),
 344 *	   %-EINVAL if given arguments are not valid,
 345 *	   %-ENODATA if the property does not have a value,
 346 *	   %-EPROTO if the property is not an array of numbers,
 347 *	   %-EOVERFLOW if the size of the property is not as expected,
 348 *	   %-ENXIO if no suitable firmware interface is present.
 349 */
 350int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
 351				   const char *propname, u32 *val, size_t nval)
 352{
 353	return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
 354					      val, nval);
 355}
 356EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
 357
 358/**
 359 * fwnode_property_read_u64_array - return a u64 array property firmware node
 360 * @fwnode: Firmware node to get the property of
 361 * @propname: Name of the property
 362 * @val: The values are stored here or %NULL to return the number of values
 363 * @nval: Size of the @val array
 364 *
 365 * Read an array of u64 properties with @propname from @fwnode and store them to
 366 * @val if found.
 367 *
 368 * It's recommended to call fwnode_property_count_u64() instead of calling
 369 * this function with @val equals %NULL and @nval equals 0.
 370 *
 371 * Return: number of values if @val was %NULL,
 372 *         %0 if the property was found (success),
 373 *	   %-EINVAL if given arguments are not valid,
 374 *	   %-ENODATA if the property does not have a value,
 375 *	   %-EPROTO if the property is not an array of numbers,
 376 *	   %-EOVERFLOW if the size of the property is not as expected,
 377 *	   %-ENXIO if no suitable firmware interface is present.
 378 */
 379int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
 380				   const char *propname, u64 *val, size_t nval)
 381{
 382	return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
 383					      val, nval);
 384}
 385EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
 386
 387/**
 388 * fwnode_property_read_string_array - return string array property of a node
 389 * @fwnode: Firmware node to get the property of
 390 * @propname: Name of the property
 391 * @val: The values are stored here or %NULL to return the number of values
 392 * @nval: Size of the @val array
 393 *
 394 * Read an string list property @propname from the given firmware node and store
 395 * them to @val if found.
 396 *
 397 * It's recommended to call fwnode_property_string_array_count() instead of calling
 398 * this function with @val equals %NULL and @nval equals 0.
 399 *
 400 * Return: number of values read on success if @val is non-NULL,
 401 *	   number of values available on success if @val is NULL,
 402 *	   %-EINVAL if given arguments are not valid,
 403 *	   %-ENODATA if the property does not have a value,
 404 *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
 405 *	   %-EOVERFLOW if the size of the property is not as expected,
 406 *	   %-ENXIO if no suitable firmware interface is present.
 407 */
 408int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
 409				      const char *propname, const char **val,
 410				      size_t nval)
 411{
 412	int ret;
 413
 414	if (IS_ERR_OR_NULL(fwnode))
 415		return -EINVAL;
 416
 417	ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
 418				 val, nval);
 419	if (ret != -EINVAL)
 420		return ret;
 421
 422	return fwnode_call_int_op(fwnode->secondary, property_read_string_array, propname,
 423				  val, nval);
 
 424}
 425EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
 426
 427/**
 428 * fwnode_property_read_string - return a string property of a firmware node
 429 * @fwnode: Firmware node to get the property of
 430 * @propname: Name of the property
 431 * @val: The value is stored here
 432 *
 433 * Read property @propname from the given firmware node and store the value into
 434 * @val if found.  The value is checked to be a string.
 435 *
 436 * Return: %0 if the property was found (success),
 437 *	   %-EINVAL if given arguments are not valid,
 438 *	   %-ENODATA if the property does not have a value,
 439 *	   %-EPROTO or %-EILSEQ if the property is not a string,
 440 *	   %-ENXIO if no suitable firmware interface is present.
 441 */
 442int fwnode_property_read_string(const struct fwnode_handle *fwnode,
 443				const char *propname, const char **val)
 444{
 445	int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
 446
 447	return ret < 0 ? ret : 0;
 448}
 449EXPORT_SYMBOL_GPL(fwnode_property_read_string);
 450
 451/**
 452 * fwnode_property_match_string - find a string in an array and return index
 453 * @fwnode: Firmware node to get the property of
 454 * @propname: Name of the property holding the array
 455 * @string: String to look for
 456 *
 457 * Find a given string in a string array and if it is found return the
 458 * index back.
 459 *
 460 * Return: index, starting from %0, if the property was found (success),
 461 *	   %-EINVAL if given arguments are not valid,
 462 *	   %-ENODATA if the property does not have a value,
 463 *	   %-EPROTO if the property is not an array of strings,
 464 *	   %-ENXIO if no suitable firmware interface is present.
 465 */
 466int fwnode_property_match_string(const struct fwnode_handle *fwnode,
 467	const char *propname, const char *string)
 468{
 469	const char **values;
 470	int nval, ret;
 471
 472	nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
 473	if (nval < 0)
 474		return nval;
 475
 476	if (nval == 0)
 477		return -ENODATA;
 478
 479	values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
 480	if (!values)
 481		return -ENOMEM;
 482
 483	ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
 484	if (ret < 0)
 485		goto out_free;
 486
 487	ret = match_string(values, nval, string);
 488	if (ret < 0)
 489		ret = -ENODATA;
 490
 491out_free:
 492	kfree(values);
 493	return ret;
 494}
 495EXPORT_SYMBOL_GPL(fwnode_property_match_string);
 496
 497/**
 498 * fwnode_property_get_reference_args() - Find a reference with arguments
 499 * @fwnode:	Firmware node where to look for the reference
 500 * @prop:	The name of the property
 501 * @nargs_prop:	The name of the property telling the number of
 502 *		arguments in the referred node. NULL if @nargs is known,
 503 *		otherwise @nargs is ignored. Only relevant on OF.
 504 * @nargs:	Number of arguments. Ignored if @nargs_prop is non-NULL.
 505 * @index:	Index of the reference, from zero onwards.
 506 * @args:	Result structure with reference and integer arguments.
 507 *
 508 * Obtain a reference based on a named property in an fwnode, with
 509 * integer arguments.
 510 *
 511 * Caller is responsible to call fwnode_handle_put() on the returned
 512 * args->fwnode pointer.
 513 *
 514 * Returns: %0 on success
 515 *	    %-ENOENT when the index is out of bounds, the index has an empty
 516 *		     reference or the property was not found
 517 *	    %-EINVAL on parse error
 518 */
 519int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
 520				       const char *prop, const char *nargs_prop,
 521				       unsigned int nargs, unsigned int index,
 522				       struct fwnode_reference_args *args)
 523{
 524	int ret;
 
 
 
 525
 526	if (IS_ERR_OR_NULL(fwnode))
 527		return -ENOENT;
 
 528
 529	ret = fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
 530				 nargs, index, args);
 531	if (ret == 0)
 532		return ret;
 
 
 
 
 
 
 
 
 533
 534	if (IS_ERR_OR_NULL(fwnode->secondary))
 535		return ret;
 
 
 
 
 536
 537	return fwnode_call_int_op(fwnode->secondary, get_reference_args, prop, nargs_prop,
 538				  nargs, index, args);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 539}
 540EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
 541
 542/**
 543 * fwnode_find_reference - Find named reference to a fwnode_handle
 544 * @fwnode: Firmware node where to look for the reference
 545 * @name: The name of the reference
 546 * @index: Index of the reference
 547 *
 548 * @index can be used when the named reference holds a table of references.
 549 *
 550 * Returns pointer to the reference fwnode, or ERR_PTR. Caller is responsible to
 551 * call fwnode_handle_put() on the returned fwnode pointer.
 552 */
 553struct fwnode_handle *fwnode_find_reference(const struct fwnode_handle *fwnode,
 554					    const char *name,
 555					    unsigned int index)
 556{
 557	struct fwnode_reference_args args;
 558	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 559
 560	ret = fwnode_property_get_reference_args(fwnode, name, NULL, 0, index,
 561						 &args);
 562	return ret ? ERR_PTR(ret) : args.fwnode;
 
 
 563}
 564EXPORT_SYMBOL_GPL(fwnode_find_reference);
 565
 566/**
 567 * fwnode_get_name - Return the name of a node
 568 * @fwnode: The firmware node
 569 *
 570 * Returns a pointer to the node name.
 
 571 */
 572const char *fwnode_get_name(const struct fwnode_handle *fwnode)
 
 573{
 574	return fwnode_call_ptr_op(fwnode, get_name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 575}
 576EXPORT_SYMBOL_GPL(fwnode_get_name);
 577
 578/**
 579 * fwnode_get_name_prefix - Return the prefix of node for printing purposes
 580 * @fwnode: The firmware node
 581 *
 582 * Returns the prefix of a node, intended to be printed right before the node.
 583 * The prefix works also as a separator between the nodes.
 584 */
 585const char *fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
 586{
 587	return fwnode_call_ptr_op(fwnode, get_name_prefix);
 
 
 
 
 
 588}
 
 589
 590/**
 591 * fwnode_get_parent - Return parent firwmare node
 592 * @fwnode: Firmware whose parent is retrieved
 593 *
 594 * Return parent firmware node of the given node if possible or %NULL if no
 595 * parent was available.
 596 */
 597struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
 598{
 599	return fwnode_call_ptr_op(fwnode, get_parent);
 
 
 
 
 600}
 601EXPORT_SYMBOL_GPL(fwnode_get_parent);
 602
 603/**
 604 * fwnode_get_next_parent - Iterate to the node's parent
 605 * @fwnode: Firmware whose parent is retrieved
 606 *
 607 * This is like fwnode_get_parent() except that it drops the refcount
 608 * on the passed node, making it suitable for iterating through a
 609 * node's parents.
 610 *
 611 * Returns a node pointer with refcount incremented, use
 612 * fwnode_handle_put() on it when done.
 613 */
 614struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
 615{
 616	struct fwnode_handle *parent = fwnode_get_parent(fwnode);
 
 617
 618	fwnode_handle_put(fwnode);
 
 
 619
 620	return parent;
 
 
 
 
 
 
 
 621}
 622EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
 623
 624/**
 625 * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode
 626 * @fwnode: firmware node
 627 *
 628 * Given a firmware node (@fwnode), this function finds its closest ancestor
 629 * firmware node that has a corresponding struct device and returns that struct
 630 * device.
 631 *
 632 * The caller of this function is expected to call put_device() on the returned
 633 * device when they are done.
 
 634 */
 635struct device *fwnode_get_next_parent_dev(struct fwnode_handle *fwnode)
 636{
 637	struct fwnode_handle *parent;
 638	struct device *dev;
 639
 640	fwnode_for_each_parent_node(fwnode, parent) {
 641		dev = get_dev_from_fwnode(parent);
 642		if (dev) {
 643			fwnode_handle_put(parent);
 644			return dev;
 645		}
 
 
 
 
 
 
 
 
 
 646	}
 647	return NULL;
 
 648}
 
 649
 650/**
 651 * fwnode_count_parents - Return the number of parents a node has
 652 * @fwnode: The node the parents of which are to be counted
 
 653 *
 654 * Returns the number of parents a node has.
 
 
 655 */
 656unsigned int fwnode_count_parents(const struct fwnode_handle *fwnode)
 
 657{
 658	struct fwnode_handle *parent;
 659	unsigned int count = 0;
 660
 661	fwnode_for_each_parent_node(fwnode, parent)
 662		count++;
 663
 664	return count;
 
 
 
 
 
 
 
 
 
 665}
 666EXPORT_SYMBOL_GPL(fwnode_count_parents);
 667
 668/**
 669 * fwnode_get_nth_parent - Return an nth parent of a node
 670 * @fwnode: The node the parent of which is requested
 671 * @depth: Distance of the parent from the node
 672 *
 673 * Returns the nth parent of a node. If there is no parent at the requested
 674 * @depth, %NULL is returned. If @depth is 0, the functionality is equivalent to
 675 * fwnode_handle_get(). For @depth == 1, it is fwnode_get_parent() and so on.
 676 *
 677 * The caller is responsible for calling fwnode_handle_put() for the returned
 678 * node.
 679 */
 680struct fwnode_handle *fwnode_get_nth_parent(struct fwnode_handle *fwnode,
 681					    unsigned int depth)
 682{
 683	struct fwnode_handle *parent;
 684
 685	if (depth == 0)
 686		return fwnode_handle_get(fwnode);
 687
 688	fwnode_for_each_parent_node(fwnode, parent) {
 689		if (--depth == 0)
 690			return parent;
 691	}
 692	return NULL;
 693}
 694EXPORT_SYMBOL_GPL(fwnode_get_nth_parent);
 695
 696/**
 697 * fwnode_is_ancestor_of - Test if @ancestor is ancestor of @child
 698 * @ancestor: Firmware which is tested for being an ancestor
 699 * @child: Firmware which is tested for being the child
 700 *
 701 * A node is considered an ancestor of itself too.
 702 *
 703 * Returns true if @ancestor is an ancestor of @child. Otherwise, returns false.
 
 704 */
 705bool fwnode_is_ancestor_of(struct fwnode_handle *ancestor, struct fwnode_handle *child)
 706{
 707	struct fwnode_handle *parent;
 708
 709	if (IS_ERR_OR_NULL(ancestor))
 710		return false;
 711
 712	if (child == ancestor)
 713		return true;
 714
 715	fwnode_for_each_parent_node(child, parent) {
 716		if (parent == ancestor) {
 717			fwnode_handle_put(parent);
 718			return true;
 719		}
 720	}
 721	return false;
 722}
 
 723
 724/**
 725 * fwnode_get_next_child_node - Return the next child node handle for a node
 726 * @fwnode: Firmware node to find the next child node for.
 727 * @child: Handle to one of the node's child nodes or a %NULL handle.
 728 */
 729struct fwnode_handle *
 730fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
 731			   struct fwnode_handle *child)
 732{
 733	return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
 734}
 735EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
 736
 737/**
 738 * fwnode_get_next_available_child_node - Return the next
 739 * available child node handle for a node
 740 * @fwnode: Firmware node to find the next child node for.
 741 * @child: Handle to one of the node's child nodes or a %NULL handle.
 742 */
 743struct fwnode_handle *
 744fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
 745				     struct fwnode_handle *child)
 746{
 747	struct fwnode_handle *next_child = child;
 748
 749	if (IS_ERR_OR_NULL(fwnode))
 750		return NULL;
 751
 752	do {
 753		next_child = fwnode_get_next_child_node(fwnode, next_child);
 754		if (!next_child)
 755			return NULL;
 756	} while (!fwnode_device_is_available(next_child));
 
 757
 758	return next_child;
 759}
 760EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);
 761
 762/**
 763 * device_get_next_child_node - Return the next child node handle for a device
 764 * @dev: Device to find the next child node for.
 765 * @child: Handle to one of the device's child nodes or a null handle.
 766 */
 767struct fwnode_handle *device_get_next_child_node(const struct device *dev,
 768						 struct fwnode_handle *child)
 769{
 770	const struct fwnode_handle *fwnode = dev_fwnode(dev);
 771	struct fwnode_handle *next;
 772
 773	if (IS_ERR_OR_NULL(fwnode))
 774		return NULL;
 775
 776	/* Try to find a child in primary fwnode */
 777	next = fwnode_get_next_child_node(fwnode, child);
 778	if (next)
 779		return next;
 780
 781	/* When no more children in primary, continue with secondary */
 782	return fwnode_get_next_child_node(fwnode->secondary, child);
 783}
 784EXPORT_SYMBOL_GPL(device_get_next_child_node);
 785
 786/**
 787 * fwnode_get_named_child_node - Return first matching named child node handle
 788 * @fwnode: Firmware node to find the named child node for.
 789 * @childname: String to match child node name against.
 790 */
 791struct fwnode_handle *
 792fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
 793			    const char *childname)
 794{
 795	return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
 796}
 797EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
 798
 799/**
 800 * device_get_named_child_node - Return first matching named child node handle
 801 * @dev: Device to find the named child node for.
 802 * @childname: String to match child node name against.
 803 */
 804struct fwnode_handle *device_get_named_child_node(const struct device *dev,
 805						  const char *childname)
 806{
 807	return fwnode_get_named_child_node(dev_fwnode(dev), childname);
 808}
 809EXPORT_SYMBOL_GPL(device_get_named_child_node);
 810
 811/**
 812 * fwnode_handle_get - Obtain a reference to a device node
 813 * @fwnode: Pointer to the device node to obtain the reference to.
 814 *
 815 * Returns the fwnode handle.
 816 */
 817struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
 818{
 819	if (!fwnode_has_op(fwnode, get))
 820		return fwnode;
 821
 822	return fwnode_call_ptr_op(fwnode, get);
 823}
 824EXPORT_SYMBOL_GPL(fwnode_handle_get);
 825
 826/**
 827 * fwnode_handle_put - Drop reference to a device node
 828 * @fwnode: Pointer to the device node to drop the reference to.
 829 *
 830 * This has to be used when terminating device_for_each_child_node() iteration
 831 * with break or return to prevent stale device node references from being left
 832 * behind.
 833 */
 834void fwnode_handle_put(struct fwnode_handle *fwnode)
 835{
 836	fwnode_call_void_op(fwnode, put);
 837}
 838EXPORT_SYMBOL_GPL(fwnode_handle_put);
 839
 840/**
 841 * fwnode_device_is_available - check if a device is available for use
 842 * @fwnode: Pointer to the fwnode of the device.
 843 *
 844 * For fwnode node types that don't implement the .device_is_available()
 845 * operation, this function returns true.
 846 */
 847bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
 848{
 849	if (IS_ERR_OR_NULL(fwnode))
 850		return false;
 851
 852	if (!fwnode_has_op(fwnode, device_is_available))
 853		return true;
 854
 855	return fwnode_call_bool_op(fwnode, device_is_available);
 856}
 857EXPORT_SYMBOL_GPL(fwnode_device_is_available);
 858
 859/**
 860 * device_get_child_node_count - return the number of child nodes for device
 861 * @dev: Device to cound the child nodes for
 862 */
 863unsigned int device_get_child_node_count(const struct device *dev)
 864{
 865	struct fwnode_handle *child;
 866	unsigned int count = 0;
 867
 868	device_for_each_child_node(dev, child)
 869		count++;
 870
 871	return count;
 872}
 873EXPORT_SYMBOL_GPL(device_get_child_node_count);
 874
 875bool device_dma_supported(const struct device *dev)
 876{
 877	return fwnode_call_bool_op(dev_fwnode(dev), device_dma_supported);
 
 
 
 
 
 
 
 878}
 879EXPORT_SYMBOL_GPL(device_dma_supported);
 880
 881enum dev_dma_attr device_get_dma_attr(const struct device *dev)
 882{
 883	if (!fwnode_has_op(dev_fwnode(dev), device_get_dma_attr))
 884		return DEV_DMA_NOT_SUPPORTED;
 
 
 
 
 
 
 
 885
 886	return fwnode_call_int_op(dev_fwnode(dev), device_get_dma_attr);
 887}
 888EXPORT_SYMBOL_GPL(device_get_dma_attr);
 889
 890/**
 891 * fwnode_get_phy_mode - Get phy mode for given firmware node
 892 * @fwnode:	Pointer to the given node
 893 *
 894 * The function gets phy interface string from property 'phy-mode' or
 895 * 'phy-connection-type', and return its index in phy_modes table, or errno in
 896 * error case.
 897 */
 898int fwnode_get_phy_mode(struct fwnode_handle *fwnode)
 899{
 900	const char *pm;
 901	int err, i;
 902
 903	err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
 904	if (err < 0)
 905		err = fwnode_property_read_string(fwnode,
 906						  "phy-connection-type", &pm);
 907	if (err < 0)
 908		return err;
 909
 910	for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
 911		if (!strcasecmp(pm, phy_modes(i)))
 912			return i;
 913
 914	return -ENODEV;
 915}
 916EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);
 917
 918/**
 919 * device_get_phy_mode - Get phy mode for given device
 920 * @dev:	Pointer to the given device
 921 *
 922 * The function gets phy interface string from property 'phy-mode' or
 923 * 'phy-connection-type', and return its index in phy_modes table, or errno in
 924 * error case.
 925 */
 926int device_get_phy_mode(struct device *dev)
 927{
 928	return fwnode_get_phy_mode(dev_fwnode(dev));
 929}
 930EXPORT_SYMBOL_GPL(device_get_phy_mode);
 931
 
 
 
 
 
 
 
 
 
 
 
 932/**
 933 * fwnode_iomap - Maps the memory mapped IO for a given fwnode
 934 * @fwnode:	Pointer to the firmware node
 935 * @index:	Index of the IO range
 
 936 *
 937 * Returns a pointer to the mapped memory.
 938 */
 939void __iomem *fwnode_iomap(struct fwnode_handle *fwnode, int index)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 940{
 941	return fwnode_call_ptr_op(fwnode, iomap, index);
 
 
 
 
 
 
 
 
 
 
 942}
 943EXPORT_SYMBOL(fwnode_iomap);
 944
 945/**
 946 * fwnode_irq_get - Get IRQ directly from a fwnode
 947 * @fwnode:	Pointer to the firmware node
 948 * @index:	Zero-based index of the IRQ
 949 *
 950 * Returns Linux IRQ number on success. Other values are determined
 951 * accordingly to acpi_/of_ irq_get() operation.
 952 */
 953int fwnode_irq_get(const struct fwnode_handle *fwnode, unsigned int index)
 954{
 955	return fwnode_call_int_op(fwnode, irq_get, index);
 956}
 957EXPORT_SYMBOL(fwnode_irq_get);
 958
 959/**
 960 * fwnode_irq_get_byname - Get IRQ from a fwnode using its name
 961 * @fwnode:	Pointer to the firmware node
 962 * @name:	IRQ name
 963 *
 964 * Description:
 965 * Find a match to the string @name in the 'interrupt-names' string array
 966 * in _DSD for ACPI, or of_node for Device Tree. Then get the Linux IRQ
 967 * number of the IRQ resource corresponding to the index of the matched
 968 * string.
 969 *
 970 * Return:
 971 * Linux IRQ number on success, or negative errno otherwise.
 972 */
 973int fwnode_irq_get_byname(const struct fwnode_handle *fwnode, const char *name)
 974{
 975	int index;
 
 
 976
 977	if (!name)
 978		return -EINVAL;
 979
 980	index = fwnode_property_match_string(fwnode, "interrupt-names",  name);
 981	if (index < 0)
 982		return index;
 983
 984	return fwnode_irq_get(fwnode, index);
 985}
 986EXPORT_SYMBOL(fwnode_irq_get_byname);
 987
 988/**
 989 * fwnode_graph_get_next_endpoint - Get next endpoint firmware node
 990 * @fwnode: Pointer to the parent firmware node
 991 * @prev: Previous endpoint node or %NULL to get the first
 992 *
 993 * Returns an endpoint firmware node pointer or %NULL if no more endpoints
 994 * are available.
 995 */
 996struct fwnode_handle *
 997fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
 998			       struct fwnode_handle *prev)
 999{
1000	struct fwnode_handle *ep, *port_parent = NULL;
1001	const struct fwnode_handle *parent;
1002
1003	/*
1004	 * If this function is in a loop and the previous iteration returned
1005	 * an endpoint from fwnode->secondary, then we need to use the secondary
1006	 * as parent rather than @fwnode.
1007	 */
1008	if (prev) {
1009		port_parent = fwnode_graph_get_port_parent(prev);
1010		parent = port_parent;
1011	} else {
1012		parent = fwnode;
1013	}
1014	if (IS_ERR_OR_NULL(parent))
1015		return NULL;
1016
1017	ep = fwnode_call_ptr_op(parent, graph_get_next_endpoint, prev);
1018	if (ep)
1019		goto out_put_port_parent;
1020
1021	ep = fwnode_graph_get_next_endpoint(parent->secondary, NULL);
1022
1023out_put_port_parent:
1024	fwnode_handle_put(port_parent);
1025	return ep;
1026}
1027EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
1028
1029/**
1030 * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
1031 * @endpoint: Endpoint firmware node of the port
1032 *
1033 * Return: the firmware node of the device the @endpoint belongs to.
1034 */
1035struct fwnode_handle *
1036fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
1037{
1038	struct fwnode_handle *port, *parent;
1039
1040	port = fwnode_get_parent(endpoint);
1041	parent = fwnode_call_ptr_op(port, graph_get_port_parent);
1042
1043	fwnode_handle_put(port);
1044
1045	return parent;
1046}
1047EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
1048
1049/**
1050 * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
1051 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1052 *
1053 * Extracts firmware node of a remote device the @fwnode points to.
1054 */
1055struct fwnode_handle *
1056fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
1057{
1058	struct fwnode_handle *endpoint, *parent;
1059
1060	endpoint = fwnode_graph_get_remote_endpoint(fwnode);
1061	parent = fwnode_graph_get_port_parent(endpoint);
1062
1063	fwnode_handle_put(endpoint);
1064
1065	return parent;
1066}
1067EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
1068
1069/**
1070 * fwnode_graph_get_remote_port - Return fwnode of a remote port
1071 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1072 *
1073 * Extracts firmware node of a remote port the @fwnode points to.
1074 */
1075struct fwnode_handle *
1076fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
1077{
1078	return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
1079}
1080EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
1081
1082/**
1083 * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
1084 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1085 *
1086 * Extracts firmware node of a remote endpoint the @fwnode points to.
1087 */
1088struct fwnode_handle *
1089fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1090{
1091	return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
1092}
1093EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1094
1095static bool fwnode_graph_remote_available(struct fwnode_handle *ep)
1096{
1097	struct fwnode_handle *dev_node;
1098	bool available;
1099
1100	dev_node = fwnode_graph_get_remote_port_parent(ep);
1101	available = fwnode_device_is_available(dev_node);
1102	fwnode_handle_put(dev_node);
1103
1104	return available;
1105}
1106
1107/**
1108 * fwnode_graph_get_endpoint_by_id - get endpoint by port and endpoint numbers
1109 * @fwnode: parent fwnode_handle containing the graph
1110 * @port: identifier of the port node
1111 * @endpoint: identifier of the endpoint node under the port node
1112 * @flags: fwnode lookup flags
1113 *
1114 * Return the fwnode handle of the local endpoint corresponding the port and
1115 * endpoint IDs or NULL if not found.
1116 *
1117 * If FWNODE_GRAPH_ENDPOINT_NEXT is passed in @flags and the specified endpoint
1118 * has not been found, look for the closest endpoint ID greater than the
1119 * specified one and return the endpoint that corresponds to it, if present.
1120 *
1121 * Does not return endpoints that belong to disabled devices or endpoints that
1122 * are unconnected, unless FWNODE_GRAPH_DEVICE_DISABLED is passed in @flags.
1123 *
1124 * The returned endpoint needs to be released by calling fwnode_handle_put() on
1125 * it when it is not needed any more.
1126 */
1127struct fwnode_handle *
1128fwnode_graph_get_endpoint_by_id(const struct fwnode_handle *fwnode,
1129				u32 port, u32 endpoint, unsigned long flags)
1130{
1131	struct fwnode_handle *ep, *best_ep = NULL;
1132	unsigned int best_ep_id = 0;
1133	bool endpoint_next = flags & FWNODE_GRAPH_ENDPOINT_NEXT;
1134	bool enabled_only = !(flags & FWNODE_GRAPH_DEVICE_DISABLED);
1135
1136	fwnode_graph_for_each_endpoint(fwnode, ep) {
1137		struct fwnode_endpoint fwnode_ep = { 0 };
 
1138		int ret;
1139
1140		if (enabled_only && !fwnode_graph_remote_available(ep))
1141			continue;
1142
1143		ret = fwnode_graph_parse_endpoint(ep, &fwnode_ep);
1144		if (ret < 0)
1145			continue;
1146
1147		if (fwnode_ep.port != port)
1148			continue;
1149
1150		if (fwnode_ep.id == endpoint)
1151			return ep;
1152
1153		if (!endpoint_next)
1154			continue;
1155
1156		/*
1157		 * If the endpoint that has just been found is not the first
1158		 * matching one and the ID of the one found previously is closer
1159		 * to the requested endpoint ID, skip it.
1160		 */
1161		if (fwnode_ep.id < endpoint ||
1162		    (best_ep && best_ep_id < fwnode_ep.id))
1163			continue;
1164
1165		fwnode_handle_put(best_ep);
1166		best_ep = fwnode_handle_get(ep);
1167		best_ep_id = fwnode_ep.id;
1168	}
1169
1170	return best_ep;
1171}
1172EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_by_id);
1173
1174/**
1175 * fwnode_graph_get_endpoint_count - Count endpoints on a device node
1176 * @fwnode: The node related to a device
1177 * @flags: fwnode lookup flags
1178 * Count endpoints in a device node.
1179 *
1180 * If FWNODE_GRAPH_DEVICE_DISABLED flag is specified, also unconnected endpoints
1181 * and endpoints connected to disabled devices are counted.
1182 */
1183unsigned int fwnode_graph_get_endpoint_count(struct fwnode_handle *fwnode,
1184					     unsigned long flags)
1185{
1186	struct fwnode_handle *ep;
1187	unsigned int count = 0;
1188
1189	fwnode_graph_for_each_endpoint(fwnode, ep) {
1190		if (flags & FWNODE_GRAPH_DEVICE_DISABLED ||
1191		    fwnode_graph_remote_available(ep))
1192			count++;
1193	}
1194
1195	return count;
1196}
1197EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_count);
1198
1199/**
1200 * fwnode_graph_parse_endpoint - parse common endpoint node properties
1201 * @fwnode: pointer to endpoint fwnode_handle
1202 * @endpoint: pointer to the fwnode endpoint data structure
1203 *
1204 * Parse @fwnode representing a graph endpoint node and store the
1205 * information in @endpoint. The caller must hold a reference to
1206 * @fwnode.
1207 */
1208int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1209				struct fwnode_endpoint *endpoint)
1210{
1211	memset(endpoint, 0, sizeof(*endpoint));
1212
1213	return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1214}
1215EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1216
1217const void *device_get_match_data(const struct device *dev)
1218{
1219	return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev);
1220}
1221EXPORT_SYMBOL_GPL(device_get_match_data);
1222
1223static unsigned int fwnode_graph_devcon_matches(const struct fwnode_handle *fwnode,
1224						const char *con_id, void *data,
1225						devcon_match_fn_t match,
1226						void **matches,
1227						unsigned int matches_len)
1228{
1229	struct fwnode_handle *node;
1230	struct fwnode_handle *ep;
1231	unsigned int count = 0;
1232	void *ret;
1233
1234	fwnode_graph_for_each_endpoint(fwnode, ep) {
1235		if (matches && count >= matches_len) {
1236			fwnode_handle_put(ep);
1237			break;
1238		}
1239
1240		node = fwnode_graph_get_remote_port_parent(ep);
1241		if (!fwnode_device_is_available(node)) {
1242			fwnode_handle_put(node);
1243			continue;
1244		}
1245
1246		ret = match(node, con_id, data);
1247		fwnode_handle_put(node);
1248		if (ret) {
1249			if (matches)
1250				matches[count] = ret;
1251			count++;
1252		}
1253	}
1254	return count;
1255}
1256
1257static unsigned int fwnode_devcon_matches(const struct fwnode_handle *fwnode,
1258					  const char *con_id, void *data,
1259					  devcon_match_fn_t match,
1260					  void **matches,
1261					  unsigned int matches_len)
1262{
1263	struct fwnode_handle *node;
1264	unsigned int count = 0;
1265	unsigned int i;
1266	void *ret;
1267
1268	for (i = 0; ; i++) {
1269		if (matches && count >= matches_len)
1270			break;
1271
1272		node = fwnode_find_reference(fwnode, con_id, i);
1273		if (IS_ERR(node))
1274			break;
1275
1276		ret = match(node, NULL, data);
1277		fwnode_handle_put(node);
1278		if (ret) {
1279			if (matches)
1280				matches[count] = ret;
1281			count++;
1282		}
1283	}
1284
1285	return count;
1286}
1287
1288/**
1289 * fwnode_connection_find_match - Find connection from a device node
1290 * @fwnode: Device node with the connection
1291 * @con_id: Identifier for the connection
1292 * @data: Data for the match function
1293 * @match: Function to check and convert the connection description
1294 *
1295 * Find a connection with unique identifier @con_id between @fwnode and another
1296 * device node. @match will be used to convert the connection description to
1297 * data the caller is expecting to be returned.
1298 */
1299void *fwnode_connection_find_match(const struct fwnode_handle *fwnode,
1300				   const char *con_id, void *data,
1301				   devcon_match_fn_t match)
1302{
1303	unsigned int count;
1304	void *ret;
1305
1306	if (!fwnode || !match)
1307		return NULL;
1308
1309	count = fwnode_graph_devcon_matches(fwnode, con_id, data, match, &ret, 1);
1310	if (count)
1311		return ret;
1312
1313	count = fwnode_devcon_matches(fwnode, con_id, data, match, &ret, 1);
1314	return count ? ret : NULL;
1315}
1316EXPORT_SYMBOL_GPL(fwnode_connection_find_match);
1317
1318/**
1319 * fwnode_connection_find_matches - Find connections from a device node
1320 * @fwnode: Device node with the connection
1321 * @con_id: Identifier for the connection
1322 * @data: Data for the match function
1323 * @match: Function to check and convert the connection description
1324 * @matches: (Optional) array of pointers to fill with matches
1325 * @matches_len: Length of @matches
1326 *
1327 * Find up to @matches_len connections with unique identifier @con_id between
1328 * @fwnode and other device nodes. @match will be used to convert the
1329 * connection description to data the caller is expecting to be returned
1330 * through the @matches array.
1331 * If @matches is NULL @matches_len is ignored and the total number of resolved
1332 * matches is returned.
1333 *
1334 * Return: Number of matches resolved, or negative errno.
1335 */
1336int fwnode_connection_find_matches(const struct fwnode_handle *fwnode,
1337				   const char *con_id, void *data,
1338				   devcon_match_fn_t match,
1339				   void **matches, unsigned int matches_len)
1340{
1341	unsigned int count_graph;
1342	unsigned int count_ref;
1343
1344	if (!fwnode || !match)
1345		return -EINVAL;
1346
1347	count_graph = fwnode_graph_devcon_matches(fwnode, con_id, data, match,
1348						  matches, matches_len);
1349
1350	if (matches) {
1351		matches += count_graph;
1352		matches_len -= count_graph;
1353	}
1354
1355	count_ref = fwnode_devcon_matches(fwnode, con_id, data, match,
1356					  matches, matches_len);
1357
1358	return count_graph + count_ref;
1359}
1360EXPORT_SYMBOL_GPL(fwnode_connection_find_matches);
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * property.c - Unified device property interface.
   4 *
   5 * Copyright (C) 2014, Intel Corporation
   6 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
   7 *          Mika Westerberg <mika.westerberg@linux.intel.com>
   8 */
   9
  10#include <linux/acpi.h>
  11#include <linux/export.h>
  12#include <linux/kernel.h>
  13#include <linux/of.h>
  14#include <linux/of_address.h>
  15#include <linux/of_graph.h>
  16#include <linux/of_irq.h>
  17#include <linux/property.h>
  18#include <linux/etherdevice.h>
  19#include <linux/phy.h>
  20
  21struct property_set {
  22	struct device *dev;
  23	struct fwnode_handle fwnode;
  24	const struct property_entry *properties;
  25};
  26
  27static const struct fwnode_operations pset_fwnode_ops;
  28
  29static inline bool is_pset_node(const struct fwnode_handle *fwnode)
  30{
  31	return !IS_ERR_OR_NULL(fwnode) && fwnode->ops == &pset_fwnode_ops;
  32}
  33
  34#define to_pset_node(__fwnode)						\
  35	({								\
  36		typeof(__fwnode) __to_pset_node_fwnode = __fwnode;	\
  37									\
  38		is_pset_node(__to_pset_node_fwnode) ?			\
  39			container_of(__to_pset_node_fwnode,		\
  40				     struct property_set, fwnode) :	\
  41			NULL;						\
  42	})
  43
  44static const struct property_entry *
  45pset_prop_get(const struct property_set *pset, const char *name)
  46{
  47	const struct property_entry *prop;
  48
  49	if (!pset || !pset->properties)
  50		return NULL;
  51
  52	for (prop = pset->properties; prop->name; prop++)
  53		if (!strcmp(name, prop->name))
  54			return prop;
  55
  56	return NULL;
  57}
  58
  59static const void *pset_prop_find(const struct property_set *pset,
  60				  const char *propname, size_t length)
  61{
  62	const struct property_entry *prop;
  63	const void *pointer;
  64
  65	prop = pset_prop_get(pset, propname);
  66	if (!prop)
  67		return ERR_PTR(-EINVAL);
  68	if (prop->is_array)
  69		pointer = prop->pointer.raw_data;
  70	else
  71		pointer = &prop->value.raw_data;
  72	if (!pointer)
  73		return ERR_PTR(-ENODATA);
  74	if (length > prop->length)
  75		return ERR_PTR(-EOVERFLOW);
  76	return pointer;
  77}
  78
  79static int pset_prop_read_u8_array(const struct property_set *pset,
  80				   const char *propname,
  81				   u8 *values, size_t nval)
  82{
  83	const void *pointer;
  84	size_t length = nval * sizeof(*values);
  85
  86	pointer = pset_prop_find(pset, propname, length);
  87	if (IS_ERR(pointer))
  88		return PTR_ERR(pointer);
  89
  90	memcpy(values, pointer, length);
  91	return 0;
  92}
  93
  94static int pset_prop_read_u16_array(const struct property_set *pset,
  95				    const char *propname,
  96				    u16 *values, size_t nval)
  97{
  98	const void *pointer;
  99	size_t length = nval * sizeof(*values);
 100
 101	pointer = pset_prop_find(pset, propname, length);
 102	if (IS_ERR(pointer))
 103		return PTR_ERR(pointer);
 104
 105	memcpy(values, pointer, length);
 106	return 0;
 107}
 108
 109static int pset_prop_read_u32_array(const struct property_set *pset,
 110				    const char *propname,
 111				    u32 *values, size_t nval)
 112{
 113	const void *pointer;
 114	size_t length = nval * sizeof(*values);
 115
 116	pointer = pset_prop_find(pset, propname, length);
 117	if (IS_ERR(pointer))
 118		return PTR_ERR(pointer);
 119
 120	memcpy(values, pointer, length);
 121	return 0;
 122}
 123
 124static int pset_prop_read_u64_array(const struct property_set *pset,
 125				    const char *propname,
 126				    u64 *values, size_t nval)
 127{
 128	const void *pointer;
 129	size_t length = nval * sizeof(*values);
 130
 131	pointer = pset_prop_find(pset, propname, length);
 132	if (IS_ERR(pointer))
 133		return PTR_ERR(pointer);
 134
 135	memcpy(values, pointer, length);
 136	return 0;
 137}
 138
 139static int pset_prop_count_elems_of_size(const struct property_set *pset,
 140					 const char *propname, size_t length)
 141{
 142	const struct property_entry *prop;
 143
 144	prop = pset_prop_get(pset, propname);
 145	if (!prop)
 146		return -EINVAL;
 147
 148	return prop->length / length;
 149}
 150
 151static int pset_prop_read_string_array(const struct property_set *pset,
 152				       const char *propname,
 153				       const char **strings, size_t nval)
 154{
 155	const struct property_entry *prop;
 156	const void *pointer;
 157	size_t array_len, length;
 158
 159	/* Find out the array length. */
 160	prop = pset_prop_get(pset, propname);
 161	if (!prop)
 162		return -EINVAL;
 163
 164	if (!prop->is_array)
 165		/* The array length for a non-array string property is 1. */
 166		array_len = 1;
 167	else
 168		/* Find the length of an array. */
 169		array_len = pset_prop_count_elems_of_size(pset, propname,
 170							  sizeof(const char *));
 171
 172	/* Return how many there are if strings is NULL. */
 173	if (!strings)
 174		return array_len;
 175
 176	array_len = min(nval, array_len);
 177	length = array_len * sizeof(*strings);
 178
 179	pointer = pset_prop_find(pset, propname, length);
 180	if (IS_ERR(pointer))
 181		return PTR_ERR(pointer);
 182
 183	memcpy(strings, pointer, length);
 184
 185	return array_len;
 186}
 
 187
 188struct fwnode_handle *dev_fwnode(struct device *dev)
 189{
 190	return IS_ENABLED(CONFIG_OF) && dev->of_node ?
 191		&dev->of_node->fwnode : dev->fwnode;
 192}
 193EXPORT_SYMBOL_GPL(dev_fwnode);
 194
 195static bool pset_fwnode_property_present(const struct fwnode_handle *fwnode,
 196					 const char *propname)
 197{
 198	return !!pset_prop_get(to_pset_node(fwnode), propname);
 199}
 200
 201static int pset_fwnode_read_int_array(const struct fwnode_handle *fwnode,
 202				      const char *propname,
 203				      unsigned int elem_size, void *val,
 204				      size_t nval)
 205{
 206	const struct property_set *node = to_pset_node(fwnode);
 207
 208	if (!val)
 209		return pset_prop_count_elems_of_size(node, propname, elem_size);
 210
 211	switch (elem_size) {
 212	case sizeof(u8):
 213		return pset_prop_read_u8_array(node, propname, val, nval);
 214	case sizeof(u16):
 215		return pset_prop_read_u16_array(node, propname, val, nval);
 216	case sizeof(u32):
 217		return pset_prop_read_u32_array(node, propname, val, nval);
 218	case sizeof(u64):
 219		return pset_prop_read_u64_array(node, propname, val, nval);
 220	}
 221
 222	return -ENXIO;
 223}
 224
 225static int
 226pset_fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
 227				       const char *propname,
 228				       const char **val, size_t nval)
 229{
 230	return pset_prop_read_string_array(to_pset_node(fwnode), propname,
 231					   val, nval);
 232}
 233
 234static const struct fwnode_operations pset_fwnode_ops = {
 235	.property_present = pset_fwnode_property_present,
 236	.property_read_int_array = pset_fwnode_read_int_array,
 237	.property_read_string_array = pset_fwnode_property_read_string_array,
 238};
 239
 240/**
 241 * device_property_present - check if a property of a device is present
 242 * @dev: Device whose property is being checked
 243 * @propname: Name of the property
 244 *
 245 * Check if property @propname is present in the device firmware description.
 246 */
 247bool device_property_present(struct device *dev, const char *propname)
 248{
 249	return fwnode_property_present(dev_fwnode(dev), propname);
 250}
 251EXPORT_SYMBOL_GPL(device_property_present);
 252
 253/**
 254 * fwnode_property_present - check if a property of a firmware node is present
 255 * @fwnode: Firmware node whose property to check
 256 * @propname: Name of the property
 257 */
 258bool fwnode_property_present(const struct fwnode_handle *fwnode,
 259			     const char *propname)
 260{
 261	bool ret;
 262
 
 
 
 263	ret = fwnode_call_bool_op(fwnode, property_present, propname);
 264	if (ret == false && !IS_ERR_OR_NULL(fwnode) &&
 265	    !IS_ERR_OR_NULL(fwnode->secondary))
 266		ret = fwnode_call_bool_op(fwnode->secondary, property_present,
 267					 propname);
 268	return ret;
 269}
 270EXPORT_SYMBOL_GPL(fwnode_property_present);
 271
 272/**
 273 * device_property_read_u8_array - return a u8 array property of a device
 274 * @dev: Device to get the property of
 275 * @propname: Name of the property
 276 * @val: The values are stored here or %NULL to return the number of values
 277 * @nval: Size of the @val array
 278 *
 279 * Function reads an array of u8 properties with @propname from the device
 280 * firmware description and stores them to @val if found.
 281 *
 
 
 
 282 * Return: number of values if @val was %NULL,
 283 *         %0 if the property was found (success),
 284 *	   %-EINVAL if given arguments are not valid,
 285 *	   %-ENODATA if the property does not have a value,
 286 *	   %-EPROTO if the property is not an array of numbers,
 287 *	   %-EOVERFLOW if the size of the property is not as expected.
 288 *	   %-ENXIO if no suitable firmware interface is present.
 289 */
 290int device_property_read_u8_array(struct device *dev, const char *propname,
 291				  u8 *val, size_t nval)
 292{
 293	return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
 294}
 295EXPORT_SYMBOL_GPL(device_property_read_u8_array);
 296
 297/**
 298 * device_property_read_u16_array - return a u16 array property of a device
 299 * @dev: Device to get the property of
 300 * @propname: Name of the property
 301 * @val: The values are stored here or %NULL to return the number of values
 302 * @nval: Size of the @val array
 303 *
 304 * Function reads an array of u16 properties with @propname from the device
 305 * firmware description and stores them to @val if found.
 306 *
 
 
 
 307 * Return: number of values if @val was %NULL,
 308 *         %0 if the property was found (success),
 309 *	   %-EINVAL if given arguments are not valid,
 310 *	   %-ENODATA if the property does not have a value,
 311 *	   %-EPROTO if the property is not an array of numbers,
 312 *	   %-EOVERFLOW if the size of the property is not as expected.
 313 *	   %-ENXIO if no suitable firmware interface is present.
 314 */
 315int device_property_read_u16_array(struct device *dev, const char *propname,
 316				   u16 *val, size_t nval)
 317{
 318	return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
 319}
 320EXPORT_SYMBOL_GPL(device_property_read_u16_array);
 321
 322/**
 323 * device_property_read_u32_array - return a u32 array property of a device
 324 * @dev: Device to get the property of
 325 * @propname: Name of the property
 326 * @val: The values are stored here or %NULL to return the number of values
 327 * @nval: Size of the @val array
 328 *
 329 * Function reads an array of u32 properties with @propname from the device
 330 * firmware description and stores them to @val if found.
 331 *
 
 
 
 332 * Return: number of values if @val was %NULL,
 333 *         %0 if the property was found (success),
 334 *	   %-EINVAL if given arguments are not valid,
 335 *	   %-ENODATA if the property does not have a value,
 336 *	   %-EPROTO if the property is not an array of numbers,
 337 *	   %-EOVERFLOW if the size of the property is not as expected.
 338 *	   %-ENXIO if no suitable firmware interface is present.
 339 */
 340int device_property_read_u32_array(struct device *dev, const char *propname,
 341				   u32 *val, size_t nval)
 342{
 343	return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
 344}
 345EXPORT_SYMBOL_GPL(device_property_read_u32_array);
 346
 347/**
 348 * device_property_read_u64_array - return a u64 array property of a device
 349 * @dev: Device to get the property of
 350 * @propname: Name of the property
 351 * @val: The values are stored here or %NULL to return the number of values
 352 * @nval: Size of the @val array
 353 *
 354 * Function reads an array of u64 properties with @propname from the device
 355 * firmware description and stores them to @val if found.
 356 *
 
 
 
 357 * Return: number of values if @val was %NULL,
 358 *         %0 if the property was found (success),
 359 *	   %-EINVAL if given arguments are not valid,
 360 *	   %-ENODATA if the property does not have a value,
 361 *	   %-EPROTO if the property is not an array of numbers,
 362 *	   %-EOVERFLOW if the size of the property is not as expected.
 363 *	   %-ENXIO if no suitable firmware interface is present.
 364 */
 365int device_property_read_u64_array(struct device *dev, const char *propname,
 366				   u64 *val, size_t nval)
 367{
 368	return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
 369}
 370EXPORT_SYMBOL_GPL(device_property_read_u64_array);
 371
 372/**
 373 * device_property_read_string_array - return a string array property of device
 374 * @dev: Device to get the property of
 375 * @propname: Name of the property
 376 * @val: The values are stored here or %NULL to return the number of values
 377 * @nval: Size of the @val array
 378 *
 379 * Function reads an array of string properties with @propname from the device
 380 * firmware description and stores them to @val if found.
 381 *
 
 
 
 382 * Return: number of values read on success if @val is non-NULL,
 383 *	   number of values available on success if @val is NULL,
 384 *	   %-EINVAL if given arguments are not valid,
 385 *	   %-ENODATA if the property does not have a value,
 386 *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
 387 *	   %-EOVERFLOW if the size of the property is not as expected.
 388 *	   %-ENXIO if no suitable firmware interface is present.
 389 */
 390int device_property_read_string_array(struct device *dev, const char *propname,
 391				      const char **val, size_t nval)
 392{
 393	return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
 394}
 395EXPORT_SYMBOL_GPL(device_property_read_string_array);
 396
 397/**
 398 * device_property_read_string - return a string property of a device
 399 * @dev: Device to get the property of
 400 * @propname: Name of the property
 401 * @val: The value is stored here
 402 *
 403 * Function reads property @propname from the device firmware description and
 404 * stores the value into @val if found. The value is checked to be a string.
 405 *
 406 * Return: %0 if the property was found (success),
 407 *	   %-EINVAL if given arguments are not valid,
 408 *	   %-ENODATA if the property does not have a value,
 409 *	   %-EPROTO or %-EILSEQ if the property type is not a string.
 410 *	   %-ENXIO if no suitable firmware interface is present.
 411 */
 412int device_property_read_string(struct device *dev, const char *propname,
 413				const char **val)
 414{
 415	return fwnode_property_read_string(dev_fwnode(dev), propname, val);
 416}
 417EXPORT_SYMBOL_GPL(device_property_read_string);
 418
 419/**
 420 * device_property_match_string - find a string in an array and return index
 421 * @dev: Device to get the property of
 422 * @propname: Name of the property holding the array
 423 * @string: String to look for
 424 *
 425 * Find a given string in a string array and if it is found return the
 426 * index back.
 427 *
 428 * Return: %0 if the property was found (success),
 429 *	   %-EINVAL if given arguments are not valid,
 430 *	   %-ENODATA if the property does not have a value,
 431 *	   %-EPROTO if the property is not an array of strings,
 432 *	   %-ENXIO if no suitable firmware interface is present.
 433 */
 434int device_property_match_string(struct device *dev, const char *propname,
 435				 const char *string)
 436{
 437	return fwnode_property_match_string(dev_fwnode(dev), propname, string);
 438}
 439EXPORT_SYMBOL_GPL(device_property_match_string);
 440
 441static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
 442					  const char *propname,
 443					  unsigned int elem_size, void *val,
 444					  size_t nval)
 445{
 446	int ret;
 447
 
 
 
 448	ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
 449				 elem_size, val, nval);
 450	if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
 451	    !IS_ERR_OR_NULL(fwnode->secondary))
 452		ret = fwnode_call_int_op(
 453			fwnode->secondary, property_read_int_array, propname,
 454			elem_size, val, nval);
 455
 456	return ret;
 
 457}
 458
 459/**
 460 * fwnode_property_read_u8_array - return a u8 array property of firmware node
 461 * @fwnode: Firmware node to get the property of
 462 * @propname: Name of the property
 463 * @val: The values are stored here or %NULL to return the number of values
 464 * @nval: Size of the @val array
 465 *
 466 * Read an array of u8 properties with @propname from @fwnode and stores them to
 467 * @val if found.
 468 *
 
 
 
 469 * Return: number of values if @val was %NULL,
 470 *         %0 if the property was found (success),
 471 *	   %-EINVAL if given arguments are not valid,
 472 *	   %-ENODATA if the property does not have a value,
 473 *	   %-EPROTO if the property is not an array of numbers,
 474 *	   %-EOVERFLOW if the size of the property is not as expected,
 475 *	   %-ENXIO if no suitable firmware interface is present.
 476 */
 477int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
 478				  const char *propname, u8 *val, size_t nval)
 479{
 480	return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
 481					      val, nval);
 482}
 483EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
 484
 485/**
 486 * fwnode_property_read_u16_array - return a u16 array property of firmware node
 487 * @fwnode: Firmware node to get the property of
 488 * @propname: Name of the property
 489 * @val: The values are stored here or %NULL to return the number of values
 490 * @nval: Size of the @val array
 491 *
 492 * Read an array of u16 properties with @propname from @fwnode and store them to
 493 * @val if found.
 494 *
 
 
 
 495 * Return: number of values if @val was %NULL,
 496 *         %0 if the property was found (success),
 497 *	   %-EINVAL if given arguments are not valid,
 498 *	   %-ENODATA if the property does not have a value,
 499 *	   %-EPROTO if the property is not an array of numbers,
 500 *	   %-EOVERFLOW if the size of the property is not as expected,
 501 *	   %-ENXIO if no suitable firmware interface is present.
 502 */
 503int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
 504				   const char *propname, u16 *val, size_t nval)
 505{
 506	return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
 507					      val, nval);
 508}
 509EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
 510
 511/**
 512 * fwnode_property_read_u32_array - return a u32 array property of firmware node
 513 * @fwnode: Firmware node to get the property of
 514 * @propname: Name of the property
 515 * @val: The values are stored here or %NULL to return the number of values
 516 * @nval: Size of the @val array
 517 *
 518 * Read an array of u32 properties with @propname from @fwnode store them to
 519 * @val if found.
 520 *
 
 
 
 521 * Return: number of values if @val was %NULL,
 522 *         %0 if the property was found (success),
 523 *	   %-EINVAL if given arguments are not valid,
 524 *	   %-ENODATA if the property does not have a value,
 525 *	   %-EPROTO if the property is not an array of numbers,
 526 *	   %-EOVERFLOW if the size of the property is not as expected,
 527 *	   %-ENXIO if no suitable firmware interface is present.
 528 */
 529int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
 530				   const char *propname, u32 *val, size_t nval)
 531{
 532	return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
 533					      val, nval);
 534}
 535EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
 536
 537/**
 538 * fwnode_property_read_u64_array - return a u64 array property firmware node
 539 * @fwnode: Firmware node to get the property of
 540 * @propname: Name of the property
 541 * @val: The values are stored here or %NULL to return the number of values
 542 * @nval: Size of the @val array
 543 *
 544 * Read an array of u64 properties with @propname from @fwnode and store them to
 545 * @val if found.
 546 *
 
 
 
 547 * Return: number of values if @val was %NULL,
 548 *         %0 if the property was found (success),
 549 *	   %-EINVAL if given arguments are not valid,
 550 *	   %-ENODATA if the property does not have a value,
 551 *	   %-EPROTO if the property is not an array of numbers,
 552 *	   %-EOVERFLOW if the size of the property is not as expected,
 553 *	   %-ENXIO if no suitable firmware interface is present.
 554 */
 555int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
 556				   const char *propname, u64 *val, size_t nval)
 557{
 558	return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
 559					      val, nval);
 560}
 561EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
 562
 563/**
 564 * fwnode_property_read_string_array - return string array property of a node
 565 * @fwnode: Firmware node to get the property of
 566 * @propname: Name of the property
 567 * @val: The values are stored here or %NULL to return the number of values
 568 * @nval: Size of the @val array
 569 *
 570 * Read an string list property @propname from the given firmware node and store
 571 * them to @val if found.
 572 *
 
 
 
 573 * Return: number of values read on success if @val is non-NULL,
 574 *	   number of values available on success if @val is NULL,
 575 *	   %-EINVAL if given arguments are not valid,
 576 *	   %-ENODATA if the property does not have a value,
 577 *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
 578 *	   %-EOVERFLOW if the size of the property is not as expected,
 579 *	   %-ENXIO if no suitable firmware interface is present.
 580 */
 581int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
 582				      const char *propname, const char **val,
 583				      size_t nval)
 584{
 585	int ret;
 586
 
 
 
 587	ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
 588				 val, nval);
 589	if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
 590	    !IS_ERR_OR_NULL(fwnode->secondary))
 591		ret = fwnode_call_int_op(fwnode->secondary,
 592					 property_read_string_array, propname,
 593					 val, nval);
 594	return ret;
 595}
 596EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
 597
 598/**
 599 * fwnode_property_read_string - return a string property of a firmware node
 600 * @fwnode: Firmware node to get the property of
 601 * @propname: Name of the property
 602 * @val: The value is stored here
 603 *
 604 * Read property @propname from the given firmware node and store the value into
 605 * @val if found.  The value is checked to be a string.
 606 *
 607 * Return: %0 if the property was found (success),
 608 *	   %-EINVAL if given arguments are not valid,
 609 *	   %-ENODATA if the property does not have a value,
 610 *	   %-EPROTO or %-EILSEQ if the property is not a string,
 611 *	   %-ENXIO if no suitable firmware interface is present.
 612 */
 613int fwnode_property_read_string(const struct fwnode_handle *fwnode,
 614				const char *propname, const char **val)
 615{
 616	int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
 617
 618	return ret < 0 ? ret : 0;
 619}
 620EXPORT_SYMBOL_GPL(fwnode_property_read_string);
 621
 622/**
 623 * fwnode_property_match_string - find a string in an array and return index
 624 * @fwnode: Firmware node to get the property of
 625 * @propname: Name of the property holding the array
 626 * @string: String to look for
 627 *
 628 * Find a given string in a string array and if it is found return the
 629 * index back.
 630 *
 631 * Return: %0 if the property was found (success),
 632 *	   %-EINVAL if given arguments are not valid,
 633 *	   %-ENODATA if the property does not have a value,
 634 *	   %-EPROTO if the property is not an array of strings,
 635 *	   %-ENXIO if no suitable firmware interface is present.
 636 */
 637int fwnode_property_match_string(const struct fwnode_handle *fwnode,
 638	const char *propname, const char *string)
 639{
 640	const char **values;
 641	int nval, ret;
 642
 643	nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
 644	if (nval < 0)
 645		return nval;
 646
 647	if (nval == 0)
 648		return -ENODATA;
 649
 650	values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
 651	if (!values)
 652		return -ENOMEM;
 653
 654	ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
 655	if (ret < 0)
 656		goto out;
 657
 658	ret = match_string(values, nval, string);
 659	if (ret < 0)
 660		ret = -ENODATA;
 661out:
 
 662	kfree(values);
 663	return ret;
 664}
 665EXPORT_SYMBOL_GPL(fwnode_property_match_string);
 666
 667/**
 668 * fwnode_property_get_reference_args() - Find a reference with arguments
 669 * @fwnode:	Firmware node where to look for the reference
 670 * @prop:	The name of the property
 671 * @nargs_prop:	The name of the property telling the number of
 672 *		arguments in the referred node. NULL if @nargs is known,
 673 *		otherwise @nargs is ignored. Only relevant on OF.
 674 * @nargs:	Number of arguments. Ignored if @nargs_prop is non-NULL.
 675 * @index:	Index of the reference, from zero onwards.
 676 * @args:	Result structure with reference and integer arguments.
 677 *
 678 * Obtain a reference based on a named property in an fwnode, with
 679 * integer arguments.
 680 *
 681 * Caller is responsible to call fwnode_handle_put() on the returned
 682 * args->fwnode pointer.
 683 *
 684 * Returns: %0 on success
 685 *	    %-ENOENT when the index is out of bounds, the index has an empty
 686 *		     reference or the property was not found
 687 *	    %-EINVAL on parse error
 688 */
 689int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
 690				       const char *prop, const char *nargs_prop,
 691				       unsigned int nargs, unsigned int index,
 692				       struct fwnode_reference_args *args)
 693{
 694	return fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
 695				  nargs, index, args);
 696}
 697EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
 698
 699static void property_entry_free_data(const struct property_entry *p)
 700{
 701	size_t i, nval;
 702
 703	if (p->is_array) {
 704		if (p->is_string && p->pointer.str) {
 705			nval = p->length / sizeof(const char *);
 706			for (i = 0; i < nval; i++)
 707				kfree(p->pointer.str[i]);
 708		}
 709		kfree(p->pointer.raw_data);
 710	} else if (p->is_string) {
 711		kfree(p->value.str);
 712	}
 713	kfree(p->name);
 714}
 715
 716static int property_copy_string_array(struct property_entry *dst,
 717				      const struct property_entry *src)
 718{
 719	char **d;
 720	size_t nval = src->length / sizeof(*d);
 721	int i;
 722
 723	d = kcalloc(nval, sizeof(*d), GFP_KERNEL);
 724	if (!d)
 725		return -ENOMEM;
 726
 727	for (i = 0; i < nval; i++) {
 728		d[i] = kstrdup(src->pointer.str[i], GFP_KERNEL);
 729		if (!d[i] && src->pointer.str[i]) {
 730			while (--i >= 0)
 731				kfree(d[i]);
 732			kfree(d);
 733			return -ENOMEM;
 734		}
 735	}
 736
 737	dst->pointer.raw_data = d;
 738	return 0;
 739}
 
 740
 741static int property_entry_copy_data(struct property_entry *dst,
 742				    const struct property_entry *src)
 
 
 
 
 
 
 
 
 
 
 
 
 743{
 744	int error;
 745
 746	if (src->is_array) {
 747		if (!src->length)
 748			return -ENODATA;
 749
 750		if (src->is_string) {
 751			error = property_copy_string_array(dst, src);
 752			if (error)
 753				return error;
 754		} else {
 755			dst->pointer.raw_data = kmemdup(src->pointer.raw_data,
 756							src->length, GFP_KERNEL);
 757			if (!dst->pointer.raw_data)
 758				return -ENOMEM;
 759		}
 760	} else if (src->is_string) {
 761		dst->value.str = kstrdup(src->value.str, GFP_KERNEL);
 762		if (!dst->value.str && src->value.str)
 763			return -ENOMEM;
 764	} else {
 765		dst->value.raw_data = src->value.raw_data;
 766	}
 767
 768	dst->length = src->length;
 769	dst->is_array = src->is_array;
 770	dst->is_string = src->is_string;
 771
 772	dst->name = kstrdup(src->name, GFP_KERNEL);
 773	if (!dst->name)
 774		goto out_free_data;
 775
 776	return 0;
 777
 778out_free_data:
 779	property_entry_free_data(dst);
 780	return -ENOMEM;
 781}
 
 782
 783/**
 784 * property_entries_dup - duplicate array of properties
 785 * @properties: array of properties to copy
 786 *
 787 * This function creates a deep copy of the given NULL-terminated array
 788 * of property entries.
 789 */
 790struct property_entry *
 791property_entries_dup(const struct property_entry *properties)
 792{
 793	struct property_entry *p;
 794	int i, n = 0;
 795
 796	while (properties[n].name)
 797		n++;
 798
 799	p = kcalloc(n + 1, sizeof(*p), GFP_KERNEL);
 800	if (!p)
 801		return ERR_PTR(-ENOMEM);
 802
 803	for (i = 0; i < n; i++) {
 804		int ret = property_entry_copy_data(&p[i], &properties[i]);
 805		if (ret) {
 806			while (--i >= 0)
 807				property_entry_free_data(&p[i]);
 808			kfree(p);
 809			return ERR_PTR(ret);
 810		}
 811	}
 812
 813	return p;
 814}
 815EXPORT_SYMBOL_GPL(property_entries_dup);
 816
 817/**
 818 * property_entries_free - free previously allocated array of properties
 819 * @properties: array of properties to destroy
 820 *
 821 * This function frees given NULL-terminated array of property entries,
 822 * along with their data.
 823 */
 824void property_entries_free(const struct property_entry *properties)
 825{
 826	const struct property_entry *p;
 827
 828	for (p = properties; p->name; p++)
 829		property_entry_free_data(p);
 830
 831	kfree(properties);
 832}
 833EXPORT_SYMBOL_GPL(property_entries_free);
 834
 835/**
 836 * pset_free_set - releases memory allocated for copied property set
 837 * @pset: Property set to release
 838 *
 839 * Function takes previously copied property set and releases all the
 840 * memory allocated to it.
 841 */
 842static void pset_free_set(struct property_set *pset)
 843{
 844	if (!pset)
 845		return;
 846
 847	property_entries_free(pset->properties);
 848	kfree(pset);
 849}
 
 850
 851/**
 852 * pset_copy_set - copies property set
 853 * @pset: Property set to copy
 854 *
 855 * This function takes a deep copy of the given property set and returns
 856 * pointer to the copy. Call device_free_property_set() to free resources
 857 * allocated in this function.
 858 *
 859 * Return: Pointer to the new property set or error pointer.
 
 860 */
 861static struct property_set *pset_copy_set(const struct property_set *pset)
 862{
 863	struct property_entry *properties;
 864	struct property_set *p;
 865
 866	p = kzalloc(sizeof(*p), GFP_KERNEL);
 867	if (!p)
 868		return ERR_PTR(-ENOMEM);
 869
 870	properties = property_entries_dup(pset->properties);
 871	if (IS_ERR(properties)) {
 872		kfree(p);
 873		return ERR_CAST(properties);
 874	}
 875
 876	p->properties = properties;
 877	return p;
 878}
 
 879
 880/**
 881 * device_remove_properties - Remove properties from a device object.
 882 * @dev: Device whose properties to remove.
 
 
 
 
 883 *
 884 * The function removes properties previously associated to the device
 885 * secondary firmware node with device_add_properties(). Memory allocated
 886 * to the properties will also be released.
 887 */
 888void device_remove_properties(struct device *dev)
 889{
 890	struct fwnode_handle *fwnode;
 891	struct property_set *pset;
 892
 893	fwnode = dev_fwnode(dev);
 894	if (!fwnode)
 895		return;
 896	/*
 897	 * Pick either primary or secondary node depending which one holds
 898	 * the pset. If there is no real firmware node (ACPI/DT) primary
 899	 * will hold the pset.
 900	 */
 901	pset = to_pset_node(fwnode);
 902	if (pset) {
 903		set_primary_fwnode(dev, NULL);
 904	} else {
 905		pset = to_pset_node(fwnode->secondary);
 906		if (pset && dev == pset->dev)
 907			set_secondary_fwnode(dev, NULL);
 908	}
 909	if (pset && dev == pset->dev)
 910		pset_free_set(pset);
 911}
 912EXPORT_SYMBOL_GPL(device_remove_properties);
 913
 914/**
 915 * device_add_properties - Add a collection of properties to a device object.
 916 * @dev: Device to add properties to.
 917 * @properties: Collection of properties to add.
 918 *
 919 * Associate a collection of device properties represented by @properties with
 920 * @dev as its secondary firmware node. The function takes a copy of
 921 * @properties.
 922 */
 923int device_add_properties(struct device *dev,
 924			  const struct property_entry *properties)
 925{
 926	struct property_set *p, pset;
 
 927
 928	if (!properties)
 929		return -EINVAL;
 930
 931	pset.properties = properties;
 932
 933	p = pset_copy_set(&pset);
 934	if (IS_ERR(p))
 935		return PTR_ERR(p);
 936
 937	p->fwnode.ops = &pset_fwnode_ops;
 938	set_secondary_fwnode(dev, &p->fwnode);
 939	p->dev = dev;
 940	return 0;
 941}
 942EXPORT_SYMBOL_GPL(device_add_properties);
 943
 944/**
 945 * fwnode_get_next_parent - Iterate to the node's parent
 946 * @fwnode: Firmware whose parent is retrieved
 
 947 *
 948 * This is like fwnode_get_parent() except that it drops the refcount
 949 * on the passed node, making it suitable for iterating through a
 950 * node's parents.
 951 *
 952 * Returns a node pointer with refcount incremented, use
 953 * fwnode_handle_node() on it when done.
 954 */
 955struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
 
 956{
 957	struct fwnode_handle *parent = fwnode_get_parent(fwnode);
 958
 959	fwnode_handle_put(fwnode);
 
 960
 961	return parent;
 
 
 
 
 962}
 963EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
 964
 965/**
 966 * fwnode_get_parent - Return parent firwmare node
 967 * @fwnode: Firmware whose parent is retrieved
 
 
 
 968 *
 969 * Return parent firmware node of the given node if possible or %NULL if no
 970 * parent was available.
 971 */
 972struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
 973{
 974	return fwnode_call_ptr_op(fwnode, get_parent);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 975}
 976EXPORT_SYMBOL_GPL(fwnode_get_parent);
 977
 978/**
 979 * fwnode_get_next_child_node - Return the next child node handle for a node
 980 * @fwnode: Firmware node to find the next child node for.
 981 * @child: Handle to one of the node's child nodes or a %NULL handle.
 982 */
 983struct fwnode_handle *
 984fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
 985			   struct fwnode_handle *child)
 986{
 987	return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
 988}
 989EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
 990
 991/**
 992 * fwnode_get_next_available_child_node - Return the next
 993 * available child node handle for a node
 994 * @fwnode: Firmware node to find the next child node for.
 995 * @child: Handle to one of the node's child nodes or a %NULL handle.
 996 */
 997struct fwnode_handle *
 998fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
 999				     struct fwnode_handle *child)
1000{
1001	struct fwnode_handle *next_child = child;
1002
1003	if (!fwnode)
1004		return NULL;
1005
1006	do {
1007		next_child = fwnode_get_next_child_node(fwnode, next_child);
1008
1009		if (!next_child || fwnode_device_is_available(next_child))
1010			break;
1011	} while (next_child);
1012
1013	return next_child;
1014}
1015EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);
1016
1017/**
1018 * device_get_next_child_node - Return the next child node handle for a device
1019 * @dev: Device to find the next child node for.
1020 * @child: Handle to one of the device's child nodes or a null handle.
1021 */
1022struct fwnode_handle *device_get_next_child_node(struct device *dev,
1023						 struct fwnode_handle *child)
1024{
1025	struct acpi_device *adev = ACPI_COMPANION(dev);
1026	struct fwnode_handle *fwnode = NULL;
 
 
 
1027
1028	if (dev->of_node)
1029		fwnode = &dev->of_node->fwnode;
1030	else if (adev)
1031		fwnode = acpi_fwnode_handle(adev);
1032
1033	return fwnode_get_next_child_node(fwnode, child);
 
1034}
1035EXPORT_SYMBOL_GPL(device_get_next_child_node);
1036
1037/**
1038 * fwnode_get_named_child_node - Return first matching named child node handle
1039 * @fwnode: Firmware node to find the named child node for.
1040 * @childname: String to match child node name against.
1041 */
1042struct fwnode_handle *
1043fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
1044			    const char *childname)
1045{
1046	return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
1047}
1048EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
1049
1050/**
1051 * device_get_named_child_node - Return first matching named child node handle
1052 * @dev: Device to find the named child node for.
1053 * @childname: String to match child node name against.
1054 */
1055struct fwnode_handle *device_get_named_child_node(struct device *dev,
1056						  const char *childname)
1057{
1058	return fwnode_get_named_child_node(dev_fwnode(dev), childname);
1059}
1060EXPORT_SYMBOL_GPL(device_get_named_child_node);
1061
1062/**
1063 * fwnode_handle_get - Obtain a reference to a device node
1064 * @fwnode: Pointer to the device node to obtain the reference to.
1065 *
1066 * Returns the fwnode handle.
1067 */
1068struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
1069{
1070	if (!fwnode_has_op(fwnode, get))
1071		return fwnode;
1072
1073	return fwnode_call_ptr_op(fwnode, get);
1074}
1075EXPORT_SYMBOL_GPL(fwnode_handle_get);
1076
1077/**
1078 * fwnode_handle_put - Drop reference to a device node
1079 * @fwnode: Pointer to the device node to drop the reference to.
1080 *
1081 * This has to be used when terminating device_for_each_child_node() iteration
1082 * with break or return to prevent stale device node references from being left
1083 * behind.
1084 */
1085void fwnode_handle_put(struct fwnode_handle *fwnode)
1086{
1087	fwnode_call_void_op(fwnode, put);
1088}
1089EXPORT_SYMBOL_GPL(fwnode_handle_put);
1090
1091/**
1092 * fwnode_device_is_available - check if a device is available for use
1093 * @fwnode: Pointer to the fwnode of the device.
 
 
 
1094 */
1095bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
1096{
 
 
 
 
 
 
1097	return fwnode_call_bool_op(fwnode, device_is_available);
1098}
1099EXPORT_SYMBOL_GPL(fwnode_device_is_available);
1100
1101/**
1102 * device_get_child_node_count - return the number of child nodes for device
1103 * @dev: Device to cound the child nodes for
1104 */
1105unsigned int device_get_child_node_count(struct device *dev)
1106{
1107	struct fwnode_handle *child;
1108	unsigned int count = 0;
1109
1110	device_for_each_child_node(dev, child)
1111		count++;
1112
1113	return count;
1114}
1115EXPORT_SYMBOL_GPL(device_get_child_node_count);
1116
1117bool device_dma_supported(struct device *dev)
1118{
1119	/* For DT, this is always supported.
1120	 * For ACPI, this depends on CCA, which
1121	 * is determined by the acpi_dma_supported().
1122	 */
1123	if (IS_ENABLED(CONFIG_OF) && dev->of_node)
1124		return true;
1125
1126	return acpi_dma_supported(ACPI_COMPANION(dev));
1127}
1128EXPORT_SYMBOL_GPL(device_dma_supported);
1129
1130enum dev_dma_attr device_get_dma_attr(struct device *dev)
1131{
1132	enum dev_dma_attr attr = DEV_DMA_NOT_SUPPORTED;
1133
1134	if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
1135		if (of_dma_is_coherent(dev->of_node))
1136			attr = DEV_DMA_COHERENT;
1137		else
1138			attr = DEV_DMA_NON_COHERENT;
1139	} else
1140		attr = acpi_get_dma_attr(ACPI_COMPANION(dev));
1141
1142	return attr;
1143}
1144EXPORT_SYMBOL_GPL(device_get_dma_attr);
1145
1146/**
1147 * fwnode_get_phy_mode - Get phy mode for given firmware node
1148 * @fwnode:	Pointer to the given node
1149 *
1150 * The function gets phy interface string from property 'phy-mode' or
1151 * 'phy-connection-type', and return its index in phy_modes table, or errno in
1152 * error case.
1153 */
1154int fwnode_get_phy_mode(struct fwnode_handle *fwnode)
1155{
1156	const char *pm;
1157	int err, i;
1158
1159	err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
1160	if (err < 0)
1161		err = fwnode_property_read_string(fwnode,
1162						  "phy-connection-type", &pm);
1163	if (err < 0)
1164		return err;
1165
1166	for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
1167		if (!strcasecmp(pm, phy_modes(i)))
1168			return i;
1169
1170	return -ENODEV;
1171}
1172EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);
1173
1174/**
1175 * device_get_phy_mode - Get phy mode for given device
1176 * @dev:	Pointer to the given device
1177 *
1178 * The function gets phy interface string from property 'phy-mode' or
1179 * 'phy-connection-type', and return its index in phy_modes table, or errno in
1180 * error case.
1181 */
1182int device_get_phy_mode(struct device *dev)
1183{
1184	return fwnode_get_phy_mode(dev_fwnode(dev));
1185}
1186EXPORT_SYMBOL_GPL(device_get_phy_mode);
1187
1188static void *fwnode_get_mac_addr(struct fwnode_handle *fwnode,
1189				 const char *name, char *addr,
1190				 int alen)
1191{
1192	int ret = fwnode_property_read_u8_array(fwnode, name, addr, alen);
1193
1194	if (ret == 0 && alen == ETH_ALEN && is_valid_ether_addr(addr))
1195		return addr;
1196	return NULL;
1197}
1198
1199/**
1200 * fwnode_get_mac_address - Get the MAC from the firmware node
1201 * @fwnode:	Pointer to the firmware node
1202 * @addr:	Address of buffer to store the MAC in
1203 * @alen:	Length of the buffer pointed to by addr, should be ETH_ALEN
1204 *
1205 * Search the firmware node for the best MAC address to use.  'mac-address' is
1206 * checked first, because that is supposed to contain to "most recent" MAC
1207 * address. If that isn't set, then 'local-mac-address' is checked next,
1208 * because that is the default address.  If that isn't set, then the obsolete
1209 * 'address' is checked, just in case we're using an old device tree.
1210 *
1211 * Note that the 'address' property is supposed to contain a virtual address of
1212 * the register set, but some DTS files have redefined that property to be the
1213 * MAC address.
1214 *
1215 * All-zero MAC addresses are rejected, because those could be properties that
1216 * exist in the firmware tables, but were not updated by the firmware.  For
1217 * example, the DTS could define 'mac-address' and 'local-mac-address', with
1218 * zero MAC addresses.  Some older U-Boots only initialized 'local-mac-address'.
1219 * In this case, the real MAC is in 'local-mac-address', and 'mac-address'
1220 * exists but is all zeros.
1221*/
1222void *fwnode_get_mac_address(struct fwnode_handle *fwnode, char *addr, int alen)
1223{
1224	char *res;
1225
1226	res = fwnode_get_mac_addr(fwnode, "mac-address", addr, alen);
1227	if (res)
1228		return res;
1229
1230	res = fwnode_get_mac_addr(fwnode, "local-mac-address", addr, alen);
1231	if (res)
1232		return res;
1233
1234	return fwnode_get_mac_addr(fwnode, "address", addr, alen);
1235}
1236EXPORT_SYMBOL(fwnode_get_mac_address);
1237
1238/**
1239 * device_get_mac_address - Get the MAC for a given device
1240 * @dev:	Pointer to the device
1241 * @addr:	Address of buffer to store the MAC in
1242 * @alen:	Length of the buffer pointed to by addr, should be ETH_ALEN
 
 
1243 */
1244void *device_get_mac_address(struct device *dev, char *addr, int alen)
1245{
1246	return fwnode_get_mac_address(dev_fwnode(dev), addr, alen);
1247}
1248EXPORT_SYMBOL(device_get_mac_address);
1249
1250/**
1251 * fwnode_irq_get - Get IRQ directly from a fwnode
1252 * @fwnode:	Pointer to the firmware node
1253 * @index:	Zero-based index of the IRQ
 
 
 
 
 
 
1254 *
1255 * Returns Linux IRQ number on success. Other values are determined
1256 * accordingly to acpi_/of_ irq_get() operation.
1257 */
1258int fwnode_irq_get(struct fwnode_handle *fwnode, unsigned int index)
1259{
1260	struct device_node *of_node = to_of_node(fwnode);
1261	struct resource res;
1262	int ret;
1263
1264	if (IS_ENABLED(CONFIG_OF) && of_node)
1265		return of_irq_get(of_node, index);
1266
1267	ret = acpi_irq_get(ACPI_HANDLE_FWNODE(fwnode), index, &res);
1268	if (ret)
1269		return ret;
1270
1271	return res.start;
1272}
1273EXPORT_SYMBOL(fwnode_irq_get);
1274
1275/**
1276 * device_graph_get_next_endpoint - Get next endpoint firmware node
1277 * @fwnode: Pointer to the parent firmware node
1278 * @prev: Previous endpoint node or %NULL to get the first
1279 *
1280 * Returns an endpoint firmware node pointer or %NULL if no more endpoints
1281 * are available.
1282 */
1283struct fwnode_handle *
1284fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
1285			       struct fwnode_handle *prev)
1286{
1287	return fwnode_call_ptr_op(fwnode, graph_get_next_endpoint, prev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1288}
1289EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
1290
1291/**
1292 * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
1293 * @endpoint: Endpoint firmware node of the port
1294 *
1295 * Return: the firmware node of the device the @endpoint belongs to.
1296 */
1297struct fwnode_handle *
1298fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
1299{
1300	struct fwnode_handle *port, *parent;
1301
1302	port = fwnode_get_parent(endpoint);
1303	parent = fwnode_call_ptr_op(port, graph_get_port_parent);
1304
1305	fwnode_handle_put(port);
1306
1307	return parent;
1308}
1309EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
1310
1311/**
1312 * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
1313 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1314 *
1315 * Extracts firmware node of a remote device the @fwnode points to.
1316 */
1317struct fwnode_handle *
1318fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
1319{
1320	struct fwnode_handle *endpoint, *parent;
1321
1322	endpoint = fwnode_graph_get_remote_endpoint(fwnode);
1323	parent = fwnode_graph_get_port_parent(endpoint);
1324
1325	fwnode_handle_put(endpoint);
1326
1327	return parent;
1328}
1329EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
1330
1331/**
1332 * fwnode_graph_get_remote_port - Return fwnode of a remote port
1333 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1334 *
1335 * Extracts firmware node of a remote port the @fwnode points to.
1336 */
1337struct fwnode_handle *
1338fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
1339{
1340	return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
1341}
1342EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
1343
1344/**
1345 * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
1346 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1347 *
1348 * Extracts firmware node of a remote endpoint the @fwnode points to.
1349 */
1350struct fwnode_handle *
1351fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1352{
1353	return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
1354}
1355EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1356
 
 
 
 
 
 
 
 
 
 
 
 
1357/**
1358 * fwnode_graph_get_remote_node - get remote parent node for given port/endpoint
1359 * @fwnode: pointer to parent fwnode_handle containing graph port/endpoint
1360 * @port_id: identifier of the parent port node
1361 * @endpoint_id: identifier of the endpoint node
 
 
 
 
 
 
 
 
1362 *
1363 * Return: Remote fwnode handle associated with remote endpoint node linked
1364 *	   to @node. Use fwnode_node_put() on it when done.
 
 
 
1365 */
1366struct fwnode_handle *
1367fwnode_graph_get_remote_node(const struct fwnode_handle *fwnode, u32 port_id,
1368			     u32 endpoint_id)
1369{
1370	struct fwnode_handle *endpoint = NULL;
 
 
 
1371
1372	while ((endpoint = fwnode_graph_get_next_endpoint(fwnode, endpoint))) {
1373		struct fwnode_endpoint fwnode_ep;
1374		struct fwnode_handle *remote;
1375		int ret;
1376
1377		ret = fwnode_graph_parse_endpoint(endpoint, &fwnode_ep);
 
 
 
1378		if (ret < 0)
1379			continue;
1380
1381		if (fwnode_ep.port != port_id || fwnode_ep.id != endpoint_id)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1382			continue;
1383
1384		remote = fwnode_graph_get_remote_port_parent(endpoint);
1385		if (!remote)
1386			return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1387
1388		return fwnode_device_is_available(remote) ? remote : NULL;
 
 
 
1389	}
1390
1391	return NULL;
1392}
1393EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_node);
1394
1395/**
1396 * fwnode_graph_parse_endpoint - parse common endpoint node properties
1397 * @fwnode: pointer to endpoint fwnode_handle
1398 * @endpoint: pointer to the fwnode endpoint data structure
1399 *
1400 * Parse @fwnode representing a graph endpoint node and store the
1401 * information in @endpoint. The caller must hold a reference to
1402 * @fwnode.
1403 */
1404int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1405				struct fwnode_endpoint *endpoint)
1406{
1407	memset(endpoint, 0, sizeof(*endpoint));
1408
1409	return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1410}
1411EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1412
1413const void *device_get_match_data(struct device *dev)
1414{
1415	return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev);
1416}
1417EXPORT_SYMBOL_GPL(device_get_match_data);