Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2#include <linux/mm.h>
  3#include <linux/gfp.h>
  4#include <linux/hugetlb.h>
  5#include <asm/pgalloc.h>
 
  6#include <asm/tlb.h>
  7#include <asm/fixmap.h>
  8#include <asm/mtrr.h>
  9
 10#ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
 11phys_addr_t physical_mask __ro_after_init = (1ULL << __PHYSICAL_MASK_SHIFT) - 1;
 12EXPORT_SYMBOL(physical_mask);
 13#endif
 14
 15#ifdef CONFIG_HIGHPTE
 16#define PGTABLE_HIGHMEM __GFP_HIGHMEM
 17#else
 18#define PGTABLE_HIGHMEM 0
 19#endif
 20
 21#ifndef CONFIG_PARAVIRT
 22static inline
 23void paravirt_tlb_remove_table(struct mmu_gather *tlb, void *table)
 24{
 25	tlb_remove_page(tlb, table);
 26}
 27#endif
 28
 29gfp_t __userpte_alloc_gfp = GFP_PGTABLE_USER | PGTABLE_HIGHMEM;
 30
 31pgtable_t pte_alloc_one(struct mm_struct *mm)
 32{
 33	return __pte_alloc_one(mm, __userpte_alloc_gfp);
 
 
 
 
 
 
 
 
 
 34}
 35
 36static int __init setup_userpte(char *arg)
 37{
 38	if (!arg)
 39		return -EINVAL;
 40
 41	/*
 42	 * "userpte=nohigh" disables allocation of user pagetables in
 43	 * high memory.
 44	 */
 45	if (strcmp(arg, "nohigh") == 0)
 46		__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
 47	else
 48		return -EINVAL;
 49	return 0;
 50}
 51early_param("userpte", setup_userpte);
 52
 53void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
 54{
 55	pgtable_pte_page_dtor(pte);
 56	paravirt_release_pte(page_to_pfn(pte));
 57	paravirt_tlb_remove_table(tlb, pte);
 58}
 59
 60#if CONFIG_PGTABLE_LEVELS > 2
 61void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
 62{
 63	struct page *page = virt_to_page(pmd);
 64	paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
 65	/*
 66	 * NOTE! For PAE, any changes to the top page-directory-pointer-table
 67	 * entries need a full cr3 reload to flush.
 68	 */
 69#ifdef CONFIG_X86_PAE
 70	tlb->need_flush_all = 1;
 71#endif
 72	pgtable_pmd_page_dtor(page);
 73	paravirt_tlb_remove_table(tlb, page);
 74}
 75
 76#if CONFIG_PGTABLE_LEVELS > 3
 77void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
 78{
 79	paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
 80	paravirt_tlb_remove_table(tlb, virt_to_page(pud));
 81}
 82
 83#if CONFIG_PGTABLE_LEVELS > 4
 84void ___p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d)
 85{
 86	paravirt_release_p4d(__pa(p4d) >> PAGE_SHIFT);
 87	paravirt_tlb_remove_table(tlb, virt_to_page(p4d));
 88}
 89#endif	/* CONFIG_PGTABLE_LEVELS > 4 */
 90#endif	/* CONFIG_PGTABLE_LEVELS > 3 */
 91#endif	/* CONFIG_PGTABLE_LEVELS > 2 */
 92
 93static inline void pgd_list_add(pgd_t *pgd)
 94{
 95	struct page *page = virt_to_page(pgd);
 96
 97	list_add(&page->lru, &pgd_list);
 98}
 99
100static inline void pgd_list_del(pgd_t *pgd)
101{
102	struct page *page = virt_to_page(pgd);
103
104	list_del(&page->lru);
105}
106
107#define UNSHARED_PTRS_PER_PGD				\
108	(SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
109#define MAX_UNSHARED_PTRS_PER_PGD			\
110	max_t(size_t, KERNEL_PGD_BOUNDARY, PTRS_PER_PGD)
111
112
113static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
114{
115	virt_to_page(pgd)->pt_mm = mm;
 
116}
117
118struct mm_struct *pgd_page_get_mm(struct page *page)
119{
120	return page->pt_mm;
121}
122
123static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
124{
125	/* If the pgd points to a shared pagetable level (either the
126	   ptes in non-PAE, or shared PMD in PAE), then just copy the
127	   references from swapper_pg_dir. */
128	if (CONFIG_PGTABLE_LEVELS == 2 ||
129	    (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
130	    CONFIG_PGTABLE_LEVELS >= 4) {
131		clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
132				swapper_pg_dir + KERNEL_PGD_BOUNDARY,
133				KERNEL_PGD_PTRS);
134	}
135
136	/* list required to sync kernel mapping updates */
137	if (!SHARED_KERNEL_PMD) {
138		pgd_set_mm(pgd, mm);
139		pgd_list_add(pgd);
140	}
141}
142
143static void pgd_dtor(pgd_t *pgd)
144{
145	if (SHARED_KERNEL_PMD)
146		return;
147
148	spin_lock(&pgd_lock);
149	pgd_list_del(pgd);
150	spin_unlock(&pgd_lock);
151}
152
153/*
154 * List of all pgd's needed for non-PAE so it can invalidate entries
155 * in both cached and uncached pgd's; not needed for PAE since the
156 * kernel pmd is shared. If PAE were not to share the pmd a similar
157 * tactic would be needed. This is essentially codepath-based locking
158 * against pageattr.c; it is the unique case in which a valid change
159 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
160 * vmalloc faults work because attached pagetables are never freed.
161 * -- nyc
162 */
163
164#ifdef CONFIG_X86_PAE
165/*
166 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
167 * updating the top-level pagetable entries to guarantee the
168 * processor notices the update.  Since this is expensive, and
169 * all 4 top-level entries are used almost immediately in a
170 * new process's life, we just pre-populate them here.
171 *
172 * Also, if we're in a paravirt environment where the kernel pmd is
173 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
174 * and initialize the kernel pmds here.
175 */
176#define PREALLOCATED_PMDS	UNSHARED_PTRS_PER_PGD
177#define MAX_PREALLOCATED_PMDS	MAX_UNSHARED_PTRS_PER_PGD
178
179/*
180 * We allocate separate PMDs for the kernel part of the user page-table
181 * when PTI is enabled. We need them to map the per-process LDT into the
182 * user-space page-table.
183 */
184#define PREALLOCATED_USER_PMDS	 (boot_cpu_has(X86_FEATURE_PTI) ? \
185					KERNEL_PGD_PTRS : 0)
186#define MAX_PREALLOCATED_USER_PMDS KERNEL_PGD_PTRS
187
188void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
189{
190	paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
191
192	/* Note: almost everything apart from _PAGE_PRESENT is
193	   reserved at the pmd (PDPT) level. */
194	set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
195
196	/*
197	 * According to Intel App note "TLBs, Paging-Structure Caches,
198	 * and Their Invalidation", April 2007, document 317080-001,
199	 * section 8.1: in PAE mode we explicitly have to flush the
200	 * TLB via cr3 if the top-level pgd is changed...
201	 */
202	flush_tlb_mm(mm);
203}
204#else  /* !CONFIG_X86_PAE */
205
206/* No need to prepopulate any pagetable entries in non-PAE modes. */
207#define PREALLOCATED_PMDS	0
208#define MAX_PREALLOCATED_PMDS	0
209#define PREALLOCATED_USER_PMDS	 0
210#define MAX_PREALLOCATED_USER_PMDS 0
211#endif	/* CONFIG_X86_PAE */
212
213static void free_pmds(struct mm_struct *mm, pmd_t *pmds[], int count)
214{
215	int i;
216
217	for (i = 0; i < count; i++)
218		if (pmds[i]) {
219			pgtable_pmd_page_dtor(virt_to_page(pmds[i]));
220			free_page((unsigned long)pmds[i]);
221			mm_dec_nr_pmds(mm);
222		}
223}
224
225static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[], int count)
226{
227	int i;
228	bool failed = false;
229	gfp_t gfp = GFP_PGTABLE_USER;
230
231	if (mm == &init_mm)
232		gfp &= ~__GFP_ACCOUNT;
233
234	for (i = 0; i < count; i++) {
235		pmd_t *pmd = (pmd_t *)__get_free_page(gfp);
236		if (!pmd)
237			failed = true;
238		if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) {
239			free_page((unsigned long)pmd);
240			pmd = NULL;
241			failed = true;
242		}
243		if (pmd)
244			mm_inc_nr_pmds(mm);
245		pmds[i] = pmd;
246	}
247
248	if (failed) {
249		free_pmds(mm, pmds, count);
250		return -ENOMEM;
251	}
252
253	return 0;
254}
255
256/*
257 * Mop up any pmd pages which may still be attached to the pgd.
258 * Normally they will be freed by munmap/exit_mmap, but any pmd we
259 * preallocate which never got a corresponding vma will need to be
260 * freed manually.
261 */
262static void mop_up_one_pmd(struct mm_struct *mm, pgd_t *pgdp)
263{
264	pgd_t pgd = *pgdp;
265
266	if (pgd_val(pgd) != 0) {
267		pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
268
269		pgd_clear(pgdp);
270
271		paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
272		pmd_free(mm, pmd);
273		mm_dec_nr_pmds(mm);
274	}
275}
276
277static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
278{
279	int i;
280
281	for (i = 0; i < PREALLOCATED_PMDS; i++)
282		mop_up_one_pmd(mm, &pgdp[i]);
283
284#ifdef CONFIG_PAGE_TABLE_ISOLATION
 
285
286	if (!boot_cpu_has(X86_FEATURE_PTI))
287		return;
288
289	pgdp = kernel_to_user_pgdp(pgdp);
290
291	for (i = 0; i < PREALLOCATED_USER_PMDS; i++)
292		mop_up_one_pmd(mm, &pgdp[i + KERNEL_PGD_BOUNDARY]);
293#endif
 
 
294}
295
296static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
297{
298	p4d_t *p4d;
299	pud_t *pud;
300	int i;
301
 
 
 
302	p4d = p4d_offset(pgd, 0);
303	pud = pud_offset(p4d, 0);
304
305	for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
306		pmd_t *pmd = pmds[i];
307
308		if (i >= KERNEL_PGD_BOUNDARY)
309			memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
310			       sizeof(pmd_t) * PTRS_PER_PMD);
311
312		pud_populate(mm, pud, pmd);
313	}
314}
315
316#ifdef CONFIG_PAGE_TABLE_ISOLATION
317static void pgd_prepopulate_user_pmd(struct mm_struct *mm,
318				     pgd_t *k_pgd, pmd_t *pmds[])
319{
320	pgd_t *s_pgd = kernel_to_user_pgdp(swapper_pg_dir);
321	pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd);
322	p4d_t *u_p4d;
323	pud_t *u_pud;
324	int i;
325
326	u_p4d = p4d_offset(u_pgd, 0);
327	u_pud = pud_offset(u_p4d, 0);
328
329	s_pgd += KERNEL_PGD_BOUNDARY;
330	u_pud += KERNEL_PGD_BOUNDARY;
331
332	for (i = 0; i < PREALLOCATED_USER_PMDS; i++, u_pud++, s_pgd++) {
333		pmd_t *pmd = pmds[i];
334
335		memcpy(pmd, (pmd_t *)pgd_page_vaddr(*s_pgd),
336		       sizeof(pmd_t) * PTRS_PER_PMD);
337
338		pud_populate(mm, u_pud, pmd);
339	}
340
341}
342#else
343static void pgd_prepopulate_user_pmd(struct mm_struct *mm,
344				     pgd_t *k_pgd, pmd_t *pmds[])
345{
346}
347#endif
348/*
349 * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also
350 * assumes that pgd should be in one page.
351 *
352 * But kernel with PAE paging that is not running as a Xen domain
353 * only needs to allocate 32 bytes for pgd instead of one page.
354 */
355#ifdef CONFIG_X86_PAE
356
357#include <linux/slab.h>
358
359#define PGD_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
360#define PGD_ALIGN	32
361
362static struct kmem_cache *pgd_cache;
363
364void __init pgtable_cache_init(void)
365{
366	/*
367	 * When PAE kernel is running as a Xen domain, it does not use
368	 * shared kernel pmd. And this requires a whole page for pgd.
369	 */
370	if (!SHARED_KERNEL_PMD)
371		return;
372
373	/*
374	 * when PAE kernel is not running as a Xen domain, it uses
375	 * shared kernel pmd. Shared kernel pmd does not require a whole
376	 * page for pgd. We are able to just allocate a 32-byte for pgd.
377	 * During boot time, we create a 32-byte slab for pgd table allocation.
378	 */
379	pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN,
380				      SLAB_PANIC, NULL);
 
 
 
 
381}
 
382
383static inline pgd_t *_pgd_alloc(void)
384{
385	/*
386	 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain.
387	 * We allocate one page for pgd.
388	 */
389	if (!SHARED_KERNEL_PMD)
390		return (pgd_t *)__get_free_pages(GFP_PGTABLE_USER,
391						 PGD_ALLOCATION_ORDER);
392
393	/*
394	 * Now PAE kernel is not running as a Xen domain. We can allocate
395	 * a 32-byte slab for pgd to save memory space.
396	 */
397	return kmem_cache_alloc(pgd_cache, GFP_PGTABLE_USER);
398}
399
400static inline void _pgd_free(pgd_t *pgd)
401{
402	if (!SHARED_KERNEL_PMD)
403		free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
404	else
405		kmem_cache_free(pgd_cache, pgd);
406}
407#else
408
409static inline pgd_t *_pgd_alloc(void)
410{
411	return (pgd_t *)__get_free_pages(GFP_PGTABLE_USER,
412					 PGD_ALLOCATION_ORDER);
413}
414
415static inline void _pgd_free(pgd_t *pgd)
416{
417	free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
418}
419#endif /* CONFIG_X86_PAE */
420
421pgd_t *pgd_alloc(struct mm_struct *mm)
422{
423	pgd_t *pgd;
424	pmd_t *u_pmds[MAX_PREALLOCATED_USER_PMDS];
425	pmd_t *pmds[MAX_PREALLOCATED_PMDS];
426
427	pgd = _pgd_alloc();
428
429	if (pgd == NULL)
430		goto out;
431
432	mm->pgd = pgd;
433
434	if (sizeof(pmds) != 0 &&
435			preallocate_pmds(mm, pmds, PREALLOCATED_PMDS) != 0)
436		goto out_free_pgd;
437
438	if (sizeof(u_pmds) != 0 &&
439			preallocate_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS) != 0)
440		goto out_free_pmds;
441
442	if (paravirt_pgd_alloc(mm) != 0)
443		goto out_free_user_pmds;
444
445	/*
446	 * Make sure that pre-populating the pmds is atomic with
447	 * respect to anything walking the pgd_list, so that they
448	 * never see a partially populated pgd.
449	 */
450	spin_lock(&pgd_lock);
451
452	pgd_ctor(mm, pgd);
453	if (sizeof(pmds) != 0)
454		pgd_prepopulate_pmd(mm, pgd, pmds);
455
456	if (sizeof(u_pmds) != 0)
457		pgd_prepopulate_user_pmd(mm, pgd, u_pmds);
458
459	spin_unlock(&pgd_lock);
460
461	return pgd;
462
463out_free_user_pmds:
464	if (sizeof(u_pmds) != 0)
465		free_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS);
466out_free_pmds:
467	if (sizeof(pmds) != 0)
468		free_pmds(mm, pmds, PREALLOCATED_PMDS);
469out_free_pgd:
470	_pgd_free(pgd);
471out:
472	return NULL;
473}
474
475void pgd_free(struct mm_struct *mm, pgd_t *pgd)
476{
477	pgd_mop_up_pmds(mm, pgd);
478	pgd_dtor(pgd);
479	paravirt_pgd_free(mm, pgd);
480	_pgd_free(pgd);
481}
482
483/*
484 * Used to set accessed or dirty bits in the page table entries
485 * on other architectures. On x86, the accessed and dirty bits
486 * are tracked by hardware. However, do_wp_page calls this function
487 * to also make the pte writeable at the same time the dirty bit is
488 * set. In that case we do actually need to write the PTE.
489 */
490int ptep_set_access_flags(struct vm_area_struct *vma,
491			  unsigned long address, pte_t *ptep,
492			  pte_t entry, int dirty)
493{
494	int changed = !pte_same(*ptep, entry);
495
496	if (changed && dirty)
497		set_pte(ptep, entry);
498
499	return changed;
500}
501
502#ifdef CONFIG_TRANSPARENT_HUGEPAGE
503int pmdp_set_access_flags(struct vm_area_struct *vma,
504			  unsigned long address, pmd_t *pmdp,
505			  pmd_t entry, int dirty)
506{
507	int changed = !pmd_same(*pmdp, entry);
508
509	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
510
511	if (changed && dirty) {
512		set_pmd(pmdp, entry);
513		/*
514		 * We had a write-protection fault here and changed the pmd
515		 * to to more permissive. No need to flush the TLB for that,
516		 * #PF is architecturally guaranteed to do that and in the
517		 * worst-case we'll generate a spurious fault.
518		 */
519	}
520
521	return changed;
522}
523
524int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
525			  pud_t *pudp, pud_t entry, int dirty)
526{
527	int changed = !pud_same(*pudp, entry);
528
529	VM_BUG_ON(address & ~HPAGE_PUD_MASK);
530
531	if (changed && dirty) {
532		set_pud(pudp, entry);
533		/*
534		 * We had a write-protection fault here and changed the pud
535		 * to to more permissive. No need to flush the TLB for that,
536		 * #PF is architecturally guaranteed to do that and in the
537		 * worst-case we'll generate a spurious fault.
538		 */
539	}
540
541	return changed;
542}
543#endif
544
545int ptep_test_and_clear_young(struct vm_area_struct *vma,
546			      unsigned long addr, pte_t *ptep)
547{
548	int ret = 0;
549
550	if (pte_young(*ptep))
551		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
552					 (unsigned long *) &ptep->pte);
553
554	return ret;
555}
556
557#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
558int pmdp_test_and_clear_young(struct vm_area_struct *vma,
559			      unsigned long addr, pmd_t *pmdp)
560{
561	int ret = 0;
562
563	if (pmd_young(*pmdp))
564		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
565					 (unsigned long *)pmdp);
566
567	return ret;
568}
569#endif
570
571#ifdef CONFIG_TRANSPARENT_HUGEPAGE
572int pudp_test_and_clear_young(struct vm_area_struct *vma,
573			      unsigned long addr, pud_t *pudp)
574{
575	int ret = 0;
576
577	if (pud_young(*pudp))
578		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
579					 (unsigned long *)pudp);
580
581	return ret;
582}
583#endif
584
585int ptep_clear_flush_young(struct vm_area_struct *vma,
586			   unsigned long address, pte_t *ptep)
587{
588	/*
589	 * On x86 CPUs, clearing the accessed bit without a TLB flush
590	 * doesn't cause data corruption. [ It could cause incorrect
591	 * page aging and the (mistaken) reclaim of hot pages, but the
592	 * chance of that should be relatively low. ]
593	 *
594	 * So as a performance optimization don't flush the TLB when
595	 * clearing the accessed bit, it will eventually be flushed by
596	 * a context switch or a VM operation anyway. [ In the rare
597	 * event of it not getting flushed for a long time the delay
598	 * shouldn't really matter because there's no real memory
599	 * pressure for swapout to react to. ]
600	 */
601	return ptep_test_and_clear_young(vma, address, ptep);
602}
603
604#ifdef CONFIG_TRANSPARENT_HUGEPAGE
605int pmdp_clear_flush_young(struct vm_area_struct *vma,
606			   unsigned long address, pmd_t *pmdp)
607{
608	int young;
609
610	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
611
612	young = pmdp_test_and_clear_young(vma, address, pmdp);
613	if (young)
614		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
615
616	return young;
617}
618
619pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma, unsigned long address,
620			 pmd_t *pmdp)
621{
622	/*
623	 * No flush is necessary. Once an invalid PTE is established, the PTE's
624	 * access and dirty bits cannot be updated.
625	 */
626	return pmdp_establish(vma, address, pmdp, pmd_mkinvalid(*pmdp));
627}
628#endif
629
630/**
631 * reserve_top_address - reserves a hole in the top of kernel address space
632 * @reserve - size of hole to reserve
633 *
634 * Can be used to relocate the fixmap area and poke a hole in the top
635 * of kernel address space to make room for a hypervisor.
636 */
637void __init reserve_top_address(unsigned long reserve)
638{
639#ifdef CONFIG_X86_32
640	BUG_ON(fixmaps_set > 0);
641	__FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE;
642	printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
643	       -reserve, __FIXADDR_TOP + PAGE_SIZE);
644#endif
645}
646
647int fixmaps_set;
648
649void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
650{
651	unsigned long address = __fix_to_virt(idx);
652
653#ifdef CONFIG_X86_64
654       /*
655	* Ensure that the static initial page tables are covering the
656	* fixmap completely.
657	*/
658	BUILD_BUG_ON(__end_of_permanent_fixed_addresses >
659		     (FIXMAP_PMD_NUM * PTRS_PER_PTE));
660#endif
661
662	if (idx >= __end_of_fixed_addresses) {
663		BUG();
664		return;
665	}
666	set_pte_vaddr(address, pte);
667	fixmaps_set++;
668}
669
670void native_set_fixmap(unsigned /* enum fixed_addresses */ idx,
671		       phys_addr_t phys, pgprot_t flags)
672{
673	/* Sanitize 'prot' against any unsupported bits: */
674	pgprot_val(flags) &= __default_kernel_pte_mask;
675
676	__native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
677}
678
679#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
680#ifdef CONFIG_X86_5LEVEL
681/**
682 * p4d_set_huge - setup kernel P4D mapping
683 *
684 * No 512GB pages yet -- always return 0
685 */
686int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
687{
688	return 0;
689}
690
691/**
692 * p4d_clear_huge - clear kernel P4D mapping when it is set
693 *
694 * No 512GB pages yet -- always return 0
695 */
696void p4d_clear_huge(p4d_t *p4d)
697{
 
698}
699#endif
700
701/**
702 * pud_set_huge - setup kernel PUD mapping
703 *
704 * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this
705 * function sets up a huge page only if any of the following conditions are met:
706 *
707 * - MTRRs are disabled, or
708 *
709 * - MTRRs are enabled and the range is completely covered by a single MTRR, or
710 *
711 * - MTRRs are enabled and the corresponding MTRR memory type is WB, which
712 *   has no effect on the requested PAT memory type.
713 *
714 * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger
715 * page mapping attempt fails.
716 *
717 * Returns 1 on success and 0 on failure.
718 */
719int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
720{
721	u8 mtrr, uniform;
722
723	mtrr = mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform);
724	if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
725	    (mtrr != MTRR_TYPE_WRBACK))
726		return 0;
727
728	/* Bail out if we are we on a populated non-leaf entry: */
729	if (pud_present(*pud) && !pud_huge(*pud))
730		return 0;
731
 
 
732	set_pte((pte_t *)pud, pfn_pte(
733		(u64)addr >> PAGE_SHIFT,
734		__pgprot(protval_4k_2_large(pgprot_val(prot)) | _PAGE_PSE)));
735
736	return 1;
737}
738
739/**
740 * pmd_set_huge - setup kernel PMD mapping
741 *
742 * See text over pud_set_huge() above.
743 *
744 * Returns 1 on success and 0 on failure.
745 */
746int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
747{
748	u8 mtrr, uniform;
749
750	mtrr = mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform);
751	if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
752	    (mtrr != MTRR_TYPE_WRBACK)) {
753		pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n",
754			     __func__, addr, addr + PMD_SIZE);
755		return 0;
756	}
757
758	/* Bail out if we are we on a populated non-leaf entry: */
759	if (pmd_present(*pmd) && !pmd_huge(*pmd))
760		return 0;
761
 
 
762	set_pte((pte_t *)pmd, pfn_pte(
763		(u64)addr >> PAGE_SHIFT,
764		__pgprot(protval_4k_2_large(pgprot_val(prot)) | _PAGE_PSE)));
765
766	return 1;
767}
768
769/**
770 * pud_clear_huge - clear kernel PUD mapping when it is set
771 *
772 * Returns 1 on success and 0 on failure (no PUD map is found).
773 */
774int pud_clear_huge(pud_t *pud)
775{
776	if (pud_large(*pud)) {
777		pud_clear(pud);
778		return 1;
779	}
780
781	return 0;
782}
783
784/**
785 * pmd_clear_huge - clear kernel PMD mapping when it is set
786 *
787 * Returns 1 on success and 0 on failure (no PMD map is found).
788 */
789int pmd_clear_huge(pmd_t *pmd)
790{
791	if (pmd_large(*pmd)) {
792		pmd_clear(pmd);
793		return 1;
794	}
795
796	return 0;
797}
798
799#ifdef CONFIG_X86_64
800/**
801 * pud_free_pmd_page - Clear pud entry and free pmd page.
802 * @pud: Pointer to a PUD.
803 * @addr: Virtual address associated with pud.
804 *
805 * Context: The pud range has been unmapped and TLB purged.
806 * Return: 1 if clearing the entry succeeded. 0 otherwise.
807 *
808 * NOTE: Callers must allow a single page allocation.
809 */
810int pud_free_pmd_page(pud_t *pud, unsigned long addr)
811{
812	pmd_t *pmd, *pmd_sv;
813	pte_t *pte;
814	int i;
815
816	pmd = pud_pgtable(*pud);
817	pmd_sv = (pmd_t *)__get_free_page(GFP_KERNEL);
818	if (!pmd_sv)
819		return 0;
820
821	for (i = 0; i < PTRS_PER_PMD; i++) {
822		pmd_sv[i] = pmd[i];
823		if (!pmd_none(pmd[i]))
824			pmd_clear(&pmd[i]);
825	}
826
827	pud_clear(pud);
828
829	/* INVLPG to clear all paging-structure caches */
830	flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);
831
832	for (i = 0; i < PTRS_PER_PMD; i++) {
833		if (!pmd_none(pmd_sv[i])) {
834			pte = (pte_t *)pmd_page_vaddr(pmd_sv[i]);
835			free_page((unsigned long)pte);
836		}
837	}
838
839	free_page((unsigned long)pmd_sv);
 
 
840
841	pgtable_pmd_page_dtor(virt_to_page(pmd));
842	free_page((unsigned long)pmd);
843
844	return 1;
845}
846
847/**
848 * pmd_free_pte_page - Clear pmd entry and free pte page.
849 * @pmd: Pointer to a PMD.
850 * @addr: Virtual address associated with pmd.
851 *
852 * Context: The pmd range has been unmapped and TLB purged.
853 * Return: 1 if clearing the entry succeeded. 0 otherwise.
854 */
855int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
856{
857	pte_t *pte;
858
 
 
 
859	pte = (pte_t *)pmd_page_vaddr(*pmd);
860	pmd_clear(pmd);
861
862	/* INVLPG to clear all paging-structure caches */
863	flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);
864
865	free_page((unsigned long)pte);
866
867	return 1;
868}
869
870#else /* !CONFIG_X86_64 */
871
872/*
873 * Disable free page handling on x86-PAE. This assures that ioremap()
874 * does not update sync'd pmd entries. See vmalloc_sync_one().
875 */
876int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
877{
878	return pmd_none(*pmd);
879}
880
881#endif /* CONFIG_X86_64 */
882#endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2#include <linux/mm.h>
  3#include <linux/gfp.h>
  4#include <linux/hugetlb.h>
  5#include <asm/pgalloc.h>
  6#include <asm/pgtable.h>
  7#include <asm/tlb.h>
  8#include <asm/fixmap.h>
  9#include <asm/mtrr.h>
 10
 11#define PGALLOC_GFP (GFP_KERNEL_ACCOUNT | __GFP_ZERO)
 
 
 
 12
 13#ifdef CONFIG_HIGHPTE
 14#define PGALLOC_USER_GFP __GFP_HIGHMEM
 15#else
 16#define PGALLOC_USER_GFP 0
 17#endif
 18
 19gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
 20
 21pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
 22{
 23	return (pte_t *)__get_free_page(PGALLOC_GFP & ~__GFP_ACCOUNT);
 24}
 
 25
 26pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
 
 
 27{
 28	struct page *pte;
 29
 30	pte = alloc_pages(__userpte_alloc_gfp, 0);
 31	if (!pte)
 32		return NULL;
 33	if (!pgtable_page_ctor(pte)) {
 34		__free_page(pte);
 35		return NULL;
 36	}
 37	return pte;
 38}
 39
 40static int __init setup_userpte(char *arg)
 41{
 42	if (!arg)
 43		return -EINVAL;
 44
 45	/*
 46	 * "userpte=nohigh" disables allocation of user pagetables in
 47	 * high memory.
 48	 */
 49	if (strcmp(arg, "nohigh") == 0)
 50		__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
 51	else
 52		return -EINVAL;
 53	return 0;
 54}
 55early_param("userpte", setup_userpte);
 56
 57void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
 58{
 59	pgtable_page_dtor(pte);
 60	paravirt_release_pte(page_to_pfn(pte));
 61	tlb_remove_table(tlb, pte);
 62}
 63
 64#if CONFIG_PGTABLE_LEVELS > 2
 65void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
 66{
 67	struct page *page = virt_to_page(pmd);
 68	paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
 69	/*
 70	 * NOTE! For PAE, any changes to the top page-directory-pointer-table
 71	 * entries need a full cr3 reload to flush.
 72	 */
 73#ifdef CONFIG_X86_PAE
 74	tlb->need_flush_all = 1;
 75#endif
 76	pgtable_pmd_page_dtor(page);
 77	tlb_remove_table(tlb, page);
 78}
 79
 80#if CONFIG_PGTABLE_LEVELS > 3
 81void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
 82{
 83	paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
 84	tlb_remove_table(tlb, virt_to_page(pud));
 85}
 86
 87#if CONFIG_PGTABLE_LEVELS > 4
 88void ___p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d)
 89{
 90	paravirt_release_p4d(__pa(p4d) >> PAGE_SHIFT);
 91	tlb_remove_table(tlb, virt_to_page(p4d));
 92}
 93#endif	/* CONFIG_PGTABLE_LEVELS > 4 */
 94#endif	/* CONFIG_PGTABLE_LEVELS > 3 */
 95#endif	/* CONFIG_PGTABLE_LEVELS > 2 */
 96
 97static inline void pgd_list_add(pgd_t *pgd)
 98{
 99	struct page *page = virt_to_page(pgd);
100
101	list_add(&page->lru, &pgd_list);
102}
103
104static inline void pgd_list_del(pgd_t *pgd)
105{
106	struct page *page = virt_to_page(pgd);
107
108	list_del(&page->lru);
109}
110
111#define UNSHARED_PTRS_PER_PGD				\
112	(SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
 
 
113
114
115static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
116{
117	BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm));
118	virt_to_page(pgd)->index = (pgoff_t)mm;
119}
120
121struct mm_struct *pgd_page_get_mm(struct page *page)
122{
123	return (struct mm_struct *)page->index;
124}
125
126static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
127{
128	/* If the pgd points to a shared pagetable level (either the
129	   ptes in non-PAE, or shared PMD in PAE), then just copy the
130	   references from swapper_pg_dir. */
131	if (CONFIG_PGTABLE_LEVELS == 2 ||
132	    (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
133	    CONFIG_PGTABLE_LEVELS >= 4) {
134		clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
135				swapper_pg_dir + KERNEL_PGD_BOUNDARY,
136				KERNEL_PGD_PTRS);
137	}
138
139	/* list required to sync kernel mapping updates */
140	if (!SHARED_KERNEL_PMD) {
141		pgd_set_mm(pgd, mm);
142		pgd_list_add(pgd);
143	}
144}
145
146static void pgd_dtor(pgd_t *pgd)
147{
148	if (SHARED_KERNEL_PMD)
149		return;
150
151	spin_lock(&pgd_lock);
152	pgd_list_del(pgd);
153	spin_unlock(&pgd_lock);
154}
155
156/*
157 * List of all pgd's needed for non-PAE so it can invalidate entries
158 * in both cached and uncached pgd's; not needed for PAE since the
159 * kernel pmd is shared. If PAE were not to share the pmd a similar
160 * tactic would be needed. This is essentially codepath-based locking
161 * against pageattr.c; it is the unique case in which a valid change
162 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
163 * vmalloc faults work because attached pagetables are never freed.
164 * -- nyc
165 */
166
167#ifdef CONFIG_X86_PAE
168/*
169 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
170 * updating the top-level pagetable entries to guarantee the
171 * processor notices the update.  Since this is expensive, and
172 * all 4 top-level entries are used almost immediately in a
173 * new process's life, we just pre-populate them here.
174 *
175 * Also, if we're in a paravirt environment where the kernel pmd is
176 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
177 * and initialize the kernel pmds here.
178 */
179#define PREALLOCATED_PMDS	UNSHARED_PTRS_PER_PGD
 
 
 
 
 
 
 
 
 
 
180
181void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
182{
183	paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
184
185	/* Note: almost everything apart from _PAGE_PRESENT is
186	   reserved at the pmd (PDPT) level. */
187	set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
188
189	/*
190	 * According to Intel App note "TLBs, Paging-Structure Caches,
191	 * and Their Invalidation", April 2007, document 317080-001,
192	 * section 8.1: in PAE mode we explicitly have to flush the
193	 * TLB via cr3 if the top-level pgd is changed...
194	 */
195	flush_tlb_mm(mm);
196}
197#else  /* !CONFIG_X86_PAE */
198
199/* No need to prepopulate any pagetable entries in non-PAE modes. */
200#define PREALLOCATED_PMDS	0
201
 
 
202#endif	/* CONFIG_X86_PAE */
203
204static void free_pmds(struct mm_struct *mm, pmd_t *pmds[])
205{
206	int i;
207
208	for(i = 0; i < PREALLOCATED_PMDS; i++)
209		if (pmds[i]) {
210			pgtable_pmd_page_dtor(virt_to_page(pmds[i]));
211			free_page((unsigned long)pmds[i]);
212			mm_dec_nr_pmds(mm);
213		}
214}
215
216static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[])
217{
218	int i;
219	bool failed = false;
220	gfp_t gfp = PGALLOC_GFP;
221
222	if (mm == &init_mm)
223		gfp &= ~__GFP_ACCOUNT;
224
225	for(i = 0; i < PREALLOCATED_PMDS; i++) {
226		pmd_t *pmd = (pmd_t *)__get_free_page(gfp);
227		if (!pmd)
228			failed = true;
229		if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) {
230			free_page((unsigned long)pmd);
231			pmd = NULL;
232			failed = true;
233		}
234		if (pmd)
235			mm_inc_nr_pmds(mm);
236		pmds[i] = pmd;
237	}
238
239	if (failed) {
240		free_pmds(mm, pmds);
241		return -ENOMEM;
242	}
243
244	return 0;
245}
246
247/*
248 * Mop up any pmd pages which may still be attached to the pgd.
249 * Normally they will be freed by munmap/exit_mmap, but any pmd we
250 * preallocate which never got a corresponding vma will need to be
251 * freed manually.
252 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
253static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
254{
255	int i;
256
257	for(i = 0; i < PREALLOCATED_PMDS; i++) {
258		pgd_t pgd = pgdp[i];
259
260		if (pgd_val(pgd) != 0) {
261			pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
262
263			pgdp[i] = native_make_pgd(0);
 
 
 
264
265			paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
266			pmd_free(mm, pmd);
267			mm_dec_nr_pmds(mm);
268		}
269	}
270}
271
272static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
273{
274	p4d_t *p4d;
275	pud_t *pud;
276	int i;
277
278	if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
279		return;
280
281	p4d = p4d_offset(pgd, 0);
282	pud = pud_offset(p4d, 0);
283
284	for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
285		pmd_t *pmd = pmds[i];
286
287		if (i >= KERNEL_PGD_BOUNDARY)
288			memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
289			       sizeof(pmd_t) * PTRS_PER_PMD);
290
291		pud_populate(mm, pud, pmd);
292	}
293}
294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
295/*
296 * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also
297 * assumes that pgd should be in one page.
298 *
299 * But kernel with PAE paging that is not running as a Xen domain
300 * only needs to allocate 32 bytes for pgd instead of one page.
301 */
302#ifdef CONFIG_X86_PAE
303
304#include <linux/slab.h>
305
306#define PGD_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
307#define PGD_ALIGN	32
308
309static struct kmem_cache *pgd_cache;
310
311static int __init pgd_cache_init(void)
312{
313	/*
314	 * When PAE kernel is running as a Xen domain, it does not use
315	 * shared kernel pmd. And this requires a whole page for pgd.
316	 */
317	if (!SHARED_KERNEL_PMD)
318		return 0;
319
320	/*
321	 * when PAE kernel is not running as a Xen domain, it uses
322	 * shared kernel pmd. Shared kernel pmd does not require a whole
323	 * page for pgd. We are able to just allocate a 32-byte for pgd.
324	 * During boot time, we create a 32-byte slab for pgd table allocation.
325	 */
326	pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN,
327				      SLAB_PANIC, NULL);
328	if (!pgd_cache)
329		return -ENOMEM;
330
331	return 0;
332}
333core_initcall(pgd_cache_init);
334
335static inline pgd_t *_pgd_alloc(void)
336{
337	/*
338	 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain.
339	 * We allocate one page for pgd.
340	 */
341	if (!SHARED_KERNEL_PMD)
342		return (pgd_t *)__get_free_page(PGALLOC_GFP);
 
343
344	/*
345	 * Now PAE kernel is not running as a Xen domain. We can allocate
346	 * a 32-byte slab for pgd to save memory space.
347	 */
348	return kmem_cache_alloc(pgd_cache, PGALLOC_GFP);
349}
350
351static inline void _pgd_free(pgd_t *pgd)
352{
353	if (!SHARED_KERNEL_PMD)
354		free_page((unsigned long)pgd);
355	else
356		kmem_cache_free(pgd_cache, pgd);
357}
358#else
359
360static inline pgd_t *_pgd_alloc(void)
361{
362	return (pgd_t *)__get_free_pages(PGALLOC_GFP, PGD_ALLOCATION_ORDER);
 
363}
364
365static inline void _pgd_free(pgd_t *pgd)
366{
367	free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
368}
369#endif /* CONFIG_X86_PAE */
370
371pgd_t *pgd_alloc(struct mm_struct *mm)
372{
373	pgd_t *pgd;
374	pmd_t *pmds[PREALLOCATED_PMDS];
 
375
376	pgd = _pgd_alloc();
377
378	if (pgd == NULL)
379		goto out;
380
381	mm->pgd = pgd;
382
383	if (preallocate_pmds(mm, pmds) != 0)
 
384		goto out_free_pgd;
385
 
 
 
 
386	if (paravirt_pgd_alloc(mm) != 0)
387		goto out_free_pmds;
388
389	/*
390	 * Make sure that pre-populating the pmds is atomic with
391	 * respect to anything walking the pgd_list, so that they
392	 * never see a partially populated pgd.
393	 */
394	spin_lock(&pgd_lock);
395
396	pgd_ctor(mm, pgd);
397	pgd_prepopulate_pmd(mm, pgd, pmds);
 
 
 
 
398
399	spin_unlock(&pgd_lock);
400
401	return pgd;
402
 
 
 
403out_free_pmds:
404	free_pmds(mm, pmds);
 
405out_free_pgd:
406	_pgd_free(pgd);
407out:
408	return NULL;
409}
410
411void pgd_free(struct mm_struct *mm, pgd_t *pgd)
412{
413	pgd_mop_up_pmds(mm, pgd);
414	pgd_dtor(pgd);
415	paravirt_pgd_free(mm, pgd);
416	_pgd_free(pgd);
417}
418
419/*
420 * Used to set accessed or dirty bits in the page table entries
421 * on other architectures. On x86, the accessed and dirty bits
422 * are tracked by hardware. However, do_wp_page calls this function
423 * to also make the pte writeable at the same time the dirty bit is
424 * set. In that case we do actually need to write the PTE.
425 */
426int ptep_set_access_flags(struct vm_area_struct *vma,
427			  unsigned long address, pte_t *ptep,
428			  pte_t entry, int dirty)
429{
430	int changed = !pte_same(*ptep, entry);
431
432	if (changed && dirty)
433		*ptep = entry;
434
435	return changed;
436}
437
438#ifdef CONFIG_TRANSPARENT_HUGEPAGE
439int pmdp_set_access_flags(struct vm_area_struct *vma,
440			  unsigned long address, pmd_t *pmdp,
441			  pmd_t entry, int dirty)
442{
443	int changed = !pmd_same(*pmdp, entry);
444
445	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
446
447	if (changed && dirty) {
448		*pmdp = entry;
449		/*
450		 * We had a write-protection fault here and changed the pmd
451		 * to to more permissive. No need to flush the TLB for that,
452		 * #PF is architecturally guaranteed to do that and in the
453		 * worst-case we'll generate a spurious fault.
454		 */
455	}
456
457	return changed;
458}
459
460int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
461			  pud_t *pudp, pud_t entry, int dirty)
462{
463	int changed = !pud_same(*pudp, entry);
464
465	VM_BUG_ON(address & ~HPAGE_PUD_MASK);
466
467	if (changed && dirty) {
468		*pudp = entry;
469		/*
470		 * We had a write-protection fault here and changed the pud
471		 * to to more permissive. No need to flush the TLB for that,
472		 * #PF is architecturally guaranteed to do that and in the
473		 * worst-case we'll generate a spurious fault.
474		 */
475	}
476
477	return changed;
478}
479#endif
480
481int ptep_test_and_clear_young(struct vm_area_struct *vma,
482			      unsigned long addr, pte_t *ptep)
483{
484	int ret = 0;
485
486	if (pte_young(*ptep))
487		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
488					 (unsigned long *) &ptep->pte);
489
490	return ret;
491}
492
493#ifdef CONFIG_TRANSPARENT_HUGEPAGE
494int pmdp_test_and_clear_young(struct vm_area_struct *vma,
495			      unsigned long addr, pmd_t *pmdp)
496{
497	int ret = 0;
498
499	if (pmd_young(*pmdp))
500		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
501					 (unsigned long *)pmdp);
502
503	return ret;
504}
 
 
 
505int pudp_test_and_clear_young(struct vm_area_struct *vma,
506			      unsigned long addr, pud_t *pudp)
507{
508	int ret = 0;
509
510	if (pud_young(*pudp))
511		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
512					 (unsigned long *)pudp);
513
514	return ret;
515}
516#endif
517
518int ptep_clear_flush_young(struct vm_area_struct *vma,
519			   unsigned long address, pte_t *ptep)
520{
521	/*
522	 * On x86 CPUs, clearing the accessed bit without a TLB flush
523	 * doesn't cause data corruption. [ It could cause incorrect
524	 * page aging and the (mistaken) reclaim of hot pages, but the
525	 * chance of that should be relatively low. ]
526	 *
527	 * So as a performance optimization don't flush the TLB when
528	 * clearing the accessed bit, it will eventually be flushed by
529	 * a context switch or a VM operation anyway. [ In the rare
530	 * event of it not getting flushed for a long time the delay
531	 * shouldn't really matter because there's no real memory
532	 * pressure for swapout to react to. ]
533	 */
534	return ptep_test_and_clear_young(vma, address, ptep);
535}
536
537#ifdef CONFIG_TRANSPARENT_HUGEPAGE
538int pmdp_clear_flush_young(struct vm_area_struct *vma,
539			   unsigned long address, pmd_t *pmdp)
540{
541	int young;
542
543	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
544
545	young = pmdp_test_and_clear_young(vma, address, pmdp);
546	if (young)
547		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
548
549	return young;
550}
 
 
 
 
 
 
 
 
 
 
551#endif
552
553/**
554 * reserve_top_address - reserves a hole in the top of kernel address space
555 * @reserve - size of hole to reserve
556 *
557 * Can be used to relocate the fixmap area and poke a hole in the top
558 * of kernel address space to make room for a hypervisor.
559 */
560void __init reserve_top_address(unsigned long reserve)
561{
562#ifdef CONFIG_X86_32
563	BUG_ON(fixmaps_set > 0);
564	__FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE;
565	printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
566	       -reserve, __FIXADDR_TOP + PAGE_SIZE);
567#endif
568}
569
570int fixmaps_set;
571
572void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
573{
574	unsigned long address = __fix_to_virt(idx);
575
 
 
 
 
 
 
 
 
 
576	if (idx >= __end_of_fixed_addresses) {
577		BUG();
578		return;
579	}
580	set_pte_vaddr(address, pte);
581	fixmaps_set++;
582}
583
584void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
585		       pgprot_t flags)
586{
587	/* Sanitize 'prot' against any unsupported bits: */
588	pgprot_val(flags) &= __default_kernel_pte_mask;
589
590	__native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
591}
592
593#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
594#ifdef CONFIG_X86_5LEVEL
595/**
596 * p4d_set_huge - setup kernel P4D mapping
597 *
598 * No 512GB pages yet -- always return 0
599 */
600int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
601{
602	return 0;
603}
604
605/**
606 * p4d_clear_huge - clear kernel P4D mapping when it is set
607 *
608 * No 512GB pages yet -- always return 0
609 */
610int p4d_clear_huge(p4d_t *p4d)
611{
612	return 0;
613}
614#endif
615
616/**
617 * pud_set_huge - setup kernel PUD mapping
618 *
619 * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this
620 * function sets up a huge page only if any of the following conditions are met:
621 *
622 * - MTRRs are disabled, or
623 *
624 * - MTRRs are enabled and the range is completely covered by a single MTRR, or
625 *
626 * - MTRRs are enabled and the corresponding MTRR memory type is WB, which
627 *   has no effect on the requested PAT memory type.
628 *
629 * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger
630 * page mapping attempt fails.
631 *
632 * Returns 1 on success and 0 on failure.
633 */
634int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
635{
636	u8 mtrr, uniform;
637
638	mtrr = mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform);
639	if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
640	    (mtrr != MTRR_TYPE_WRBACK))
641		return 0;
642
643	/* Bail out if we are we on a populated non-leaf entry: */
644	if (pud_present(*pud) && !pud_huge(*pud))
645		return 0;
646
647	prot = pgprot_4k_2_large(prot);
648
649	set_pte((pte_t *)pud, pfn_pte(
650		(u64)addr >> PAGE_SHIFT,
651		__pgprot(pgprot_val(prot) | _PAGE_PSE)));
652
653	return 1;
654}
655
656/**
657 * pmd_set_huge - setup kernel PMD mapping
658 *
659 * See text over pud_set_huge() above.
660 *
661 * Returns 1 on success and 0 on failure.
662 */
663int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
664{
665	u8 mtrr, uniform;
666
667	mtrr = mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform);
668	if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
669	    (mtrr != MTRR_TYPE_WRBACK)) {
670		pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n",
671			     __func__, addr, addr + PMD_SIZE);
672		return 0;
673	}
674
675	/* Bail out if we are we on a populated non-leaf entry: */
676	if (pmd_present(*pmd) && !pmd_huge(*pmd))
677		return 0;
678
679	prot = pgprot_4k_2_large(prot);
680
681	set_pte((pte_t *)pmd, pfn_pte(
682		(u64)addr >> PAGE_SHIFT,
683		__pgprot(pgprot_val(prot) | _PAGE_PSE)));
684
685	return 1;
686}
687
688/**
689 * pud_clear_huge - clear kernel PUD mapping when it is set
690 *
691 * Returns 1 on success and 0 on failure (no PUD map is found).
692 */
693int pud_clear_huge(pud_t *pud)
694{
695	if (pud_large(*pud)) {
696		pud_clear(pud);
697		return 1;
698	}
699
700	return 0;
701}
702
703/**
704 * pmd_clear_huge - clear kernel PMD mapping when it is set
705 *
706 * Returns 1 on success and 0 on failure (no PMD map is found).
707 */
708int pmd_clear_huge(pmd_t *pmd)
709{
710	if (pmd_large(*pmd)) {
711		pmd_clear(pmd);
712		return 1;
713	}
714
715	return 0;
716}
717
 
718/**
719 * pud_free_pmd_page - Clear pud entry and free pmd page.
720 * @pud: Pointer to a PUD.
 
721 *
722 * Context: The pud range has been unmaped and TLB purged.
723 * Return: 1 if clearing the entry succeeded. 0 otherwise.
 
 
724 */
725int pud_free_pmd_page(pud_t *pud)
726{
727	pmd_t *pmd;
 
728	int i;
729
730	if (pud_none(*pud))
731		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
732
733	pmd = (pmd_t *)pud_page_vaddr(*pud);
 
 
 
 
 
734
735	for (i = 0; i < PTRS_PER_PMD; i++)
736		if (!pmd_free_pte_page(&pmd[i]))
737			return 0;
738
739	pud_clear(pud);
740	free_page((unsigned long)pmd);
741
742	return 1;
743}
744
745/**
746 * pmd_free_pte_page - Clear pmd entry and free pte page.
747 * @pmd: Pointer to a PMD.
 
748 *
749 * Context: The pmd range has been unmaped and TLB purged.
750 * Return: 1 if clearing the entry succeeded. 0 otherwise.
751 */
752int pmd_free_pte_page(pmd_t *pmd)
753{
754	pte_t *pte;
755
756	if (pmd_none(*pmd))
757		return 1;
758
759	pte = (pte_t *)pmd_page_vaddr(*pmd);
760	pmd_clear(pmd);
 
 
 
 
761	free_page((unsigned long)pte);
762
763	return 1;
764}
 
 
 
 
 
 
 
 
 
 
 
 
 
765#endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */