Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/arch/x86_64/mm/init.c
   4 *
   5 *  Copyright (C) 1995  Linus Torvalds
   6 *  Copyright (C) 2000  Pavel Machek <pavel@ucw.cz>
   7 *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
   8 */
   9
  10#include <linux/signal.h>
  11#include <linux/sched.h>
  12#include <linux/kernel.h>
  13#include <linux/errno.h>
  14#include <linux/string.h>
  15#include <linux/types.h>
  16#include <linux/ptrace.h>
  17#include <linux/mman.h>
  18#include <linux/mm.h>
  19#include <linux/swap.h>
  20#include <linux/smp.h>
  21#include <linux/init.h>
  22#include <linux/initrd.h>
  23#include <linux/pagemap.h>
 
  24#include <linux/memblock.h>
  25#include <linux/proc_fs.h>
  26#include <linux/pci.h>
  27#include <linux/pfn.h>
  28#include <linux/poison.h>
  29#include <linux/dma-mapping.h>
  30#include <linux/memory.h>
  31#include <linux/memory_hotplug.h>
  32#include <linux/memremap.h>
  33#include <linux/nmi.h>
  34#include <linux/gfp.h>
  35#include <linux/kcore.h>
  36#include <linux/bootmem_info.h>
  37
  38#include <asm/processor.h>
  39#include <asm/bios_ebda.h>
  40#include <linux/uaccess.h>
 
  41#include <asm/pgalloc.h>
  42#include <asm/dma.h>
  43#include <asm/fixmap.h>
  44#include <asm/e820/api.h>
  45#include <asm/apic.h>
  46#include <asm/tlb.h>
  47#include <asm/mmu_context.h>
  48#include <asm/proto.h>
  49#include <asm/smp.h>
  50#include <asm/sections.h>
  51#include <asm/kdebug.h>
  52#include <asm/numa.h>
  53#include <asm/set_memory.h>
  54#include <asm/init.h>
  55#include <asm/uv/uv.h>
  56#include <asm/setup.h>
  57#include <asm/ftrace.h>
  58
  59#include "mm_internal.h"
  60
  61#include "ident_map.c"
  62
  63#define DEFINE_POPULATE(fname, type1, type2, init)		\
  64static inline void fname##_init(struct mm_struct *mm,		\
  65		type1##_t *arg1, type2##_t *arg2, bool init)	\
  66{								\
  67	if (init)						\
  68		fname##_safe(mm, arg1, arg2);			\
  69	else							\
  70		fname(mm, arg1, arg2);				\
  71}
  72
  73DEFINE_POPULATE(p4d_populate, p4d, pud, init)
  74DEFINE_POPULATE(pgd_populate, pgd, p4d, init)
  75DEFINE_POPULATE(pud_populate, pud, pmd, init)
  76DEFINE_POPULATE(pmd_populate_kernel, pmd, pte, init)
  77
  78#define DEFINE_ENTRY(type1, type2, init)			\
  79static inline void set_##type1##_init(type1##_t *arg1,		\
  80			type2##_t arg2, bool init)		\
  81{								\
  82	if (init)						\
  83		set_##type1##_safe(arg1, arg2);			\
  84	else							\
  85		set_##type1(arg1, arg2);			\
  86}
  87
  88DEFINE_ENTRY(p4d, p4d, init)
  89DEFINE_ENTRY(pud, pud, init)
  90DEFINE_ENTRY(pmd, pmd, init)
  91DEFINE_ENTRY(pte, pte, init)
  92
  93static inline pgprot_t prot_sethuge(pgprot_t prot)
  94{
  95	WARN_ON_ONCE(pgprot_val(prot) & _PAGE_PAT);
  96
  97	return __pgprot(pgprot_val(prot) | _PAGE_PSE);
  98}
  99
 100/*
 101 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
 102 * physical space so we can cache the place of the first one and move
 103 * around without checking the pgd every time.
 104 */
 105
 106/* Bits supported by the hardware: */
 107pteval_t __supported_pte_mask __read_mostly = ~0;
 108/* Bits allowed in normal kernel mappings: */
 109pteval_t __default_kernel_pte_mask __read_mostly = ~0;
 110EXPORT_SYMBOL_GPL(__supported_pte_mask);
 111/* Used in PAGE_KERNEL_* macros which are reasonably used out-of-tree: */
 112EXPORT_SYMBOL(__default_kernel_pte_mask);
 113
 114int force_personality32;
 115
 116/*
 117 * noexec32=on|off
 118 * Control non executable heap for 32bit processes.
 
 119 *
 120 * on	PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
 121 * off	PROT_READ implies PROT_EXEC
 122 */
 123static int __init nonx32_setup(char *str)
 124{
 125	if (!strcmp(str, "on"))
 126		force_personality32 &= ~READ_IMPLIES_EXEC;
 127	else if (!strcmp(str, "off"))
 128		force_personality32 |= READ_IMPLIES_EXEC;
 129	return 1;
 130}
 131__setup("noexec32=", nonx32_setup);
 132
 133static void sync_global_pgds_l5(unsigned long start, unsigned long end)
 134{
 135	unsigned long addr;
 136
 137	for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
 138		const pgd_t *pgd_ref = pgd_offset_k(addr);
 139		struct page *page;
 140
 141		/* Check for overflow */
 142		if (addr < start)
 143			break;
 144
 145		if (pgd_none(*pgd_ref))
 146			continue;
 147
 148		spin_lock(&pgd_lock);
 149		list_for_each_entry(page, &pgd_list, lru) {
 150			pgd_t *pgd;
 151			spinlock_t *pgt_lock;
 152
 153			pgd = (pgd_t *)page_address(page) + pgd_index(addr);
 154			/* the pgt_lock only for Xen */
 155			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
 156			spin_lock(pgt_lock);
 157
 158			if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
 159				BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
 160
 161			if (pgd_none(*pgd))
 162				set_pgd(pgd, *pgd_ref);
 163
 164			spin_unlock(pgt_lock);
 165		}
 166		spin_unlock(&pgd_lock);
 167	}
 168}
 169
 170static void sync_global_pgds_l4(unsigned long start, unsigned long end)
 171{
 172	unsigned long addr;
 173
 174	for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
 175		pgd_t *pgd_ref = pgd_offset_k(addr);
 176		const p4d_t *p4d_ref;
 177		struct page *page;
 178
 179		/*
 180		 * With folded p4d, pgd_none() is always false, we need to
 181		 * handle synchronization on p4d level.
 182		 */
 183		MAYBE_BUILD_BUG_ON(pgd_none(*pgd_ref));
 184		p4d_ref = p4d_offset(pgd_ref, addr);
 185
 186		if (p4d_none(*p4d_ref))
 187			continue;
 188
 189		spin_lock(&pgd_lock);
 190		list_for_each_entry(page, &pgd_list, lru) {
 191			pgd_t *pgd;
 192			p4d_t *p4d;
 193			spinlock_t *pgt_lock;
 194
 195			pgd = (pgd_t *)page_address(page) + pgd_index(addr);
 196			p4d = p4d_offset(pgd, addr);
 197			/* the pgt_lock only for Xen */
 198			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
 199			spin_lock(pgt_lock);
 200
 201			if (!p4d_none(*p4d_ref) && !p4d_none(*p4d))
 202				BUG_ON(p4d_pgtable(*p4d)
 203				       != p4d_pgtable(*p4d_ref));
 204
 205			if (p4d_none(*p4d))
 206				set_p4d(p4d, *p4d_ref);
 207
 208			spin_unlock(pgt_lock);
 209		}
 210		spin_unlock(&pgd_lock);
 211	}
 212}
 213
 214/*
 215 * When memory was added make sure all the processes MM have
 216 * suitable PGD entries in the local PGD level page.
 217 */
 218static void sync_global_pgds(unsigned long start, unsigned long end)
 219{
 220	if (pgtable_l5_enabled())
 221		sync_global_pgds_l5(start, end);
 222	else
 223		sync_global_pgds_l4(start, end);
 224}
 225
 226/*
 227 * NOTE: This function is marked __ref because it calls __init function
 228 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
 229 */
 230static __ref void *spp_getpage(void)
 231{
 232	void *ptr;
 233
 234	if (after_bootmem)
 235		ptr = (void *) get_zeroed_page(GFP_ATOMIC);
 236	else
 237		ptr = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
 238
 239	if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
 240		panic("set_pte_phys: cannot allocate page data %s\n",
 241			after_bootmem ? "after bootmem" : "");
 242	}
 243
 244	pr_debug("spp_getpage %p\n", ptr);
 245
 246	return ptr;
 247}
 248
 249static p4d_t *fill_p4d(pgd_t *pgd, unsigned long vaddr)
 250{
 251	if (pgd_none(*pgd)) {
 252		p4d_t *p4d = (p4d_t *)spp_getpage();
 253		pgd_populate(&init_mm, pgd, p4d);
 254		if (p4d != p4d_offset(pgd, 0))
 255			printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
 256			       p4d, p4d_offset(pgd, 0));
 257	}
 258	return p4d_offset(pgd, vaddr);
 259}
 260
 261static pud_t *fill_pud(p4d_t *p4d, unsigned long vaddr)
 262{
 263	if (p4d_none(*p4d)) {
 264		pud_t *pud = (pud_t *)spp_getpage();
 265		p4d_populate(&init_mm, p4d, pud);
 266		if (pud != pud_offset(p4d, 0))
 267			printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
 268			       pud, pud_offset(p4d, 0));
 269	}
 270	return pud_offset(p4d, vaddr);
 271}
 272
 273static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
 274{
 275	if (pud_none(*pud)) {
 276		pmd_t *pmd = (pmd_t *) spp_getpage();
 277		pud_populate(&init_mm, pud, pmd);
 278		if (pmd != pmd_offset(pud, 0))
 279			printk(KERN_ERR "PAGETABLE BUG #02! %p <-> %p\n",
 280			       pmd, pmd_offset(pud, 0));
 281	}
 282	return pmd_offset(pud, vaddr);
 283}
 284
 285static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
 286{
 287	if (pmd_none(*pmd)) {
 288		pte_t *pte = (pte_t *) spp_getpage();
 289		pmd_populate_kernel(&init_mm, pmd, pte);
 290		if (pte != pte_offset_kernel(pmd, 0))
 291			printk(KERN_ERR "PAGETABLE BUG #03!\n");
 292	}
 293	return pte_offset_kernel(pmd, vaddr);
 294}
 295
 296static void __set_pte_vaddr(pud_t *pud, unsigned long vaddr, pte_t new_pte)
 297{
 298	pmd_t *pmd = fill_pmd(pud, vaddr);
 299	pte_t *pte = fill_pte(pmd, vaddr);
 300
 301	set_pte(pte, new_pte);
 302
 303	/*
 304	 * It's enough to flush this one mapping.
 305	 * (PGE mappings get flushed as well)
 306	 */
 307	flush_tlb_one_kernel(vaddr);
 308}
 309
 310void set_pte_vaddr_p4d(p4d_t *p4d_page, unsigned long vaddr, pte_t new_pte)
 311{
 312	p4d_t *p4d = p4d_page + p4d_index(vaddr);
 313	pud_t *pud = fill_pud(p4d, vaddr);
 314
 315	__set_pte_vaddr(pud, vaddr, new_pte);
 316}
 317
 318void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
 319{
 320	pud_t *pud = pud_page + pud_index(vaddr);
 321
 322	__set_pte_vaddr(pud, vaddr, new_pte);
 323}
 324
 325void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
 326{
 327	pgd_t *pgd;
 328	p4d_t *p4d_page;
 329
 330	pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
 331
 332	pgd = pgd_offset_k(vaddr);
 333	if (pgd_none(*pgd)) {
 334		printk(KERN_ERR
 335			"PGD FIXMAP MISSING, it should be setup in head.S!\n");
 336		return;
 337	}
 338
 339	p4d_page = p4d_offset(pgd, 0);
 340	set_pte_vaddr_p4d(p4d_page, vaddr, pteval);
 341}
 342
 343pmd_t * __init populate_extra_pmd(unsigned long vaddr)
 344{
 345	pgd_t *pgd;
 346	p4d_t *p4d;
 347	pud_t *pud;
 348
 349	pgd = pgd_offset_k(vaddr);
 350	p4d = fill_p4d(pgd, vaddr);
 351	pud = fill_pud(p4d, vaddr);
 352	return fill_pmd(pud, vaddr);
 353}
 354
 355pte_t * __init populate_extra_pte(unsigned long vaddr)
 356{
 357	pmd_t *pmd;
 358
 359	pmd = populate_extra_pmd(vaddr);
 360	return fill_pte(pmd, vaddr);
 361}
 362
 363/*
 364 * Create large page table mappings for a range of physical addresses.
 365 */
 366static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
 367					enum page_cache_mode cache)
 368{
 369	pgd_t *pgd;
 370	p4d_t *p4d;
 371	pud_t *pud;
 372	pmd_t *pmd;
 373	pgprot_t prot;
 374
 375	pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
 376		protval_4k_2_large(cachemode2protval(cache));
 377	BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
 378	for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
 379		pgd = pgd_offset_k((unsigned long)__va(phys));
 380		if (pgd_none(*pgd)) {
 381			p4d = (p4d_t *) spp_getpage();
 382			set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE |
 383						_PAGE_USER));
 384		}
 385		p4d = p4d_offset(pgd, (unsigned long)__va(phys));
 386		if (p4d_none(*p4d)) {
 387			pud = (pud_t *) spp_getpage();
 388			set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE |
 389						_PAGE_USER));
 390		}
 391		pud = pud_offset(p4d, (unsigned long)__va(phys));
 392		if (pud_none(*pud)) {
 393			pmd = (pmd_t *) spp_getpage();
 394			set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
 395						_PAGE_USER));
 396		}
 397		pmd = pmd_offset(pud, phys);
 398		BUG_ON(!pmd_none(*pmd));
 399		set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
 400	}
 401}
 402
 403void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
 404{
 405	__init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
 406}
 407
 408void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
 409{
 410	__init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
 411}
 412
 413/*
 414 * The head.S code sets up the kernel high mapping:
 415 *
 416 *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
 417 *
 418 * phys_base holds the negative offset to the kernel, which is added
 419 * to the compile time generated pmds. This results in invalid pmds up
 420 * to the point where we hit the physaddr 0 mapping.
 421 *
 422 * We limit the mappings to the region from _text to _brk_end.  _brk_end
 423 * is rounded up to the 2MB boundary. This catches the invalid pmds as
 424 * well, as they are located before _text:
 425 */
 426void __init cleanup_highmap(void)
 427{
 428	unsigned long vaddr = __START_KERNEL_map;
 429	unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
 430	unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
 431	pmd_t *pmd = level2_kernel_pgt;
 432
 433	/*
 434	 * Native path, max_pfn_mapped is not set yet.
 435	 * Xen has valid max_pfn_mapped set in
 436	 *	arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
 437	 */
 438	if (max_pfn_mapped)
 439		vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
 440
 441	for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
 442		if (pmd_none(*pmd))
 443			continue;
 444		if (vaddr < (unsigned long) _text || vaddr > end)
 445			set_pmd(pmd, __pmd(0));
 446	}
 447}
 448
 449/*
 450 * Create PTE level page table mapping for physical addresses.
 451 * It returns the last physical address mapped.
 452 */
 453static unsigned long __meminit
 454phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end,
 455	      pgprot_t prot, bool init)
 456{
 457	unsigned long pages = 0, paddr_next;
 458	unsigned long paddr_last = paddr_end;
 459	pte_t *pte;
 460	int i;
 461
 462	pte = pte_page + pte_index(paddr);
 463	i = pte_index(paddr);
 464
 465	for (; i < PTRS_PER_PTE; i++, paddr = paddr_next, pte++) {
 466		paddr_next = (paddr & PAGE_MASK) + PAGE_SIZE;
 467		if (paddr >= paddr_end) {
 468			if (!after_bootmem &&
 469			    !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
 470					     E820_TYPE_RAM) &&
 471			    !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
 472					     E820_TYPE_RESERVED_KERN))
 473				set_pte_init(pte, __pte(0), init);
 474			continue;
 475		}
 476
 477		/*
 478		 * We will re-use the existing mapping.
 479		 * Xen for example has some special requirements, like mapping
 480		 * pagetable pages as RO. So assume someone who pre-setup
 481		 * these mappings are more intelligent.
 482		 */
 483		if (!pte_none(*pte)) {
 484			if (!after_bootmem)
 485				pages++;
 486			continue;
 487		}
 488
 489		if (0)
 490			pr_info("   pte=%p addr=%lx pte=%016lx\n", pte, paddr,
 491				pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL).pte);
 492		pages++;
 493		set_pte_init(pte, pfn_pte(paddr >> PAGE_SHIFT, prot), init);
 494		paddr_last = (paddr & PAGE_MASK) + PAGE_SIZE;
 495	}
 496
 497	update_page_count(PG_LEVEL_4K, pages);
 498
 499	return paddr_last;
 500}
 501
 502/*
 503 * Create PMD level page table mapping for physical addresses. The virtual
 504 * and physical address have to be aligned at this level.
 505 * It returns the last physical address mapped.
 506 */
 507static unsigned long __meminit
 508phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end,
 509	      unsigned long page_size_mask, pgprot_t prot, bool init)
 510{
 511	unsigned long pages = 0, paddr_next;
 512	unsigned long paddr_last = paddr_end;
 513
 514	int i = pmd_index(paddr);
 515
 516	for (; i < PTRS_PER_PMD; i++, paddr = paddr_next) {
 517		pmd_t *pmd = pmd_page + pmd_index(paddr);
 518		pte_t *pte;
 519		pgprot_t new_prot = prot;
 520
 521		paddr_next = (paddr & PMD_MASK) + PMD_SIZE;
 522		if (paddr >= paddr_end) {
 523			if (!after_bootmem &&
 524			    !e820__mapped_any(paddr & PMD_MASK, paddr_next,
 525					     E820_TYPE_RAM) &&
 526			    !e820__mapped_any(paddr & PMD_MASK, paddr_next,
 527					     E820_TYPE_RESERVED_KERN))
 528				set_pmd_init(pmd, __pmd(0), init);
 529			continue;
 530		}
 531
 532		if (!pmd_none(*pmd)) {
 533			if (!pmd_large(*pmd)) {
 534				spin_lock(&init_mm.page_table_lock);
 535				pte = (pte_t *)pmd_page_vaddr(*pmd);
 536				paddr_last = phys_pte_init(pte, paddr,
 537							   paddr_end, prot,
 538							   init);
 539				spin_unlock(&init_mm.page_table_lock);
 540				continue;
 541			}
 542			/*
 543			 * If we are ok with PG_LEVEL_2M mapping, then we will
 544			 * use the existing mapping,
 545			 *
 546			 * Otherwise, we will split the large page mapping but
 547			 * use the same existing protection bits except for
 548			 * large page, so that we don't violate Intel's TLB
 549			 * Application note (317080) which says, while changing
 550			 * the page sizes, new and old translations should
 551			 * not differ with respect to page frame and
 552			 * attributes.
 553			 */
 554			if (page_size_mask & (1 << PG_LEVEL_2M)) {
 555				if (!after_bootmem)
 556					pages++;
 557				paddr_last = paddr_next;
 558				continue;
 559			}
 560			new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
 561		}
 562
 563		if (page_size_mask & (1<<PG_LEVEL_2M)) {
 564			pages++;
 565			spin_lock(&init_mm.page_table_lock);
 566			set_pmd_init(pmd,
 567				     pfn_pmd(paddr >> PAGE_SHIFT, prot_sethuge(prot)),
 568				     init);
 569			spin_unlock(&init_mm.page_table_lock);
 570			paddr_last = paddr_next;
 571			continue;
 572		}
 573
 574		pte = alloc_low_page();
 575		paddr_last = phys_pte_init(pte, paddr, paddr_end, new_prot, init);
 576
 577		spin_lock(&init_mm.page_table_lock);
 578		pmd_populate_kernel_init(&init_mm, pmd, pte, init);
 579		spin_unlock(&init_mm.page_table_lock);
 580	}
 581	update_page_count(PG_LEVEL_2M, pages);
 582	return paddr_last;
 583}
 584
 585/*
 586 * Create PUD level page table mapping for physical addresses. The virtual
 587 * and physical address do not have to be aligned at this level. KASLR can
 588 * randomize virtual addresses up to this level.
 589 * It returns the last physical address mapped.
 590 */
 591static unsigned long __meminit
 592phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end,
 593	      unsigned long page_size_mask, pgprot_t _prot, bool init)
 594{
 595	unsigned long pages = 0, paddr_next;
 596	unsigned long paddr_last = paddr_end;
 597	unsigned long vaddr = (unsigned long)__va(paddr);
 598	int i = pud_index(vaddr);
 599
 600	for (; i < PTRS_PER_PUD; i++, paddr = paddr_next) {
 601		pud_t *pud;
 602		pmd_t *pmd;
 603		pgprot_t prot = _prot;
 604
 605		vaddr = (unsigned long)__va(paddr);
 606		pud = pud_page + pud_index(vaddr);
 607		paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
 608
 609		if (paddr >= paddr_end) {
 610			if (!after_bootmem &&
 611			    !e820__mapped_any(paddr & PUD_MASK, paddr_next,
 612					     E820_TYPE_RAM) &&
 613			    !e820__mapped_any(paddr & PUD_MASK, paddr_next,
 614					     E820_TYPE_RESERVED_KERN))
 615				set_pud_init(pud, __pud(0), init);
 616			continue;
 617		}
 618
 619		if (!pud_none(*pud)) {
 620			if (!pud_large(*pud)) {
 621				pmd = pmd_offset(pud, 0);
 622				paddr_last = phys_pmd_init(pmd, paddr,
 623							   paddr_end,
 624							   page_size_mask,
 625							   prot, init);
 
 626				continue;
 627			}
 628			/*
 629			 * If we are ok with PG_LEVEL_1G mapping, then we will
 630			 * use the existing mapping.
 631			 *
 632			 * Otherwise, we will split the gbpage mapping but use
 633			 * the same existing protection  bits except for large
 634			 * page, so that we don't violate Intel's TLB
 635			 * Application note (317080) which says, while changing
 636			 * the page sizes, new and old translations should
 637			 * not differ with respect to page frame and
 638			 * attributes.
 639			 */
 640			if (page_size_mask & (1 << PG_LEVEL_1G)) {
 641				if (!after_bootmem)
 642					pages++;
 643				paddr_last = paddr_next;
 644				continue;
 645			}
 646			prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
 647		}
 648
 649		if (page_size_mask & (1<<PG_LEVEL_1G)) {
 650			pages++;
 651			spin_lock(&init_mm.page_table_lock);
 652			set_pud_init(pud,
 653				     pfn_pud(paddr >> PAGE_SHIFT, prot_sethuge(prot)),
 654				     init);
 655			spin_unlock(&init_mm.page_table_lock);
 656			paddr_last = paddr_next;
 657			continue;
 658		}
 659
 660		pmd = alloc_low_page();
 661		paddr_last = phys_pmd_init(pmd, paddr, paddr_end,
 662					   page_size_mask, prot, init);
 663
 664		spin_lock(&init_mm.page_table_lock);
 665		pud_populate_init(&init_mm, pud, pmd, init);
 666		spin_unlock(&init_mm.page_table_lock);
 667	}
 
 668
 669	update_page_count(PG_LEVEL_1G, pages);
 670
 671	return paddr_last;
 672}
 673
 674static unsigned long __meminit
 675phys_p4d_init(p4d_t *p4d_page, unsigned long paddr, unsigned long paddr_end,
 676	      unsigned long page_size_mask, pgprot_t prot, bool init)
 677{
 678	unsigned long vaddr, vaddr_end, vaddr_next, paddr_next, paddr_last;
 679
 680	paddr_last = paddr_end;
 681	vaddr = (unsigned long)__va(paddr);
 682	vaddr_end = (unsigned long)__va(paddr_end);
 683
 684	if (!pgtable_l5_enabled())
 685		return phys_pud_init((pud_t *) p4d_page, paddr, paddr_end,
 686				     page_size_mask, prot, init);
 687
 688	for (; vaddr < vaddr_end; vaddr = vaddr_next) {
 689		p4d_t *p4d = p4d_page + p4d_index(vaddr);
 690		pud_t *pud;
 691
 692		vaddr_next = (vaddr & P4D_MASK) + P4D_SIZE;
 693		paddr = __pa(vaddr);
 
 694
 695		if (paddr >= paddr_end) {
 696			paddr_next = __pa(vaddr_next);
 697			if (!after_bootmem &&
 698			    !e820__mapped_any(paddr & P4D_MASK, paddr_next,
 699					     E820_TYPE_RAM) &&
 700			    !e820__mapped_any(paddr & P4D_MASK, paddr_next,
 701					     E820_TYPE_RESERVED_KERN))
 702				set_p4d_init(p4d, __p4d(0), init);
 703			continue;
 704		}
 705
 706		if (!p4d_none(*p4d)) {
 707			pud = pud_offset(p4d, 0);
 708			paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
 709					page_size_mask, prot, init);
 
 
 710			continue;
 711		}
 712
 713		pud = alloc_low_page();
 714		paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
 715					   page_size_mask, prot, init);
 716
 717		spin_lock(&init_mm.page_table_lock);
 718		p4d_populate_init(&init_mm, p4d, pud, init);
 719		spin_unlock(&init_mm.page_table_lock);
 720	}
 
 721
 722	return paddr_last;
 723}
 724
 725static unsigned long __meminit
 726__kernel_physical_mapping_init(unsigned long paddr_start,
 727			       unsigned long paddr_end,
 728			       unsigned long page_size_mask,
 729			       pgprot_t prot, bool init)
 
 
 
 
 730{
 731	bool pgd_changed = false;
 732	unsigned long vaddr, vaddr_start, vaddr_end, vaddr_next, paddr_last;
 733
 734	paddr_last = paddr_end;
 735	vaddr = (unsigned long)__va(paddr_start);
 736	vaddr_end = (unsigned long)__va(paddr_end);
 737	vaddr_start = vaddr;
 738
 739	for (; vaddr < vaddr_end; vaddr = vaddr_next) {
 740		pgd_t *pgd = pgd_offset_k(vaddr);
 741		p4d_t *p4d;
 742
 743		vaddr_next = (vaddr & PGDIR_MASK) + PGDIR_SIZE;
 744
 745		if (pgd_val(*pgd)) {
 746			p4d = (p4d_t *)pgd_page_vaddr(*pgd);
 747			paddr_last = phys_p4d_init(p4d, __pa(vaddr),
 748						   __pa(vaddr_end),
 749						   page_size_mask,
 750						   prot, init);
 751			continue;
 752		}
 753
 754		p4d = alloc_low_page();
 755		paddr_last = phys_p4d_init(p4d, __pa(vaddr), __pa(vaddr_end),
 756					   page_size_mask, prot, init);
 757
 758		spin_lock(&init_mm.page_table_lock);
 759		if (pgtable_l5_enabled())
 760			pgd_populate_init(&init_mm, pgd, p4d, init);
 761		else
 762			p4d_populate_init(&init_mm, p4d_offset(pgd, vaddr),
 763					  (pud_t *) p4d, init);
 764
 765		spin_unlock(&init_mm.page_table_lock);
 766		pgd_changed = true;
 767	}
 768
 769	if (pgd_changed)
 770		sync_global_pgds(vaddr_start, vaddr_end - 1);
 771
 772	return paddr_last;
 773}
 774
 775
 776/*
 777 * Create page table mapping for the physical memory for specific physical
 778 * addresses. Note that it can only be used to populate non-present entries.
 779 * The virtual and physical addresses have to be aligned on PMD level
 780 * down. It returns the last physical address mapped.
 781 */
 782unsigned long __meminit
 783kernel_physical_mapping_init(unsigned long paddr_start,
 784			     unsigned long paddr_end,
 785			     unsigned long page_size_mask, pgprot_t prot)
 786{
 787	return __kernel_physical_mapping_init(paddr_start, paddr_end,
 788					      page_size_mask, prot, true);
 789}
 790
 791/*
 792 * This function is similar to kernel_physical_mapping_init() above with the
 793 * exception that it uses set_{pud,pmd}() instead of the set_{pud,pte}_safe()
 794 * when updating the mapping. The caller is responsible to flush the TLBs after
 795 * the function returns.
 796 */
 797unsigned long __meminit
 798kernel_physical_mapping_change(unsigned long paddr_start,
 799			       unsigned long paddr_end,
 800			       unsigned long page_size_mask)
 801{
 802	return __kernel_physical_mapping_init(paddr_start, paddr_end,
 803					      page_size_mask, PAGE_KERNEL,
 804					      false);
 805}
 806
 807#ifndef CONFIG_NUMA
 808void __init initmem_init(void)
 809{
 810	memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
 811}
 812#endif
 813
 814void __init paging_init(void)
 815{
 
 816	sparse_init();
 817
 818	/*
 819	 * clear the default setting with node 0
 820	 * note: don't use nodes_clear here, that is really clearing when
 821	 *	 numa support is not compiled in, and later node_set_state
 822	 *	 will not set it back.
 823	 */
 824	node_clear_state(0, N_MEMORY);
 825	node_clear_state(0, N_NORMAL_MEMORY);
 
 826
 827	zone_sizes_init();
 828}
 829
 830#ifdef CONFIG_SPARSEMEM_VMEMMAP
 831#define PAGE_UNUSED 0xFD
 832
 833/*
 834 * The unused vmemmap range, which was not yet memset(PAGE_UNUSED), ranges
 835 * from unused_pmd_start to next PMD_SIZE boundary.
 836 */
 837static unsigned long unused_pmd_start __meminitdata;
 838
 839static void __meminit vmemmap_flush_unused_pmd(void)
 840{
 841	if (!unused_pmd_start)
 842		return;
 843	/*
 844	 * Clears (unused_pmd_start, PMD_END]
 845	 */
 846	memset((void *)unused_pmd_start, PAGE_UNUSED,
 847	       ALIGN(unused_pmd_start, PMD_SIZE) - unused_pmd_start);
 848	unused_pmd_start = 0;
 849}
 850
 851#ifdef CONFIG_MEMORY_HOTPLUG
 852/* Returns true if the PMD is completely unused and thus it can be freed */
 853static bool __meminit vmemmap_pmd_is_unused(unsigned long addr, unsigned long end)
 854{
 855	unsigned long start = ALIGN_DOWN(addr, PMD_SIZE);
 856
 857	/*
 858	 * Flush the unused range cache to ensure that memchr_inv() will work
 859	 * for the whole range.
 860	 */
 861	vmemmap_flush_unused_pmd();
 862	memset((void *)addr, PAGE_UNUSED, end - addr);
 863
 864	return !memchr_inv((void *)start, PAGE_UNUSED, PMD_SIZE);
 865}
 866#endif
 867
 868static void __meminit __vmemmap_use_sub_pmd(unsigned long start)
 869{
 870	/*
 871	 * As we expect to add in the same granularity as we remove, it's
 872	 * sufficient to mark only some piece used to block the memmap page from
 873	 * getting removed when removing some other adjacent memmap (just in
 874	 * case the first memmap never gets initialized e.g., because the memory
 875	 * block never gets onlined).
 876	 */
 877	memset((void *)start, 0, sizeof(struct page));
 878}
 879
 880static void __meminit vmemmap_use_sub_pmd(unsigned long start, unsigned long end)
 881{
 882	/*
 883	 * We only optimize if the new used range directly follows the
 884	 * previously unused range (esp., when populating consecutive sections).
 885	 */
 886	if (unused_pmd_start == start) {
 887		if (likely(IS_ALIGNED(end, PMD_SIZE)))
 888			unused_pmd_start = 0;
 889		else
 890			unused_pmd_start = end;
 891		return;
 892	}
 893
 894	/*
 895	 * If the range does not contiguously follows previous one, make sure
 896	 * to mark the unused range of the previous one so it can be removed.
 897	 */
 898	vmemmap_flush_unused_pmd();
 899	__vmemmap_use_sub_pmd(start);
 900}
 901
 902
 903static void __meminit vmemmap_use_new_sub_pmd(unsigned long start, unsigned long end)
 904{
 905	const unsigned long page = ALIGN_DOWN(start, PMD_SIZE);
 906
 907	vmemmap_flush_unused_pmd();
 908
 909	/*
 910	 * Could be our memmap page is filled with PAGE_UNUSED already from a
 911	 * previous remove. Make sure to reset it.
 912	 */
 913	__vmemmap_use_sub_pmd(start);
 914
 915	/*
 916	 * Mark with PAGE_UNUSED the unused parts of the new memmap range
 917	 */
 918	if (!IS_ALIGNED(start, PMD_SIZE))
 919		memset((void *)page, PAGE_UNUSED, start - page);
 920
 921	/*
 922	 * We want to avoid memset(PAGE_UNUSED) when populating the vmemmap of
 923	 * consecutive sections. Remember for the last added PMD where the
 924	 * unused range begins.
 925	 */
 926	if (!IS_ALIGNED(end, PMD_SIZE))
 927		unused_pmd_start = end;
 928}
 929#endif
 930
 931/*
 932 * Memory hotplug specific functions
 933 */
 934#ifdef CONFIG_MEMORY_HOTPLUG
 935/*
 936 * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
 937 * updating.
 938 */
 939static void update_end_of_memory_vars(u64 start, u64 size)
 940{
 941	unsigned long end_pfn = PFN_UP(start + size);
 942
 943	if (end_pfn > max_pfn) {
 944		max_pfn = end_pfn;
 945		max_low_pfn = end_pfn;
 946		high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
 947	}
 948}
 949
 950int add_pages(int nid, unsigned long start_pfn, unsigned long nr_pages,
 951	      struct mhp_params *params)
 952{
 953	int ret;
 954
 955	ret = __add_pages(nid, start_pfn, nr_pages, params);
 956	WARN_ON_ONCE(ret);
 957
 958	/* update max_pfn, max_low_pfn and high_memory */
 959	update_end_of_memory_vars(start_pfn << PAGE_SHIFT,
 960				  nr_pages << PAGE_SHIFT);
 961
 962	return ret;
 963}
 964
 965int arch_add_memory(int nid, u64 start, u64 size,
 966		    struct mhp_params *params)
 967{
 968	unsigned long start_pfn = start >> PAGE_SHIFT;
 969	unsigned long nr_pages = size >> PAGE_SHIFT;
 970
 971	init_memory_mapping(start, start + size, params->pgprot);
 972
 973	return add_pages(nid, start_pfn, nr_pages, params);
 974}
 975
 
 
 976static void __meminit free_pagetable(struct page *page, int order)
 977{
 978	unsigned long magic;
 979	unsigned int nr_pages = 1 << order;
 980
 981	/* bootmem page has reserved flag */
 982	if (PageReserved(page)) {
 983		__ClearPageReserved(page);
 984
 985		magic = page->index;
 986		if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
 987			while (nr_pages--)
 988				put_page_bootmem(page++);
 989		} else
 990			while (nr_pages--)
 991				free_reserved_page(page++);
 992	} else
 993		free_pages((unsigned long)page_address(page), order);
 994}
 995
 996static void __meminit free_hugepage_table(struct page *page,
 997		struct vmem_altmap *altmap)
 998{
 999	if (altmap)
1000		vmem_altmap_free(altmap, PMD_SIZE / PAGE_SIZE);
1001	else
1002		free_pagetable(page, get_order(PMD_SIZE));
1003}
1004
1005static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
1006{
1007	pte_t *pte;
1008	int i;
1009
1010	for (i = 0; i < PTRS_PER_PTE; i++) {
1011		pte = pte_start + i;
1012		if (!pte_none(*pte))
1013			return;
1014	}
1015
1016	/* free a pte talbe */
1017	free_pagetable(pmd_page(*pmd), 0);
1018	spin_lock(&init_mm.page_table_lock);
1019	pmd_clear(pmd);
1020	spin_unlock(&init_mm.page_table_lock);
1021}
1022
1023static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
1024{
1025	pmd_t *pmd;
1026	int i;
1027
1028	for (i = 0; i < PTRS_PER_PMD; i++) {
1029		pmd = pmd_start + i;
1030		if (!pmd_none(*pmd))
1031			return;
1032	}
1033
1034	/* free a pmd talbe */
1035	free_pagetable(pud_page(*pud), 0);
1036	spin_lock(&init_mm.page_table_lock);
1037	pud_clear(pud);
1038	spin_unlock(&init_mm.page_table_lock);
1039}
1040
1041static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d)
1042{
1043	pud_t *pud;
1044	int i;
1045
1046	for (i = 0; i < PTRS_PER_PUD; i++) {
1047		pud = pud_start + i;
1048		if (!pud_none(*pud))
1049			return;
1050	}
1051
1052	/* free a pud talbe */
1053	free_pagetable(p4d_page(*p4d), 0);
1054	spin_lock(&init_mm.page_table_lock);
1055	p4d_clear(p4d);
1056	spin_unlock(&init_mm.page_table_lock);
1057}
1058
1059static void __meminit
1060remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
1061		 bool direct)
1062{
1063	unsigned long next, pages = 0;
1064	pte_t *pte;
 
1065	phys_addr_t phys_addr;
1066
1067	pte = pte_start + pte_index(addr);
1068	for (; addr < end; addr = next, pte++) {
1069		next = (addr + PAGE_SIZE) & PAGE_MASK;
1070		if (next > end)
1071			next = end;
1072
1073		if (!pte_present(*pte))
1074			continue;
1075
1076		/*
1077		 * We mapped [0,1G) memory as identity mapping when
1078		 * initializing, in arch/x86/kernel/head_64.S. These
1079		 * pagetables cannot be removed.
1080		 */
1081		phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
1082		if (phys_addr < (phys_addr_t)0x40000000)
1083			return;
1084
1085		if (!direct)
1086			free_pagetable(pte_page(*pte), 0);
 
 
 
 
 
1087
1088		spin_lock(&init_mm.page_table_lock);
1089		pte_clear(&init_mm, addr, pte);
1090		spin_unlock(&init_mm.page_table_lock);
1091
1092		/* For non-direct mapping, pages means nothing. */
1093		pages++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1094	}
1095
1096	/* Call free_pte_table() in remove_pmd_table(). */
1097	flush_tlb_all();
1098	if (direct)
1099		update_page_count(PG_LEVEL_4K, -pages);
1100}
1101
1102static void __meminit
1103remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
1104		 bool direct, struct vmem_altmap *altmap)
1105{
1106	unsigned long next, pages = 0;
1107	pte_t *pte_base;
1108	pmd_t *pmd;
 
1109
1110	pmd = pmd_start + pmd_index(addr);
1111	for (; addr < end; addr = next, pmd++) {
1112		next = pmd_addr_end(addr, end);
1113
1114		if (!pmd_present(*pmd))
1115			continue;
1116
1117		if (pmd_large(*pmd)) {
1118			if (IS_ALIGNED(addr, PMD_SIZE) &&
1119			    IS_ALIGNED(next, PMD_SIZE)) {
1120				if (!direct)
1121					free_hugepage_table(pmd_page(*pmd),
1122							    altmap);
1123
1124				spin_lock(&init_mm.page_table_lock);
1125				pmd_clear(pmd);
1126				spin_unlock(&init_mm.page_table_lock);
1127				pages++;
1128			}
1129#ifdef CONFIG_SPARSEMEM_VMEMMAP
1130			else if (vmemmap_pmd_is_unused(addr, next)) {
 
 
 
 
1131					free_hugepage_table(pmd_page(*pmd),
1132							    altmap);
 
1133					spin_lock(&init_mm.page_table_lock);
1134					pmd_clear(pmd);
1135					spin_unlock(&init_mm.page_table_lock);
 
1136			}
1137#endif
1138			continue;
1139		}
1140
1141		pte_base = (pte_t *)pmd_page_vaddr(*pmd);
1142		remove_pte_table(pte_base, addr, next, direct);
1143		free_pte_table(pte_base, pmd);
1144	}
1145
1146	/* Call free_pmd_table() in remove_pud_table(). */
1147	if (direct)
1148		update_page_count(PG_LEVEL_2M, -pages);
1149}
1150
1151static void __meminit
1152remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
1153		 struct vmem_altmap *altmap, bool direct)
1154{
1155	unsigned long next, pages = 0;
1156	pmd_t *pmd_base;
1157	pud_t *pud;
 
1158
1159	pud = pud_start + pud_index(addr);
1160	for (; addr < end; addr = next, pud++) {
1161		next = pud_addr_end(addr, end);
1162
1163		if (!pud_present(*pud))
1164			continue;
1165
1166		if (pud_large(*pud) &&
1167		    IS_ALIGNED(addr, PUD_SIZE) &&
1168		    IS_ALIGNED(next, PUD_SIZE)) {
1169			spin_lock(&init_mm.page_table_lock);
1170			pud_clear(pud);
1171			spin_unlock(&init_mm.page_table_lock);
1172			pages++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1173			continue;
1174		}
1175
1176		pmd_base = pmd_offset(pud, 0);
1177		remove_pmd_table(pmd_base, addr, next, direct, altmap);
1178		free_pmd_table(pmd_base, pud);
1179	}
1180
1181	if (direct)
1182		update_page_count(PG_LEVEL_1G, -pages);
1183}
1184
1185static void __meminit
1186remove_p4d_table(p4d_t *p4d_start, unsigned long addr, unsigned long end,
1187		 struct vmem_altmap *altmap, bool direct)
1188{
1189	unsigned long next, pages = 0;
1190	pud_t *pud_base;
1191	p4d_t *p4d;
1192
1193	p4d = p4d_start + p4d_index(addr);
1194	for (; addr < end; addr = next, p4d++) {
1195		next = p4d_addr_end(addr, end);
1196
1197		if (!p4d_present(*p4d))
1198			continue;
1199
1200		BUILD_BUG_ON(p4d_large(*p4d));
1201
1202		pud_base = pud_offset(p4d, 0);
1203		remove_pud_table(pud_base, addr, next, altmap, direct);
1204		/*
1205		 * For 4-level page tables we do not want to free PUDs, but in the
1206		 * 5-level case we should free them. This code will have to change
1207		 * to adapt for boot-time switching between 4 and 5 level page tables.
1208		 */
1209		if (pgtable_l5_enabled())
1210			free_pud_table(pud_base, p4d);
1211	}
1212
1213	if (direct)
1214		update_page_count(PG_LEVEL_512G, -pages);
1215}
1216
1217/* start and end are both virtual address. */
1218static void __meminit
1219remove_pagetable(unsigned long start, unsigned long end, bool direct,
1220		struct vmem_altmap *altmap)
1221{
1222	unsigned long next;
1223	unsigned long addr;
1224	pgd_t *pgd;
1225	p4d_t *p4d;
1226
1227	for (addr = start; addr < end; addr = next) {
1228		next = pgd_addr_end(addr, end);
1229
1230		pgd = pgd_offset_k(addr);
1231		if (!pgd_present(*pgd))
1232			continue;
1233
1234		p4d = p4d_offset(pgd, 0);
1235		remove_p4d_table(p4d, addr, next, altmap, direct);
1236	}
1237
1238	flush_tlb_all();
1239}
1240
1241void __ref vmemmap_free(unsigned long start, unsigned long end,
1242		struct vmem_altmap *altmap)
1243{
1244	VM_BUG_ON(!PAGE_ALIGNED(start));
1245	VM_BUG_ON(!PAGE_ALIGNED(end));
1246
1247	remove_pagetable(start, end, false, altmap);
1248}
1249
 
1250static void __meminit
1251kernel_physical_mapping_remove(unsigned long start, unsigned long end)
1252{
1253	start = (unsigned long)__va(start);
1254	end = (unsigned long)__va(end);
1255
1256	remove_pagetable(start, end, true, NULL);
1257}
1258
1259void __ref arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
1260{
1261	unsigned long start_pfn = start >> PAGE_SHIFT;
1262	unsigned long nr_pages = size >> PAGE_SHIFT;
 
 
 
1263
1264	__remove_pages(start_pfn, nr_pages, altmap);
 
 
 
 
 
1265	kernel_physical_mapping_remove(start, start + size);
 
 
1266}
 
1267#endif /* CONFIG_MEMORY_HOTPLUG */
1268
1269static struct kcore_list kcore_vsyscall;
1270
1271static void __init register_page_bootmem_info(void)
1272{
1273#if defined(CONFIG_NUMA) || defined(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP)
1274	int i;
1275
1276	for_each_online_node(i)
1277		register_page_bootmem_info_node(NODE_DATA(i));
1278#endif
1279}
1280
1281/*
1282 * Pre-allocates page-table pages for the vmalloc area in the kernel page-table.
1283 * Only the level which needs to be synchronized between all page-tables is
1284 * allocated because the synchronization can be expensive.
1285 */
1286static void __init preallocate_vmalloc_pages(void)
1287{
1288	unsigned long addr;
1289	const char *lvl;
1290
1291	for (addr = VMALLOC_START; addr <= VMEMORY_END; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
1292		pgd_t *pgd = pgd_offset_k(addr);
1293		p4d_t *p4d;
1294		pud_t *pud;
1295
1296		lvl = "p4d";
1297		p4d = p4d_alloc(&init_mm, pgd, addr);
1298		if (!p4d)
1299			goto failed;
1300
1301		if (pgtable_l5_enabled())
1302			continue;
1303
1304		/*
1305		 * The goal here is to allocate all possibly required
1306		 * hardware page tables pointed to by the top hardware
1307		 * level.
1308		 *
1309		 * On 4-level systems, the P4D layer is folded away and
1310		 * the above code does no preallocation.  Below, go down
1311		 * to the pud _software_ level to ensure the second
1312		 * hardware level is allocated on 4-level systems too.
1313		 */
1314		lvl = "pud";
1315		pud = pud_alloc(&init_mm, p4d, addr);
1316		if (!pud)
1317			goto failed;
1318	}
1319
1320	return;
1321
1322failed:
1323
1324	/*
1325	 * The pages have to be there now or they will be missing in
1326	 * process page-tables later.
1327	 */
1328	panic("Failed to pre-allocate %s pages for vmalloc area\n", lvl);
1329}
1330
1331void __init mem_init(void)
1332{
1333	pci_iommu_alloc();
1334
1335	/* clear_bss() already clear the empty_zero_page */
1336
1337	/* this will put all memory onto the freelists */
1338	memblock_free_all();
1339	after_bootmem = 1;
1340	x86_init.hyper.init_after_bootmem();
1341
1342	/*
1343	 * Must be done after boot memory is put on freelist, because here we
1344	 * might set fields in deferred struct pages that have not yet been
1345	 * initialized, and memblock_free_all() initializes all the reserved
1346	 * deferred pages for us.
1347	 */
1348	register_page_bootmem_info();
1349
1350	/* Register memory areas for /proc/kcore */
1351	if (get_gate_vma(&init_mm))
1352		kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR, PAGE_SIZE, KCORE_USER);
1353
1354	preallocate_vmalloc_pages();
1355}
1356
1357#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1358int __init deferred_page_init_max_threads(const struct cpumask *node_cpumask)
 
1359{
 
 
 
 
 
 
 
 
 
1360	/*
1361	 * More CPUs always led to greater speedups on tested systems, up to
1362	 * all the nodes' CPUs.  Use all since the system is otherwise idle
1363	 * now.
1364	 */
1365	return max_t(int, cpumask_weight(node_cpumask), 1);
1366}
1367#endif
1368
1369int kernel_set_to_readonly;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1370
1371void mark_rodata_ro(void)
1372{
1373	unsigned long start = PFN_ALIGN(_text);
1374	unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1375	unsigned long end = (unsigned long)__end_rodata_hpage_align;
1376	unsigned long text_end = PFN_ALIGN(_etext);
1377	unsigned long rodata_end = PFN_ALIGN(__end_rodata);
1378	unsigned long all_end;
1379
1380	printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1381	       (end - start) >> 10);
1382	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1383
1384	kernel_set_to_readonly = 1;
1385
1386	/*
1387	 * The rodata/data/bss/brk section (but not the kernel text!)
1388	 * should also be not-executable.
1389	 *
1390	 * We align all_end to PMD_SIZE because the existing mapping
1391	 * is a full PMD. If we would align _brk_end to PAGE_SIZE we
1392	 * split the PMD and the reminder between _brk_end and the end
1393	 * of the PMD will remain mapped executable.
1394	 *
1395	 * Any PMD which was setup after the one which covers _brk_end
1396	 * has been zapped already via cleanup_highmem().
1397	 */
1398	all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
1399	set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
1400
1401	set_ftrace_ops_ro();
1402
1403#ifdef CONFIG_CPA_DEBUG
1404	printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1405	set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1406
1407	printk(KERN_INFO "Testing CPA: again\n");
1408	set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1409#endif
1410
1411	free_kernel_image_pages("unused kernel image (text/rodata gap)",
1412				(void *)text_end, (void *)rodata_start);
1413	free_kernel_image_pages("unused kernel image (rodata/data gap)",
1414				(void *)rodata_end, (void *)_sdata);
 
 
1415
1416	debug_checkwx();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1417}
1418
1419/*
1420 * Block size is the minimum amount of memory which can be hotplugged or
1421 * hotremoved. It must be power of two and must be equal or larger than
1422 * MIN_MEMORY_BLOCK_SIZE.
1423 */
1424#define MAX_BLOCK_SIZE (2UL << 30)
1425
1426/* Amount of ram needed to start using large blocks */
1427#define MEM_SIZE_FOR_LARGE_BLOCK (64UL << 30)
1428
1429/* Adjustable memory block size */
1430static unsigned long set_memory_block_size;
1431int __init set_memory_block_size_order(unsigned int order)
1432{
1433	unsigned long size = 1UL << order;
1434
1435	if (size > MEM_SIZE_FOR_LARGE_BLOCK || size < MIN_MEMORY_BLOCK_SIZE)
1436		return -EINVAL;
1437
1438	set_memory_block_size = size;
1439	return 0;
1440}
1441
1442static unsigned long probe_memory_block_size(void)
1443{
1444	unsigned long boot_mem_end = max_pfn << PAGE_SHIFT;
1445	unsigned long bz;
1446
1447	/* If memory block size has been set, then use it */
1448	bz = set_memory_block_size;
1449	if (bz)
1450		goto done;
 
1451
1452	/* Use regular block if RAM is smaller than MEM_SIZE_FOR_LARGE_BLOCK */
1453	if (boot_mem_end < MEM_SIZE_FOR_LARGE_BLOCK) {
1454		bz = MIN_MEMORY_BLOCK_SIZE;
1455		goto done;
1456	}
1457
1458	/*
1459	 * Use max block size to minimize overhead on bare metal, where
1460	 * alignment for memory hotplug isn't a concern.
1461	 */
1462	if (!boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
1463		bz = MAX_BLOCK_SIZE;
1464		goto done;
1465	}
1466
1467	/* Find the largest allowed block size that aligns to memory end */
1468	for (bz = MAX_BLOCK_SIZE; bz > MIN_MEMORY_BLOCK_SIZE; bz >>= 1) {
1469		if (IS_ALIGNED(boot_mem_end, bz))
1470			break;
1471	}
1472done:
1473	pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20);
1474
1475	return bz;
1476}
1477
1478static unsigned long memory_block_size_probed;
1479unsigned long memory_block_size_bytes(void)
1480{
1481	if (!memory_block_size_probed)
1482		memory_block_size_probed = probe_memory_block_size();
1483
1484	return memory_block_size_probed;
1485}
1486
1487#ifdef CONFIG_SPARSEMEM_VMEMMAP
1488/*
1489 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1490 */
1491static long __meminitdata addr_start, addr_end;
1492static void __meminitdata *p_start, *p_end;
1493static int __meminitdata node_start;
1494
1495void __meminit vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
1496			       unsigned long addr, unsigned long next)
1497{
1498	pte_t entry;
 
 
 
 
 
1499
1500	entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1501			PAGE_KERNEL_LARGE);
1502	set_pmd(pmd, __pmd(pte_val(entry)));
1503
1504	/* check to see if we have contiguous blocks */
1505	if (p_end != p || node_start != node) {
1506		if (p_start)
1507			pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1508				addr_start, addr_end-1, p_start, p_end-1, node_start);
1509		addr_start = addr;
1510		node_start = node;
1511		p_start = p;
1512	}
1513
1514	addr_end = addr + PMD_SIZE;
1515	p_end = p + PMD_SIZE;
 
1516
1517	if (!IS_ALIGNED(addr, PMD_SIZE) ||
1518		!IS_ALIGNED(next, PMD_SIZE))
1519		vmemmap_use_new_sub_pmd(addr, next);
1520}
1521
1522int __meminit vmemmap_check_pmd(pmd_t *pmd, int node,
1523				unsigned long addr, unsigned long next)
1524{
1525	int large = pmd_large(*pmd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1526
1527	if (pmd_large(*pmd)) {
1528		vmemmap_verify((pte_t *)pmd, node, addr, next);
1529		vmemmap_use_sub_pmd(addr, next);
 
 
 
 
 
 
 
 
1530	}
1531
1532	return large;
1533}
1534
1535int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1536		struct vmem_altmap *altmap)
1537{
1538	int err;
1539
1540	VM_BUG_ON(!PAGE_ALIGNED(start));
1541	VM_BUG_ON(!PAGE_ALIGNED(end));
1542
1543	if (end - start < PAGES_PER_SECTION * sizeof(struct page))
1544		err = vmemmap_populate_basepages(start, end, node, NULL);
1545	else if (boot_cpu_has(X86_FEATURE_PSE))
1546		err = vmemmap_populate_hugepages(start, end, node, altmap);
1547	else if (altmap) {
1548		pr_err_once("%s: no cpu support for altmap allocations\n",
1549				__func__);
1550		err = -ENOMEM;
1551	} else
1552		err = vmemmap_populate_basepages(start, end, node, NULL);
1553	if (!err)
1554		sync_global_pgds(start, end - 1);
1555	return err;
1556}
1557
1558#ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
1559void register_page_bootmem_memmap(unsigned long section_nr,
1560				  struct page *start_page, unsigned long nr_pages)
1561{
1562	unsigned long addr = (unsigned long)start_page;
1563	unsigned long end = (unsigned long)(start_page + nr_pages);
1564	unsigned long next;
1565	pgd_t *pgd;
1566	p4d_t *p4d;
1567	pud_t *pud;
1568	pmd_t *pmd;
1569	unsigned int nr_pmd_pages;
1570	struct page *page;
1571
1572	for (; addr < end; addr = next) {
1573		pte_t *pte = NULL;
1574
1575		pgd = pgd_offset_k(addr);
1576		if (pgd_none(*pgd)) {
1577			next = (addr + PAGE_SIZE) & PAGE_MASK;
1578			continue;
1579		}
1580		get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1581
1582		p4d = p4d_offset(pgd, addr);
1583		if (p4d_none(*p4d)) {
1584			next = (addr + PAGE_SIZE) & PAGE_MASK;
1585			continue;
1586		}
1587		get_page_bootmem(section_nr, p4d_page(*p4d), MIX_SECTION_INFO);
1588
1589		pud = pud_offset(p4d, addr);
1590		if (pud_none(*pud)) {
1591			next = (addr + PAGE_SIZE) & PAGE_MASK;
1592			continue;
1593		}
1594		get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1595
1596		if (!boot_cpu_has(X86_FEATURE_PSE)) {
1597			next = (addr + PAGE_SIZE) & PAGE_MASK;
1598			pmd = pmd_offset(pud, addr);
1599			if (pmd_none(*pmd))
1600				continue;
1601			get_page_bootmem(section_nr, pmd_page(*pmd),
1602					 MIX_SECTION_INFO);
1603
1604			pte = pte_offset_kernel(pmd, addr);
1605			if (pte_none(*pte))
1606				continue;
1607			get_page_bootmem(section_nr, pte_page(*pte),
1608					 SECTION_INFO);
1609		} else {
1610			next = pmd_addr_end(addr, end);
1611
1612			pmd = pmd_offset(pud, addr);
1613			if (pmd_none(*pmd))
1614				continue;
1615
1616			nr_pmd_pages = 1 << get_order(PMD_SIZE);
1617			page = pmd_page(*pmd);
1618			while (nr_pmd_pages--)
1619				get_page_bootmem(section_nr, page++,
1620						 SECTION_INFO);
1621		}
1622	}
1623}
1624#endif
1625
1626void __meminit vmemmap_populate_print_last(void)
1627{
1628	if (p_start) {
1629		pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1630			addr_start, addr_end-1, p_start, p_end-1, node_start);
1631		p_start = NULL;
1632		p_end = NULL;
1633		node_start = 0;
1634	}
1635}
1636#endif
v4.17
 
   1/*
   2 *  linux/arch/x86_64/mm/init.c
   3 *
   4 *  Copyright (C) 1995  Linus Torvalds
   5 *  Copyright (C) 2000  Pavel Machek <pavel@ucw.cz>
   6 *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
   7 */
   8
   9#include <linux/signal.h>
  10#include <linux/sched.h>
  11#include <linux/kernel.h>
  12#include <linux/errno.h>
  13#include <linux/string.h>
  14#include <linux/types.h>
  15#include <linux/ptrace.h>
  16#include <linux/mman.h>
  17#include <linux/mm.h>
  18#include <linux/swap.h>
  19#include <linux/smp.h>
  20#include <linux/init.h>
  21#include <linux/initrd.h>
  22#include <linux/pagemap.h>
  23#include <linux/bootmem.h>
  24#include <linux/memblock.h>
  25#include <linux/proc_fs.h>
  26#include <linux/pci.h>
  27#include <linux/pfn.h>
  28#include <linux/poison.h>
  29#include <linux/dma-mapping.h>
  30#include <linux/memory.h>
  31#include <linux/memory_hotplug.h>
  32#include <linux/memremap.h>
  33#include <linux/nmi.h>
  34#include <linux/gfp.h>
  35#include <linux/kcore.h>
 
  36
  37#include <asm/processor.h>
  38#include <asm/bios_ebda.h>
  39#include <linux/uaccess.h>
  40#include <asm/pgtable.h>
  41#include <asm/pgalloc.h>
  42#include <asm/dma.h>
  43#include <asm/fixmap.h>
  44#include <asm/e820/api.h>
  45#include <asm/apic.h>
  46#include <asm/tlb.h>
  47#include <asm/mmu_context.h>
  48#include <asm/proto.h>
  49#include <asm/smp.h>
  50#include <asm/sections.h>
  51#include <asm/kdebug.h>
  52#include <asm/numa.h>
  53#include <asm/set_memory.h>
  54#include <asm/init.h>
  55#include <asm/uv/uv.h>
  56#include <asm/setup.h>
 
  57
  58#include "mm_internal.h"
  59
  60#include "ident_map.c"
  61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  62/*
  63 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
  64 * physical space so we can cache the place of the first one and move
  65 * around without checking the pgd every time.
  66 */
  67
  68/* Bits supported by the hardware: */
  69pteval_t __supported_pte_mask __read_mostly = ~0;
  70/* Bits allowed in normal kernel mappings: */
  71pteval_t __default_kernel_pte_mask __read_mostly = ~0;
  72EXPORT_SYMBOL_GPL(__supported_pte_mask);
  73/* Used in PAGE_KERNEL_* macros which are reasonably used out-of-tree: */
  74EXPORT_SYMBOL(__default_kernel_pte_mask);
  75
  76int force_personality32;
  77
  78/*
  79 * noexec32=on|off
  80 * Control non executable heap for 32bit processes.
  81 * To control the stack too use noexec=off
  82 *
  83 * on	PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
  84 * off	PROT_READ implies PROT_EXEC
  85 */
  86static int __init nonx32_setup(char *str)
  87{
  88	if (!strcmp(str, "on"))
  89		force_personality32 &= ~READ_IMPLIES_EXEC;
  90	else if (!strcmp(str, "off"))
  91		force_personality32 |= READ_IMPLIES_EXEC;
  92	return 1;
  93}
  94__setup("noexec32=", nonx32_setup);
  95
  96static void sync_global_pgds_l5(unsigned long start, unsigned long end)
  97{
  98	unsigned long addr;
  99
 100	for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
 101		const pgd_t *pgd_ref = pgd_offset_k(addr);
 102		struct page *page;
 103
 104		/* Check for overflow */
 105		if (addr < start)
 106			break;
 107
 108		if (pgd_none(*pgd_ref))
 109			continue;
 110
 111		spin_lock(&pgd_lock);
 112		list_for_each_entry(page, &pgd_list, lru) {
 113			pgd_t *pgd;
 114			spinlock_t *pgt_lock;
 115
 116			pgd = (pgd_t *)page_address(page) + pgd_index(addr);
 117			/* the pgt_lock only for Xen */
 118			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
 119			spin_lock(pgt_lock);
 120
 121			if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
 122				BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
 123
 124			if (pgd_none(*pgd))
 125				set_pgd(pgd, *pgd_ref);
 126
 127			spin_unlock(pgt_lock);
 128		}
 129		spin_unlock(&pgd_lock);
 130	}
 131}
 132
 133static void sync_global_pgds_l4(unsigned long start, unsigned long end)
 134{
 135	unsigned long addr;
 136
 137	for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
 138		pgd_t *pgd_ref = pgd_offset_k(addr);
 139		const p4d_t *p4d_ref;
 140		struct page *page;
 141
 142		/*
 143		 * With folded p4d, pgd_none() is always false, we need to
 144		 * handle synchonization on p4d level.
 145		 */
 146		MAYBE_BUILD_BUG_ON(pgd_none(*pgd_ref));
 147		p4d_ref = p4d_offset(pgd_ref, addr);
 148
 149		if (p4d_none(*p4d_ref))
 150			continue;
 151
 152		spin_lock(&pgd_lock);
 153		list_for_each_entry(page, &pgd_list, lru) {
 154			pgd_t *pgd;
 155			p4d_t *p4d;
 156			spinlock_t *pgt_lock;
 157
 158			pgd = (pgd_t *)page_address(page) + pgd_index(addr);
 159			p4d = p4d_offset(pgd, addr);
 160			/* the pgt_lock only for Xen */
 161			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
 162			spin_lock(pgt_lock);
 163
 164			if (!p4d_none(*p4d_ref) && !p4d_none(*p4d))
 165				BUG_ON(p4d_page_vaddr(*p4d)
 166				       != p4d_page_vaddr(*p4d_ref));
 167
 168			if (p4d_none(*p4d))
 169				set_p4d(p4d, *p4d_ref);
 170
 171			spin_unlock(pgt_lock);
 172		}
 173		spin_unlock(&pgd_lock);
 174	}
 175}
 176
 177/*
 178 * When memory was added make sure all the processes MM have
 179 * suitable PGD entries in the local PGD level page.
 180 */
 181void sync_global_pgds(unsigned long start, unsigned long end)
 182{
 183	if (pgtable_l5_enabled)
 184		sync_global_pgds_l5(start, end);
 185	else
 186		sync_global_pgds_l4(start, end);
 187}
 188
 189/*
 190 * NOTE: This function is marked __ref because it calls __init function
 191 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
 192 */
 193static __ref void *spp_getpage(void)
 194{
 195	void *ptr;
 196
 197	if (after_bootmem)
 198		ptr = (void *) get_zeroed_page(GFP_ATOMIC);
 199	else
 200		ptr = alloc_bootmem_pages(PAGE_SIZE);
 201
 202	if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
 203		panic("set_pte_phys: cannot allocate page data %s\n",
 204			after_bootmem ? "after bootmem" : "");
 205	}
 206
 207	pr_debug("spp_getpage %p\n", ptr);
 208
 209	return ptr;
 210}
 211
 212static p4d_t *fill_p4d(pgd_t *pgd, unsigned long vaddr)
 213{
 214	if (pgd_none(*pgd)) {
 215		p4d_t *p4d = (p4d_t *)spp_getpage();
 216		pgd_populate(&init_mm, pgd, p4d);
 217		if (p4d != p4d_offset(pgd, 0))
 218			printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
 219			       p4d, p4d_offset(pgd, 0));
 220	}
 221	return p4d_offset(pgd, vaddr);
 222}
 223
 224static pud_t *fill_pud(p4d_t *p4d, unsigned long vaddr)
 225{
 226	if (p4d_none(*p4d)) {
 227		pud_t *pud = (pud_t *)spp_getpage();
 228		p4d_populate(&init_mm, p4d, pud);
 229		if (pud != pud_offset(p4d, 0))
 230			printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
 231			       pud, pud_offset(p4d, 0));
 232	}
 233	return pud_offset(p4d, vaddr);
 234}
 235
 236static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
 237{
 238	if (pud_none(*pud)) {
 239		pmd_t *pmd = (pmd_t *) spp_getpage();
 240		pud_populate(&init_mm, pud, pmd);
 241		if (pmd != pmd_offset(pud, 0))
 242			printk(KERN_ERR "PAGETABLE BUG #02! %p <-> %p\n",
 243			       pmd, pmd_offset(pud, 0));
 244	}
 245	return pmd_offset(pud, vaddr);
 246}
 247
 248static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
 249{
 250	if (pmd_none(*pmd)) {
 251		pte_t *pte = (pte_t *) spp_getpage();
 252		pmd_populate_kernel(&init_mm, pmd, pte);
 253		if (pte != pte_offset_kernel(pmd, 0))
 254			printk(KERN_ERR "PAGETABLE BUG #03!\n");
 255	}
 256	return pte_offset_kernel(pmd, vaddr);
 257}
 258
 259static void __set_pte_vaddr(pud_t *pud, unsigned long vaddr, pte_t new_pte)
 260{
 261	pmd_t *pmd = fill_pmd(pud, vaddr);
 262	pte_t *pte = fill_pte(pmd, vaddr);
 263
 264	set_pte(pte, new_pte);
 265
 266	/*
 267	 * It's enough to flush this one mapping.
 268	 * (PGE mappings get flushed as well)
 269	 */
 270	__flush_tlb_one_kernel(vaddr);
 271}
 272
 273void set_pte_vaddr_p4d(p4d_t *p4d_page, unsigned long vaddr, pte_t new_pte)
 274{
 275	p4d_t *p4d = p4d_page + p4d_index(vaddr);
 276	pud_t *pud = fill_pud(p4d, vaddr);
 277
 278	__set_pte_vaddr(pud, vaddr, new_pte);
 279}
 280
 281void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
 282{
 283	pud_t *pud = pud_page + pud_index(vaddr);
 284
 285	__set_pte_vaddr(pud, vaddr, new_pte);
 286}
 287
 288void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
 289{
 290	pgd_t *pgd;
 291	p4d_t *p4d_page;
 292
 293	pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
 294
 295	pgd = pgd_offset_k(vaddr);
 296	if (pgd_none(*pgd)) {
 297		printk(KERN_ERR
 298			"PGD FIXMAP MISSING, it should be setup in head.S!\n");
 299		return;
 300	}
 301
 302	p4d_page = p4d_offset(pgd, 0);
 303	set_pte_vaddr_p4d(p4d_page, vaddr, pteval);
 304}
 305
 306pmd_t * __init populate_extra_pmd(unsigned long vaddr)
 307{
 308	pgd_t *pgd;
 309	p4d_t *p4d;
 310	pud_t *pud;
 311
 312	pgd = pgd_offset_k(vaddr);
 313	p4d = fill_p4d(pgd, vaddr);
 314	pud = fill_pud(p4d, vaddr);
 315	return fill_pmd(pud, vaddr);
 316}
 317
 318pte_t * __init populate_extra_pte(unsigned long vaddr)
 319{
 320	pmd_t *pmd;
 321
 322	pmd = populate_extra_pmd(vaddr);
 323	return fill_pte(pmd, vaddr);
 324}
 325
 326/*
 327 * Create large page table mappings for a range of physical addresses.
 328 */
 329static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
 330					enum page_cache_mode cache)
 331{
 332	pgd_t *pgd;
 333	p4d_t *p4d;
 334	pud_t *pud;
 335	pmd_t *pmd;
 336	pgprot_t prot;
 337
 338	pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
 339		pgprot_val(pgprot_4k_2_large(cachemode2pgprot(cache)));
 340	BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
 341	for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
 342		pgd = pgd_offset_k((unsigned long)__va(phys));
 343		if (pgd_none(*pgd)) {
 344			p4d = (p4d_t *) spp_getpage();
 345			set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE |
 346						_PAGE_USER));
 347		}
 348		p4d = p4d_offset(pgd, (unsigned long)__va(phys));
 349		if (p4d_none(*p4d)) {
 350			pud = (pud_t *) spp_getpage();
 351			set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE |
 352						_PAGE_USER));
 353		}
 354		pud = pud_offset(p4d, (unsigned long)__va(phys));
 355		if (pud_none(*pud)) {
 356			pmd = (pmd_t *) spp_getpage();
 357			set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
 358						_PAGE_USER));
 359		}
 360		pmd = pmd_offset(pud, phys);
 361		BUG_ON(!pmd_none(*pmd));
 362		set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
 363	}
 364}
 365
 366void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
 367{
 368	__init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
 369}
 370
 371void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
 372{
 373	__init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
 374}
 375
 376/*
 377 * The head.S code sets up the kernel high mapping:
 378 *
 379 *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
 380 *
 381 * phys_base holds the negative offset to the kernel, which is added
 382 * to the compile time generated pmds. This results in invalid pmds up
 383 * to the point where we hit the physaddr 0 mapping.
 384 *
 385 * We limit the mappings to the region from _text to _brk_end.  _brk_end
 386 * is rounded up to the 2MB boundary. This catches the invalid pmds as
 387 * well, as they are located before _text:
 388 */
 389void __init cleanup_highmap(void)
 390{
 391	unsigned long vaddr = __START_KERNEL_map;
 392	unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
 393	unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
 394	pmd_t *pmd = level2_kernel_pgt;
 395
 396	/*
 397	 * Native path, max_pfn_mapped is not set yet.
 398	 * Xen has valid max_pfn_mapped set in
 399	 *	arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
 400	 */
 401	if (max_pfn_mapped)
 402		vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
 403
 404	for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
 405		if (pmd_none(*pmd))
 406			continue;
 407		if (vaddr < (unsigned long) _text || vaddr > end)
 408			set_pmd(pmd, __pmd(0));
 409	}
 410}
 411
 412/*
 413 * Create PTE level page table mapping for physical addresses.
 414 * It returns the last physical address mapped.
 415 */
 416static unsigned long __meminit
 417phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end,
 418	      pgprot_t prot)
 419{
 420	unsigned long pages = 0, paddr_next;
 421	unsigned long paddr_last = paddr_end;
 422	pte_t *pte;
 423	int i;
 424
 425	pte = pte_page + pte_index(paddr);
 426	i = pte_index(paddr);
 427
 428	for (; i < PTRS_PER_PTE; i++, paddr = paddr_next, pte++) {
 429		paddr_next = (paddr & PAGE_MASK) + PAGE_SIZE;
 430		if (paddr >= paddr_end) {
 431			if (!after_bootmem &&
 432			    !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
 433					     E820_TYPE_RAM) &&
 434			    !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
 435					     E820_TYPE_RESERVED_KERN))
 436				set_pte(pte, __pte(0));
 437			continue;
 438		}
 439
 440		/*
 441		 * We will re-use the existing mapping.
 442		 * Xen for example has some special requirements, like mapping
 443		 * pagetable pages as RO. So assume someone who pre-setup
 444		 * these mappings are more intelligent.
 445		 */
 446		if (!pte_none(*pte)) {
 447			if (!after_bootmem)
 448				pages++;
 449			continue;
 450		}
 451
 452		if (0)
 453			pr_info("   pte=%p addr=%lx pte=%016lx\n", pte, paddr,
 454				pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL).pte);
 455		pages++;
 456		set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
 457		paddr_last = (paddr & PAGE_MASK) + PAGE_SIZE;
 458	}
 459
 460	update_page_count(PG_LEVEL_4K, pages);
 461
 462	return paddr_last;
 463}
 464
 465/*
 466 * Create PMD level page table mapping for physical addresses. The virtual
 467 * and physical address have to be aligned at this level.
 468 * It returns the last physical address mapped.
 469 */
 470static unsigned long __meminit
 471phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end,
 472	      unsigned long page_size_mask, pgprot_t prot)
 473{
 474	unsigned long pages = 0, paddr_next;
 475	unsigned long paddr_last = paddr_end;
 476
 477	int i = pmd_index(paddr);
 478
 479	for (; i < PTRS_PER_PMD; i++, paddr = paddr_next) {
 480		pmd_t *pmd = pmd_page + pmd_index(paddr);
 481		pte_t *pte;
 482		pgprot_t new_prot = prot;
 483
 484		paddr_next = (paddr & PMD_MASK) + PMD_SIZE;
 485		if (paddr >= paddr_end) {
 486			if (!after_bootmem &&
 487			    !e820__mapped_any(paddr & PMD_MASK, paddr_next,
 488					     E820_TYPE_RAM) &&
 489			    !e820__mapped_any(paddr & PMD_MASK, paddr_next,
 490					     E820_TYPE_RESERVED_KERN))
 491				set_pmd(pmd, __pmd(0));
 492			continue;
 493		}
 494
 495		if (!pmd_none(*pmd)) {
 496			if (!pmd_large(*pmd)) {
 497				spin_lock(&init_mm.page_table_lock);
 498				pte = (pte_t *)pmd_page_vaddr(*pmd);
 499				paddr_last = phys_pte_init(pte, paddr,
 500							   paddr_end, prot);
 
 501				spin_unlock(&init_mm.page_table_lock);
 502				continue;
 503			}
 504			/*
 505			 * If we are ok with PG_LEVEL_2M mapping, then we will
 506			 * use the existing mapping,
 507			 *
 508			 * Otherwise, we will split the large page mapping but
 509			 * use the same existing protection bits except for
 510			 * large page, so that we don't violate Intel's TLB
 511			 * Application note (317080) which says, while changing
 512			 * the page sizes, new and old translations should
 513			 * not differ with respect to page frame and
 514			 * attributes.
 515			 */
 516			if (page_size_mask & (1 << PG_LEVEL_2M)) {
 517				if (!after_bootmem)
 518					pages++;
 519				paddr_last = paddr_next;
 520				continue;
 521			}
 522			new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
 523		}
 524
 525		if (page_size_mask & (1<<PG_LEVEL_2M)) {
 526			pages++;
 527			spin_lock(&init_mm.page_table_lock);
 528			set_pte((pte_t *)pmd,
 529				pfn_pte((paddr & PMD_MASK) >> PAGE_SHIFT,
 530					__pgprot(pgprot_val(prot) | _PAGE_PSE)));
 531			spin_unlock(&init_mm.page_table_lock);
 532			paddr_last = paddr_next;
 533			continue;
 534		}
 535
 536		pte = alloc_low_page();
 537		paddr_last = phys_pte_init(pte, paddr, paddr_end, new_prot);
 538
 539		spin_lock(&init_mm.page_table_lock);
 540		pmd_populate_kernel(&init_mm, pmd, pte);
 541		spin_unlock(&init_mm.page_table_lock);
 542	}
 543	update_page_count(PG_LEVEL_2M, pages);
 544	return paddr_last;
 545}
 546
 547/*
 548 * Create PUD level page table mapping for physical addresses. The virtual
 549 * and physical address do not have to be aligned at this level. KASLR can
 550 * randomize virtual addresses up to this level.
 551 * It returns the last physical address mapped.
 552 */
 553static unsigned long __meminit
 554phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end,
 555	      unsigned long page_size_mask)
 556{
 557	unsigned long pages = 0, paddr_next;
 558	unsigned long paddr_last = paddr_end;
 559	unsigned long vaddr = (unsigned long)__va(paddr);
 560	int i = pud_index(vaddr);
 561
 562	for (; i < PTRS_PER_PUD; i++, paddr = paddr_next) {
 563		pud_t *pud;
 564		pmd_t *pmd;
 565		pgprot_t prot = PAGE_KERNEL;
 566
 567		vaddr = (unsigned long)__va(paddr);
 568		pud = pud_page + pud_index(vaddr);
 569		paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
 570
 571		if (paddr >= paddr_end) {
 572			if (!after_bootmem &&
 573			    !e820__mapped_any(paddr & PUD_MASK, paddr_next,
 574					     E820_TYPE_RAM) &&
 575			    !e820__mapped_any(paddr & PUD_MASK, paddr_next,
 576					     E820_TYPE_RESERVED_KERN))
 577				set_pud(pud, __pud(0));
 578			continue;
 579		}
 580
 581		if (!pud_none(*pud)) {
 582			if (!pud_large(*pud)) {
 583				pmd = pmd_offset(pud, 0);
 584				paddr_last = phys_pmd_init(pmd, paddr,
 585							   paddr_end,
 586							   page_size_mask,
 587							   prot);
 588				__flush_tlb_all();
 589				continue;
 590			}
 591			/*
 592			 * If we are ok with PG_LEVEL_1G mapping, then we will
 593			 * use the existing mapping.
 594			 *
 595			 * Otherwise, we will split the gbpage mapping but use
 596			 * the same existing protection  bits except for large
 597			 * page, so that we don't violate Intel's TLB
 598			 * Application note (317080) which says, while changing
 599			 * the page sizes, new and old translations should
 600			 * not differ with respect to page frame and
 601			 * attributes.
 602			 */
 603			if (page_size_mask & (1 << PG_LEVEL_1G)) {
 604				if (!after_bootmem)
 605					pages++;
 606				paddr_last = paddr_next;
 607				continue;
 608			}
 609			prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
 610		}
 611
 612		if (page_size_mask & (1<<PG_LEVEL_1G)) {
 613			pages++;
 614			spin_lock(&init_mm.page_table_lock);
 615			set_pte((pte_t *)pud,
 616				pfn_pte((paddr & PUD_MASK) >> PAGE_SHIFT,
 617					PAGE_KERNEL_LARGE));
 618			spin_unlock(&init_mm.page_table_lock);
 619			paddr_last = paddr_next;
 620			continue;
 621		}
 622
 623		pmd = alloc_low_page();
 624		paddr_last = phys_pmd_init(pmd, paddr, paddr_end,
 625					   page_size_mask, prot);
 626
 627		spin_lock(&init_mm.page_table_lock);
 628		pud_populate(&init_mm, pud, pmd);
 629		spin_unlock(&init_mm.page_table_lock);
 630	}
 631	__flush_tlb_all();
 632
 633	update_page_count(PG_LEVEL_1G, pages);
 634
 635	return paddr_last;
 636}
 637
 638static unsigned long __meminit
 639phys_p4d_init(p4d_t *p4d_page, unsigned long paddr, unsigned long paddr_end,
 640	      unsigned long page_size_mask)
 641{
 642	unsigned long paddr_next, paddr_last = paddr_end;
 643	unsigned long vaddr = (unsigned long)__va(paddr);
 644	int i = p4d_index(vaddr);
 
 
 645
 646	if (!pgtable_l5_enabled)
 647		return phys_pud_init((pud_t *) p4d_page, paddr, paddr_end, page_size_mask);
 
 648
 649	for (; i < PTRS_PER_P4D; i++, paddr = paddr_next) {
 650		p4d_t *p4d;
 651		pud_t *pud;
 652
 653		vaddr = (unsigned long)__va(paddr);
 654		p4d = p4d_page + p4d_index(vaddr);
 655		paddr_next = (paddr & P4D_MASK) + P4D_SIZE;
 656
 657		if (paddr >= paddr_end) {
 
 658			if (!after_bootmem &&
 659			    !e820__mapped_any(paddr & P4D_MASK, paddr_next,
 660					     E820_TYPE_RAM) &&
 661			    !e820__mapped_any(paddr & P4D_MASK, paddr_next,
 662					     E820_TYPE_RESERVED_KERN))
 663				set_p4d(p4d, __p4d(0));
 664			continue;
 665		}
 666
 667		if (!p4d_none(*p4d)) {
 668			pud = pud_offset(p4d, 0);
 669			paddr_last = phys_pud_init(pud, paddr,
 670					paddr_end,
 671					page_size_mask);
 672			__flush_tlb_all();
 673			continue;
 674		}
 675
 676		pud = alloc_low_page();
 677		paddr_last = phys_pud_init(pud, paddr, paddr_end,
 678					   page_size_mask);
 679
 680		spin_lock(&init_mm.page_table_lock);
 681		p4d_populate(&init_mm, p4d, pud);
 682		spin_unlock(&init_mm.page_table_lock);
 683	}
 684	__flush_tlb_all();
 685
 686	return paddr_last;
 687}
 688
 689/*
 690 * Create page table mapping for the physical memory for specific physical
 691 * addresses. The virtual and physical addresses have to be aligned on PMD level
 692 * down. It returns the last physical address mapped.
 693 */
 694unsigned long __meminit
 695kernel_physical_mapping_init(unsigned long paddr_start,
 696			     unsigned long paddr_end,
 697			     unsigned long page_size_mask)
 698{
 699	bool pgd_changed = false;
 700	unsigned long vaddr, vaddr_start, vaddr_end, vaddr_next, paddr_last;
 701
 702	paddr_last = paddr_end;
 703	vaddr = (unsigned long)__va(paddr_start);
 704	vaddr_end = (unsigned long)__va(paddr_end);
 705	vaddr_start = vaddr;
 706
 707	for (; vaddr < vaddr_end; vaddr = vaddr_next) {
 708		pgd_t *pgd = pgd_offset_k(vaddr);
 709		p4d_t *p4d;
 710
 711		vaddr_next = (vaddr & PGDIR_MASK) + PGDIR_SIZE;
 712
 713		if (pgd_val(*pgd)) {
 714			p4d = (p4d_t *)pgd_page_vaddr(*pgd);
 715			paddr_last = phys_p4d_init(p4d, __pa(vaddr),
 716						   __pa(vaddr_end),
 717						   page_size_mask);
 
 718			continue;
 719		}
 720
 721		p4d = alloc_low_page();
 722		paddr_last = phys_p4d_init(p4d, __pa(vaddr), __pa(vaddr_end),
 723					   page_size_mask);
 724
 725		spin_lock(&init_mm.page_table_lock);
 726		if (pgtable_l5_enabled)
 727			pgd_populate(&init_mm, pgd, p4d);
 728		else
 729			p4d_populate(&init_mm, p4d_offset(pgd, vaddr), (pud_t *) p4d);
 
 
 730		spin_unlock(&init_mm.page_table_lock);
 731		pgd_changed = true;
 732	}
 733
 734	if (pgd_changed)
 735		sync_global_pgds(vaddr_start, vaddr_end - 1);
 736
 737	__flush_tlb_all();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 738
 739	return paddr_last;
 
 
 
 
 
 
 
 
 
 
 
 
 
 740}
 741
 742#ifndef CONFIG_NUMA
 743void __init initmem_init(void)
 744{
 745	memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
 746}
 747#endif
 748
 749void __init paging_init(void)
 750{
 751	sparse_memory_present_with_active_regions(MAX_NUMNODES);
 752	sparse_init();
 753
 754	/*
 755	 * clear the default setting with node 0
 756	 * note: don't use nodes_clear here, that is really clearing when
 757	 *	 numa support is not compiled in, and later node_set_state
 758	 *	 will not set it back.
 759	 */
 760	node_clear_state(0, N_MEMORY);
 761	if (N_MEMORY != N_NORMAL_MEMORY)
 762		node_clear_state(0, N_NORMAL_MEMORY);
 763
 764	zone_sizes_init();
 765}
 766
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 767/*
 768 * Memory hotplug specific functions
 769 */
 770#ifdef CONFIG_MEMORY_HOTPLUG
 771/*
 772 * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
 773 * updating.
 774 */
 775static void update_end_of_memory_vars(u64 start, u64 size)
 776{
 777	unsigned long end_pfn = PFN_UP(start + size);
 778
 779	if (end_pfn > max_pfn) {
 780		max_pfn = end_pfn;
 781		max_low_pfn = end_pfn;
 782		high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
 783	}
 784}
 785
 786int add_pages(int nid, unsigned long start_pfn, unsigned long nr_pages,
 787		struct vmem_altmap *altmap, bool want_memblock)
 788{
 789	int ret;
 790
 791	ret = __add_pages(nid, start_pfn, nr_pages, altmap, want_memblock);
 792	WARN_ON_ONCE(ret);
 793
 794	/* update max_pfn, max_low_pfn and high_memory */
 795	update_end_of_memory_vars(start_pfn << PAGE_SHIFT,
 796				  nr_pages << PAGE_SHIFT);
 797
 798	return ret;
 799}
 800
 801int arch_add_memory(int nid, u64 start, u64 size, struct vmem_altmap *altmap,
 802		bool want_memblock)
 803{
 804	unsigned long start_pfn = start >> PAGE_SHIFT;
 805	unsigned long nr_pages = size >> PAGE_SHIFT;
 806
 807	init_memory_mapping(start, start + size);
 808
 809	return add_pages(nid, start_pfn, nr_pages, altmap, want_memblock);
 810}
 811
 812#define PAGE_INUSE 0xFD
 813
 814static void __meminit free_pagetable(struct page *page, int order)
 815{
 816	unsigned long magic;
 817	unsigned int nr_pages = 1 << order;
 818
 819	/* bootmem page has reserved flag */
 820	if (PageReserved(page)) {
 821		__ClearPageReserved(page);
 822
 823		magic = (unsigned long)page->freelist;
 824		if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
 825			while (nr_pages--)
 826				put_page_bootmem(page++);
 827		} else
 828			while (nr_pages--)
 829				free_reserved_page(page++);
 830	} else
 831		free_pages((unsigned long)page_address(page), order);
 832}
 833
 834static void __meminit free_hugepage_table(struct page *page,
 835		struct vmem_altmap *altmap)
 836{
 837	if (altmap)
 838		vmem_altmap_free(altmap, PMD_SIZE / PAGE_SIZE);
 839	else
 840		free_pagetable(page, get_order(PMD_SIZE));
 841}
 842
 843static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
 844{
 845	pte_t *pte;
 846	int i;
 847
 848	for (i = 0; i < PTRS_PER_PTE; i++) {
 849		pte = pte_start + i;
 850		if (!pte_none(*pte))
 851			return;
 852	}
 853
 854	/* free a pte talbe */
 855	free_pagetable(pmd_page(*pmd), 0);
 856	spin_lock(&init_mm.page_table_lock);
 857	pmd_clear(pmd);
 858	spin_unlock(&init_mm.page_table_lock);
 859}
 860
 861static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
 862{
 863	pmd_t *pmd;
 864	int i;
 865
 866	for (i = 0; i < PTRS_PER_PMD; i++) {
 867		pmd = pmd_start + i;
 868		if (!pmd_none(*pmd))
 869			return;
 870	}
 871
 872	/* free a pmd talbe */
 873	free_pagetable(pud_page(*pud), 0);
 874	spin_lock(&init_mm.page_table_lock);
 875	pud_clear(pud);
 876	spin_unlock(&init_mm.page_table_lock);
 877}
 878
 879static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d)
 880{
 881	pud_t *pud;
 882	int i;
 883
 884	for (i = 0; i < PTRS_PER_PUD; i++) {
 885		pud = pud_start + i;
 886		if (!pud_none(*pud))
 887			return;
 888	}
 889
 890	/* free a pud talbe */
 891	free_pagetable(p4d_page(*p4d), 0);
 892	spin_lock(&init_mm.page_table_lock);
 893	p4d_clear(p4d);
 894	spin_unlock(&init_mm.page_table_lock);
 895}
 896
 897static void __meminit
 898remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
 899		 bool direct)
 900{
 901	unsigned long next, pages = 0;
 902	pte_t *pte;
 903	void *page_addr;
 904	phys_addr_t phys_addr;
 905
 906	pte = pte_start + pte_index(addr);
 907	for (; addr < end; addr = next, pte++) {
 908		next = (addr + PAGE_SIZE) & PAGE_MASK;
 909		if (next > end)
 910			next = end;
 911
 912		if (!pte_present(*pte))
 913			continue;
 914
 915		/*
 916		 * We mapped [0,1G) memory as identity mapping when
 917		 * initializing, in arch/x86/kernel/head_64.S. These
 918		 * pagetables cannot be removed.
 919		 */
 920		phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
 921		if (phys_addr < (phys_addr_t)0x40000000)
 922			return;
 923
 924		if (PAGE_ALIGNED(addr) && PAGE_ALIGNED(next)) {
 925			/*
 926			 * Do not free direct mapping pages since they were
 927			 * freed when offlining, or simplely not in use.
 928			 */
 929			if (!direct)
 930				free_pagetable(pte_page(*pte), 0);
 931
 932			spin_lock(&init_mm.page_table_lock);
 933			pte_clear(&init_mm, addr, pte);
 934			spin_unlock(&init_mm.page_table_lock);
 935
 936			/* For non-direct mapping, pages means nothing. */
 937			pages++;
 938		} else {
 939			/*
 940			 * If we are here, we are freeing vmemmap pages since
 941			 * direct mapped memory ranges to be freed are aligned.
 942			 *
 943			 * If we are not removing the whole page, it means
 944			 * other page structs in this page are being used and
 945			 * we canot remove them. So fill the unused page_structs
 946			 * with 0xFD, and remove the page when it is wholly
 947			 * filled with 0xFD.
 948			 */
 949			memset((void *)addr, PAGE_INUSE, next - addr);
 950
 951			page_addr = page_address(pte_page(*pte));
 952			if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) {
 953				free_pagetable(pte_page(*pte), 0);
 954
 955				spin_lock(&init_mm.page_table_lock);
 956				pte_clear(&init_mm, addr, pte);
 957				spin_unlock(&init_mm.page_table_lock);
 958			}
 959		}
 960	}
 961
 962	/* Call free_pte_table() in remove_pmd_table(). */
 963	flush_tlb_all();
 964	if (direct)
 965		update_page_count(PG_LEVEL_4K, -pages);
 966}
 967
 968static void __meminit
 969remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
 970		 bool direct, struct vmem_altmap *altmap)
 971{
 972	unsigned long next, pages = 0;
 973	pte_t *pte_base;
 974	pmd_t *pmd;
 975	void *page_addr;
 976
 977	pmd = pmd_start + pmd_index(addr);
 978	for (; addr < end; addr = next, pmd++) {
 979		next = pmd_addr_end(addr, end);
 980
 981		if (!pmd_present(*pmd))
 982			continue;
 983
 984		if (pmd_large(*pmd)) {
 985			if (IS_ALIGNED(addr, PMD_SIZE) &&
 986			    IS_ALIGNED(next, PMD_SIZE)) {
 987				if (!direct)
 988					free_hugepage_table(pmd_page(*pmd),
 989							    altmap);
 990
 991				spin_lock(&init_mm.page_table_lock);
 992				pmd_clear(pmd);
 993				spin_unlock(&init_mm.page_table_lock);
 994				pages++;
 995			} else {
 996				/* If here, we are freeing vmemmap pages. */
 997				memset((void *)addr, PAGE_INUSE, next - addr);
 998
 999				page_addr = page_address(pmd_page(*pmd));
1000				if (!memchr_inv(page_addr, PAGE_INUSE,
1001						PMD_SIZE)) {
1002					free_hugepage_table(pmd_page(*pmd),
1003							    altmap);
1004
1005					spin_lock(&init_mm.page_table_lock);
1006					pmd_clear(pmd);
1007					spin_unlock(&init_mm.page_table_lock);
1008				}
1009			}
1010
1011			continue;
1012		}
1013
1014		pte_base = (pte_t *)pmd_page_vaddr(*pmd);
1015		remove_pte_table(pte_base, addr, next, direct);
1016		free_pte_table(pte_base, pmd);
1017	}
1018
1019	/* Call free_pmd_table() in remove_pud_table(). */
1020	if (direct)
1021		update_page_count(PG_LEVEL_2M, -pages);
1022}
1023
1024static void __meminit
1025remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
1026		 struct vmem_altmap *altmap, bool direct)
1027{
1028	unsigned long next, pages = 0;
1029	pmd_t *pmd_base;
1030	pud_t *pud;
1031	void *page_addr;
1032
1033	pud = pud_start + pud_index(addr);
1034	for (; addr < end; addr = next, pud++) {
1035		next = pud_addr_end(addr, end);
1036
1037		if (!pud_present(*pud))
1038			continue;
1039
1040		if (pud_large(*pud)) {
1041			if (IS_ALIGNED(addr, PUD_SIZE) &&
1042			    IS_ALIGNED(next, PUD_SIZE)) {
1043				if (!direct)
1044					free_pagetable(pud_page(*pud),
1045						       get_order(PUD_SIZE));
1046
1047				spin_lock(&init_mm.page_table_lock);
1048				pud_clear(pud);
1049				spin_unlock(&init_mm.page_table_lock);
1050				pages++;
1051			} else {
1052				/* If here, we are freeing vmemmap pages. */
1053				memset((void *)addr, PAGE_INUSE, next - addr);
1054
1055				page_addr = page_address(pud_page(*pud));
1056				if (!memchr_inv(page_addr, PAGE_INUSE,
1057						PUD_SIZE)) {
1058					free_pagetable(pud_page(*pud),
1059						       get_order(PUD_SIZE));
1060
1061					spin_lock(&init_mm.page_table_lock);
1062					pud_clear(pud);
1063					spin_unlock(&init_mm.page_table_lock);
1064				}
1065			}
1066
1067			continue;
1068		}
1069
1070		pmd_base = pmd_offset(pud, 0);
1071		remove_pmd_table(pmd_base, addr, next, direct, altmap);
1072		free_pmd_table(pmd_base, pud);
1073	}
1074
1075	if (direct)
1076		update_page_count(PG_LEVEL_1G, -pages);
1077}
1078
1079static void __meminit
1080remove_p4d_table(p4d_t *p4d_start, unsigned long addr, unsigned long end,
1081		 struct vmem_altmap *altmap, bool direct)
1082{
1083	unsigned long next, pages = 0;
1084	pud_t *pud_base;
1085	p4d_t *p4d;
1086
1087	p4d = p4d_start + p4d_index(addr);
1088	for (; addr < end; addr = next, p4d++) {
1089		next = p4d_addr_end(addr, end);
1090
1091		if (!p4d_present(*p4d))
1092			continue;
1093
1094		BUILD_BUG_ON(p4d_large(*p4d));
1095
1096		pud_base = pud_offset(p4d, 0);
1097		remove_pud_table(pud_base, addr, next, altmap, direct);
1098		/*
1099		 * For 4-level page tables we do not want to free PUDs, but in the
1100		 * 5-level case we should free them. This code will have to change
1101		 * to adapt for boot-time switching between 4 and 5 level page tables.
1102		 */
1103		if (pgtable_l5_enabled)
1104			free_pud_table(pud_base, p4d);
1105	}
1106
1107	if (direct)
1108		update_page_count(PG_LEVEL_512G, -pages);
1109}
1110
1111/* start and end are both virtual address. */
1112static void __meminit
1113remove_pagetable(unsigned long start, unsigned long end, bool direct,
1114		struct vmem_altmap *altmap)
1115{
1116	unsigned long next;
1117	unsigned long addr;
1118	pgd_t *pgd;
1119	p4d_t *p4d;
1120
1121	for (addr = start; addr < end; addr = next) {
1122		next = pgd_addr_end(addr, end);
1123
1124		pgd = pgd_offset_k(addr);
1125		if (!pgd_present(*pgd))
1126			continue;
1127
1128		p4d = p4d_offset(pgd, 0);
1129		remove_p4d_table(p4d, addr, next, altmap, direct);
1130	}
1131
1132	flush_tlb_all();
1133}
1134
1135void __ref vmemmap_free(unsigned long start, unsigned long end,
1136		struct vmem_altmap *altmap)
1137{
 
 
 
1138	remove_pagetable(start, end, false, altmap);
1139}
1140
1141#ifdef CONFIG_MEMORY_HOTREMOVE
1142static void __meminit
1143kernel_physical_mapping_remove(unsigned long start, unsigned long end)
1144{
1145	start = (unsigned long)__va(start);
1146	end = (unsigned long)__va(end);
1147
1148	remove_pagetable(start, end, true, NULL);
1149}
1150
1151int __ref arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
1152{
1153	unsigned long start_pfn = start >> PAGE_SHIFT;
1154	unsigned long nr_pages = size >> PAGE_SHIFT;
1155	struct page *page = pfn_to_page(start_pfn);
1156	struct zone *zone;
1157	int ret;
1158
1159	/* With altmap the first mapped page is offset from @start */
1160	if (altmap)
1161		page += vmem_altmap_offset(altmap);
1162	zone = page_zone(page);
1163	ret = __remove_pages(zone, start_pfn, nr_pages, altmap);
1164	WARN_ON_ONCE(ret);
1165	kernel_physical_mapping_remove(start, start + size);
1166
1167	return ret;
1168}
1169#endif
1170#endif /* CONFIG_MEMORY_HOTPLUG */
1171
1172static struct kcore_list kcore_vsyscall;
1173
1174static void __init register_page_bootmem_info(void)
1175{
1176#ifdef CONFIG_NUMA
1177	int i;
1178
1179	for_each_online_node(i)
1180		register_page_bootmem_info_node(NODE_DATA(i));
1181#endif
1182}
1183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1184void __init mem_init(void)
1185{
1186	pci_iommu_alloc();
1187
1188	/* clear_bss() already clear the empty_zero_page */
1189
1190	/* this will put all memory onto the freelists */
1191	free_all_bootmem();
1192	after_bootmem = 1;
1193	x86_init.hyper.init_after_bootmem();
1194
1195	/*
1196	 * Must be done after boot memory is put on freelist, because here we
1197	 * might set fields in deferred struct pages that have not yet been
1198	 * initialized, and free_all_bootmem() initializes all the reserved
1199	 * deferred pages for us.
1200	 */
1201	register_page_bootmem_info();
1202
1203	/* Register memory areas for /proc/kcore */
1204	if (get_gate_vma(&init_mm))
1205		kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR, PAGE_SIZE, KCORE_USER);
1206
1207	mem_init_print_info(NULL);
1208}
1209
1210int kernel_set_to_readonly;
1211
1212void set_kernel_text_rw(void)
1213{
1214	unsigned long start = PFN_ALIGN(_text);
1215	unsigned long end = PFN_ALIGN(__stop___ex_table);
1216
1217	if (!kernel_set_to_readonly)
1218		return;
1219
1220	pr_debug("Set kernel text: %lx - %lx for read write\n",
1221		 start, end);
1222
1223	/*
1224	 * Make the kernel identity mapping for text RW. Kernel text
1225	 * mapping will always be RO. Refer to the comment in
1226	 * static_protections() in pageattr.c
1227	 */
1228	set_memory_rw(start, (end - start) >> PAGE_SHIFT);
1229}
 
1230
1231void set_kernel_text_ro(void)
1232{
1233	unsigned long start = PFN_ALIGN(_text);
1234	unsigned long end = PFN_ALIGN(__stop___ex_table);
1235
1236	if (!kernel_set_to_readonly)
1237		return;
1238
1239	pr_debug("Set kernel text: %lx - %lx for read only\n",
1240		 start, end);
1241
1242	/*
1243	 * Set the kernel identity mapping for text RO.
1244	 */
1245	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1246}
1247
1248void mark_rodata_ro(void)
1249{
1250	unsigned long start = PFN_ALIGN(_text);
1251	unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1252	unsigned long end = (unsigned long) &__end_rodata_hpage_align;
1253	unsigned long text_end = PFN_ALIGN(&__stop___ex_table);
1254	unsigned long rodata_end = PFN_ALIGN(&__end_rodata);
1255	unsigned long all_end;
1256
1257	printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1258	       (end - start) >> 10);
1259	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1260
1261	kernel_set_to_readonly = 1;
1262
1263	/*
1264	 * The rodata/data/bss/brk section (but not the kernel text!)
1265	 * should also be not-executable.
1266	 *
1267	 * We align all_end to PMD_SIZE because the existing mapping
1268	 * is a full PMD. If we would align _brk_end to PAGE_SIZE we
1269	 * split the PMD and the reminder between _brk_end and the end
1270	 * of the PMD will remain mapped executable.
1271	 *
1272	 * Any PMD which was setup after the one which covers _brk_end
1273	 * has been zapped already via cleanup_highmem().
1274	 */
1275	all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
1276	set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
1277
 
 
1278#ifdef CONFIG_CPA_DEBUG
1279	printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1280	set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1281
1282	printk(KERN_INFO "Testing CPA: again\n");
1283	set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1284#endif
1285
1286	free_init_pages("unused kernel",
1287			(unsigned long) __va(__pa_symbol(text_end)),
1288			(unsigned long) __va(__pa_symbol(rodata_start)));
1289	free_init_pages("unused kernel",
1290			(unsigned long) __va(__pa_symbol(rodata_end)),
1291			(unsigned long) __va(__pa_symbol(_sdata)));
1292
1293	debug_checkwx();
1294
1295	/*
1296	 * Do this after all of the manipulation of the
1297	 * kernel text page tables are complete.
1298	 */
1299	pti_clone_kernel_text();
1300}
1301
1302int kern_addr_valid(unsigned long addr)
1303{
1304	unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1305	pgd_t *pgd;
1306	p4d_t *p4d;
1307	pud_t *pud;
1308	pmd_t *pmd;
1309	pte_t *pte;
1310
1311	if (above != 0 && above != -1UL)
1312		return 0;
1313
1314	pgd = pgd_offset_k(addr);
1315	if (pgd_none(*pgd))
1316		return 0;
1317
1318	p4d = p4d_offset(pgd, addr);
1319	if (p4d_none(*p4d))
1320		return 0;
1321
1322	pud = pud_offset(p4d, addr);
1323	if (pud_none(*pud))
1324		return 0;
1325
1326	if (pud_large(*pud))
1327		return pfn_valid(pud_pfn(*pud));
1328
1329	pmd = pmd_offset(pud, addr);
1330	if (pmd_none(*pmd))
1331		return 0;
1332
1333	if (pmd_large(*pmd))
1334		return pfn_valid(pmd_pfn(*pmd));
1335
1336	pte = pte_offset_kernel(pmd, addr);
1337	if (pte_none(*pte))
1338		return 0;
1339
1340	return pfn_valid(pte_pfn(*pte));
1341}
1342
1343/*
1344 * Block size is the minimum amount of memory which can be hotplugged or
1345 * hotremoved. It must be power of two and must be equal or larger than
1346 * MIN_MEMORY_BLOCK_SIZE.
1347 */
1348#define MAX_BLOCK_SIZE (2UL << 30)
1349
1350/* Amount of ram needed to start using large blocks */
1351#define MEM_SIZE_FOR_LARGE_BLOCK (64UL << 30)
1352
 
 
 
 
 
 
 
 
 
 
 
 
 
1353static unsigned long probe_memory_block_size(void)
1354{
1355	unsigned long boot_mem_end = max_pfn << PAGE_SHIFT;
1356	unsigned long bz;
1357
1358	/* If this is UV system, always set 2G block size */
1359	if (is_uv_system()) {
1360		bz = MAX_BLOCK_SIZE;
1361		goto done;
1362	}
1363
1364	/* Use regular block if RAM is smaller than MEM_SIZE_FOR_LARGE_BLOCK */
1365	if (boot_mem_end < MEM_SIZE_FOR_LARGE_BLOCK) {
1366		bz = MIN_MEMORY_BLOCK_SIZE;
1367		goto done;
1368	}
1369
 
 
 
 
 
 
 
 
 
1370	/* Find the largest allowed block size that aligns to memory end */
1371	for (bz = MAX_BLOCK_SIZE; bz > MIN_MEMORY_BLOCK_SIZE; bz >>= 1) {
1372		if (IS_ALIGNED(boot_mem_end, bz))
1373			break;
1374	}
1375done:
1376	pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20);
1377
1378	return bz;
1379}
1380
1381static unsigned long memory_block_size_probed;
1382unsigned long memory_block_size_bytes(void)
1383{
1384	if (!memory_block_size_probed)
1385		memory_block_size_probed = probe_memory_block_size();
1386
1387	return memory_block_size_probed;
1388}
1389
1390#ifdef CONFIG_SPARSEMEM_VMEMMAP
1391/*
1392 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1393 */
1394static long __meminitdata addr_start, addr_end;
1395static void __meminitdata *p_start, *p_end;
1396static int __meminitdata node_start;
1397
1398static int __meminit vmemmap_populate_hugepages(unsigned long start,
1399		unsigned long end, int node, struct vmem_altmap *altmap)
1400{
1401	unsigned long addr;
1402	unsigned long next;
1403	pgd_t *pgd;
1404	p4d_t *p4d;
1405	pud_t *pud;
1406	pmd_t *pmd;
1407
1408	for (addr = start; addr < end; addr = next) {
1409		next = pmd_addr_end(addr, end);
 
1410
1411		pgd = vmemmap_pgd_populate(addr, node);
1412		if (!pgd)
1413			return -ENOMEM;
 
 
 
 
 
 
1414
1415		p4d = vmemmap_p4d_populate(pgd, addr, node);
1416		if (!p4d)
1417			return -ENOMEM;
1418
1419		pud = vmemmap_pud_populate(p4d, addr, node);
1420		if (!pud)
1421			return -ENOMEM;
 
1422
1423		pmd = pmd_offset(pud, addr);
1424		if (pmd_none(*pmd)) {
1425			void *p;
1426
1427			if (altmap)
1428				p = altmap_alloc_block_buf(PMD_SIZE, altmap);
1429			else
1430				p = vmemmap_alloc_block_buf(PMD_SIZE, node);
1431			if (p) {
1432				pte_t entry;
1433
1434				entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1435						PAGE_KERNEL_LARGE);
1436				set_pmd(pmd, __pmd(pte_val(entry)));
1437
1438				/* check to see if we have contiguous blocks */
1439				if (p_end != p || node_start != node) {
1440					if (p_start)
1441						pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1442						       addr_start, addr_end-1, p_start, p_end-1, node_start);
1443					addr_start = addr;
1444					node_start = node;
1445					p_start = p;
1446				}
1447
1448				addr_end = addr + PMD_SIZE;
1449				p_end = p + PMD_SIZE;
1450				continue;
1451			} else if (altmap)
1452				return -ENOMEM; /* no fallback */
1453		} else if (pmd_large(*pmd)) {
1454			vmemmap_verify((pte_t *)pmd, node, addr, next);
1455			continue;
1456		}
1457		if (vmemmap_populate_basepages(addr, next, node))
1458			return -ENOMEM;
1459	}
1460	return 0;
 
1461}
1462
1463int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1464		struct vmem_altmap *altmap)
1465{
1466	int err;
1467
1468	if (boot_cpu_has(X86_FEATURE_PSE))
 
 
 
 
 
1469		err = vmemmap_populate_hugepages(start, end, node, altmap);
1470	else if (altmap) {
1471		pr_err_once("%s: no cpu support for altmap allocations\n",
1472				__func__);
1473		err = -ENOMEM;
1474	} else
1475		err = vmemmap_populate_basepages(start, end, node);
1476	if (!err)
1477		sync_global_pgds(start, end - 1);
1478	return err;
1479}
1480
1481#if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
1482void register_page_bootmem_memmap(unsigned long section_nr,
1483				  struct page *start_page, unsigned long nr_pages)
1484{
1485	unsigned long addr = (unsigned long)start_page;
1486	unsigned long end = (unsigned long)(start_page + nr_pages);
1487	unsigned long next;
1488	pgd_t *pgd;
1489	p4d_t *p4d;
1490	pud_t *pud;
1491	pmd_t *pmd;
1492	unsigned int nr_pmd_pages;
1493	struct page *page;
1494
1495	for (; addr < end; addr = next) {
1496		pte_t *pte = NULL;
1497
1498		pgd = pgd_offset_k(addr);
1499		if (pgd_none(*pgd)) {
1500			next = (addr + PAGE_SIZE) & PAGE_MASK;
1501			continue;
1502		}
1503		get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1504
1505		p4d = p4d_offset(pgd, addr);
1506		if (p4d_none(*p4d)) {
1507			next = (addr + PAGE_SIZE) & PAGE_MASK;
1508			continue;
1509		}
1510		get_page_bootmem(section_nr, p4d_page(*p4d), MIX_SECTION_INFO);
1511
1512		pud = pud_offset(p4d, addr);
1513		if (pud_none(*pud)) {
1514			next = (addr + PAGE_SIZE) & PAGE_MASK;
1515			continue;
1516		}
1517		get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1518
1519		if (!boot_cpu_has(X86_FEATURE_PSE)) {
1520			next = (addr + PAGE_SIZE) & PAGE_MASK;
1521			pmd = pmd_offset(pud, addr);
1522			if (pmd_none(*pmd))
1523				continue;
1524			get_page_bootmem(section_nr, pmd_page(*pmd),
1525					 MIX_SECTION_INFO);
1526
1527			pte = pte_offset_kernel(pmd, addr);
1528			if (pte_none(*pte))
1529				continue;
1530			get_page_bootmem(section_nr, pte_page(*pte),
1531					 SECTION_INFO);
1532		} else {
1533			next = pmd_addr_end(addr, end);
1534
1535			pmd = pmd_offset(pud, addr);
1536			if (pmd_none(*pmd))
1537				continue;
1538
1539			nr_pmd_pages = 1 << get_order(PMD_SIZE);
1540			page = pmd_page(*pmd);
1541			while (nr_pmd_pages--)
1542				get_page_bootmem(section_nr, page++,
1543						 SECTION_INFO);
1544		}
1545	}
1546}
1547#endif
1548
1549void __meminit vmemmap_populate_print_last(void)
1550{
1551	if (p_start) {
1552		pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1553			addr_start, addr_end-1, p_start, p_end-1, node_start);
1554		p_start = NULL;
1555		p_end = NULL;
1556		node_start = 0;
1557	}
1558}
1559#endif