Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.2.
   1/*
   2 *	SGI UltraViolet TLB flush routines.
   3 *
   4 *	(c) 2008-2014 Cliff Wickman <cpw@sgi.com>, SGI.
   5 *
   6 *	This code is released under the GNU General Public License version 2 or
   7 *	later.
   8 */
   9#include <linux/seq_file.h>
  10#include <linux/proc_fs.h>
  11#include <linux/debugfs.h>
  12#include <linux/kernel.h>
  13#include <linux/slab.h>
  14#include <linux/delay.h>
  15
  16#include <asm/mmu_context.h>
  17#include <asm/uv/uv.h>
  18#include <asm/uv/uv_mmrs.h>
  19#include <asm/uv/uv_hub.h>
  20#include <asm/uv/uv_bau.h>
  21#include <asm/apic.h>
  22#include <asm/tsc.h>
  23#include <asm/irq_vectors.h>
  24#include <asm/timer.h>
  25
  26static struct bau_operations ops __ro_after_init;
  27
  28/* timeouts in nanoseconds (indexed by UVH_AGING_PRESCALE_SEL urgency7 30:28) */
  29static const int timeout_base_ns[] = {
  30		20,
  31		160,
  32		1280,
  33		10240,
  34		81920,
  35		655360,
  36		5242880,
  37		167772160
  38};
  39
  40static int timeout_us;
  41static bool nobau = true;
  42static int nobau_perm;
  43
  44/* tunables: */
  45static int max_concurr		= MAX_BAU_CONCURRENT;
  46static int max_concurr_const	= MAX_BAU_CONCURRENT;
  47static int plugged_delay	= PLUGGED_DELAY;
  48static int plugsb4reset		= PLUGSB4RESET;
  49static int giveup_limit		= GIVEUP_LIMIT;
  50static int timeoutsb4reset	= TIMEOUTSB4RESET;
  51static int ipi_reset_limit	= IPI_RESET_LIMIT;
  52static int complete_threshold	= COMPLETE_THRESHOLD;
  53static int congested_respns_us	= CONGESTED_RESPONSE_US;
  54static int congested_reps	= CONGESTED_REPS;
  55static int disabled_period	= DISABLED_PERIOD;
  56
  57static struct tunables tunables[] = {
  58	{&max_concurr,           MAX_BAU_CONCURRENT}, /* must be [0] */
  59	{&plugged_delay,         PLUGGED_DELAY},
  60	{&plugsb4reset,          PLUGSB4RESET},
  61	{&timeoutsb4reset,       TIMEOUTSB4RESET},
  62	{&ipi_reset_limit,       IPI_RESET_LIMIT},
  63	{&complete_threshold,    COMPLETE_THRESHOLD},
  64	{&congested_respns_us,   CONGESTED_RESPONSE_US},
  65	{&congested_reps,        CONGESTED_REPS},
  66	{&disabled_period,       DISABLED_PERIOD},
  67	{&giveup_limit,          GIVEUP_LIMIT}
  68};
  69
  70static struct dentry *tunables_dir;
  71static struct dentry *tunables_file;
  72
  73/* these correspond to the statistics printed by ptc_seq_show() */
  74static char *stat_description[] = {
  75	"sent:     number of shootdown messages sent",
  76	"stime:    time spent sending messages",
  77	"numuvhubs: number of hubs targeted with shootdown",
  78	"numuvhubs16: number times 16 or more hubs targeted",
  79	"numuvhubs8: number times 8 or more hubs targeted",
  80	"numuvhubs4: number times 4 or more hubs targeted",
  81	"numuvhubs2: number times 2 or more hubs targeted",
  82	"numuvhubs1: number times 1 hub targeted",
  83	"numcpus:  number of cpus targeted with shootdown",
  84	"dto:      number of destination timeouts",
  85	"retries:  destination timeout retries sent",
  86	"rok:   :  destination timeouts successfully retried",
  87	"resetp:   ipi-style resource resets for plugs",
  88	"resett:   ipi-style resource resets for timeouts",
  89	"giveup:   fall-backs to ipi-style shootdowns",
  90	"sto:      number of source timeouts",
  91	"bz:       number of stay-busy's",
  92	"throt:    number times spun in throttle",
  93	"swack:   image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE",
  94	"recv:     shootdown messages received",
  95	"rtime:    time spent processing messages",
  96	"all:      shootdown all-tlb messages",
  97	"one:      shootdown one-tlb messages",
  98	"mult:     interrupts that found multiple messages",
  99	"none:     interrupts that found no messages",
 100	"retry:    number of retry messages processed",
 101	"canc:     number messages canceled by retries",
 102	"nocan:    number retries that found nothing to cancel",
 103	"reset:    number of ipi-style reset requests processed",
 104	"rcan:     number messages canceled by reset requests",
 105	"disable:  number times use of the BAU was disabled",
 106	"enable:   number times use of the BAU was re-enabled"
 107};
 108
 109static int __init setup_bau(char *arg)
 110{
 111	int result;
 112
 113	if (!arg)
 114		return -EINVAL;
 115
 116	result = strtobool(arg, &nobau);
 117	if (result)
 118		return result;
 119
 120	/* we need to flip the logic here, so that bau=y sets nobau to false */
 121	nobau = !nobau;
 122
 123	if (!nobau)
 124		pr_info("UV BAU Enabled\n");
 125	else
 126		pr_info("UV BAU Disabled\n");
 127
 128	return 0;
 129}
 130early_param("bau", setup_bau);
 131
 132/* base pnode in this partition */
 133static int uv_base_pnode __read_mostly;
 134
 135static DEFINE_PER_CPU(struct ptc_stats, ptcstats);
 136static DEFINE_PER_CPU(struct bau_control, bau_control);
 137static DEFINE_PER_CPU(cpumask_var_t, uv_flush_tlb_mask);
 138
 139static void
 140set_bau_on(void)
 141{
 142	int cpu;
 143	struct bau_control *bcp;
 144
 145	if (nobau_perm) {
 146		pr_info("BAU not initialized; cannot be turned on\n");
 147		return;
 148	}
 149	nobau = false;
 150	for_each_present_cpu(cpu) {
 151		bcp = &per_cpu(bau_control, cpu);
 152		bcp->nobau = false;
 153	}
 154	pr_info("BAU turned on\n");
 155	return;
 156}
 157
 158static void
 159set_bau_off(void)
 160{
 161	int cpu;
 162	struct bau_control *bcp;
 163
 164	nobau = true;
 165	for_each_present_cpu(cpu) {
 166		bcp = &per_cpu(bau_control, cpu);
 167		bcp->nobau = true;
 168	}
 169	pr_info("BAU turned off\n");
 170	return;
 171}
 172
 173/*
 174 * Determine the first node on a uvhub. 'Nodes' are used for kernel
 175 * memory allocation.
 176 */
 177static int __init uvhub_to_first_node(int uvhub)
 178{
 179	int node, b;
 180
 181	for_each_online_node(node) {
 182		b = uv_node_to_blade_id(node);
 183		if (uvhub == b)
 184			return node;
 185	}
 186	return -1;
 187}
 188
 189/*
 190 * Determine the apicid of the first cpu on a uvhub.
 191 */
 192static int __init uvhub_to_first_apicid(int uvhub)
 193{
 194	int cpu;
 195
 196	for_each_present_cpu(cpu)
 197		if (uvhub == uv_cpu_to_blade_id(cpu))
 198			return per_cpu(x86_cpu_to_apicid, cpu);
 199	return -1;
 200}
 201
 202/*
 203 * Free a software acknowledge hardware resource by clearing its Pending
 204 * bit. This will return a reply to the sender.
 205 * If the message has timed out, a reply has already been sent by the
 206 * hardware but the resource has not been released. In that case our
 207 * clear of the Timeout bit (as well) will free the resource. No reply will
 208 * be sent (the hardware will only do one reply per message).
 209 */
 210static void reply_to_message(struct msg_desc *mdp, struct bau_control *bcp,
 211						int do_acknowledge)
 212{
 213	unsigned long dw;
 214	struct bau_pq_entry *msg;
 215
 216	msg = mdp->msg;
 217	if (!msg->canceled && do_acknowledge) {
 218		dw = (msg->swack_vec << UV_SW_ACK_NPENDING) | msg->swack_vec;
 219		ops.write_l_sw_ack(dw);
 220	}
 221	msg->replied_to = 1;
 222	msg->swack_vec = 0;
 223}
 224
 225/*
 226 * Process the receipt of a RETRY message
 227 */
 228static void bau_process_retry_msg(struct msg_desc *mdp,
 229					struct bau_control *bcp)
 230{
 231	int i;
 232	int cancel_count = 0;
 233	unsigned long msg_res;
 234	unsigned long mmr = 0;
 235	struct bau_pq_entry *msg = mdp->msg;
 236	struct bau_pq_entry *msg2;
 237	struct ptc_stats *stat = bcp->statp;
 238
 239	stat->d_retries++;
 240	/*
 241	 * cancel any message from msg+1 to the retry itself
 242	 */
 243	for (msg2 = msg+1, i = 0; i < DEST_Q_SIZE; msg2++, i++) {
 244		if (msg2 > mdp->queue_last)
 245			msg2 = mdp->queue_first;
 246		if (msg2 == msg)
 247			break;
 248
 249		/* same conditions for cancellation as do_reset */
 250		if ((msg2->replied_to == 0) && (msg2->canceled == 0) &&
 251		    (msg2->swack_vec) && ((msg2->swack_vec &
 252			msg->swack_vec) == 0) &&
 253		    (msg2->sending_cpu == msg->sending_cpu) &&
 254		    (msg2->msg_type != MSG_NOOP)) {
 255			mmr = ops.read_l_sw_ack();
 256			msg_res = msg2->swack_vec;
 257			/*
 258			 * This is a message retry; clear the resources held
 259			 * by the previous message only if they timed out.
 260			 * If it has not timed out we have an unexpected
 261			 * situation to report.
 262			 */
 263			if (mmr & (msg_res << UV_SW_ACK_NPENDING)) {
 264				unsigned long mr;
 265				/*
 266				 * Is the resource timed out?
 267				 * Make everyone ignore the cancelled message.
 268				 */
 269				msg2->canceled = 1;
 270				stat->d_canceled++;
 271				cancel_count++;
 272				mr = (msg_res << UV_SW_ACK_NPENDING) | msg_res;
 273				ops.write_l_sw_ack(mr);
 274			}
 275		}
 276	}
 277	if (!cancel_count)
 278		stat->d_nocanceled++;
 279}
 280
 281/*
 282 * Do all the things a cpu should do for a TLB shootdown message.
 283 * Other cpu's may come here at the same time for this message.
 284 */
 285static void bau_process_message(struct msg_desc *mdp, struct bau_control *bcp,
 286						int do_acknowledge)
 287{
 288	short socket_ack_count = 0;
 289	short *sp;
 290	struct atomic_short *asp;
 291	struct ptc_stats *stat = bcp->statp;
 292	struct bau_pq_entry *msg = mdp->msg;
 293	struct bau_control *smaster = bcp->socket_master;
 294
 295	/*
 296	 * This must be a normal message, or retry of a normal message
 297	 */
 298	if (msg->address == TLB_FLUSH_ALL) {
 299		local_flush_tlb();
 300		stat->d_alltlb++;
 301	} else {
 302		__flush_tlb_one_user(msg->address);
 303		stat->d_onetlb++;
 304	}
 305	stat->d_requestee++;
 306
 307	/*
 308	 * One cpu on each uvhub has the additional job on a RETRY
 309	 * of releasing the resource held by the message that is
 310	 * being retried.  That message is identified by sending
 311	 * cpu number.
 312	 */
 313	if (msg->msg_type == MSG_RETRY && bcp == bcp->uvhub_master)
 314		bau_process_retry_msg(mdp, bcp);
 315
 316	/*
 317	 * This is a swack message, so we have to reply to it.
 318	 * Count each responding cpu on the socket. This avoids
 319	 * pinging the count's cache line back and forth between
 320	 * the sockets.
 321	 */
 322	sp = &smaster->socket_acknowledge_count[mdp->msg_slot];
 323	asp = (struct atomic_short *)sp;
 324	socket_ack_count = atom_asr(1, asp);
 325	if (socket_ack_count == bcp->cpus_in_socket) {
 326		int msg_ack_count;
 327		/*
 328		 * Both sockets dump their completed count total into
 329		 * the message's count.
 330		 */
 331		*sp = 0;
 332		asp = (struct atomic_short *)&msg->acknowledge_count;
 333		msg_ack_count = atom_asr(socket_ack_count, asp);
 334
 335		if (msg_ack_count == bcp->cpus_in_uvhub) {
 336			/*
 337			 * All cpus in uvhub saw it; reply
 338			 * (unless we are in the UV2 workaround)
 339			 */
 340			reply_to_message(mdp, bcp, do_acknowledge);
 341		}
 342	}
 343
 344	return;
 345}
 346
 347/*
 348 * Determine the first cpu on a pnode.
 349 */
 350static int pnode_to_first_cpu(int pnode, struct bau_control *smaster)
 351{
 352	int cpu;
 353	struct hub_and_pnode *hpp;
 354
 355	for_each_present_cpu(cpu) {
 356		hpp = &smaster->thp[cpu];
 357		if (pnode == hpp->pnode)
 358			return cpu;
 359	}
 360	return -1;
 361}
 362
 363/*
 364 * Last resort when we get a large number of destination timeouts is
 365 * to clear resources held by a given cpu.
 366 * Do this with IPI so that all messages in the BAU message queue
 367 * can be identified by their nonzero swack_vec field.
 368 *
 369 * This is entered for a single cpu on the uvhub.
 370 * The sender want's this uvhub to free a specific message's
 371 * swack resources.
 372 */
 373static void do_reset(void *ptr)
 374{
 375	int i;
 376	struct bau_control *bcp = &per_cpu(bau_control, smp_processor_id());
 377	struct reset_args *rap = (struct reset_args *)ptr;
 378	struct bau_pq_entry *msg;
 379	struct ptc_stats *stat = bcp->statp;
 380
 381	stat->d_resets++;
 382	/*
 383	 * We're looking for the given sender, and
 384	 * will free its swack resource.
 385	 * If all cpu's finally responded after the timeout, its
 386	 * message 'replied_to' was set.
 387	 */
 388	for (msg = bcp->queue_first, i = 0; i < DEST_Q_SIZE; msg++, i++) {
 389		unsigned long msg_res;
 390		/* do_reset: same conditions for cancellation as
 391		   bau_process_retry_msg() */
 392		if ((msg->replied_to == 0) &&
 393		    (msg->canceled == 0) &&
 394		    (msg->sending_cpu == rap->sender) &&
 395		    (msg->swack_vec) &&
 396		    (msg->msg_type != MSG_NOOP)) {
 397			unsigned long mmr;
 398			unsigned long mr;
 399			/*
 400			 * make everyone else ignore this message
 401			 */
 402			msg->canceled = 1;
 403			/*
 404			 * only reset the resource if it is still pending
 405			 */
 406			mmr = ops.read_l_sw_ack();
 407			msg_res = msg->swack_vec;
 408			mr = (msg_res << UV_SW_ACK_NPENDING) | msg_res;
 409			if (mmr & msg_res) {
 410				stat->d_rcanceled++;
 411				ops.write_l_sw_ack(mr);
 412			}
 413		}
 414	}
 415	return;
 416}
 417
 418/*
 419 * Use IPI to get all target uvhubs to release resources held by
 420 * a given sending cpu number.
 421 */
 422static void reset_with_ipi(struct pnmask *distribution, struct bau_control *bcp)
 423{
 424	int pnode;
 425	int apnode;
 426	int maskbits;
 427	int sender = bcp->cpu;
 428	cpumask_t *mask = bcp->uvhub_master->cpumask;
 429	struct bau_control *smaster = bcp->socket_master;
 430	struct reset_args reset_args;
 431
 432	reset_args.sender = sender;
 433	cpumask_clear(mask);
 434	/* find a single cpu for each uvhub in this distribution mask */
 435	maskbits = sizeof(struct pnmask) * BITSPERBYTE;
 436	/* each bit is a pnode relative to the partition base pnode */
 437	for (pnode = 0; pnode < maskbits; pnode++) {
 438		int cpu;
 439		if (!bau_uvhub_isset(pnode, distribution))
 440			continue;
 441		apnode = pnode + bcp->partition_base_pnode;
 442		cpu = pnode_to_first_cpu(apnode, smaster);
 443		cpumask_set_cpu(cpu, mask);
 444	}
 445
 446	/* IPI all cpus; preemption is already disabled */
 447	smp_call_function_many(mask, do_reset, (void *)&reset_args, 1);
 448	return;
 449}
 450
 451/*
 452 * Not to be confused with cycles_2_ns() from tsc.c; this gives a relative
 453 * number, not an absolute. It converts a duration in cycles to a duration in
 454 * ns.
 455 */
 456static inline unsigned long long cycles_2_ns(unsigned long long cyc)
 457{
 458	struct cyc2ns_data data;
 459	unsigned long long ns;
 460
 461	cyc2ns_read_begin(&data);
 462	ns = mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
 463	cyc2ns_read_end();
 464
 465	return ns;
 466}
 467
 468/*
 469 * The reverse of the above; converts a duration in ns to a duration in cycles.
 470 */
 471static inline unsigned long long ns_2_cycles(unsigned long long ns)
 472{
 473	struct cyc2ns_data data;
 474	unsigned long long cyc;
 475
 476	cyc2ns_read_begin(&data);
 477	cyc = (ns << data.cyc2ns_shift) / data.cyc2ns_mul;
 478	cyc2ns_read_end();
 479
 480	return cyc;
 481}
 482
 483static inline unsigned long cycles_2_us(unsigned long long cyc)
 484{
 485	return cycles_2_ns(cyc) / NSEC_PER_USEC;
 486}
 487
 488static inline cycles_t sec_2_cycles(unsigned long sec)
 489{
 490	return ns_2_cycles(sec * NSEC_PER_SEC);
 491}
 492
 493static inline unsigned long long usec_2_cycles(unsigned long usec)
 494{
 495	return ns_2_cycles(usec * NSEC_PER_USEC);
 496}
 497
 498/*
 499 * wait for all cpus on this hub to finish their sends and go quiet
 500 * leaves uvhub_quiesce set so that no new broadcasts are started by
 501 * bau_flush_send_and_wait()
 502 */
 503static inline void quiesce_local_uvhub(struct bau_control *hmaster)
 504{
 505	atom_asr(1, (struct atomic_short *)&hmaster->uvhub_quiesce);
 506}
 507
 508/*
 509 * mark this quiet-requestor as done
 510 */
 511static inline void end_uvhub_quiesce(struct bau_control *hmaster)
 512{
 513	atom_asr(-1, (struct atomic_short *)&hmaster->uvhub_quiesce);
 514}
 515
 516static unsigned long uv1_read_status(unsigned long mmr_offset, int right_shift)
 517{
 518	unsigned long descriptor_status;
 519
 520	descriptor_status = uv_read_local_mmr(mmr_offset);
 521	descriptor_status >>= right_shift;
 522	descriptor_status &= UV_ACT_STATUS_MASK;
 523	return descriptor_status;
 524}
 525
 526/*
 527 * Wait for completion of a broadcast software ack message
 528 * return COMPLETE, RETRY(PLUGGED or TIMEOUT) or GIVEUP
 529 */
 530static int uv1_wait_completion(struct bau_desc *bau_desc,
 531				struct bau_control *bcp, long try)
 532{
 533	unsigned long descriptor_status;
 534	cycles_t ttm;
 535	u64 mmr_offset = bcp->status_mmr;
 536	int right_shift = bcp->status_index;
 537	struct ptc_stats *stat = bcp->statp;
 538
 539	descriptor_status = uv1_read_status(mmr_offset, right_shift);
 540	/* spin on the status MMR, waiting for it to go idle */
 541	while ((descriptor_status != DS_IDLE)) {
 542		/*
 543		 * Our software ack messages may be blocked because
 544		 * there are no swack resources available.  As long
 545		 * as none of them has timed out hardware will NACK
 546		 * our message and its state will stay IDLE.
 547		 */
 548		if (descriptor_status == DS_SOURCE_TIMEOUT) {
 549			stat->s_stimeout++;
 550			return FLUSH_GIVEUP;
 551		} else if (descriptor_status == DS_DESTINATION_TIMEOUT) {
 552			stat->s_dtimeout++;
 553			ttm = get_cycles();
 554
 555			/*
 556			 * Our retries may be blocked by all destination
 557			 * swack resources being consumed, and a timeout
 558			 * pending.  In that case hardware returns the
 559			 * ERROR that looks like a destination timeout.
 560			 */
 561			if (cycles_2_us(ttm - bcp->send_message) < timeout_us) {
 562				bcp->conseccompletes = 0;
 563				return FLUSH_RETRY_PLUGGED;
 564			}
 565
 566			bcp->conseccompletes = 0;
 567			return FLUSH_RETRY_TIMEOUT;
 568		} else {
 569			/*
 570			 * descriptor_status is still BUSY
 571			 */
 572			cpu_relax();
 573		}
 574		descriptor_status = uv1_read_status(mmr_offset, right_shift);
 575	}
 576	bcp->conseccompletes++;
 577	return FLUSH_COMPLETE;
 578}
 579
 580/*
 581 * UV2 could have an extra bit of status in the ACTIVATION_STATUS_2 register.
 582 * But not currently used.
 583 */
 584static unsigned long uv2_3_read_status(unsigned long offset, int rshft, int desc)
 585{
 586	return ((read_lmmr(offset) >> rshft) & UV_ACT_STATUS_MASK) << 1;
 587}
 588
 589/*
 590 * Entered when a bau descriptor has gone into a permanent busy wait because
 591 * of a hardware bug.
 592 * Workaround the bug.
 593 */
 594static int handle_uv2_busy(struct bau_control *bcp)
 595{
 596	struct ptc_stats *stat = bcp->statp;
 597
 598	stat->s_uv2_wars++;
 599	bcp->busy = 1;
 600	return FLUSH_GIVEUP;
 601}
 602
 603static int uv2_3_wait_completion(struct bau_desc *bau_desc,
 604				struct bau_control *bcp, long try)
 605{
 606	unsigned long descriptor_stat;
 607	cycles_t ttm;
 608	u64 mmr_offset = bcp->status_mmr;
 609	int right_shift = bcp->status_index;
 610	int desc = bcp->uvhub_cpu;
 611	long busy_reps = 0;
 612	struct ptc_stats *stat = bcp->statp;
 613
 614	descriptor_stat = uv2_3_read_status(mmr_offset, right_shift, desc);
 615
 616	/* spin on the status MMR, waiting for it to go idle */
 617	while (descriptor_stat != UV2H_DESC_IDLE) {
 618		if ((descriptor_stat == UV2H_DESC_SOURCE_TIMEOUT)) {
 619			/*
 620			 * A h/w bug on the destination side may
 621			 * have prevented the message being marked
 622			 * pending, thus it doesn't get replied to
 623			 * and gets continually nacked until it times
 624			 * out with a SOURCE_TIMEOUT.
 625			 */
 626			stat->s_stimeout++;
 627			return FLUSH_GIVEUP;
 628		} else if (descriptor_stat == UV2H_DESC_DEST_TIMEOUT) {
 629			ttm = get_cycles();
 630
 631			/*
 632			 * Our retries may be blocked by all destination
 633			 * swack resources being consumed, and a timeout
 634			 * pending.  In that case hardware returns the
 635			 * ERROR that looks like a destination timeout.
 636			 * Without using the extended status we have to
 637			 * deduce from the short time that this was a
 638			 * strong nack.
 639			 */
 640			if (cycles_2_us(ttm - bcp->send_message) < timeout_us) {
 641				bcp->conseccompletes = 0;
 642				stat->s_plugged++;
 643				/* FLUSH_RETRY_PLUGGED causes hang on boot */
 644				return FLUSH_GIVEUP;
 645			}
 646			stat->s_dtimeout++;
 647			bcp->conseccompletes = 0;
 648			/* FLUSH_RETRY_TIMEOUT causes hang on boot */
 649			return FLUSH_GIVEUP;
 650		} else {
 651			busy_reps++;
 652			if (busy_reps > 1000000) {
 653				/* not to hammer on the clock */
 654				busy_reps = 0;
 655				ttm = get_cycles();
 656				if ((ttm - bcp->send_message) > bcp->timeout_interval)
 657					return handle_uv2_busy(bcp);
 658			}
 659			/*
 660			 * descriptor_stat is still BUSY
 661			 */
 662			cpu_relax();
 663		}
 664		descriptor_stat = uv2_3_read_status(mmr_offset, right_shift, desc);
 665	}
 666	bcp->conseccompletes++;
 667	return FLUSH_COMPLETE;
 668}
 669
 670/*
 671 * Returns the status of current BAU message for cpu desc as a bit field
 672 * [Error][Busy][Aux]
 673 */
 674static u64 read_status(u64 status_mmr, int index, int desc)
 675{
 676	u64 stat;
 677
 678	stat = ((read_lmmr(status_mmr) >> index) & UV_ACT_STATUS_MASK) << 1;
 679	stat |= (read_lmmr(UVH_LB_BAU_SB_ACTIVATION_STATUS_2) >> desc) & 0x1;
 680
 681	return stat;
 682}
 683
 684static int uv4_wait_completion(struct bau_desc *bau_desc,
 685				struct bau_control *bcp, long try)
 686{
 687	struct ptc_stats *stat = bcp->statp;
 688	u64 descriptor_stat;
 689	u64 mmr = bcp->status_mmr;
 690	int index = bcp->status_index;
 691	int desc = bcp->uvhub_cpu;
 692
 693	descriptor_stat = read_status(mmr, index, desc);
 694
 695	/* spin on the status MMR, waiting for it to go idle */
 696	while (descriptor_stat != UV2H_DESC_IDLE) {
 697		switch (descriptor_stat) {
 698		case UV2H_DESC_SOURCE_TIMEOUT:
 699			stat->s_stimeout++;
 700			return FLUSH_GIVEUP;
 701
 702		case UV2H_DESC_DEST_TIMEOUT:
 703			stat->s_dtimeout++;
 704			bcp->conseccompletes = 0;
 705			return FLUSH_RETRY_TIMEOUT;
 706
 707		case UV2H_DESC_DEST_STRONG_NACK:
 708			stat->s_plugged++;
 709			bcp->conseccompletes = 0;
 710			return FLUSH_RETRY_PLUGGED;
 711
 712		case UV2H_DESC_DEST_PUT_ERR:
 713			bcp->conseccompletes = 0;
 714			return FLUSH_GIVEUP;
 715
 716		default:
 717			/* descriptor_stat is still BUSY */
 718			cpu_relax();
 719		}
 720		descriptor_stat = read_status(mmr, index, desc);
 721	}
 722	bcp->conseccompletes++;
 723	return FLUSH_COMPLETE;
 724}
 725
 726/*
 727 * Our retries are blocked by all destination sw ack resources being
 728 * in use, and a timeout is pending. In that case hardware immediately
 729 * returns the ERROR that looks like a destination timeout.
 730 */
 731static void destination_plugged(struct bau_desc *bau_desc,
 732			struct bau_control *bcp,
 733			struct bau_control *hmaster, struct ptc_stats *stat)
 734{
 735	udelay(bcp->plugged_delay);
 736	bcp->plugged_tries++;
 737
 738	if (bcp->plugged_tries >= bcp->plugsb4reset) {
 739		bcp->plugged_tries = 0;
 740
 741		quiesce_local_uvhub(hmaster);
 742
 743		spin_lock(&hmaster->queue_lock);
 744		reset_with_ipi(&bau_desc->distribution, bcp);
 745		spin_unlock(&hmaster->queue_lock);
 746
 747		end_uvhub_quiesce(hmaster);
 748
 749		bcp->ipi_attempts++;
 750		stat->s_resets_plug++;
 751	}
 752}
 753
 754static void destination_timeout(struct bau_desc *bau_desc,
 755			struct bau_control *bcp, struct bau_control *hmaster,
 756			struct ptc_stats *stat)
 757{
 758	hmaster->max_concurr = 1;
 759	bcp->timeout_tries++;
 760	if (bcp->timeout_tries >= bcp->timeoutsb4reset) {
 761		bcp->timeout_tries = 0;
 762
 763		quiesce_local_uvhub(hmaster);
 764
 765		spin_lock(&hmaster->queue_lock);
 766		reset_with_ipi(&bau_desc->distribution, bcp);
 767		spin_unlock(&hmaster->queue_lock);
 768
 769		end_uvhub_quiesce(hmaster);
 770
 771		bcp->ipi_attempts++;
 772		stat->s_resets_timeout++;
 773	}
 774}
 775
 776/*
 777 * Stop all cpus on a uvhub from using the BAU for a period of time.
 778 * This is reversed by check_enable.
 779 */
 780static void disable_for_period(struct bau_control *bcp, struct ptc_stats *stat)
 781{
 782	int tcpu;
 783	struct bau_control *tbcp;
 784	struct bau_control *hmaster;
 785	cycles_t tm1;
 786
 787	hmaster = bcp->uvhub_master;
 788	spin_lock(&hmaster->disable_lock);
 789	if (!bcp->baudisabled) {
 790		stat->s_bau_disabled++;
 791		tm1 = get_cycles();
 792		for_each_present_cpu(tcpu) {
 793			tbcp = &per_cpu(bau_control, tcpu);
 794			if (tbcp->uvhub_master == hmaster) {
 795				tbcp->baudisabled = 1;
 796				tbcp->set_bau_on_time =
 797					tm1 + bcp->disabled_period;
 798			}
 799		}
 800	}
 801	spin_unlock(&hmaster->disable_lock);
 802}
 803
 804static void count_max_concurr(int stat, struct bau_control *bcp,
 805				struct bau_control *hmaster)
 806{
 807	bcp->plugged_tries = 0;
 808	bcp->timeout_tries = 0;
 809	if (stat != FLUSH_COMPLETE)
 810		return;
 811	if (bcp->conseccompletes <= bcp->complete_threshold)
 812		return;
 813	if (hmaster->max_concurr >= hmaster->max_concurr_const)
 814		return;
 815	hmaster->max_concurr++;
 816}
 817
 818static void record_send_stats(cycles_t time1, cycles_t time2,
 819		struct bau_control *bcp, struct ptc_stats *stat,
 820		int completion_status, int try)
 821{
 822	cycles_t elapsed;
 823
 824	if (time2 > time1) {
 825		elapsed = time2 - time1;
 826		stat->s_time += elapsed;
 827
 828		if ((completion_status == FLUSH_COMPLETE) && (try == 1)) {
 829			bcp->period_requests++;
 830			bcp->period_time += elapsed;
 831			if ((elapsed > usec_2_cycles(bcp->cong_response_us)) &&
 832			    (bcp->period_requests > bcp->cong_reps) &&
 833			    ((bcp->period_time / bcp->period_requests) >
 834					usec_2_cycles(bcp->cong_response_us))) {
 835				stat->s_congested++;
 836				disable_for_period(bcp, stat);
 837			}
 838		}
 839	} else
 840		stat->s_requestor--;
 841
 842	if (completion_status == FLUSH_COMPLETE && try > 1)
 843		stat->s_retriesok++;
 844	else if (completion_status == FLUSH_GIVEUP) {
 845		stat->s_giveup++;
 846		if (get_cycles() > bcp->period_end)
 847			bcp->period_giveups = 0;
 848		bcp->period_giveups++;
 849		if (bcp->period_giveups == 1)
 850			bcp->period_end = get_cycles() + bcp->disabled_period;
 851		if (bcp->period_giveups > bcp->giveup_limit) {
 852			disable_for_period(bcp, stat);
 853			stat->s_giveuplimit++;
 854		}
 855	}
 856}
 857
 858/*
 859 * Because of a uv1 hardware bug only a limited number of concurrent
 860 * requests can be made.
 861 */
 862static void uv1_throttle(struct bau_control *hmaster, struct ptc_stats *stat)
 863{
 864	spinlock_t *lock = &hmaster->uvhub_lock;
 865	atomic_t *v;
 866
 867	v = &hmaster->active_descriptor_count;
 868	if (!atomic_inc_unless_ge(lock, v, hmaster->max_concurr)) {
 869		stat->s_throttles++;
 870		do {
 871			cpu_relax();
 872		} while (!atomic_inc_unless_ge(lock, v, hmaster->max_concurr));
 873	}
 874}
 875
 876/*
 877 * Handle the completion status of a message send.
 878 */
 879static void handle_cmplt(int completion_status, struct bau_desc *bau_desc,
 880			struct bau_control *bcp, struct bau_control *hmaster,
 881			struct ptc_stats *stat)
 882{
 883	if (completion_status == FLUSH_RETRY_PLUGGED)
 884		destination_plugged(bau_desc, bcp, hmaster, stat);
 885	else if (completion_status == FLUSH_RETRY_TIMEOUT)
 886		destination_timeout(bau_desc, bcp, hmaster, stat);
 887}
 888
 889/*
 890 * Send a broadcast and wait for it to complete.
 891 *
 892 * The flush_mask contains the cpus the broadcast is to be sent to including
 893 * cpus that are on the local uvhub.
 894 *
 895 * Returns 0 if all flushing represented in the mask was done.
 896 * Returns 1 if it gives up entirely and the original cpu mask is to be
 897 * returned to the kernel.
 898 */
 899static int uv_flush_send_and_wait(struct cpumask *flush_mask,
 900				  struct bau_control *bcp,
 901				  struct bau_desc *bau_desc)
 902{
 903	int seq_number = 0;
 904	int completion_stat = 0;
 905	int uv1 = 0;
 906	long try = 0;
 907	unsigned long index;
 908	cycles_t time1;
 909	cycles_t time2;
 910	struct ptc_stats *stat = bcp->statp;
 911	struct bau_control *hmaster = bcp->uvhub_master;
 912	struct uv1_bau_msg_header *uv1_hdr = NULL;
 913	struct uv2_3_bau_msg_header *uv2_3_hdr = NULL;
 914
 915	if (bcp->uvhub_version == UV_BAU_V1) {
 916		uv1 = 1;
 917		uv1_throttle(hmaster, stat);
 918	}
 919
 920	while (hmaster->uvhub_quiesce)
 921		cpu_relax();
 922
 923	time1 = get_cycles();
 924	if (uv1)
 925		uv1_hdr = &bau_desc->header.uv1_hdr;
 926	else
 927		/* uv2 and uv3 */
 928		uv2_3_hdr = &bau_desc->header.uv2_3_hdr;
 929
 930	do {
 931		if (try == 0) {
 932			if (uv1)
 933				uv1_hdr->msg_type = MSG_REGULAR;
 934			else
 935				uv2_3_hdr->msg_type = MSG_REGULAR;
 936			seq_number = bcp->message_number++;
 937		} else {
 938			if (uv1)
 939				uv1_hdr->msg_type = MSG_RETRY;
 940			else
 941				uv2_3_hdr->msg_type = MSG_RETRY;
 942			stat->s_retry_messages++;
 943		}
 944
 945		if (uv1)
 946			uv1_hdr->sequence = seq_number;
 947		else
 948			uv2_3_hdr->sequence = seq_number;
 949		index = (1UL << AS_PUSH_SHIFT) | bcp->uvhub_cpu;
 950		bcp->send_message = get_cycles();
 951
 952		write_mmr_activation(index);
 953
 954		try++;
 955		completion_stat = ops.wait_completion(bau_desc, bcp, try);
 956
 957		handle_cmplt(completion_stat, bau_desc, bcp, hmaster, stat);
 958
 959		if (bcp->ipi_attempts >= bcp->ipi_reset_limit) {
 960			bcp->ipi_attempts = 0;
 961			stat->s_overipilimit++;
 962			completion_stat = FLUSH_GIVEUP;
 963			break;
 964		}
 965		cpu_relax();
 966	} while ((completion_stat == FLUSH_RETRY_PLUGGED) ||
 967		 (completion_stat == FLUSH_RETRY_TIMEOUT));
 968
 969	time2 = get_cycles();
 970
 971	count_max_concurr(completion_stat, bcp, hmaster);
 972
 973	while (hmaster->uvhub_quiesce)
 974		cpu_relax();
 975
 976	atomic_dec(&hmaster->active_descriptor_count);
 977
 978	record_send_stats(time1, time2, bcp, stat, completion_stat, try);
 979
 980	if (completion_stat == FLUSH_GIVEUP)
 981		/* FLUSH_GIVEUP will fall back to using IPI's for tlb flush */
 982		return 1;
 983	return 0;
 984}
 985
 986/*
 987 * The BAU is disabled for this uvhub. When the disabled time period has
 988 * expired re-enable it.
 989 * Return 0 if it is re-enabled for all cpus on this uvhub.
 990 */
 991static int check_enable(struct bau_control *bcp, struct ptc_stats *stat)
 992{
 993	int tcpu;
 994	struct bau_control *tbcp;
 995	struct bau_control *hmaster;
 996
 997	hmaster = bcp->uvhub_master;
 998	spin_lock(&hmaster->disable_lock);
 999	if (bcp->baudisabled && (get_cycles() >= bcp->set_bau_on_time)) {
1000		stat->s_bau_reenabled++;
1001		for_each_present_cpu(tcpu) {
1002			tbcp = &per_cpu(bau_control, tcpu);
1003			if (tbcp->uvhub_master == hmaster) {
1004				tbcp->baudisabled = 0;
1005				tbcp->period_requests = 0;
1006				tbcp->period_time = 0;
1007				tbcp->period_giveups = 0;
1008			}
1009		}
1010		spin_unlock(&hmaster->disable_lock);
1011		return 0;
1012	}
1013	spin_unlock(&hmaster->disable_lock);
1014	return -1;
1015}
1016
1017static void record_send_statistics(struct ptc_stats *stat, int locals, int hubs,
1018				int remotes, struct bau_desc *bau_desc)
1019{
1020	stat->s_requestor++;
1021	stat->s_ntargcpu += remotes + locals;
1022	stat->s_ntargremotes += remotes;
1023	stat->s_ntarglocals += locals;
1024
1025	/* uvhub statistics */
1026	hubs = bau_uvhub_weight(&bau_desc->distribution);
1027	if (locals) {
1028		stat->s_ntarglocaluvhub++;
1029		stat->s_ntargremoteuvhub += (hubs - 1);
1030	} else
1031		stat->s_ntargremoteuvhub += hubs;
1032
1033	stat->s_ntarguvhub += hubs;
1034
1035	if (hubs >= 16)
1036		stat->s_ntarguvhub16++;
1037	else if (hubs >= 8)
1038		stat->s_ntarguvhub8++;
1039	else if (hubs >= 4)
1040		stat->s_ntarguvhub4++;
1041	else if (hubs >= 2)
1042		stat->s_ntarguvhub2++;
1043	else
1044		stat->s_ntarguvhub1++;
1045}
1046
1047/*
1048 * Translate a cpu mask to the uvhub distribution mask in the BAU
1049 * activation descriptor.
1050 */
1051static int set_distrib_bits(struct cpumask *flush_mask, struct bau_control *bcp,
1052			struct bau_desc *bau_desc, int *localsp, int *remotesp)
1053{
1054	int cpu;
1055	int pnode;
1056	int cnt = 0;
1057	struct hub_and_pnode *hpp;
1058
1059	for_each_cpu(cpu, flush_mask) {
1060		/*
1061		 * The distribution vector is a bit map of pnodes, relative
1062		 * to the partition base pnode (and the partition base nasid
1063		 * in the header).
1064		 * Translate cpu to pnode and hub using a local memory array.
1065		 */
1066		hpp = &bcp->socket_master->thp[cpu];
1067		pnode = hpp->pnode - bcp->partition_base_pnode;
1068		bau_uvhub_set(pnode, &bau_desc->distribution);
1069		cnt++;
1070		if (hpp->uvhub == bcp->uvhub)
1071			(*localsp)++;
1072		else
1073			(*remotesp)++;
1074	}
1075	if (!cnt)
1076		return 1;
1077	return 0;
1078}
1079
1080/*
1081 * globally purge translation cache of a virtual address or all TLB's
1082 * @cpumask: mask of all cpu's in which the address is to be removed
1083 * @mm: mm_struct containing virtual address range
1084 * @start: start virtual address to be removed from TLB
1085 * @end: end virtual address to be remove from TLB
1086 * @cpu: the current cpu
1087 *
1088 * This is the entry point for initiating any UV global TLB shootdown.
1089 *
1090 * Purges the translation caches of all specified processors of the given
1091 * virtual address, or purges all TLB's on specified processors.
1092 *
1093 * The caller has derived the cpumask from the mm_struct.  This function
1094 * is called only if there are bits set in the mask. (e.g. flush_tlb_page())
1095 *
1096 * The cpumask is converted into a uvhubmask of the uvhubs containing
1097 * those cpus.
1098 *
1099 * Note that this function should be called with preemption disabled.
1100 *
1101 * Returns NULL if all remote flushing was done.
1102 * Returns pointer to cpumask if some remote flushing remains to be
1103 * done.  The returned pointer is valid till preemption is re-enabled.
1104 */
1105const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,
1106					  const struct flush_tlb_info *info)
1107{
1108	unsigned int cpu = smp_processor_id();
1109	int locals = 0, remotes = 0, hubs = 0;
1110	struct bau_desc *bau_desc;
1111	struct cpumask *flush_mask;
1112	struct ptc_stats *stat;
1113	struct bau_control *bcp;
1114	unsigned long descriptor_status, status, address;
1115
1116	bcp = &per_cpu(bau_control, cpu);
1117
1118	if (bcp->nobau)
1119		return cpumask;
1120
1121	stat = bcp->statp;
1122	stat->s_enters++;
1123
1124	if (bcp->busy) {
1125		descriptor_status =
1126			read_lmmr(UVH_LB_BAU_SB_ACTIVATION_STATUS_0);
1127		status = ((descriptor_status >> (bcp->uvhub_cpu *
1128			UV_ACT_STATUS_SIZE)) & UV_ACT_STATUS_MASK) << 1;
1129		if (status == UV2H_DESC_BUSY)
1130			return cpumask;
1131		bcp->busy = 0;
1132	}
1133
1134	/* bau was disabled due to slow response */
1135	if (bcp->baudisabled) {
1136		if (check_enable(bcp, stat)) {
1137			stat->s_ipifordisabled++;
1138			return cpumask;
1139		}
1140	}
1141
1142	/*
1143	 * Each sending cpu has a per-cpu mask which it fills from the caller's
1144	 * cpu mask.  All cpus are converted to uvhubs and copied to the
1145	 * activation descriptor.
1146	 */
1147	flush_mask = (struct cpumask *)per_cpu(uv_flush_tlb_mask, cpu);
1148	/* don't actually do a shootdown of the local cpu */
1149	cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu));
1150
1151	if (cpumask_test_cpu(cpu, cpumask))
1152		stat->s_ntargself++;
1153
1154	bau_desc = bcp->descriptor_base;
1155	bau_desc += (ITEMS_PER_DESC * bcp->uvhub_cpu);
1156	bau_uvhubs_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);
1157	if (set_distrib_bits(flush_mask, bcp, bau_desc, &locals, &remotes))
1158		return NULL;
1159
1160	record_send_statistics(stat, locals, hubs, remotes, bau_desc);
1161
1162	if (!info->end || (info->end - info->start) <= PAGE_SIZE)
1163		address = info->start;
1164	else
1165		address = TLB_FLUSH_ALL;
1166
1167	switch (bcp->uvhub_version) {
1168	case UV_BAU_V1:
1169	case UV_BAU_V2:
1170	case UV_BAU_V3:
1171		bau_desc->payload.uv1_2_3.address = address;
1172		bau_desc->payload.uv1_2_3.sending_cpu = cpu;
1173		break;
1174	case UV_BAU_V4:
1175		bau_desc->payload.uv4.address = address;
1176		bau_desc->payload.uv4.sending_cpu = cpu;
1177		bau_desc->payload.uv4.qualifier = BAU_DESC_QUALIFIER;
1178		break;
1179	}
1180
1181	/*
1182	 * uv_flush_send_and_wait returns 0 if all cpu's were messaged,
1183	 * or 1 if it gave up and the original cpumask should be returned.
1184	 */
1185	if (!uv_flush_send_and_wait(flush_mask, bcp, bau_desc))
1186		return NULL;
1187	else
1188		return cpumask;
1189}
1190
1191/*
1192 * Search the message queue for any 'other' unprocessed message with the
1193 * same software acknowledge resource bit vector as the 'msg' message.
1194 */
1195static struct bau_pq_entry *find_another_by_swack(struct bau_pq_entry *msg,
1196						  struct bau_control *bcp)
1197{
1198	struct bau_pq_entry *msg_next = msg + 1;
1199	unsigned char swack_vec = msg->swack_vec;
1200
1201	if (msg_next > bcp->queue_last)
1202		msg_next = bcp->queue_first;
1203	while (msg_next != msg) {
1204		if ((msg_next->canceled == 0) && (msg_next->replied_to == 0) &&
1205				(msg_next->swack_vec == swack_vec))
1206			return msg_next;
1207		msg_next++;
1208		if (msg_next > bcp->queue_last)
1209			msg_next = bcp->queue_first;
1210	}
1211	return NULL;
1212}
1213
1214/*
1215 * UV2 needs to work around a bug in which an arriving message has not
1216 * set a bit in the UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE register.
1217 * Such a message must be ignored.
1218 */
1219static void process_uv2_message(struct msg_desc *mdp, struct bau_control *bcp)
1220{
1221	unsigned long mmr_image;
1222	unsigned char swack_vec;
1223	struct bau_pq_entry *msg = mdp->msg;
1224	struct bau_pq_entry *other_msg;
1225
1226	mmr_image = ops.read_l_sw_ack();
1227	swack_vec = msg->swack_vec;
1228
1229	if ((swack_vec & mmr_image) == 0) {
1230		/*
1231		 * This message was assigned a swack resource, but no
1232		 * reserved acknowlegment is pending.
1233		 * The bug has prevented this message from setting the MMR.
1234		 */
1235		/*
1236		 * Some message has set the MMR 'pending' bit; it might have
1237		 * been another message.  Look for that message.
1238		 */
1239		other_msg = find_another_by_swack(msg, bcp);
1240		if (other_msg) {
1241			/*
1242			 * There is another. Process this one but do not
1243			 * ack it.
1244			 */
1245			bau_process_message(mdp, bcp, 0);
1246			/*
1247			 * Let the natural processing of that other message
1248			 * acknowledge it. Don't get the processing of sw_ack's
1249			 * out of order.
1250			 */
1251			return;
1252		}
1253	}
1254
1255	/*
1256	 * Either the MMR shows this one pending a reply or there is no
1257	 * other message using this sw_ack, so it is safe to acknowledge it.
1258	 */
1259	bau_process_message(mdp, bcp, 1);
1260
1261	return;
1262}
1263
1264/*
1265 * The BAU message interrupt comes here. (registered by set_intr_gate)
1266 * See entry_64.S
1267 *
1268 * We received a broadcast assist message.
1269 *
1270 * Interrupts are disabled; this interrupt could represent
1271 * the receipt of several messages.
1272 *
1273 * All cores/threads on this hub get this interrupt.
1274 * The last one to see it does the software ack.
1275 * (the resource will not be freed until noninterruptable cpus see this
1276 *  interrupt; hardware may timeout the s/w ack and reply ERROR)
1277 */
1278void uv_bau_message_interrupt(struct pt_regs *regs)
1279{
1280	int count = 0;
1281	cycles_t time_start;
1282	struct bau_pq_entry *msg;
1283	struct bau_control *bcp;
1284	struct ptc_stats *stat;
1285	struct msg_desc msgdesc;
1286
1287	ack_APIC_irq();
1288	time_start = get_cycles();
1289
1290	bcp = &per_cpu(bau_control, smp_processor_id());
1291	stat = bcp->statp;
1292
1293	msgdesc.queue_first = bcp->queue_first;
1294	msgdesc.queue_last = bcp->queue_last;
1295
1296	msg = bcp->bau_msg_head;
1297	while (msg->swack_vec) {
1298		count++;
1299
1300		msgdesc.msg_slot = msg - msgdesc.queue_first;
1301		msgdesc.msg = msg;
1302		if (bcp->uvhub_version == UV_BAU_V2)
1303			process_uv2_message(&msgdesc, bcp);
1304		else
1305			/* no error workaround for uv1 or uv3 */
1306			bau_process_message(&msgdesc, bcp, 1);
1307
1308		msg++;
1309		if (msg > msgdesc.queue_last)
1310			msg = msgdesc.queue_first;
1311		bcp->bau_msg_head = msg;
1312	}
1313	stat->d_time += (get_cycles() - time_start);
1314	if (!count)
1315		stat->d_nomsg++;
1316	else if (count > 1)
1317		stat->d_multmsg++;
1318}
1319
1320/*
1321 * Each target uvhub (i.e. a uvhub that has cpu's) needs to have
1322 * shootdown message timeouts enabled.  The timeout does not cause
1323 * an interrupt, but causes an error message to be returned to
1324 * the sender.
1325 */
1326static void __init enable_timeouts(void)
1327{
1328	int uvhub;
1329	int nuvhubs;
1330	int pnode;
1331	unsigned long mmr_image;
1332
1333	nuvhubs = uv_num_possible_blades();
1334
1335	for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
1336		if (!uv_blade_nr_possible_cpus(uvhub))
1337			continue;
1338
1339		pnode = uv_blade_to_pnode(uvhub);
1340		mmr_image = read_mmr_misc_control(pnode);
1341		/*
1342		 * Set the timeout period and then lock it in, in three
1343		 * steps; captures and locks in the period.
1344		 *
1345		 * To program the period, the SOFT_ACK_MODE must be off.
1346		 */
1347		mmr_image &= ~(1L << SOFTACK_MSHIFT);
1348		write_mmr_misc_control(pnode, mmr_image);
1349		/*
1350		 * Set the 4-bit period.
1351		 */
1352		mmr_image &= ~((unsigned long)0xf << SOFTACK_PSHIFT);
1353		mmr_image |= (SOFTACK_TIMEOUT_PERIOD << SOFTACK_PSHIFT);
1354		write_mmr_misc_control(pnode, mmr_image);
1355		/*
1356		 * UV1:
1357		 * Subsequent reversals of the timebase bit (3) cause an
1358		 * immediate timeout of one or all INTD resources as
1359		 * indicated in bits 2:0 (7 causes all of them to timeout).
1360		 */
1361		mmr_image |= (1L << SOFTACK_MSHIFT);
1362		if (is_uv2_hub()) {
1363			/* do not touch the legacy mode bit */
1364			/* hw bug workaround; do not use extended status */
1365			mmr_image &= ~(1L << UV2_EXT_SHFT);
1366		} else if (is_uv3_hub()) {
1367			mmr_image &= ~(1L << PREFETCH_HINT_SHFT);
1368			mmr_image |= (1L << SB_STATUS_SHFT);
1369		}
1370		write_mmr_misc_control(pnode, mmr_image);
1371	}
1372}
1373
1374static void *ptc_seq_start(struct seq_file *file, loff_t *offset)
1375{
1376	if (*offset < num_possible_cpus())
1377		return offset;
1378	return NULL;
1379}
1380
1381static void *ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
1382{
1383	(*offset)++;
1384	if (*offset < num_possible_cpus())
1385		return offset;
1386	return NULL;
1387}
1388
1389static void ptc_seq_stop(struct seq_file *file, void *data)
1390{
1391}
1392
1393/*
1394 * Display the statistics thru /proc/sgi_uv/ptc_statistics
1395 * 'data' points to the cpu number
1396 * Note: see the descriptions in stat_description[].
1397 */
1398static int ptc_seq_show(struct seq_file *file, void *data)
1399{
1400	struct ptc_stats *stat;
1401	struct bau_control *bcp;
1402	int cpu;
1403
1404	cpu = *(loff_t *)data;
1405	if (!cpu) {
1406		seq_puts(file,
1407			 "# cpu bauoff sent stime self locals remotes ncpus localhub ");
1408		seq_puts(file, "remotehub numuvhubs numuvhubs16 numuvhubs8 ");
1409		seq_puts(file,
1410			 "numuvhubs4 numuvhubs2 numuvhubs1 dto snacks retries ");
1411		seq_puts(file,
1412			 "rok resetp resett giveup sto bz throt disable ");
1413		seq_puts(file,
1414			 "enable wars warshw warwaits enters ipidis plugged ");
1415		seq_puts(file,
1416			 "ipiover glim cong swack recv rtime all one mult ");
1417		seq_puts(file, "none retry canc nocan reset rcan\n");
1418	}
1419	if (cpu < num_possible_cpus() && cpu_online(cpu)) {
1420		bcp = &per_cpu(bau_control, cpu);
1421		if (bcp->nobau) {
1422			seq_printf(file, "cpu %d bau disabled\n", cpu);
1423			return 0;
1424		}
1425		stat = bcp->statp;
1426		/* source side statistics */
1427		seq_printf(file,
1428			"cpu %d %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ",
1429			   cpu, bcp->nobau, stat->s_requestor,
1430			   cycles_2_us(stat->s_time),
1431			   stat->s_ntargself, stat->s_ntarglocals,
1432			   stat->s_ntargremotes, stat->s_ntargcpu,
1433			   stat->s_ntarglocaluvhub, stat->s_ntargremoteuvhub,
1434			   stat->s_ntarguvhub, stat->s_ntarguvhub16);
1435		seq_printf(file, "%ld %ld %ld %ld %ld %ld ",
1436			   stat->s_ntarguvhub8, stat->s_ntarguvhub4,
1437			   stat->s_ntarguvhub2, stat->s_ntarguvhub1,
1438			   stat->s_dtimeout, stat->s_strongnacks);
1439		seq_printf(file, "%ld %ld %ld %ld %ld %ld %ld %ld ",
1440			   stat->s_retry_messages, stat->s_retriesok,
1441			   stat->s_resets_plug, stat->s_resets_timeout,
1442			   stat->s_giveup, stat->s_stimeout,
1443			   stat->s_busy, stat->s_throttles);
1444		seq_printf(file, "%ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ",
1445			   stat->s_bau_disabled, stat->s_bau_reenabled,
1446			   stat->s_uv2_wars, stat->s_uv2_wars_hw,
1447			   stat->s_uv2_war_waits, stat->s_enters,
1448			   stat->s_ipifordisabled, stat->s_plugged,
1449			   stat->s_overipilimit, stat->s_giveuplimit,
1450			   stat->s_congested);
1451
1452		/* destination side statistics */
1453		seq_printf(file,
1454			"%lx %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld\n",
1455			   ops.read_g_sw_ack(uv_cpu_to_pnode(cpu)),
1456			   stat->d_requestee, cycles_2_us(stat->d_time),
1457			   stat->d_alltlb, stat->d_onetlb, stat->d_multmsg,
1458			   stat->d_nomsg, stat->d_retries, stat->d_canceled,
1459			   stat->d_nocanceled, stat->d_resets,
1460			   stat->d_rcanceled);
1461	}
1462	return 0;
1463}
1464
1465/*
1466 * Display the tunables thru debugfs
1467 */
1468static ssize_t tunables_read(struct file *file, char __user *userbuf,
1469				size_t count, loff_t *ppos)
1470{
1471	char *buf;
1472	int ret;
1473
1474	buf = kasprintf(GFP_KERNEL, "%s %s %s\n%d %d %d %d %d %d %d %d %d %d\n",
1475		"max_concur plugged_delay plugsb4reset timeoutsb4reset",
1476		"ipi_reset_limit complete_threshold congested_response_us",
1477		"congested_reps disabled_period giveup_limit",
1478		max_concurr, plugged_delay, plugsb4reset,
1479		timeoutsb4reset, ipi_reset_limit, complete_threshold,
1480		congested_respns_us, congested_reps, disabled_period,
1481		giveup_limit);
1482
1483	if (!buf)
1484		return -ENOMEM;
1485
1486	ret = simple_read_from_buffer(userbuf, count, ppos, buf, strlen(buf));
1487	kfree(buf);
1488	return ret;
1489}
1490
1491/*
1492 * handle a write to /proc/sgi_uv/ptc_statistics
1493 * -1: reset the statistics
1494 *  0: display meaning of the statistics
1495 */
1496static ssize_t ptc_proc_write(struct file *file, const char __user *user,
1497				size_t count, loff_t *data)
1498{
1499	int cpu;
1500	int i;
1501	int elements;
1502	long input_arg;
1503	char optstr[64];
1504	struct ptc_stats *stat;
1505
1506	if (count == 0 || count > sizeof(optstr))
1507		return -EINVAL;
1508	if (copy_from_user(optstr, user, count))
1509		return -EFAULT;
1510	optstr[count - 1] = '\0';
1511
1512	if (!strcmp(optstr, "on")) {
1513		set_bau_on();
1514		return count;
1515	} else if (!strcmp(optstr, "off")) {
1516		set_bau_off();
1517		return count;
1518	}
1519
1520	if (kstrtol(optstr, 10, &input_arg) < 0) {
1521		pr_debug("%s is invalid\n", optstr);
1522		return -EINVAL;
1523	}
1524
1525	if (input_arg == 0) {
1526		elements = ARRAY_SIZE(stat_description);
1527		pr_debug("# cpu:      cpu number\n");
1528		pr_debug("Sender statistics:\n");
1529		for (i = 0; i < elements; i++)
1530			pr_debug("%s\n", stat_description[i]);
1531	} else if (input_arg == -1) {
1532		for_each_present_cpu(cpu) {
1533			stat = &per_cpu(ptcstats, cpu);
1534			memset(stat, 0, sizeof(struct ptc_stats));
1535		}
1536	}
1537
1538	return count;
1539}
1540
1541static int local_atoi(const char *name)
1542{
1543	int val = 0;
1544
1545	for (;; name++) {
1546		switch (*name) {
1547		case '0' ... '9':
1548			val = 10*val+(*name-'0');
1549			break;
1550		default:
1551			return val;
1552		}
1553	}
1554}
1555
1556/*
1557 * Parse the values written to /sys/kernel/debug/sgi_uv/bau_tunables.
1558 * Zero values reset them to defaults.
1559 */
1560static int parse_tunables_write(struct bau_control *bcp, char *instr,
1561				int count)
1562{
1563	char *p;
1564	char *q;
1565	int cnt = 0;
1566	int val;
1567	int e = ARRAY_SIZE(tunables);
1568
1569	p = instr + strspn(instr, WHITESPACE);
1570	q = p;
1571	for (; *p; p = q + strspn(q, WHITESPACE)) {
1572		q = p + strcspn(p, WHITESPACE);
1573		cnt++;
1574		if (q == p)
1575			break;
1576	}
1577	if (cnt != e) {
1578		pr_info("bau tunable error: should be %d values\n", e);
1579		return -EINVAL;
1580	}
1581
1582	p = instr + strspn(instr, WHITESPACE);
1583	q = p;
1584	for (cnt = 0; *p; p = q + strspn(q, WHITESPACE), cnt++) {
1585		q = p + strcspn(p, WHITESPACE);
1586		val = local_atoi(p);
1587		switch (cnt) {
1588		case 0:
1589			if (val == 0) {
1590				max_concurr = MAX_BAU_CONCURRENT;
1591				max_concurr_const = MAX_BAU_CONCURRENT;
1592				continue;
1593			}
1594			if (val < 1 || val > bcp->cpus_in_uvhub) {
1595				pr_debug(
1596				"Error: BAU max concurrent %d is invalid\n",
1597				val);
1598				return -EINVAL;
1599			}
1600			max_concurr = val;
1601			max_concurr_const = val;
1602			continue;
1603		default:
1604			if (val == 0)
1605				*tunables[cnt].tunp = tunables[cnt].deflt;
1606			else
1607				*tunables[cnt].tunp = val;
1608			continue;
1609		}
1610		if (q == p)
1611			break;
1612	}
1613	return 0;
1614}
1615
1616/*
1617 * Handle a write to debugfs. (/sys/kernel/debug/sgi_uv/bau_tunables)
1618 */
1619static ssize_t tunables_write(struct file *file, const char __user *user,
1620				size_t count, loff_t *data)
1621{
1622	int cpu;
1623	int ret;
1624	char instr[100];
1625	struct bau_control *bcp;
1626
1627	if (count == 0 || count > sizeof(instr)-1)
1628		return -EINVAL;
1629	if (copy_from_user(instr, user, count))
1630		return -EFAULT;
1631
1632	instr[count] = '\0';
1633
1634	cpu = get_cpu();
1635	bcp = &per_cpu(bau_control, cpu);
1636	ret = parse_tunables_write(bcp, instr, count);
1637	put_cpu();
1638	if (ret)
1639		return ret;
1640
1641	for_each_present_cpu(cpu) {
1642		bcp = &per_cpu(bau_control, cpu);
1643		bcp->max_concurr         = max_concurr;
1644		bcp->max_concurr_const   = max_concurr;
1645		bcp->plugged_delay       = plugged_delay;
1646		bcp->plugsb4reset        = plugsb4reset;
1647		bcp->timeoutsb4reset     = timeoutsb4reset;
1648		bcp->ipi_reset_limit     = ipi_reset_limit;
1649		bcp->complete_threshold  = complete_threshold;
1650		bcp->cong_response_us    = congested_respns_us;
1651		bcp->cong_reps           = congested_reps;
1652		bcp->disabled_period     = sec_2_cycles(disabled_period);
1653		bcp->giveup_limit        = giveup_limit;
1654	}
1655	return count;
1656}
1657
1658static const struct seq_operations uv_ptc_seq_ops = {
1659	.start		= ptc_seq_start,
1660	.next		= ptc_seq_next,
1661	.stop		= ptc_seq_stop,
1662	.show		= ptc_seq_show
1663};
1664
1665static int ptc_proc_open(struct inode *inode, struct file *file)
1666{
1667	return seq_open(file, &uv_ptc_seq_ops);
1668}
1669
1670static int tunables_open(struct inode *inode, struct file *file)
1671{
1672	return 0;
1673}
1674
1675static const struct file_operations proc_uv_ptc_operations = {
1676	.open		= ptc_proc_open,
1677	.read		= seq_read,
1678	.write		= ptc_proc_write,
1679	.llseek		= seq_lseek,
1680	.release	= seq_release,
1681};
1682
1683static const struct file_operations tunables_fops = {
1684	.open		= tunables_open,
1685	.read		= tunables_read,
1686	.write		= tunables_write,
1687	.llseek		= default_llseek,
1688};
1689
1690static int __init uv_ptc_init(void)
1691{
1692	struct proc_dir_entry *proc_uv_ptc;
1693
1694	if (!is_uv_system())
1695		return 0;
1696
1697	proc_uv_ptc = proc_create(UV_PTC_BASENAME, 0444, NULL,
1698				  &proc_uv_ptc_operations);
1699	if (!proc_uv_ptc) {
1700		pr_err("unable to create %s proc entry\n",
1701		       UV_PTC_BASENAME);
1702		return -EINVAL;
1703	}
1704
1705	tunables_dir = debugfs_create_dir(UV_BAU_TUNABLES_DIR, NULL);
1706	if (!tunables_dir) {
1707		pr_err("unable to create debugfs directory %s\n",
1708		       UV_BAU_TUNABLES_DIR);
1709		return -EINVAL;
1710	}
1711	tunables_file = debugfs_create_file(UV_BAU_TUNABLES_FILE, 0600,
1712					tunables_dir, NULL, &tunables_fops);
1713	if (!tunables_file) {
1714		pr_err("unable to create debugfs file %s\n",
1715		       UV_BAU_TUNABLES_FILE);
1716		return -EINVAL;
1717	}
1718	return 0;
1719}
1720
1721/*
1722 * Initialize the sending side's sending buffers.
1723 */
1724static void activation_descriptor_init(int node, int pnode, int base_pnode)
1725{
1726	int i;
1727	int cpu;
1728	int uv1 = 0;
1729	unsigned long gpa;
1730	unsigned long m;
1731	unsigned long n;
1732	size_t dsize;
1733	struct bau_desc *bau_desc;
1734	struct bau_desc *bd2;
1735	struct uv1_bau_msg_header *uv1_hdr;
1736	struct uv2_3_bau_msg_header *uv2_3_hdr;
1737	struct bau_control *bcp;
1738
1739	/*
1740	 * each bau_desc is 64 bytes; there are 8 (ITEMS_PER_DESC)
1741	 * per cpu; and one per cpu on the uvhub (ADP_SZ)
1742	 */
1743	dsize = sizeof(struct bau_desc) * ADP_SZ * ITEMS_PER_DESC;
1744	bau_desc = kmalloc_node(dsize, GFP_KERNEL, node);
1745	BUG_ON(!bau_desc);
1746
1747	gpa = uv_gpa(bau_desc);
1748	n = uv_gpa_to_gnode(gpa);
1749	m = ops.bau_gpa_to_offset(gpa);
1750	if (is_uv1_hub())
1751		uv1 = 1;
1752
1753	/* the 14-bit pnode */
1754	write_mmr_descriptor_base(pnode,
1755		(n << UVH_LB_BAU_SB_DESCRIPTOR_BASE_NODE_ID_SHFT | m));
1756	/*
1757	 * Initializing all 8 (ITEMS_PER_DESC) descriptors for each
1758	 * cpu even though we only use the first one; one descriptor can
1759	 * describe a broadcast to 256 uv hubs.
1760	 */
1761	for (i = 0, bd2 = bau_desc; i < (ADP_SZ * ITEMS_PER_DESC); i++, bd2++) {
1762		memset(bd2, 0, sizeof(struct bau_desc));
1763		if (uv1) {
1764			uv1_hdr = &bd2->header.uv1_hdr;
1765			uv1_hdr->swack_flag = 1;
1766			/*
1767			 * The base_dest_nasid set in the message header
1768			 * is the nasid of the first uvhub in the partition.
1769			 * The bit map will indicate destination pnode numbers
1770			 * relative to that base. They may not be consecutive
1771			 * if nasid striding is being used.
1772			 */
1773			uv1_hdr->base_dest_nasid =
1774			                          UV_PNODE_TO_NASID(base_pnode);
1775			uv1_hdr->dest_subnodeid  = UV_LB_SUBNODEID;
1776			uv1_hdr->command         = UV_NET_ENDPOINT_INTD;
1777			uv1_hdr->int_both        = 1;
1778			/*
1779			 * all others need to be set to zero:
1780			 *   fairness chaining multilevel count replied_to
1781			 */
1782		} else {
1783			/*
1784			 * BIOS uses legacy mode, but uv2 and uv3 hardware always
1785			 * uses native mode for selective broadcasts.
1786			 */
1787			uv2_3_hdr = &bd2->header.uv2_3_hdr;
1788			uv2_3_hdr->swack_flag      = 1;
1789			uv2_3_hdr->base_dest_nasid =
1790			                          UV_PNODE_TO_NASID(base_pnode);
1791			uv2_3_hdr->dest_subnodeid  = UV_LB_SUBNODEID;
1792			uv2_3_hdr->command         = UV_NET_ENDPOINT_INTD;
1793		}
1794	}
1795	for_each_present_cpu(cpu) {
1796		if (pnode != uv_blade_to_pnode(uv_cpu_to_blade_id(cpu)))
1797			continue;
1798		bcp = &per_cpu(bau_control, cpu);
1799		bcp->descriptor_base = bau_desc;
1800	}
1801}
1802
1803/*
1804 * initialize the destination side's receiving buffers
1805 * entered for each uvhub in the partition
1806 * - node is first node (kernel memory notion) on the uvhub
1807 * - pnode is the uvhub's physical identifier
1808 */
1809static void pq_init(int node, int pnode)
1810{
1811	int cpu;
1812	size_t plsize;
1813	char *cp;
1814	void *vp;
1815	unsigned long gnode, first, last, tail;
1816	struct bau_pq_entry *pqp;
1817	struct bau_control *bcp;
1818
1819	plsize = (DEST_Q_SIZE + 1) * sizeof(struct bau_pq_entry);
1820	vp = kmalloc_node(plsize, GFP_KERNEL, node);
1821	pqp = (struct bau_pq_entry *)vp;
1822	BUG_ON(!pqp);
1823
1824	cp = (char *)pqp + 31;
1825	pqp = (struct bau_pq_entry *)(((unsigned long)cp >> 5) << 5);
1826
1827	for_each_present_cpu(cpu) {
1828		if (pnode != uv_cpu_to_pnode(cpu))
1829			continue;
1830		/* for every cpu on this pnode: */
1831		bcp = &per_cpu(bau_control, cpu);
1832		bcp->queue_first	= pqp;
1833		bcp->bau_msg_head	= pqp;
1834		bcp->queue_last		= pqp + (DEST_Q_SIZE - 1);
1835	}
1836
1837	first = ops.bau_gpa_to_offset(uv_gpa(pqp));
1838	last = ops.bau_gpa_to_offset(uv_gpa(pqp + (DEST_Q_SIZE - 1)));
1839
1840	/*
1841	 * Pre UV4, the gnode is required to locate the payload queue
1842	 * and the payload queue tail must be maintained by the kernel.
1843	 */
1844	bcp = &per_cpu(bau_control, smp_processor_id());
1845	if (bcp->uvhub_version <= UV_BAU_V3) {
1846		tail = first;
1847		gnode = uv_gpa_to_gnode(uv_gpa(pqp));
1848		first = (gnode << UV_PAYLOADQ_GNODE_SHIFT) | tail;
1849		write_mmr_payload_tail(pnode, tail);
1850	}
1851
1852	ops.write_payload_first(pnode, first);
1853	ops.write_payload_last(pnode, last);
1854
1855	/* in effect, all msg_type's are set to MSG_NOOP */
1856	memset(pqp, 0, sizeof(struct bau_pq_entry) * DEST_Q_SIZE);
1857}
1858
1859/*
1860 * Initialization of each UV hub's structures
1861 */
1862static void __init init_uvhub(int uvhub, int vector, int base_pnode)
1863{
1864	int node;
1865	int pnode;
1866	unsigned long apicid;
1867
1868	node = uvhub_to_first_node(uvhub);
1869	pnode = uv_blade_to_pnode(uvhub);
1870
1871	activation_descriptor_init(node, pnode, base_pnode);
1872
1873	pq_init(node, pnode);
1874	/*
1875	 * The below initialization can't be in firmware because the
1876	 * messaging IRQ will be determined by the OS.
1877	 */
1878	apicid = uvhub_to_first_apicid(uvhub) | uv_apicid_hibits;
1879	write_mmr_data_config(pnode, ((apicid << 32) | vector));
1880}
1881
1882/*
1883 * We will set BAU_MISC_CONTROL with a timeout period.
1884 * But the BIOS has set UVH_AGING_PRESCALE_SEL and UVH_TRANSACTION_TIMEOUT.
1885 * So the destination timeout period has to be calculated from them.
1886 */
1887static int calculate_destination_timeout(void)
1888{
1889	unsigned long mmr_image;
1890	int mult1;
1891	int mult2;
1892	int index;
1893	int base;
1894	int ret;
1895	unsigned long ts_ns;
1896
1897	if (is_uv1_hub()) {
1898		mult1 = SOFTACK_TIMEOUT_PERIOD & BAU_MISC_CONTROL_MULT_MASK;
1899		mmr_image = uv_read_local_mmr(UVH_AGING_PRESCALE_SEL);
1900		index = (mmr_image >> BAU_URGENCY_7_SHIFT) & BAU_URGENCY_7_MASK;
1901		mmr_image = uv_read_local_mmr(UVH_TRANSACTION_TIMEOUT);
1902		mult2 = (mmr_image >> BAU_TRANS_SHIFT) & BAU_TRANS_MASK;
1903		ts_ns = timeout_base_ns[index];
1904		ts_ns *= (mult1 * mult2);
1905		ret = ts_ns / 1000;
1906	} else {
1907		/* same destination timeout for uv2 and uv3 */
1908		/* 4 bits  0/1 for 10/80us base, 3 bits of multiplier */
1909		mmr_image = uv_read_local_mmr(UVH_LB_BAU_MISC_CONTROL);
1910		mmr_image = (mmr_image & UV_SA_MASK) >> UV_SA_SHFT;
1911		if (mmr_image & (1L << UV2_ACK_UNITS_SHFT))
1912			base = 80;
1913		else
1914			base = 10;
1915		mult1 = mmr_image & UV2_ACK_MASK;
1916		ret = mult1 * base;
1917	}
1918	return ret;
1919}
1920
1921static void __init init_per_cpu_tunables(void)
1922{
1923	int cpu;
1924	struct bau_control *bcp;
1925
1926	for_each_present_cpu(cpu) {
1927		bcp = &per_cpu(bau_control, cpu);
1928		bcp->baudisabled		= 0;
1929		if (nobau)
1930			bcp->nobau		= true;
1931		bcp->statp			= &per_cpu(ptcstats, cpu);
1932		/* time interval to catch a hardware stay-busy bug */
1933		bcp->timeout_interval		= usec_2_cycles(2*timeout_us);
1934		bcp->max_concurr		= max_concurr;
1935		bcp->max_concurr_const		= max_concurr;
1936		bcp->plugged_delay		= plugged_delay;
1937		bcp->plugsb4reset		= plugsb4reset;
1938		bcp->timeoutsb4reset		= timeoutsb4reset;
1939		bcp->ipi_reset_limit		= ipi_reset_limit;
1940		bcp->complete_threshold		= complete_threshold;
1941		bcp->cong_response_us		= congested_respns_us;
1942		bcp->cong_reps			= congested_reps;
1943		bcp->disabled_period		= sec_2_cycles(disabled_period);
1944		bcp->giveup_limit		= giveup_limit;
1945		spin_lock_init(&bcp->queue_lock);
1946		spin_lock_init(&bcp->uvhub_lock);
1947		spin_lock_init(&bcp->disable_lock);
1948	}
1949}
1950
1951/*
1952 * Scan all cpus to collect blade and socket summaries.
1953 */
1954static int __init get_cpu_topology(int base_pnode,
1955					struct uvhub_desc *uvhub_descs,
1956					unsigned char *uvhub_mask)
1957{
1958	int cpu;
1959	int pnode;
1960	int uvhub;
1961	int socket;
1962	struct bau_control *bcp;
1963	struct uvhub_desc *bdp;
1964	struct socket_desc *sdp;
1965
1966	for_each_present_cpu(cpu) {
1967		bcp = &per_cpu(bau_control, cpu);
1968
1969		memset(bcp, 0, sizeof(struct bau_control));
1970
1971		pnode = uv_cpu_hub_info(cpu)->pnode;
1972		if ((pnode - base_pnode) >= UV_DISTRIBUTION_SIZE) {
1973			pr_emerg(
1974				"cpu %d pnode %d-%d beyond %d; BAU disabled\n",
1975				cpu, pnode, base_pnode, UV_DISTRIBUTION_SIZE);
1976			return 1;
1977		}
1978
1979		bcp->osnode = cpu_to_node(cpu);
1980		bcp->partition_base_pnode = base_pnode;
1981
1982		uvhub = uv_cpu_hub_info(cpu)->numa_blade_id;
1983		*(uvhub_mask + (uvhub/8)) |= (1 << (uvhub%8));
1984		bdp = &uvhub_descs[uvhub];
1985
1986		bdp->num_cpus++;
1987		bdp->uvhub = uvhub;
1988		bdp->pnode = pnode;
1989
1990		/* kludge: 'assuming' one node per socket, and assuming that
1991		   disabling a socket just leaves a gap in node numbers */
1992		socket = bcp->osnode & 1;
1993		bdp->socket_mask |= (1 << socket);
1994		sdp = &bdp->socket[socket];
1995		sdp->cpu_number[sdp->num_cpus] = cpu;
1996		sdp->num_cpus++;
1997		if (sdp->num_cpus > MAX_CPUS_PER_SOCKET) {
1998			pr_emerg("%d cpus per socket invalid\n",
1999				sdp->num_cpus);
2000			return 1;
2001		}
2002	}
2003	return 0;
2004}
2005
2006/*
2007 * Each socket is to get a local array of pnodes/hubs.
2008 */
2009static void make_per_cpu_thp(struct bau_control *smaster)
2010{
2011	int cpu;
2012	size_t hpsz = sizeof(struct hub_and_pnode) * num_possible_cpus();
2013
2014	smaster->thp = kmalloc_node(hpsz, GFP_KERNEL, smaster->osnode);
2015	memset(smaster->thp, 0, hpsz);
2016	for_each_present_cpu(cpu) {
2017		smaster->thp[cpu].pnode = uv_cpu_hub_info(cpu)->pnode;
2018		smaster->thp[cpu].uvhub = uv_cpu_hub_info(cpu)->numa_blade_id;
2019	}
2020}
2021
2022/*
2023 * Each uvhub is to get a local cpumask.
2024 */
2025static void make_per_hub_cpumask(struct bau_control *hmaster)
2026{
2027	int sz = sizeof(cpumask_t);
2028
2029	hmaster->cpumask = kzalloc_node(sz, GFP_KERNEL, hmaster->osnode);
2030}
2031
2032/*
2033 * Initialize all the per_cpu information for the cpu's on a given socket,
2034 * given what has been gathered into the socket_desc struct.
2035 * And reports the chosen hub and socket masters back to the caller.
2036 */
2037static int scan_sock(struct socket_desc *sdp, struct uvhub_desc *bdp,
2038			struct bau_control **smasterp,
2039			struct bau_control **hmasterp)
2040{
2041	int i, cpu, uvhub_cpu;
2042	struct bau_control *bcp;
2043
2044	for (i = 0; i < sdp->num_cpus; i++) {
2045		cpu = sdp->cpu_number[i];
2046		bcp = &per_cpu(bau_control, cpu);
2047		bcp->cpu = cpu;
2048		if (i == 0) {
2049			*smasterp = bcp;
2050			if (!(*hmasterp))
2051				*hmasterp = bcp;
2052		}
2053		bcp->cpus_in_uvhub = bdp->num_cpus;
2054		bcp->cpus_in_socket = sdp->num_cpus;
2055		bcp->socket_master = *smasterp;
2056		bcp->uvhub = bdp->uvhub;
2057		if (is_uv1_hub())
2058			bcp->uvhub_version = UV_BAU_V1;
2059		else if (is_uv2_hub())
2060			bcp->uvhub_version = UV_BAU_V2;
2061		else if (is_uv3_hub())
2062			bcp->uvhub_version = UV_BAU_V3;
2063		else if (is_uv4_hub())
2064			bcp->uvhub_version = UV_BAU_V4;
2065		else {
2066			pr_emerg("uvhub version not 1, 2, 3, or 4\n");
2067			return 1;
2068		}
2069		bcp->uvhub_master = *hmasterp;
2070		uvhub_cpu = uv_cpu_blade_processor_id(cpu);
2071		bcp->uvhub_cpu = uvhub_cpu;
2072
2073		/*
2074		 * The ERROR and BUSY status registers are located pairwise over
2075		 * the STATUS_0 and STATUS_1 mmrs; each an array[32] of 2 bits.
2076		 */
2077		if (uvhub_cpu < UV_CPUS_PER_AS) {
2078			bcp->status_mmr = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
2079			bcp->status_index = uvhub_cpu * UV_ACT_STATUS_SIZE;
2080		} else {
2081			bcp->status_mmr = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
2082			bcp->status_index = (uvhub_cpu - UV_CPUS_PER_AS)
2083						* UV_ACT_STATUS_SIZE;
2084		}
2085
2086		if (bcp->uvhub_cpu >= MAX_CPUS_PER_UVHUB) {
2087			pr_emerg("%d cpus per uvhub invalid\n",
2088				bcp->uvhub_cpu);
2089			return 1;
2090		}
2091	}
2092	return 0;
2093}
2094
2095/*
2096 * Summarize the blade and socket topology into the per_cpu structures.
2097 */
2098static int __init summarize_uvhub_sockets(int nuvhubs,
2099			struct uvhub_desc *uvhub_descs,
2100			unsigned char *uvhub_mask)
2101{
2102	int socket;
2103	int uvhub;
2104	unsigned short socket_mask;
2105
2106	for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
2107		struct uvhub_desc *bdp;
2108		struct bau_control *smaster = NULL;
2109		struct bau_control *hmaster = NULL;
2110
2111		if (!(*(uvhub_mask + (uvhub/8)) & (1 << (uvhub%8))))
2112			continue;
2113
2114		bdp = &uvhub_descs[uvhub];
2115		socket_mask = bdp->socket_mask;
2116		socket = 0;
2117		while (socket_mask) {
2118			struct socket_desc *sdp;
2119			if ((socket_mask & 1)) {
2120				sdp = &bdp->socket[socket];
2121				if (scan_sock(sdp, bdp, &smaster, &hmaster))
2122					return 1;
2123				make_per_cpu_thp(smaster);
2124			}
2125			socket++;
2126			socket_mask = (socket_mask >> 1);
2127		}
2128		make_per_hub_cpumask(hmaster);
2129	}
2130	return 0;
2131}
2132
2133/*
2134 * initialize the bau_control structure for each cpu
2135 */
2136static int __init init_per_cpu(int nuvhubs, int base_part_pnode)
2137{
2138	unsigned char *uvhub_mask;
2139	void *vp;
2140	struct uvhub_desc *uvhub_descs;
2141
2142	if (is_uv3_hub() || is_uv2_hub() || is_uv1_hub())
2143		timeout_us = calculate_destination_timeout();
2144
2145	vp = kmalloc(nuvhubs * sizeof(struct uvhub_desc), GFP_KERNEL);
2146	uvhub_descs = (struct uvhub_desc *)vp;
2147	memset(uvhub_descs, 0, nuvhubs * sizeof(struct uvhub_desc));
2148	uvhub_mask = kzalloc((nuvhubs+7)/8, GFP_KERNEL);
2149
2150	if (get_cpu_topology(base_part_pnode, uvhub_descs, uvhub_mask))
2151		goto fail;
2152
2153	if (summarize_uvhub_sockets(nuvhubs, uvhub_descs, uvhub_mask))
2154		goto fail;
2155
2156	kfree(uvhub_descs);
2157	kfree(uvhub_mask);
2158	init_per_cpu_tunables();
2159	return 0;
2160
2161fail:
2162	kfree(uvhub_descs);
2163	kfree(uvhub_mask);
2164	return 1;
2165}
2166
2167static const struct bau_operations uv1_bau_ops __initconst = {
2168	.bau_gpa_to_offset       = uv_gpa_to_offset,
2169	.read_l_sw_ack           = read_mmr_sw_ack,
2170	.read_g_sw_ack           = read_gmmr_sw_ack,
2171	.write_l_sw_ack          = write_mmr_sw_ack,
2172	.write_g_sw_ack          = write_gmmr_sw_ack,
2173	.write_payload_first     = write_mmr_payload_first,
2174	.write_payload_last      = write_mmr_payload_last,
2175	.wait_completion	 = uv1_wait_completion,
2176};
2177
2178static const struct bau_operations uv2_3_bau_ops __initconst = {
2179	.bau_gpa_to_offset       = uv_gpa_to_offset,
2180	.read_l_sw_ack           = read_mmr_sw_ack,
2181	.read_g_sw_ack           = read_gmmr_sw_ack,
2182	.write_l_sw_ack          = write_mmr_sw_ack,
2183	.write_g_sw_ack          = write_gmmr_sw_ack,
2184	.write_payload_first     = write_mmr_payload_first,
2185	.write_payload_last      = write_mmr_payload_last,
2186	.wait_completion	 = uv2_3_wait_completion,
2187};
2188
2189static const struct bau_operations uv4_bau_ops __initconst = {
2190	.bau_gpa_to_offset       = uv_gpa_to_soc_phys_ram,
2191	.read_l_sw_ack           = read_mmr_proc_sw_ack,
2192	.read_g_sw_ack           = read_gmmr_proc_sw_ack,
2193	.write_l_sw_ack          = write_mmr_proc_sw_ack,
2194	.write_g_sw_ack          = write_gmmr_proc_sw_ack,
2195	.write_payload_first     = write_mmr_proc_payload_first,
2196	.write_payload_last      = write_mmr_proc_payload_last,
2197	.wait_completion         = uv4_wait_completion,
2198};
2199
2200/*
2201 * Initialization of BAU-related structures
2202 */
2203static int __init uv_bau_init(void)
2204{
2205	int uvhub;
2206	int pnode;
2207	int nuvhubs;
2208	int cur_cpu;
2209	int cpus;
2210	int vector;
2211	cpumask_var_t *mask;
2212
2213	if (!is_uv_system())
2214		return 0;
2215
2216	if (is_uv4_hub())
2217		ops = uv4_bau_ops;
2218	else if (is_uv3_hub())
2219		ops = uv2_3_bau_ops;
2220	else if (is_uv2_hub())
2221		ops = uv2_3_bau_ops;
2222	else if (is_uv1_hub())
2223		ops = uv1_bau_ops;
2224
2225	nuvhubs = uv_num_possible_blades();
2226	if (nuvhubs < 2) {
2227		pr_crit("UV: BAU disabled - insufficient hub count\n");
2228		goto err_bau_disable;
2229	}
2230
2231	for_each_possible_cpu(cur_cpu) {
2232		mask = &per_cpu(uv_flush_tlb_mask, cur_cpu);
2233		zalloc_cpumask_var_node(mask, GFP_KERNEL, cpu_to_node(cur_cpu));
2234	}
2235
2236	uv_base_pnode = 0x7fffffff;
2237	for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
2238		cpus = uv_blade_nr_possible_cpus(uvhub);
2239		if (cpus && (uv_blade_to_pnode(uvhub) < uv_base_pnode))
2240			uv_base_pnode = uv_blade_to_pnode(uvhub);
2241	}
2242
2243	/* software timeouts are not supported on UV4 */
2244	if (is_uv3_hub() || is_uv2_hub() || is_uv1_hub())
2245		enable_timeouts();
2246
2247	if (init_per_cpu(nuvhubs, uv_base_pnode)) {
2248		pr_crit("UV: BAU disabled - per CPU init failed\n");
2249		goto err_bau_disable;
2250	}
2251
2252	vector = UV_BAU_MESSAGE;
2253	for_each_possible_blade(uvhub) {
2254		if (uv_blade_nr_possible_cpus(uvhub))
2255			init_uvhub(uvhub, vector, uv_base_pnode);
2256	}
2257
2258	for_each_possible_blade(uvhub) {
2259		if (uv_blade_nr_possible_cpus(uvhub)) {
2260			unsigned long val;
2261			unsigned long mmr;
2262			pnode = uv_blade_to_pnode(uvhub);
2263			/* INIT the bau */
2264			val = 1L << 63;
2265			write_gmmr_activation(pnode, val);
2266			mmr = 1; /* should be 1 to broadcast to both sockets */
2267			if (!is_uv1_hub())
2268				write_mmr_data_broadcast(pnode, mmr);
2269		}
2270	}
2271
2272	return 0;
2273
2274err_bau_disable:
2275
2276	for_each_possible_cpu(cur_cpu)
2277		free_cpumask_var(per_cpu(uv_flush_tlb_mask, cur_cpu));
2278
2279	set_bau_off();
2280	nobau_perm = 1;
2281
2282	return -EINVAL;
2283}
2284core_initcall(uv_bau_init);
2285fs_initcall(uv_ptc_init);