Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * arch/sh/mm/cache.c
4 *
5 * Copyright (C) 1999, 2000, 2002 Niibe Yutaka
6 * Copyright (C) 2002 - 2010 Paul Mundt
7 */
8#include <linux/mm.h>
9#include <linux/init.h>
10#include <linux/mutex.h>
11#include <linux/fs.h>
12#include <linux/smp.h>
13#include <linux/highmem.h>
14#include <linux/module.h>
15#include <asm/mmu_context.h>
16#include <asm/cacheflush.h>
17
18void (*local_flush_cache_all)(void *args) = cache_noop;
19void (*local_flush_cache_mm)(void *args) = cache_noop;
20void (*local_flush_cache_dup_mm)(void *args) = cache_noop;
21void (*local_flush_cache_page)(void *args) = cache_noop;
22void (*local_flush_cache_range)(void *args) = cache_noop;
23void (*local_flush_dcache_page)(void *args) = cache_noop;
24void (*local_flush_icache_range)(void *args) = cache_noop;
25void (*local_flush_icache_page)(void *args) = cache_noop;
26void (*local_flush_cache_sigtramp)(void *args) = cache_noop;
27
28void (*__flush_wback_region)(void *start, int size);
29EXPORT_SYMBOL(__flush_wback_region);
30void (*__flush_purge_region)(void *start, int size);
31EXPORT_SYMBOL(__flush_purge_region);
32void (*__flush_invalidate_region)(void *start, int size);
33EXPORT_SYMBOL(__flush_invalidate_region);
34
35static inline void noop__flush_region(void *start, int size)
36{
37}
38
39static inline void cacheop_on_each_cpu(void (*func) (void *info), void *info,
40 int wait)
41{
42 preempt_disable();
43
44 /* Needing IPI for cross-core flush is SHX3-specific. */
45#ifdef CONFIG_CPU_SHX3
46 /*
47 * It's possible that this gets called early on when IRQs are
48 * still disabled due to ioremapping by the boot CPU, so don't
49 * even attempt IPIs unless there are other CPUs online.
50 */
51 if (num_online_cpus() > 1)
52 smp_call_function(func, info, wait);
53#endif
54
55 func(info);
56
57 preempt_enable();
58}
59
60void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
61 unsigned long vaddr, void *dst, const void *src,
62 unsigned long len)
63{
64 if (boot_cpu_data.dcache.n_aliases && page_mapcount(page) &&
65 test_bit(PG_dcache_clean, &page->flags)) {
66 void *vto = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK);
67 memcpy(vto, src, len);
68 kunmap_coherent(vto);
69 } else {
70 memcpy(dst, src, len);
71 if (boot_cpu_data.dcache.n_aliases)
72 clear_bit(PG_dcache_clean, &page->flags);
73 }
74
75 if (vma->vm_flags & VM_EXEC)
76 flush_cache_page(vma, vaddr, page_to_pfn(page));
77}
78
79void copy_from_user_page(struct vm_area_struct *vma, struct page *page,
80 unsigned long vaddr, void *dst, const void *src,
81 unsigned long len)
82{
83 if (boot_cpu_data.dcache.n_aliases && page_mapcount(page) &&
84 test_bit(PG_dcache_clean, &page->flags)) {
85 void *vfrom = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK);
86 memcpy(dst, vfrom, len);
87 kunmap_coherent(vfrom);
88 } else {
89 memcpy(dst, src, len);
90 if (boot_cpu_data.dcache.n_aliases)
91 clear_bit(PG_dcache_clean, &page->flags);
92 }
93}
94
95void copy_user_highpage(struct page *to, struct page *from,
96 unsigned long vaddr, struct vm_area_struct *vma)
97{
98 void *vfrom, *vto;
99
100 vto = kmap_atomic(to);
101
102 if (boot_cpu_data.dcache.n_aliases && page_mapcount(from) &&
103 test_bit(PG_dcache_clean, &from->flags)) {
104 vfrom = kmap_coherent(from, vaddr);
105 copy_page(vto, vfrom);
106 kunmap_coherent(vfrom);
107 } else {
108 vfrom = kmap_atomic(from);
109 copy_page(vto, vfrom);
110 kunmap_atomic(vfrom);
111 }
112
113 if (pages_do_alias((unsigned long)vto, vaddr & PAGE_MASK) ||
114 (vma->vm_flags & VM_EXEC))
115 __flush_purge_region(vto, PAGE_SIZE);
116
117 kunmap_atomic(vto);
118 /* Make sure this page is cleared on other CPU's too before using it */
119 smp_wmb();
120}
121EXPORT_SYMBOL(copy_user_highpage);
122
123void clear_user_highpage(struct page *page, unsigned long vaddr)
124{
125 void *kaddr = kmap_atomic(page);
126
127 clear_page(kaddr);
128
129 if (pages_do_alias((unsigned long)kaddr, vaddr & PAGE_MASK))
130 __flush_purge_region(kaddr, PAGE_SIZE);
131
132 kunmap_atomic(kaddr);
133}
134EXPORT_SYMBOL(clear_user_highpage);
135
136void __update_cache(struct vm_area_struct *vma,
137 unsigned long address, pte_t pte)
138{
139 struct page *page;
140 unsigned long pfn = pte_pfn(pte);
141
142 if (!boot_cpu_data.dcache.n_aliases)
143 return;
144
145 page = pfn_to_page(pfn);
146 if (pfn_valid(pfn)) {
147 int dirty = !test_and_set_bit(PG_dcache_clean, &page->flags);
148 if (dirty)
149 __flush_purge_region(page_address(page), PAGE_SIZE);
150 }
151}
152
153void __flush_anon_page(struct page *page, unsigned long vmaddr)
154{
155 unsigned long addr = (unsigned long) page_address(page);
156
157 if (pages_do_alias(addr, vmaddr)) {
158 if (boot_cpu_data.dcache.n_aliases && page_mapcount(page) &&
159 test_bit(PG_dcache_clean, &page->flags)) {
160 void *kaddr;
161
162 kaddr = kmap_coherent(page, vmaddr);
163 /* XXX.. For now kunmap_coherent() does a purge */
164 /* __flush_purge_region((void *)kaddr, PAGE_SIZE); */
165 kunmap_coherent(kaddr);
166 } else
167 __flush_purge_region((void *)addr, PAGE_SIZE);
168 }
169}
170
171void flush_cache_all(void)
172{
173 cacheop_on_each_cpu(local_flush_cache_all, NULL, 1);
174}
175EXPORT_SYMBOL(flush_cache_all);
176
177void flush_cache_mm(struct mm_struct *mm)
178{
179 if (boot_cpu_data.dcache.n_aliases == 0)
180 return;
181
182 cacheop_on_each_cpu(local_flush_cache_mm, mm, 1);
183}
184
185void flush_cache_dup_mm(struct mm_struct *mm)
186{
187 if (boot_cpu_data.dcache.n_aliases == 0)
188 return;
189
190 cacheop_on_each_cpu(local_flush_cache_dup_mm, mm, 1);
191}
192
193void flush_cache_page(struct vm_area_struct *vma, unsigned long addr,
194 unsigned long pfn)
195{
196 struct flusher_data data;
197
198 data.vma = vma;
199 data.addr1 = addr;
200 data.addr2 = pfn;
201
202 cacheop_on_each_cpu(local_flush_cache_page, (void *)&data, 1);
203}
204
205void flush_cache_range(struct vm_area_struct *vma, unsigned long start,
206 unsigned long end)
207{
208 struct flusher_data data;
209
210 data.vma = vma;
211 data.addr1 = start;
212 data.addr2 = end;
213
214 cacheop_on_each_cpu(local_flush_cache_range, (void *)&data, 1);
215}
216EXPORT_SYMBOL(flush_cache_range);
217
218void flush_dcache_page(struct page *page)
219{
220 cacheop_on_each_cpu(local_flush_dcache_page, page, 1);
221}
222EXPORT_SYMBOL(flush_dcache_page);
223
224void flush_icache_range(unsigned long start, unsigned long end)
225{
226 struct flusher_data data;
227
228 data.vma = NULL;
229 data.addr1 = start;
230 data.addr2 = end;
231
232 cacheop_on_each_cpu(local_flush_icache_range, (void *)&data, 1);
233}
234EXPORT_SYMBOL(flush_icache_range);
235
236void flush_icache_page(struct vm_area_struct *vma, struct page *page)
237{
238 /* Nothing uses the VMA, so just pass the struct page along */
239 cacheop_on_each_cpu(local_flush_icache_page, page, 1);
240}
241
242void flush_cache_sigtramp(unsigned long address)
243{
244 cacheop_on_each_cpu(local_flush_cache_sigtramp, (void *)address, 1);
245}
246
247static void compute_alias(struct cache_info *c)
248{
249#ifdef CONFIG_MMU
250 c->alias_mask = ((c->sets - 1) << c->entry_shift) & ~(PAGE_SIZE - 1);
251#else
252 c->alias_mask = 0;
253#endif
254 c->n_aliases = c->alias_mask ? (c->alias_mask >> PAGE_SHIFT) + 1 : 0;
255}
256
257static void __init emit_cache_params(void)
258{
259 printk(KERN_NOTICE "I-cache : n_ways=%d n_sets=%d way_incr=%d\n",
260 boot_cpu_data.icache.ways,
261 boot_cpu_data.icache.sets,
262 boot_cpu_data.icache.way_incr);
263 printk(KERN_NOTICE "I-cache : entry_mask=0x%08x alias_mask=0x%08x n_aliases=%d\n",
264 boot_cpu_data.icache.entry_mask,
265 boot_cpu_data.icache.alias_mask,
266 boot_cpu_data.icache.n_aliases);
267 printk(KERN_NOTICE "D-cache : n_ways=%d n_sets=%d way_incr=%d\n",
268 boot_cpu_data.dcache.ways,
269 boot_cpu_data.dcache.sets,
270 boot_cpu_data.dcache.way_incr);
271 printk(KERN_NOTICE "D-cache : entry_mask=0x%08x alias_mask=0x%08x n_aliases=%d\n",
272 boot_cpu_data.dcache.entry_mask,
273 boot_cpu_data.dcache.alias_mask,
274 boot_cpu_data.dcache.n_aliases);
275
276 /*
277 * Emit Secondary Cache parameters if the CPU has a probed L2.
278 */
279 if (boot_cpu_data.flags & CPU_HAS_L2_CACHE) {
280 printk(KERN_NOTICE "S-cache : n_ways=%d n_sets=%d way_incr=%d\n",
281 boot_cpu_data.scache.ways,
282 boot_cpu_data.scache.sets,
283 boot_cpu_data.scache.way_incr);
284 printk(KERN_NOTICE "S-cache : entry_mask=0x%08x alias_mask=0x%08x n_aliases=%d\n",
285 boot_cpu_data.scache.entry_mask,
286 boot_cpu_data.scache.alias_mask,
287 boot_cpu_data.scache.n_aliases);
288 }
289}
290
291void __init cpu_cache_init(void)
292{
293 unsigned int cache_disabled = 0;
294
295#ifdef SH_CCR
296 cache_disabled = !(__raw_readl(SH_CCR) & CCR_CACHE_ENABLE);
297#endif
298
299 compute_alias(&boot_cpu_data.icache);
300 compute_alias(&boot_cpu_data.dcache);
301 compute_alias(&boot_cpu_data.scache);
302
303 __flush_wback_region = noop__flush_region;
304 __flush_purge_region = noop__flush_region;
305 __flush_invalidate_region = noop__flush_region;
306
307 /*
308 * No flushing is necessary in the disabled cache case so we can
309 * just keep the noop functions in local_flush_..() and __flush_..()
310 */
311 if (unlikely(cache_disabled))
312 goto skip;
313
314 if (boot_cpu_data.type == CPU_J2) {
315 extern void __weak j2_cache_init(void);
316
317 j2_cache_init();
318 } else if (boot_cpu_data.family == CPU_FAMILY_SH2) {
319 extern void __weak sh2_cache_init(void);
320
321 sh2_cache_init();
322 }
323
324 if (boot_cpu_data.family == CPU_FAMILY_SH2A) {
325 extern void __weak sh2a_cache_init(void);
326
327 sh2a_cache_init();
328 }
329
330 if (boot_cpu_data.family == CPU_FAMILY_SH3) {
331 extern void __weak sh3_cache_init(void);
332
333 sh3_cache_init();
334
335 if ((boot_cpu_data.type == CPU_SH7705) &&
336 (boot_cpu_data.dcache.sets == 512)) {
337 extern void __weak sh7705_cache_init(void);
338
339 sh7705_cache_init();
340 }
341 }
342
343 if ((boot_cpu_data.family == CPU_FAMILY_SH4) ||
344 (boot_cpu_data.family == CPU_FAMILY_SH4A) ||
345 (boot_cpu_data.family == CPU_FAMILY_SH4AL_DSP)) {
346 extern void __weak sh4_cache_init(void);
347
348 sh4_cache_init();
349
350 if ((boot_cpu_data.type == CPU_SH7786) ||
351 (boot_cpu_data.type == CPU_SHX3)) {
352 extern void __weak shx3_cache_init(void);
353
354 shx3_cache_init();
355 }
356 }
357
358skip:
359 emit_cache_params();
360}
1/*
2 * arch/sh/mm/cache.c
3 *
4 * Copyright (C) 1999, 2000, 2002 Niibe Yutaka
5 * Copyright (C) 2002 - 2010 Paul Mundt
6 *
7 * Released under the terms of the GNU GPL v2.0.
8 */
9#include <linux/mm.h>
10#include <linux/init.h>
11#include <linux/mutex.h>
12#include <linux/fs.h>
13#include <linux/smp.h>
14#include <linux/highmem.h>
15#include <linux/module.h>
16#include <asm/mmu_context.h>
17#include <asm/cacheflush.h>
18
19void (*local_flush_cache_all)(void *args) = cache_noop;
20void (*local_flush_cache_mm)(void *args) = cache_noop;
21void (*local_flush_cache_dup_mm)(void *args) = cache_noop;
22void (*local_flush_cache_page)(void *args) = cache_noop;
23void (*local_flush_cache_range)(void *args) = cache_noop;
24void (*local_flush_dcache_page)(void *args) = cache_noop;
25void (*local_flush_icache_range)(void *args) = cache_noop;
26void (*local_flush_icache_page)(void *args) = cache_noop;
27void (*local_flush_cache_sigtramp)(void *args) = cache_noop;
28
29void (*__flush_wback_region)(void *start, int size);
30EXPORT_SYMBOL(__flush_wback_region);
31void (*__flush_purge_region)(void *start, int size);
32EXPORT_SYMBOL(__flush_purge_region);
33void (*__flush_invalidate_region)(void *start, int size);
34EXPORT_SYMBOL(__flush_invalidate_region);
35
36static inline void noop__flush_region(void *start, int size)
37{
38}
39
40static inline void cacheop_on_each_cpu(void (*func) (void *info), void *info,
41 int wait)
42{
43 preempt_disable();
44
45 /* Needing IPI for cross-core flush is SHX3-specific. */
46#ifdef CONFIG_CPU_SHX3
47 /*
48 * It's possible that this gets called early on when IRQs are
49 * still disabled due to ioremapping by the boot CPU, so don't
50 * even attempt IPIs unless there are other CPUs online.
51 */
52 if (num_online_cpus() > 1)
53 smp_call_function(func, info, wait);
54#endif
55
56 func(info);
57
58 preempt_enable();
59}
60
61void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
62 unsigned long vaddr, void *dst, const void *src,
63 unsigned long len)
64{
65 if (boot_cpu_data.dcache.n_aliases && page_mapcount(page) &&
66 test_bit(PG_dcache_clean, &page->flags)) {
67 void *vto = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK);
68 memcpy(vto, src, len);
69 kunmap_coherent(vto);
70 } else {
71 memcpy(dst, src, len);
72 if (boot_cpu_data.dcache.n_aliases)
73 clear_bit(PG_dcache_clean, &page->flags);
74 }
75
76 if (vma->vm_flags & VM_EXEC)
77 flush_cache_page(vma, vaddr, page_to_pfn(page));
78}
79
80void copy_from_user_page(struct vm_area_struct *vma, struct page *page,
81 unsigned long vaddr, void *dst, const void *src,
82 unsigned long len)
83{
84 if (boot_cpu_data.dcache.n_aliases && page_mapcount(page) &&
85 test_bit(PG_dcache_clean, &page->flags)) {
86 void *vfrom = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK);
87 memcpy(dst, vfrom, len);
88 kunmap_coherent(vfrom);
89 } else {
90 memcpy(dst, src, len);
91 if (boot_cpu_data.dcache.n_aliases)
92 clear_bit(PG_dcache_clean, &page->flags);
93 }
94}
95
96void copy_user_highpage(struct page *to, struct page *from,
97 unsigned long vaddr, struct vm_area_struct *vma)
98{
99 void *vfrom, *vto;
100
101 vto = kmap_atomic(to);
102
103 if (boot_cpu_data.dcache.n_aliases && page_mapcount(from) &&
104 test_bit(PG_dcache_clean, &from->flags)) {
105 vfrom = kmap_coherent(from, vaddr);
106 copy_page(vto, vfrom);
107 kunmap_coherent(vfrom);
108 } else {
109 vfrom = kmap_atomic(from);
110 copy_page(vto, vfrom);
111 kunmap_atomic(vfrom);
112 }
113
114 if (pages_do_alias((unsigned long)vto, vaddr & PAGE_MASK) ||
115 (vma->vm_flags & VM_EXEC))
116 __flush_purge_region(vto, PAGE_SIZE);
117
118 kunmap_atomic(vto);
119 /* Make sure this page is cleared on other CPU's too before using it */
120 smp_wmb();
121}
122EXPORT_SYMBOL(copy_user_highpage);
123
124void clear_user_highpage(struct page *page, unsigned long vaddr)
125{
126 void *kaddr = kmap_atomic(page);
127
128 clear_page(kaddr);
129
130 if (pages_do_alias((unsigned long)kaddr, vaddr & PAGE_MASK))
131 __flush_purge_region(kaddr, PAGE_SIZE);
132
133 kunmap_atomic(kaddr);
134}
135EXPORT_SYMBOL(clear_user_highpage);
136
137void __update_cache(struct vm_area_struct *vma,
138 unsigned long address, pte_t pte)
139{
140 struct page *page;
141 unsigned long pfn = pte_pfn(pte);
142
143 if (!boot_cpu_data.dcache.n_aliases)
144 return;
145
146 page = pfn_to_page(pfn);
147 if (pfn_valid(pfn)) {
148 int dirty = !test_and_set_bit(PG_dcache_clean, &page->flags);
149 if (dirty)
150 __flush_purge_region(page_address(page), PAGE_SIZE);
151 }
152}
153
154void __flush_anon_page(struct page *page, unsigned long vmaddr)
155{
156 unsigned long addr = (unsigned long) page_address(page);
157
158 if (pages_do_alias(addr, vmaddr)) {
159 if (boot_cpu_data.dcache.n_aliases && page_mapcount(page) &&
160 test_bit(PG_dcache_clean, &page->flags)) {
161 void *kaddr;
162
163 kaddr = kmap_coherent(page, vmaddr);
164 /* XXX.. For now kunmap_coherent() does a purge */
165 /* __flush_purge_region((void *)kaddr, PAGE_SIZE); */
166 kunmap_coherent(kaddr);
167 } else
168 __flush_purge_region((void *)addr, PAGE_SIZE);
169 }
170}
171
172void flush_cache_all(void)
173{
174 cacheop_on_each_cpu(local_flush_cache_all, NULL, 1);
175}
176EXPORT_SYMBOL(flush_cache_all);
177
178void flush_cache_mm(struct mm_struct *mm)
179{
180 if (boot_cpu_data.dcache.n_aliases == 0)
181 return;
182
183 cacheop_on_each_cpu(local_flush_cache_mm, mm, 1);
184}
185
186void flush_cache_dup_mm(struct mm_struct *mm)
187{
188 if (boot_cpu_data.dcache.n_aliases == 0)
189 return;
190
191 cacheop_on_each_cpu(local_flush_cache_dup_mm, mm, 1);
192}
193
194void flush_cache_page(struct vm_area_struct *vma, unsigned long addr,
195 unsigned long pfn)
196{
197 struct flusher_data data;
198
199 data.vma = vma;
200 data.addr1 = addr;
201 data.addr2 = pfn;
202
203 cacheop_on_each_cpu(local_flush_cache_page, (void *)&data, 1);
204}
205
206void flush_cache_range(struct vm_area_struct *vma, unsigned long start,
207 unsigned long end)
208{
209 struct flusher_data data;
210
211 data.vma = vma;
212 data.addr1 = start;
213 data.addr2 = end;
214
215 cacheop_on_each_cpu(local_flush_cache_range, (void *)&data, 1);
216}
217EXPORT_SYMBOL(flush_cache_range);
218
219void flush_dcache_page(struct page *page)
220{
221 cacheop_on_each_cpu(local_flush_dcache_page, page, 1);
222}
223EXPORT_SYMBOL(flush_dcache_page);
224
225void flush_icache_range(unsigned long start, unsigned long end)
226{
227 struct flusher_data data;
228
229 data.vma = NULL;
230 data.addr1 = start;
231 data.addr2 = end;
232
233 cacheop_on_each_cpu(local_flush_icache_range, (void *)&data, 1);
234}
235EXPORT_SYMBOL(flush_icache_range);
236
237void flush_icache_page(struct vm_area_struct *vma, struct page *page)
238{
239 /* Nothing uses the VMA, so just pass the struct page along */
240 cacheop_on_each_cpu(local_flush_icache_page, page, 1);
241}
242
243void flush_cache_sigtramp(unsigned long address)
244{
245 cacheop_on_each_cpu(local_flush_cache_sigtramp, (void *)address, 1);
246}
247
248static void compute_alias(struct cache_info *c)
249{
250#ifdef CONFIG_MMU
251 c->alias_mask = ((c->sets - 1) << c->entry_shift) & ~(PAGE_SIZE - 1);
252#else
253 c->alias_mask = 0;
254#endif
255 c->n_aliases = c->alias_mask ? (c->alias_mask >> PAGE_SHIFT) + 1 : 0;
256}
257
258static void __init emit_cache_params(void)
259{
260 printk(KERN_NOTICE "I-cache : n_ways=%d n_sets=%d way_incr=%d\n",
261 boot_cpu_data.icache.ways,
262 boot_cpu_data.icache.sets,
263 boot_cpu_data.icache.way_incr);
264 printk(KERN_NOTICE "I-cache : entry_mask=0x%08x alias_mask=0x%08x n_aliases=%d\n",
265 boot_cpu_data.icache.entry_mask,
266 boot_cpu_data.icache.alias_mask,
267 boot_cpu_data.icache.n_aliases);
268 printk(KERN_NOTICE "D-cache : n_ways=%d n_sets=%d way_incr=%d\n",
269 boot_cpu_data.dcache.ways,
270 boot_cpu_data.dcache.sets,
271 boot_cpu_data.dcache.way_incr);
272 printk(KERN_NOTICE "D-cache : entry_mask=0x%08x alias_mask=0x%08x n_aliases=%d\n",
273 boot_cpu_data.dcache.entry_mask,
274 boot_cpu_data.dcache.alias_mask,
275 boot_cpu_data.dcache.n_aliases);
276
277 /*
278 * Emit Secondary Cache parameters if the CPU has a probed L2.
279 */
280 if (boot_cpu_data.flags & CPU_HAS_L2_CACHE) {
281 printk(KERN_NOTICE "S-cache : n_ways=%d n_sets=%d way_incr=%d\n",
282 boot_cpu_data.scache.ways,
283 boot_cpu_data.scache.sets,
284 boot_cpu_data.scache.way_incr);
285 printk(KERN_NOTICE "S-cache : entry_mask=0x%08x alias_mask=0x%08x n_aliases=%d\n",
286 boot_cpu_data.scache.entry_mask,
287 boot_cpu_data.scache.alias_mask,
288 boot_cpu_data.scache.n_aliases);
289 }
290}
291
292void __init cpu_cache_init(void)
293{
294 unsigned int cache_disabled = 0;
295
296#ifdef SH_CCR
297 cache_disabled = !(__raw_readl(SH_CCR) & CCR_CACHE_ENABLE);
298#endif
299
300 compute_alias(&boot_cpu_data.icache);
301 compute_alias(&boot_cpu_data.dcache);
302 compute_alias(&boot_cpu_data.scache);
303
304 __flush_wback_region = noop__flush_region;
305 __flush_purge_region = noop__flush_region;
306 __flush_invalidate_region = noop__flush_region;
307
308 /*
309 * No flushing is necessary in the disabled cache case so we can
310 * just keep the noop functions in local_flush_..() and __flush_..()
311 */
312 if (unlikely(cache_disabled))
313 goto skip;
314
315 if (boot_cpu_data.type == CPU_J2) {
316 extern void __weak j2_cache_init(void);
317
318 j2_cache_init();
319 } else if (boot_cpu_data.family == CPU_FAMILY_SH2) {
320 extern void __weak sh2_cache_init(void);
321
322 sh2_cache_init();
323 }
324
325 if (boot_cpu_data.family == CPU_FAMILY_SH2A) {
326 extern void __weak sh2a_cache_init(void);
327
328 sh2a_cache_init();
329 }
330
331 if (boot_cpu_data.family == CPU_FAMILY_SH3) {
332 extern void __weak sh3_cache_init(void);
333
334 sh3_cache_init();
335
336 if ((boot_cpu_data.type == CPU_SH7705) &&
337 (boot_cpu_data.dcache.sets == 512)) {
338 extern void __weak sh7705_cache_init(void);
339
340 sh7705_cache_init();
341 }
342 }
343
344 if ((boot_cpu_data.family == CPU_FAMILY_SH4) ||
345 (boot_cpu_data.family == CPU_FAMILY_SH4A) ||
346 (boot_cpu_data.family == CPU_FAMILY_SH4AL_DSP)) {
347 extern void __weak sh4_cache_init(void);
348
349 sh4_cache_init();
350
351 if ((boot_cpu_data.type == CPU_SH7786) ||
352 (boot_cpu_data.type == CPU_SHX3)) {
353 extern void __weak shx3_cache_init(void);
354
355 shx3_cache_init();
356 }
357 }
358
359 if (boot_cpu_data.family == CPU_FAMILY_SH5) {
360 extern void __weak sh5_cache_init(void);
361
362 sh5_cache_init();
363 }
364
365skip:
366 emit_cache_params();
367}