Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* arch/sparc64/kernel/traps.c
   3 *
   4 * Copyright (C) 1995,1997,2008,2009,2012 David S. Miller (davem@davemloft.net)
   5 * Copyright (C) 1997,1999,2000 Jakub Jelinek (jakub@redhat.com)
   6 */
   7
   8/*
   9 * I like traps on v9, :))))
  10 */
  11
  12#include <linux/extable.h>
  13#include <linux/sched/mm.h>
  14#include <linux/sched/debug.h>
  15#include <linux/linkage.h>
  16#include <linux/kernel.h>
  17#include <linux/signal.h>
  18#include <linux/smp.h>
  19#include <linux/mm.h>
  20#include <linux/init.h>
  21#include <linux/kallsyms.h>
  22#include <linux/kdebug.h>
  23#include <linux/ftrace.h>
  24#include <linux/reboot.h>
  25#include <linux/gfp.h>
  26#include <linux/context_tracking.h>
  27
  28#include <asm/smp.h>
  29#include <asm/delay.h>
  30#include <asm/ptrace.h>
  31#include <asm/oplib.h>
  32#include <asm/page.h>
 
  33#include <asm/unistd.h>
  34#include <linux/uaccess.h>
  35#include <asm/fpumacro.h>
  36#include <asm/lsu.h>
  37#include <asm/dcu.h>
  38#include <asm/estate.h>
  39#include <asm/chafsr.h>
  40#include <asm/sfafsr.h>
  41#include <asm/psrcompat.h>
  42#include <asm/processor.h>
  43#include <asm/timer.h>
  44#include <asm/head.h>
  45#include <asm/prom.h>
  46#include <asm/memctrl.h>
  47#include <asm/cacheflush.h>
  48#include <asm/setup.h>
  49
  50#include "entry.h"
  51#include "kernel.h"
  52#include "kstack.h"
  53
  54/* When an irrecoverable trap occurs at tl > 0, the trap entry
  55 * code logs the trap state registers at every level in the trap
  56 * stack.  It is found at (pt_regs + sizeof(pt_regs)) and the layout
  57 * is as follows:
  58 */
  59struct tl1_traplog {
  60	struct {
  61		unsigned long tstate;
  62		unsigned long tpc;
  63		unsigned long tnpc;
  64		unsigned long tt;
  65	} trapstack[4];
  66	unsigned long tl;
  67};
  68
  69static void dump_tl1_traplog(struct tl1_traplog *p)
  70{
  71	int i, limit;
  72
  73	printk(KERN_EMERG "TRAPLOG: Error at trap level 0x%lx, "
  74	       "dumping track stack.\n", p->tl);
  75
  76	limit = (tlb_type == hypervisor) ? 2 : 4;
  77	for (i = 0; i < limit; i++) {
  78		printk(KERN_EMERG
  79		       "TRAPLOG: Trap level %d TSTATE[%016lx] TPC[%016lx] "
  80		       "TNPC[%016lx] TT[%lx]\n",
  81		       i + 1,
  82		       p->trapstack[i].tstate, p->trapstack[i].tpc,
  83		       p->trapstack[i].tnpc, p->trapstack[i].tt);
  84		printk("TRAPLOG: TPC<%pS>\n", (void *) p->trapstack[i].tpc);
  85	}
  86}
  87
  88void bad_trap(struct pt_regs *regs, long lvl)
  89{
  90	char buffer[36];
 
  91
  92	if (notify_die(DIE_TRAP, "bad trap", regs,
  93		       0, lvl, SIGTRAP) == NOTIFY_STOP)
  94		return;
  95
  96	if (lvl < 0x100) {
  97		sprintf(buffer, "Bad hw trap %lx at tl0\n", lvl);
  98		die_if_kernel(buffer, regs);
  99	}
 100
 101	lvl -= 0x100;
 102	if (regs->tstate & TSTATE_PRIV) {
 103		sprintf(buffer, "Kernel bad sw trap %lx", lvl);
 104		die_if_kernel(buffer, regs);
 105	}
 106	if (test_thread_flag(TIF_32BIT)) {
 107		regs->tpc &= 0xffffffff;
 108		regs->tnpc &= 0xffffffff;
 109	}
 110	force_sig_fault_trapno(SIGILL, ILL_ILLTRP,
 111			       (void __user *)regs->tpc, lvl);
 
 
 
 
 112}
 113
 114void bad_trap_tl1(struct pt_regs *regs, long lvl)
 115{
 116	char buffer[36];
 117	
 118	if (notify_die(DIE_TRAP_TL1, "bad trap tl1", regs,
 119		       0, lvl, SIGTRAP) == NOTIFY_STOP)
 120		return;
 121
 122	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 123
 124	sprintf (buffer, "Bad trap %lx at tl>0", lvl);
 125	die_if_kernel (buffer, regs);
 126}
 127
 128#ifdef CONFIG_DEBUG_BUGVERBOSE
 129void do_BUG(const char *file, int line)
 130{
 131	bust_spinlocks(1);
 132	printk("kernel BUG at %s:%d!\n", file, line);
 133}
 134EXPORT_SYMBOL(do_BUG);
 135#endif
 136
 137static DEFINE_SPINLOCK(dimm_handler_lock);
 138static dimm_printer_t dimm_handler;
 139
 140static int sprintf_dimm(int synd_code, unsigned long paddr, char *buf, int buflen)
 141{
 142	unsigned long flags;
 143	int ret = -ENODEV;
 144
 145	spin_lock_irqsave(&dimm_handler_lock, flags);
 146	if (dimm_handler) {
 147		ret = dimm_handler(synd_code, paddr, buf, buflen);
 148	} else if (tlb_type == spitfire) {
 149		if (prom_getunumber(synd_code, paddr, buf, buflen) == -1)
 150			ret = -EINVAL;
 151		else
 152			ret = 0;
 153	} else
 154		ret = -ENODEV;
 155	spin_unlock_irqrestore(&dimm_handler_lock, flags);
 156
 157	return ret;
 158}
 159
 160int register_dimm_printer(dimm_printer_t func)
 161{
 162	unsigned long flags;
 163	int ret = 0;
 164
 165	spin_lock_irqsave(&dimm_handler_lock, flags);
 166	if (!dimm_handler)
 167		dimm_handler = func;
 168	else
 169		ret = -EEXIST;
 170	spin_unlock_irqrestore(&dimm_handler_lock, flags);
 171
 172	return ret;
 173}
 174EXPORT_SYMBOL_GPL(register_dimm_printer);
 175
 176void unregister_dimm_printer(dimm_printer_t func)
 177{
 178	unsigned long flags;
 179
 180	spin_lock_irqsave(&dimm_handler_lock, flags);
 181	if (dimm_handler == func)
 182		dimm_handler = NULL;
 183	spin_unlock_irqrestore(&dimm_handler_lock, flags);
 184}
 185EXPORT_SYMBOL_GPL(unregister_dimm_printer);
 186
 187void spitfire_insn_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 188{
 189	enum ctx_state prev_state = exception_enter();
 
 190
 191	if (notify_die(DIE_TRAP, "instruction access exception", regs,
 192		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 193		goto out;
 194
 195	if (regs->tstate & TSTATE_PRIV) {
 196		printk("spitfire_insn_access_exception: SFSR[%016lx] "
 197		       "SFAR[%016lx], going.\n", sfsr, sfar);
 198		die_if_kernel("Iax", regs);
 199	}
 200	if (test_thread_flag(TIF_32BIT)) {
 201		regs->tpc &= 0xffffffff;
 202		regs->tnpc &= 0xffffffff;
 203	}
 204	force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)regs->tpc);
 
 
 
 
 
 205out:
 206	exception_exit(prev_state);
 207}
 208
 209void spitfire_insn_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 210{
 211	if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
 212		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 213		return;
 214
 215	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 216	spitfire_insn_access_exception(regs, sfsr, sfar);
 217}
 218
 219void sun4v_insn_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 220{
 221	unsigned short type = (type_ctx >> 16);
 222	unsigned short ctx  = (type_ctx & 0xffff);
 
 223
 224	if (notify_die(DIE_TRAP, "instruction access exception", regs,
 225		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 226		return;
 227
 228	if (regs->tstate & TSTATE_PRIV) {
 229		printk("sun4v_insn_access_exception: ADDR[%016lx] "
 230		       "CTX[%04x] TYPE[%04x], going.\n",
 231		       addr, ctx, type);
 232		die_if_kernel("Iax", regs);
 233	}
 234
 235	if (test_thread_flag(TIF_32BIT)) {
 236		regs->tpc &= 0xffffffff;
 237		regs->tnpc &= 0xffffffff;
 238	}
 239	force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *) addr);
 
 
 
 
 
 240}
 241
 242void sun4v_insn_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 243{
 244	if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
 245		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 246		return;
 247
 248	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 249	sun4v_insn_access_exception(regs, addr, type_ctx);
 250}
 251
 252bool is_no_fault_exception(struct pt_regs *regs)
 253{
 254	unsigned char asi;
 255	u32 insn;
 256
 257	if (get_user(insn, (u32 __user *)regs->tpc) == -EFAULT)
 258		return false;
 259
 260	/*
 261	 * Must do a little instruction decoding here in order to
 262	 * decide on a course of action. The bits of interest are:
 263	 *  insn[31:30] = op, where 3 indicates the load/store group
 264	 *  insn[24:19] = op3, which identifies individual opcodes
 265	 *  insn[13] indicates an immediate offset
 266	 *  op3[4]=1 identifies alternate space instructions
 267	 *  op3[5:4]=3 identifies floating point instructions
 268	 *  op3[2]=1 identifies stores
 269	 * See "Opcode Maps" in the appendix of any Sparc V9
 270	 * architecture spec for full details.
 271	 */
 272	if ((insn & 0xc0800000) == 0xc0800000) {    /* op=3, op3[4]=1   */
 273		if (insn & 0x2000)		    /* immediate offset */
 274			asi = (regs->tstate >> 24); /* saved %asi       */
 275		else
 276			asi = (insn >> 5);	    /* immediate asi    */
 277		if ((asi & 0xf6) == ASI_PNF) {
 278			if (insn & 0x200000)        /* op3[2], stores   */
 279				return false;
 280			if (insn & 0x1000000)       /* op3[5:4]=3 (fp)  */
 281				handle_ldf_stq(insn, regs);
 282			else
 283				handle_ld_nf(insn, regs);
 
 
 
 284			return true;
 285		}
 286	}
 287	return false;
 288}
 289
 290void spitfire_data_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 291{
 292	enum ctx_state prev_state = exception_enter();
 
 293
 294	if (notify_die(DIE_TRAP, "data access exception", regs,
 295		       0, 0x30, SIGTRAP) == NOTIFY_STOP)
 296		goto out;
 297
 298	if (regs->tstate & TSTATE_PRIV) {
 299		/* Test if this comes from uaccess places. */
 300		const struct exception_table_entry *entry;
 301
 302		entry = search_exception_tables(regs->tpc);
 303		if (entry) {
 304			/* Ouch, somebody is trying VM hole tricks on us... */
 305#ifdef DEBUG_EXCEPTIONS
 306			printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
 307			printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
 308			       regs->tpc, entry->fixup);
 309#endif
 310			regs->tpc = entry->fixup;
 311			regs->tnpc = regs->tpc + 4;
 312			goto out;
 313		}
 314		/* Shit... */
 315		printk("spitfire_data_access_exception: SFSR[%016lx] "
 316		       "SFAR[%016lx], going.\n", sfsr, sfar);
 317		die_if_kernel("Dax", regs);
 318	}
 319
 320	if (is_no_fault_exception(regs))
 321		return;
 322
 323	force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)sfar);
 
 
 
 
 
 324out:
 325	exception_exit(prev_state);
 326}
 327
 328void spitfire_data_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 329{
 330	if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
 331		       0, 0x30, SIGTRAP) == NOTIFY_STOP)
 332		return;
 333
 334	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 335	spitfire_data_access_exception(regs, sfsr, sfar);
 336}
 337
 338void sun4v_data_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 339{
 340	unsigned short type = (type_ctx >> 16);
 341	unsigned short ctx  = (type_ctx & 0xffff);
 342
 343	if (notify_die(DIE_TRAP, "data access exception", regs,
 344		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 345		return;
 346
 347	if (regs->tstate & TSTATE_PRIV) {
 348		/* Test if this comes from uaccess places. */
 349		const struct exception_table_entry *entry;
 350
 351		entry = search_exception_tables(regs->tpc);
 352		if (entry) {
 353			/* Ouch, somebody is trying VM hole tricks on us... */
 354#ifdef DEBUG_EXCEPTIONS
 355			printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
 356			printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
 357			       regs->tpc, entry->fixup);
 358#endif
 359			regs->tpc = entry->fixup;
 360			regs->tnpc = regs->tpc + 4;
 361			return;
 362		}
 363		printk("sun4v_data_access_exception: ADDR[%016lx] "
 364		       "CTX[%04x] TYPE[%04x], going.\n",
 365		       addr, ctx, type);
 366		die_if_kernel("Dax", regs);
 367	}
 368
 369	if (test_thread_flag(TIF_32BIT)) {
 370		regs->tpc &= 0xffffffff;
 371		regs->tnpc &= 0xffffffff;
 372	}
 373	if (is_no_fault_exception(regs))
 374		return;
 375
 376	/* MCD (Memory Corruption Detection) disabled trap (TT=0x19) in HV
 377	 * is vectored thorugh data access exception trap with fault type
 378	 * set to HV_FAULT_TYPE_MCD_DIS. Check for MCD disabled trap.
 379	 * Accessing an address with invalid ASI for the address, for
 380	 * example setting an ADI tag on an address with ASI_MCD_PRIMARY
 381	 * when TTE.mcd is not set for the VA, is also vectored into
 382	 * kerbel by HV as data access exception with fault type set to
 383	 * HV_FAULT_TYPE_INV_ASI.
 384	 */
 385	switch (type) {
 386	case HV_FAULT_TYPE_INV_ASI:
 387		force_sig_fault(SIGILL, ILL_ILLADR, (void __user *)addr);
 
 388		break;
 389	case HV_FAULT_TYPE_MCD_DIS:
 390		force_sig_fault(SIGSEGV, SEGV_ACCADI, (void __user *)addr);
 
 391		break;
 392	default:
 393		force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)addr);
 
 394		break;
 395	}
 396}
 397
 398void sun4v_data_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 399{
 400	if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
 401		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 402		return;
 403
 404	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 405	sun4v_data_access_exception(regs, addr, type_ctx);
 406}
 407
 408#ifdef CONFIG_PCI
 409#include "pci_impl.h"
 410#endif
 411
 412/* When access exceptions happen, we must do this. */
 413static void spitfire_clean_and_reenable_l1_caches(void)
 414{
 415	unsigned long va;
 416
 417	if (tlb_type != spitfire)
 418		BUG();
 419
 420	/* Clean 'em. */
 421	for (va =  0; va < (PAGE_SIZE << 1); va += 32) {
 422		spitfire_put_icache_tag(va, 0x0);
 423		spitfire_put_dcache_tag(va, 0x0);
 424	}
 425
 426	/* Re-enable in LSU. */
 427	__asm__ __volatile__("flush %%g6\n\t"
 428			     "membar #Sync\n\t"
 429			     "stxa %0, [%%g0] %1\n\t"
 430			     "membar #Sync"
 431			     : /* no outputs */
 432			     : "r" (LSU_CONTROL_IC | LSU_CONTROL_DC |
 433				    LSU_CONTROL_IM | LSU_CONTROL_DM),
 434			     "i" (ASI_LSU_CONTROL)
 435			     : "memory");
 436}
 437
 438static void spitfire_enable_estate_errors(void)
 439{
 440	__asm__ __volatile__("stxa	%0, [%%g0] %1\n\t"
 441			     "membar	#Sync"
 442			     : /* no outputs */
 443			     : "r" (ESTATE_ERR_ALL),
 444			       "i" (ASI_ESTATE_ERROR_EN));
 445}
 446
 447static char ecc_syndrome_table[] = {
 448	0x4c, 0x40, 0x41, 0x48, 0x42, 0x48, 0x48, 0x49,
 449	0x43, 0x48, 0x48, 0x49, 0x48, 0x49, 0x49, 0x4a,
 450	0x44, 0x48, 0x48, 0x20, 0x48, 0x39, 0x4b, 0x48,
 451	0x48, 0x25, 0x31, 0x48, 0x28, 0x48, 0x48, 0x2c,
 452	0x45, 0x48, 0x48, 0x21, 0x48, 0x3d, 0x04, 0x48,
 453	0x48, 0x4b, 0x35, 0x48, 0x2d, 0x48, 0x48, 0x29,
 454	0x48, 0x00, 0x01, 0x48, 0x0a, 0x48, 0x48, 0x4b,
 455	0x0f, 0x48, 0x48, 0x4b, 0x48, 0x49, 0x49, 0x48,
 456	0x46, 0x48, 0x48, 0x2a, 0x48, 0x3b, 0x27, 0x48,
 457	0x48, 0x4b, 0x33, 0x48, 0x22, 0x48, 0x48, 0x2e,
 458	0x48, 0x19, 0x1d, 0x48, 0x1b, 0x4a, 0x48, 0x4b,
 459	0x1f, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
 460	0x48, 0x4b, 0x24, 0x48, 0x07, 0x48, 0x48, 0x36,
 461	0x4b, 0x48, 0x48, 0x3e, 0x48, 0x30, 0x38, 0x48,
 462	0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x16, 0x48,
 463	0x48, 0x12, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
 464	0x47, 0x48, 0x48, 0x2f, 0x48, 0x3f, 0x4b, 0x48,
 465	0x48, 0x06, 0x37, 0x48, 0x23, 0x48, 0x48, 0x2b,
 466	0x48, 0x05, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x32,
 467	0x26, 0x48, 0x48, 0x3a, 0x48, 0x34, 0x3c, 0x48,
 468	0x48, 0x11, 0x15, 0x48, 0x13, 0x4a, 0x48, 0x4b,
 469	0x17, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
 470	0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x1e, 0x48,
 471	0x48, 0x1a, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
 472	0x48, 0x08, 0x0d, 0x48, 0x02, 0x48, 0x48, 0x49,
 473	0x03, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x4b, 0x48,
 474	0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x10, 0x48,
 475	0x48, 0x14, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
 476	0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x18, 0x48,
 477	0x48, 0x1c, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
 478	0x4a, 0x0c, 0x09, 0x48, 0x0e, 0x48, 0x48, 0x4b,
 479	0x0b, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x4b, 0x4a
 480};
 481
 482static char *syndrome_unknown = "<Unknown>";
 483
 484static void spitfire_log_udb_syndrome(unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long bit)
 485{
 486	unsigned short scode;
 487	char memmod_str[64], *p;
 488
 489	if (udbl & bit) {
 490		scode = ecc_syndrome_table[udbl & 0xff];
 491		if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
 492			p = syndrome_unknown;
 493		else
 494			p = memmod_str;
 495		printk(KERN_WARNING "CPU[%d]: UDBL Syndrome[%x] "
 496		       "Memory Module \"%s\"\n",
 497		       smp_processor_id(), scode, p);
 498	}
 499
 500	if (udbh & bit) {
 501		scode = ecc_syndrome_table[udbh & 0xff];
 502		if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
 503			p = syndrome_unknown;
 504		else
 505			p = memmod_str;
 506		printk(KERN_WARNING "CPU[%d]: UDBH Syndrome[%x] "
 507		       "Memory Module \"%s\"\n",
 508		       smp_processor_id(), scode, p);
 509	}
 510
 511}
 512
 513static void spitfire_cee_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, int tl1, struct pt_regs *regs)
 514{
 515
 516	printk(KERN_WARNING "CPU[%d]: Correctable ECC Error "
 517	       "AFSR[%lx] AFAR[%016lx] UDBL[%lx] UDBH[%lx] TL>1[%d]\n",
 518	       smp_processor_id(), afsr, afar, udbl, udbh, tl1);
 519
 520	spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_CE);
 521
 522	/* We always log it, even if someone is listening for this
 523	 * trap.
 524	 */
 525	notify_die(DIE_TRAP, "Correctable ECC Error", regs,
 526		   0, TRAP_TYPE_CEE, SIGTRAP);
 527
 528	/* The Correctable ECC Error trap does not disable I/D caches.  So
 529	 * we only have to restore the ESTATE Error Enable register.
 530	 */
 531	spitfire_enable_estate_errors();
 532}
 533
 534static void spitfire_ue_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long tt, int tl1, struct pt_regs *regs)
 535{
 
 
 536	printk(KERN_WARNING "CPU[%d]: Uncorrectable Error AFSR[%lx] "
 537	       "AFAR[%lx] UDBL[%lx] UDBH[%ld] TT[%lx] TL>1[%d]\n",
 538	       smp_processor_id(), afsr, afar, udbl, udbh, tt, tl1);
 539
 540	/* XXX add more human friendly logging of the error status
 541	 * XXX as is implemented for cheetah
 542	 */
 543
 544	spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_UE);
 545
 546	/* We always log it, even if someone is listening for this
 547	 * trap.
 548	 */
 549	notify_die(DIE_TRAP, "Uncorrectable Error", regs,
 550		   0, tt, SIGTRAP);
 551
 552	if (regs->tstate & TSTATE_PRIV) {
 553		if (tl1)
 554			dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 555		die_if_kernel("UE", regs);
 556	}
 557
 558	/* XXX need more intelligent processing here, such as is implemented
 559	 * XXX for cheetah errors, in fact if the E-cache still holds the
 560	 * XXX line with bad parity this will loop
 561	 */
 562
 563	spitfire_clean_and_reenable_l1_caches();
 564	spitfire_enable_estate_errors();
 565
 566	if (test_thread_flag(TIF_32BIT)) {
 567		regs->tpc &= 0xffffffff;
 568		regs->tnpc &= 0xffffffff;
 569	}
 570	force_sig_fault(SIGBUS, BUS_OBJERR, (void *)0);
 
 
 
 
 
 571}
 572
 573void spitfire_access_error(struct pt_regs *regs, unsigned long status_encoded, unsigned long afar)
 574{
 575	unsigned long afsr, tt, udbh, udbl;
 576	int tl1;
 577
 578	afsr = (status_encoded & SFSTAT_AFSR_MASK) >> SFSTAT_AFSR_SHIFT;
 579	tt = (status_encoded & SFSTAT_TRAP_TYPE) >> SFSTAT_TRAP_TYPE_SHIFT;
 580	tl1 = (status_encoded & SFSTAT_TL_GT_ONE) ? 1 : 0;
 581	udbl = (status_encoded & SFSTAT_UDBL_MASK) >> SFSTAT_UDBL_SHIFT;
 582	udbh = (status_encoded & SFSTAT_UDBH_MASK) >> SFSTAT_UDBH_SHIFT;
 583
 584#ifdef CONFIG_PCI
 585	if (tt == TRAP_TYPE_DAE &&
 586	    pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
 587		spitfire_clean_and_reenable_l1_caches();
 588		spitfire_enable_estate_errors();
 589
 590		pci_poke_faulted = 1;
 591		regs->tnpc = regs->tpc + 4;
 592		return;
 593	}
 594#endif
 595
 596	if (afsr & SFAFSR_UE)
 597		spitfire_ue_log(afsr, afar, udbh, udbl, tt, tl1, regs);
 598
 599	if (tt == TRAP_TYPE_CEE) {
 600		/* Handle the case where we took a CEE trap, but ACK'd
 601		 * only the UE state in the UDB error registers.
 602		 */
 603		if (afsr & SFAFSR_UE) {
 604			if (udbh & UDBE_CE) {
 605				__asm__ __volatile__(
 606					"stxa	%0, [%1] %2\n\t"
 607					"membar	#Sync"
 608					: /* no outputs */
 609					: "r" (udbh & UDBE_CE),
 610					  "r" (0x0), "i" (ASI_UDB_ERROR_W));
 611			}
 612			if (udbl & UDBE_CE) {
 613				__asm__ __volatile__(
 614					"stxa	%0, [%1] %2\n\t"
 615					"membar	#Sync"
 616					: /* no outputs */
 617					: "r" (udbl & UDBE_CE),
 618					  "r" (0x18), "i" (ASI_UDB_ERROR_W));
 619			}
 620		}
 621
 622		spitfire_cee_log(afsr, afar, udbh, udbl, tl1, regs);
 623	}
 624}
 625
 626int cheetah_pcache_forced_on;
 627
 628void cheetah_enable_pcache(void)
 629{
 630	unsigned long dcr;
 631
 632	printk("CHEETAH: Enabling P-Cache on cpu %d.\n",
 633	       smp_processor_id());
 634
 635	__asm__ __volatile__("ldxa [%%g0] %1, %0"
 636			     : "=r" (dcr)
 637			     : "i" (ASI_DCU_CONTROL_REG));
 638	dcr |= (DCU_PE | DCU_HPE | DCU_SPE | DCU_SL);
 639	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
 640			     "membar #Sync"
 641			     : /* no outputs */
 642			     : "r" (dcr), "i" (ASI_DCU_CONTROL_REG));
 643}
 644
 645/* Cheetah error trap handling. */
 646static unsigned long ecache_flush_physbase;
 647static unsigned long ecache_flush_linesize;
 648static unsigned long ecache_flush_size;
 649
 650/* This table is ordered in priority of errors and matches the
 651 * AFAR overwrite policy as well.
 652 */
 653
 654struct afsr_error_table {
 655	unsigned long mask;
 656	const char *name;
 657};
 658
 659static const char CHAFSR_PERR_msg[] =
 660	"System interface protocol error";
 661static const char CHAFSR_IERR_msg[] =
 662	"Internal processor error";
 663static const char CHAFSR_ISAP_msg[] =
 664	"System request parity error on incoming address";
 665static const char CHAFSR_UCU_msg[] =
 666	"Uncorrectable E-cache ECC error for ifetch/data";
 667static const char CHAFSR_UCC_msg[] =
 668	"SW Correctable E-cache ECC error for ifetch/data";
 669static const char CHAFSR_UE_msg[] =
 670	"Uncorrectable system bus data ECC error for read";
 671static const char CHAFSR_EDU_msg[] =
 672	"Uncorrectable E-cache ECC error for stmerge/blkld";
 673static const char CHAFSR_EMU_msg[] =
 674	"Uncorrectable system bus MTAG error";
 675static const char CHAFSR_WDU_msg[] =
 676	"Uncorrectable E-cache ECC error for writeback";
 677static const char CHAFSR_CPU_msg[] =
 678	"Uncorrectable ECC error for copyout";
 679static const char CHAFSR_CE_msg[] =
 680	"HW corrected system bus data ECC error for read";
 681static const char CHAFSR_EDC_msg[] =
 682	"HW corrected E-cache ECC error for stmerge/blkld";
 683static const char CHAFSR_EMC_msg[] =
 684	"HW corrected system bus MTAG ECC error";
 685static const char CHAFSR_WDC_msg[] =
 686	"HW corrected E-cache ECC error for writeback";
 687static const char CHAFSR_CPC_msg[] =
 688	"HW corrected ECC error for copyout";
 689static const char CHAFSR_TO_msg[] =
 690	"Unmapped error from system bus";
 691static const char CHAFSR_BERR_msg[] =
 692	"Bus error response from system bus";
 693static const char CHAFSR_IVC_msg[] =
 694	"HW corrected system bus data ECC error for ivec read";
 695static const char CHAFSR_IVU_msg[] =
 696	"Uncorrectable system bus data ECC error for ivec read";
 697static struct afsr_error_table __cheetah_error_table[] = {
 698	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
 699	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
 700	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
 701	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
 702	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
 703	{	CHAFSR_UE,	CHAFSR_UE_msg		},
 704	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
 705	{	CHAFSR_EMU,	CHAFSR_EMU_msg		},
 706	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
 707	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
 708	{	CHAFSR_CE,	CHAFSR_CE_msg		},
 709	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
 710	{	CHAFSR_EMC,	CHAFSR_EMC_msg		},
 711	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
 712	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
 713	{	CHAFSR_TO,	CHAFSR_TO_msg		},
 714	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
 715	/* These two do not update the AFAR. */
 716	{	CHAFSR_IVC,	CHAFSR_IVC_msg		},
 717	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
 718	{	0,		NULL			},
 719};
 720static const char CHPAFSR_DTO_msg[] =
 721	"System bus unmapped error for prefetch/storequeue-read";
 722static const char CHPAFSR_DBERR_msg[] =
 723	"System bus error for prefetch/storequeue-read";
 724static const char CHPAFSR_THCE_msg[] =
 725	"Hardware corrected E-cache Tag ECC error";
 726static const char CHPAFSR_TSCE_msg[] =
 727	"SW handled correctable E-cache Tag ECC error";
 728static const char CHPAFSR_TUE_msg[] =
 729	"Uncorrectable E-cache Tag ECC error";
 730static const char CHPAFSR_DUE_msg[] =
 731	"System bus uncorrectable data ECC error due to prefetch/store-fill";
 732static struct afsr_error_table __cheetah_plus_error_table[] = {
 733	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
 734	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
 735	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
 736	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
 737	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
 738	{	CHAFSR_UE,	CHAFSR_UE_msg		},
 739	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
 740	{	CHAFSR_EMU,	CHAFSR_EMU_msg		},
 741	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
 742	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
 743	{	CHAFSR_CE,	CHAFSR_CE_msg		},
 744	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
 745	{	CHAFSR_EMC,	CHAFSR_EMC_msg		},
 746	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
 747	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
 748	{	CHAFSR_TO,	CHAFSR_TO_msg		},
 749	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
 750	{	CHPAFSR_DTO,	CHPAFSR_DTO_msg		},
 751	{	CHPAFSR_DBERR,	CHPAFSR_DBERR_msg	},
 752	{	CHPAFSR_THCE,	CHPAFSR_THCE_msg	},
 753	{	CHPAFSR_TSCE,	CHPAFSR_TSCE_msg	},
 754	{	CHPAFSR_TUE,	CHPAFSR_TUE_msg		},
 755	{	CHPAFSR_DUE,	CHPAFSR_DUE_msg		},
 756	/* These two do not update the AFAR. */
 757	{	CHAFSR_IVC,	CHAFSR_IVC_msg		},
 758	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
 759	{	0,		NULL			},
 760};
 761static const char JPAFSR_JETO_msg[] =
 762	"System interface protocol error, hw timeout caused";
 763static const char JPAFSR_SCE_msg[] =
 764	"Parity error on system snoop results";
 765static const char JPAFSR_JEIC_msg[] =
 766	"System interface protocol error, illegal command detected";
 767static const char JPAFSR_JEIT_msg[] =
 768	"System interface protocol error, illegal ADTYPE detected";
 769static const char JPAFSR_OM_msg[] =
 770	"Out of range memory error has occurred";
 771static const char JPAFSR_ETP_msg[] =
 772	"Parity error on L2 cache tag SRAM";
 773static const char JPAFSR_UMS_msg[] =
 774	"Error due to unsupported store";
 775static const char JPAFSR_RUE_msg[] =
 776	"Uncorrectable ECC error from remote cache/memory";
 777static const char JPAFSR_RCE_msg[] =
 778	"Correctable ECC error from remote cache/memory";
 779static const char JPAFSR_BP_msg[] =
 780	"JBUS parity error on returned read data";
 781static const char JPAFSR_WBP_msg[] =
 782	"JBUS parity error on data for writeback or block store";
 783static const char JPAFSR_FRC_msg[] =
 784	"Foreign read to DRAM incurring correctable ECC error";
 785static const char JPAFSR_FRU_msg[] =
 786	"Foreign read to DRAM incurring uncorrectable ECC error";
 787static struct afsr_error_table __jalapeno_error_table[] = {
 788	{	JPAFSR_JETO,	JPAFSR_JETO_msg		},
 789	{	JPAFSR_SCE,	JPAFSR_SCE_msg		},
 790	{	JPAFSR_JEIC,	JPAFSR_JEIC_msg		},
 791	{	JPAFSR_JEIT,	JPAFSR_JEIT_msg		},
 792	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
 793	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
 794	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
 795	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
 796	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
 797	{	CHAFSR_UE,	CHAFSR_UE_msg		},
 798	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
 799	{	JPAFSR_OM,	JPAFSR_OM_msg		},
 800	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
 801	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
 802	{	CHAFSR_CE,	CHAFSR_CE_msg		},
 803	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
 804	{	JPAFSR_ETP,	JPAFSR_ETP_msg		},
 805	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
 806	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
 807	{	CHAFSR_TO,	CHAFSR_TO_msg		},
 808	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
 809	{	JPAFSR_UMS,	JPAFSR_UMS_msg		},
 810	{	JPAFSR_RUE,	JPAFSR_RUE_msg		},
 811	{	JPAFSR_RCE,	JPAFSR_RCE_msg		},
 812	{	JPAFSR_BP,	JPAFSR_BP_msg		},
 813	{	JPAFSR_WBP,	JPAFSR_WBP_msg		},
 814	{	JPAFSR_FRC,	JPAFSR_FRC_msg		},
 815	{	JPAFSR_FRU,	JPAFSR_FRU_msg		},
 816	/* These two do not update the AFAR. */
 817	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
 818	{	0,		NULL			},
 819};
 820static struct afsr_error_table *cheetah_error_table;
 821static unsigned long cheetah_afsr_errors;
 822
 823struct cheetah_err_info *cheetah_error_log;
 824
 825static inline struct cheetah_err_info *cheetah_get_error_log(unsigned long afsr)
 826{
 827	struct cheetah_err_info *p;
 828	int cpu = smp_processor_id();
 829
 830	if (!cheetah_error_log)
 831		return NULL;
 832
 833	p = cheetah_error_log + (cpu * 2);
 834	if ((afsr & CHAFSR_TL1) != 0UL)
 835		p++;
 836
 837	return p;
 838}
 839
 840extern unsigned int tl0_icpe[], tl1_icpe[];
 841extern unsigned int tl0_dcpe[], tl1_dcpe[];
 842extern unsigned int tl0_fecc[], tl1_fecc[];
 843extern unsigned int tl0_cee[], tl1_cee[];
 844extern unsigned int tl0_iae[], tl1_iae[];
 845extern unsigned int tl0_dae[], tl1_dae[];
 846extern unsigned int cheetah_plus_icpe_trap_vector[], cheetah_plus_icpe_trap_vector_tl1[];
 847extern unsigned int cheetah_plus_dcpe_trap_vector[], cheetah_plus_dcpe_trap_vector_tl1[];
 848extern unsigned int cheetah_fecc_trap_vector[], cheetah_fecc_trap_vector_tl1[];
 849extern unsigned int cheetah_cee_trap_vector[], cheetah_cee_trap_vector_tl1[];
 850extern unsigned int cheetah_deferred_trap_vector[], cheetah_deferred_trap_vector_tl1[];
 851
 852void __init cheetah_ecache_flush_init(void)
 853{
 854	unsigned long largest_size, smallest_linesize, order, ver;
 855	int i, sz;
 856
 857	/* Scan all cpu device tree nodes, note two values:
 858	 * 1) largest E-cache size
 859	 * 2) smallest E-cache line size
 860	 */
 861	largest_size = 0UL;
 862	smallest_linesize = ~0UL;
 863
 864	for (i = 0; i < NR_CPUS; i++) {
 865		unsigned long val;
 866
 867		val = cpu_data(i).ecache_size;
 868		if (!val)
 869			continue;
 870
 871		if (val > largest_size)
 872			largest_size = val;
 873
 874		val = cpu_data(i).ecache_line_size;
 875		if (val < smallest_linesize)
 876			smallest_linesize = val;
 877
 878	}
 879
 880	if (largest_size == 0UL || smallest_linesize == ~0UL) {
 881		prom_printf("cheetah_ecache_flush_init: Cannot probe cpu E-cache "
 882			    "parameters.\n");
 883		prom_halt();
 884	}
 885
 886	ecache_flush_size = (2 * largest_size);
 887	ecache_flush_linesize = smallest_linesize;
 888
 889	ecache_flush_physbase = find_ecache_flush_span(ecache_flush_size);
 890
 891	if (ecache_flush_physbase == ~0UL) {
 892		prom_printf("cheetah_ecache_flush_init: Cannot find %ld byte "
 893			    "contiguous physical memory.\n",
 894			    ecache_flush_size);
 895		prom_halt();
 896	}
 897
 898	/* Now allocate error trap reporting scoreboard. */
 899	sz = NR_CPUS * (2 * sizeof(struct cheetah_err_info));
 900	for (order = 0; order < MAX_ORDER; order++) {
 901		if ((PAGE_SIZE << order) >= sz)
 902			break;
 903	}
 904	cheetah_error_log = (struct cheetah_err_info *)
 905		__get_free_pages(GFP_KERNEL, order);
 906	if (!cheetah_error_log) {
 907		prom_printf("cheetah_ecache_flush_init: Failed to allocate "
 908			    "error logging scoreboard (%d bytes).\n", sz);
 909		prom_halt();
 910	}
 911	memset(cheetah_error_log, 0, PAGE_SIZE << order);
 912
 913	/* Mark all AFSRs as invalid so that the trap handler will
 914	 * log new new information there.
 915	 */
 916	for (i = 0; i < 2 * NR_CPUS; i++)
 917		cheetah_error_log[i].afsr = CHAFSR_INVALID;
 918
 919	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
 920	if ((ver >> 32) == __JALAPENO_ID ||
 921	    (ver >> 32) == __SERRANO_ID) {
 922		cheetah_error_table = &__jalapeno_error_table[0];
 923		cheetah_afsr_errors = JPAFSR_ERRORS;
 924	} else if ((ver >> 32) == 0x003e0015) {
 925		cheetah_error_table = &__cheetah_plus_error_table[0];
 926		cheetah_afsr_errors = CHPAFSR_ERRORS;
 927	} else {
 928		cheetah_error_table = &__cheetah_error_table[0];
 929		cheetah_afsr_errors = CHAFSR_ERRORS;
 930	}
 931
 932	/* Now patch trap tables. */
 933	memcpy(tl0_fecc, cheetah_fecc_trap_vector, (8 * 4));
 934	memcpy(tl1_fecc, cheetah_fecc_trap_vector_tl1, (8 * 4));
 935	memcpy(tl0_cee, cheetah_cee_trap_vector, (8 * 4));
 936	memcpy(tl1_cee, cheetah_cee_trap_vector_tl1, (8 * 4));
 937	memcpy(tl0_iae, cheetah_deferred_trap_vector, (8 * 4));
 938	memcpy(tl1_iae, cheetah_deferred_trap_vector_tl1, (8 * 4));
 939	memcpy(tl0_dae, cheetah_deferred_trap_vector, (8 * 4));
 940	memcpy(tl1_dae, cheetah_deferred_trap_vector_tl1, (8 * 4));
 941	if (tlb_type == cheetah_plus) {
 942		memcpy(tl0_dcpe, cheetah_plus_dcpe_trap_vector, (8 * 4));
 943		memcpy(tl1_dcpe, cheetah_plus_dcpe_trap_vector_tl1, (8 * 4));
 944		memcpy(tl0_icpe, cheetah_plus_icpe_trap_vector, (8 * 4));
 945		memcpy(tl1_icpe, cheetah_plus_icpe_trap_vector_tl1, (8 * 4));
 946	}
 947	flushi(PAGE_OFFSET);
 948}
 949
 950static void cheetah_flush_ecache(void)
 951{
 952	unsigned long flush_base = ecache_flush_physbase;
 953	unsigned long flush_linesize = ecache_flush_linesize;
 954	unsigned long flush_size = ecache_flush_size;
 955
 956	__asm__ __volatile__("1: subcc	%0, %4, %0\n\t"
 957			     "   bne,pt	%%xcc, 1b\n\t"
 958			     "    ldxa	[%2 + %0] %3, %%g0\n\t"
 959			     : "=&r" (flush_size)
 960			     : "0" (flush_size), "r" (flush_base),
 961			       "i" (ASI_PHYS_USE_EC), "r" (flush_linesize));
 962}
 963
 964static void cheetah_flush_ecache_line(unsigned long physaddr)
 965{
 966	unsigned long alias;
 967
 968	physaddr &= ~(8UL - 1UL);
 969	physaddr = (ecache_flush_physbase +
 970		    (physaddr & ((ecache_flush_size>>1UL) - 1UL)));
 971	alias = physaddr + (ecache_flush_size >> 1UL);
 972	__asm__ __volatile__("ldxa [%0] %2, %%g0\n\t"
 973			     "ldxa [%1] %2, %%g0\n\t"
 974			     "membar #Sync"
 975			     : /* no outputs */
 976			     : "r" (physaddr), "r" (alias),
 977			       "i" (ASI_PHYS_USE_EC));
 978}
 979
 980/* Unfortunately, the diagnostic access to the I-cache tags we need to
 981 * use to clear the thing interferes with I-cache coherency transactions.
 982 *
 983 * So we must only flush the I-cache when it is disabled.
 984 */
 985static void __cheetah_flush_icache(void)
 986{
 987	unsigned int icache_size, icache_line_size;
 988	unsigned long addr;
 989
 990	icache_size = local_cpu_data().icache_size;
 991	icache_line_size = local_cpu_data().icache_line_size;
 992
 993	/* Clear the valid bits in all the tags. */
 994	for (addr = 0; addr < icache_size; addr += icache_line_size) {
 995		__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
 996				     "membar #Sync"
 997				     : /* no outputs */
 998				     : "r" (addr | (2 << 3)),
 999				       "i" (ASI_IC_TAG));
1000	}
1001}
1002
1003static void cheetah_flush_icache(void)
1004{
1005	unsigned long dcu_save;
1006
1007	/* Save current DCU, disable I-cache. */
1008	__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1009			     "or %0, %2, %%g1\n\t"
1010			     "stxa %%g1, [%%g0] %1\n\t"
1011			     "membar #Sync"
1012			     : "=r" (dcu_save)
1013			     : "i" (ASI_DCU_CONTROL_REG), "i" (DCU_IC)
1014			     : "g1");
1015
1016	__cheetah_flush_icache();
1017
1018	/* Restore DCU register */
1019	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1020			     "membar #Sync"
1021			     : /* no outputs */
1022			     : "r" (dcu_save), "i" (ASI_DCU_CONTROL_REG));
1023}
1024
1025static void cheetah_flush_dcache(void)
1026{
1027	unsigned int dcache_size, dcache_line_size;
1028	unsigned long addr;
1029
1030	dcache_size = local_cpu_data().dcache_size;
1031	dcache_line_size = local_cpu_data().dcache_line_size;
1032
1033	for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1034		__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1035				     "membar #Sync"
1036				     : /* no outputs */
1037				     : "r" (addr), "i" (ASI_DCACHE_TAG));
1038	}
1039}
1040
1041/* In order to make the even parity correct we must do two things.
1042 * First, we clear DC_data_parity and set DC_utag to an appropriate value.
1043 * Next, we clear out all 32-bytes of data for that line.  Data of
1044 * all-zero + tag parity value of zero == correct parity.
1045 */
1046static void cheetah_plus_zap_dcache_parity(void)
1047{
1048	unsigned int dcache_size, dcache_line_size;
1049	unsigned long addr;
1050
1051	dcache_size = local_cpu_data().dcache_size;
1052	dcache_line_size = local_cpu_data().dcache_line_size;
1053
1054	for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1055		unsigned long tag = (addr >> 14);
1056		unsigned long line;
1057
1058		__asm__ __volatile__("membar	#Sync\n\t"
1059				     "stxa	%0, [%1] %2\n\t"
1060				     "membar	#Sync"
1061				     : /* no outputs */
1062				     : "r" (tag), "r" (addr),
1063				       "i" (ASI_DCACHE_UTAG));
1064		for (line = addr; line < addr + dcache_line_size; line += 8)
1065			__asm__ __volatile__("membar	#Sync\n\t"
1066					     "stxa	%%g0, [%0] %1\n\t"
1067					     "membar	#Sync"
1068					     : /* no outputs */
1069					     : "r" (line),
1070					       "i" (ASI_DCACHE_DATA));
1071	}
1072}
1073
1074/* Conversion tables used to frob Cheetah AFSR syndrome values into
1075 * something palatable to the memory controller driver get_unumber
1076 * routine.
1077 */
1078#define MT0	137
1079#define MT1	138
1080#define MT2	139
1081#define NONE	254
1082#define MTC0	140
1083#define MTC1	141
1084#define MTC2	142
1085#define MTC3	143
1086#define C0	128
1087#define C1	129
1088#define C2	130
1089#define C3	131
1090#define C4	132
1091#define C5	133
1092#define C6	134
1093#define C7	135
1094#define C8	136
1095#define M2	144
1096#define M3	145
1097#define M4	146
1098#define M	147
1099static unsigned char cheetah_ecc_syntab[] = {
1100/*00*/NONE, C0, C1, M2, C2, M2, M3, 47, C3, M2, M2, 53, M2, 41, 29, M,
1101/*01*/C4, M, M, 50, M2, 38, 25, M2, M2, 33, 24, M2, 11, M, M2, 16,
1102/*02*/C5, M, M, 46, M2, 37, 19, M2, M, 31, 32, M, 7, M2, M2, 10,
1103/*03*/M2, 40, 13, M2, 59, M, M2, 66, M, M2, M2, 0, M2, 67, 71, M,
1104/*04*/C6, M, M, 43, M, 36, 18, M, M2, 49, 15, M, 63, M2, M2, 6,
1105/*05*/M2, 44, 28, M2, M, M2, M2, 52, 68, M2, M2, 62, M2, M3, M3, M4,
1106/*06*/M2, 26, 106, M2, 64, M, M2, 2, 120, M, M2, M3, M, M3, M3, M4,
1107/*07*/116, M2, M2, M3, M2, M3, M, M4, M2, 58, 54, M2, M, M4, M4, M3,
1108/*08*/C7, M2, M, 42, M, 35, 17, M2, M, 45, 14, M2, 21, M2, M2, 5,
1109/*09*/M, 27, M, M, 99, M, M, 3, 114, M2, M2, 20, M2, M3, M3, M,
1110/*0a*/M2, 23, 113, M2, 112, M2, M, 51, 95, M, M2, M3, M2, M3, M3, M2,
1111/*0b*/103, M, M2, M3, M2, M3, M3, M4, M2, 48, M, M, 73, M2, M, M3,
1112/*0c*/M2, 22, 110, M2, 109, M2, M, 9, 108, M2, M, M3, M2, M3, M3, M,
1113/*0d*/102, M2, M, M, M2, M3, M3, M, M2, M3, M3, M2, M, M4, M, M3,
1114/*0e*/98, M, M2, M3, M2, M, M3, M4, M2, M3, M3, M4, M3, M, M, M,
1115/*0f*/M2, M3, M3, M, M3, M, M, M, 56, M4, M, M3, M4, M, M, M,
1116/*10*/C8, M, M2, 39, M, 34, 105, M2, M, 30, 104, M, 101, M, M, 4,
1117/*11*/M, M, 100, M, 83, M, M2, 12, 87, M, M, 57, M2, M, M3, M,
1118/*12*/M2, 97, 82, M2, 78, M2, M2, 1, 96, M, M, M, M, M, M3, M2,
1119/*13*/94, M, M2, M3, M2, M, M3, M, M2, M, 79, M, 69, M, M4, M,
1120/*14*/M2, 93, 92, M, 91, M, M2, 8, 90, M2, M2, M, M, M, M, M4,
1121/*15*/89, M, M, M3, M2, M3, M3, M, M, M, M3, M2, M3, M2, M, M3,
1122/*16*/86, M, M2, M3, M2, M, M3, M, M2, M, M3, M, M3, M, M, M3,
1123/*17*/M, M, M3, M2, M3, M2, M4, M, 60, M, M2, M3, M4, M, M, M2,
1124/*18*/M2, 88, 85, M2, 84, M, M2, 55, 81, M2, M2, M3, M2, M3, M3, M4,
1125/*19*/77, M, M, M, M2, M3, M, M, M2, M3, M3, M4, M3, M2, M, M,
1126/*1a*/74, M, M2, M3, M, M, M3, M, M, M, M3, M, M3, M, M4, M3,
1127/*1b*/M2, 70, 107, M4, 65, M2, M2, M, 127, M, M, M, M2, M3, M3, M,
1128/*1c*/80, M2, M2, 72, M, 119, 118, M, M2, 126, 76, M, 125, M, M4, M3,
1129/*1d*/M2, 115, 124, M, 75, M, M, M3, 61, M, M4, M, M4, M, M, M,
1130/*1e*/M, 123, 122, M4, 121, M4, M, M3, 117, M2, M2, M3, M4, M3, M, M,
1131/*1f*/111, M, M, M, M4, M3, M3, M, M, M, M3, M, M3, M2, M, M
1132};
1133static unsigned char cheetah_mtag_syntab[] = {
1134       NONE, MTC0,
1135       MTC1, NONE,
1136       MTC2, NONE,
1137       NONE, MT0,
1138       MTC3, NONE,
1139       NONE, MT1,
1140       NONE, MT2,
1141       NONE, NONE
1142};
1143
1144/* Return the highest priority error conditon mentioned. */
1145static inline unsigned long cheetah_get_hipri(unsigned long afsr)
1146{
1147	unsigned long tmp = 0;
1148	int i;
1149
1150	for (i = 0; cheetah_error_table[i].mask; i++) {
1151		if ((tmp = (afsr & cheetah_error_table[i].mask)) != 0UL)
1152			return tmp;
1153	}
1154	return tmp;
1155}
1156
1157static const char *cheetah_get_string(unsigned long bit)
1158{
1159	int i;
1160
1161	for (i = 0; cheetah_error_table[i].mask; i++) {
1162		if ((bit & cheetah_error_table[i].mask) != 0UL)
1163			return cheetah_error_table[i].name;
1164	}
1165	return "???";
1166}
1167
1168static void cheetah_log_errors(struct pt_regs *regs, struct cheetah_err_info *info,
1169			       unsigned long afsr, unsigned long afar, int recoverable)
1170{
1171	unsigned long hipri;
1172	char unum[256];
1173
1174	printk("%s" "ERROR(%d): Cheetah error trap taken afsr[%016lx] afar[%016lx] TL1(%d)\n",
1175	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1176	       afsr, afar,
1177	       (afsr & CHAFSR_TL1) ? 1 : 0);
1178	printk("%s" "ERROR(%d): TPC[%lx] TNPC[%lx] O7[%lx] TSTATE[%lx]\n",
1179	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1180	       regs->tpc, regs->tnpc, regs->u_regs[UREG_I7], regs->tstate);
1181	printk("%s" "ERROR(%d): ",
1182	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id());
1183	printk("TPC<%pS>\n", (void *) regs->tpc);
1184	printk("%s" "ERROR(%d): M_SYND(%lx),  E_SYND(%lx)%s%s\n",
1185	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1186	       (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT,
1187	       (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT,
1188	       (afsr & CHAFSR_ME) ? ", Multiple Errors" : "",
1189	       (afsr & CHAFSR_PRIV) ? ", Privileged" : "");
1190	hipri = cheetah_get_hipri(afsr);
1191	printk("%s" "ERROR(%d): Highest priority error (%016lx) \"%s\"\n",
1192	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1193	       hipri, cheetah_get_string(hipri));
1194
1195	/* Try to get unumber if relevant. */
1196#define ESYND_ERRORS	(CHAFSR_IVC | CHAFSR_IVU | \
1197			 CHAFSR_CPC | CHAFSR_CPU | \
1198			 CHAFSR_UE  | CHAFSR_CE  | \
1199			 CHAFSR_EDC | CHAFSR_EDU  | \
1200			 CHAFSR_UCC | CHAFSR_UCU  | \
1201			 CHAFSR_WDU | CHAFSR_WDC)
1202#define MSYND_ERRORS	(CHAFSR_EMC | CHAFSR_EMU)
1203	if (afsr & ESYND_ERRORS) {
1204		int syndrome;
1205		int ret;
1206
1207		syndrome = (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT;
1208		syndrome = cheetah_ecc_syntab[syndrome];
1209		ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1210		if (ret != -1)
1211			printk("%s" "ERROR(%d): AFAR E-syndrome [%s]\n",
1212			       (recoverable ? KERN_WARNING : KERN_CRIT),
1213			       smp_processor_id(), unum);
1214	} else if (afsr & MSYND_ERRORS) {
1215		int syndrome;
1216		int ret;
1217
1218		syndrome = (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT;
1219		syndrome = cheetah_mtag_syntab[syndrome];
1220		ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1221		if (ret != -1)
1222			printk("%s" "ERROR(%d): AFAR M-syndrome [%s]\n",
1223			       (recoverable ? KERN_WARNING : KERN_CRIT),
1224			       smp_processor_id(), unum);
1225	}
1226
1227	/* Now dump the cache snapshots. */
1228	printk("%s" "ERROR(%d): D-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx]\n",
1229	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1230	       (int) info->dcache_index,
1231	       info->dcache_tag,
1232	       info->dcache_utag,
1233	       info->dcache_stag);
1234	printk("%s" "ERROR(%d): D-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1235	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1236	       info->dcache_data[0],
1237	       info->dcache_data[1],
1238	       info->dcache_data[2],
1239	       info->dcache_data[3]);
1240	printk("%s" "ERROR(%d): I-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx] "
1241	       "u[%016llx] l[%016llx]\n",
1242	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1243	       (int) info->icache_index,
1244	       info->icache_tag,
1245	       info->icache_utag,
1246	       info->icache_stag,
1247	       info->icache_upper,
1248	       info->icache_lower);
1249	printk("%s" "ERROR(%d): I-cache INSN0[%016llx] INSN1[%016llx] INSN2[%016llx] INSN3[%016llx]\n",
1250	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1251	       info->icache_data[0],
1252	       info->icache_data[1],
1253	       info->icache_data[2],
1254	       info->icache_data[3]);
1255	printk("%s" "ERROR(%d): I-cache INSN4[%016llx] INSN5[%016llx] INSN6[%016llx] INSN7[%016llx]\n",
1256	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1257	       info->icache_data[4],
1258	       info->icache_data[5],
1259	       info->icache_data[6],
1260	       info->icache_data[7]);
1261	printk("%s" "ERROR(%d): E-cache idx[%x] tag[%016llx]\n",
1262	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1263	       (int) info->ecache_index, info->ecache_tag);
1264	printk("%s" "ERROR(%d): E-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1265	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1266	       info->ecache_data[0],
1267	       info->ecache_data[1],
1268	       info->ecache_data[2],
1269	       info->ecache_data[3]);
1270
1271	afsr = (afsr & ~hipri) & cheetah_afsr_errors;
1272	while (afsr != 0UL) {
1273		unsigned long bit = cheetah_get_hipri(afsr);
1274
1275		printk("%s" "ERROR: Multiple-error (%016lx) \"%s\"\n",
1276		       (recoverable ? KERN_WARNING : KERN_CRIT),
1277		       bit, cheetah_get_string(bit));
1278
1279		afsr &= ~bit;
1280	}
1281
1282	if (!recoverable)
1283		printk(KERN_CRIT "ERROR: This condition is not recoverable.\n");
1284}
1285
1286static int cheetah_recheck_errors(struct cheetah_err_info *logp)
1287{
1288	unsigned long afsr, afar;
1289	int ret = 0;
1290
1291	__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1292			     : "=r" (afsr)
1293			     : "i" (ASI_AFSR));
1294	if ((afsr & cheetah_afsr_errors) != 0) {
1295		if (logp != NULL) {
1296			__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1297					     : "=r" (afar)
1298					     : "i" (ASI_AFAR));
1299			logp->afsr = afsr;
1300			logp->afar = afar;
1301		}
1302		ret = 1;
1303	}
1304	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1305			     "membar #Sync\n\t"
1306			     : : "r" (afsr), "i" (ASI_AFSR));
1307
1308	return ret;
1309}
1310
1311void cheetah_fecc_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1312{
1313	struct cheetah_err_info local_snapshot, *p;
1314	int recoverable;
1315
1316	/* Flush E-cache */
1317	cheetah_flush_ecache();
1318
1319	p = cheetah_get_error_log(afsr);
1320	if (!p) {
1321		prom_printf("ERROR: Early Fast-ECC error afsr[%016lx] afar[%016lx]\n",
1322			    afsr, afar);
1323		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1324			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1325		prom_halt();
1326	}
1327
1328	/* Grab snapshot of logged error. */
1329	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1330
1331	/* If the current trap snapshot does not match what the
1332	 * trap handler passed along into our args, big trouble.
1333	 * In such a case, mark the local copy as invalid.
1334	 *
1335	 * Else, it matches and we mark the afsr in the non-local
1336	 * copy as invalid so we may log new error traps there.
1337	 */
1338	if (p->afsr != afsr || p->afar != afar)
1339		local_snapshot.afsr = CHAFSR_INVALID;
1340	else
1341		p->afsr = CHAFSR_INVALID;
1342
1343	cheetah_flush_icache();
1344	cheetah_flush_dcache();
1345
1346	/* Re-enable I-cache/D-cache */
1347	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1348			     "or %%g1, %1, %%g1\n\t"
1349			     "stxa %%g1, [%%g0] %0\n\t"
1350			     "membar #Sync"
1351			     : /* no outputs */
1352			     : "i" (ASI_DCU_CONTROL_REG),
1353			       "i" (DCU_DC | DCU_IC)
1354			     : "g1");
1355
1356	/* Re-enable error reporting */
1357	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1358			     "or %%g1, %1, %%g1\n\t"
1359			     "stxa %%g1, [%%g0] %0\n\t"
1360			     "membar #Sync"
1361			     : /* no outputs */
1362			     : "i" (ASI_ESTATE_ERROR_EN),
1363			       "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1364			     : "g1");
1365
1366	/* Decide if we can continue after handling this trap and
1367	 * logging the error.
1368	 */
1369	recoverable = 1;
1370	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1371		recoverable = 0;
1372
1373	/* Re-check AFSR/AFAR.  What we are looking for here is whether a new
1374	 * error was logged while we had error reporting traps disabled.
1375	 */
1376	if (cheetah_recheck_errors(&local_snapshot)) {
1377		unsigned long new_afsr = local_snapshot.afsr;
1378
1379		/* If we got a new asynchronous error, die... */
1380		if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1381				CHAFSR_WDU | CHAFSR_CPU |
1382				CHAFSR_IVU | CHAFSR_UE |
1383				CHAFSR_BERR | CHAFSR_TO))
1384			recoverable = 0;
1385	}
1386
1387	/* Log errors. */
1388	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1389
1390	if (!recoverable)
1391		panic("Irrecoverable Fast-ECC error trap.\n");
1392
1393	/* Flush E-cache to kick the error trap handlers out. */
1394	cheetah_flush_ecache();
1395}
1396
1397/* Try to fix a correctable error by pushing the line out from
1398 * the E-cache.  Recheck error reporting registers to see if the
1399 * problem is intermittent.
1400 */
1401static int cheetah_fix_ce(unsigned long physaddr)
1402{
1403	unsigned long orig_estate;
1404	unsigned long alias1, alias2;
1405	int ret;
1406
1407	/* Make sure correctable error traps are disabled. */
1408	__asm__ __volatile__("ldxa	[%%g0] %2, %0\n\t"
1409			     "andn	%0, %1, %%g1\n\t"
1410			     "stxa	%%g1, [%%g0] %2\n\t"
1411			     "membar	#Sync"
1412			     : "=&r" (orig_estate)
1413			     : "i" (ESTATE_ERROR_CEEN),
1414			       "i" (ASI_ESTATE_ERROR_EN)
1415			     : "g1");
1416
1417	/* We calculate alias addresses that will force the
1418	 * cache line in question out of the E-cache.  Then
1419	 * we bring it back in with an atomic instruction so
1420	 * that we get it in some modified/exclusive state,
1421	 * then we displace it again to try and get proper ECC
1422	 * pushed back into the system.
1423	 */
1424	physaddr &= ~(8UL - 1UL);
1425	alias1 = (ecache_flush_physbase +
1426		  (physaddr & ((ecache_flush_size >> 1) - 1)));
1427	alias2 = alias1 + (ecache_flush_size >> 1);
1428	__asm__ __volatile__("ldxa	[%0] %3, %%g0\n\t"
1429			     "ldxa	[%1] %3, %%g0\n\t"
1430			     "casxa	[%2] %3, %%g0, %%g0\n\t"
1431			     "ldxa	[%0] %3, %%g0\n\t"
1432			     "ldxa	[%1] %3, %%g0\n\t"
1433			     "membar	#Sync"
1434			     : /* no outputs */
1435			     : "r" (alias1), "r" (alias2),
1436			       "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1437
1438	/* Did that trigger another error? */
1439	if (cheetah_recheck_errors(NULL)) {
1440		/* Try one more time. */
1441		__asm__ __volatile__("ldxa [%0] %1, %%g0\n\t"
1442				     "membar #Sync"
1443				     : : "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1444		if (cheetah_recheck_errors(NULL))
1445			ret = 2;
1446		else
1447			ret = 1;
1448	} else {
1449		/* No new error, intermittent problem. */
1450		ret = 0;
1451	}
1452
1453	/* Restore error enables. */
1454	__asm__ __volatile__("stxa	%0, [%%g0] %1\n\t"
1455			     "membar	#Sync"
1456			     : : "r" (orig_estate), "i" (ASI_ESTATE_ERROR_EN));
1457
1458	return ret;
1459}
1460
1461/* Return non-zero if PADDR is a valid physical memory address. */
1462static int cheetah_check_main_memory(unsigned long paddr)
1463{
1464	unsigned long vaddr = PAGE_OFFSET + paddr;
1465
1466	if (vaddr > (unsigned long) high_memory)
1467		return 0;
1468
1469	return kern_addr_valid(vaddr);
1470}
1471
1472void cheetah_cee_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1473{
1474	struct cheetah_err_info local_snapshot, *p;
1475	int recoverable, is_memory;
1476
1477	p = cheetah_get_error_log(afsr);
1478	if (!p) {
1479		prom_printf("ERROR: Early CEE error afsr[%016lx] afar[%016lx]\n",
1480			    afsr, afar);
1481		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1482			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1483		prom_halt();
1484	}
1485
1486	/* Grab snapshot of logged error. */
1487	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1488
1489	/* If the current trap snapshot does not match what the
1490	 * trap handler passed along into our args, big trouble.
1491	 * In such a case, mark the local copy as invalid.
1492	 *
1493	 * Else, it matches and we mark the afsr in the non-local
1494	 * copy as invalid so we may log new error traps there.
1495	 */
1496	if (p->afsr != afsr || p->afar != afar)
1497		local_snapshot.afsr = CHAFSR_INVALID;
1498	else
1499		p->afsr = CHAFSR_INVALID;
1500
1501	is_memory = cheetah_check_main_memory(afar);
1502
1503	if (is_memory && (afsr & CHAFSR_CE) != 0UL) {
1504		/* XXX Might want to log the results of this operation
1505		 * XXX somewhere... -DaveM
1506		 */
1507		cheetah_fix_ce(afar);
1508	}
1509
1510	{
1511		int flush_all, flush_line;
1512
1513		flush_all = flush_line = 0;
1514		if ((afsr & CHAFSR_EDC) != 0UL) {
1515			if ((afsr & cheetah_afsr_errors) == CHAFSR_EDC)
1516				flush_line = 1;
1517			else
1518				flush_all = 1;
1519		} else if ((afsr & CHAFSR_CPC) != 0UL) {
1520			if ((afsr & cheetah_afsr_errors) == CHAFSR_CPC)
1521				flush_line = 1;
1522			else
1523				flush_all = 1;
1524		}
1525
1526		/* Trap handler only disabled I-cache, flush it. */
1527		cheetah_flush_icache();
1528
1529		/* Re-enable I-cache */
1530		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1531				     "or %%g1, %1, %%g1\n\t"
1532				     "stxa %%g1, [%%g0] %0\n\t"
1533				     "membar #Sync"
1534				     : /* no outputs */
1535				     : "i" (ASI_DCU_CONTROL_REG),
1536				     "i" (DCU_IC)
1537				     : "g1");
1538
1539		if (flush_all)
1540			cheetah_flush_ecache();
1541		else if (flush_line)
1542			cheetah_flush_ecache_line(afar);
1543	}
1544
1545	/* Re-enable error reporting */
1546	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1547			     "or %%g1, %1, %%g1\n\t"
1548			     "stxa %%g1, [%%g0] %0\n\t"
1549			     "membar #Sync"
1550			     : /* no outputs */
1551			     : "i" (ASI_ESTATE_ERROR_EN),
1552			       "i" (ESTATE_ERROR_CEEN)
1553			     : "g1");
1554
1555	/* Decide if we can continue after handling this trap and
1556	 * logging the error.
1557	 */
1558	recoverable = 1;
1559	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1560		recoverable = 0;
1561
1562	/* Re-check AFSR/AFAR */
1563	(void) cheetah_recheck_errors(&local_snapshot);
1564
1565	/* Log errors. */
1566	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1567
1568	if (!recoverable)
1569		panic("Irrecoverable Correctable-ECC error trap.\n");
1570}
1571
1572void cheetah_deferred_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1573{
1574	struct cheetah_err_info local_snapshot, *p;
1575	int recoverable, is_memory;
1576
1577#ifdef CONFIG_PCI
1578	/* Check for the special PCI poke sequence. */
1579	if (pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
1580		cheetah_flush_icache();
1581		cheetah_flush_dcache();
1582
1583		/* Re-enable I-cache/D-cache */
1584		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1585				     "or %%g1, %1, %%g1\n\t"
1586				     "stxa %%g1, [%%g0] %0\n\t"
1587				     "membar #Sync"
1588				     : /* no outputs */
1589				     : "i" (ASI_DCU_CONTROL_REG),
1590				       "i" (DCU_DC | DCU_IC)
1591				     : "g1");
1592
1593		/* Re-enable error reporting */
1594		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1595				     "or %%g1, %1, %%g1\n\t"
1596				     "stxa %%g1, [%%g0] %0\n\t"
1597				     "membar #Sync"
1598				     : /* no outputs */
1599				     : "i" (ASI_ESTATE_ERROR_EN),
1600				       "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1601				     : "g1");
1602
1603		(void) cheetah_recheck_errors(NULL);
1604
1605		pci_poke_faulted = 1;
1606		regs->tpc += 4;
1607		regs->tnpc = regs->tpc + 4;
1608		return;
1609	}
1610#endif
1611
1612	p = cheetah_get_error_log(afsr);
1613	if (!p) {
1614		prom_printf("ERROR: Early deferred error afsr[%016lx] afar[%016lx]\n",
1615			    afsr, afar);
1616		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1617			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1618		prom_halt();
1619	}
1620
1621	/* Grab snapshot of logged error. */
1622	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1623
1624	/* If the current trap snapshot does not match what the
1625	 * trap handler passed along into our args, big trouble.
1626	 * In such a case, mark the local copy as invalid.
1627	 *
1628	 * Else, it matches and we mark the afsr in the non-local
1629	 * copy as invalid so we may log new error traps there.
1630	 */
1631	if (p->afsr != afsr || p->afar != afar)
1632		local_snapshot.afsr = CHAFSR_INVALID;
1633	else
1634		p->afsr = CHAFSR_INVALID;
1635
1636	is_memory = cheetah_check_main_memory(afar);
1637
1638	{
1639		int flush_all, flush_line;
1640
1641		flush_all = flush_line = 0;
1642		if ((afsr & CHAFSR_EDU) != 0UL) {
1643			if ((afsr & cheetah_afsr_errors) == CHAFSR_EDU)
1644				flush_line = 1;
1645			else
1646				flush_all = 1;
1647		} else if ((afsr & CHAFSR_BERR) != 0UL) {
1648			if ((afsr & cheetah_afsr_errors) == CHAFSR_BERR)
1649				flush_line = 1;
1650			else
1651				flush_all = 1;
1652		}
1653
1654		cheetah_flush_icache();
1655		cheetah_flush_dcache();
1656
1657		/* Re-enable I/D caches */
1658		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1659				     "or %%g1, %1, %%g1\n\t"
1660				     "stxa %%g1, [%%g0] %0\n\t"
1661				     "membar #Sync"
1662				     : /* no outputs */
1663				     : "i" (ASI_DCU_CONTROL_REG),
1664				     "i" (DCU_IC | DCU_DC)
1665				     : "g1");
1666
1667		if (flush_all)
1668			cheetah_flush_ecache();
1669		else if (flush_line)
1670			cheetah_flush_ecache_line(afar);
1671	}
1672
1673	/* Re-enable error reporting */
1674	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1675			     "or %%g1, %1, %%g1\n\t"
1676			     "stxa %%g1, [%%g0] %0\n\t"
1677			     "membar #Sync"
1678			     : /* no outputs */
1679			     : "i" (ASI_ESTATE_ERROR_EN),
1680			     "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1681			     : "g1");
1682
1683	/* Decide if we can continue after handling this trap and
1684	 * logging the error.
1685	 */
1686	recoverable = 1;
1687	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1688		recoverable = 0;
1689
1690	/* Re-check AFSR/AFAR.  What we are looking for here is whether a new
1691	 * error was logged while we had error reporting traps disabled.
1692	 */
1693	if (cheetah_recheck_errors(&local_snapshot)) {
1694		unsigned long new_afsr = local_snapshot.afsr;
1695
1696		/* If we got a new asynchronous error, die... */
1697		if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1698				CHAFSR_WDU | CHAFSR_CPU |
1699				CHAFSR_IVU | CHAFSR_UE |
1700				CHAFSR_BERR | CHAFSR_TO))
1701			recoverable = 0;
1702	}
1703
1704	/* Log errors. */
1705	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1706
1707	/* "Recoverable" here means we try to yank the page from ever
1708	 * being newly used again.  This depends upon a few things:
1709	 * 1) Must be main memory, and AFAR must be valid.
1710	 * 2) If we trapped from user, OK.
1711	 * 3) Else, if we trapped from kernel we must find exception
1712	 *    table entry (ie. we have to have been accessing user
1713	 *    space).
1714	 *
1715	 * If AFAR is not in main memory, or we trapped from kernel
1716	 * and cannot find an exception table entry, it is unacceptable
1717	 * to try and continue.
1718	 */
1719	if (recoverable && is_memory) {
1720		if ((regs->tstate & TSTATE_PRIV) == 0UL) {
1721			/* OK, usermode access. */
1722			recoverable = 1;
1723		} else {
1724			const struct exception_table_entry *entry;
1725
1726			entry = search_exception_tables(regs->tpc);
1727			if (entry) {
1728				/* OK, kernel access to userspace. */
1729				recoverable = 1;
1730
1731			} else {
1732				/* BAD, privileged state is corrupted. */
1733				recoverable = 0;
1734			}
1735
1736			if (recoverable) {
1737				if (pfn_valid(afar >> PAGE_SHIFT))
1738					get_page(pfn_to_page(afar >> PAGE_SHIFT));
1739				else
1740					recoverable = 0;
1741
1742				/* Only perform fixup if we still have a
1743				 * recoverable condition.
1744				 */
1745				if (recoverable) {
1746					regs->tpc = entry->fixup;
1747					regs->tnpc = regs->tpc + 4;
1748				}
1749			}
1750		}
1751	} else {
1752		recoverable = 0;
1753	}
1754
1755	if (!recoverable)
1756		panic("Irrecoverable deferred error trap.\n");
1757}
1758
1759/* Handle a D/I cache parity error trap.  TYPE is encoded as:
1760 *
1761 * Bit0:	0=dcache,1=icache
1762 * Bit1:	0=recoverable,1=unrecoverable
1763 *
1764 * The hardware has disabled both the I-cache and D-cache in
1765 * the %dcr register.  
1766 */
1767void cheetah_plus_parity_error(int type, struct pt_regs *regs)
1768{
1769	if (type & 0x1)
1770		__cheetah_flush_icache();
1771	else
1772		cheetah_plus_zap_dcache_parity();
1773	cheetah_flush_dcache();
1774
1775	/* Re-enable I-cache/D-cache */
1776	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1777			     "or %%g1, %1, %%g1\n\t"
1778			     "stxa %%g1, [%%g0] %0\n\t"
1779			     "membar #Sync"
1780			     : /* no outputs */
1781			     : "i" (ASI_DCU_CONTROL_REG),
1782			       "i" (DCU_DC | DCU_IC)
1783			     : "g1");
1784
1785	if (type & 0x2) {
1786		printk(KERN_EMERG "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1787		       smp_processor_id(),
1788		       (type & 0x1) ? 'I' : 'D',
1789		       regs->tpc);
1790		printk(KERN_EMERG "TPC<%pS>\n", (void *) regs->tpc);
1791		panic("Irrecoverable Cheetah+ parity error.");
1792	}
1793
1794	printk(KERN_WARNING "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1795	       smp_processor_id(),
1796	       (type & 0x1) ? 'I' : 'D',
1797	       regs->tpc);
1798	printk(KERN_WARNING "TPC<%pS>\n", (void *) regs->tpc);
1799}
1800
1801struct sun4v_error_entry {
1802	/* Unique error handle */
1803/*0x00*/u64		err_handle;
1804
1805	/* %stick value at the time of the error */
1806/*0x08*/u64		err_stick;
1807
1808/*0x10*/u8		reserved_1[3];
1809
1810	/* Error type */
1811/*0x13*/u8		err_type;
1812#define SUN4V_ERR_TYPE_UNDEFINED	0
1813#define SUN4V_ERR_TYPE_UNCORRECTED_RES	1
1814#define SUN4V_ERR_TYPE_PRECISE_NONRES	2
1815#define SUN4V_ERR_TYPE_DEFERRED_NONRES	3
1816#define SUN4V_ERR_TYPE_SHUTDOWN_RQST	4
1817#define SUN4V_ERR_TYPE_DUMP_CORE	5
1818#define SUN4V_ERR_TYPE_SP_STATE_CHANGE	6
1819#define SUN4V_ERR_TYPE_NUM		7
1820
1821	/* Error attributes */
1822/*0x14*/u32		err_attrs;
1823#define SUN4V_ERR_ATTRS_PROCESSOR	0x00000001
1824#define SUN4V_ERR_ATTRS_MEMORY		0x00000002
1825#define SUN4V_ERR_ATTRS_PIO		0x00000004
1826#define SUN4V_ERR_ATTRS_INT_REGISTERS	0x00000008
1827#define SUN4V_ERR_ATTRS_FPU_REGISTERS	0x00000010
1828#define SUN4V_ERR_ATTRS_SHUTDOWN_RQST	0x00000020
1829#define SUN4V_ERR_ATTRS_ASR		0x00000040
1830#define SUN4V_ERR_ATTRS_ASI		0x00000080
1831#define SUN4V_ERR_ATTRS_PRIV_REG	0x00000100
1832#define SUN4V_ERR_ATTRS_SPSTATE_MSK	0x00000600
1833#define SUN4V_ERR_ATTRS_MCD		0x00000800
1834#define SUN4V_ERR_ATTRS_SPSTATE_SHFT	9
1835#define SUN4V_ERR_ATTRS_MODE_MSK	0x03000000
1836#define SUN4V_ERR_ATTRS_MODE_SHFT	24
1837#define SUN4V_ERR_ATTRS_RES_QUEUE_FULL	0x80000000
1838
1839#define SUN4V_ERR_SPSTATE_FAULTED	0
1840#define SUN4V_ERR_SPSTATE_AVAILABLE	1
1841#define SUN4V_ERR_SPSTATE_NOT_PRESENT	2
1842
1843#define SUN4V_ERR_MODE_USER		1
1844#define SUN4V_ERR_MODE_PRIV		2
1845
1846	/* Real address of the memory region or PIO transaction */
1847/*0x18*/u64		err_raddr;
1848
1849	/* Size of the operation triggering the error, in bytes */
1850/*0x20*/u32		err_size;
1851
1852	/* ID of the CPU */
1853/*0x24*/u16		err_cpu;
1854
1855	/* Grace periof for shutdown, in seconds */
1856/*0x26*/u16		err_secs;
1857
1858	/* Value of the %asi register */
1859/*0x28*/u8		err_asi;
1860
1861/*0x29*/u8		reserved_2;
1862
1863	/* Value of the ASR register number */
1864/*0x2a*/u16		err_asr;
1865#define SUN4V_ERR_ASR_VALID		0x8000
1866
1867/*0x2c*/u32		reserved_3;
1868/*0x30*/u64		reserved_4;
1869/*0x38*/u64		reserved_5;
1870};
1871
1872static atomic_t sun4v_resum_oflow_cnt = ATOMIC_INIT(0);
1873static atomic_t sun4v_nonresum_oflow_cnt = ATOMIC_INIT(0);
1874
1875static const char *sun4v_err_type_to_str(u8 type)
1876{
1877	static const char *types[SUN4V_ERR_TYPE_NUM] = {
1878		"undefined",
1879		"uncorrected resumable",
1880		"precise nonresumable",
1881		"deferred nonresumable",
1882		"shutdown request",
1883		"dump core",
1884		"SP state change",
1885	};
1886
1887	if (type < SUN4V_ERR_TYPE_NUM)
1888		return types[type];
1889
1890	return "unknown";
1891}
1892
1893static void sun4v_emit_err_attr_strings(u32 attrs)
1894{
1895	static const char *attr_names[] = {
1896		"processor",
1897		"memory",
1898		"PIO",
1899		"int-registers",
1900		"fpu-registers",
1901		"shutdown-request",
1902		"ASR",
1903		"ASI",
1904		"priv-reg",
1905	};
1906	static const char *sp_states[] = {
1907		"sp-faulted",
1908		"sp-available",
1909		"sp-not-present",
1910		"sp-state-reserved",
1911	};
1912	static const char *modes[] = {
1913		"mode-reserved0",
1914		"user",
1915		"priv",
1916		"mode-reserved1",
1917	};
1918	u32 sp_state, mode;
1919	int i;
1920
1921	for (i = 0; i < ARRAY_SIZE(attr_names); i++) {
1922		if (attrs & (1U << i)) {
1923			const char *s = attr_names[i];
1924
1925			pr_cont("%s ", s);
1926		}
1927	}
1928
1929	sp_state = ((attrs & SUN4V_ERR_ATTRS_SPSTATE_MSK) >>
1930		    SUN4V_ERR_ATTRS_SPSTATE_SHFT);
1931	pr_cont("%s ", sp_states[sp_state]);
1932
1933	mode = ((attrs & SUN4V_ERR_ATTRS_MODE_MSK) >>
1934		SUN4V_ERR_ATTRS_MODE_SHFT);
1935	pr_cont("%s ", modes[mode]);
1936
1937	if (attrs & SUN4V_ERR_ATTRS_RES_QUEUE_FULL)
1938		pr_cont("res-queue-full ");
1939}
1940
1941/* When the report contains a real-address of "-1" it means that the
1942 * hardware did not provide the address.  So we compute the effective
1943 * address of the load or store instruction at regs->tpc and report
1944 * that.  Usually when this happens it's a PIO and in such a case we
1945 * are using physical addresses with bypass ASIs anyways, so what we
1946 * report here is exactly what we want.
1947 */
1948static void sun4v_report_real_raddr(const char *pfx, struct pt_regs *regs)
1949{
1950	unsigned int insn;
1951	u64 addr;
1952
1953	if (!(regs->tstate & TSTATE_PRIV))
1954		return;
1955
1956	insn = *(unsigned int *) regs->tpc;
1957
1958	addr = compute_effective_address(regs, insn, 0);
1959
1960	printk("%s: insn effective address [0x%016llx]\n",
1961	       pfx, addr);
1962}
1963
1964static void sun4v_log_error(struct pt_regs *regs, struct sun4v_error_entry *ent,
1965			    int cpu, const char *pfx, atomic_t *ocnt)
1966{
1967	u64 *raw_ptr = (u64 *) ent;
1968	u32 attrs;
1969	int cnt;
1970
1971	printk("%s: Reporting on cpu %d\n", pfx, cpu);
1972	printk("%s: TPC [0x%016lx] <%pS>\n",
1973	       pfx, regs->tpc, (void *) regs->tpc);
1974
1975	printk("%s: RAW [%016llx:%016llx:%016llx:%016llx\n",
1976	       pfx, raw_ptr[0], raw_ptr[1], raw_ptr[2], raw_ptr[3]);
1977	printk("%s:      %016llx:%016llx:%016llx:%016llx]\n",
1978	       pfx, raw_ptr[4], raw_ptr[5], raw_ptr[6], raw_ptr[7]);
1979
1980	printk("%s: handle [0x%016llx] stick [0x%016llx]\n",
1981	       pfx, ent->err_handle, ent->err_stick);
1982
1983	printk("%s: type [%s]\n", pfx, sun4v_err_type_to_str(ent->err_type));
1984
1985	attrs = ent->err_attrs;
1986	printk("%s: attrs [0x%08x] < ", pfx, attrs);
1987	sun4v_emit_err_attr_strings(attrs);
1988	pr_cont(">\n");
1989
1990	/* Various fields in the error report are only valid if
1991	 * certain attribute bits are set.
1992	 */
1993	if (attrs & (SUN4V_ERR_ATTRS_MEMORY |
1994		     SUN4V_ERR_ATTRS_PIO |
1995		     SUN4V_ERR_ATTRS_ASI)) {
1996		printk("%s: raddr [0x%016llx]\n", pfx, ent->err_raddr);
1997
1998		if (ent->err_raddr == ~(u64)0)
1999			sun4v_report_real_raddr(pfx, regs);
2000	}
2001
2002	if (attrs & (SUN4V_ERR_ATTRS_MEMORY | SUN4V_ERR_ATTRS_ASI))
2003		printk("%s: size [0x%x]\n", pfx, ent->err_size);
2004
2005	if (attrs & (SUN4V_ERR_ATTRS_PROCESSOR |
2006		     SUN4V_ERR_ATTRS_INT_REGISTERS |
2007		     SUN4V_ERR_ATTRS_FPU_REGISTERS |
2008		     SUN4V_ERR_ATTRS_PRIV_REG))
2009		printk("%s: cpu[%u]\n", pfx, ent->err_cpu);
2010
2011	if (attrs & SUN4V_ERR_ATTRS_ASI)
2012		printk("%s: asi [0x%02x]\n", pfx, ent->err_asi);
2013
2014	if ((attrs & (SUN4V_ERR_ATTRS_INT_REGISTERS |
2015		      SUN4V_ERR_ATTRS_FPU_REGISTERS |
2016		      SUN4V_ERR_ATTRS_PRIV_REG)) &&
2017	    (ent->err_asr & SUN4V_ERR_ASR_VALID) != 0)
2018		printk("%s: reg [0x%04x]\n",
2019		       pfx, ent->err_asr & ~SUN4V_ERR_ASR_VALID);
2020
2021	show_regs(regs);
2022
2023	if ((cnt = atomic_read(ocnt)) != 0) {
2024		atomic_set(ocnt, 0);
2025		wmb();
2026		printk("%s: Queue overflowed %d times.\n",
2027		       pfx, cnt);
2028	}
2029}
2030
2031/* Handle memory corruption detected error which is vectored in
2032 * through resumable error trap.
2033 */
2034void do_mcd_err(struct pt_regs *regs, struct sun4v_error_entry ent)
2035{
2036	if (notify_die(DIE_TRAP, "MCD error", regs, 0, 0x34,
2037		       SIGSEGV) == NOTIFY_STOP)
2038		return;
2039
2040	if (regs->tstate & TSTATE_PRIV) {
2041		/* MCD exception could happen because the task was
2042		 * running a system call with MCD enabled and passed a
2043		 * non-versioned pointer or pointer with bad version
2044		 * tag to the system call. In such cases, hypervisor
2045		 * places the address of offending instruction in the
2046		 * resumable error report. This is a deferred error,
2047		 * so the read/write that caused the trap was potentially
2048		 * retired long time back and we may have no choice
2049		 * but to send SIGSEGV to the process.
2050		 */
2051		const struct exception_table_entry *entry;
2052
2053		entry = search_exception_tables(regs->tpc);
2054		if (entry) {
2055			/* Looks like a bad syscall parameter */
2056#ifdef DEBUG_EXCEPTIONS
2057			pr_emerg("Exception: PC<%016lx> faddr<UNKNOWN>\n",
2058				 regs->tpc);
2059			pr_emerg("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
2060				 ent.err_raddr, entry->fixup);
2061#endif
2062			regs->tpc = entry->fixup;
2063			regs->tnpc = regs->tpc + 4;
2064			return;
2065		}
2066	}
2067
2068	/* Send SIGSEGV to the userspace process with the right signal
2069	 * code
2070	 */
2071	force_sig_fault(SIGSEGV, SEGV_ADIDERR, (void __user *)ent.err_raddr);
 
2072}
2073
2074/* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2075 * Log the event and clear the first word of the entry.
2076 */
2077void sun4v_resum_error(struct pt_regs *regs, unsigned long offset)
2078{
2079	enum ctx_state prev_state = exception_enter();
2080	struct sun4v_error_entry *ent, local_copy;
2081	struct trap_per_cpu *tb;
2082	unsigned long paddr;
2083	int cpu;
2084
2085	cpu = get_cpu();
2086
2087	tb = &trap_block[cpu];
2088	paddr = tb->resum_kernel_buf_pa + offset;
2089	ent = __va(paddr);
2090
2091	memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2092
2093	/* We have a local copy now, so release the entry.  */
2094	ent->err_handle = 0;
2095	wmb();
2096
2097	put_cpu();
2098
2099	if (local_copy.err_type == SUN4V_ERR_TYPE_SHUTDOWN_RQST) {
2100		/* We should really take the seconds field of
2101		 * the error report and use it for the shutdown
2102		 * invocation, but for now do the same thing we
2103		 * do for a DS shutdown request.
2104		 */
2105		pr_info("Shutdown request, %u seconds...\n",
2106			local_copy.err_secs);
2107		orderly_poweroff(true);
2108		goto out;
2109	}
2110
2111	/* If this is a memory corruption detected error vectored in
2112	 * by HV through resumable error trap, call the handler
2113	 */
2114	if (local_copy.err_attrs & SUN4V_ERR_ATTRS_MCD) {
2115		do_mcd_err(regs, local_copy);
2116		return;
2117	}
2118
2119	sun4v_log_error(regs, &local_copy, cpu,
2120			KERN_ERR "RESUMABLE ERROR",
2121			&sun4v_resum_oflow_cnt);
2122out:
2123	exception_exit(prev_state);
2124}
2125
2126/* If we try to printk() we'll probably make matters worse, by trying
2127 * to retake locks this cpu already holds or causing more errors. So
2128 * just bump a counter, and we'll report these counter bumps above.
2129 */
2130void sun4v_resum_overflow(struct pt_regs *regs)
2131{
2132	atomic_inc(&sun4v_resum_oflow_cnt);
2133}
2134
2135/* Given a set of registers, get the virtual addressi that was being accessed
2136 * by the faulting instructions at tpc.
2137 */
2138static unsigned long sun4v_get_vaddr(struct pt_regs *regs)
2139{
2140	unsigned int insn;
2141
2142	if (!copy_from_user(&insn, (void __user *)regs->tpc, 4)) {
2143		return compute_effective_address(regs, insn,
2144						 (insn >> 25) & 0x1f);
2145	}
2146	return 0;
2147}
2148
2149/* Attempt to handle non-resumable errors generated from userspace.
2150 * Returns true if the signal was handled, false otherwise.
2151 */
2152bool sun4v_nonresum_error_user_handled(struct pt_regs *regs,
2153				  struct sun4v_error_entry *ent) {
2154
2155	unsigned int attrs = ent->err_attrs;
2156
2157	if (attrs & SUN4V_ERR_ATTRS_MEMORY) {
2158		unsigned long addr = ent->err_raddr;
 
2159
2160		if (addr == ~(u64)0) {
2161			/* This seems highly unlikely to ever occur */
2162			pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory error detected in unknown location!\n");
2163		} else {
2164			unsigned long page_cnt = DIV_ROUND_UP(ent->err_size,
2165							      PAGE_SIZE);
2166
2167			/* Break the unfortunate news. */
2168			pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory failed at %016lX\n",
2169				 addr);
2170			pr_emerg("SUN4V NON-RECOVERABLE ERROR:   Claiming %lu ages.\n",
2171				 page_cnt);
2172
2173			while (page_cnt-- > 0) {
2174				if (pfn_valid(addr >> PAGE_SHIFT))
2175					get_page(pfn_to_page(addr >> PAGE_SHIFT));
2176				addr += PAGE_SIZE;
2177			}
2178		}
2179		force_sig(SIGKILL);
 
 
 
2180
2181		return true;
2182	}
2183	if (attrs & SUN4V_ERR_ATTRS_PIO) {
2184		force_sig_fault(SIGBUS, BUS_ADRERR,
2185				(void __user *)sun4v_get_vaddr(regs));
 
 
 
 
 
2186		return true;
2187	}
2188
2189	/* Default to doing nothing */
2190	return false;
2191}
2192
2193/* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2194 * Log the event, clear the first word of the entry, and die.
2195 */
2196void sun4v_nonresum_error(struct pt_regs *regs, unsigned long offset)
2197{
2198	struct sun4v_error_entry *ent, local_copy;
2199	struct trap_per_cpu *tb;
2200	unsigned long paddr;
2201	int cpu;
2202
2203	cpu = get_cpu();
2204
2205	tb = &trap_block[cpu];
2206	paddr = tb->nonresum_kernel_buf_pa + offset;
2207	ent = __va(paddr);
2208
2209	memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2210
2211	/* We have a local copy now, so release the entry.  */
2212	ent->err_handle = 0;
2213	wmb();
2214
2215	put_cpu();
2216
2217	if (!(regs->tstate & TSTATE_PRIV) &&
2218	    sun4v_nonresum_error_user_handled(regs, &local_copy)) {
2219		/* DON'T PANIC: This userspace error was handled. */
2220		return;
2221	}
2222
2223#ifdef CONFIG_PCI
2224	/* Check for the special PCI poke sequence. */
2225	if (pci_poke_in_progress && pci_poke_cpu == cpu) {
2226		pci_poke_faulted = 1;
2227		regs->tpc += 4;
2228		regs->tnpc = regs->tpc + 4;
2229		return;
2230	}
2231#endif
2232
2233	sun4v_log_error(regs, &local_copy, cpu,
2234			KERN_EMERG "NON-RESUMABLE ERROR",
2235			&sun4v_nonresum_oflow_cnt);
2236
2237	panic("Non-resumable error.");
2238}
2239
2240/* If we try to printk() we'll probably make matters worse, by trying
2241 * to retake locks this cpu already holds or causing more errors. So
2242 * just bump a counter, and we'll report these counter bumps above.
2243 */
2244void sun4v_nonresum_overflow(struct pt_regs *regs)
2245{
2246	/* XXX Actually even this can make not that much sense.  Perhaps
2247	 * XXX we should just pull the plug and panic directly from here?
2248	 */
2249	atomic_inc(&sun4v_nonresum_oflow_cnt);
2250}
2251
2252static void sun4v_tlb_error(struct pt_regs *regs)
2253{
2254	die_if_kernel("TLB/TSB error", regs);
2255}
2256
2257unsigned long sun4v_err_itlb_vaddr;
2258unsigned long sun4v_err_itlb_ctx;
2259unsigned long sun4v_err_itlb_pte;
2260unsigned long sun4v_err_itlb_error;
2261
2262void sun4v_itlb_error_report(struct pt_regs *regs, int tl)
2263{
2264	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2265
2266	printk(KERN_EMERG "SUN4V-ITLB: Error at TPC[%lx], tl %d\n",
2267	       regs->tpc, tl);
2268	printk(KERN_EMERG "SUN4V-ITLB: TPC<%pS>\n", (void *) regs->tpc);
2269	printk(KERN_EMERG "SUN4V-ITLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2270	printk(KERN_EMERG "SUN4V-ITLB: O7<%pS>\n",
2271	       (void *) regs->u_regs[UREG_I7]);
2272	printk(KERN_EMERG "SUN4V-ITLB: vaddr[%lx] ctx[%lx] "
2273	       "pte[%lx] error[%lx]\n",
2274	       sun4v_err_itlb_vaddr, sun4v_err_itlb_ctx,
2275	       sun4v_err_itlb_pte, sun4v_err_itlb_error);
2276
2277	sun4v_tlb_error(regs);
2278}
2279
2280unsigned long sun4v_err_dtlb_vaddr;
2281unsigned long sun4v_err_dtlb_ctx;
2282unsigned long sun4v_err_dtlb_pte;
2283unsigned long sun4v_err_dtlb_error;
2284
2285void sun4v_dtlb_error_report(struct pt_regs *regs, int tl)
2286{
2287	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2288
2289	printk(KERN_EMERG "SUN4V-DTLB: Error at TPC[%lx], tl %d\n",
2290	       regs->tpc, tl);
2291	printk(KERN_EMERG "SUN4V-DTLB: TPC<%pS>\n", (void *) regs->tpc);
2292	printk(KERN_EMERG "SUN4V-DTLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2293	printk(KERN_EMERG "SUN4V-DTLB: O7<%pS>\n",
2294	       (void *) regs->u_regs[UREG_I7]);
2295	printk(KERN_EMERG "SUN4V-DTLB: vaddr[%lx] ctx[%lx] "
2296	       "pte[%lx] error[%lx]\n",
2297	       sun4v_err_dtlb_vaddr, sun4v_err_dtlb_ctx,
2298	       sun4v_err_dtlb_pte, sun4v_err_dtlb_error);
2299
2300	sun4v_tlb_error(regs);
2301}
2302
2303void hypervisor_tlbop_error(unsigned long err, unsigned long op)
2304{
2305	printk(KERN_CRIT "SUN4V: TLB hv call error %lu for op %lu\n",
2306	       err, op);
2307}
2308
2309void hypervisor_tlbop_error_xcall(unsigned long err, unsigned long op)
2310{
2311	printk(KERN_CRIT "SUN4V: XCALL TLB hv call error %lu for op %lu\n",
2312	       err, op);
2313}
2314
2315static void do_fpe_common(struct pt_regs *regs)
2316{
2317	if (regs->tstate & TSTATE_PRIV) {
2318		regs->tpc = regs->tnpc;
2319		regs->tnpc += 4;
2320	} else {
2321		unsigned long fsr = current_thread_info()->xfsr[0];
2322		int code;
2323
2324		if (test_thread_flag(TIF_32BIT)) {
2325			regs->tpc &= 0xffffffff;
2326			regs->tnpc &= 0xffffffff;
2327		}
2328		code = FPE_FLTUNK;
 
 
 
 
2329		if ((fsr & 0x1c000) == (1 << 14)) {
2330			if (fsr & 0x10)
2331				code = FPE_FLTINV;
2332			else if (fsr & 0x08)
2333				code = FPE_FLTOVF;
2334			else if (fsr & 0x04)
2335				code = FPE_FLTUND;
2336			else if (fsr & 0x02)
2337				code = FPE_FLTDIV;
2338			else if (fsr & 0x01)
2339				code = FPE_FLTRES;
2340		}
2341		force_sig_fault(SIGFPE, code, (void __user *)regs->tpc);
2342	}
2343}
2344
2345void do_fpieee(struct pt_regs *regs)
2346{
2347	enum ctx_state prev_state = exception_enter();
2348
2349	if (notify_die(DIE_TRAP, "fpu exception ieee", regs,
2350		       0, 0x24, SIGFPE) == NOTIFY_STOP)
2351		goto out;
2352
2353	do_fpe_common(regs);
2354out:
2355	exception_exit(prev_state);
2356}
2357
2358void do_fpother(struct pt_regs *regs)
2359{
2360	enum ctx_state prev_state = exception_enter();
2361	struct fpustate *f = FPUSTATE;
2362	int ret = 0;
2363
2364	if (notify_die(DIE_TRAP, "fpu exception other", regs,
2365		       0, 0x25, SIGFPE) == NOTIFY_STOP)
2366		goto out;
2367
2368	switch ((current_thread_info()->xfsr[0] & 0x1c000)) {
2369	case (2 << 14): /* unfinished_FPop */
2370	case (3 << 14): /* unimplemented_FPop */
2371		ret = do_mathemu(regs, f, false);
2372		break;
2373	}
2374	if (ret)
2375		goto out;
2376	do_fpe_common(regs);
2377out:
2378	exception_exit(prev_state);
2379}
2380
2381void do_tof(struct pt_regs *regs)
2382{
2383	enum ctx_state prev_state = exception_enter();
 
2384
2385	if (notify_die(DIE_TRAP, "tagged arithmetic overflow", regs,
2386		       0, 0x26, SIGEMT) == NOTIFY_STOP)
2387		goto out;
2388
2389	if (regs->tstate & TSTATE_PRIV)
2390		die_if_kernel("Penguin overflow trap from kernel mode", regs);
2391	if (test_thread_flag(TIF_32BIT)) {
2392		regs->tpc &= 0xffffffff;
2393		regs->tnpc &= 0xffffffff;
2394	}
2395	force_sig_fault(SIGEMT, EMT_TAGOVF, (void __user *)regs->tpc);
 
 
 
 
 
2396out:
2397	exception_exit(prev_state);
2398}
2399
2400void do_div0(struct pt_regs *regs)
2401{
2402	enum ctx_state prev_state = exception_enter();
 
2403
2404	if (notify_die(DIE_TRAP, "integer division by zero", regs,
2405		       0, 0x28, SIGFPE) == NOTIFY_STOP)
2406		goto out;
2407
2408	if (regs->tstate & TSTATE_PRIV)
2409		die_if_kernel("TL0: Kernel divide by zero.", regs);
2410	if (test_thread_flag(TIF_32BIT)) {
2411		regs->tpc &= 0xffffffff;
2412		regs->tnpc &= 0xffffffff;
2413	}
2414	force_sig_fault(SIGFPE, FPE_INTDIV, (void __user *)regs->tpc);
 
 
 
 
 
2415out:
2416	exception_exit(prev_state);
2417}
2418
2419static void instruction_dump(unsigned int *pc)
2420{
2421	int i;
2422
2423	if ((((unsigned long) pc) & 3))
2424		return;
2425
2426	printk("Instruction DUMP:");
2427	for (i = -3; i < 6; i++)
2428		printk("%c%08x%c",i?' ':'<',pc[i],i?' ':'>');
2429	printk("\n");
2430}
2431
2432static void user_instruction_dump(unsigned int __user *pc)
2433{
2434	int i;
2435	unsigned int buf[9];
2436	
2437	if ((((unsigned long) pc) & 3))
2438		return;
2439		
2440	if (copy_from_user(buf, pc - 3, sizeof(buf)))
2441		return;
2442
2443	printk("Instruction DUMP:");
2444	for (i = 0; i < 9; i++)
2445		printk("%c%08x%c",i==3?' ':'<',buf[i],i==3?' ':'>');
2446	printk("\n");
2447}
2448
2449void show_stack(struct task_struct *tsk, unsigned long *_ksp, const char *loglvl)
2450{
2451	unsigned long fp, ksp;
2452	struct thread_info *tp;
2453	int count = 0;
2454#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2455	int graph = 0;
2456#endif
2457
2458	ksp = (unsigned long) _ksp;
2459	if (!tsk)
2460		tsk = current;
2461	tp = task_thread_info(tsk);
2462	if (ksp == 0UL) {
2463		if (tsk == current)
2464			asm("mov %%fp, %0" : "=r" (ksp));
2465		else
2466			ksp = tp->ksp;
2467	}
2468	if (tp == current_thread_info())
2469		flushw_all();
2470
2471	fp = ksp + STACK_BIAS;
2472
2473	printk("%sCall Trace:\n", loglvl);
2474	do {
2475		struct sparc_stackf *sf;
2476		struct pt_regs *regs;
2477		unsigned long pc;
2478
2479		if (!kstack_valid(tp, fp))
2480			break;
2481		sf = (struct sparc_stackf *) fp;
2482		regs = (struct pt_regs *) (sf + 1);
2483
2484		if (kstack_is_trap_frame(tp, regs)) {
2485			if (!(regs->tstate & TSTATE_PRIV))
2486				break;
2487			pc = regs->tpc;
2488			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
2489		} else {
2490			pc = sf->callers_pc;
2491			fp = (unsigned long)sf->fp + STACK_BIAS;
2492		}
2493
2494		print_ip_sym(loglvl, pc);
2495#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2496		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
2497			struct ftrace_ret_stack *ret_stack;
2498			ret_stack = ftrace_graph_get_ret_stack(tsk, graph);
2499			if (ret_stack) {
2500				pc = ret_stack->ret;
2501				print_ip_sym(loglvl, pc);
2502				graph++;
2503			}
2504		}
2505#endif
2506	} while (++count < 16);
2507}
2508
2509static inline struct reg_window *kernel_stack_up(struct reg_window *rw)
2510{
2511	unsigned long fp = rw->ins[6];
2512
2513	if (!fp)
2514		return NULL;
2515
2516	return (struct reg_window *) (fp + STACK_BIAS);
2517}
2518
2519void __noreturn die_if_kernel(char *str, struct pt_regs *regs)
2520{
2521	static int die_counter;
2522	int count = 0;
2523	
2524	/* Amuse the user. */
2525	printk(
2526"              \\|/ ____ \\|/\n"
2527"              \"@'/ .. \\`@\"\n"
2528"              /_| \\__/ |_\\\n"
2529"                 \\__U_/\n");
2530
2531	printk("%s(%d): %s [#%d]\n", current->comm, task_pid_nr(current), str, ++die_counter);
2532	notify_die(DIE_OOPS, str, regs, 0, 255, SIGSEGV);
2533	__asm__ __volatile__("flushw");
2534	show_regs(regs);
2535	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
2536	if (regs->tstate & TSTATE_PRIV) {
2537		struct thread_info *tp = current_thread_info();
2538		struct reg_window *rw = (struct reg_window *)
2539			(regs->u_regs[UREG_FP] + STACK_BIAS);
2540
2541		/* Stop the back trace when we hit userland or we
2542		 * find some badly aligned kernel stack.
2543		 */
2544		while (rw &&
2545		       count++ < 30 &&
2546		       kstack_valid(tp, (unsigned long) rw)) {
2547			printk("Caller[%016lx]: %pS\n", rw->ins[7],
2548			       (void *) rw->ins[7]);
2549
2550			rw = kernel_stack_up(rw);
2551		}
2552		instruction_dump ((unsigned int *) regs->tpc);
2553	} else {
2554		if (test_thread_flag(TIF_32BIT)) {
2555			regs->tpc &= 0xffffffff;
2556			regs->tnpc &= 0xffffffff;
2557		}
2558		user_instruction_dump ((unsigned int __user *) regs->tpc);
2559	}
2560	if (panic_on_oops)
2561		panic("Fatal exception");
2562	make_task_dead((regs->tstate & TSTATE_PRIV)? SIGKILL : SIGSEGV);
 
 
2563}
2564EXPORT_SYMBOL(die_if_kernel);
2565
2566#define VIS_OPCODE_MASK	((0x3 << 30) | (0x3f << 19))
2567#define VIS_OPCODE_VAL	((0x2 << 30) | (0x36 << 19))
2568
2569void do_illegal_instruction(struct pt_regs *regs)
2570{
2571	enum ctx_state prev_state = exception_enter();
2572	unsigned long pc = regs->tpc;
2573	unsigned long tstate = regs->tstate;
2574	u32 insn;
 
2575
2576	if (notify_die(DIE_TRAP, "illegal instruction", regs,
2577		       0, 0x10, SIGILL) == NOTIFY_STOP)
2578		goto out;
2579
2580	if (tstate & TSTATE_PRIV)
2581		die_if_kernel("Kernel illegal instruction", regs);
2582	if (test_thread_flag(TIF_32BIT))
2583		pc = (u32)pc;
2584	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
2585		if ((insn & 0xc1ffc000) == 0x81700000) /* POPC */ {
2586			if (handle_popc(insn, regs))
2587				goto out;
2588		} else if ((insn & 0xc1580000) == 0xc1100000) /* LDQ/STQ */ {
2589			if (handle_ldf_stq(insn, regs))
2590				goto out;
2591		} else if (tlb_type == hypervisor) {
2592			if ((insn & VIS_OPCODE_MASK) == VIS_OPCODE_VAL) {
2593				if (!vis_emul(regs, insn))
2594					goto out;
2595			} else {
2596				struct fpustate *f = FPUSTATE;
2597
2598				/* On UltraSPARC T2 and later, FPU insns which
2599				 * are not implemented in HW signal an illegal
2600				 * instruction trap and do not set the FP Trap
2601				 * Trap in the %fsr to unimplemented_FPop.
2602				 */
2603				if (do_mathemu(regs, f, true))
2604					goto out;
2605			}
2606		}
2607	}
2608	force_sig_fault(SIGILL, ILL_ILLOPC, (void __user *)pc);
 
 
 
 
 
2609out:
2610	exception_exit(prev_state);
2611}
2612
2613void mem_address_unaligned(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
2614{
2615	enum ctx_state prev_state = exception_enter();
 
2616
2617	if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2618		       0, 0x34, SIGSEGV) == NOTIFY_STOP)
2619		goto out;
2620
2621	if (regs->tstate & TSTATE_PRIV) {
2622		kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2623		goto out;
2624	}
2625	if (is_no_fault_exception(regs))
2626		return;
2627
2628	force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *)sfar);
 
 
 
 
 
2629out:
2630	exception_exit(prev_state);
2631}
2632
2633void sun4v_do_mna(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
2634{
 
 
2635	if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2636		       0, 0x34, SIGSEGV) == NOTIFY_STOP)
2637		return;
2638
2639	if (regs->tstate & TSTATE_PRIV) {
2640		kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2641		return;
2642	}
2643	if (is_no_fault_exception(regs))
2644		return;
2645
2646	force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *) addr);
 
 
 
 
 
2647}
2648
2649/* sun4v_mem_corrupt_detect_precise() - Handle precise exception on an ADI
2650 * tag mismatch.
2651 *
2652 * ADI version tag mismatch on a load from memory always results in a
2653 * precise exception. Tag mismatch on a store to memory will result in
2654 * precise exception if MCDPER or PMCDPER is set to 1.
2655 */
2656void sun4v_mem_corrupt_detect_precise(struct pt_regs *regs, unsigned long addr,
2657				      unsigned long context)
2658{
2659	if (notify_die(DIE_TRAP, "memory corruption precise exception", regs,
2660		       0, 0x8, SIGSEGV) == NOTIFY_STOP)
2661		return;
2662
2663	if (regs->tstate & TSTATE_PRIV) {
2664		/* MCD exception could happen because the task was running
2665		 * a system call with MCD enabled and passed a non-versioned
2666		 * pointer or pointer with bad version tag to  the system
2667		 * call.
2668		 */
2669		const struct exception_table_entry *entry;
2670
2671		entry = search_exception_tables(regs->tpc);
2672		if (entry) {
2673			/* Looks like a bad syscall parameter */
2674#ifdef DEBUG_EXCEPTIONS
2675			pr_emerg("Exception: PC<%016lx> faddr<UNKNOWN>\n",
2676				 regs->tpc);
2677			pr_emerg("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
2678				 regs->tpc, entry->fixup);
2679#endif
2680			regs->tpc = entry->fixup;
2681			regs->tnpc = regs->tpc + 4;
2682			return;
2683		}
2684		pr_emerg("%s: ADDR[%016lx] CTX[%lx], going.\n",
2685			 __func__, addr, context);
2686		die_if_kernel("MCD precise", regs);
2687	}
2688
2689	if (test_thread_flag(TIF_32BIT)) {
2690		regs->tpc &= 0xffffffff;
2691		regs->tnpc &= 0xffffffff;
2692	}
2693	force_sig_fault(SIGSEGV, SEGV_ADIPERR, (void __user *)addr);
2694}
2695
2696void do_privop(struct pt_regs *regs)
2697{
2698	enum ctx_state prev_state = exception_enter();
 
2699
2700	if (notify_die(DIE_TRAP, "privileged operation", regs,
2701		       0, 0x11, SIGILL) == NOTIFY_STOP)
2702		goto out;
2703
2704	if (test_thread_flag(TIF_32BIT)) {
2705		regs->tpc &= 0xffffffff;
2706		regs->tnpc &= 0xffffffff;
2707	}
2708	force_sig_fault(SIGILL, ILL_PRVOPC, (void __user *)regs->tpc);
 
 
 
 
 
2709out:
2710	exception_exit(prev_state);
2711}
2712
2713void do_privact(struct pt_regs *regs)
2714{
2715	do_privop(regs);
2716}
2717
2718/* Trap level 1 stuff or other traps we should never see... */
2719void do_cee(struct pt_regs *regs)
2720{
2721	exception_enter();
2722	die_if_kernel("TL0: Cache Error Exception", regs);
2723}
2724
2725void do_div0_tl1(struct pt_regs *regs)
2726{
2727	exception_enter();
2728	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2729	die_if_kernel("TL1: DIV0 Exception", regs);
2730}
2731
2732void do_fpieee_tl1(struct pt_regs *regs)
2733{
2734	exception_enter();
2735	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2736	die_if_kernel("TL1: FPU IEEE Exception", regs);
2737}
2738
2739void do_fpother_tl1(struct pt_regs *regs)
2740{
2741	exception_enter();
2742	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2743	die_if_kernel("TL1: FPU Other Exception", regs);
2744}
2745
2746void do_ill_tl1(struct pt_regs *regs)
2747{
2748	exception_enter();
2749	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2750	die_if_kernel("TL1: Illegal Instruction Exception", regs);
2751}
2752
2753void do_irq_tl1(struct pt_regs *regs)
2754{
2755	exception_enter();
2756	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2757	die_if_kernel("TL1: IRQ Exception", regs);
2758}
2759
2760void do_lddfmna_tl1(struct pt_regs *regs)
2761{
2762	exception_enter();
2763	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2764	die_if_kernel("TL1: LDDF Exception", regs);
2765}
2766
2767void do_stdfmna_tl1(struct pt_regs *regs)
2768{
2769	exception_enter();
2770	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2771	die_if_kernel("TL1: STDF Exception", regs);
2772}
2773
2774void do_paw(struct pt_regs *regs)
2775{
2776	exception_enter();
2777	die_if_kernel("TL0: Phys Watchpoint Exception", regs);
2778}
2779
2780void do_paw_tl1(struct pt_regs *regs)
2781{
2782	exception_enter();
2783	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2784	die_if_kernel("TL1: Phys Watchpoint Exception", regs);
2785}
2786
2787void do_vaw(struct pt_regs *regs)
2788{
2789	exception_enter();
2790	die_if_kernel("TL0: Virt Watchpoint Exception", regs);
2791}
2792
2793void do_vaw_tl1(struct pt_regs *regs)
2794{
2795	exception_enter();
2796	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2797	die_if_kernel("TL1: Virt Watchpoint Exception", regs);
2798}
2799
2800void do_tof_tl1(struct pt_regs *regs)
2801{
2802	exception_enter();
2803	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2804	die_if_kernel("TL1: Tag Overflow Exception", regs);
2805}
2806
2807void do_getpsr(struct pt_regs *regs)
2808{
2809	regs->u_regs[UREG_I0] = tstate_to_psr(regs->tstate);
2810	regs->tpc   = regs->tnpc;
2811	regs->tnpc += 4;
2812	if (test_thread_flag(TIF_32BIT)) {
2813		regs->tpc &= 0xffffffff;
2814		regs->tnpc &= 0xffffffff;
2815	}
2816}
2817
2818u64 cpu_mondo_counter[NR_CPUS] = {0};
2819struct trap_per_cpu trap_block[NR_CPUS];
2820EXPORT_SYMBOL(trap_block);
2821
2822/* This can get invoked before sched_init() so play it super safe
2823 * and use hard_smp_processor_id().
2824 */
2825void notrace init_cur_cpu_trap(struct thread_info *t)
2826{
2827	int cpu = hard_smp_processor_id();
2828	struct trap_per_cpu *p = &trap_block[cpu];
2829
2830	p->thread = t;
2831	p->pgd_paddr = 0;
2832}
2833
2834extern void thread_info_offsets_are_bolixed_dave(void);
2835extern void trap_per_cpu_offsets_are_bolixed_dave(void);
2836extern void tsb_config_offsets_are_bolixed_dave(void);
2837
2838/* Only invoked on boot processor. */
2839void __init trap_init(void)
2840{
2841	/* Compile time sanity check. */
2842	BUILD_BUG_ON(TI_TASK != offsetof(struct thread_info, task) ||
2843		     TI_FLAGS != offsetof(struct thread_info, flags) ||
2844		     TI_CPU != offsetof(struct thread_info, cpu) ||
2845		     TI_FPSAVED != offsetof(struct thread_info, fpsaved) ||
2846		     TI_KSP != offsetof(struct thread_info, ksp) ||
2847		     TI_FAULT_ADDR != offsetof(struct thread_info,
2848					       fault_address) ||
2849		     TI_KREGS != offsetof(struct thread_info, kregs) ||
2850		     TI_UTRAPS != offsetof(struct thread_info, utraps) ||
2851		     TI_REG_WINDOW != offsetof(struct thread_info,
2852					       reg_window) ||
2853		     TI_RWIN_SPTRS != offsetof(struct thread_info,
2854					       rwbuf_stkptrs) ||
2855		     TI_GSR != offsetof(struct thread_info, gsr) ||
2856		     TI_XFSR != offsetof(struct thread_info, xfsr) ||
2857		     TI_PRE_COUNT != offsetof(struct thread_info,
2858					      preempt_count) ||
2859		     TI_NEW_CHILD != offsetof(struct thread_info, new_child) ||
 
 
2860		     TI_KUNA_REGS != offsetof(struct thread_info,
2861					      kern_una_regs) ||
2862		     TI_KUNA_INSN != offsetof(struct thread_info,
2863					      kern_una_insn) ||
2864		     TI_FPREGS != offsetof(struct thread_info, fpregs) ||
2865		     (TI_FPREGS & (64 - 1)));
2866
2867	BUILD_BUG_ON(TRAP_PER_CPU_THREAD != offsetof(struct trap_per_cpu,
2868						     thread) ||
2869		     (TRAP_PER_CPU_PGD_PADDR !=
2870		      offsetof(struct trap_per_cpu, pgd_paddr)) ||
2871		     (TRAP_PER_CPU_CPU_MONDO_PA !=
2872		      offsetof(struct trap_per_cpu, cpu_mondo_pa)) ||
2873		     (TRAP_PER_CPU_DEV_MONDO_PA !=
2874		      offsetof(struct trap_per_cpu, dev_mondo_pa)) ||
2875		     (TRAP_PER_CPU_RESUM_MONDO_PA !=
2876		      offsetof(struct trap_per_cpu, resum_mondo_pa)) ||
2877		     (TRAP_PER_CPU_RESUM_KBUF_PA !=
2878		      offsetof(struct trap_per_cpu, resum_kernel_buf_pa)) ||
2879		     (TRAP_PER_CPU_NONRESUM_MONDO_PA !=
2880		      offsetof(struct trap_per_cpu, nonresum_mondo_pa)) ||
2881		     (TRAP_PER_CPU_NONRESUM_KBUF_PA !=
2882		      offsetof(struct trap_per_cpu, nonresum_kernel_buf_pa)) ||
2883		     (TRAP_PER_CPU_FAULT_INFO !=
2884		      offsetof(struct trap_per_cpu, fault_info)) ||
2885		     (TRAP_PER_CPU_CPU_MONDO_BLOCK_PA !=
2886		      offsetof(struct trap_per_cpu, cpu_mondo_block_pa)) ||
2887		     (TRAP_PER_CPU_CPU_LIST_PA !=
2888		      offsetof(struct trap_per_cpu, cpu_list_pa)) ||
2889		     (TRAP_PER_CPU_TSB_HUGE !=
2890		      offsetof(struct trap_per_cpu, tsb_huge)) ||
2891		     (TRAP_PER_CPU_TSB_HUGE_TEMP !=
2892		      offsetof(struct trap_per_cpu, tsb_huge_temp)) ||
2893		     (TRAP_PER_CPU_IRQ_WORKLIST_PA !=
2894		      offsetof(struct trap_per_cpu, irq_worklist_pa)) ||
2895		     (TRAP_PER_CPU_CPU_MONDO_QMASK !=
2896		      offsetof(struct trap_per_cpu, cpu_mondo_qmask)) ||
2897		     (TRAP_PER_CPU_DEV_MONDO_QMASK !=
2898		      offsetof(struct trap_per_cpu, dev_mondo_qmask)) ||
2899		     (TRAP_PER_CPU_RESUM_QMASK !=
2900		      offsetof(struct trap_per_cpu, resum_qmask)) ||
2901		     (TRAP_PER_CPU_NONRESUM_QMASK !=
2902		      offsetof(struct trap_per_cpu, nonresum_qmask)) ||
2903		     (TRAP_PER_CPU_PER_CPU_BASE !=
2904		      offsetof(struct trap_per_cpu, __per_cpu_base)));
2905
2906	BUILD_BUG_ON((TSB_CONFIG_TSB !=
2907		      offsetof(struct tsb_config, tsb)) ||
2908		     (TSB_CONFIG_RSS_LIMIT !=
2909		      offsetof(struct tsb_config, tsb_rss_limit)) ||
2910		     (TSB_CONFIG_NENTRIES !=
2911		      offsetof(struct tsb_config, tsb_nentries)) ||
2912		     (TSB_CONFIG_REG_VAL !=
2913		      offsetof(struct tsb_config, tsb_reg_val)) ||
2914		     (TSB_CONFIG_MAP_VADDR !=
2915		      offsetof(struct tsb_config, tsb_map_vaddr)) ||
2916		     (TSB_CONFIG_MAP_PTE !=
2917		      offsetof(struct tsb_config, tsb_map_pte)));
2918
2919	/* Attach to the address space of init_task.  On SMP we
2920	 * do this in smp.c:smp_callin for other cpus.
2921	 */
2922	mmgrab(&init_mm);
2923	current->active_mm = &init_mm;
2924}
v4.17
 
   1/* arch/sparc64/kernel/traps.c
   2 *
   3 * Copyright (C) 1995,1997,2008,2009,2012 David S. Miller (davem@davemloft.net)
   4 * Copyright (C) 1997,1999,2000 Jakub Jelinek (jakub@redhat.com)
   5 */
   6
   7/*
   8 * I like traps on v9, :))))
   9 */
  10
  11#include <linux/extable.h>
  12#include <linux/sched/mm.h>
  13#include <linux/sched/debug.h>
  14#include <linux/linkage.h>
  15#include <linux/kernel.h>
  16#include <linux/signal.h>
  17#include <linux/smp.h>
  18#include <linux/mm.h>
  19#include <linux/init.h>
 
  20#include <linux/kdebug.h>
  21#include <linux/ftrace.h>
  22#include <linux/reboot.h>
  23#include <linux/gfp.h>
  24#include <linux/context_tracking.h>
  25
  26#include <asm/smp.h>
  27#include <asm/delay.h>
  28#include <asm/ptrace.h>
  29#include <asm/oplib.h>
  30#include <asm/page.h>
  31#include <asm/pgtable.h>
  32#include <asm/unistd.h>
  33#include <linux/uaccess.h>
  34#include <asm/fpumacro.h>
  35#include <asm/lsu.h>
  36#include <asm/dcu.h>
  37#include <asm/estate.h>
  38#include <asm/chafsr.h>
  39#include <asm/sfafsr.h>
  40#include <asm/psrcompat.h>
  41#include <asm/processor.h>
  42#include <asm/timer.h>
  43#include <asm/head.h>
  44#include <asm/prom.h>
  45#include <asm/memctrl.h>
  46#include <asm/cacheflush.h>
  47#include <asm/setup.h>
  48
  49#include "entry.h"
  50#include "kernel.h"
  51#include "kstack.h"
  52
  53/* When an irrecoverable trap occurs at tl > 0, the trap entry
  54 * code logs the trap state registers at every level in the trap
  55 * stack.  It is found at (pt_regs + sizeof(pt_regs)) and the layout
  56 * is as follows:
  57 */
  58struct tl1_traplog {
  59	struct {
  60		unsigned long tstate;
  61		unsigned long tpc;
  62		unsigned long tnpc;
  63		unsigned long tt;
  64	} trapstack[4];
  65	unsigned long tl;
  66};
  67
  68static void dump_tl1_traplog(struct tl1_traplog *p)
  69{
  70	int i, limit;
  71
  72	printk(KERN_EMERG "TRAPLOG: Error at trap level 0x%lx, "
  73	       "dumping track stack.\n", p->tl);
  74
  75	limit = (tlb_type == hypervisor) ? 2 : 4;
  76	for (i = 0; i < limit; i++) {
  77		printk(KERN_EMERG
  78		       "TRAPLOG: Trap level %d TSTATE[%016lx] TPC[%016lx] "
  79		       "TNPC[%016lx] TT[%lx]\n",
  80		       i + 1,
  81		       p->trapstack[i].tstate, p->trapstack[i].tpc,
  82		       p->trapstack[i].tnpc, p->trapstack[i].tt);
  83		printk("TRAPLOG: TPC<%pS>\n", (void *) p->trapstack[i].tpc);
  84	}
  85}
  86
  87void bad_trap(struct pt_regs *regs, long lvl)
  88{
  89	char buffer[36];
  90	siginfo_t info;
  91
  92	if (notify_die(DIE_TRAP, "bad trap", regs,
  93		       0, lvl, SIGTRAP) == NOTIFY_STOP)
  94		return;
  95
  96	if (lvl < 0x100) {
  97		sprintf(buffer, "Bad hw trap %lx at tl0\n", lvl);
  98		die_if_kernel(buffer, regs);
  99	}
 100
 101	lvl -= 0x100;
 102	if (regs->tstate & TSTATE_PRIV) {
 103		sprintf(buffer, "Kernel bad sw trap %lx", lvl);
 104		die_if_kernel(buffer, regs);
 105	}
 106	if (test_thread_flag(TIF_32BIT)) {
 107		regs->tpc &= 0xffffffff;
 108		regs->tnpc &= 0xffffffff;
 109	}
 110	info.si_signo = SIGILL;
 111	info.si_errno = 0;
 112	info.si_code = ILL_ILLTRP;
 113	info.si_addr = (void __user *)regs->tpc;
 114	info.si_trapno = lvl;
 115	force_sig_info(SIGILL, &info, current);
 116}
 117
 118void bad_trap_tl1(struct pt_regs *regs, long lvl)
 119{
 120	char buffer[36];
 121	
 122	if (notify_die(DIE_TRAP_TL1, "bad trap tl1", regs,
 123		       0, lvl, SIGTRAP) == NOTIFY_STOP)
 124		return;
 125
 126	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 127
 128	sprintf (buffer, "Bad trap %lx at tl>0", lvl);
 129	die_if_kernel (buffer, regs);
 130}
 131
 132#ifdef CONFIG_DEBUG_BUGVERBOSE
 133void do_BUG(const char *file, int line)
 134{
 135	bust_spinlocks(1);
 136	printk("kernel BUG at %s:%d!\n", file, line);
 137}
 138EXPORT_SYMBOL(do_BUG);
 139#endif
 140
 141static DEFINE_SPINLOCK(dimm_handler_lock);
 142static dimm_printer_t dimm_handler;
 143
 144static int sprintf_dimm(int synd_code, unsigned long paddr, char *buf, int buflen)
 145{
 146	unsigned long flags;
 147	int ret = -ENODEV;
 148
 149	spin_lock_irqsave(&dimm_handler_lock, flags);
 150	if (dimm_handler) {
 151		ret = dimm_handler(synd_code, paddr, buf, buflen);
 152	} else if (tlb_type == spitfire) {
 153		if (prom_getunumber(synd_code, paddr, buf, buflen) == -1)
 154			ret = -EINVAL;
 155		else
 156			ret = 0;
 157	} else
 158		ret = -ENODEV;
 159	spin_unlock_irqrestore(&dimm_handler_lock, flags);
 160
 161	return ret;
 162}
 163
 164int register_dimm_printer(dimm_printer_t func)
 165{
 166	unsigned long flags;
 167	int ret = 0;
 168
 169	spin_lock_irqsave(&dimm_handler_lock, flags);
 170	if (!dimm_handler)
 171		dimm_handler = func;
 172	else
 173		ret = -EEXIST;
 174	spin_unlock_irqrestore(&dimm_handler_lock, flags);
 175
 176	return ret;
 177}
 178EXPORT_SYMBOL_GPL(register_dimm_printer);
 179
 180void unregister_dimm_printer(dimm_printer_t func)
 181{
 182	unsigned long flags;
 183
 184	spin_lock_irqsave(&dimm_handler_lock, flags);
 185	if (dimm_handler == func)
 186		dimm_handler = NULL;
 187	spin_unlock_irqrestore(&dimm_handler_lock, flags);
 188}
 189EXPORT_SYMBOL_GPL(unregister_dimm_printer);
 190
 191void spitfire_insn_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 192{
 193	enum ctx_state prev_state = exception_enter();
 194	siginfo_t info;
 195
 196	if (notify_die(DIE_TRAP, "instruction access exception", regs,
 197		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 198		goto out;
 199
 200	if (regs->tstate & TSTATE_PRIV) {
 201		printk("spitfire_insn_access_exception: SFSR[%016lx] "
 202		       "SFAR[%016lx], going.\n", sfsr, sfar);
 203		die_if_kernel("Iax", regs);
 204	}
 205	if (test_thread_flag(TIF_32BIT)) {
 206		regs->tpc &= 0xffffffff;
 207		regs->tnpc &= 0xffffffff;
 208	}
 209	info.si_signo = SIGSEGV;
 210	info.si_errno = 0;
 211	info.si_code = SEGV_MAPERR;
 212	info.si_addr = (void __user *)regs->tpc;
 213	info.si_trapno = 0;
 214	force_sig_info(SIGSEGV, &info, current);
 215out:
 216	exception_exit(prev_state);
 217}
 218
 219void spitfire_insn_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 220{
 221	if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
 222		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 223		return;
 224
 225	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 226	spitfire_insn_access_exception(regs, sfsr, sfar);
 227}
 228
 229void sun4v_insn_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 230{
 231	unsigned short type = (type_ctx >> 16);
 232	unsigned short ctx  = (type_ctx & 0xffff);
 233	siginfo_t info;
 234
 235	if (notify_die(DIE_TRAP, "instruction access exception", regs,
 236		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 237		return;
 238
 239	if (regs->tstate & TSTATE_PRIV) {
 240		printk("sun4v_insn_access_exception: ADDR[%016lx] "
 241		       "CTX[%04x] TYPE[%04x], going.\n",
 242		       addr, ctx, type);
 243		die_if_kernel("Iax", regs);
 244	}
 245
 246	if (test_thread_flag(TIF_32BIT)) {
 247		regs->tpc &= 0xffffffff;
 248		regs->tnpc &= 0xffffffff;
 249	}
 250	info.si_signo = SIGSEGV;
 251	info.si_errno = 0;
 252	info.si_code = SEGV_MAPERR;
 253	info.si_addr = (void __user *) addr;
 254	info.si_trapno = 0;
 255	force_sig_info(SIGSEGV, &info, current);
 256}
 257
 258void sun4v_insn_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 259{
 260	if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
 261		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 262		return;
 263
 264	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 265	sun4v_insn_access_exception(regs, addr, type_ctx);
 266}
 267
 268bool is_no_fault_exception(struct pt_regs *regs)
 269{
 270	unsigned char asi;
 271	u32 insn;
 272
 273	if (get_user(insn, (u32 __user *)regs->tpc) == -EFAULT)
 274		return false;
 275
 276	/*
 277	 * Must do a little instruction decoding here in order to
 278	 * decide on a course of action. The bits of interest are:
 279	 *  insn[31:30] = op, where 3 indicates the load/store group
 280	 *  insn[24:19] = op3, which identifies individual opcodes
 281	 *  insn[13] indicates an immediate offset
 282	 *  op3[4]=1 identifies alternate space instructions
 283	 *  op3[5:4]=3 identifies floating point instructions
 284	 *  op3[2]=1 identifies stores
 285	 * See "Opcode Maps" in the appendix of any Sparc V9
 286	 * architecture spec for full details.
 287	 */
 288	if ((insn & 0xc0800000) == 0xc0800000) {    /* op=3, op3[4]=1   */
 289		if (insn & 0x2000)		    /* immediate offset */
 290			asi = (regs->tstate >> 24); /* saved %asi       */
 291		else
 292			asi = (insn >> 5);	    /* immediate asi    */
 293		if ((asi & 0xf2) == ASI_PNF) {
 294			if (insn & 0x1000000) {     /* op3[5:4]=3       */
 
 
 295				handle_ldf_stq(insn, regs);
 296				return true;
 297			} else if (insn & 0x200000) { /* op3[2], stores */
 298				return false;
 299			}
 300			handle_ld_nf(insn, regs);
 301			return true;
 302		}
 303	}
 304	return false;
 305}
 306
 307void spitfire_data_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 308{
 309	enum ctx_state prev_state = exception_enter();
 310	siginfo_t info;
 311
 312	if (notify_die(DIE_TRAP, "data access exception", regs,
 313		       0, 0x30, SIGTRAP) == NOTIFY_STOP)
 314		goto out;
 315
 316	if (regs->tstate & TSTATE_PRIV) {
 317		/* Test if this comes from uaccess places. */
 318		const struct exception_table_entry *entry;
 319
 320		entry = search_exception_tables(regs->tpc);
 321		if (entry) {
 322			/* Ouch, somebody is trying VM hole tricks on us... */
 323#ifdef DEBUG_EXCEPTIONS
 324			printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
 325			printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
 326			       regs->tpc, entry->fixup);
 327#endif
 328			regs->tpc = entry->fixup;
 329			regs->tnpc = regs->tpc + 4;
 330			goto out;
 331		}
 332		/* Shit... */
 333		printk("spitfire_data_access_exception: SFSR[%016lx] "
 334		       "SFAR[%016lx], going.\n", sfsr, sfar);
 335		die_if_kernel("Dax", regs);
 336	}
 337
 338	if (is_no_fault_exception(regs))
 339		return;
 340
 341	info.si_signo = SIGSEGV;
 342	info.si_errno = 0;
 343	info.si_code = SEGV_MAPERR;
 344	info.si_addr = (void __user *)sfar;
 345	info.si_trapno = 0;
 346	force_sig_info(SIGSEGV, &info, current);
 347out:
 348	exception_exit(prev_state);
 349}
 350
 351void spitfire_data_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 352{
 353	if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
 354		       0, 0x30, SIGTRAP) == NOTIFY_STOP)
 355		return;
 356
 357	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 358	spitfire_data_access_exception(regs, sfsr, sfar);
 359}
 360
 361void sun4v_data_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 362{
 363	unsigned short type = (type_ctx >> 16);
 364	unsigned short ctx  = (type_ctx & 0xffff);
 365
 366	if (notify_die(DIE_TRAP, "data access exception", regs,
 367		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 368		return;
 369
 370	if (regs->tstate & TSTATE_PRIV) {
 371		/* Test if this comes from uaccess places. */
 372		const struct exception_table_entry *entry;
 373
 374		entry = search_exception_tables(regs->tpc);
 375		if (entry) {
 376			/* Ouch, somebody is trying VM hole tricks on us... */
 377#ifdef DEBUG_EXCEPTIONS
 378			printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
 379			printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
 380			       regs->tpc, entry->fixup);
 381#endif
 382			regs->tpc = entry->fixup;
 383			regs->tnpc = regs->tpc + 4;
 384			return;
 385		}
 386		printk("sun4v_data_access_exception: ADDR[%016lx] "
 387		       "CTX[%04x] TYPE[%04x], going.\n",
 388		       addr, ctx, type);
 389		die_if_kernel("Dax", regs);
 390	}
 391
 392	if (test_thread_flag(TIF_32BIT)) {
 393		regs->tpc &= 0xffffffff;
 394		regs->tnpc &= 0xffffffff;
 395	}
 396	if (is_no_fault_exception(regs))
 397		return;
 398
 399	/* MCD (Memory Corruption Detection) disabled trap (TT=0x19) in HV
 400	 * is vectored thorugh data access exception trap with fault type
 401	 * set to HV_FAULT_TYPE_MCD_DIS. Check for MCD disabled trap.
 402	 * Accessing an address with invalid ASI for the address, for
 403	 * example setting an ADI tag on an address with ASI_MCD_PRIMARY
 404	 * when TTE.mcd is not set for the VA, is also vectored into
 405	 * kerbel by HV as data access exception with fault type set to
 406	 * HV_FAULT_TYPE_INV_ASI.
 407	 */
 408	switch (type) {
 409	case HV_FAULT_TYPE_INV_ASI:
 410		force_sig_fault(SIGILL, ILL_ILLADR, (void __user *)addr, 0,
 411				current);
 412		break;
 413	case HV_FAULT_TYPE_MCD_DIS:
 414		force_sig_fault(SIGSEGV, SEGV_ACCADI, (void __user *)addr, 0,
 415				current);
 416		break;
 417	default:
 418		force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)addr, 0,
 419				current);
 420		break;
 421	}
 422}
 423
 424void sun4v_data_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 425{
 426	if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
 427		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 428		return;
 429
 430	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 431	sun4v_data_access_exception(regs, addr, type_ctx);
 432}
 433
 434#ifdef CONFIG_PCI
 435#include "pci_impl.h"
 436#endif
 437
 438/* When access exceptions happen, we must do this. */
 439static void spitfire_clean_and_reenable_l1_caches(void)
 440{
 441	unsigned long va;
 442
 443	if (tlb_type != spitfire)
 444		BUG();
 445
 446	/* Clean 'em. */
 447	for (va =  0; va < (PAGE_SIZE << 1); va += 32) {
 448		spitfire_put_icache_tag(va, 0x0);
 449		spitfire_put_dcache_tag(va, 0x0);
 450	}
 451
 452	/* Re-enable in LSU. */
 453	__asm__ __volatile__("flush %%g6\n\t"
 454			     "membar #Sync\n\t"
 455			     "stxa %0, [%%g0] %1\n\t"
 456			     "membar #Sync"
 457			     : /* no outputs */
 458			     : "r" (LSU_CONTROL_IC | LSU_CONTROL_DC |
 459				    LSU_CONTROL_IM | LSU_CONTROL_DM),
 460			     "i" (ASI_LSU_CONTROL)
 461			     : "memory");
 462}
 463
 464static void spitfire_enable_estate_errors(void)
 465{
 466	__asm__ __volatile__("stxa	%0, [%%g0] %1\n\t"
 467			     "membar	#Sync"
 468			     : /* no outputs */
 469			     : "r" (ESTATE_ERR_ALL),
 470			       "i" (ASI_ESTATE_ERROR_EN));
 471}
 472
 473static char ecc_syndrome_table[] = {
 474	0x4c, 0x40, 0x41, 0x48, 0x42, 0x48, 0x48, 0x49,
 475	0x43, 0x48, 0x48, 0x49, 0x48, 0x49, 0x49, 0x4a,
 476	0x44, 0x48, 0x48, 0x20, 0x48, 0x39, 0x4b, 0x48,
 477	0x48, 0x25, 0x31, 0x48, 0x28, 0x48, 0x48, 0x2c,
 478	0x45, 0x48, 0x48, 0x21, 0x48, 0x3d, 0x04, 0x48,
 479	0x48, 0x4b, 0x35, 0x48, 0x2d, 0x48, 0x48, 0x29,
 480	0x48, 0x00, 0x01, 0x48, 0x0a, 0x48, 0x48, 0x4b,
 481	0x0f, 0x48, 0x48, 0x4b, 0x48, 0x49, 0x49, 0x48,
 482	0x46, 0x48, 0x48, 0x2a, 0x48, 0x3b, 0x27, 0x48,
 483	0x48, 0x4b, 0x33, 0x48, 0x22, 0x48, 0x48, 0x2e,
 484	0x48, 0x19, 0x1d, 0x48, 0x1b, 0x4a, 0x48, 0x4b,
 485	0x1f, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
 486	0x48, 0x4b, 0x24, 0x48, 0x07, 0x48, 0x48, 0x36,
 487	0x4b, 0x48, 0x48, 0x3e, 0x48, 0x30, 0x38, 0x48,
 488	0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x16, 0x48,
 489	0x48, 0x12, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
 490	0x47, 0x48, 0x48, 0x2f, 0x48, 0x3f, 0x4b, 0x48,
 491	0x48, 0x06, 0x37, 0x48, 0x23, 0x48, 0x48, 0x2b,
 492	0x48, 0x05, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x32,
 493	0x26, 0x48, 0x48, 0x3a, 0x48, 0x34, 0x3c, 0x48,
 494	0x48, 0x11, 0x15, 0x48, 0x13, 0x4a, 0x48, 0x4b,
 495	0x17, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
 496	0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x1e, 0x48,
 497	0x48, 0x1a, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
 498	0x48, 0x08, 0x0d, 0x48, 0x02, 0x48, 0x48, 0x49,
 499	0x03, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x4b, 0x48,
 500	0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x10, 0x48,
 501	0x48, 0x14, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
 502	0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x18, 0x48,
 503	0x48, 0x1c, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
 504	0x4a, 0x0c, 0x09, 0x48, 0x0e, 0x48, 0x48, 0x4b,
 505	0x0b, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x4b, 0x4a
 506};
 507
 508static char *syndrome_unknown = "<Unknown>";
 509
 510static void spitfire_log_udb_syndrome(unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long bit)
 511{
 512	unsigned short scode;
 513	char memmod_str[64], *p;
 514
 515	if (udbl & bit) {
 516		scode = ecc_syndrome_table[udbl & 0xff];
 517		if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
 518			p = syndrome_unknown;
 519		else
 520			p = memmod_str;
 521		printk(KERN_WARNING "CPU[%d]: UDBL Syndrome[%x] "
 522		       "Memory Module \"%s\"\n",
 523		       smp_processor_id(), scode, p);
 524	}
 525
 526	if (udbh & bit) {
 527		scode = ecc_syndrome_table[udbh & 0xff];
 528		if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
 529			p = syndrome_unknown;
 530		else
 531			p = memmod_str;
 532		printk(KERN_WARNING "CPU[%d]: UDBH Syndrome[%x] "
 533		       "Memory Module \"%s\"\n",
 534		       smp_processor_id(), scode, p);
 535	}
 536
 537}
 538
 539static void spitfire_cee_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, int tl1, struct pt_regs *regs)
 540{
 541
 542	printk(KERN_WARNING "CPU[%d]: Correctable ECC Error "
 543	       "AFSR[%lx] AFAR[%016lx] UDBL[%lx] UDBH[%lx] TL>1[%d]\n",
 544	       smp_processor_id(), afsr, afar, udbl, udbh, tl1);
 545
 546	spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_CE);
 547
 548	/* We always log it, even if someone is listening for this
 549	 * trap.
 550	 */
 551	notify_die(DIE_TRAP, "Correctable ECC Error", regs,
 552		   0, TRAP_TYPE_CEE, SIGTRAP);
 553
 554	/* The Correctable ECC Error trap does not disable I/D caches.  So
 555	 * we only have to restore the ESTATE Error Enable register.
 556	 */
 557	spitfire_enable_estate_errors();
 558}
 559
 560static void spitfire_ue_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long tt, int tl1, struct pt_regs *regs)
 561{
 562	siginfo_t info;
 563
 564	printk(KERN_WARNING "CPU[%d]: Uncorrectable Error AFSR[%lx] "
 565	       "AFAR[%lx] UDBL[%lx] UDBH[%ld] TT[%lx] TL>1[%d]\n",
 566	       smp_processor_id(), afsr, afar, udbl, udbh, tt, tl1);
 567
 568	/* XXX add more human friendly logging of the error status
 569	 * XXX as is implemented for cheetah
 570	 */
 571
 572	spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_UE);
 573
 574	/* We always log it, even if someone is listening for this
 575	 * trap.
 576	 */
 577	notify_die(DIE_TRAP, "Uncorrectable Error", regs,
 578		   0, tt, SIGTRAP);
 579
 580	if (regs->tstate & TSTATE_PRIV) {
 581		if (tl1)
 582			dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 583		die_if_kernel("UE", regs);
 584	}
 585
 586	/* XXX need more intelligent processing here, such as is implemented
 587	 * XXX for cheetah errors, in fact if the E-cache still holds the
 588	 * XXX line with bad parity this will loop
 589	 */
 590
 591	spitfire_clean_and_reenable_l1_caches();
 592	spitfire_enable_estate_errors();
 593
 594	if (test_thread_flag(TIF_32BIT)) {
 595		regs->tpc &= 0xffffffff;
 596		regs->tnpc &= 0xffffffff;
 597	}
 598	info.si_signo = SIGBUS;
 599	info.si_errno = 0;
 600	info.si_code = BUS_OBJERR;
 601	info.si_addr = (void *)0;
 602	info.si_trapno = 0;
 603	force_sig_info(SIGBUS, &info, current);
 604}
 605
 606void spitfire_access_error(struct pt_regs *regs, unsigned long status_encoded, unsigned long afar)
 607{
 608	unsigned long afsr, tt, udbh, udbl;
 609	int tl1;
 610
 611	afsr = (status_encoded & SFSTAT_AFSR_MASK) >> SFSTAT_AFSR_SHIFT;
 612	tt = (status_encoded & SFSTAT_TRAP_TYPE) >> SFSTAT_TRAP_TYPE_SHIFT;
 613	tl1 = (status_encoded & SFSTAT_TL_GT_ONE) ? 1 : 0;
 614	udbl = (status_encoded & SFSTAT_UDBL_MASK) >> SFSTAT_UDBL_SHIFT;
 615	udbh = (status_encoded & SFSTAT_UDBH_MASK) >> SFSTAT_UDBH_SHIFT;
 616
 617#ifdef CONFIG_PCI
 618	if (tt == TRAP_TYPE_DAE &&
 619	    pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
 620		spitfire_clean_and_reenable_l1_caches();
 621		spitfire_enable_estate_errors();
 622
 623		pci_poke_faulted = 1;
 624		regs->tnpc = regs->tpc + 4;
 625		return;
 626	}
 627#endif
 628
 629	if (afsr & SFAFSR_UE)
 630		spitfire_ue_log(afsr, afar, udbh, udbl, tt, tl1, regs);
 631
 632	if (tt == TRAP_TYPE_CEE) {
 633		/* Handle the case where we took a CEE trap, but ACK'd
 634		 * only the UE state in the UDB error registers.
 635		 */
 636		if (afsr & SFAFSR_UE) {
 637			if (udbh & UDBE_CE) {
 638				__asm__ __volatile__(
 639					"stxa	%0, [%1] %2\n\t"
 640					"membar	#Sync"
 641					: /* no outputs */
 642					: "r" (udbh & UDBE_CE),
 643					  "r" (0x0), "i" (ASI_UDB_ERROR_W));
 644			}
 645			if (udbl & UDBE_CE) {
 646				__asm__ __volatile__(
 647					"stxa	%0, [%1] %2\n\t"
 648					"membar	#Sync"
 649					: /* no outputs */
 650					: "r" (udbl & UDBE_CE),
 651					  "r" (0x18), "i" (ASI_UDB_ERROR_W));
 652			}
 653		}
 654
 655		spitfire_cee_log(afsr, afar, udbh, udbl, tl1, regs);
 656	}
 657}
 658
 659int cheetah_pcache_forced_on;
 660
 661void cheetah_enable_pcache(void)
 662{
 663	unsigned long dcr;
 664
 665	printk("CHEETAH: Enabling P-Cache on cpu %d.\n",
 666	       smp_processor_id());
 667
 668	__asm__ __volatile__("ldxa [%%g0] %1, %0"
 669			     : "=r" (dcr)
 670			     : "i" (ASI_DCU_CONTROL_REG));
 671	dcr |= (DCU_PE | DCU_HPE | DCU_SPE | DCU_SL);
 672	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
 673			     "membar #Sync"
 674			     : /* no outputs */
 675			     : "r" (dcr), "i" (ASI_DCU_CONTROL_REG));
 676}
 677
 678/* Cheetah error trap handling. */
 679static unsigned long ecache_flush_physbase;
 680static unsigned long ecache_flush_linesize;
 681static unsigned long ecache_flush_size;
 682
 683/* This table is ordered in priority of errors and matches the
 684 * AFAR overwrite policy as well.
 685 */
 686
 687struct afsr_error_table {
 688	unsigned long mask;
 689	const char *name;
 690};
 691
 692static const char CHAFSR_PERR_msg[] =
 693	"System interface protocol error";
 694static const char CHAFSR_IERR_msg[] =
 695	"Internal processor error";
 696static const char CHAFSR_ISAP_msg[] =
 697	"System request parity error on incoming address";
 698static const char CHAFSR_UCU_msg[] =
 699	"Uncorrectable E-cache ECC error for ifetch/data";
 700static const char CHAFSR_UCC_msg[] =
 701	"SW Correctable E-cache ECC error for ifetch/data";
 702static const char CHAFSR_UE_msg[] =
 703	"Uncorrectable system bus data ECC error for read";
 704static const char CHAFSR_EDU_msg[] =
 705	"Uncorrectable E-cache ECC error for stmerge/blkld";
 706static const char CHAFSR_EMU_msg[] =
 707	"Uncorrectable system bus MTAG error";
 708static const char CHAFSR_WDU_msg[] =
 709	"Uncorrectable E-cache ECC error for writeback";
 710static const char CHAFSR_CPU_msg[] =
 711	"Uncorrectable ECC error for copyout";
 712static const char CHAFSR_CE_msg[] =
 713	"HW corrected system bus data ECC error for read";
 714static const char CHAFSR_EDC_msg[] =
 715	"HW corrected E-cache ECC error for stmerge/blkld";
 716static const char CHAFSR_EMC_msg[] =
 717	"HW corrected system bus MTAG ECC error";
 718static const char CHAFSR_WDC_msg[] =
 719	"HW corrected E-cache ECC error for writeback";
 720static const char CHAFSR_CPC_msg[] =
 721	"HW corrected ECC error for copyout";
 722static const char CHAFSR_TO_msg[] =
 723	"Unmapped error from system bus";
 724static const char CHAFSR_BERR_msg[] =
 725	"Bus error response from system bus";
 726static const char CHAFSR_IVC_msg[] =
 727	"HW corrected system bus data ECC error for ivec read";
 728static const char CHAFSR_IVU_msg[] =
 729	"Uncorrectable system bus data ECC error for ivec read";
 730static struct afsr_error_table __cheetah_error_table[] = {
 731	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
 732	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
 733	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
 734	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
 735	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
 736	{	CHAFSR_UE,	CHAFSR_UE_msg		},
 737	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
 738	{	CHAFSR_EMU,	CHAFSR_EMU_msg		},
 739	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
 740	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
 741	{	CHAFSR_CE,	CHAFSR_CE_msg		},
 742	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
 743	{	CHAFSR_EMC,	CHAFSR_EMC_msg		},
 744	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
 745	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
 746	{	CHAFSR_TO,	CHAFSR_TO_msg		},
 747	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
 748	/* These two do not update the AFAR. */
 749	{	CHAFSR_IVC,	CHAFSR_IVC_msg		},
 750	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
 751	{	0,		NULL			},
 752};
 753static const char CHPAFSR_DTO_msg[] =
 754	"System bus unmapped error for prefetch/storequeue-read";
 755static const char CHPAFSR_DBERR_msg[] =
 756	"System bus error for prefetch/storequeue-read";
 757static const char CHPAFSR_THCE_msg[] =
 758	"Hardware corrected E-cache Tag ECC error";
 759static const char CHPAFSR_TSCE_msg[] =
 760	"SW handled correctable E-cache Tag ECC error";
 761static const char CHPAFSR_TUE_msg[] =
 762	"Uncorrectable E-cache Tag ECC error";
 763static const char CHPAFSR_DUE_msg[] =
 764	"System bus uncorrectable data ECC error due to prefetch/store-fill";
 765static struct afsr_error_table __cheetah_plus_error_table[] = {
 766	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
 767	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
 768	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
 769	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
 770	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
 771	{	CHAFSR_UE,	CHAFSR_UE_msg		},
 772	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
 773	{	CHAFSR_EMU,	CHAFSR_EMU_msg		},
 774	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
 775	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
 776	{	CHAFSR_CE,	CHAFSR_CE_msg		},
 777	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
 778	{	CHAFSR_EMC,	CHAFSR_EMC_msg		},
 779	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
 780	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
 781	{	CHAFSR_TO,	CHAFSR_TO_msg		},
 782	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
 783	{	CHPAFSR_DTO,	CHPAFSR_DTO_msg		},
 784	{	CHPAFSR_DBERR,	CHPAFSR_DBERR_msg	},
 785	{	CHPAFSR_THCE,	CHPAFSR_THCE_msg	},
 786	{	CHPAFSR_TSCE,	CHPAFSR_TSCE_msg	},
 787	{	CHPAFSR_TUE,	CHPAFSR_TUE_msg		},
 788	{	CHPAFSR_DUE,	CHPAFSR_DUE_msg		},
 789	/* These two do not update the AFAR. */
 790	{	CHAFSR_IVC,	CHAFSR_IVC_msg		},
 791	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
 792	{	0,		NULL			},
 793};
 794static const char JPAFSR_JETO_msg[] =
 795	"System interface protocol error, hw timeout caused";
 796static const char JPAFSR_SCE_msg[] =
 797	"Parity error on system snoop results";
 798static const char JPAFSR_JEIC_msg[] =
 799	"System interface protocol error, illegal command detected";
 800static const char JPAFSR_JEIT_msg[] =
 801	"System interface protocol error, illegal ADTYPE detected";
 802static const char JPAFSR_OM_msg[] =
 803	"Out of range memory error has occurred";
 804static const char JPAFSR_ETP_msg[] =
 805	"Parity error on L2 cache tag SRAM";
 806static const char JPAFSR_UMS_msg[] =
 807	"Error due to unsupported store";
 808static const char JPAFSR_RUE_msg[] =
 809	"Uncorrectable ECC error from remote cache/memory";
 810static const char JPAFSR_RCE_msg[] =
 811	"Correctable ECC error from remote cache/memory";
 812static const char JPAFSR_BP_msg[] =
 813	"JBUS parity error on returned read data";
 814static const char JPAFSR_WBP_msg[] =
 815	"JBUS parity error on data for writeback or block store";
 816static const char JPAFSR_FRC_msg[] =
 817	"Foreign read to DRAM incurring correctable ECC error";
 818static const char JPAFSR_FRU_msg[] =
 819	"Foreign read to DRAM incurring uncorrectable ECC error";
 820static struct afsr_error_table __jalapeno_error_table[] = {
 821	{	JPAFSR_JETO,	JPAFSR_JETO_msg		},
 822	{	JPAFSR_SCE,	JPAFSR_SCE_msg		},
 823	{	JPAFSR_JEIC,	JPAFSR_JEIC_msg		},
 824	{	JPAFSR_JEIT,	JPAFSR_JEIT_msg		},
 825	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
 826	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
 827	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
 828	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
 829	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
 830	{	CHAFSR_UE,	CHAFSR_UE_msg		},
 831	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
 832	{	JPAFSR_OM,	JPAFSR_OM_msg		},
 833	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
 834	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
 835	{	CHAFSR_CE,	CHAFSR_CE_msg		},
 836	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
 837	{	JPAFSR_ETP,	JPAFSR_ETP_msg		},
 838	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
 839	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
 840	{	CHAFSR_TO,	CHAFSR_TO_msg		},
 841	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
 842	{	JPAFSR_UMS,	JPAFSR_UMS_msg		},
 843	{	JPAFSR_RUE,	JPAFSR_RUE_msg		},
 844	{	JPAFSR_RCE,	JPAFSR_RCE_msg		},
 845	{	JPAFSR_BP,	JPAFSR_BP_msg		},
 846	{	JPAFSR_WBP,	JPAFSR_WBP_msg		},
 847	{	JPAFSR_FRC,	JPAFSR_FRC_msg		},
 848	{	JPAFSR_FRU,	JPAFSR_FRU_msg		},
 849	/* These two do not update the AFAR. */
 850	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
 851	{	0,		NULL			},
 852};
 853static struct afsr_error_table *cheetah_error_table;
 854static unsigned long cheetah_afsr_errors;
 855
 856struct cheetah_err_info *cheetah_error_log;
 857
 858static inline struct cheetah_err_info *cheetah_get_error_log(unsigned long afsr)
 859{
 860	struct cheetah_err_info *p;
 861	int cpu = smp_processor_id();
 862
 863	if (!cheetah_error_log)
 864		return NULL;
 865
 866	p = cheetah_error_log + (cpu * 2);
 867	if ((afsr & CHAFSR_TL1) != 0UL)
 868		p++;
 869
 870	return p;
 871}
 872
 873extern unsigned int tl0_icpe[], tl1_icpe[];
 874extern unsigned int tl0_dcpe[], tl1_dcpe[];
 875extern unsigned int tl0_fecc[], tl1_fecc[];
 876extern unsigned int tl0_cee[], tl1_cee[];
 877extern unsigned int tl0_iae[], tl1_iae[];
 878extern unsigned int tl0_dae[], tl1_dae[];
 879extern unsigned int cheetah_plus_icpe_trap_vector[], cheetah_plus_icpe_trap_vector_tl1[];
 880extern unsigned int cheetah_plus_dcpe_trap_vector[], cheetah_plus_dcpe_trap_vector_tl1[];
 881extern unsigned int cheetah_fecc_trap_vector[], cheetah_fecc_trap_vector_tl1[];
 882extern unsigned int cheetah_cee_trap_vector[], cheetah_cee_trap_vector_tl1[];
 883extern unsigned int cheetah_deferred_trap_vector[], cheetah_deferred_trap_vector_tl1[];
 884
 885void __init cheetah_ecache_flush_init(void)
 886{
 887	unsigned long largest_size, smallest_linesize, order, ver;
 888	int i, sz;
 889
 890	/* Scan all cpu device tree nodes, note two values:
 891	 * 1) largest E-cache size
 892	 * 2) smallest E-cache line size
 893	 */
 894	largest_size = 0UL;
 895	smallest_linesize = ~0UL;
 896
 897	for (i = 0; i < NR_CPUS; i++) {
 898		unsigned long val;
 899
 900		val = cpu_data(i).ecache_size;
 901		if (!val)
 902			continue;
 903
 904		if (val > largest_size)
 905			largest_size = val;
 906
 907		val = cpu_data(i).ecache_line_size;
 908		if (val < smallest_linesize)
 909			smallest_linesize = val;
 910
 911	}
 912
 913	if (largest_size == 0UL || smallest_linesize == ~0UL) {
 914		prom_printf("cheetah_ecache_flush_init: Cannot probe cpu E-cache "
 915			    "parameters.\n");
 916		prom_halt();
 917	}
 918
 919	ecache_flush_size = (2 * largest_size);
 920	ecache_flush_linesize = smallest_linesize;
 921
 922	ecache_flush_physbase = find_ecache_flush_span(ecache_flush_size);
 923
 924	if (ecache_flush_physbase == ~0UL) {
 925		prom_printf("cheetah_ecache_flush_init: Cannot find %ld byte "
 926			    "contiguous physical memory.\n",
 927			    ecache_flush_size);
 928		prom_halt();
 929	}
 930
 931	/* Now allocate error trap reporting scoreboard. */
 932	sz = NR_CPUS * (2 * sizeof(struct cheetah_err_info));
 933	for (order = 0; order < MAX_ORDER; order++) {
 934		if ((PAGE_SIZE << order) >= sz)
 935			break;
 936	}
 937	cheetah_error_log = (struct cheetah_err_info *)
 938		__get_free_pages(GFP_KERNEL, order);
 939	if (!cheetah_error_log) {
 940		prom_printf("cheetah_ecache_flush_init: Failed to allocate "
 941			    "error logging scoreboard (%d bytes).\n", sz);
 942		prom_halt();
 943	}
 944	memset(cheetah_error_log, 0, PAGE_SIZE << order);
 945
 946	/* Mark all AFSRs as invalid so that the trap handler will
 947	 * log new new information there.
 948	 */
 949	for (i = 0; i < 2 * NR_CPUS; i++)
 950		cheetah_error_log[i].afsr = CHAFSR_INVALID;
 951
 952	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
 953	if ((ver >> 32) == __JALAPENO_ID ||
 954	    (ver >> 32) == __SERRANO_ID) {
 955		cheetah_error_table = &__jalapeno_error_table[0];
 956		cheetah_afsr_errors = JPAFSR_ERRORS;
 957	} else if ((ver >> 32) == 0x003e0015) {
 958		cheetah_error_table = &__cheetah_plus_error_table[0];
 959		cheetah_afsr_errors = CHPAFSR_ERRORS;
 960	} else {
 961		cheetah_error_table = &__cheetah_error_table[0];
 962		cheetah_afsr_errors = CHAFSR_ERRORS;
 963	}
 964
 965	/* Now patch trap tables. */
 966	memcpy(tl0_fecc, cheetah_fecc_trap_vector, (8 * 4));
 967	memcpy(tl1_fecc, cheetah_fecc_trap_vector_tl1, (8 * 4));
 968	memcpy(tl0_cee, cheetah_cee_trap_vector, (8 * 4));
 969	memcpy(tl1_cee, cheetah_cee_trap_vector_tl1, (8 * 4));
 970	memcpy(tl0_iae, cheetah_deferred_trap_vector, (8 * 4));
 971	memcpy(tl1_iae, cheetah_deferred_trap_vector_tl1, (8 * 4));
 972	memcpy(tl0_dae, cheetah_deferred_trap_vector, (8 * 4));
 973	memcpy(tl1_dae, cheetah_deferred_trap_vector_tl1, (8 * 4));
 974	if (tlb_type == cheetah_plus) {
 975		memcpy(tl0_dcpe, cheetah_plus_dcpe_trap_vector, (8 * 4));
 976		memcpy(tl1_dcpe, cheetah_plus_dcpe_trap_vector_tl1, (8 * 4));
 977		memcpy(tl0_icpe, cheetah_plus_icpe_trap_vector, (8 * 4));
 978		memcpy(tl1_icpe, cheetah_plus_icpe_trap_vector_tl1, (8 * 4));
 979	}
 980	flushi(PAGE_OFFSET);
 981}
 982
 983static void cheetah_flush_ecache(void)
 984{
 985	unsigned long flush_base = ecache_flush_physbase;
 986	unsigned long flush_linesize = ecache_flush_linesize;
 987	unsigned long flush_size = ecache_flush_size;
 988
 989	__asm__ __volatile__("1: subcc	%0, %4, %0\n\t"
 990			     "   bne,pt	%%xcc, 1b\n\t"
 991			     "    ldxa	[%2 + %0] %3, %%g0\n\t"
 992			     : "=&r" (flush_size)
 993			     : "0" (flush_size), "r" (flush_base),
 994			       "i" (ASI_PHYS_USE_EC), "r" (flush_linesize));
 995}
 996
 997static void cheetah_flush_ecache_line(unsigned long physaddr)
 998{
 999	unsigned long alias;
1000
1001	physaddr &= ~(8UL - 1UL);
1002	physaddr = (ecache_flush_physbase +
1003		    (physaddr & ((ecache_flush_size>>1UL) - 1UL)));
1004	alias = physaddr + (ecache_flush_size >> 1UL);
1005	__asm__ __volatile__("ldxa [%0] %2, %%g0\n\t"
1006			     "ldxa [%1] %2, %%g0\n\t"
1007			     "membar #Sync"
1008			     : /* no outputs */
1009			     : "r" (physaddr), "r" (alias),
1010			       "i" (ASI_PHYS_USE_EC));
1011}
1012
1013/* Unfortunately, the diagnostic access to the I-cache tags we need to
1014 * use to clear the thing interferes with I-cache coherency transactions.
1015 *
1016 * So we must only flush the I-cache when it is disabled.
1017 */
1018static void __cheetah_flush_icache(void)
1019{
1020	unsigned int icache_size, icache_line_size;
1021	unsigned long addr;
1022
1023	icache_size = local_cpu_data().icache_size;
1024	icache_line_size = local_cpu_data().icache_line_size;
1025
1026	/* Clear the valid bits in all the tags. */
1027	for (addr = 0; addr < icache_size; addr += icache_line_size) {
1028		__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1029				     "membar #Sync"
1030				     : /* no outputs */
1031				     : "r" (addr | (2 << 3)),
1032				       "i" (ASI_IC_TAG));
1033	}
1034}
1035
1036static void cheetah_flush_icache(void)
1037{
1038	unsigned long dcu_save;
1039
1040	/* Save current DCU, disable I-cache. */
1041	__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1042			     "or %0, %2, %%g1\n\t"
1043			     "stxa %%g1, [%%g0] %1\n\t"
1044			     "membar #Sync"
1045			     : "=r" (dcu_save)
1046			     : "i" (ASI_DCU_CONTROL_REG), "i" (DCU_IC)
1047			     : "g1");
1048
1049	__cheetah_flush_icache();
1050
1051	/* Restore DCU register */
1052	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1053			     "membar #Sync"
1054			     : /* no outputs */
1055			     : "r" (dcu_save), "i" (ASI_DCU_CONTROL_REG));
1056}
1057
1058static void cheetah_flush_dcache(void)
1059{
1060	unsigned int dcache_size, dcache_line_size;
1061	unsigned long addr;
1062
1063	dcache_size = local_cpu_data().dcache_size;
1064	dcache_line_size = local_cpu_data().dcache_line_size;
1065
1066	for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1067		__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1068				     "membar #Sync"
1069				     : /* no outputs */
1070				     : "r" (addr), "i" (ASI_DCACHE_TAG));
1071	}
1072}
1073
1074/* In order to make the even parity correct we must do two things.
1075 * First, we clear DC_data_parity and set DC_utag to an appropriate value.
1076 * Next, we clear out all 32-bytes of data for that line.  Data of
1077 * all-zero + tag parity value of zero == correct parity.
1078 */
1079static void cheetah_plus_zap_dcache_parity(void)
1080{
1081	unsigned int dcache_size, dcache_line_size;
1082	unsigned long addr;
1083
1084	dcache_size = local_cpu_data().dcache_size;
1085	dcache_line_size = local_cpu_data().dcache_line_size;
1086
1087	for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1088		unsigned long tag = (addr >> 14);
1089		unsigned long line;
1090
1091		__asm__ __volatile__("membar	#Sync\n\t"
1092				     "stxa	%0, [%1] %2\n\t"
1093				     "membar	#Sync"
1094				     : /* no outputs */
1095				     : "r" (tag), "r" (addr),
1096				       "i" (ASI_DCACHE_UTAG));
1097		for (line = addr; line < addr + dcache_line_size; line += 8)
1098			__asm__ __volatile__("membar	#Sync\n\t"
1099					     "stxa	%%g0, [%0] %1\n\t"
1100					     "membar	#Sync"
1101					     : /* no outputs */
1102					     : "r" (line),
1103					       "i" (ASI_DCACHE_DATA));
1104	}
1105}
1106
1107/* Conversion tables used to frob Cheetah AFSR syndrome values into
1108 * something palatable to the memory controller driver get_unumber
1109 * routine.
1110 */
1111#define MT0	137
1112#define MT1	138
1113#define MT2	139
1114#define NONE	254
1115#define MTC0	140
1116#define MTC1	141
1117#define MTC2	142
1118#define MTC3	143
1119#define C0	128
1120#define C1	129
1121#define C2	130
1122#define C3	131
1123#define C4	132
1124#define C5	133
1125#define C6	134
1126#define C7	135
1127#define C8	136
1128#define M2	144
1129#define M3	145
1130#define M4	146
1131#define M	147
1132static unsigned char cheetah_ecc_syntab[] = {
1133/*00*/NONE, C0, C1, M2, C2, M2, M3, 47, C3, M2, M2, 53, M2, 41, 29, M,
1134/*01*/C4, M, M, 50, M2, 38, 25, M2, M2, 33, 24, M2, 11, M, M2, 16,
1135/*02*/C5, M, M, 46, M2, 37, 19, M2, M, 31, 32, M, 7, M2, M2, 10,
1136/*03*/M2, 40, 13, M2, 59, M, M2, 66, M, M2, M2, 0, M2, 67, 71, M,
1137/*04*/C6, M, M, 43, M, 36, 18, M, M2, 49, 15, M, 63, M2, M2, 6,
1138/*05*/M2, 44, 28, M2, M, M2, M2, 52, 68, M2, M2, 62, M2, M3, M3, M4,
1139/*06*/M2, 26, 106, M2, 64, M, M2, 2, 120, M, M2, M3, M, M3, M3, M4,
1140/*07*/116, M2, M2, M3, M2, M3, M, M4, M2, 58, 54, M2, M, M4, M4, M3,
1141/*08*/C7, M2, M, 42, M, 35, 17, M2, M, 45, 14, M2, 21, M2, M2, 5,
1142/*09*/M, 27, M, M, 99, M, M, 3, 114, M2, M2, 20, M2, M3, M3, M,
1143/*0a*/M2, 23, 113, M2, 112, M2, M, 51, 95, M, M2, M3, M2, M3, M3, M2,
1144/*0b*/103, M, M2, M3, M2, M3, M3, M4, M2, 48, M, M, 73, M2, M, M3,
1145/*0c*/M2, 22, 110, M2, 109, M2, M, 9, 108, M2, M, M3, M2, M3, M3, M,
1146/*0d*/102, M2, M, M, M2, M3, M3, M, M2, M3, M3, M2, M, M4, M, M3,
1147/*0e*/98, M, M2, M3, M2, M, M3, M4, M2, M3, M3, M4, M3, M, M, M,
1148/*0f*/M2, M3, M3, M, M3, M, M, M, 56, M4, M, M3, M4, M, M, M,
1149/*10*/C8, M, M2, 39, M, 34, 105, M2, M, 30, 104, M, 101, M, M, 4,
1150/*11*/M, M, 100, M, 83, M, M2, 12, 87, M, M, 57, M2, M, M3, M,
1151/*12*/M2, 97, 82, M2, 78, M2, M2, 1, 96, M, M, M, M, M, M3, M2,
1152/*13*/94, M, M2, M3, M2, M, M3, M, M2, M, 79, M, 69, M, M4, M,
1153/*14*/M2, 93, 92, M, 91, M, M2, 8, 90, M2, M2, M, M, M, M, M4,
1154/*15*/89, M, M, M3, M2, M3, M3, M, M, M, M3, M2, M3, M2, M, M3,
1155/*16*/86, M, M2, M3, M2, M, M3, M, M2, M, M3, M, M3, M, M, M3,
1156/*17*/M, M, M3, M2, M3, M2, M4, M, 60, M, M2, M3, M4, M, M, M2,
1157/*18*/M2, 88, 85, M2, 84, M, M2, 55, 81, M2, M2, M3, M2, M3, M3, M4,
1158/*19*/77, M, M, M, M2, M3, M, M, M2, M3, M3, M4, M3, M2, M, M,
1159/*1a*/74, M, M2, M3, M, M, M3, M, M, M, M3, M, M3, M, M4, M3,
1160/*1b*/M2, 70, 107, M4, 65, M2, M2, M, 127, M, M, M, M2, M3, M3, M,
1161/*1c*/80, M2, M2, 72, M, 119, 118, M, M2, 126, 76, M, 125, M, M4, M3,
1162/*1d*/M2, 115, 124, M, 75, M, M, M3, 61, M, M4, M, M4, M, M, M,
1163/*1e*/M, 123, 122, M4, 121, M4, M, M3, 117, M2, M2, M3, M4, M3, M, M,
1164/*1f*/111, M, M, M, M4, M3, M3, M, M, M, M3, M, M3, M2, M, M
1165};
1166static unsigned char cheetah_mtag_syntab[] = {
1167       NONE, MTC0,
1168       MTC1, NONE,
1169       MTC2, NONE,
1170       NONE, MT0,
1171       MTC3, NONE,
1172       NONE, MT1,
1173       NONE, MT2,
1174       NONE, NONE
1175};
1176
1177/* Return the highest priority error conditon mentioned. */
1178static inline unsigned long cheetah_get_hipri(unsigned long afsr)
1179{
1180	unsigned long tmp = 0;
1181	int i;
1182
1183	for (i = 0; cheetah_error_table[i].mask; i++) {
1184		if ((tmp = (afsr & cheetah_error_table[i].mask)) != 0UL)
1185			return tmp;
1186	}
1187	return tmp;
1188}
1189
1190static const char *cheetah_get_string(unsigned long bit)
1191{
1192	int i;
1193
1194	for (i = 0; cheetah_error_table[i].mask; i++) {
1195		if ((bit & cheetah_error_table[i].mask) != 0UL)
1196			return cheetah_error_table[i].name;
1197	}
1198	return "???";
1199}
1200
1201static void cheetah_log_errors(struct pt_regs *regs, struct cheetah_err_info *info,
1202			       unsigned long afsr, unsigned long afar, int recoverable)
1203{
1204	unsigned long hipri;
1205	char unum[256];
1206
1207	printk("%s" "ERROR(%d): Cheetah error trap taken afsr[%016lx] afar[%016lx] TL1(%d)\n",
1208	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1209	       afsr, afar,
1210	       (afsr & CHAFSR_TL1) ? 1 : 0);
1211	printk("%s" "ERROR(%d): TPC[%lx] TNPC[%lx] O7[%lx] TSTATE[%lx]\n",
1212	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1213	       regs->tpc, regs->tnpc, regs->u_regs[UREG_I7], regs->tstate);
1214	printk("%s" "ERROR(%d): ",
1215	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id());
1216	printk("TPC<%pS>\n", (void *) regs->tpc);
1217	printk("%s" "ERROR(%d): M_SYND(%lx),  E_SYND(%lx)%s%s\n",
1218	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1219	       (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT,
1220	       (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT,
1221	       (afsr & CHAFSR_ME) ? ", Multiple Errors" : "",
1222	       (afsr & CHAFSR_PRIV) ? ", Privileged" : "");
1223	hipri = cheetah_get_hipri(afsr);
1224	printk("%s" "ERROR(%d): Highest priority error (%016lx) \"%s\"\n",
1225	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1226	       hipri, cheetah_get_string(hipri));
1227
1228	/* Try to get unumber if relevant. */
1229#define ESYND_ERRORS	(CHAFSR_IVC | CHAFSR_IVU | \
1230			 CHAFSR_CPC | CHAFSR_CPU | \
1231			 CHAFSR_UE  | CHAFSR_CE  | \
1232			 CHAFSR_EDC | CHAFSR_EDU  | \
1233			 CHAFSR_UCC | CHAFSR_UCU  | \
1234			 CHAFSR_WDU | CHAFSR_WDC)
1235#define MSYND_ERRORS	(CHAFSR_EMC | CHAFSR_EMU)
1236	if (afsr & ESYND_ERRORS) {
1237		int syndrome;
1238		int ret;
1239
1240		syndrome = (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT;
1241		syndrome = cheetah_ecc_syntab[syndrome];
1242		ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1243		if (ret != -1)
1244			printk("%s" "ERROR(%d): AFAR E-syndrome [%s]\n",
1245			       (recoverable ? KERN_WARNING : KERN_CRIT),
1246			       smp_processor_id(), unum);
1247	} else if (afsr & MSYND_ERRORS) {
1248		int syndrome;
1249		int ret;
1250
1251		syndrome = (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT;
1252		syndrome = cheetah_mtag_syntab[syndrome];
1253		ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1254		if (ret != -1)
1255			printk("%s" "ERROR(%d): AFAR M-syndrome [%s]\n",
1256			       (recoverable ? KERN_WARNING : KERN_CRIT),
1257			       smp_processor_id(), unum);
1258	}
1259
1260	/* Now dump the cache snapshots. */
1261	printk("%s" "ERROR(%d): D-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx]\n",
1262	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1263	       (int) info->dcache_index,
1264	       info->dcache_tag,
1265	       info->dcache_utag,
1266	       info->dcache_stag);
1267	printk("%s" "ERROR(%d): D-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1268	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1269	       info->dcache_data[0],
1270	       info->dcache_data[1],
1271	       info->dcache_data[2],
1272	       info->dcache_data[3]);
1273	printk("%s" "ERROR(%d): I-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx] "
1274	       "u[%016llx] l[%016llx]\n",
1275	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1276	       (int) info->icache_index,
1277	       info->icache_tag,
1278	       info->icache_utag,
1279	       info->icache_stag,
1280	       info->icache_upper,
1281	       info->icache_lower);
1282	printk("%s" "ERROR(%d): I-cache INSN0[%016llx] INSN1[%016llx] INSN2[%016llx] INSN3[%016llx]\n",
1283	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1284	       info->icache_data[0],
1285	       info->icache_data[1],
1286	       info->icache_data[2],
1287	       info->icache_data[3]);
1288	printk("%s" "ERROR(%d): I-cache INSN4[%016llx] INSN5[%016llx] INSN6[%016llx] INSN7[%016llx]\n",
1289	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1290	       info->icache_data[4],
1291	       info->icache_data[5],
1292	       info->icache_data[6],
1293	       info->icache_data[7]);
1294	printk("%s" "ERROR(%d): E-cache idx[%x] tag[%016llx]\n",
1295	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1296	       (int) info->ecache_index, info->ecache_tag);
1297	printk("%s" "ERROR(%d): E-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1298	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1299	       info->ecache_data[0],
1300	       info->ecache_data[1],
1301	       info->ecache_data[2],
1302	       info->ecache_data[3]);
1303
1304	afsr = (afsr & ~hipri) & cheetah_afsr_errors;
1305	while (afsr != 0UL) {
1306		unsigned long bit = cheetah_get_hipri(afsr);
1307
1308		printk("%s" "ERROR: Multiple-error (%016lx) \"%s\"\n",
1309		       (recoverable ? KERN_WARNING : KERN_CRIT),
1310		       bit, cheetah_get_string(bit));
1311
1312		afsr &= ~bit;
1313	}
1314
1315	if (!recoverable)
1316		printk(KERN_CRIT "ERROR: This condition is not recoverable.\n");
1317}
1318
1319static int cheetah_recheck_errors(struct cheetah_err_info *logp)
1320{
1321	unsigned long afsr, afar;
1322	int ret = 0;
1323
1324	__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1325			     : "=r" (afsr)
1326			     : "i" (ASI_AFSR));
1327	if ((afsr & cheetah_afsr_errors) != 0) {
1328		if (logp != NULL) {
1329			__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1330					     : "=r" (afar)
1331					     : "i" (ASI_AFAR));
1332			logp->afsr = afsr;
1333			logp->afar = afar;
1334		}
1335		ret = 1;
1336	}
1337	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1338			     "membar #Sync\n\t"
1339			     : : "r" (afsr), "i" (ASI_AFSR));
1340
1341	return ret;
1342}
1343
1344void cheetah_fecc_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1345{
1346	struct cheetah_err_info local_snapshot, *p;
1347	int recoverable;
1348
1349	/* Flush E-cache */
1350	cheetah_flush_ecache();
1351
1352	p = cheetah_get_error_log(afsr);
1353	if (!p) {
1354		prom_printf("ERROR: Early Fast-ECC error afsr[%016lx] afar[%016lx]\n",
1355			    afsr, afar);
1356		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1357			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1358		prom_halt();
1359	}
1360
1361	/* Grab snapshot of logged error. */
1362	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1363
1364	/* If the current trap snapshot does not match what the
1365	 * trap handler passed along into our args, big trouble.
1366	 * In such a case, mark the local copy as invalid.
1367	 *
1368	 * Else, it matches and we mark the afsr in the non-local
1369	 * copy as invalid so we may log new error traps there.
1370	 */
1371	if (p->afsr != afsr || p->afar != afar)
1372		local_snapshot.afsr = CHAFSR_INVALID;
1373	else
1374		p->afsr = CHAFSR_INVALID;
1375
1376	cheetah_flush_icache();
1377	cheetah_flush_dcache();
1378
1379	/* Re-enable I-cache/D-cache */
1380	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1381			     "or %%g1, %1, %%g1\n\t"
1382			     "stxa %%g1, [%%g0] %0\n\t"
1383			     "membar #Sync"
1384			     : /* no outputs */
1385			     : "i" (ASI_DCU_CONTROL_REG),
1386			       "i" (DCU_DC | DCU_IC)
1387			     : "g1");
1388
1389	/* Re-enable error reporting */
1390	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1391			     "or %%g1, %1, %%g1\n\t"
1392			     "stxa %%g1, [%%g0] %0\n\t"
1393			     "membar #Sync"
1394			     : /* no outputs */
1395			     : "i" (ASI_ESTATE_ERROR_EN),
1396			       "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1397			     : "g1");
1398
1399	/* Decide if we can continue after handling this trap and
1400	 * logging the error.
1401	 */
1402	recoverable = 1;
1403	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1404		recoverable = 0;
1405
1406	/* Re-check AFSR/AFAR.  What we are looking for here is whether a new
1407	 * error was logged while we had error reporting traps disabled.
1408	 */
1409	if (cheetah_recheck_errors(&local_snapshot)) {
1410		unsigned long new_afsr = local_snapshot.afsr;
1411
1412		/* If we got a new asynchronous error, die... */
1413		if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1414				CHAFSR_WDU | CHAFSR_CPU |
1415				CHAFSR_IVU | CHAFSR_UE |
1416				CHAFSR_BERR | CHAFSR_TO))
1417			recoverable = 0;
1418	}
1419
1420	/* Log errors. */
1421	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1422
1423	if (!recoverable)
1424		panic("Irrecoverable Fast-ECC error trap.\n");
1425
1426	/* Flush E-cache to kick the error trap handlers out. */
1427	cheetah_flush_ecache();
1428}
1429
1430/* Try to fix a correctable error by pushing the line out from
1431 * the E-cache.  Recheck error reporting registers to see if the
1432 * problem is intermittent.
1433 */
1434static int cheetah_fix_ce(unsigned long physaddr)
1435{
1436	unsigned long orig_estate;
1437	unsigned long alias1, alias2;
1438	int ret;
1439
1440	/* Make sure correctable error traps are disabled. */
1441	__asm__ __volatile__("ldxa	[%%g0] %2, %0\n\t"
1442			     "andn	%0, %1, %%g1\n\t"
1443			     "stxa	%%g1, [%%g0] %2\n\t"
1444			     "membar	#Sync"
1445			     : "=&r" (orig_estate)
1446			     : "i" (ESTATE_ERROR_CEEN),
1447			       "i" (ASI_ESTATE_ERROR_EN)
1448			     : "g1");
1449
1450	/* We calculate alias addresses that will force the
1451	 * cache line in question out of the E-cache.  Then
1452	 * we bring it back in with an atomic instruction so
1453	 * that we get it in some modified/exclusive state,
1454	 * then we displace it again to try and get proper ECC
1455	 * pushed back into the system.
1456	 */
1457	physaddr &= ~(8UL - 1UL);
1458	alias1 = (ecache_flush_physbase +
1459		  (physaddr & ((ecache_flush_size >> 1) - 1)));
1460	alias2 = alias1 + (ecache_flush_size >> 1);
1461	__asm__ __volatile__("ldxa	[%0] %3, %%g0\n\t"
1462			     "ldxa	[%1] %3, %%g0\n\t"
1463			     "casxa	[%2] %3, %%g0, %%g0\n\t"
1464			     "ldxa	[%0] %3, %%g0\n\t"
1465			     "ldxa	[%1] %3, %%g0\n\t"
1466			     "membar	#Sync"
1467			     : /* no outputs */
1468			     : "r" (alias1), "r" (alias2),
1469			       "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1470
1471	/* Did that trigger another error? */
1472	if (cheetah_recheck_errors(NULL)) {
1473		/* Try one more time. */
1474		__asm__ __volatile__("ldxa [%0] %1, %%g0\n\t"
1475				     "membar #Sync"
1476				     : : "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1477		if (cheetah_recheck_errors(NULL))
1478			ret = 2;
1479		else
1480			ret = 1;
1481	} else {
1482		/* No new error, intermittent problem. */
1483		ret = 0;
1484	}
1485
1486	/* Restore error enables. */
1487	__asm__ __volatile__("stxa	%0, [%%g0] %1\n\t"
1488			     "membar	#Sync"
1489			     : : "r" (orig_estate), "i" (ASI_ESTATE_ERROR_EN));
1490
1491	return ret;
1492}
1493
1494/* Return non-zero if PADDR is a valid physical memory address. */
1495static int cheetah_check_main_memory(unsigned long paddr)
1496{
1497	unsigned long vaddr = PAGE_OFFSET + paddr;
1498
1499	if (vaddr > (unsigned long) high_memory)
1500		return 0;
1501
1502	return kern_addr_valid(vaddr);
1503}
1504
1505void cheetah_cee_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1506{
1507	struct cheetah_err_info local_snapshot, *p;
1508	int recoverable, is_memory;
1509
1510	p = cheetah_get_error_log(afsr);
1511	if (!p) {
1512		prom_printf("ERROR: Early CEE error afsr[%016lx] afar[%016lx]\n",
1513			    afsr, afar);
1514		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1515			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1516		prom_halt();
1517	}
1518
1519	/* Grab snapshot of logged error. */
1520	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1521
1522	/* If the current trap snapshot does not match what the
1523	 * trap handler passed along into our args, big trouble.
1524	 * In such a case, mark the local copy as invalid.
1525	 *
1526	 * Else, it matches and we mark the afsr in the non-local
1527	 * copy as invalid so we may log new error traps there.
1528	 */
1529	if (p->afsr != afsr || p->afar != afar)
1530		local_snapshot.afsr = CHAFSR_INVALID;
1531	else
1532		p->afsr = CHAFSR_INVALID;
1533
1534	is_memory = cheetah_check_main_memory(afar);
1535
1536	if (is_memory && (afsr & CHAFSR_CE) != 0UL) {
1537		/* XXX Might want to log the results of this operation
1538		 * XXX somewhere... -DaveM
1539		 */
1540		cheetah_fix_ce(afar);
1541	}
1542
1543	{
1544		int flush_all, flush_line;
1545
1546		flush_all = flush_line = 0;
1547		if ((afsr & CHAFSR_EDC) != 0UL) {
1548			if ((afsr & cheetah_afsr_errors) == CHAFSR_EDC)
1549				flush_line = 1;
1550			else
1551				flush_all = 1;
1552		} else if ((afsr & CHAFSR_CPC) != 0UL) {
1553			if ((afsr & cheetah_afsr_errors) == CHAFSR_CPC)
1554				flush_line = 1;
1555			else
1556				flush_all = 1;
1557		}
1558
1559		/* Trap handler only disabled I-cache, flush it. */
1560		cheetah_flush_icache();
1561
1562		/* Re-enable I-cache */
1563		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1564				     "or %%g1, %1, %%g1\n\t"
1565				     "stxa %%g1, [%%g0] %0\n\t"
1566				     "membar #Sync"
1567				     : /* no outputs */
1568				     : "i" (ASI_DCU_CONTROL_REG),
1569				     "i" (DCU_IC)
1570				     : "g1");
1571
1572		if (flush_all)
1573			cheetah_flush_ecache();
1574		else if (flush_line)
1575			cheetah_flush_ecache_line(afar);
1576	}
1577
1578	/* Re-enable error reporting */
1579	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1580			     "or %%g1, %1, %%g1\n\t"
1581			     "stxa %%g1, [%%g0] %0\n\t"
1582			     "membar #Sync"
1583			     : /* no outputs */
1584			     : "i" (ASI_ESTATE_ERROR_EN),
1585			       "i" (ESTATE_ERROR_CEEN)
1586			     : "g1");
1587
1588	/* Decide if we can continue after handling this trap and
1589	 * logging the error.
1590	 */
1591	recoverable = 1;
1592	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1593		recoverable = 0;
1594
1595	/* Re-check AFSR/AFAR */
1596	(void) cheetah_recheck_errors(&local_snapshot);
1597
1598	/* Log errors. */
1599	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1600
1601	if (!recoverable)
1602		panic("Irrecoverable Correctable-ECC error trap.\n");
1603}
1604
1605void cheetah_deferred_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1606{
1607	struct cheetah_err_info local_snapshot, *p;
1608	int recoverable, is_memory;
1609
1610#ifdef CONFIG_PCI
1611	/* Check for the special PCI poke sequence. */
1612	if (pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
1613		cheetah_flush_icache();
1614		cheetah_flush_dcache();
1615
1616		/* Re-enable I-cache/D-cache */
1617		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1618				     "or %%g1, %1, %%g1\n\t"
1619				     "stxa %%g1, [%%g0] %0\n\t"
1620				     "membar #Sync"
1621				     : /* no outputs */
1622				     : "i" (ASI_DCU_CONTROL_REG),
1623				       "i" (DCU_DC | DCU_IC)
1624				     : "g1");
1625
1626		/* Re-enable error reporting */
1627		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1628				     "or %%g1, %1, %%g1\n\t"
1629				     "stxa %%g1, [%%g0] %0\n\t"
1630				     "membar #Sync"
1631				     : /* no outputs */
1632				     : "i" (ASI_ESTATE_ERROR_EN),
1633				       "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1634				     : "g1");
1635
1636		(void) cheetah_recheck_errors(NULL);
1637
1638		pci_poke_faulted = 1;
1639		regs->tpc += 4;
1640		regs->tnpc = regs->tpc + 4;
1641		return;
1642	}
1643#endif
1644
1645	p = cheetah_get_error_log(afsr);
1646	if (!p) {
1647		prom_printf("ERROR: Early deferred error afsr[%016lx] afar[%016lx]\n",
1648			    afsr, afar);
1649		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1650			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1651		prom_halt();
1652	}
1653
1654	/* Grab snapshot of logged error. */
1655	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1656
1657	/* If the current trap snapshot does not match what the
1658	 * trap handler passed along into our args, big trouble.
1659	 * In such a case, mark the local copy as invalid.
1660	 *
1661	 * Else, it matches and we mark the afsr in the non-local
1662	 * copy as invalid so we may log new error traps there.
1663	 */
1664	if (p->afsr != afsr || p->afar != afar)
1665		local_snapshot.afsr = CHAFSR_INVALID;
1666	else
1667		p->afsr = CHAFSR_INVALID;
1668
1669	is_memory = cheetah_check_main_memory(afar);
1670
1671	{
1672		int flush_all, flush_line;
1673
1674		flush_all = flush_line = 0;
1675		if ((afsr & CHAFSR_EDU) != 0UL) {
1676			if ((afsr & cheetah_afsr_errors) == CHAFSR_EDU)
1677				flush_line = 1;
1678			else
1679				flush_all = 1;
1680		} else if ((afsr & CHAFSR_BERR) != 0UL) {
1681			if ((afsr & cheetah_afsr_errors) == CHAFSR_BERR)
1682				flush_line = 1;
1683			else
1684				flush_all = 1;
1685		}
1686
1687		cheetah_flush_icache();
1688		cheetah_flush_dcache();
1689
1690		/* Re-enable I/D caches */
1691		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1692				     "or %%g1, %1, %%g1\n\t"
1693				     "stxa %%g1, [%%g0] %0\n\t"
1694				     "membar #Sync"
1695				     : /* no outputs */
1696				     : "i" (ASI_DCU_CONTROL_REG),
1697				     "i" (DCU_IC | DCU_DC)
1698				     : "g1");
1699
1700		if (flush_all)
1701			cheetah_flush_ecache();
1702		else if (flush_line)
1703			cheetah_flush_ecache_line(afar);
1704	}
1705
1706	/* Re-enable error reporting */
1707	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1708			     "or %%g1, %1, %%g1\n\t"
1709			     "stxa %%g1, [%%g0] %0\n\t"
1710			     "membar #Sync"
1711			     : /* no outputs */
1712			     : "i" (ASI_ESTATE_ERROR_EN),
1713			     "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1714			     : "g1");
1715
1716	/* Decide if we can continue after handling this trap and
1717	 * logging the error.
1718	 */
1719	recoverable = 1;
1720	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1721		recoverable = 0;
1722
1723	/* Re-check AFSR/AFAR.  What we are looking for here is whether a new
1724	 * error was logged while we had error reporting traps disabled.
1725	 */
1726	if (cheetah_recheck_errors(&local_snapshot)) {
1727		unsigned long new_afsr = local_snapshot.afsr;
1728
1729		/* If we got a new asynchronous error, die... */
1730		if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1731				CHAFSR_WDU | CHAFSR_CPU |
1732				CHAFSR_IVU | CHAFSR_UE |
1733				CHAFSR_BERR | CHAFSR_TO))
1734			recoverable = 0;
1735	}
1736
1737	/* Log errors. */
1738	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1739
1740	/* "Recoverable" here means we try to yank the page from ever
1741	 * being newly used again.  This depends upon a few things:
1742	 * 1) Must be main memory, and AFAR must be valid.
1743	 * 2) If we trapped from user, OK.
1744	 * 3) Else, if we trapped from kernel we must find exception
1745	 *    table entry (ie. we have to have been accessing user
1746	 *    space).
1747	 *
1748	 * If AFAR is not in main memory, or we trapped from kernel
1749	 * and cannot find an exception table entry, it is unacceptable
1750	 * to try and continue.
1751	 */
1752	if (recoverable && is_memory) {
1753		if ((regs->tstate & TSTATE_PRIV) == 0UL) {
1754			/* OK, usermode access. */
1755			recoverable = 1;
1756		} else {
1757			const struct exception_table_entry *entry;
1758
1759			entry = search_exception_tables(regs->tpc);
1760			if (entry) {
1761				/* OK, kernel access to userspace. */
1762				recoverable = 1;
1763
1764			} else {
1765				/* BAD, privileged state is corrupted. */
1766				recoverable = 0;
1767			}
1768
1769			if (recoverable) {
1770				if (pfn_valid(afar >> PAGE_SHIFT))
1771					get_page(pfn_to_page(afar >> PAGE_SHIFT));
1772				else
1773					recoverable = 0;
1774
1775				/* Only perform fixup if we still have a
1776				 * recoverable condition.
1777				 */
1778				if (recoverable) {
1779					regs->tpc = entry->fixup;
1780					regs->tnpc = regs->tpc + 4;
1781				}
1782			}
1783		}
1784	} else {
1785		recoverable = 0;
1786	}
1787
1788	if (!recoverable)
1789		panic("Irrecoverable deferred error trap.\n");
1790}
1791
1792/* Handle a D/I cache parity error trap.  TYPE is encoded as:
1793 *
1794 * Bit0:	0=dcache,1=icache
1795 * Bit1:	0=recoverable,1=unrecoverable
1796 *
1797 * The hardware has disabled both the I-cache and D-cache in
1798 * the %dcr register.  
1799 */
1800void cheetah_plus_parity_error(int type, struct pt_regs *regs)
1801{
1802	if (type & 0x1)
1803		__cheetah_flush_icache();
1804	else
1805		cheetah_plus_zap_dcache_parity();
1806	cheetah_flush_dcache();
1807
1808	/* Re-enable I-cache/D-cache */
1809	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1810			     "or %%g1, %1, %%g1\n\t"
1811			     "stxa %%g1, [%%g0] %0\n\t"
1812			     "membar #Sync"
1813			     : /* no outputs */
1814			     : "i" (ASI_DCU_CONTROL_REG),
1815			       "i" (DCU_DC | DCU_IC)
1816			     : "g1");
1817
1818	if (type & 0x2) {
1819		printk(KERN_EMERG "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1820		       smp_processor_id(),
1821		       (type & 0x1) ? 'I' : 'D',
1822		       regs->tpc);
1823		printk(KERN_EMERG "TPC<%pS>\n", (void *) regs->tpc);
1824		panic("Irrecoverable Cheetah+ parity error.");
1825	}
1826
1827	printk(KERN_WARNING "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1828	       smp_processor_id(),
1829	       (type & 0x1) ? 'I' : 'D',
1830	       regs->tpc);
1831	printk(KERN_WARNING "TPC<%pS>\n", (void *) regs->tpc);
1832}
1833
1834struct sun4v_error_entry {
1835	/* Unique error handle */
1836/*0x00*/u64		err_handle;
1837
1838	/* %stick value at the time of the error */
1839/*0x08*/u64		err_stick;
1840
1841/*0x10*/u8		reserved_1[3];
1842
1843	/* Error type */
1844/*0x13*/u8		err_type;
1845#define SUN4V_ERR_TYPE_UNDEFINED	0
1846#define SUN4V_ERR_TYPE_UNCORRECTED_RES	1
1847#define SUN4V_ERR_TYPE_PRECISE_NONRES	2
1848#define SUN4V_ERR_TYPE_DEFERRED_NONRES	3
1849#define SUN4V_ERR_TYPE_SHUTDOWN_RQST	4
1850#define SUN4V_ERR_TYPE_DUMP_CORE	5
1851#define SUN4V_ERR_TYPE_SP_STATE_CHANGE	6
1852#define SUN4V_ERR_TYPE_NUM		7
1853
1854	/* Error attributes */
1855/*0x14*/u32		err_attrs;
1856#define SUN4V_ERR_ATTRS_PROCESSOR	0x00000001
1857#define SUN4V_ERR_ATTRS_MEMORY		0x00000002
1858#define SUN4V_ERR_ATTRS_PIO		0x00000004
1859#define SUN4V_ERR_ATTRS_INT_REGISTERS	0x00000008
1860#define SUN4V_ERR_ATTRS_FPU_REGISTERS	0x00000010
1861#define SUN4V_ERR_ATTRS_SHUTDOWN_RQST	0x00000020
1862#define SUN4V_ERR_ATTRS_ASR		0x00000040
1863#define SUN4V_ERR_ATTRS_ASI		0x00000080
1864#define SUN4V_ERR_ATTRS_PRIV_REG	0x00000100
1865#define SUN4V_ERR_ATTRS_SPSTATE_MSK	0x00000600
1866#define SUN4V_ERR_ATTRS_MCD		0x00000800
1867#define SUN4V_ERR_ATTRS_SPSTATE_SHFT	9
1868#define SUN4V_ERR_ATTRS_MODE_MSK	0x03000000
1869#define SUN4V_ERR_ATTRS_MODE_SHFT	24
1870#define SUN4V_ERR_ATTRS_RES_QUEUE_FULL	0x80000000
1871
1872#define SUN4V_ERR_SPSTATE_FAULTED	0
1873#define SUN4V_ERR_SPSTATE_AVAILABLE	1
1874#define SUN4V_ERR_SPSTATE_NOT_PRESENT	2
1875
1876#define SUN4V_ERR_MODE_USER		1
1877#define SUN4V_ERR_MODE_PRIV		2
1878
1879	/* Real address of the memory region or PIO transaction */
1880/*0x18*/u64		err_raddr;
1881
1882	/* Size of the operation triggering the error, in bytes */
1883/*0x20*/u32		err_size;
1884
1885	/* ID of the CPU */
1886/*0x24*/u16		err_cpu;
1887
1888	/* Grace periof for shutdown, in seconds */
1889/*0x26*/u16		err_secs;
1890
1891	/* Value of the %asi register */
1892/*0x28*/u8		err_asi;
1893
1894/*0x29*/u8		reserved_2;
1895
1896	/* Value of the ASR register number */
1897/*0x2a*/u16		err_asr;
1898#define SUN4V_ERR_ASR_VALID		0x8000
1899
1900/*0x2c*/u32		reserved_3;
1901/*0x30*/u64		reserved_4;
1902/*0x38*/u64		reserved_5;
1903};
1904
1905static atomic_t sun4v_resum_oflow_cnt = ATOMIC_INIT(0);
1906static atomic_t sun4v_nonresum_oflow_cnt = ATOMIC_INIT(0);
1907
1908static const char *sun4v_err_type_to_str(u8 type)
1909{
1910	static const char *types[SUN4V_ERR_TYPE_NUM] = {
1911		"undefined",
1912		"uncorrected resumable",
1913		"precise nonresumable",
1914		"deferred nonresumable",
1915		"shutdown request",
1916		"dump core",
1917		"SP state change",
1918	};
1919
1920	if (type < SUN4V_ERR_TYPE_NUM)
1921		return types[type];
1922
1923	return "unknown";
1924}
1925
1926static void sun4v_emit_err_attr_strings(u32 attrs)
1927{
1928	static const char *attr_names[] = {
1929		"processor",
1930		"memory",
1931		"PIO",
1932		"int-registers",
1933		"fpu-registers",
1934		"shutdown-request",
1935		"ASR",
1936		"ASI",
1937		"priv-reg",
1938	};
1939	static const char *sp_states[] = {
1940		"sp-faulted",
1941		"sp-available",
1942		"sp-not-present",
1943		"sp-state-reserved",
1944	};
1945	static const char *modes[] = {
1946		"mode-reserved0",
1947		"user",
1948		"priv",
1949		"mode-reserved1",
1950	};
1951	u32 sp_state, mode;
1952	int i;
1953
1954	for (i = 0; i < ARRAY_SIZE(attr_names); i++) {
1955		if (attrs & (1U << i)) {
1956			const char *s = attr_names[i];
1957
1958			pr_cont("%s ", s);
1959		}
1960	}
1961
1962	sp_state = ((attrs & SUN4V_ERR_ATTRS_SPSTATE_MSK) >>
1963		    SUN4V_ERR_ATTRS_SPSTATE_SHFT);
1964	pr_cont("%s ", sp_states[sp_state]);
1965
1966	mode = ((attrs & SUN4V_ERR_ATTRS_MODE_MSK) >>
1967		SUN4V_ERR_ATTRS_MODE_SHFT);
1968	pr_cont("%s ", modes[mode]);
1969
1970	if (attrs & SUN4V_ERR_ATTRS_RES_QUEUE_FULL)
1971		pr_cont("res-queue-full ");
1972}
1973
1974/* When the report contains a real-address of "-1" it means that the
1975 * hardware did not provide the address.  So we compute the effective
1976 * address of the load or store instruction at regs->tpc and report
1977 * that.  Usually when this happens it's a PIO and in such a case we
1978 * are using physical addresses with bypass ASIs anyways, so what we
1979 * report here is exactly what we want.
1980 */
1981static void sun4v_report_real_raddr(const char *pfx, struct pt_regs *regs)
1982{
1983	unsigned int insn;
1984	u64 addr;
1985
1986	if (!(regs->tstate & TSTATE_PRIV))
1987		return;
1988
1989	insn = *(unsigned int *) regs->tpc;
1990
1991	addr = compute_effective_address(regs, insn, 0);
1992
1993	printk("%s: insn effective address [0x%016llx]\n",
1994	       pfx, addr);
1995}
1996
1997static void sun4v_log_error(struct pt_regs *regs, struct sun4v_error_entry *ent,
1998			    int cpu, const char *pfx, atomic_t *ocnt)
1999{
2000	u64 *raw_ptr = (u64 *) ent;
2001	u32 attrs;
2002	int cnt;
2003
2004	printk("%s: Reporting on cpu %d\n", pfx, cpu);
2005	printk("%s: TPC [0x%016lx] <%pS>\n",
2006	       pfx, regs->tpc, (void *) regs->tpc);
2007
2008	printk("%s: RAW [%016llx:%016llx:%016llx:%016llx\n",
2009	       pfx, raw_ptr[0], raw_ptr[1], raw_ptr[2], raw_ptr[3]);
2010	printk("%s:      %016llx:%016llx:%016llx:%016llx]\n",
2011	       pfx, raw_ptr[4], raw_ptr[5], raw_ptr[6], raw_ptr[7]);
2012
2013	printk("%s: handle [0x%016llx] stick [0x%016llx]\n",
2014	       pfx, ent->err_handle, ent->err_stick);
2015
2016	printk("%s: type [%s]\n", pfx, sun4v_err_type_to_str(ent->err_type));
2017
2018	attrs = ent->err_attrs;
2019	printk("%s: attrs [0x%08x] < ", pfx, attrs);
2020	sun4v_emit_err_attr_strings(attrs);
2021	pr_cont(">\n");
2022
2023	/* Various fields in the error report are only valid if
2024	 * certain attribute bits are set.
2025	 */
2026	if (attrs & (SUN4V_ERR_ATTRS_MEMORY |
2027		     SUN4V_ERR_ATTRS_PIO |
2028		     SUN4V_ERR_ATTRS_ASI)) {
2029		printk("%s: raddr [0x%016llx]\n", pfx, ent->err_raddr);
2030
2031		if (ent->err_raddr == ~(u64)0)
2032			sun4v_report_real_raddr(pfx, regs);
2033	}
2034
2035	if (attrs & (SUN4V_ERR_ATTRS_MEMORY | SUN4V_ERR_ATTRS_ASI))
2036		printk("%s: size [0x%x]\n", pfx, ent->err_size);
2037
2038	if (attrs & (SUN4V_ERR_ATTRS_PROCESSOR |
2039		     SUN4V_ERR_ATTRS_INT_REGISTERS |
2040		     SUN4V_ERR_ATTRS_FPU_REGISTERS |
2041		     SUN4V_ERR_ATTRS_PRIV_REG))
2042		printk("%s: cpu[%u]\n", pfx, ent->err_cpu);
2043
2044	if (attrs & SUN4V_ERR_ATTRS_ASI)
2045		printk("%s: asi [0x%02x]\n", pfx, ent->err_asi);
2046
2047	if ((attrs & (SUN4V_ERR_ATTRS_INT_REGISTERS |
2048		      SUN4V_ERR_ATTRS_FPU_REGISTERS |
2049		      SUN4V_ERR_ATTRS_PRIV_REG)) &&
2050	    (ent->err_asr & SUN4V_ERR_ASR_VALID) != 0)
2051		printk("%s: reg [0x%04x]\n",
2052		       pfx, ent->err_asr & ~SUN4V_ERR_ASR_VALID);
2053
2054	show_regs(regs);
2055
2056	if ((cnt = atomic_read(ocnt)) != 0) {
2057		atomic_set(ocnt, 0);
2058		wmb();
2059		printk("%s: Queue overflowed %d times.\n",
2060		       pfx, cnt);
2061	}
2062}
2063
2064/* Handle memory corruption detected error which is vectored in
2065 * through resumable error trap.
2066 */
2067void do_mcd_err(struct pt_regs *regs, struct sun4v_error_entry ent)
2068{
2069	if (notify_die(DIE_TRAP, "MCD error", regs, 0, 0x34,
2070		       SIGSEGV) == NOTIFY_STOP)
2071		return;
2072
2073	if (regs->tstate & TSTATE_PRIV) {
2074		/* MCD exception could happen because the task was
2075		 * running a system call with MCD enabled and passed a
2076		 * non-versioned pointer or pointer with bad version
2077		 * tag to the system call. In such cases, hypervisor
2078		 * places the address of offending instruction in the
2079		 * resumable error report. This is a deferred error,
2080		 * so the read/write that caused the trap was potentially
2081		 * retired long time back and we may have no choice
2082		 * but to send SIGSEGV to the process.
2083		 */
2084		const struct exception_table_entry *entry;
2085
2086		entry = search_exception_tables(regs->tpc);
2087		if (entry) {
2088			/* Looks like a bad syscall parameter */
2089#ifdef DEBUG_EXCEPTIONS
2090			pr_emerg("Exception: PC<%016lx> faddr<UNKNOWN>\n",
2091				 regs->tpc);
2092			pr_emerg("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
2093				 ent.err_raddr, entry->fixup);
2094#endif
2095			regs->tpc = entry->fixup;
2096			regs->tnpc = regs->tpc + 4;
2097			return;
2098		}
2099	}
2100
2101	/* Send SIGSEGV to the userspace process with the right signal
2102	 * code
2103	 */
2104	force_sig_fault(SIGSEGV, SEGV_ADIDERR, (void __user *)ent.err_raddr,
2105			0, current);
2106}
2107
2108/* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2109 * Log the event and clear the first word of the entry.
2110 */
2111void sun4v_resum_error(struct pt_regs *regs, unsigned long offset)
2112{
2113	enum ctx_state prev_state = exception_enter();
2114	struct sun4v_error_entry *ent, local_copy;
2115	struct trap_per_cpu *tb;
2116	unsigned long paddr;
2117	int cpu;
2118
2119	cpu = get_cpu();
2120
2121	tb = &trap_block[cpu];
2122	paddr = tb->resum_kernel_buf_pa + offset;
2123	ent = __va(paddr);
2124
2125	memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2126
2127	/* We have a local copy now, so release the entry.  */
2128	ent->err_handle = 0;
2129	wmb();
2130
2131	put_cpu();
2132
2133	if (local_copy.err_type == SUN4V_ERR_TYPE_SHUTDOWN_RQST) {
2134		/* We should really take the seconds field of
2135		 * the error report and use it for the shutdown
2136		 * invocation, but for now do the same thing we
2137		 * do for a DS shutdown request.
2138		 */
2139		pr_info("Shutdown request, %u seconds...\n",
2140			local_copy.err_secs);
2141		orderly_poweroff(true);
2142		goto out;
2143	}
2144
2145	/* If this is a memory corruption detected error vectored in
2146	 * by HV through resumable error trap, call the handler
2147	 */
2148	if (local_copy.err_attrs & SUN4V_ERR_ATTRS_MCD) {
2149		do_mcd_err(regs, local_copy);
2150		return;
2151	}
2152
2153	sun4v_log_error(regs, &local_copy, cpu,
2154			KERN_ERR "RESUMABLE ERROR",
2155			&sun4v_resum_oflow_cnt);
2156out:
2157	exception_exit(prev_state);
2158}
2159
2160/* If we try to printk() we'll probably make matters worse, by trying
2161 * to retake locks this cpu already holds or causing more errors. So
2162 * just bump a counter, and we'll report these counter bumps above.
2163 */
2164void sun4v_resum_overflow(struct pt_regs *regs)
2165{
2166	atomic_inc(&sun4v_resum_oflow_cnt);
2167}
2168
2169/* Given a set of registers, get the virtual addressi that was being accessed
2170 * by the faulting instructions at tpc.
2171 */
2172static unsigned long sun4v_get_vaddr(struct pt_regs *regs)
2173{
2174	unsigned int insn;
2175
2176	if (!copy_from_user(&insn, (void __user *)regs->tpc, 4)) {
2177		return compute_effective_address(regs, insn,
2178						 (insn >> 25) & 0x1f);
2179	}
2180	return 0;
2181}
2182
2183/* Attempt to handle non-resumable errors generated from userspace.
2184 * Returns true if the signal was handled, false otherwise.
2185 */
2186bool sun4v_nonresum_error_user_handled(struct pt_regs *regs,
2187				  struct sun4v_error_entry *ent) {
2188
2189	unsigned int attrs = ent->err_attrs;
2190
2191	if (attrs & SUN4V_ERR_ATTRS_MEMORY) {
2192		unsigned long addr = ent->err_raddr;
2193		siginfo_t info;
2194
2195		if (addr == ~(u64)0) {
2196			/* This seems highly unlikely to ever occur */
2197			pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory error detected in unknown location!\n");
2198		} else {
2199			unsigned long page_cnt = DIV_ROUND_UP(ent->err_size,
2200							      PAGE_SIZE);
2201
2202			/* Break the unfortunate news. */
2203			pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory failed at %016lX\n",
2204				 addr);
2205			pr_emerg("SUN4V NON-RECOVERABLE ERROR:   Claiming %lu ages.\n",
2206				 page_cnt);
2207
2208			while (page_cnt-- > 0) {
2209				if (pfn_valid(addr >> PAGE_SHIFT))
2210					get_page(pfn_to_page(addr >> PAGE_SHIFT));
2211				addr += PAGE_SIZE;
2212			}
2213		}
2214		info.si_signo = SIGKILL;
2215		info.si_errno = 0;
2216		info.si_trapno = 0;
2217		force_sig_info(info.si_signo, &info, current);
2218
2219		return true;
2220	}
2221	if (attrs & SUN4V_ERR_ATTRS_PIO) {
2222		siginfo_t info;
2223
2224		info.si_signo = SIGBUS;
2225		info.si_code = BUS_ADRERR;
2226		info.si_addr = (void __user *)sun4v_get_vaddr(regs);
2227		force_sig_info(info.si_signo, &info, current);
2228
2229		return true;
2230	}
2231
2232	/* Default to doing nothing */
2233	return false;
2234}
2235
2236/* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2237 * Log the event, clear the first word of the entry, and die.
2238 */
2239void sun4v_nonresum_error(struct pt_regs *regs, unsigned long offset)
2240{
2241	struct sun4v_error_entry *ent, local_copy;
2242	struct trap_per_cpu *tb;
2243	unsigned long paddr;
2244	int cpu;
2245
2246	cpu = get_cpu();
2247
2248	tb = &trap_block[cpu];
2249	paddr = tb->nonresum_kernel_buf_pa + offset;
2250	ent = __va(paddr);
2251
2252	memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2253
2254	/* We have a local copy now, so release the entry.  */
2255	ent->err_handle = 0;
2256	wmb();
2257
2258	put_cpu();
2259
2260	if (!(regs->tstate & TSTATE_PRIV) &&
2261	    sun4v_nonresum_error_user_handled(regs, &local_copy)) {
2262		/* DON'T PANIC: This userspace error was handled. */
2263		return;
2264	}
2265
2266#ifdef CONFIG_PCI
2267	/* Check for the special PCI poke sequence. */
2268	if (pci_poke_in_progress && pci_poke_cpu == cpu) {
2269		pci_poke_faulted = 1;
2270		regs->tpc += 4;
2271		regs->tnpc = regs->tpc + 4;
2272		return;
2273	}
2274#endif
2275
2276	sun4v_log_error(regs, &local_copy, cpu,
2277			KERN_EMERG "NON-RESUMABLE ERROR",
2278			&sun4v_nonresum_oflow_cnt);
2279
2280	panic("Non-resumable error.");
2281}
2282
2283/* If we try to printk() we'll probably make matters worse, by trying
2284 * to retake locks this cpu already holds or causing more errors. So
2285 * just bump a counter, and we'll report these counter bumps above.
2286 */
2287void sun4v_nonresum_overflow(struct pt_regs *regs)
2288{
2289	/* XXX Actually even this can make not that much sense.  Perhaps
2290	 * XXX we should just pull the plug and panic directly from here?
2291	 */
2292	atomic_inc(&sun4v_nonresum_oflow_cnt);
2293}
2294
2295static void sun4v_tlb_error(struct pt_regs *regs)
2296{
2297	die_if_kernel("TLB/TSB error", regs);
2298}
2299
2300unsigned long sun4v_err_itlb_vaddr;
2301unsigned long sun4v_err_itlb_ctx;
2302unsigned long sun4v_err_itlb_pte;
2303unsigned long sun4v_err_itlb_error;
2304
2305void sun4v_itlb_error_report(struct pt_regs *regs, int tl)
2306{
2307	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2308
2309	printk(KERN_EMERG "SUN4V-ITLB: Error at TPC[%lx], tl %d\n",
2310	       regs->tpc, tl);
2311	printk(KERN_EMERG "SUN4V-ITLB: TPC<%pS>\n", (void *) regs->tpc);
2312	printk(KERN_EMERG "SUN4V-ITLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2313	printk(KERN_EMERG "SUN4V-ITLB: O7<%pS>\n",
2314	       (void *) regs->u_regs[UREG_I7]);
2315	printk(KERN_EMERG "SUN4V-ITLB: vaddr[%lx] ctx[%lx] "
2316	       "pte[%lx] error[%lx]\n",
2317	       sun4v_err_itlb_vaddr, sun4v_err_itlb_ctx,
2318	       sun4v_err_itlb_pte, sun4v_err_itlb_error);
2319
2320	sun4v_tlb_error(regs);
2321}
2322
2323unsigned long sun4v_err_dtlb_vaddr;
2324unsigned long sun4v_err_dtlb_ctx;
2325unsigned long sun4v_err_dtlb_pte;
2326unsigned long sun4v_err_dtlb_error;
2327
2328void sun4v_dtlb_error_report(struct pt_regs *regs, int tl)
2329{
2330	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2331
2332	printk(KERN_EMERG "SUN4V-DTLB: Error at TPC[%lx], tl %d\n",
2333	       regs->tpc, tl);
2334	printk(KERN_EMERG "SUN4V-DTLB: TPC<%pS>\n", (void *) regs->tpc);
2335	printk(KERN_EMERG "SUN4V-DTLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2336	printk(KERN_EMERG "SUN4V-DTLB: O7<%pS>\n",
2337	       (void *) regs->u_regs[UREG_I7]);
2338	printk(KERN_EMERG "SUN4V-DTLB: vaddr[%lx] ctx[%lx] "
2339	       "pte[%lx] error[%lx]\n",
2340	       sun4v_err_dtlb_vaddr, sun4v_err_dtlb_ctx,
2341	       sun4v_err_dtlb_pte, sun4v_err_dtlb_error);
2342
2343	sun4v_tlb_error(regs);
2344}
2345
2346void hypervisor_tlbop_error(unsigned long err, unsigned long op)
2347{
2348	printk(KERN_CRIT "SUN4V: TLB hv call error %lu for op %lu\n",
2349	       err, op);
2350}
2351
2352void hypervisor_tlbop_error_xcall(unsigned long err, unsigned long op)
2353{
2354	printk(KERN_CRIT "SUN4V: XCALL TLB hv call error %lu for op %lu\n",
2355	       err, op);
2356}
2357
2358static void do_fpe_common(struct pt_regs *regs)
2359{
2360	if (regs->tstate & TSTATE_PRIV) {
2361		regs->tpc = regs->tnpc;
2362		regs->tnpc += 4;
2363	} else {
2364		unsigned long fsr = current_thread_info()->xfsr[0];
2365		siginfo_t info;
2366
2367		if (test_thread_flag(TIF_32BIT)) {
2368			regs->tpc &= 0xffffffff;
2369			regs->tnpc &= 0xffffffff;
2370		}
2371		info.si_signo = SIGFPE;
2372		info.si_errno = 0;
2373		info.si_addr = (void __user *)regs->tpc;
2374		info.si_trapno = 0;
2375		info.si_code = FPE_FIXME;
2376		if ((fsr & 0x1c000) == (1 << 14)) {
2377			if (fsr & 0x10)
2378				info.si_code = FPE_FLTINV;
2379			else if (fsr & 0x08)
2380				info.si_code = FPE_FLTOVF;
2381			else if (fsr & 0x04)
2382				info.si_code = FPE_FLTUND;
2383			else if (fsr & 0x02)
2384				info.si_code = FPE_FLTDIV;
2385			else if (fsr & 0x01)
2386				info.si_code = FPE_FLTRES;
2387		}
2388		force_sig_info(SIGFPE, &info, current);
2389	}
2390}
2391
2392void do_fpieee(struct pt_regs *regs)
2393{
2394	enum ctx_state prev_state = exception_enter();
2395
2396	if (notify_die(DIE_TRAP, "fpu exception ieee", regs,
2397		       0, 0x24, SIGFPE) == NOTIFY_STOP)
2398		goto out;
2399
2400	do_fpe_common(regs);
2401out:
2402	exception_exit(prev_state);
2403}
2404
2405void do_fpother(struct pt_regs *regs)
2406{
2407	enum ctx_state prev_state = exception_enter();
2408	struct fpustate *f = FPUSTATE;
2409	int ret = 0;
2410
2411	if (notify_die(DIE_TRAP, "fpu exception other", regs,
2412		       0, 0x25, SIGFPE) == NOTIFY_STOP)
2413		goto out;
2414
2415	switch ((current_thread_info()->xfsr[0] & 0x1c000)) {
2416	case (2 << 14): /* unfinished_FPop */
2417	case (3 << 14): /* unimplemented_FPop */
2418		ret = do_mathemu(regs, f, false);
2419		break;
2420	}
2421	if (ret)
2422		goto out;
2423	do_fpe_common(regs);
2424out:
2425	exception_exit(prev_state);
2426}
2427
2428void do_tof(struct pt_regs *regs)
2429{
2430	enum ctx_state prev_state = exception_enter();
2431	siginfo_t info;
2432
2433	if (notify_die(DIE_TRAP, "tagged arithmetic overflow", regs,
2434		       0, 0x26, SIGEMT) == NOTIFY_STOP)
2435		goto out;
2436
2437	if (regs->tstate & TSTATE_PRIV)
2438		die_if_kernel("Penguin overflow trap from kernel mode", regs);
2439	if (test_thread_flag(TIF_32BIT)) {
2440		regs->tpc &= 0xffffffff;
2441		regs->tnpc &= 0xffffffff;
2442	}
2443	info.si_signo = SIGEMT;
2444	info.si_errno = 0;
2445	info.si_code = EMT_TAGOVF;
2446	info.si_addr = (void __user *)regs->tpc;
2447	info.si_trapno = 0;
2448	force_sig_info(SIGEMT, &info, current);
2449out:
2450	exception_exit(prev_state);
2451}
2452
2453void do_div0(struct pt_regs *regs)
2454{
2455	enum ctx_state prev_state = exception_enter();
2456	siginfo_t info;
2457
2458	if (notify_die(DIE_TRAP, "integer division by zero", regs,
2459		       0, 0x28, SIGFPE) == NOTIFY_STOP)
2460		goto out;
2461
2462	if (regs->tstate & TSTATE_PRIV)
2463		die_if_kernel("TL0: Kernel divide by zero.", regs);
2464	if (test_thread_flag(TIF_32BIT)) {
2465		regs->tpc &= 0xffffffff;
2466		regs->tnpc &= 0xffffffff;
2467	}
2468	info.si_signo = SIGFPE;
2469	info.si_errno = 0;
2470	info.si_code = FPE_INTDIV;
2471	info.si_addr = (void __user *)regs->tpc;
2472	info.si_trapno = 0;
2473	force_sig_info(SIGFPE, &info, current);
2474out:
2475	exception_exit(prev_state);
2476}
2477
2478static void instruction_dump(unsigned int *pc)
2479{
2480	int i;
2481
2482	if ((((unsigned long) pc) & 3))
2483		return;
2484
2485	printk("Instruction DUMP:");
2486	for (i = -3; i < 6; i++)
2487		printk("%c%08x%c",i?' ':'<',pc[i],i?' ':'>');
2488	printk("\n");
2489}
2490
2491static void user_instruction_dump(unsigned int __user *pc)
2492{
2493	int i;
2494	unsigned int buf[9];
2495	
2496	if ((((unsigned long) pc) & 3))
2497		return;
2498		
2499	if (copy_from_user(buf, pc - 3, sizeof(buf)))
2500		return;
2501
2502	printk("Instruction DUMP:");
2503	for (i = 0; i < 9; i++)
2504		printk("%c%08x%c",i==3?' ':'<',buf[i],i==3?' ':'>');
2505	printk("\n");
2506}
2507
2508void show_stack(struct task_struct *tsk, unsigned long *_ksp)
2509{
2510	unsigned long fp, ksp;
2511	struct thread_info *tp;
2512	int count = 0;
2513#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2514	int graph = 0;
2515#endif
2516
2517	ksp = (unsigned long) _ksp;
2518	if (!tsk)
2519		tsk = current;
2520	tp = task_thread_info(tsk);
2521	if (ksp == 0UL) {
2522		if (tsk == current)
2523			asm("mov %%fp, %0" : "=r" (ksp));
2524		else
2525			ksp = tp->ksp;
2526	}
2527	if (tp == current_thread_info())
2528		flushw_all();
2529
2530	fp = ksp + STACK_BIAS;
2531
2532	printk("Call Trace:\n");
2533	do {
2534		struct sparc_stackf *sf;
2535		struct pt_regs *regs;
2536		unsigned long pc;
2537
2538		if (!kstack_valid(tp, fp))
2539			break;
2540		sf = (struct sparc_stackf *) fp;
2541		regs = (struct pt_regs *) (sf + 1);
2542
2543		if (kstack_is_trap_frame(tp, regs)) {
2544			if (!(regs->tstate & TSTATE_PRIV))
2545				break;
2546			pc = regs->tpc;
2547			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
2548		} else {
2549			pc = sf->callers_pc;
2550			fp = (unsigned long)sf->fp + STACK_BIAS;
2551		}
2552
2553		printk(" [%016lx] %pS\n", pc, (void *) pc);
2554#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2555		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
2556			int index = tsk->curr_ret_stack;
2557			if (tsk->ret_stack && index >= graph) {
2558				pc = tsk->ret_stack[index - graph].ret;
2559				printk(" [%016lx] %pS\n", pc, (void *) pc);
 
2560				graph++;
2561			}
2562		}
2563#endif
2564	} while (++count < 16);
2565}
2566
2567static inline struct reg_window *kernel_stack_up(struct reg_window *rw)
2568{
2569	unsigned long fp = rw->ins[6];
2570
2571	if (!fp)
2572		return NULL;
2573
2574	return (struct reg_window *) (fp + STACK_BIAS);
2575}
2576
2577void __noreturn die_if_kernel(char *str, struct pt_regs *regs)
2578{
2579	static int die_counter;
2580	int count = 0;
2581	
2582	/* Amuse the user. */
2583	printk(
2584"              \\|/ ____ \\|/\n"
2585"              \"@'/ .. \\`@\"\n"
2586"              /_| \\__/ |_\\\n"
2587"                 \\__U_/\n");
2588
2589	printk("%s(%d): %s [#%d]\n", current->comm, task_pid_nr(current), str, ++die_counter);
2590	notify_die(DIE_OOPS, str, regs, 0, 255, SIGSEGV);
2591	__asm__ __volatile__("flushw");
2592	show_regs(regs);
2593	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
2594	if (regs->tstate & TSTATE_PRIV) {
2595		struct thread_info *tp = current_thread_info();
2596		struct reg_window *rw = (struct reg_window *)
2597			(regs->u_regs[UREG_FP] + STACK_BIAS);
2598
2599		/* Stop the back trace when we hit userland or we
2600		 * find some badly aligned kernel stack.
2601		 */
2602		while (rw &&
2603		       count++ < 30 &&
2604		       kstack_valid(tp, (unsigned long) rw)) {
2605			printk("Caller[%016lx]: %pS\n", rw->ins[7],
2606			       (void *) rw->ins[7]);
2607
2608			rw = kernel_stack_up(rw);
2609		}
2610		instruction_dump ((unsigned int *) regs->tpc);
2611	} else {
2612		if (test_thread_flag(TIF_32BIT)) {
2613			regs->tpc &= 0xffffffff;
2614			regs->tnpc &= 0xffffffff;
2615		}
2616		user_instruction_dump ((unsigned int __user *) regs->tpc);
2617	}
2618	if (panic_on_oops)
2619		panic("Fatal exception");
2620	if (regs->tstate & TSTATE_PRIV)
2621		do_exit(SIGKILL);
2622	do_exit(SIGSEGV);
2623}
2624EXPORT_SYMBOL(die_if_kernel);
2625
2626#define VIS_OPCODE_MASK	((0x3 << 30) | (0x3f << 19))
2627#define VIS_OPCODE_VAL	((0x2 << 30) | (0x36 << 19))
2628
2629void do_illegal_instruction(struct pt_regs *regs)
2630{
2631	enum ctx_state prev_state = exception_enter();
2632	unsigned long pc = regs->tpc;
2633	unsigned long tstate = regs->tstate;
2634	u32 insn;
2635	siginfo_t info;
2636
2637	if (notify_die(DIE_TRAP, "illegal instruction", regs,
2638		       0, 0x10, SIGILL) == NOTIFY_STOP)
2639		goto out;
2640
2641	if (tstate & TSTATE_PRIV)
2642		die_if_kernel("Kernel illegal instruction", regs);
2643	if (test_thread_flag(TIF_32BIT))
2644		pc = (u32)pc;
2645	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
2646		if ((insn & 0xc1ffc000) == 0x81700000) /* POPC */ {
2647			if (handle_popc(insn, regs))
2648				goto out;
2649		} else if ((insn & 0xc1580000) == 0xc1100000) /* LDQ/STQ */ {
2650			if (handle_ldf_stq(insn, regs))
2651				goto out;
2652		} else if (tlb_type == hypervisor) {
2653			if ((insn & VIS_OPCODE_MASK) == VIS_OPCODE_VAL) {
2654				if (!vis_emul(regs, insn))
2655					goto out;
2656			} else {
2657				struct fpustate *f = FPUSTATE;
2658
2659				/* On UltraSPARC T2 and later, FPU insns which
2660				 * are not implemented in HW signal an illegal
2661				 * instruction trap and do not set the FP Trap
2662				 * Trap in the %fsr to unimplemented_FPop.
2663				 */
2664				if (do_mathemu(regs, f, true))
2665					goto out;
2666			}
2667		}
2668	}
2669	info.si_signo = SIGILL;
2670	info.si_errno = 0;
2671	info.si_code = ILL_ILLOPC;
2672	info.si_addr = (void __user *)pc;
2673	info.si_trapno = 0;
2674	force_sig_info(SIGILL, &info, current);
2675out:
2676	exception_exit(prev_state);
2677}
2678
2679void mem_address_unaligned(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
2680{
2681	enum ctx_state prev_state = exception_enter();
2682	siginfo_t info;
2683
2684	if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2685		       0, 0x34, SIGSEGV) == NOTIFY_STOP)
2686		goto out;
2687
2688	if (regs->tstate & TSTATE_PRIV) {
2689		kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2690		goto out;
2691	}
2692	if (is_no_fault_exception(regs))
2693		return;
2694
2695	info.si_signo = SIGBUS;
2696	info.si_errno = 0;
2697	info.si_code = BUS_ADRALN;
2698	info.si_addr = (void __user *)sfar;
2699	info.si_trapno = 0;
2700	force_sig_info(SIGBUS, &info, current);
2701out:
2702	exception_exit(prev_state);
2703}
2704
2705void sun4v_do_mna(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
2706{
2707	siginfo_t info;
2708
2709	if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2710		       0, 0x34, SIGSEGV) == NOTIFY_STOP)
2711		return;
2712
2713	if (regs->tstate & TSTATE_PRIV) {
2714		kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2715		return;
2716	}
2717	if (is_no_fault_exception(regs))
2718		return;
2719
2720	info.si_signo = SIGBUS;
2721	info.si_errno = 0;
2722	info.si_code = BUS_ADRALN;
2723	info.si_addr = (void __user *) addr;
2724	info.si_trapno = 0;
2725	force_sig_info(SIGBUS, &info, current);
2726}
2727
2728/* sun4v_mem_corrupt_detect_precise() - Handle precise exception on an ADI
2729 * tag mismatch.
2730 *
2731 * ADI version tag mismatch on a load from memory always results in a
2732 * precise exception. Tag mismatch on a store to memory will result in
2733 * precise exception if MCDPER or PMCDPER is set to 1.
2734 */
2735void sun4v_mem_corrupt_detect_precise(struct pt_regs *regs, unsigned long addr,
2736				      unsigned long context)
2737{
2738	if (notify_die(DIE_TRAP, "memory corruption precise exception", regs,
2739		       0, 0x8, SIGSEGV) == NOTIFY_STOP)
2740		return;
2741
2742	if (regs->tstate & TSTATE_PRIV) {
2743		/* MCD exception could happen because the task was running
2744		 * a system call with MCD enabled and passed a non-versioned
2745		 * pointer or pointer with bad version tag to  the system
2746		 * call.
2747		 */
2748		const struct exception_table_entry *entry;
2749
2750		entry = search_exception_tables(regs->tpc);
2751		if (entry) {
2752			/* Looks like a bad syscall parameter */
2753#ifdef DEBUG_EXCEPTIONS
2754			pr_emerg("Exception: PC<%016lx> faddr<UNKNOWN>\n",
2755				 regs->tpc);
2756			pr_emerg("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
2757				 regs->tpc, entry->fixup);
2758#endif
2759			regs->tpc = entry->fixup;
2760			regs->tnpc = regs->tpc + 4;
2761			return;
2762		}
2763		pr_emerg("%s: ADDR[%016lx] CTX[%lx], going.\n",
2764			 __func__, addr, context);
2765		die_if_kernel("MCD precise", regs);
2766	}
2767
2768	if (test_thread_flag(TIF_32BIT)) {
2769		regs->tpc &= 0xffffffff;
2770		regs->tnpc &= 0xffffffff;
2771	}
2772	force_sig_fault(SIGSEGV, SEGV_ADIPERR, (void __user *)addr, 0, current);
2773}
2774
2775void do_privop(struct pt_regs *regs)
2776{
2777	enum ctx_state prev_state = exception_enter();
2778	siginfo_t info;
2779
2780	if (notify_die(DIE_TRAP, "privileged operation", regs,
2781		       0, 0x11, SIGILL) == NOTIFY_STOP)
2782		goto out;
2783
2784	if (test_thread_flag(TIF_32BIT)) {
2785		regs->tpc &= 0xffffffff;
2786		regs->tnpc &= 0xffffffff;
2787	}
2788	info.si_signo = SIGILL;
2789	info.si_errno = 0;
2790	info.si_code = ILL_PRVOPC;
2791	info.si_addr = (void __user *)regs->tpc;
2792	info.si_trapno = 0;
2793	force_sig_info(SIGILL, &info, current);
2794out:
2795	exception_exit(prev_state);
2796}
2797
2798void do_privact(struct pt_regs *regs)
2799{
2800	do_privop(regs);
2801}
2802
2803/* Trap level 1 stuff or other traps we should never see... */
2804void do_cee(struct pt_regs *regs)
2805{
2806	exception_enter();
2807	die_if_kernel("TL0: Cache Error Exception", regs);
2808}
2809
2810void do_div0_tl1(struct pt_regs *regs)
2811{
2812	exception_enter();
2813	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2814	die_if_kernel("TL1: DIV0 Exception", regs);
2815}
2816
2817void do_fpieee_tl1(struct pt_regs *regs)
2818{
2819	exception_enter();
2820	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2821	die_if_kernel("TL1: FPU IEEE Exception", regs);
2822}
2823
2824void do_fpother_tl1(struct pt_regs *regs)
2825{
2826	exception_enter();
2827	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2828	die_if_kernel("TL1: FPU Other Exception", regs);
2829}
2830
2831void do_ill_tl1(struct pt_regs *regs)
2832{
2833	exception_enter();
2834	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2835	die_if_kernel("TL1: Illegal Instruction Exception", regs);
2836}
2837
2838void do_irq_tl1(struct pt_regs *regs)
2839{
2840	exception_enter();
2841	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2842	die_if_kernel("TL1: IRQ Exception", regs);
2843}
2844
2845void do_lddfmna_tl1(struct pt_regs *regs)
2846{
2847	exception_enter();
2848	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2849	die_if_kernel("TL1: LDDF Exception", regs);
2850}
2851
2852void do_stdfmna_tl1(struct pt_regs *regs)
2853{
2854	exception_enter();
2855	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2856	die_if_kernel("TL1: STDF Exception", regs);
2857}
2858
2859void do_paw(struct pt_regs *regs)
2860{
2861	exception_enter();
2862	die_if_kernel("TL0: Phys Watchpoint Exception", regs);
2863}
2864
2865void do_paw_tl1(struct pt_regs *regs)
2866{
2867	exception_enter();
2868	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2869	die_if_kernel("TL1: Phys Watchpoint Exception", regs);
2870}
2871
2872void do_vaw(struct pt_regs *regs)
2873{
2874	exception_enter();
2875	die_if_kernel("TL0: Virt Watchpoint Exception", regs);
2876}
2877
2878void do_vaw_tl1(struct pt_regs *regs)
2879{
2880	exception_enter();
2881	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2882	die_if_kernel("TL1: Virt Watchpoint Exception", regs);
2883}
2884
2885void do_tof_tl1(struct pt_regs *regs)
2886{
2887	exception_enter();
2888	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2889	die_if_kernel("TL1: Tag Overflow Exception", regs);
2890}
2891
2892void do_getpsr(struct pt_regs *regs)
2893{
2894	regs->u_regs[UREG_I0] = tstate_to_psr(regs->tstate);
2895	regs->tpc   = regs->tnpc;
2896	regs->tnpc += 4;
2897	if (test_thread_flag(TIF_32BIT)) {
2898		regs->tpc &= 0xffffffff;
2899		regs->tnpc &= 0xffffffff;
2900	}
2901}
2902
2903u64 cpu_mondo_counter[NR_CPUS] = {0};
2904struct trap_per_cpu trap_block[NR_CPUS];
2905EXPORT_SYMBOL(trap_block);
2906
2907/* This can get invoked before sched_init() so play it super safe
2908 * and use hard_smp_processor_id().
2909 */
2910void notrace init_cur_cpu_trap(struct thread_info *t)
2911{
2912	int cpu = hard_smp_processor_id();
2913	struct trap_per_cpu *p = &trap_block[cpu];
2914
2915	p->thread = t;
2916	p->pgd_paddr = 0;
2917}
2918
2919extern void thread_info_offsets_are_bolixed_dave(void);
2920extern void trap_per_cpu_offsets_are_bolixed_dave(void);
2921extern void tsb_config_offsets_are_bolixed_dave(void);
2922
2923/* Only invoked on boot processor. */
2924void __init trap_init(void)
2925{
2926	/* Compile time sanity check. */
2927	BUILD_BUG_ON(TI_TASK != offsetof(struct thread_info, task) ||
2928		     TI_FLAGS != offsetof(struct thread_info, flags) ||
2929		     TI_CPU != offsetof(struct thread_info, cpu) ||
2930		     TI_FPSAVED != offsetof(struct thread_info, fpsaved) ||
2931		     TI_KSP != offsetof(struct thread_info, ksp) ||
2932		     TI_FAULT_ADDR != offsetof(struct thread_info,
2933					       fault_address) ||
2934		     TI_KREGS != offsetof(struct thread_info, kregs) ||
2935		     TI_UTRAPS != offsetof(struct thread_info, utraps) ||
2936		     TI_REG_WINDOW != offsetof(struct thread_info,
2937					       reg_window) ||
2938		     TI_RWIN_SPTRS != offsetof(struct thread_info,
2939					       rwbuf_stkptrs) ||
2940		     TI_GSR != offsetof(struct thread_info, gsr) ||
2941		     TI_XFSR != offsetof(struct thread_info, xfsr) ||
2942		     TI_PRE_COUNT != offsetof(struct thread_info,
2943					      preempt_count) ||
2944		     TI_NEW_CHILD != offsetof(struct thread_info, new_child) ||
2945		     TI_CURRENT_DS != offsetof(struct thread_info,
2946						current_ds) ||
2947		     TI_KUNA_REGS != offsetof(struct thread_info,
2948					      kern_una_regs) ||
2949		     TI_KUNA_INSN != offsetof(struct thread_info,
2950					      kern_una_insn) ||
2951		     TI_FPREGS != offsetof(struct thread_info, fpregs) ||
2952		     (TI_FPREGS & (64 - 1)));
2953
2954	BUILD_BUG_ON(TRAP_PER_CPU_THREAD != offsetof(struct trap_per_cpu,
2955						     thread) ||
2956		     (TRAP_PER_CPU_PGD_PADDR !=
2957		      offsetof(struct trap_per_cpu, pgd_paddr)) ||
2958		     (TRAP_PER_CPU_CPU_MONDO_PA !=
2959		      offsetof(struct trap_per_cpu, cpu_mondo_pa)) ||
2960		     (TRAP_PER_CPU_DEV_MONDO_PA !=
2961		      offsetof(struct trap_per_cpu, dev_mondo_pa)) ||
2962		     (TRAP_PER_CPU_RESUM_MONDO_PA !=
2963		      offsetof(struct trap_per_cpu, resum_mondo_pa)) ||
2964		     (TRAP_PER_CPU_RESUM_KBUF_PA !=
2965		      offsetof(struct trap_per_cpu, resum_kernel_buf_pa)) ||
2966		     (TRAP_PER_CPU_NONRESUM_MONDO_PA !=
2967		      offsetof(struct trap_per_cpu, nonresum_mondo_pa)) ||
2968		     (TRAP_PER_CPU_NONRESUM_KBUF_PA !=
2969		      offsetof(struct trap_per_cpu, nonresum_kernel_buf_pa)) ||
2970		     (TRAP_PER_CPU_FAULT_INFO !=
2971		      offsetof(struct trap_per_cpu, fault_info)) ||
2972		     (TRAP_PER_CPU_CPU_MONDO_BLOCK_PA !=
2973		      offsetof(struct trap_per_cpu, cpu_mondo_block_pa)) ||
2974		     (TRAP_PER_CPU_CPU_LIST_PA !=
2975		      offsetof(struct trap_per_cpu, cpu_list_pa)) ||
2976		     (TRAP_PER_CPU_TSB_HUGE !=
2977		      offsetof(struct trap_per_cpu, tsb_huge)) ||
2978		     (TRAP_PER_CPU_TSB_HUGE_TEMP !=
2979		      offsetof(struct trap_per_cpu, tsb_huge_temp)) ||
2980		     (TRAP_PER_CPU_IRQ_WORKLIST_PA !=
2981		      offsetof(struct trap_per_cpu, irq_worklist_pa)) ||
2982		     (TRAP_PER_CPU_CPU_MONDO_QMASK !=
2983		      offsetof(struct trap_per_cpu, cpu_mondo_qmask)) ||
2984		     (TRAP_PER_CPU_DEV_MONDO_QMASK !=
2985		      offsetof(struct trap_per_cpu, dev_mondo_qmask)) ||
2986		     (TRAP_PER_CPU_RESUM_QMASK !=
2987		      offsetof(struct trap_per_cpu, resum_qmask)) ||
2988		     (TRAP_PER_CPU_NONRESUM_QMASK !=
2989		      offsetof(struct trap_per_cpu, nonresum_qmask)) ||
2990		     (TRAP_PER_CPU_PER_CPU_BASE !=
2991		      offsetof(struct trap_per_cpu, __per_cpu_base)));
2992
2993	BUILD_BUG_ON((TSB_CONFIG_TSB !=
2994		      offsetof(struct tsb_config, tsb)) ||
2995		     (TSB_CONFIG_RSS_LIMIT !=
2996		      offsetof(struct tsb_config, tsb_rss_limit)) ||
2997		     (TSB_CONFIG_NENTRIES !=
2998		      offsetof(struct tsb_config, tsb_nentries)) ||
2999		     (TSB_CONFIG_REG_VAL !=
3000		      offsetof(struct tsb_config, tsb_reg_val)) ||
3001		     (TSB_CONFIG_MAP_VADDR !=
3002		      offsetof(struct tsb_config, tsb_map_vaddr)) ||
3003		     (TSB_CONFIG_MAP_PTE !=
3004		      offsetof(struct tsb_config, tsb_map_pte)));
3005
3006	/* Attach to the address space of init_task.  On SMP we
3007	 * do this in smp.c:smp_callin for other cpus.
3008	 */
3009	mmgrab(&init_mm);
3010	current->active_mm = &init_mm;
3011}