Linux Audio

Check our new training course

Buildroot integration, development and maintenance

Need a Buildroot system for your embedded project?
Loading...
v6.2
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 1996 David S. Miller (davem@davemloft.net)
   7 * Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Ralf Baechle (ralf@gnu.org)
   8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
   9 */
  10#include <linux/cpu_pm.h>
  11#include <linux/hardirq.h>
  12#include <linux/init.h>
  13#include <linux/highmem.h>
  14#include <linux/kernel.h>
  15#include <linux/linkage.h>
  16#include <linux/preempt.h>
  17#include <linux/sched.h>
  18#include <linux/smp.h>
  19#include <linux/mm.h>
  20#include <linux/export.h>
  21#include <linux/bitops.h>
  22#include <linux/dma-map-ops.h> /* for dma_default_coherent */
  23
  24#include <asm/bcache.h>
  25#include <asm/bootinfo.h>
  26#include <asm/cache.h>
  27#include <asm/cacheops.h>
  28#include <asm/cpu.h>
  29#include <asm/cpu-features.h>
  30#include <asm/cpu-type.h>
  31#include <asm/io.h>
  32#include <asm/page.h>
 
  33#include <asm/r4kcache.h>
  34#include <asm/sections.h>
  35#include <asm/mmu_context.h>
 
  36#include <asm/cacheflush.h> /* for run_uncached() */
  37#include <asm/traps.h>
 
  38#include <asm/mips-cps.h>
  39
  40/*
  41 * Bits describing what cache ops an SMP callback function may perform.
  42 *
  43 * R4K_HIT   -	Virtual user or kernel address based cache operations. The
  44 *		active_mm must be checked before using user addresses, falling
  45 *		back to kmap.
  46 * R4K_INDEX -	Index based cache operations.
  47 */
  48
  49#define R4K_HIT		BIT(0)
  50#define R4K_INDEX	BIT(1)
  51
  52/**
  53 * r4k_op_needs_ipi() - Decide if a cache op needs to be done on every core.
  54 * @type:	Type of cache operations (R4K_HIT or R4K_INDEX).
  55 *
  56 * Decides whether a cache op needs to be performed on every core in the system.
  57 * This may change depending on the @type of cache operation, as well as the set
  58 * of online CPUs, so preemption should be disabled by the caller to prevent CPU
  59 * hotplug from changing the result.
  60 *
  61 * Returns:	1 if the cache operation @type should be done on every core in
  62 *		the system.
  63 *		0 if the cache operation @type is globalized and only needs to
  64 *		be performed on a simple CPU.
  65 */
  66static inline bool r4k_op_needs_ipi(unsigned int type)
  67{
  68	/* The MIPS Coherence Manager (CM) globalizes address-based cache ops */
  69	if (type == R4K_HIT && mips_cm_present())
  70		return false;
  71
  72	/*
  73	 * Hardware doesn't globalize the required cache ops, so SMP calls may
  74	 * be needed, but only if there are foreign CPUs (non-siblings with
  75	 * separate caches).
  76	 */
  77	/* cpu_foreign_map[] undeclared when !CONFIG_SMP */
  78#ifdef CONFIG_SMP
  79	return !cpumask_empty(&cpu_foreign_map[0]);
  80#else
  81	return false;
  82#endif
  83}
  84
  85/*
  86 * Special Variant of smp_call_function for use by cache functions:
  87 *
  88 *  o No return value
  89 *  o collapses to normal function call on UP kernels
  90 *  o collapses to normal function call on systems with a single shared
  91 *    primary cache.
  92 *  o doesn't disable interrupts on the local CPU
  93 */
  94static inline void r4k_on_each_cpu(unsigned int type,
  95				   void (*func)(void *info), void *info)
  96{
  97	preempt_disable();
  98	if (r4k_op_needs_ipi(type))
  99		smp_call_function_many(&cpu_foreign_map[smp_processor_id()],
 100				       func, info, 1);
 101	func(info);
 102	preempt_enable();
 103}
 104
 105/*
 106 * Must die.
 107 */
 108static unsigned long icache_size __read_mostly;
 109static unsigned long dcache_size __read_mostly;
 110static unsigned long vcache_size __read_mostly;
 111static unsigned long scache_size __read_mostly;
 112
 113/*
 114 * Dummy cache handling routines for machines without boardcaches
 115 */
 116static void cache_noop(void) {}
 117
 118static struct bcache_ops no_sc_ops = {
 119	.bc_enable = (void *)cache_noop,
 120	.bc_disable = (void *)cache_noop,
 121	.bc_wback_inv = (void *)cache_noop,
 122	.bc_inv = (void *)cache_noop
 123};
 124
 125struct bcache_ops *bcops = &no_sc_ops;
 126
 127#define cpu_is_r4600_v1_x()	((read_c0_prid() & 0xfffffff0) == 0x00002010)
 128#define cpu_is_r4600_v2_x()	((read_c0_prid() & 0xfffffff0) == 0x00002020)
 129
 130#define R4600_HIT_CACHEOP_WAR_IMPL					\
 131do {									\
 132	if (IS_ENABLED(CONFIG_WAR_R4600_V2_HIT_CACHEOP) &&		\
 133	    cpu_is_r4600_v2_x())					\
 134		*(volatile unsigned long *)CKSEG1;			\
 135	if (IS_ENABLED(CONFIG_WAR_R4600_V1_HIT_CACHEOP))					\
 136		__asm__ __volatile__("nop;nop;nop;nop");		\
 137} while (0)
 138
 139static void (*r4k_blast_dcache_page)(unsigned long addr);
 140
 141static inline void r4k_blast_dcache_page_dc32(unsigned long addr)
 142{
 143	R4600_HIT_CACHEOP_WAR_IMPL;
 144	blast_dcache32_page(addr);
 145}
 146
 147static inline void r4k_blast_dcache_page_dc64(unsigned long addr)
 148{
 149	blast_dcache64_page(addr);
 150}
 151
 152static inline void r4k_blast_dcache_page_dc128(unsigned long addr)
 153{
 154	blast_dcache128_page(addr);
 155}
 156
 157static void r4k_blast_dcache_page_setup(void)
 158{
 159	unsigned long  dc_lsize = cpu_dcache_line_size();
 160
 161	switch (dc_lsize) {
 162	case 0:
 163		r4k_blast_dcache_page = (void *)cache_noop;
 164		break;
 165	case 16:
 166		r4k_blast_dcache_page = blast_dcache16_page;
 167		break;
 168	case 32:
 169		r4k_blast_dcache_page = r4k_blast_dcache_page_dc32;
 170		break;
 171	case 64:
 172		r4k_blast_dcache_page = r4k_blast_dcache_page_dc64;
 173		break;
 174	case 128:
 175		r4k_blast_dcache_page = r4k_blast_dcache_page_dc128;
 176		break;
 177	default:
 178		break;
 179	}
 180}
 181
 182#ifndef CONFIG_EVA
 183#define r4k_blast_dcache_user_page  r4k_blast_dcache_page
 184#else
 185
 186static void (*r4k_blast_dcache_user_page)(unsigned long addr);
 187
 188static void r4k_blast_dcache_user_page_setup(void)
 189{
 190	unsigned long  dc_lsize = cpu_dcache_line_size();
 191
 192	if (dc_lsize == 0)
 193		r4k_blast_dcache_user_page = (void *)cache_noop;
 194	else if (dc_lsize == 16)
 195		r4k_blast_dcache_user_page = blast_dcache16_user_page;
 196	else if (dc_lsize == 32)
 197		r4k_blast_dcache_user_page = blast_dcache32_user_page;
 198	else if (dc_lsize == 64)
 199		r4k_blast_dcache_user_page = blast_dcache64_user_page;
 200}
 201
 202#endif
 203
 204static void (* r4k_blast_dcache_page_indexed)(unsigned long addr);
 205
 206static void r4k_blast_dcache_page_indexed_setup(void)
 207{
 208	unsigned long dc_lsize = cpu_dcache_line_size();
 209
 210	if (dc_lsize == 0)
 211		r4k_blast_dcache_page_indexed = (void *)cache_noop;
 212	else if (dc_lsize == 16)
 213		r4k_blast_dcache_page_indexed = blast_dcache16_page_indexed;
 214	else if (dc_lsize == 32)
 215		r4k_blast_dcache_page_indexed = blast_dcache32_page_indexed;
 216	else if (dc_lsize == 64)
 217		r4k_blast_dcache_page_indexed = blast_dcache64_page_indexed;
 218	else if (dc_lsize == 128)
 219		r4k_blast_dcache_page_indexed = blast_dcache128_page_indexed;
 220}
 221
 222void (* r4k_blast_dcache)(void);
 223EXPORT_SYMBOL(r4k_blast_dcache);
 224
 225static void r4k_blast_dcache_setup(void)
 226{
 227	unsigned long dc_lsize = cpu_dcache_line_size();
 228
 229	if (dc_lsize == 0)
 230		r4k_blast_dcache = (void *)cache_noop;
 231	else if (dc_lsize == 16)
 232		r4k_blast_dcache = blast_dcache16;
 233	else if (dc_lsize == 32)
 234		r4k_blast_dcache = blast_dcache32;
 235	else if (dc_lsize == 64)
 236		r4k_blast_dcache = blast_dcache64;
 237	else if (dc_lsize == 128)
 238		r4k_blast_dcache = blast_dcache128;
 239}
 240
 241/* force code alignment (used for CONFIG_WAR_TX49XX_ICACHE_INDEX_INV) */
 242#define JUMP_TO_ALIGN(order) \
 243	__asm__ __volatile__( \
 244		"b\t1f\n\t" \
 245		".align\t" #order "\n\t" \
 246		"1:\n\t" \
 247		)
 248#define CACHE32_UNROLL32_ALIGN	JUMP_TO_ALIGN(10) /* 32 * 32 = 1024 */
 249#define CACHE32_UNROLL32_ALIGN2 JUMP_TO_ALIGN(11)
 250
 251static inline void blast_r4600_v1_icache32(void)
 252{
 253	unsigned long flags;
 254
 255	local_irq_save(flags);
 256	blast_icache32();
 257	local_irq_restore(flags);
 258}
 259
 260static inline void tx49_blast_icache32(void)
 261{
 262	unsigned long start = INDEX_BASE;
 263	unsigned long end = start + current_cpu_data.icache.waysize;
 264	unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
 265	unsigned long ws_end = current_cpu_data.icache.ways <<
 266			       current_cpu_data.icache.waybit;
 267	unsigned long ws, addr;
 268
 269	CACHE32_UNROLL32_ALIGN2;
 270	/* I'm in even chunk.  blast odd chunks */
 271	for (ws = 0; ws < ws_end; ws += ws_inc)
 272		for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
 273			cache_unroll(32, kernel_cache, Index_Invalidate_I,
 274				     addr | ws, 32);
 275	CACHE32_UNROLL32_ALIGN;
 276	/* I'm in odd chunk.  blast even chunks */
 277	for (ws = 0; ws < ws_end; ws += ws_inc)
 278		for (addr = start; addr < end; addr += 0x400 * 2)
 279			cache_unroll(32, kernel_cache, Index_Invalidate_I,
 280				     addr | ws, 32);
 281}
 282
 283static inline void blast_icache32_r4600_v1_page_indexed(unsigned long page)
 284{
 285	unsigned long flags;
 286
 287	local_irq_save(flags);
 288	blast_icache32_page_indexed(page);
 289	local_irq_restore(flags);
 290}
 291
 292static inline void tx49_blast_icache32_page_indexed(unsigned long page)
 293{
 294	unsigned long indexmask = current_cpu_data.icache.waysize - 1;
 295	unsigned long start = INDEX_BASE + (page & indexmask);
 296	unsigned long end = start + PAGE_SIZE;
 297	unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
 298	unsigned long ws_end = current_cpu_data.icache.ways <<
 299			       current_cpu_data.icache.waybit;
 300	unsigned long ws, addr;
 301
 302	CACHE32_UNROLL32_ALIGN2;
 303	/* I'm in even chunk.  blast odd chunks */
 304	for (ws = 0; ws < ws_end; ws += ws_inc)
 305		for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
 306			cache_unroll(32, kernel_cache, Index_Invalidate_I,
 307				     addr | ws, 32);
 308	CACHE32_UNROLL32_ALIGN;
 309	/* I'm in odd chunk.  blast even chunks */
 310	for (ws = 0; ws < ws_end; ws += ws_inc)
 311		for (addr = start; addr < end; addr += 0x400 * 2)
 312			cache_unroll(32, kernel_cache, Index_Invalidate_I,
 313				     addr | ws, 32);
 314}
 315
 316static void (* r4k_blast_icache_page)(unsigned long addr);
 317
 318static void r4k_blast_icache_page_setup(void)
 319{
 320	unsigned long ic_lsize = cpu_icache_line_size();
 321
 322	if (ic_lsize == 0)
 323		r4k_blast_icache_page = (void *)cache_noop;
 324	else if (ic_lsize == 16)
 325		r4k_blast_icache_page = blast_icache16_page;
 326	else if (ic_lsize == 32 && current_cpu_type() == CPU_LOONGSON2EF)
 327		r4k_blast_icache_page = loongson2_blast_icache32_page;
 328	else if (ic_lsize == 32)
 329		r4k_blast_icache_page = blast_icache32_page;
 330	else if (ic_lsize == 64)
 331		r4k_blast_icache_page = blast_icache64_page;
 332	else if (ic_lsize == 128)
 333		r4k_blast_icache_page = blast_icache128_page;
 334}
 335
 336#ifndef CONFIG_EVA
 337#define r4k_blast_icache_user_page  r4k_blast_icache_page
 338#else
 339
 340static void (*r4k_blast_icache_user_page)(unsigned long addr);
 341
 342static void r4k_blast_icache_user_page_setup(void)
 343{
 344	unsigned long ic_lsize = cpu_icache_line_size();
 345
 346	if (ic_lsize == 0)
 347		r4k_blast_icache_user_page = (void *)cache_noop;
 348	else if (ic_lsize == 16)
 349		r4k_blast_icache_user_page = blast_icache16_user_page;
 350	else if (ic_lsize == 32)
 351		r4k_blast_icache_user_page = blast_icache32_user_page;
 352	else if (ic_lsize == 64)
 353		r4k_blast_icache_user_page = blast_icache64_user_page;
 354}
 355
 356#endif
 357
 358static void (* r4k_blast_icache_page_indexed)(unsigned long addr);
 359
 360static void r4k_blast_icache_page_indexed_setup(void)
 361{
 362	unsigned long ic_lsize = cpu_icache_line_size();
 363
 364	if (ic_lsize == 0)
 365		r4k_blast_icache_page_indexed = (void *)cache_noop;
 366	else if (ic_lsize == 16)
 367		r4k_blast_icache_page_indexed = blast_icache16_page_indexed;
 368	else if (ic_lsize == 32) {
 369		if (IS_ENABLED(CONFIG_WAR_R4600_V1_INDEX_ICACHEOP) &&
 370		    cpu_is_r4600_v1_x())
 371			r4k_blast_icache_page_indexed =
 372				blast_icache32_r4600_v1_page_indexed;
 373		else if (IS_ENABLED(CONFIG_WAR_TX49XX_ICACHE_INDEX_INV))
 374			r4k_blast_icache_page_indexed =
 375				tx49_blast_icache32_page_indexed;
 376		else if (current_cpu_type() == CPU_LOONGSON2EF)
 377			r4k_blast_icache_page_indexed =
 378				loongson2_blast_icache32_page_indexed;
 379		else
 380			r4k_blast_icache_page_indexed =
 381				blast_icache32_page_indexed;
 382	} else if (ic_lsize == 64)
 383		r4k_blast_icache_page_indexed = blast_icache64_page_indexed;
 384}
 385
 386void (* r4k_blast_icache)(void);
 387EXPORT_SYMBOL(r4k_blast_icache);
 388
 389static void r4k_blast_icache_setup(void)
 390{
 391	unsigned long ic_lsize = cpu_icache_line_size();
 392
 393	if (ic_lsize == 0)
 394		r4k_blast_icache = (void *)cache_noop;
 395	else if (ic_lsize == 16)
 396		r4k_blast_icache = blast_icache16;
 397	else if (ic_lsize == 32) {
 398		if (IS_ENABLED(CONFIG_WAR_R4600_V1_INDEX_ICACHEOP) &&
 399		    cpu_is_r4600_v1_x())
 400			r4k_blast_icache = blast_r4600_v1_icache32;
 401		else if (IS_ENABLED(CONFIG_WAR_TX49XX_ICACHE_INDEX_INV))
 402			r4k_blast_icache = tx49_blast_icache32;
 403		else if (current_cpu_type() == CPU_LOONGSON2EF)
 404			r4k_blast_icache = loongson2_blast_icache32;
 405		else
 406			r4k_blast_icache = blast_icache32;
 407	} else if (ic_lsize == 64)
 408		r4k_blast_icache = blast_icache64;
 409	else if (ic_lsize == 128)
 410		r4k_blast_icache = blast_icache128;
 411}
 412
 413static void (* r4k_blast_scache_page)(unsigned long addr);
 414
 415static void r4k_blast_scache_page_setup(void)
 416{
 417	unsigned long sc_lsize = cpu_scache_line_size();
 418
 419	if (scache_size == 0)
 420		r4k_blast_scache_page = (void *)cache_noop;
 421	else if (sc_lsize == 16)
 422		r4k_blast_scache_page = blast_scache16_page;
 423	else if (sc_lsize == 32)
 424		r4k_blast_scache_page = blast_scache32_page;
 425	else if (sc_lsize == 64)
 426		r4k_blast_scache_page = blast_scache64_page;
 427	else if (sc_lsize == 128)
 428		r4k_blast_scache_page = blast_scache128_page;
 429}
 430
 431static void (* r4k_blast_scache_page_indexed)(unsigned long addr);
 432
 433static void r4k_blast_scache_page_indexed_setup(void)
 434{
 435	unsigned long sc_lsize = cpu_scache_line_size();
 436
 437	if (scache_size == 0)
 438		r4k_blast_scache_page_indexed = (void *)cache_noop;
 439	else if (sc_lsize == 16)
 440		r4k_blast_scache_page_indexed = blast_scache16_page_indexed;
 441	else if (sc_lsize == 32)
 442		r4k_blast_scache_page_indexed = blast_scache32_page_indexed;
 443	else if (sc_lsize == 64)
 444		r4k_blast_scache_page_indexed = blast_scache64_page_indexed;
 445	else if (sc_lsize == 128)
 446		r4k_blast_scache_page_indexed = blast_scache128_page_indexed;
 447}
 448
 449static void (* r4k_blast_scache)(void);
 450
 451static void r4k_blast_scache_setup(void)
 452{
 453	unsigned long sc_lsize = cpu_scache_line_size();
 454
 455	if (scache_size == 0)
 456		r4k_blast_scache = (void *)cache_noop;
 457	else if (sc_lsize == 16)
 458		r4k_blast_scache = blast_scache16;
 459	else if (sc_lsize == 32)
 460		r4k_blast_scache = blast_scache32;
 461	else if (sc_lsize == 64)
 462		r4k_blast_scache = blast_scache64;
 463	else if (sc_lsize == 128)
 464		r4k_blast_scache = blast_scache128;
 465}
 466
 467static void (*r4k_blast_scache_node)(long node);
 468
 469static void r4k_blast_scache_node_setup(void)
 470{
 471	unsigned long sc_lsize = cpu_scache_line_size();
 472
 473	if (current_cpu_type() != CPU_LOONGSON64)
 474		r4k_blast_scache_node = (void *)cache_noop;
 475	else if (sc_lsize == 16)
 476		r4k_blast_scache_node = blast_scache16_node;
 477	else if (sc_lsize == 32)
 478		r4k_blast_scache_node = blast_scache32_node;
 479	else if (sc_lsize == 64)
 480		r4k_blast_scache_node = blast_scache64_node;
 481	else if (sc_lsize == 128)
 482		r4k_blast_scache_node = blast_scache128_node;
 483}
 484
 485static inline void local_r4k___flush_cache_all(void * args)
 486{
 487	switch (current_cpu_type()) {
 488	case CPU_LOONGSON2EF:
 
 489	case CPU_R4000SC:
 490	case CPU_R4000MC:
 491	case CPU_R4400SC:
 492	case CPU_R4400MC:
 493	case CPU_R10000:
 494	case CPU_R12000:
 495	case CPU_R14000:
 496	case CPU_R16000:
 497		/*
 498		 * These caches are inclusive caches, that is, if something
 499		 * is not cached in the S-cache, we know it also won't be
 500		 * in one of the primary caches.
 501		 */
 502		r4k_blast_scache();
 503		break;
 504
 505	case CPU_LOONGSON64:
 506		/* Use get_ebase_cpunum() for both NUMA=y/n */
 507		r4k_blast_scache_node(get_ebase_cpunum() >> 2);
 508		break;
 509
 510	case CPU_BMIPS5000:
 511		r4k_blast_scache();
 512		__sync();
 513		break;
 514
 515	default:
 516		r4k_blast_dcache();
 517		r4k_blast_icache();
 518		break;
 519	}
 520}
 521
 522static void r4k___flush_cache_all(void)
 523{
 524	r4k_on_each_cpu(R4K_INDEX, local_r4k___flush_cache_all, NULL);
 525}
 526
 527/**
 528 * has_valid_asid() - Determine if an mm already has an ASID.
 529 * @mm:		Memory map.
 530 * @type:	R4K_HIT or R4K_INDEX, type of cache op.
 531 *
 532 * Determines whether @mm already has an ASID on any of the CPUs which cache ops
 533 * of type @type within an r4k_on_each_cpu() call will affect. If
 534 * r4k_on_each_cpu() does an SMP call to a single VPE in each core, then the
 535 * scope of the operation is confined to sibling CPUs, otherwise all online CPUs
 536 * will need to be checked.
 537 *
 538 * Must be called in non-preemptive context.
 539 *
 540 * Returns:	1 if the CPUs affected by @type cache ops have an ASID for @mm.
 541 *		0 otherwise.
 542 */
 543static inline int has_valid_asid(const struct mm_struct *mm, unsigned int type)
 544{
 545	unsigned int i;
 546	const cpumask_t *mask = cpu_present_mask;
 547
 548	if (cpu_has_mmid)
 549		return cpu_context(0, mm) != 0;
 550
 551	/* cpu_sibling_map[] undeclared when !CONFIG_SMP */
 552#ifdef CONFIG_SMP
 553	/*
 554	 * If r4k_on_each_cpu does SMP calls, it does them to a single VPE in
 555	 * each foreign core, so we only need to worry about siblings.
 556	 * Otherwise we need to worry about all present CPUs.
 557	 */
 558	if (r4k_op_needs_ipi(type))
 559		mask = &cpu_sibling_map[smp_processor_id()];
 560#endif
 561	for_each_cpu(i, mask)
 562		if (cpu_context(i, mm))
 563			return 1;
 564	return 0;
 565}
 566
 567static void r4k__flush_cache_vmap(void)
 568{
 569	r4k_blast_dcache();
 570}
 571
 572static void r4k__flush_cache_vunmap(void)
 573{
 574	r4k_blast_dcache();
 575}
 576
 577/*
 578 * Note: flush_tlb_range() assumes flush_cache_range() sufficiently flushes
 579 * whole caches when vma is executable.
 580 */
 581static inline void local_r4k_flush_cache_range(void * args)
 582{
 583	struct vm_area_struct *vma = args;
 584	int exec = vma->vm_flags & VM_EXEC;
 585
 586	if (!has_valid_asid(vma->vm_mm, R4K_INDEX))
 587		return;
 588
 589	/*
 590	 * If dcache can alias, we must blast it since mapping is changing.
 591	 * If executable, we must ensure any dirty lines are written back far
 592	 * enough to be visible to icache.
 593	 */
 594	if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc))
 595		r4k_blast_dcache();
 596	/* If executable, blast stale lines from icache */
 597	if (exec)
 598		r4k_blast_icache();
 599}
 600
 601static void r4k_flush_cache_range(struct vm_area_struct *vma,
 602	unsigned long start, unsigned long end)
 603{
 604	int exec = vma->vm_flags & VM_EXEC;
 605
 606	if (cpu_has_dc_aliases || exec)
 607		r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_range, vma);
 608}
 609
 610static inline void local_r4k_flush_cache_mm(void * args)
 611{
 612	struct mm_struct *mm = args;
 613
 614	if (!has_valid_asid(mm, R4K_INDEX))
 615		return;
 616
 617	/*
 618	 * Kludge alert.  For obscure reasons R4000SC and R4400SC go nuts if we
 619	 * only flush the primary caches but R1x000 behave sane ...
 620	 * R4000SC and R4400SC indexed S-cache ops also invalidate primary
 621	 * caches, so we can bail out early.
 622	 */
 623	if (current_cpu_type() == CPU_R4000SC ||
 624	    current_cpu_type() == CPU_R4000MC ||
 625	    current_cpu_type() == CPU_R4400SC ||
 626	    current_cpu_type() == CPU_R4400MC) {
 627		r4k_blast_scache();
 628		return;
 629	}
 630
 631	r4k_blast_dcache();
 632}
 633
 634static void r4k_flush_cache_mm(struct mm_struct *mm)
 635{
 636	if (!cpu_has_dc_aliases)
 637		return;
 638
 639	r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_mm, mm);
 640}
 641
 642struct flush_cache_page_args {
 643	struct vm_area_struct *vma;
 644	unsigned long addr;
 645	unsigned long pfn;
 646};
 647
 648static inline void local_r4k_flush_cache_page(void *args)
 649{
 650	struct flush_cache_page_args *fcp_args = args;
 651	struct vm_area_struct *vma = fcp_args->vma;
 652	unsigned long addr = fcp_args->addr;
 653	struct page *page = pfn_to_page(fcp_args->pfn);
 654	int exec = vma->vm_flags & VM_EXEC;
 655	struct mm_struct *mm = vma->vm_mm;
 656	int map_coherent = 0;
 
 
 657	pmd_t *pmdp;
 658	pte_t *ptep;
 659	void *vaddr;
 660
 661	/*
 662	 * If owns no valid ASID yet, cannot possibly have gotten
 663	 * this page into the cache.
 664	 */
 665	if (!has_valid_asid(mm, R4K_HIT))
 666		return;
 667
 668	addr &= PAGE_MASK;
 669	pmdp = pmd_off(mm, addr);
 670	ptep = pte_offset_kernel(pmdp, addr);
 
 
 671
 672	/*
 673	 * If the page isn't marked valid, the page cannot possibly be
 674	 * in the cache.
 675	 */
 676	if (!(pte_present(*ptep)))
 677		return;
 678
 679	if ((mm == current->active_mm) && (pte_val(*ptep) & _PAGE_VALID))
 680		vaddr = NULL;
 681	else {
 682		/*
 683		 * Use kmap_coherent or kmap_atomic to do flushes for
 684		 * another ASID than the current one.
 685		 */
 686		map_coherent = (cpu_has_dc_aliases &&
 687				page_mapcount(page) &&
 688				!Page_dcache_dirty(page));
 689		if (map_coherent)
 690			vaddr = kmap_coherent(page, addr);
 691		else
 692			vaddr = kmap_atomic(page);
 693		addr = (unsigned long)vaddr;
 694	}
 695
 696	if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) {
 697		vaddr ? r4k_blast_dcache_page(addr) :
 698			r4k_blast_dcache_user_page(addr);
 699		if (exec && !cpu_icache_snoops_remote_store)
 700			r4k_blast_scache_page(addr);
 701	}
 702	if (exec) {
 703		if (vaddr && cpu_has_vtag_icache && mm == current->active_mm) {
 704			drop_mmu_context(mm);
 
 
 
 705		} else
 706			vaddr ? r4k_blast_icache_page(addr) :
 707				r4k_blast_icache_user_page(addr);
 708	}
 709
 710	if (vaddr) {
 711		if (map_coherent)
 712			kunmap_coherent();
 713		else
 714			kunmap_atomic(vaddr);
 715	}
 716}
 717
 718static void r4k_flush_cache_page(struct vm_area_struct *vma,
 719	unsigned long addr, unsigned long pfn)
 720{
 721	struct flush_cache_page_args args;
 722
 723	args.vma = vma;
 724	args.addr = addr;
 725	args.pfn = pfn;
 726
 727	r4k_on_each_cpu(R4K_HIT, local_r4k_flush_cache_page, &args);
 728}
 729
 730static inline void local_r4k_flush_data_cache_page(void * addr)
 731{
 732	r4k_blast_dcache_page((unsigned long) addr);
 733}
 734
 735static void r4k_flush_data_cache_page(unsigned long addr)
 736{
 737	if (in_atomic())
 738		local_r4k_flush_data_cache_page((void *)addr);
 739	else
 740		r4k_on_each_cpu(R4K_HIT, local_r4k_flush_data_cache_page,
 741				(void *) addr);
 742}
 743
 744struct flush_icache_range_args {
 745	unsigned long start;
 746	unsigned long end;
 747	unsigned int type;
 748	bool user;
 749};
 750
 751static inline void __local_r4k_flush_icache_range(unsigned long start,
 752						  unsigned long end,
 753						  unsigned int type,
 754						  bool user)
 755{
 756	if (!cpu_has_ic_fills_f_dc) {
 757		if (type == R4K_INDEX ||
 758		    (type & R4K_INDEX && end - start >= dcache_size)) {
 759			r4k_blast_dcache();
 760		} else {
 761			R4600_HIT_CACHEOP_WAR_IMPL;
 762			if (user)
 763				protected_blast_dcache_range(start, end);
 764			else
 765				blast_dcache_range(start, end);
 766		}
 767	}
 768
 769	if (type == R4K_INDEX ||
 770	    (type & R4K_INDEX && end - start > icache_size))
 771		r4k_blast_icache();
 772	else {
 773		switch (boot_cpu_type()) {
 774		case CPU_LOONGSON2EF:
 775			protected_loongson2_blast_icache_range(start, end);
 776			break;
 777
 778		default:
 779			if (user)
 780				protected_blast_icache_range(start, end);
 781			else
 782				blast_icache_range(start, end);
 783			break;
 784		}
 785	}
 786}
 787
 788static inline void local_r4k_flush_icache_range(unsigned long start,
 789						unsigned long end)
 790{
 791	__local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, false);
 792}
 793
 794static inline void local_r4k_flush_icache_user_range(unsigned long start,
 795						     unsigned long end)
 796{
 797	__local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, true);
 798}
 799
 800static inline void local_r4k_flush_icache_range_ipi(void *args)
 801{
 802	struct flush_icache_range_args *fir_args = args;
 803	unsigned long start = fir_args->start;
 804	unsigned long end = fir_args->end;
 805	unsigned int type = fir_args->type;
 806	bool user = fir_args->user;
 807
 808	__local_r4k_flush_icache_range(start, end, type, user);
 809}
 810
 811static void __r4k_flush_icache_range(unsigned long start, unsigned long end,
 812				     bool user)
 813{
 814	struct flush_icache_range_args args;
 815	unsigned long size, cache_size;
 816
 817	args.start = start;
 818	args.end = end;
 819	args.type = R4K_HIT | R4K_INDEX;
 820	args.user = user;
 821
 822	/*
 823	 * Indexed cache ops require an SMP call.
 824	 * Consider if that can or should be avoided.
 825	 */
 826	preempt_disable();
 827	if (r4k_op_needs_ipi(R4K_INDEX) && !r4k_op_needs_ipi(R4K_HIT)) {
 828		/*
 829		 * If address-based cache ops don't require an SMP call, then
 830		 * use them exclusively for small flushes.
 831		 */
 832		size = end - start;
 833		cache_size = icache_size;
 834		if (!cpu_has_ic_fills_f_dc) {
 835			size *= 2;
 836			cache_size += dcache_size;
 837		}
 838		if (size <= cache_size)
 839			args.type &= ~R4K_INDEX;
 840	}
 841	r4k_on_each_cpu(args.type, local_r4k_flush_icache_range_ipi, &args);
 842	preempt_enable();
 843	instruction_hazard();
 844}
 845
 846static void r4k_flush_icache_range(unsigned long start, unsigned long end)
 847{
 848	return __r4k_flush_icache_range(start, end, false);
 849}
 850
 851static void r4k_flush_icache_user_range(unsigned long start, unsigned long end)
 852{
 853	return __r4k_flush_icache_range(start, end, true);
 854}
 855
 856#ifdef CONFIG_DMA_NONCOHERENT
 857
 858static void r4k_dma_cache_wback_inv(unsigned long addr, unsigned long size)
 859{
 860	/* Catch bad driver code */
 861	if (WARN_ON(size == 0))
 862		return;
 863
 864	preempt_disable();
 865	if (cpu_has_inclusive_pcaches) {
 866		if (size >= scache_size) {
 867			if (current_cpu_type() != CPU_LOONGSON64)
 868				r4k_blast_scache();
 869			else
 870				r4k_blast_scache_node(pa_to_nid(addr));
 871		} else {
 872			blast_scache_range(addr, addr + size);
 873		}
 874		preempt_enable();
 875		__sync();
 876		return;
 877	}
 878
 879	/*
 880	 * Either no secondary cache or the available caches don't have the
 881	 * subset property so we have to flush the primary caches
 882	 * explicitly.
 883	 * If we would need IPI to perform an INDEX-type operation, then
 884	 * we have to use the HIT-type alternative as IPI cannot be used
 885	 * here due to interrupts possibly being disabled.
 886	 */
 887	if (!r4k_op_needs_ipi(R4K_INDEX) && size >= dcache_size) {
 888		r4k_blast_dcache();
 889	} else {
 890		R4600_HIT_CACHEOP_WAR_IMPL;
 891		blast_dcache_range(addr, addr + size);
 892	}
 893	preempt_enable();
 894
 895	bc_wback_inv(addr, size);
 896	__sync();
 897}
 898
 899static void prefetch_cache_inv(unsigned long addr, unsigned long size)
 900{
 901	unsigned int linesz = cpu_scache_line_size();
 902	unsigned long addr0 = addr, addr1;
 903
 904	addr0 &= ~(linesz - 1);
 905	addr1 = (addr0 + size - 1) & ~(linesz - 1);
 906
 907	protected_writeback_scache_line(addr0);
 908	if (likely(addr1 != addr0))
 909		protected_writeback_scache_line(addr1);
 910	else
 911		return;
 912
 913	addr0 += linesz;
 914	if (likely(addr1 != addr0))
 915		protected_writeback_scache_line(addr0);
 916	else
 917		return;
 918
 919	addr1 -= linesz;
 920	if (likely(addr1 > addr0))
 921		protected_writeback_scache_line(addr0);
 922}
 923
 924static void r4k_dma_cache_inv(unsigned long addr, unsigned long size)
 925{
 926	/* Catch bad driver code */
 927	if (WARN_ON(size == 0))
 928		return;
 929
 930	preempt_disable();
 931
 932	if (current_cpu_type() == CPU_BMIPS5000)
 933		prefetch_cache_inv(addr, size);
 934
 935	if (cpu_has_inclusive_pcaches) {
 936		if (size >= scache_size) {
 937			if (current_cpu_type() != CPU_LOONGSON64)
 938				r4k_blast_scache();
 939			else
 940				r4k_blast_scache_node(pa_to_nid(addr));
 941		} else {
 942			/*
 943			 * There is no clearly documented alignment requirement
 944			 * for the cache instruction on MIPS processors and
 945			 * some processors, among them the RM5200 and RM7000
 946			 * QED processors will throw an address error for cache
 947			 * hit ops with insufficient alignment.	 Solved by
 948			 * aligning the address to cache line size.
 949			 */
 950			blast_inv_scache_range(addr, addr + size);
 951		}
 952		preempt_enable();
 953		__sync();
 954		return;
 955	}
 956
 957	if (!r4k_op_needs_ipi(R4K_INDEX) && size >= dcache_size) {
 958		r4k_blast_dcache();
 959	} else {
 960		R4600_HIT_CACHEOP_WAR_IMPL;
 961		blast_inv_dcache_range(addr, addr + size);
 962	}
 963	preempt_enable();
 964
 965	bc_inv(addr, size);
 966	__sync();
 967}
 968#endif /* CONFIG_DMA_NONCOHERENT */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 969
 970static void r4k_flush_icache_all(void)
 971{
 972	if (cpu_has_vtag_icache)
 973		r4k_blast_icache();
 974}
 975
 976struct flush_kernel_vmap_range_args {
 977	unsigned long	vaddr;
 978	int		size;
 979};
 980
 981static inline void local_r4k_flush_kernel_vmap_range_index(void *args)
 982{
 983	/*
 984	 * Aliases only affect the primary caches so don't bother with
 985	 * S-caches or T-caches.
 986	 */
 987	r4k_blast_dcache();
 988}
 989
 990static inline void local_r4k_flush_kernel_vmap_range(void *args)
 991{
 992	struct flush_kernel_vmap_range_args *vmra = args;
 993	unsigned long vaddr = vmra->vaddr;
 994	int size = vmra->size;
 995
 996	/*
 997	 * Aliases only affect the primary caches so don't bother with
 998	 * S-caches or T-caches.
 999	 */
1000	R4600_HIT_CACHEOP_WAR_IMPL;
1001	blast_dcache_range(vaddr, vaddr + size);
1002}
1003
1004static void r4k_flush_kernel_vmap_range(unsigned long vaddr, int size)
1005{
1006	struct flush_kernel_vmap_range_args args;
1007
1008	args.vaddr = (unsigned long) vaddr;
1009	args.size = size;
1010
1011	if (size >= dcache_size)
1012		r4k_on_each_cpu(R4K_INDEX,
1013				local_r4k_flush_kernel_vmap_range_index, NULL);
1014	else
1015		r4k_on_each_cpu(R4K_HIT, local_r4k_flush_kernel_vmap_range,
1016				&args);
1017}
1018
1019static inline void rm7k_erratum31(void)
1020{
1021	const unsigned long ic_lsize = 32;
1022	unsigned long addr;
1023
1024	/* RM7000 erratum #31. The icache is screwed at startup. */
1025	write_c0_taglo(0);
1026	write_c0_taghi(0);
1027
1028	for (addr = INDEX_BASE; addr <= INDEX_BASE + 4096; addr += ic_lsize) {
1029		__asm__ __volatile__ (
1030			".set push\n\t"
1031			".set noreorder\n\t"
1032			".set mips3\n\t"
1033			"cache\t%1, 0(%0)\n\t"
1034			"cache\t%1, 0x1000(%0)\n\t"
1035			"cache\t%1, 0x2000(%0)\n\t"
1036			"cache\t%1, 0x3000(%0)\n\t"
1037			"cache\t%2, 0(%0)\n\t"
1038			"cache\t%2, 0x1000(%0)\n\t"
1039			"cache\t%2, 0x2000(%0)\n\t"
1040			"cache\t%2, 0x3000(%0)\n\t"
1041			"cache\t%1, 0(%0)\n\t"
1042			"cache\t%1, 0x1000(%0)\n\t"
1043			"cache\t%1, 0x2000(%0)\n\t"
1044			"cache\t%1, 0x3000(%0)\n\t"
1045			".set pop\n"
1046			:
1047			: "r" (addr), "i" (Index_Store_Tag_I), "i" (Fill_I));
1048	}
1049}
1050
1051static inline int alias_74k_erratum(struct cpuinfo_mips *c)
1052{
1053	unsigned int imp = c->processor_id & PRID_IMP_MASK;
1054	unsigned int rev = c->processor_id & PRID_REV_MASK;
1055	int present = 0;
1056
1057	/*
1058	 * Early versions of the 74K do not update the cache tags on a
1059	 * vtag miss/ptag hit which can occur in the case of KSEG0/KUSEG
1060	 * aliases.  In this case it is better to treat the cache as always
1061	 * having aliases.  Also disable the synonym tag update feature
1062	 * where available.  In this case no opportunistic tag update will
1063	 * happen where a load causes a virtual address miss but a physical
1064	 * address hit during a D-cache look-up.
1065	 */
1066	switch (imp) {
1067	case PRID_IMP_74K:
1068		if (rev <= PRID_REV_ENCODE_332(2, 4, 0))
1069			present = 1;
1070		if (rev == PRID_REV_ENCODE_332(2, 4, 0))
1071			write_c0_config6(read_c0_config6() | MTI_CONF6_SYND);
1072		break;
1073	case PRID_IMP_1074K:
1074		if (rev <= PRID_REV_ENCODE_332(1, 1, 0)) {
1075			present = 1;
1076			write_c0_config6(read_c0_config6() | MTI_CONF6_SYND);
1077		}
1078		break;
1079	default:
1080		BUG();
1081	}
1082
1083	return present;
1084}
1085
1086static void b5k_instruction_hazard(void)
1087{
1088	__sync();
1089	__sync();
1090	__asm__ __volatile__(
1091	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
1092	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
1093	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
1094	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
1095	: : : "memory");
1096}
1097
1098static char *way_string[] = { NULL, "direct mapped", "2-way",
1099	"3-way", "4-way", "5-way", "6-way", "7-way", "8-way",
1100	"9-way", "10-way", "11-way", "12-way",
1101	"13-way", "14-way", "15-way", "16-way",
1102};
1103
1104static void probe_pcache(void)
1105{
1106	struct cpuinfo_mips *c = &current_cpu_data;
1107	unsigned int config = read_c0_config();
1108	unsigned int prid = read_c0_prid();
1109	int has_74k_erratum = 0;
1110	unsigned long config1;
1111	unsigned int lsize;
1112
1113	switch (current_cpu_type()) {
1114	case CPU_R4600:			/* QED style two way caches? */
1115	case CPU_R4700:
1116	case CPU_R5000:
1117	case CPU_NEVADA:
1118		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1119		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1120		c->icache.ways = 2;
1121		c->icache.waybit = __ffs(icache_size/2);
1122
1123		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1124		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1125		c->dcache.ways = 2;
1126		c->dcache.waybit= __ffs(dcache_size/2);
1127
1128		c->options |= MIPS_CPU_CACHE_CDEX_P;
1129		break;
1130
 
1131	case CPU_R5500:
1132		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1133		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1134		c->icache.ways = 2;
1135		c->icache.waybit= 0;
1136
1137		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1138		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1139		c->dcache.ways = 2;
1140		c->dcache.waybit = 0;
1141
1142		c->options |= MIPS_CPU_CACHE_CDEX_P | MIPS_CPU_PREFETCH;
1143		break;
1144
1145	case CPU_TX49XX:
1146		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1147		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1148		c->icache.ways = 4;
1149		c->icache.waybit= 0;
1150
1151		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1152		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1153		c->dcache.ways = 4;
1154		c->dcache.waybit = 0;
1155
1156		c->options |= MIPS_CPU_CACHE_CDEX_P;
1157		c->options |= MIPS_CPU_PREFETCH;
1158		break;
1159
1160	case CPU_R4000PC:
1161	case CPU_R4000SC:
1162	case CPU_R4000MC:
1163	case CPU_R4400PC:
1164	case CPU_R4400SC:
1165	case CPU_R4400MC:
1166	case CPU_R4300:
1167		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1168		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1169		c->icache.ways = 1;
1170		c->icache.waybit = 0;	/* doesn't matter */
1171
1172		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1173		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1174		c->dcache.ways = 1;
1175		c->dcache.waybit = 0;	/* does not matter */
1176
1177		c->options |= MIPS_CPU_CACHE_CDEX_P;
1178		break;
1179
1180	case CPU_R10000:
1181	case CPU_R12000:
1182	case CPU_R14000:
1183	case CPU_R16000:
1184		icache_size = 1 << (12 + ((config & R10K_CONF_IC) >> 29));
1185		c->icache.linesz = 64;
1186		c->icache.ways = 2;
1187		c->icache.waybit = 0;
1188
1189		dcache_size = 1 << (12 + ((config & R10K_CONF_DC) >> 26));
1190		c->dcache.linesz = 32;
1191		c->dcache.ways = 2;
1192		c->dcache.waybit = 0;
1193
1194		c->options |= MIPS_CPU_PREFETCH;
1195		break;
1196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1197	case CPU_RM7000:
1198		rm7k_erratum31();
1199
1200		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1201		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1202		c->icache.ways = 4;
1203		c->icache.waybit = __ffs(icache_size / c->icache.ways);
1204
1205		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1206		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1207		c->dcache.ways = 4;
1208		c->dcache.waybit = __ffs(dcache_size / c->dcache.ways);
1209
1210		c->options |= MIPS_CPU_CACHE_CDEX_P;
1211		c->options |= MIPS_CPU_PREFETCH;
1212		break;
1213
1214	case CPU_LOONGSON2EF:
1215		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1216		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1217		if (prid & 0x3)
1218			c->icache.ways = 4;
1219		else
1220			c->icache.ways = 2;
1221		c->icache.waybit = 0;
1222
1223		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1224		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1225		if (prid & 0x3)
1226			c->dcache.ways = 4;
1227		else
1228			c->dcache.ways = 2;
1229		c->dcache.waybit = 0;
1230		break;
1231
1232	case CPU_LOONGSON64:
1233		config1 = read_c0_config1();
1234		lsize = (config1 >> 19) & 7;
1235		if (lsize)
1236			c->icache.linesz = 2 << lsize;
1237		else
1238			c->icache.linesz = 0;
1239		c->icache.sets = 64 << ((config1 >> 22) & 7);
1240		c->icache.ways = 1 + ((config1 >> 16) & 7);
1241		icache_size = c->icache.sets *
1242					  c->icache.ways *
1243					  c->icache.linesz;
1244		c->icache.waybit = 0;
1245
1246		lsize = (config1 >> 10) & 7;
1247		if (lsize)
1248			c->dcache.linesz = 2 << lsize;
1249		else
1250			c->dcache.linesz = 0;
1251		c->dcache.sets = 64 << ((config1 >> 13) & 7);
1252		c->dcache.ways = 1 + ((config1 >> 7) & 7);
1253		dcache_size = c->dcache.sets *
1254					  c->dcache.ways *
1255					  c->dcache.linesz;
1256		c->dcache.waybit = 0;
1257		if ((c->processor_id & (PRID_IMP_MASK | PRID_REV_MASK)) >=
1258				(PRID_IMP_LOONGSON_64C | PRID_REV_LOONGSON3A_R2_0) ||
1259				(c->processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64R)
1260			c->options |= MIPS_CPU_PREFETCH;
1261		break;
1262
1263	case CPU_CAVIUM_OCTEON3:
1264		/* For now lie about the number of ways. */
1265		c->icache.linesz = 128;
1266		c->icache.sets = 16;
1267		c->icache.ways = 8;
1268		c->icache.flags |= MIPS_CACHE_VTAG;
1269		icache_size = c->icache.sets * c->icache.ways * c->icache.linesz;
1270
1271		c->dcache.linesz = 128;
1272		c->dcache.ways = 8;
1273		c->dcache.sets = 8;
1274		dcache_size = c->dcache.sets * c->dcache.ways * c->dcache.linesz;
1275		c->options |= MIPS_CPU_PREFETCH;
1276		break;
1277
1278	default:
1279		if (!(config & MIPS_CONF_M))
1280			panic("Don't know how to probe P-caches on this cpu.");
1281
1282		/*
1283		 * So we seem to be a MIPS32 or MIPS64 CPU
1284		 * So let's probe the I-cache ...
1285		 */
1286		config1 = read_c0_config1();
1287
1288		lsize = (config1 >> 19) & 7;
1289
1290		/* IL == 7 is reserved */
1291		if (lsize == 7)
1292			panic("Invalid icache line size");
1293
1294		c->icache.linesz = lsize ? 2 << lsize : 0;
1295
1296		c->icache.sets = 32 << (((config1 >> 22) + 1) & 7);
1297		c->icache.ways = 1 + ((config1 >> 16) & 7);
1298
1299		icache_size = c->icache.sets *
1300			      c->icache.ways *
1301			      c->icache.linesz;
1302		c->icache.waybit = __ffs(icache_size/c->icache.ways);
1303
1304		if (config & MIPS_CONF_VI)
1305			c->icache.flags |= MIPS_CACHE_VTAG;
1306
1307		/*
1308		 * Now probe the MIPS32 / MIPS64 data cache.
1309		 */
1310		c->dcache.flags = 0;
1311
1312		lsize = (config1 >> 10) & 7;
1313
1314		/* DL == 7 is reserved */
1315		if (lsize == 7)
1316			panic("Invalid dcache line size");
1317
1318		c->dcache.linesz = lsize ? 2 << lsize : 0;
1319
1320		c->dcache.sets = 32 << (((config1 >> 13) + 1) & 7);
1321		c->dcache.ways = 1 + ((config1 >> 7) & 7);
1322
1323		dcache_size = c->dcache.sets *
1324			      c->dcache.ways *
1325			      c->dcache.linesz;
1326		c->dcache.waybit = __ffs(dcache_size/c->dcache.ways);
1327
1328		c->options |= MIPS_CPU_PREFETCH;
1329		break;
1330	}
1331
1332	/*
1333	 * Processor configuration sanity check for the R4000SC erratum
1334	 * #5.	With page sizes larger than 32kB there is no possibility
1335	 * to get a VCE exception anymore so we don't care about this
1336	 * misconfiguration.  The case is rather theoretical anyway;
1337	 * presumably no vendor is shipping his hardware in the "bad"
1338	 * configuration.
1339	 */
1340	if ((prid & PRID_IMP_MASK) == PRID_IMP_R4000 &&
1341	    (prid & PRID_REV_MASK) < PRID_REV_R4400 &&
1342	    !(config & CONF_SC) && c->icache.linesz != 16 &&
1343	    PAGE_SIZE <= 0x8000)
1344		panic("Improper R4000SC processor configuration detected");
1345
1346	/* compute a couple of other cache variables */
1347	c->icache.waysize = icache_size / c->icache.ways;
1348	c->dcache.waysize = dcache_size / c->dcache.ways;
1349
1350	c->icache.sets = c->icache.linesz ?
1351		icache_size / (c->icache.linesz * c->icache.ways) : 0;
1352	c->dcache.sets = c->dcache.linesz ?
1353		dcache_size / (c->dcache.linesz * c->dcache.ways) : 0;
1354
1355	/*
1356	 * R1x000 P-caches are odd in a positive way.  They're 32kB 2-way
1357	 * virtually indexed so normally would suffer from aliases.  So
1358	 * normally they'd suffer from aliases but magic in the hardware deals
1359	 * with that for us so we don't need to take care ourselves.
1360	 */
1361	switch (current_cpu_type()) {
1362	case CPU_20KC:
1363	case CPU_25KF:
1364	case CPU_I6400:
1365	case CPU_I6500:
1366	case CPU_SB1:
1367	case CPU_SB1A:
 
1368		c->dcache.flags |= MIPS_CACHE_PINDEX;
1369		break;
1370
1371	case CPU_R10000:
1372	case CPU_R12000:
1373	case CPU_R14000:
1374	case CPU_R16000:
1375		break;
1376
1377	case CPU_74K:
1378	case CPU_1074K:
1379		has_74k_erratum = alias_74k_erratum(c);
1380		fallthrough;
1381	case CPU_M14KC:
1382	case CPU_M14KEC:
1383	case CPU_24K:
1384	case CPU_34K:
1385	case CPU_1004K:
1386	case CPU_INTERAPTIV:
1387	case CPU_P5600:
1388	case CPU_PROAPTIV:
1389	case CPU_M5150:
1390	case CPU_QEMU_GENERIC:
1391	case CPU_P6600:
1392	case CPU_M6250:
1393		if (!(read_c0_config7() & MIPS_CONF7_IAR) &&
1394		    (c->icache.waysize > PAGE_SIZE))
1395			c->icache.flags |= MIPS_CACHE_ALIASES;
1396		if (!has_74k_erratum && (read_c0_config7() & MIPS_CONF7_AR)) {
1397			/*
1398			 * Effectively physically indexed dcache,
1399			 * thus no virtual aliases.
1400			*/
1401			c->dcache.flags |= MIPS_CACHE_PINDEX;
1402			break;
1403		}
1404		fallthrough;
1405	default:
1406		if (has_74k_erratum || c->dcache.waysize > PAGE_SIZE)
1407			c->dcache.flags |= MIPS_CACHE_ALIASES;
1408	}
1409
1410	/* Physically indexed caches don't suffer from virtual aliasing */
1411	if (c->dcache.flags & MIPS_CACHE_PINDEX)
1412		c->dcache.flags &= ~MIPS_CACHE_ALIASES;
1413
1414	/*
1415	 * In systems with CM the icache fills from L2 or closer caches, and
1416	 * thus sees remote stores without needing to write them back any
1417	 * further than that.
1418	 */
1419	if (mips_cm_present())
1420		c->icache.flags |= MIPS_IC_SNOOPS_REMOTE;
1421
1422	switch (current_cpu_type()) {
1423	case CPU_20KC:
1424		/*
1425		 * Some older 20Kc chips doesn't have the 'VI' bit in
1426		 * the config register.
1427		 */
1428		c->icache.flags |= MIPS_CACHE_VTAG;
1429		break;
1430
1431	case CPU_ALCHEMY:
1432	case CPU_I6400:
1433	case CPU_I6500:
1434		c->icache.flags |= MIPS_CACHE_IC_F_DC;
1435		break;
1436
1437	case CPU_BMIPS5000:
1438		c->icache.flags |= MIPS_CACHE_IC_F_DC;
1439		/* Cache aliases are handled in hardware; allow HIGHMEM */
1440		c->dcache.flags &= ~MIPS_CACHE_ALIASES;
1441		break;
1442
1443	case CPU_LOONGSON2EF:
1444		/*
1445		 * LOONGSON2 has 4 way icache, but when using indexed cache op,
1446		 * one op will act on all 4 ways
1447		 */
1448		c->icache.ways = 1;
1449	}
1450
1451	pr_info("Primary instruction cache %ldkB, %s, %s, linesize %d bytes.\n",
1452		icache_size >> 10,
1453		c->icache.flags & MIPS_CACHE_VTAG ? "VIVT" : "VIPT",
1454		way_string[c->icache.ways], c->icache.linesz);
1455
1456	pr_info("Primary data cache %ldkB, %s, %s, %s, linesize %d bytes\n",
1457		dcache_size >> 10, way_string[c->dcache.ways],
1458		(c->dcache.flags & MIPS_CACHE_PINDEX) ? "PIPT" : "VIPT",
1459		(c->dcache.flags & MIPS_CACHE_ALIASES) ?
1460			"cache aliases" : "no aliases",
1461		c->dcache.linesz);
1462}
1463
1464static void probe_vcache(void)
1465{
1466	struct cpuinfo_mips *c = &current_cpu_data;
1467	unsigned int config2, lsize;
1468
1469	if (current_cpu_type() != CPU_LOONGSON64)
1470		return;
1471
1472	config2 = read_c0_config2();
1473	if ((lsize = ((config2 >> 20) & 15)))
1474		c->vcache.linesz = 2 << lsize;
1475	else
1476		c->vcache.linesz = lsize;
1477
1478	c->vcache.sets = 64 << ((config2 >> 24) & 15);
1479	c->vcache.ways = 1 + ((config2 >> 16) & 15);
1480
1481	vcache_size = c->vcache.sets * c->vcache.ways * c->vcache.linesz;
1482
1483	c->vcache.waybit = 0;
1484	c->vcache.waysize = vcache_size / c->vcache.ways;
1485
1486	pr_info("Unified victim cache %ldkB %s, linesize %d bytes.\n",
1487		vcache_size >> 10, way_string[c->vcache.ways], c->vcache.linesz);
1488}
1489
1490/*
1491 * If you even _breathe_ on this function, look at the gcc output and make sure
1492 * it does not pop things on and off the stack for the cache sizing loop that
1493 * executes in KSEG1 space or else you will crash and burn badly.  You have
1494 * been warned.
1495 */
1496static int probe_scache(void)
1497{
1498	unsigned long flags, addr, begin, end, pow2;
1499	unsigned int config = read_c0_config();
1500	struct cpuinfo_mips *c = &current_cpu_data;
1501
1502	if (config & CONF_SC)
1503		return 0;
1504
1505	begin = (unsigned long) &_stext;
1506	begin &= ~((4 * 1024 * 1024) - 1);
1507	end = begin + (4 * 1024 * 1024);
1508
1509	/*
1510	 * This is such a bitch, you'd think they would make it easy to do
1511	 * this.  Away you daemons of stupidity!
1512	 */
1513	local_irq_save(flags);
1514
1515	/* Fill each size-multiple cache line with a valid tag. */
1516	pow2 = (64 * 1024);
1517	for (addr = begin; addr < end; addr = (begin + pow2)) {
1518		unsigned long *p = (unsigned long *) addr;
1519		__asm__ __volatile__("nop" : : "r" (*p)); /* whee... */
1520		pow2 <<= 1;
1521	}
1522
1523	/* Load first line with zero (therefore invalid) tag. */
1524	write_c0_taglo(0);
1525	write_c0_taghi(0);
1526	__asm__ __volatile__("nop; nop; nop; nop;"); /* avoid the hazard */
1527	cache_op(Index_Store_Tag_I, begin);
1528	cache_op(Index_Store_Tag_D, begin);
1529	cache_op(Index_Store_Tag_SD, begin);
1530
1531	/* Now search for the wrap around point. */
1532	pow2 = (128 * 1024);
1533	for (addr = begin + (128 * 1024); addr < end; addr = begin + pow2) {
1534		cache_op(Index_Load_Tag_SD, addr);
1535		__asm__ __volatile__("nop; nop; nop; nop;"); /* hazard... */
1536		if (!read_c0_taglo())
1537			break;
1538		pow2 <<= 1;
1539	}
1540	local_irq_restore(flags);
1541	addr -= begin;
1542
1543	scache_size = addr;
1544	c->scache.linesz = 16 << ((config & R4K_CONF_SB) >> 22);
1545	c->scache.ways = 1;
1546	c->scache.waybit = 0;		/* does not matter */
1547
1548	return 1;
1549}
1550
1551static void loongson2_sc_init(void)
1552{
1553	struct cpuinfo_mips *c = &current_cpu_data;
1554
1555	scache_size = 512*1024;
1556	c->scache.linesz = 32;
1557	c->scache.ways = 4;
1558	c->scache.waybit = 0;
1559	c->scache.waysize = scache_size / (c->scache.ways);
1560	c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1561	pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1562	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1563
1564	c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1565}
1566
1567static void loongson3_sc_init(void)
1568{
1569	struct cpuinfo_mips *c = &current_cpu_data;
1570	unsigned int config2, lsize;
1571
1572	config2 = read_c0_config2();
1573	lsize = (config2 >> 4) & 15;
1574	if (lsize)
1575		c->scache.linesz = 2 << lsize;
1576	else
1577		c->scache.linesz = 0;
1578	c->scache.sets = 64 << ((config2 >> 8) & 15);
1579	c->scache.ways = 1 + (config2 & 15);
1580
1581	/* Loongson-3 has 4-Scache banks, while Loongson-2K have only 2 banks */
1582	if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64R)
1583		c->scache.sets *= 2;
1584	else
1585		c->scache.sets *= 4;
1586
1587	scache_size = c->scache.sets * c->scache.ways * c->scache.linesz;
1588
1589	c->scache.waybit = 0;
1590	c->scache.waysize = scache_size / c->scache.ways;
1591	pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1592	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1593	if (scache_size)
1594		c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1595	return;
1596}
1597
1598extern int r5k_sc_init(void);
1599extern int rm7k_sc_init(void);
1600extern int mips_sc_init(void);
1601
1602static void setup_scache(void)
1603{
1604	struct cpuinfo_mips *c = &current_cpu_data;
1605	unsigned int config = read_c0_config();
1606	int sc_present = 0;
1607
1608	/*
1609	 * Do the probing thing on R4000SC and R4400SC processors.  Other
1610	 * processors don't have a S-cache that would be relevant to the
1611	 * Linux memory management.
1612	 */
1613	switch (current_cpu_type()) {
1614	case CPU_R4000SC:
1615	case CPU_R4000MC:
1616	case CPU_R4400SC:
1617	case CPU_R4400MC:
1618		sc_present = run_uncached(probe_scache);
1619		if (sc_present)
1620			c->options |= MIPS_CPU_CACHE_CDEX_S;
1621		break;
1622
1623	case CPU_R10000:
1624	case CPU_R12000:
1625	case CPU_R14000:
1626	case CPU_R16000:
1627		scache_size = 0x80000 << ((config & R10K_CONF_SS) >> 16);
1628		c->scache.linesz = 64 << ((config >> 13) & 1);
1629		c->scache.ways = 2;
1630		c->scache.waybit= 0;
1631		sc_present = 1;
1632		break;
1633
1634	case CPU_R5000:
1635	case CPU_NEVADA:
1636#ifdef CONFIG_R5000_CPU_SCACHE
1637		r5k_sc_init();
1638#endif
1639		return;
1640
1641	case CPU_RM7000:
1642#ifdef CONFIG_RM7000_CPU_SCACHE
1643		rm7k_sc_init();
1644#endif
1645		return;
1646
1647	case CPU_LOONGSON2EF:
1648		loongson2_sc_init();
1649		return;
1650
1651	case CPU_LOONGSON64:
1652		loongson3_sc_init();
1653		return;
1654
1655	case CPU_CAVIUM_OCTEON3:
 
1656		/* don't need to worry about L2, fully coherent */
1657		return;
1658
1659	default:
1660		if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
1661				    MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
1662				    MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5 |
1663				    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
1664#ifdef CONFIG_MIPS_CPU_SCACHE
1665			if (mips_sc_init ()) {
1666				scache_size = c->scache.ways * c->scache.sets * c->scache.linesz;
1667				printk("MIPS secondary cache %ldkB, %s, linesize %d bytes.\n",
1668				       scache_size >> 10,
1669				       way_string[c->scache.ways], c->scache.linesz);
1670
1671				if (current_cpu_type() == CPU_BMIPS5000)
1672					c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1673			}
1674
1675#else
1676			if (!(c->scache.flags & MIPS_CACHE_NOT_PRESENT))
1677				panic("Dunno how to handle MIPS32 / MIPS64 second level cache");
1678#endif
1679			return;
1680		}
1681		sc_present = 0;
1682	}
1683
1684	if (!sc_present)
1685		return;
1686
1687	/* compute a couple of other cache variables */
1688	c->scache.waysize = scache_size / c->scache.ways;
1689
1690	c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1691
1692	printk("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1693	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1694
1695	c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1696}
1697
1698void au1x00_fixup_config_od(void)
1699{
1700	/*
1701	 * c0_config.od (bit 19) was write only (and read as 0)
1702	 * on the early revisions of Alchemy SOCs.  It disables the bus
1703	 * transaction overlapping and needs to be set to fix various errata.
1704	 */
1705	switch (read_c0_prid()) {
1706	case 0x00030100: /* Au1000 DA */
1707	case 0x00030201: /* Au1000 HA */
1708	case 0x00030202: /* Au1000 HB */
1709	case 0x01030200: /* Au1500 AB */
1710	/*
1711	 * Au1100 errata actually keeps silence about this bit, so we set it
1712	 * just in case for those revisions that require it to be set according
1713	 * to the (now gone) cpu table.
1714	 */
1715	case 0x02030200: /* Au1100 AB */
1716	case 0x02030201: /* Au1100 BA */
1717	case 0x02030202: /* Au1100 BC */
1718		set_c0_config(1 << 19);
1719		break;
1720	}
1721}
1722
1723/* CP0 hazard avoidance. */
1724#define NXP_BARRIER()							\
1725	 __asm__ __volatile__(						\
1726	".set noreorder\n\t"						\
1727	"nop; nop; nop; nop; nop; nop;\n\t"				\
1728	".set reorder\n\t")
1729
1730static void nxp_pr4450_fixup_config(void)
1731{
1732	unsigned long config0;
1733
1734	config0 = read_c0_config();
1735
1736	/* clear all three cache coherency fields */
1737	config0 &= ~(0x7 | (7 << 25) | (7 << 28));
1738	config0 |= (((_page_cachable_default >> _CACHE_SHIFT) <<  0) |
1739		    ((_page_cachable_default >> _CACHE_SHIFT) << 25) |
1740		    ((_page_cachable_default >> _CACHE_SHIFT) << 28));
1741	write_c0_config(config0);
1742	NXP_BARRIER();
1743}
1744
1745static int cca = -1;
1746
1747static int __init cca_setup(char *str)
1748{
1749	get_option(&str, &cca);
1750
1751	return 0;
1752}
1753
1754early_param("cca", cca_setup);
1755
1756static void coherency_setup(void)
1757{
1758	if (cca < 0 || cca > 7)
1759		cca = read_c0_config() & CONF_CM_CMASK;
1760	_page_cachable_default = cca << _CACHE_SHIFT;
1761
1762	pr_debug("Using cache attribute %d\n", cca);
1763	change_c0_config(CONF_CM_CMASK, cca);
1764
1765	/*
1766	 * c0_status.cu=0 specifies that updates by the sc instruction use
1767	 * the coherency mode specified by the TLB; 1 means cachable
1768	 * coherent update on write will be used.  Not all processors have
1769	 * this bit and; some wire it to zero, others like Toshiba had the
1770	 * silly idea of putting something else there ...
1771	 */
1772	switch (current_cpu_type()) {
1773	case CPU_R4000PC:
1774	case CPU_R4000SC:
1775	case CPU_R4000MC:
1776	case CPU_R4400PC:
1777	case CPU_R4400SC:
1778	case CPU_R4400MC:
1779		clear_c0_config(CONF_CU);
1780		break;
1781	/*
1782	 * We need to catch the early Alchemy SOCs with
1783	 * the write-only co_config.od bit and set it back to one on:
1784	 * Au1000 rev DA, HA, HB;  Au1100 AB, BA, BC, Au1500 AB
1785	 */
1786	case CPU_ALCHEMY:
1787		au1x00_fixup_config_od();
1788		break;
1789
1790	case PRID_IMP_PR4450:
1791		nxp_pr4450_fixup_config();
1792		break;
1793	}
1794}
1795
1796static void r4k_cache_error_setup(void)
1797{
1798	extern char __weak except_vec2_generic;
1799	extern char __weak except_vec2_sb1;
1800
1801	switch (current_cpu_type()) {
1802	case CPU_SB1:
1803	case CPU_SB1A:
1804		set_uncached_handler(0x100, &except_vec2_sb1, 0x80);
1805		break;
1806
1807	default:
1808		set_uncached_handler(0x100, &except_vec2_generic, 0x80);
1809		break;
1810	}
1811}
1812
1813void r4k_cache_init(void)
1814{
1815	extern void build_clear_page(void);
1816	extern void build_copy_page(void);
1817	struct cpuinfo_mips *c = &current_cpu_data;
1818
1819	probe_pcache();
1820	probe_vcache();
1821	setup_scache();
1822
1823	r4k_blast_dcache_page_setup();
1824	r4k_blast_dcache_page_indexed_setup();
1825	r4k_blast_dcache_setup();
1826	r4k_blast_icache_page_setup();
1827	r4k_blast_icache_page_indexed_setup();
1828	r4k_blast_icache_setup();
1829	r4k_blast_scache_page_setup();
1830	r4k_blast_scache_page_indexed_setup();
1831	r4k_blast_scache_setup();
1832	r4k_blast_scache_node_setup();
1833#ifdef CONFIG_EVA
1834	r4k_blast_dcache_user_page_setup();
1835	r4k_blast_icache_user_page_setup();
1836#endif
1837
1838	/*
1839	 * Some MIPS32 and MIPS64 processors have physically indexed caches.
1840	 * This code supports virtually indexed processors and will be
1841	 * unnecessarily inefficient on physically indexed processors.
1842	 */
1843	if (c->dcache.linesz && cpu_has_dc_aliases)
1844		shm_align_mask = max_t( unsigned long,
1845					c->dcache.sets * c->dcache.linesz - 1,
1846					PAGE_SIZE - 1);
1847	else
1848		shm_align_mask = PAGE_SIZE-1;
1849
1850	__flush_cache_vmap	= r4k__flush_cache_vmap;
1851	__flush_cache_vunmap	= r4k__flush_cache_vunmap;
1852
1853	flush_cache_all		= cache_noop;
1854	__flush_cache_all	= r4k___flush_cache_all;
1855	flush_cache_mm		= r4k_flush_cache_mm;
1856	flush_cache_page	= r4k_flush_cache_page;
1857	flush_cache_range	= r4k_flush_cache_range;
1858
1859	__flush_kernel_vmap_range = r4k_flush_kernel_vmap_range;
1860
 
1861	flush_icache_all	= r4k_flush_icache_all;
1862	local_flush_data_cache_page	= local_r4k_flush_data_cache_page;
1863	flush_data_cache_page	= r4k_flush_data_cache_page;
1864	flush_icache_range	= r4k_flush_icache_range;
1865	local_flush_icache_range	= local_r4k_flush_icache_range;
1866	__flush_icache_user_range	= r4k_flush_icache_user_range;
1867	__local_flush_icache_user_range	= local_r4k_flush_icache_user_range;
1868
1869#ifdef CONFIG_DMA_NONCOHERENT
1870	if (dma_default_coherent) {
 
 
 
 
 
1871		_dma_cache_wback_inv	= (void *)cache_noop;
1872		_dma_cache_wback	= (void *)cache_noop;
1873		_dma_cache_inv		= (void *)cache_noop;
1874	} else {
1875		_dma_cache_wback_inv	= r4k_dma_cache_wback_inv;
1876		_dma_cache_wback	= r4k_dma_cache_wback_inv;
1877		_dma_cache_inv		= r4k_dma_cache_inv;
1878	}
1879#endif /* CONFIG_DMA_NONCOHERENT */
1880
1881	build_clear_page();
1882	build_copy_page();
1883
1884	/*
1885	 * We want to run CMP kernels on core with and without coherent
1886	 * caches. Therefore, do not use CONFIG_MIPS_CMP to decide whether
1887	 * or not to flush caches.
1888	 */
1889	local_r4k___flush_cache_all(NULL);
1890
1891	coherency_setup();
1892	board_cache_error_setup = r4k_cache_error_setup;
1893
1894	/*
1895	 * Per-CPU overrides
1896	 */
1897	switch (current_cpu_type()) {
1898	case CPU_BMIPS4350:
1899	case CPU_BMIPS4380:
1900		/* No IPI is needed because all CPUs share the same D$ */
1901		flush_data_cache_page = r4k_blast_dcache_page;
1902		break;
1903	case CPU_BMIPS5000:
1904		/* We lose our superpowers if L2 is disabled */
1905		if (c->scache.flags & MIPS_CACHE_NOT_PRESENT)
1906			break;
1907
1908		/* I$ fills from D$ just by emptying the write buffers */
1909		flush_cache_page = (void *)b5k_instruction_hazard;
1910		flush_cache_range = (void *)b5k_instruction_hazard;
 
1911		local_flush_data_cache_page = (void *)b5k_instruction_hazard;
1912		flush_data_cache_page = (void *)b5k_instruction_hazard;
1913		flush_icache_range = (void *)b5k_instruction_hazard;
1914		local_flush_icache_range = (void *)b5k_instruction_hazard;
1915
1916
1917		/* Optimization: an L2 flush implicitly flushes the L1 */
1918		current_cpu_data.options |= MIPS_CPU_INCLUSIVE_CACHES;
1919		break;
1920	case CPU_LOONGSON64:
1921		/* Loongson-3 maintains cache coherency by hardware */
1922		__flush_cache_all	= cache_noop;
1923		__flush_cache_vmap	= cache_noop;
1924		__flush_cache_vunmap	= cache_noop;
1925		__flush_kernel_vmap_range = (void *)cache_noop;
1926		flush_cache_mm		= (void *)cache_noop;
1927		flush_cache_page	= (void *)cache_noop;
1928		flush_cache_range	= (void *)cache_noop;
 
1929		flush_icache_all	= (void *)cache_noop;
1930		flush_data_cache_page	= (void *)cache_noop;
1931		local_flush_data_cache_page	= (void *)cache_noop;
1932		break;
1933	}
1934}
1935
1936static int r4k_cache_pm_notifier(struct notifier_block *self, unsigned long cmd,
1937			       void *v)
1938{
1939	switch (cmd) {
1940	case CPU_PM_ENTER_FAILED:
1941	case CPU_PM_EXIT:
1942		coherency_setup();
1943		break;
1944	}
1945
1946	return NOTIFY_OK;
1947}
1948
1949static struct notifier_block r4k_cache_pm_notifier_block = {
1950	.notifier_call = r4k_cache_pm_notifier,
1951};
1952
1953int __init r4k_cache_init_pm(void)
1954{
1955	return cpu_pm_register_notifier(&r4k_cache_pm_notifier_block);
1956}
1957arch_initcall(r4k_cache_init_pm);
v4.17
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 1996 David S. Miller (davem@davemloft.net)
   7 * Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Ralf Baechle (ralf@gnu.org)
   8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
   9 */
  10#include <linux/cpu_pm.h>
  11#include <linux/hardirq.h>
  12#include <linux/init.h>
  13#include <linux/highmem.h>
  14#include <linux/kernel.h>
  15#include <linux/linkage.h>
  16#include <linux/preempt.h>
  17#include <linux/sched.h>
  18#include <linux/smp.h>
  19#include <linux/mm.h>
  20#include <linux/export.h>
  21#include <linux/bitops.h>
 
  22
  23#include <asm/bcache.h>
  24#include <asm/bootinfo.h>
  25#include <asm/cache.h>
  26#include <asm/cacheops.h>
  27#include <asm/cpu.h>
  28#include <asm/cpu-features.h>
  29#include <asm/cpu-type.h>
  30#include <asm/io.h>
  31#include <asm/page.h>
  32#include <asm/pgtable.h>
  33#include <asm/r4kcache.h>
  34#include <asm/sections.h>
  35#include <asm/mmu_context.h>
  36#include <asm/war.h>
  37#include <asm/cacheflush.h> /* for run_uncached() */
  38#include <asm/traps.h>
  39#include <asm/dma-coherence.h>
  40#include <asm/mips-cps.h>
  41
  42/*
  43 * Bits describing what cache ops an SMP callback function may perform.
  44 *
  45 * R4K_HIT   -	Virtual user or kernel address based cache operations. The
  46 *		active_mm must be checked before using user addresses, falling
  47 *		back to kmap.
  48 * R4K_INDEX -	Index based cache operations.
  49 */
  50
  51#define R4K_HIT		BIT(0)
  52#define R4K_INDEX	BIT(1)
  53
  54/**
  55 * r4k_op_needs_ipi() - Decide if a cache op needs to be done on every core.
  56 * @type:	Type of cache operations (R4K_HIT or R4K_INDEX).
  57 *
  58 * Decides whether a cache op needs to be performed on every core in the system.
  59 * This may change depending on the @type of cache operation, as well as the set
  60 * of online CPUs, so preemption should be disabled by the caller to prevent CPU
  61 * hotplug from changing the result.
  62 *
  63 * Returns:	1 if the cache operation @type should be done on every core in
  64 *		the system.
  65 *		0 if the cache operation @type is globalized and only needs to
  66 *		be performed on a simple CPU.
  67 */
  68static inline bool r4k_op_needs_ipi(unsigned int type)
  69{
  70	/* The MIPS Coherence Manager (CM) globalizes address-based cache ops */
  71	if (type == R4K_HIT && mips_cm_present())
  72		return false;
  73
  74	/*
  75	 * Hardware doesn't globalize the required cache ops, so SMP calls may
  76	 * be needed, but only if there are foreign CPUs (non-siblings with
  77	 * separate caches).
  78	 */
  79	/* cpu_foreign_map[] undeclared when !CONFIG_SMP */
  80#ifdef CONFIG_SMP
  81	return !cpumask_empty(&cpu_foreign_map[0]);
  82#else
  83	return false;
  84#endif
  85}
  86
  87/*
  88 * Special Variant of smp_call_function for use by cache functions:
  89 *
  90 *  o No return value
  91 *  o collapses to normal function call on UP kernels
  92 *  o collapses to normal function call on systems with a single shared
  93 *    primary cache.
  94 *  o doesn't disable interrupts on the local CPU
  95 */
  96static inline void r4k_on_each_cpu(unsigned int type,
  97				   void (*func)(void *info), void *info)
  98{
  99	preempt_disable();
 100	if (r4k_op_needs_ipi(type))
 101		smp_call_function_many(&cpu_foreign_map[smp_processor_id()],
 102				       func, info, 1);
 103	func(info);
 104	preempt_enable();
 105}
 106
 107/*
 108 * Must die.
 109 */
 110static unsigned long icache_size __read_mostly;
 111static unsigned long dcache_size __read_mostly;
 112static unsigned long vcache_size __read_mostly;
 113static unsigned long scache_size __read_mostly;
 114
 115/*
 116 * Dummy cache handling routines for machines without boardcaches
 117 */
 118static void cache_noop(void) {}
 119
 120static struct bcache_ops no_sc_ops = {
 121	.bc_enable = (void *)cache_noop,
 122	.bc_disable = (void *)cache_noop,
 123	.bc_wback_inv = (void *)cache_noop,
 124	.bc_inv = (void *)cache_noop
 125};
 126
 127struct bcache_ops *bcops = &no_sc_ops;
 128
 129#define cpu_is_r4600_v1_x()	((read_c0_prid() & 0xfffffff0) == 0x00002010)
 130#define cpu_is_r4600_v2_x()	((read_c0_prid() & 0xfffffff0) == 0x00002020)
 131
 132#define R4600_HIT_CACHEOP_WAR_IMPL					\
 133do {									\
 134	if (R4600_V2_HIT_CACHEOP_WAR && cpu_is_r4600_v2_x())		\
 
 135		*(volatile unsigned long *)CKSEG1;			\
 136	if (R4600_V1_HIT_CACHEOP_WAR)					\
 137		__asm__ __volatile__("nop;nop;nop;nop");		\
 138} while (0)
 139
 140static void (*r4k_blast_dcache_page)(unsigned long addr);
 141
 142static inline void r4k_blast_dcache_page_dc32(unsigned long addr)
 143{
 144	R4600_HIT_CACHEOP_WAR_IMPL;
 145	blast_dcache32_page(addr);
 146}
 147
 148static inline void r4k_blast_dcache_page_dc64(unsigned long addr)
 149{
 150	blast_dcache64_page(addr);
 151}
 152
 153static inline void r4k_blast_dcache_page_dc128(unsigned long addr)
 154{
 155	blast_dcache128_page(addr);
 156}
 157
 158static void r4k_blast_dcache_page_setup(void)
 159{
 160	unsigned long  dc_lsize = cpu_dcache_line_size();
 161
 162	switch (dc_lsize) {
 163	case 0:
 164		r4k_blast_dcache_page = (void *)cache_noop;
 165		break;
 166	case 16:
 167		r4k_blast_dcache_page = blast_dcache16_page;
 168		break;
 169	case 32:
 170		r4k_blast_dcache_page = r4k_blast_dcache_page_dc32;
 171		break;
 172	case 64:
 173		r4k_blast_dcache_page = r4k_blast_dcache_page_dc64;
 174		break;
 175	case 128:
 176		r4k_blast_dcache_page = r4k_blast_dcache_page_dc128;
 177		break;
 178	default:
 179		break;
 180	}
 181}
 182
 183#ifndef CONFIG_EVA
 184#define r4k_blast_dcache_user_page  r4k_blast_dcache_page
 185#else
 186
 187static void (*r4k_blast_dcache_user_page)(unsigned long addr);
 188
 189static void r4k_blast_dcache_user_page_setup(void)
 190{
 191	unsigned long  dc_lsize = cpu_dcache_line_size();
 192
 193	if (dc_lsize == 0)
 194		r4k_blast_dcache_user_page = (void *)cache_noop;
 195	else if (dc_lsize == 16)
 196		r4k_blast_dcache_user_page = blast_dcache16_user_page;
 197	else if (dc_lsize == 32)
 198		r4k_blast_dcache_user_page = blast_dcache32_user_page;
 199	else if (dc_lsize == 64)
 200		r4k_blast_dcache_user_page = blast_dcache64_user_page;
 201}
 202
 203#endif
 204
 205static void (* r4k_blast_dcache_page_indexed)(unsigned long addr);
 206
 207static void r4k_blast_dcache_page_indexed_setup(void)
 208{
 209	unsigned long dc_lsize = cpu_dcache_line_size();
 210
 211	if (dc_lsize == 0)
 212		r4k_blast_dcache_page_indexed = (void *)cache_noop;
 213	else if (dc_lsize == 16)
 214		r4k_blast_dcache_page_indexed = blast_dcache16_page_indexed;
 215	else if (dc_lsize == 32)
 216		r4k_blast_dcache_page_indexed = blast_dcache32_page_indexed;
 217	else if (dc_lsize == 64)
 218		r4k_blast_dcache_page_indexed = blast_dcache64_page_indexed;
 219	else if (dc_lsize == 128)
 220		r4k_blast_dcache_page_indexed = blast_dcache128_page_indexed;
 221}
 222
 223void (* r4k_blast_dcache)(void);
 224EXPORT_SYMBOL(r4k_blast_dcache);
 225
 226static void r4k_blast_dcache_setup(void)
 227{
 228	unsigned long dc_lsize = cpu_dcache_line_size();
 229
 230	if (dc_lsize == 0)
 231		r4k_blast_dcache = (void *)cache_noop;
 232	else if (dc_lsize == 16)
 233		r4k_blast_dcache = blast_dcache16;
 234	else if (dc_lsize == 32)
 235		r4k_blast_dcache = blast_dcache32;
 236	else if (dc_lsize == 64)
 237		r4k_blast_dcache = blast_dcache64;
 238	else if (dc_lsize == 128)
 239		r4k_blast_dcache = blast_dcache128;
 240}
 241
 242/* force code alignment (used for TX49XX_ICACHE_INDEX_INV_WAR) */
 243#define JUMP_TO_ALIGN(order) \
 244	__asm__ __volatile__( \
 245		"b\t1f\n\t" \
 246		".align\t" #order "\n\t" \
 247		"1:\n\t" \
 248		)
 249#define CACHE32_UNROLL32_ALIGN	JUMP_TO_ALIGN(10) /* 32 * 32 = 1024 */
 250#define CACHE32_UNROLL32_ALIGN2 JUMP_TO_ALIGN(11)
 251
 252static inline void blast_r4600_v1_icache32(void)
 253{
 254	unsigned long flags;
 255
 256	local_irq_save(flags);
 257	blast_icache32();
 258	local_irq_restore(flags);
 259}
 260
 261static inline void tx49_blast_icache32(void)
 262{
 263	unsigned long start = INDEX_BASE;
 264	unsigned long end = start + current_cpu_data.icache.waysize;
 265	unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
 266	unsigned long ws_end = current_cpu_data.icache.ways <<
 267			       current_cpu_data.icache.waybit;
 268	unsigned long ws, addr;
 269
 270	CACHE32_UNROLL32_ALIGN2;
 271	/* I'm in even chunk.  blast odd chunks */
 272	for (ws = 0; ws < ws_end; ws += ws_inc)
 273		for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
 274			cache32_unroll32(addr|ws, Index_Invalidate_I);
 
 275	CACHE32_UNROLL32_ALIGN;
 276	/* I'm in odd chunk.  blast even chunks */
 277	for (ws = 0; ws < ws_end; ws += ws_inc)
 278		for (addr = start; addr < end; addr += 0x400 * 2)
 279			cache32_unroll32(addr|ws, Index_Invalidate_I);
 
 280}
 281
 282static inline void blast_icache32_r4600_v1_page_indexed(unsigned long page)
 283{
 284	unsigned long flags;
 285
 286	local_irq_save(flags);
 287	blast_icache32_page_indexed(page);
 288	local_irq_restore(flags);
 289}
 290
 291static inline void tx49_blast_icache32_page_indexed(unsigned long page)
 292{
 293	unsigned long indexmask = current_cpu_data.icache.waysize - 1;
 294	unsigned long start = INDEX_BASE + (page & indexmask);
 295	unsigned long end = start + PAGE_SIZE;
 296	unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
 297	unsigned long ws_end = current_cpu_data.icache.ways <<
 298			       current_cpu_data.icache.waybit;
 299	unsigned long ws, addr;
 300
 301	CACHE32_UNROLL32_ALIGN2;
 302	/* I'm in even chunk.  blast odd chunks */
 303	for (ws = 0; ws < ws_end; ws += ws_inc)
 304		for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
 305			cache32_unroll32(addr|ws, Index_Invalidate_I);
 
 306	CACHE32_UNROLL32_ALIGN;
 307	/* I'm in odd chunk.  blast even chunks */
 308	for (ws = 0; ws < ws_end; ws += ws_inc)
 309		for (addr = start; addr < end; addr += 0x400 * 2)
 310			cache32_unroll32(addr|ws, Index_Invalidate_I);
 
 311}
 312
 313static void (* r4k_blast_icache_page)(unsigned long addr);
 314
 315static void r4k_blast_icache_page_setup(void)
 316{
 317	unsigned long ic_lsize = cpu_icache_line_size();
 318
 319	if (ic_lsize == 0)
 320		r4k_blast_icache_page = (void *)cache_noop;
 321	else if (ic_lsize == 16)
 322		r4k_blast_icache_page = blast_icache16_page;
 323	else if (ic_lsize == 32 && current_cpu_type() == CPU_LOONGSON2)
 324		r4k_blast_icache_page = loongson2_blast_icache32_page;
 325	else if (ic_lsize == 32)
 326		r4k_blast_icache_page = blast_icache32_page;
 327	else if (ic_lsize == 64)
 328		r4k_blast_icache_page = blast_icache64_page;
 329	else if (ic_lsize == 128)
 330		r4k_blast_icache_page = blast_icache128_page;
 331}
 332
 333#ifndef CONFIG_EVA
 334#define r4k_blast_icache_user_page  r4k_blast_icache_page
 335#else
 336
 337static void (*r4k_blast_icache_user_page)(unsigned long addr);
 338
 339static void r4k_blast_icache_user_page_setup(void)
 340{
 341	unsigned long ic_lsize = cpu_icache_line_size();
 342
 343	if (ic_lsize == 0)
 344		r4k_blast_icache_user_page = (void *)cache_noop;
 345	else if (ic_lsize == 16)
 346		r4k_blast_icache_user_page = blast_icache16_user_page;
 347	else if (ic_lsize == 32)
 348		r4k_blast_icache_user_page = blast_icache32_user_page;
 349	else if (ic_lsize == 64)
 350		r4k_blast_icache_user_page = blast_icache64_user_page;
 351}
 352
 353#endif
 354
 355static void (* r4k_blast_icache_page_indexed)(unsigned long addr);
 356
 357static void r4k_blast_icache_page_indexed_setup(void)
 358{
 359	unsigned long ic_lsize = cpu_icache_line_size();
 360
 361	if (ic_lsize == 0)
 362		r4k_blast_icache_page_indexed = (void *)cache_noop;
 363	else if (ic_lsize == 16)
 364		r4k_blast_icache_page_indexed = blast_icache16_page_indexed;
 365	else if (ic_lsize == 32) {
 366		if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x())
 
 367			r4k_blast_icache_page_indexed =
 368				blast_icache32_r4600_v1_page_indexed;
 369		else if (TX49XX_ICACHE_INDEX_INV_WAR)
 370			r4k_blast_icache_page_indexed =
 371				tx49_blast_icache32_page_indexed;
 372		else if (current_cpu_type() == CPU_LOONGSON2)
 373			r4k_blast_icache_page_indexed =
 374				loongson2_blast_icache32_page_indexed;
 375		else
 376			r4k_blast_icache_page_indexed =
 377				blast_icache32_page_indexed;
 378	} else if (ic_lsize == 64)
 379		r4k_blast_icache_page_indexed = blast_icache64_page_indexed;
 380}
 381
 382void (* r4k_blast_icache)(void);
 383EXPORT_SYMBOL(r4k_blast_icache);
 384
 385static void r4k_blast_icache_setup(void)
 386{
 387	unsigned long ic_lsize = cpu_icache_line_size();
 388
 389	if (ic_lsize == 0)
 390		r4k_blast_icache = (void *)cache_noop;
 391	else if (ic_lsize == 16)
 392		r4k_blast_icache = blast_icache16;
 393	else if (ic_lsize == 32) {
 394		if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x())
 
 395			r4k_blast_icache = blast_r4600_v1_icache32;
 396		else if (TX49XX_ICACHE_INDEX_INV_WAR)
 397			r4k_blast_icache = tx49_blast_icache32;
 398		else if (current_cpu_type() == CPU_LOONGSON2)
 399			r4k_blast_icache = loongson2_blast_icache32;
 400		else
 401			r4k_blast_icache = blast_icache32;
 402	} else if (ic_lsize == 64)
 403		r4k_blast_icache = blast_icache64;
 404	else if (ic_lsize == 128)
 405		r4k_blast_icache = blast_icache128;
 406}
 407
 408static void (* r4k_blast_scache_page)(unsigned long addr);
 409
 410static void r4k_blast_scache_page_setup(void)
 411{
 412	unsigned long sc_lsize = cpu_scache_line_size();
 413
 414	if (scache_size == 0)
 415		r4k_blast_scache_page = (void *)cache_noop;
 416	else if (sc_lsize == 16)
 417		r4k_blast_scache_page = blast_scache16_page;
 418	else if (sc_lsize == 32)
 419		r4k_blast_scache_page = blast_scache32_page;
 420	else if (sc_lsize == 64)
 421		r4k_blast_scache_page = blast_scache64_page;
 422	else if (sc_lsize == 128)
 423		r4k_blast_scache_page = blast_scache128_page;
 424}
 425
 426static void (* r4k_blast_scache_page_indexed)(unsigned long addr);
 427
 428static void r4k_blast_scache_page_indexed_setup(void)
 429{
 430	unsigned long sc_lsize = cpu_scache_line_size();
 431
 432	if (scache_size == 0)
 433		r4k_blast_scache_page_indexed = (void *)cache_noop;
 434	else if (sc_lsize == 16)
 435		r4k_blast_scache_page_indexed = blast_scache16_page_indexed;
 436	else if (sc_lsize == 32)
 437		r4k_blast_scache_page_indexed = blast_scache32_page_indexed;
 438	else if (sc_lsize == 64)
 439		r4k_blast_scache_page_indexed = blast_scache64_page_indexed;
 440	else if (sc_lsize == 128)
 441		r4k_blast_scache_page_indexed = blast_scache128_page_indexed;
 442}
 443
 444static void (* r4k_blast_scache)(void);
 445
 446static void r4k_blast_scache_setup(void)
 447{
 448	unsigned long sc_lsize = cpu_scache_line_size();
 449
 450	if (scache_size == 0)
 451		r4k_blast_scache = (void *)cache_noop;
 452	else if (sc_lsize == 16)
 453		r4k_blast_scache = blast_scache16;
 454	else if (sc_lsize == 32)
 455		r4k_blast_scache = blast_scache32;
 456	else if (sc_lsize == 64)
 457		r4k_blast_scache = blast_scache64;
 458	else if (sc_lsize == 128)
 459		r4k_blast_scache = blast_scache128;
 460}
 461
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 462static inline void local_r4k___flush_cache_all(void * args)
 463{
 464	switch (current_cpu_type()) {
 465	case CPU_LOONGSON2:
 466	case CPU_LOONGSON3:
 467	case CPU_R4000SC:
 468	case CPU_R4000MC:
 469	case CPU_R4400SC:
 470	case CPU_R4400MC:
 471	case CPU_R10000:
 472	case CPU_R12000:
 473	case CPU_R14000:
 474	case CPU_R16000:
 475		/*
 476		 * These caches are inclusive caches, that is, if something
 477		 * is not cached in the S-cache, we know it also won't be
 478		 * in one of the primary caches.
 479		 */
 480		r4k_blast_scache();
 481		break;
 482
 
 
 
 
 
 483	case CPU_BMIPS5000:
 484		r4k_blast_scache();
 485		__sync();
 486		break;
 487
 488	default:
 489		r4k_blast_dcache();
 490		r4k_blast_icache();
 491		break;
 492	}
 493}
 494
 495static void r4k___flush_cache_all(void)
 496{
 497	r4k_on_each_cpu(R4K_INDEX, local_r4k___flush_cache_all, NULL);
 498}
 499
 500/**
 501 * has_valid_asid() - Determine if an mm already has an ASID.
 502 * @mm:		Memory map.
 503 * @type:	R4K_HIT or R4K_INDEX, type of cache op.
 504 *
 505 * Determines whether @mm already has an ASID on any of the CPUs which cache ops
 506 * of type @type within an r4k_on_each_cpu() call will affect. If
 507 * r4k_on_each_cpu() does an SMP call to a single VPE in each core, then the
 508 * scope of the operation is confined to sibling CPUs, otherwise all online CPUs
 509 * will need to be checked.
 510 *
 511 * Must be called in non-preemptive context.
 512 *
 513 * Returns:	1 if the CPUs affected by @type cache ops have an ASID for @mm.
 514 *		0 otherwise.
 515 */
 516static inline int has_valid_asid(const struct mm_struct *mm, unsigned int type)
 517{
 518	unsigned int i;
 519	const cpumask_t *mask = cpu_present_mask;
 520
 
 
 
 521	/* cpu_sibling_map[] undeclared when !CONFIG_SMP */
 522#ifdef CONFIG_SMP
 523	/*
 524	 * If r4k_on_each_cpu does SMP calls, it does them to a single VPE in
 525	 * each foreign core, so we only need to worry about siblings.
 526	 * Otherwise we need to worry about all present CPUs.
 527	 */
 528	if (r4k_op_needs_ipi(type))
 529		mask = &cpu_sibling_map[smp_processor_id()];
 530#endif
 531	for_each_cpu(i, mask)
 532		if (cpu_context(i, mm))
 533			return 1;
 534	return 0;
 535}
 536
 537static void r4k__flush_cache_vmap(void)
 538{
 539	r4k_blast_dcache();
 540}
 541
 542static void r4k__flush_cache_vunmap(void)
 543{
 544	r4k_blast_dcache();
 545}
 546
 547/*
 548 * Note: flush_tlb_range() assumes flush_cache_range() sufficiently flushes
 549 * whole caches when vma is executable.
 550 */
 551static inline void local_r4k_flush_cache_range(void * args)
 552{
 553	struct vm_area_struct *vma = args;
 554	int exec = vma->vm_flags & VM_EXEC;
 555
 556	if (!has_valid_asid(vma->vm_mm, R4K_INDEX))
 557		return;
 558
 559	/*
 560	 * If dcache can alias, we must blast it since mapping is changing.
 561	 * If executable, we must ensure any dirty lines are written back far
 562	 * enough to be visible to icache.
 563	 */
 564	if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc))
 565		r4k_blast_dcache();
 566	/* If executable, blast stale lines from icache */
 567	if (exec)
 568		r4k_blast_icache();
 569}
 570
 571static void r4k_flush_cache_range(struct vm_area_struct *vma,
 572	unsigned long start, unsigned long end)
 573{
 574	int exec = vma->vm_flags & VM_EXEC;
 575
 576	if (cpu_has_dc_aliases || exec)
 577		r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_range, vma);
 578}
 579
 580static inline void local_r4k_flush_cache_mm(void * args)
 581{
 582	struct mm_struct *mm = args;
 583
 584	if (!has_valid_asid(mm, R4K_INDEX))
 585		return;
 586
 587	/*
 588	 * Kludge alert.  For obscure reasons R4000SC and R4400SC go nuts if we
 589	 * only flush the primary caches but R1x000 behave sane ...
 590	 * R4000SC and R4400SC indexed S-cache ops also invalidate primary
 591	 * caches, so we can bail out early.
 592	 */
 593	if (current_cpu_type() == CPU_R4000SC ||
 594	    current_cpu_type() == CPU_R4000MC ||
 595	    current_cpu_type() == CPU_R4400SC ||
 596	    current_cpu_type() == CPU_R4400MC) {
 597		r4k_blast_scache();
 598		return;
 599	}
 600
 601	r4k_blast_dcache();
 602}
 603
 604static void r4k_flush_cache_mm(struct mm_struct *mm)
 605{
 606	if (!cpu_has_dc_aliases)
 607		return;
 608
 609	r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_mm, mm);
 610}
 611
 612struct flush_cache_page_args {
 613	struct vm_area_struct *vma;
 614	unsigned long addr;
 615	unsigned long pfn;
 616};
 617
 618static inline void local_r4k_flush_cache_page(void *args)
 619{
 620	struct flush_cache_page_args *fcp_args = args;
 621	struct vm_area_struct *vma = fcp_args->vma;
 622	unsigned long addr = fcp_args->addr;
 623	struct page *page = pfn_to_page(fcp_args->pfn);
 624	int exec = vma->vm_flags & VM_EXEC;
 625	struct mm_struct *mm = vma->vm_mm;
 626	int map_coherent = 0;
 627	pgd_t *pgdp;
 628	pud_t *pudp;
 629	pmd_t *pmdp;
 630	pte_t *ptep;
 631	void *vaddr;
 632
 633	/*
 634	 * If owns no valid ASID yet, cannot possibly have gotten
 635	 * this page into the cache.
 636	 */
 637	if (!has_valid_asid(mm, R4K_HIT))
 638		return;
 639
 640	addr &= PAGE_MASK;
 641	pgdp = pgd_offset(mm, addr);
 642	pudp = pud_offset(pgdp, addr);
 643	pmdp = pmd_offset(pudp, addr);
 644	ptep = pte_offset(pmdp, addr);
 645
 646	/*
 647	 * If the page isn't marked valid, the page cannot possibly be
 648	 * in the cache.
 649	 */
 650	if (!(pte_present(*ptep)))
 651		return;
 652
 653	if ((mm == current->active_mm) && (pte_val(*ptep) & _PAGE_VALID))
 654		vaddr = NULL;
 655	else {
 656		/*
 657		 * Use kmap_coherent or kmap_atomic to do flushes for
 658		 * another ASID than the current one.
 659		 */
 660		map_coherent = (cpu_has_dc_aliases &&
 661				page_mapcount(page) &&
 662				!Page_dcache_dirty(page));
 663		if (map_coherent)
 664			vaddr = kmap_coherent(page, addr);
 665		else
 666			vaddr = kmap_atomic(page);
 667		addr = (unsigned long)vaddr;
 668	}
 669
 670	if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) {
 671		vaddr ? r4k_blast_dcache_page(addr) :
 672			r4k_blast_dcache_user_page(addr);
 673		if (exec && !cpu_icache_snoops_remote_store)
 674			r4k_blast_scache_page(addr);
 675	}
 676	if (exec) {
 677		if (vaddr && cpu_has_vtag_icache && mm == current->active_mm) {
 678			int cpu = smp_processor_id();
 679
 680			if (cpu_context(cpu, mm) != 0)
 681				drop_mmu_context(mm, cpu);
 682		} else
 683			vaddr ? r4k_blast_icache_page(addr) :
 684				r4k_blast_icache_user_page(addr);
 685	}
 686
 687	if (vaddr) {
 688		if (map_coherent)
 689			kunmap_coherent();
 690		else
 691			kunmap_atomic(vaddr);
 692	}
 693}
 694
 695static void r4k_flush_cache_page(struct vm_area_struct *vma,
 696	unsigned long addr, unsigned long pfn)
 697{
 698	struct flush_cache_page_args args;
 699
 700	args.vma = vma;
 701	args.addr = addr;
 702	args.pfn = pfn;
 703
 704	r4k_on_each_cpu(R4K_HIT, local_r4k_flush_cache_page, &args);
 705}
 706
 707static inline void local_r4k_flush_data_cache_page(void * addr)
 708{
 709	r4k_blast_dcache_page((unsigned long) addr);
 710}
 711
 712static void r4k_flush_data_cache_page(unsigned long addr)
 713{
 714	if (in_atomic())
 715		local_r4k_flush_data_cache_page((void *)addr);
 716	else
 717		r4k_on_each_cpu(R4K_HIT, local_r4k_flush_data_cache_page,
 718				(void *) addr);
 719}
 720
 721struct flush_icache_range_args {
 722	unsigned long start;
 723	unsigned long end;
 724	unsigned int type;
 725	bool user;
 726};
 727
 728static inline void __local_r4k_flush_icache_range(unsigned long start,
 729						  unsigned long end,
 730						  unsigned int type,
 731						  bool user)
 732{
 733	if (!cpu_has_ic_fills_f_dc) {
 734		if (type == R4K_INDEX ||
 735		    (type & R4K_INDEX && end - start >= dcache_size)) {
 736			r4k_blast_dcache();
 737		} else {
 738			R4600_HIT_CACHEOP_WAR_IMPL;
 739			if (user)
 740				protected_blast_dcache_range(start, end);
 741			else
 742				blast_dcache_range(start, end);
 743		}
 744	}
 745
 746	if (type == R4K_INDEX ||
 747	    (type & R4K_INDEX && end - start > icache_size))
 748		r4k_blast_icache();
 749	else {
 750		switch (boot_cpu_type()) {
 751		case CPU_LOONGSON2:
 752			protected_loongson2_blast_icache_range(start, end);
 753			break;
 754
 755		default:
 756			if (user)
 757				protected_blast_icache_range(start, end);
 758			else
 759				blast_icache_range(start, end);
 760			break;
 761		}
 762	}
 763}
 764
 765static inline void local_r4k_flush_icache_range(unsigned long start,
 766						unsigned long end)
 767{
 768	__local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, false);
 769}
 770
 771static inline void local_r4k_flush_icache_user_range(unsigned long start,
 772						     unsigned long end)
 773{
 774	__local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, true);
 775}
 776
 777static inline void local_r4k_flush_icache_range_ipi(void *args)
 778{
 779	struct flush_icache_range_args *fir_args = args;
 780	unsigned long start = fir_args->start;
 781	unsigned long end = fir_args->end;
 782	unsigned int type = fir_args->type;
 783	bool user = fir_args->user;
 784
 785	__local_r4k_flush_icache_range(start, end, type, user);
 786}
 787
 788static void __r4k_flush_icache_range(unsigned long start, unsigned long end,
 789				     bool user)
 790{
 791	struct flush_icache_range_args args;
 792	unsigned long size, cache_size;
 793
 794	args.start = start;
 795	args.end = end;
 796	args.type = R4K_HIT | R4K_INDEX;
 797	args.user = user;
 798
 799	/*
 800	 * Indexed cache ops require an SMP call.
 801	 * Consider if that can or should be avoided.
 802	 */
 803	preempt_disable();
 804	if (r4k_op_needs_ipi(R4K_INDEX) && !r4k_op_needs_ipi(R4K_HIT)) {
 805		/*
 806		 * If address-based cache ops don't require an SMP call, then
 807		 * use them exclusively for small flushes.
 808		 */
 809		size = end - start;
 810		cache_size = icache_size;
 811		if (!cpu_has_ic_fills_f_dc) {
 812			size *= 2;
 813			cache_size += dcache_size;
 814		}
 815		if (size <= cache_size)
 816			args.type &= ~R4K_INDEX;
 817	}
 818	r4k_on_each_cpu(args.type, local_r4k_flush_icache_range_ipi, &args);
 819	preempt_enable();
 820	instruction_hazard();
 821}
 822
 823static void r4k_flush_icache_range(unsigned long start, unsigned long end)
 824{
 825	return __r4k_flush_icache_range(start, end, false);
 826}
 827
 828static void r4k_flush_icache_user_range(unsigned long start, unsigned long end)
 829{
 830	return __r4k_flush_icache_range(start, end, true);
 831}
 832
 833#if defined(CONFIG_DMA_NONCOHERENT) || defined(CONFIG_DMA_MAYBE_COHERENT)
 834
 835static void r4k_dma_cache_wback_inv(unsigned long addr, unsigned long size)
 836{
 837	/* Catch bad driver code */
 838	BUG_ON(size == 0);
 
 839
 840	preempt_disable();
 841	if (cpu_has_inclusive_pcaches) {
 842		if (size >= scache_size)
 843			r4k_blast_scache();
 844		else
 
 
 
 845			blast_scache_range(addr, addr + size);
 
 846		preempt_enable();
 847		__sync();
 848		return;
 849	}
 850
 851	/*
 852	 * Either no secondary cache or the available caches don't have the
 853	 * subset property so we have to flush the primary caches
 854	 * explicitly.
 855	 * If we would need IPI to perform an INDEX-type operation, then
 856	 * we have to use the HIT-type alternative as IPI cannot be used
 857	 * here due to interrupts possibly being disabled.
 858	 */
 859	if (!r4k_op_needs_ipi(R4K_INDEX) && size >= dcache_size) {
 860		r4k_blast_dcache();
 861	} else {
 862		R4600_HIT_CACHEOP_WAR_IMPL;
 863		blast_dcache_range(addr, addr + size);
 864	}
 865	preempt_enable();
 866
 867	bc_wback_inv(addr, size);
 868	__sync();
 869}
 870
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 871static void r4k_dma_cache_inv(unsigned long addr, unsigned long size)
 872{
 873	/* Catch bad driver code */
 874	BUG_ON(size == 0);
 
 875
 876	preempt_disable();
 
 
 
 
 877	if (cpu_has_inclusive_pcaches) {
 878		if (size >= scache_size)
 879			r4k_blast_scache();
 880		else {
 
 
 
 881			/*
 882			 * There is no clearly documented alignment requirement
 883			 * for the cache instruction on MIPS processors and
 884			 * some processors, among them the RM5200 and RM7000
 885			 * QED processors will throw an address error for cache
 886			 * hit ops with insufficient alignment.	 Solved by
 887			 * aligning the address to cache line size.
 888			 */
 889			blast_inv_scache_range(addr, addr + size);
 890		}
 891		preempt_enable();
 892		__sync();
 893		return;
 894	}
 895
 896	if (!r4k_op_needs_ipi(R4K_INDEX) && size >= dcache_size) {
 897		r4k_blast_dcache();
 898	} else {
 899		R4600_HIT_CACHEOP_WAR_IMPL;
 900		blast_inv_dcache_range(addr, addr + size);
 901	}
 902	preempt_enable();
 903
 904	bc_inv(addr, size);
 905	__sync();
 906}
 907#endif /* CONFIG_DMA_NONCOHERENT || CONFIG_DMA_MAYBE_COHERENT */
 908
 909struct flush_cache_sigtramp_args {
 910	struct mm_struct *mm;
 911	struct page *page;
 912	unsigned long addr;
 913};
 914
 915/*
 916 * While we're protected against bad userland addresses we don't care
 917 * very much about what happens in that case.  Usually a segmentation
 918 * fault will dump the process later on anyway ...
 919 */
 920static void local_r4k_flush_cache_sigtramp(void *args)
 921{
 922	struct flush_cache_sigtramp_args *fcs_args = args;
 923	unsigned long addr = fcs_args->addr;
 924	struct page *page = fcs_args->page;
 925	struct mm_struct *mm = fcs_args->mm;
 926	int map_coherent = 0;
 927	void *vaddr;
 928
 929	unsigned long ic_lsize = cpu_icache_line_size();
 930	unsigned long dc_lsize = cpu_dcache_line_size();
 931	unsigned long sc_lsize = cpu_scache_line_size();
 932
 933	/*
 934	 * If owns no valid ASID yet, cannot possibly have gotten
 935	 * this page into the cache.
 936	 */
 937	if (!has_valid_asid(mm, R4K_HIT))
 938		return;
 939
 940	if (mm == current->active_mm) {
 941		vaddr = NULL;
 942	} else {
 943		/*
 944		 * Use kmap_coherent or kmap_atomic to do flushes for
 945		 * another ASID than the current one.
 946		 */
 947		map_coherent = (cpu_has_dc_aliases &&
 948				page_mapcount(page) &&
 949				!Page_dcache_dirty(page));
 950		if (map_coherent)
 951			vaddr = kmap_coherent(page, addr);
 952		else
 953			vaddr = kmap_atomic(page);
 954		addr = (unsigned long)vaddr + (addr & ~PAGE_MASK);
 955	}
 956
 957	R4600_HIT_CACHEOP_WAR_IMPL;
 958	if (!cpu_has_ic_fills_f_dc) {
 959		if (dc_lsize)
 960			vaddr ? flush_dcache_line(addr & ~(dc_lsize - 1))
 961			      : protected_writeback_dcache_line(
 962							addr & ~(dc_lsize - 1));
 963		if (!cpu_icache_snoops_remote_store && scache_size)
 964			vaddr ? flush_scache_line(addr & ~(sc_lsize - 1))
 965			      : protected_writeback_scache_line(
 966							addr & ~(sc_lsize - 1));
 967	}
 968	if (ic_lsize)
 969		vaddr ? flush_icache_line(addr & ~(ic_lsize - 1))
 970		      : protected_flush_icache_line(addr & ~(ic_lsize - 1));
 971
 972	if (vaddr) {
 973		if (map_coherent)
 974			kunmap_coherent();
 975		else
 976			kunmap_atomic(vaddr);
 977	}
 978
 979	if (MIPS4K_ICACHE_REFILL_WAR) {
 980		__asm__ __volatile__ (
 981			".set push\n\t"
 982			".set noat\n\t"
 983			".set "MIPS_ISA_LEVEL"\n\t"
 984#ifdef CONFIG_32BIT
 985			"la	$at,1f\n\t"
 986#endif
 987#ifdef CONFIG_64BIT
 988			"dla	$at,1f\n\t"
 989#endif
 990			"cache	%0,($at)\n\t"
 991			"nop; nop; nop\n"
 992			"1:\n\t"
 993			".set pop"
 994			:
 995			: "i" (Hit_Invalidate_I));
 996	}
 997	if (MIPS_CACHE_SYNC_WAR)
 998		__asm__ __volatile__ ("sync");
 999}
1000
1001static void r4k_flush_cache_sigtramp(unsigned long addr)
1002{
1003	struct flush_cache_sigtramp_args args;
1004	int npages;
1005
1006	down_read(&current->mm->mmap_sem);
1007
1008	npages = get_user_pages_fast(addr, 1, 0, &args.page);
1009	if (npages < 1)
1010		goto out;
1011
1012	args.mm = current->mm;
1013	args.addr = addr;
1014
1015	r4k_on_each_cpu(R4K_HIT, local_r4k_flush_cache_sigtramp, &args);
1016
1017	put_page(args.page);
1018out:
1019	up_read(&current->mm->mmap_sem);
1020}
1021
1022static void r4k_flush_icache_all(void)
1023{
1024	if (cpu_has_vtag_icache)
1025		r4k_blast_icache();
1026}
1027
1028struct flush_kernel_vmap_range_args {
1029	unsigned long	vaddr;
1030	int		size;
1031};
1032
1033static inline void local_r4k_flush_kernel_vmap_range_index(void *args)
1034{
1035	/*
1036	 * Aliases only affect the primary caches so don't bother with
1037	 * S-caches or T-caches.
1038	 */
1039	r4k_blast_dcache();
1040}
1041
1042static inline void local_r4k_flush_kernel_vmap_range(void *args)
1043{
1044	struct flush_kernel_vmap_range_args *vmra = args;
1045	unsigned long vaddr = vmra->vaddr;
1046	int size = vmra->size;
1047
1048	/*
1049	 * Aliases only affect the primary caches so don't bother with
1050	 * S-caches or T-caches.
1051	 */
1052	R4600_HIT_CACHEOP_WAR_IMPL;
1053	blast_dcache_range(vaddr, vaddr + size);
1054}
1055
1056static void r4k_flush_kernel_vmap_range(unsigned long vaddr, int size)
1057{
1058	struct flush_kernel_vmap_range_args args;
1059
1060	args.vaddr = (unsigned long) vaddr;
1061	args.size = size;
1062
1063	if (size >= dcache_size)
1064		r4k_on_each_cpu(R4K_INDEX,
1065				local_r4k_flush_kernel_vmap_range_index, NULL);
1066	else
1067		r4k_on_each_cpu(R4K_HIT, local_r4k_flush_kernel_vmap_range,
1068				&args);
1069}
1070
1071static inline void rm7k_erratum31(void)
1072{
1073	const unsigned long ic_lsize = 32;
1074	unsigned long addr;
1075
1076	/* RM7000 erratum #31. The icache is screwed at startup. */
1077	write_c0_taglo(0);
1078	write_c0_taghi(0);
1079
1080	for (addr = INDEX_BASE; addr <= INDEX_BASE + 4096; addr += ic_lsize) {
1081		__asm__ __volatile__ (
1082			".set push\n\t"
1083			".set noreorder\n\t"
1084			".set mips3\n\t"
1085			"cache\t%1, 0(%0)\n\t"
1086			"cache\t%1, 0x1000(%0)\n\t"
1087			"cache\t%1, 0x2000(%0)\n\t"
1088			"cache\t%1, 0x3000(%0)\n\t"
1089			"cache\t%2, 0(%0)\n\t"
1090			"cache\t%2, 0x1000(%0)\n\t"
1091			"cache\t%2, 0x2000(%0)\n\t"
1092			"cache\t%2, 0x3000(%0)\n\t"
1093			"cache\t%1, 0(%0)\n\t"
1094			"cache\t%1, 0x1000(%0)\n\t"
1095			"cache\t%1, 0x2000(%0)\n\t"
1096			"cache\t%1, 0x3000(%0)\n\t"
1097			".set pop\n"
1098			:
1099			: "r" (addr), "i" (Index_Store_Tag_I), "i" (Fill));
1100	}
1101}
1102
1103static inline int alias_74k_erratum(struct cpuinfo_mips *c)
1104{
1105	unsigned int imp = c->processor_id & PRID_IMP_MASK;
1106	unsigned int rev = c->processor_id & PRID_REV_MASK;
1107	int present = 0;
1108
1109	/*
1110	 * Early versions of the 74K do not update the cache tags on a
1111	 * vtag miss/ptag hit which can occur in the case of KSEG0/KUSEG
1112	 * aliases.  In this case it is better to treat the cache as always
1113	 * having aliases.  Also disable the synonym tag update feature
1114	 * where available.  In this case no opportunistic tag update will
1115	 * happen where a load causes a virtual address miss but a physical
1116	 * address hit during a D-cache look-up.
1117	 */
1118	switch (imp) {
1119	case PRID_IMP_74K:
1120		if (rev <= PRID_REV_ENCODE_332(2, 4, 0))
1121			present = 1;
1122		if (rev == PRID_REV_ENCODE_332(2, 4, 0))
1123			write_c0_config6(read_c0_config6() | MIPS_CONF6_SYND);
1124		break;
1125	case PRID_IMP_1074K:
1126		if (rev <= PRID_REV_ENCODE_332(1, 1, 0)) {
1127			present = 1;
1128			write_c0_config6(read_c0_config6() | MIPS_CONF6_SYND);
1129		}
1130		break;
1131	default:
1132		BUG();
1133	}
1134
1135	return present;
1136}
1137
1138static void b5k_instruction_hazard(void)
1139{
1140	__sync();
1141	__sync();
1142	__asm__ __volatile__(
1143	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
1144	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
1145	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
1146	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
1147	: : : "memory");
1148}
1149
1150static char *way_string[] = { NULL, "direct mapped", "2-way",
1151	"3-way", "4-way", "5-way", "6-way", "7-way", "8-way",
1152	"9-way", "10-way", "11-way", "12-way",
1153	"13-way", "14-way", "15-way", "16-way",
1154};
1155
1156static void probe_pcache(void)
1157{
1158	struct cpuinfo_mips *c = &current_cpu_data;
1159	unsigned int config = read_c0_config();
1160	unsigned int prid = read_c0_prid();
1161	int has_74k_erratum = 0;
1162	unsigned long config1;
1163	unsigned int lsize;
1164
1165	switch (current_cpu_type()) {
1166	case CPU_R4600:			/* QED style two way caches? */
1167	case CPU_R4700:
1168	case CPU_R5000:
1169	case CPU_NEVADA:
1170		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1171		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1172		c->icache.ways = 2;
1173		c->icache.waybit = __ffs(icache_size/2);
1174
1175		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1176		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1177		c->dcache.ways = 2;
1178		c->dcache.waybit= __ffs(dcache_size/2);
1179
1180		c->options |= MIPS_CPU_CACHE_CDEX_P;
1181		break;
1182
1183	case CPU_R5432:
1184	case CPU_R5500:
1185		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1186		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1187		c->icache.ways = 2;
1188		c->icache.waybit= 0;
1189
1190		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1191		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1192		c->dcache.ways = 2;
1193		c->dcache.waybit = 0;
1194
1195		c->options |= MIPS_CPU_CACHE_CDEX_P | MIPS_CPU_PREFETCH;
1196		break;
1197
1198	case CPU_TX49XX:
1199		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1200		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1201		c->icache.ways = 4;
1202		c->icache.waybit= 0;
1203
1204		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1205		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1206		c->dcache.ways = 4;
1207		c->dcache.waybit = 0;
1208
1209		c->options |= MIPS_CPU_CACHE_CDEX_P;
1210		c->options |= MIPS_CPU_PREFETCH;
1211		break;
1212
1213	case CPU_R4000PC:
1214	case CPU_R4000SC:
1215	case CPU_R4000MC:
1216	case CPU_R4400PC:
1217	case CPU_R4400SC:
1218	case CPU_R4400MC:
1219	case CPU_R4300:
1220		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1221		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1222		c->icache.ways = 1;
1223		c->icache.waybit = 0;	/* doesn't matter */
1224
1225		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1226		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1227		c->dcache.ways = 1;
1228		c->dcache.waybit = 0;	/* does not matter */
1229
1230		c->options |= MIPS_CPU_CACHE_CDEX_P;
1231		break;
1232
1233	case CPU_R10000:
1234	case CPU_R12000:
1235	case CPU_R14000:
1236	case CPU_R16000:
1237		icache_size = 1 << (12 + ((config & R10K_CONF_IC) >> 29));
1238		c->icache.linesz = 64;
1239		c->icache.ways = 2;
1240		c->icache.waybit = 0;
1241
1242		dcache_size = 1 << (12 + ((config & R10K_CONF_DC) >> 26));
1243		c->dcache.linesz = 32;
1244		c->dcache.ways = 2;
1245		c->dcache.waybit = 0;
1246
1247		c->options |= MIPS_CPU_PREFETCH;
1248		break;
1249
1250	case CPU_VR4133:
1251		write_c0_config(config & ~VR41_CONF_P4K);
1252	case CPU_VR4131:
1253		/* Workaround for cache instruction bug of VR4131 */
1254		if (c->processor_id == 0x0c80U || c->processor_id == 0x0c81U ||
1255		    c->processor_id == 0x0c82U) {
1256			config |= 0x00400000U;
1257			if (c->processor_id == 0x0c80U)
1258				config |= VR41_CONF_BP;
1259			write_c0_config(config);
1260		} else
1261			c->options |= MIPS_CPU_CACHE_CDEX_P;
1262
1263		icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
1264		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1265		c->icache.ways = 2;
1266		c->icache.waybit = __ffs(icache_size/2);
1267
1268		dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
1269		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1270		c->dcache.ways = 2;
1271		c->dcache.waybit = __ffs(dcache_size/2);
1272		break;
1273
1274	case CPU_VR41XX:
1275	case CPU_VR4111:
1276	case CPU_VR4121:
1277	case CPU_VR4122:
1278	case CPU_VR4181:
1279	case CPU_VR4181A:
1280		icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
1281		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1282		c->icache.ways = 1;
1283		c->icache.waybit = 0;	/* doesn't matter */
1284
1285		dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
1286		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1287		c->dcache.ways = 1;
1288		c->dcache.waybit = 0;	/* does not matter */
1289
1290		c->options |= MIPS_CPU_CACHE_CDEX_P;
1291		break;
1292
1293	case CPU_RM7000:
1294		rm7k_erratum31();
1295
1296		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1297		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1298		c->icache.ways = 4;
1299		c->icache.waybit = __ffs(icache_size / c->icache.ways);
1300
1301		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1302		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1303		c->dcache.ways = 4;
1304		c->dcache.waybit = __ffs(dcache_size / c->dcache.ways);
1305
1306		c->options |= MIPS_CPU_CACHE_CDEX_P;
1307		c->options |= MIPS_CPU_PREFETCH;
1308		break;
1309
1310	case CPU_LOONGSON2:
1311		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1312		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1313		if (prid & 0x3)
1314			c->icache.ways = 4;
1315		else
1316			c->icache.ways = 2;
1317		c->icache.waybit = 0;
1318
1319		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1320		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1321		if (prid & 0x3)
1322			c->dcache.ways = 4;
1323		else
1324			c->dcache.ways = 2;
1325		c->dcache.waybit = 0;
1326		break;
1327
1328	case CPU_LOONGSON3:
1329		config1 = read_c0_config1();
1330		lsize = (config1 >> 19) & 7;
1331		if (lsize)
1332			c->icache.linesz = 2 << lsize;
1333		else
1334			c->icache.linesz = 0;
1335		c->icache.sets = 64 << ((config1 >> 22) & 7);
1336		c->icache.ways = 1 + ((config1 >> 16) & 7);
1337		icache_size = c->icache.sets *
1338					  c->icache.ways *
1339					  c->icache.linesz;
1340		c->icache.waybit = 0;
1341
1342		lsize = (config1 >> 10) & 7;
1343		if (lsize)
1344			c->dcache.linesz = 2 << lsize;
1345		else
1346			c->dcache.linesz = 0;
1347		c->dcache.sets = 64 << ((config1 >> 13) & 7);
1348		c->dcache.ways = 1 + ((config1 >> 7) & 7);
1349		dcache_size = c->dcache.sets *
1350					  c->dcache.ways *
1351					  c->dcache.linesz;
1352		c->dcache.waybit = 0;
1353		if ((prid & PRID_REV_MASK) >= PRID_REV_LOONGSON3A_R2)
 
 
1354			c->options |= MIPS_CPU_PREFETCH;
1355		break;
1356
1357	case CPU_CAVIUM_OCTEON3:
1358		/* For now lie about the number of ways. */
1359		c->icache.linesz = 128;
1360		c->icache.sets = 16;
1361		c->icache.ways = 8;
1362		c->icache.flags |= MIPS_CACHE_VTAG;
1363		icache_size = c->icache.sets * c->icache.ways * c->icache.linesz;
1364
1365		c->dcache.linesz = 128;
1366		c->dcache.ways = 8;
1367		c->dcache.sets = 8;
1368		dcache_size = c->dcache.sets * c->dcache.ways * c->dcache.linesz;
1369		c->options |= MIPS_CPU_PREFETCH;
1370		break;
1371
1372	default:
1373		if (!(config & MIPS_CONF_M))
1374			panic("Don't know how to probe P-caches on this cpu.");
1375
1376		/*
1377		 * So we seem to be a MIPS32 or MIPS64 CPU
1378		 * So let's probe the I-cache ...
1379		 */
1380		config1 = read_c0_config1();
1381
1382		lsize = (config1 >> 19) & 7;
1383
1384		/* IL == 7 is reserved */
1385		if (lsize == 7)
1386			panic("Invalid icache line size");
1387
1388		c->icache.linesz = lsize ? 2 << lsize : 0;
1389
1390		c->icache.sets = 32 << (((config1 >> 22) + 1) & 7);
1391		c->icache.ways = 1 + ((config1 >> 16) & 7);
1392
1393		icache_size = c->icache.sets *
1394			      c->icache.ways *
1395			      c->icache.linesz;
1396		c->icache.waybit = __ffs(icache_size/c->icache.ways);
1397
1398		if (config & MIPS_CONF_VI)
1399			c->icache.flags |= MIPS_CACHE_VTAG;
1400
1401		/*
1402		 * Now probe the MIPS32 / MIPS64 data cache.
1403		 */
1404		c->dcache.flags = 0;
1405
1406		lsize = (config1 >> 10) & 7;
1407
1408		/* DL == 7 is reserved */
1409		if (lsize == 7)
1410			panic("Invalid dcache line size");
1411
1412		c->dcache.linesz = lsize ? 2 << lsize : 0;
1413
1414		c->dcache.sets = 32 << (((config1 >> 13) + 1) & 7);
1415		c->dcache.ways = 1 + ((config1 >> 7) & 7);
1416
1417		dcache_size = c->dcache.sets *
1418			      c->dcache.ways *
1419			      c->dcache.linesz;
1420		c->dcache.waybit = __ffs(dcache_size/c->dcache.ways);
1421
1422		c->options |= MIPS_CPU_PREFETCH;
1423		break;
1424	}
1425
1426	/*
1427	 * Processor configuration sanity check for the R4000SC erratum
1428	 * #5.	With page sizes larger than 32kB there is no possibility
1429	 * to get a VCE exception anymore so we don't care about this
1430	 * misconfiguration.  The case is rather theoretical anyway;
1431	 * presumably no vendor is shipping his hardware in the "bad"
1432	 * configuration.
1433	 */
1434	if ((prid & PRID_IMP_MASK) == PRID_IMP_R4000 &&
1435	    (prid & PRID_REV_MASK) < PRID_REV_R4400 &&
1436	    !(config & CONF_SC) && c->icache.linesz != 16 &&
1437	    PAGE_SIZE <= 0x8000)
1438		panic("Improper R4000SC processor configuration detected");
1439
1440	/* compute a couple of other cache variables */
1441	c->icache.waysize = icache_size / c->icache.ways;
1442	c->dcache.waysize = dcache_size / c->dcache.ways;
1443
1444	c->icache.sets = c->icache.linesz ?
1445		icache_size / (c->icache.linesz * c->icache.ways) : 0;
1446	c->dcache.sets = c->dcache.linesz ?
1447		dcache_size / (c->dcache.linesz * c->dcache.ways) : 0;
1448
1449	/*
1450	 * R1x000 P-caches are odd in a positive way.  They're 32kB 2-way
1451	 * virtually indexed so normally would suffer from aliases.  So
1452	 * normally they'd suffer from aliases but magic in the hardware deals
1453	 * with that for us so we don't need to take care ourselves.
1454	 */
1455	switch (current_cpu_type()) {
1456	case CPU_20KC:
1457	case CPU_25KF:
1458	case CPU_I6400:
1459	case CPU_I6500:
1460	case CPU_SB1:
1461	case CPU_SB1A:
1462	case CPU_XLR:
1463		c->dcache.flags |= MIPS_CACHE_PINDEX;
1464		break;
1465
1466	case CPU_R10000:
1467	case CPU_R12000:
1468	case CPU_R14000:
1469	case CPU_R16000:
1470		break;
1471
1472	case CPU_74K:
1473	case CPU_1074K:
1474		has_74k_erratum = alias_74k_erratum(c);
1475		/* Fall through. */
1476	case CPU_M14KC:
1477	case CPU_M14KEC:
1478	case CPU_24K:
1479	case CPU_34K:
1480	case CPU_1004K:
1481	case CPU_INTERAPTIV:
1482	case CPU_P5600:
1483	case CPU_PROAPTIV:
1484	case CPU_M5150:
1485	case CPU_QEMU_GENERIC:
1486	case CPU_P6600:
1487	case CPU_M6250:
1488		if (!(read_c0_config7() & MIPS_CONF7_IAR) &&
1489		    (c->icache.waysize > PAGE_SIZE))
1490			c->icache.flags |= MIPS_CACHE_ALIASES;
1491		if (!has_74k_erratum && (read_c0_config7() & MIPS_CONF7_AR)) {
1492			/*
1493			 * Effectively physically indexed dcache,
1494			 * thus no virtual aliases.
1495			*/
1496			c->dcache.flags |= MIPS_CACHE_PINDEX;
1497			break;
1498		}
 
1499	default:
1500		if (has_74k_erratum || c->dcache.waysize > PAGE_SIZE)
1501			c->dcache.flags |= MIPS_CACHE_ALIASES;
1502	}
1503
1504	/* Physically indexed caches don't suffer from virtual aliasing */
1505	if (c->dcache.flags & MIPS_CACHE_PINDEX)
1506		c->dcache.flags &= ~MIPS_CACHE_ALIASES;
1507
 
 
 
 
 
 
 
 
1508	switch (current_cpu_type()) {
1509	case CPU_20KC:
1510		/*
1511		 * Some older 20Kc chips doesn't have the 'VI' bit in
1512		 * the config register.
1513		 */
1514		c->icache.flags |= MIPS_CACHE_VTAG;
1515		break;
1516
1517	case CPU_ALCHEMY:
1518	case CPU_I6400:
1519	case CPU_I6500:
1520		c->icache.flags |= MIPS_CACHE_IC_F_DC;
1521		break;
1522
1523	case CPU_BMIPS5000:
1524		c->icache.flags |= MIPS_CACHE_IC_F_DC;
1525		/* Cache aliases are handled in hardware; allow HIGHMEM */
1526		c->dcache.flags &= ~MIPS_CACHE_ALIASES;
1527		break;
1528
1529	case CPU_LOONGSON2:
1530		/*
1531		 * LOONGSON2 has 4 way icache, but when using indexed cache op,
1532		 * one op will act on all 4 ways
1533		 */
1534		c->icache.ways = 1;
1535	}
1536
1537	printk("Primary instruction cache %ldkB, %s, %s, linesize %d bytes.\n",
1538	       icache_size >> 10,
1539	       c->icache.flags & MIPS_CACHE_VTAG ? "VIVT" : "VIPT",
1540	       way_string[c->icache.ways], c->icache.linesz);
1541
1542	printk("Primary data cache %ldkB, %s, %s, %s, linesize %d bytes\n",
1543	       dcache_size >> 10, way_string[c->dcache.ways],
1544	       (c->dcache.flags & MIPS_CACHE_PINDEX) ? "PIPT" : "VIPT",
1545	       (c->dcache.flags & MIPS_CACHE_ALIASES) ?
1546			"cache aliases" : "no aliases",
1547	       c->dcache.linesz);
1548}
1549
1550static void probe_vcache(void)
1551{
1552	struct cpuinfo_mips *c = &current_cpu_data;
1553	unsigned int config2, lsize;
1554
1555	if (current_cpu_type() != CPU_LOONGSON3)
1556		return;
1557
1558	config2 = read_c0_config2();
1559	if ((lsize = ((config2 >> 20) & 15)))
1560		c->vcache.linesz = 2 << lsize;
1561	else
1562		c->vcache.linesz = lsize;
1563
1564	c->vcache.sets = 64 << ((config2 >> 24) & 15);
1565	c->vcache.ways = 1 + ((config2 >> 16) & 15);
1566
1567	vcache_size = c->vcache.sets * c->vcache.ways * c->vcache.linesz;
1568
1569	c->vcache.waybit = 0;
1570	c->vcache.waysize = vcache_size / c->vcache.ways;
1571
1572	pr_info("Unified victim cache %ldkB %s, linesize %d bytes.\n",
1573		vcache_size >> 10, way_string[c->vcache.ways], c->vcache.linesz);
1574}
1575
1576/*
1577 * If you even _breathe_ on this function, look at the gcc output and make sure
1578 * it does not pop things on and off the stack for the cache sizing loop that
1579 * executes in KSEG1 space or else you will crash and burn badly.  You have
1580 * been warned.
1581 */
1582static int probe_scache(void)
1583{
1584	unsigned long flags, addr, begin, end, pow2;
1585	unsigned int config = read_c0_config();
1586	struct cpuinfo_mips *c = &current_cpu_data;
1587
1588	if (config & CONF_SC)
1589		return 0;
1590
1591	begin = (unsigned long) &_stext;
1592	begin &= ~((4 * 1024 * 1024) - 1);
1593	end = begin + (4 * 1024 * 1024);
1594
1595	/*
1596	 * This is such a bitch, you'd think they would make it easy to do
1597	 * this.  Away you daemons of stupidity!
1598	 */
1599	local_irq_save(flags);
1600
1601	/* Fill each size-multiple cache line with a valid tag. */
1602	pow2 = (64 * 1024);
1603	for (addr = begin; addr < end; addr = (begin + pow2)) {
1604		unsigned long *p = (unsigned long *) addr;
1605		__asm__ __volatile__("nop" : : "r" (*p)); /* whee... */
1606		pow2 <<= 1;
1607	}
1608
1609	/* Load first line with zero (therefore invalid) tag. */
1610	write_c0_taglo(0);
1611	write_c0_taghi(0);
1612	__asm__ __volatile__("nop; nop; nop; nop;"); /* avoid the hazard */
1613	cache_op(Index_Store_Tag_I, begin);
1614	cache_op(Index_Store_Tag_D, begin);
1615	cache_op(Index_Store_Tag_SD, begin);
1616
1617	/* Now search for the wrap around point. */
1618	pow2 = (128 * 1024);
1619	for (addr = begin + (128 * 1024); addr < end; addr = begin + pow2) {
1620		cache_op(Index_Load_Tag_SD, addr);
1621		__asm__ __volatile__("nop; nop; nop; nop;"); /* hazard... */
1622		if (!read_c0_taglo())
1623			break;
1624		pow2 <<= 1;
1625	}
1626	local_irq_restore(flags);
1627	addr -= begin;
1628
1629	scache_size = addr;
1630	c->scache.linesz = 16 << ((config & R4K_CONF_SB) >> 22);
1631	c->scache.ways = 1;
1632	c->scache.waybit = 0;		/* does not matter */
1633
1634	return 1;
1635}
1636
1637static void __init loongson2_sc_init(void)
1638{
1639	struct cpuinfo_mips *c = &current_cpu_data;
1640
1641	scache_size = 512*1024;
1642	c->scache.linesz = 32;
1643	c->scache.ways = 4;
1644	c->scache.waybit = 0;
1645	c->scache.waysize = scache_size / (c->scache.ways);
1646	c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1647	pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1648	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1649
1650	c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1651}
1652
1653static void __init loongson3_sc_init(void)
1654{
1655	struct cpuinfo_mips *c = &current_cpu_data;
1656	unsigned int config2, lsize;
1657
1658	config2 = read_c0_config2();
1659	lsize = (config2 >> 4) & 15;
1660	if (lsize)
1661		c->scache.linesz = 2 << lsize;
1662	else
1663		c->scache.linesz = 0;
1664	c->scache.sets = 64 << ((config2 >> 8) & 15);
1665	c->scache.ways = 1 + (config2 & 15);
1666
1667	scache_size = c->scache.sets *
1668				  c->scache.ways *
1669				  c->scache.linesz;
1670	/* Loongson-3 has 4 cores, 1MB scache for each. scaches are shared */
1671	scache_size *= 4;
 
 
 
1672	c->scache.waybit = 0;
1673	c->scache.waysize = scache_size / c->scache.ways;
1674	pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1675	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1676	if (scache_size)
1677		c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1678	return;
1679}
1680
1681extern int r5k_sc_init(void);
1682extern int rm7k_sc_init(void);
1683extern int mips_sc_init(void);
1684
1685static void setup_scache(void)
1686{
1687	struct cpuinfo_mips *c = &current_cpu_data;
1688	unsigned int config = read_c0_config();
1689	int sc_present = 0;
1690
1691	/*
1692	 * Do the probing thing on R4000SC and R4400SC processors.  Other
1693	 * processors don't have a S-cache that would be relevant to the
1694	 * Linux memory management.
1695	 */
1696	switch (current_cpu_type()) {
1697	case CPU_R4000SC:
1698	case CPU_R4000MC:
1699	case CPU_R4400SC:
1700	case CPU_R4400MC:
1701		sc_present = run_uncached(probe_scache);
1702		if (sc_present)
1703			c->options |= MIPS_CPU_CACHE_CDEX_S;
1704		break;
1705
1706	case CPU_R10000:
1707	case CPU_R12000:
1708	case CPU_R14000:
1709	case CPU_R16000:
1710		scache_size = 0x80000 << ((config & R10K_CONF_SS) >> 16);
1711		c->scache.linesz = 64 << ((config >> 13) & 1);
1712		c->scache.ways = 2;
1713		c->scache.waybit= 0;
1714		sc_present = 1;
1715		break;
1716
1717	case CPU_R5000:
1718	case CPU_NEVADA:
1719#ifdef CONFIG_R5000_CPU_SCACHE
1720		r5k_sc_init();
1721#endif
1722		return;
1723
1724	case CPU_RM7000:
1725#ifdef CONFIG_RM7000_CPU_SCACHE
1726		rm7k_sc_init();
1727#endif
1728		return;
1729
1730	case CPU_LOONGSON2:
1731		loongson2_sc_init();
1732		return;
1733
1734	case CPU_LOONGSON3:
1735		loongson3_sc_init();
1736		return;
1737
1738	case CPU_CAVIUM_OCTEON3:
1739	case CPU_XLP:
1740		/* don't need to worry about L2, fully coherent */
1741		return;
1742
1743	default:
1744		if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M32R2 |
1745				    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R1 |
1746				    MIPS_CPU_ISA_M64R2 | MIPS_CPU_ISA_M64R6)) {
 
1747#ifdef CONFIG_MIPS_CPU_SCACHE
1748			if (mips_sc_init ()) {
1749				scache_size = c->scache.ways * c->scache.sets * c->scache.linesz;
1750				printk("MIPS secondary cache %ldkB, %s, linesize %d bytes.\n",
1751				       scache_size >> 10,
1752				       way_string[c->scache.ways], c->scache.linesz);
 
 
 
1753			}
 
1754#else
1755			if (!(c->scache.flags & MIPS_CACHE_NOT_PRESENT))
1756				panic("Dunno how to handle MIPS32 / MIPS64 second level cache");
1757#endif
1758			return;
1759		}
1760		sc_present = 0;
1761	}
1762
1763	if (!sc_present)
1764		return;
1765
1766	/* compute a couple of other cache variables */
1767	c->scache.waysize = scache_size / c->scache.ways;
1768
1769	c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1770
1771	printk("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1772	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1773
1774	c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1775}
1776
1777void au1x00_fixup_config_od(void)
1778{
1779	/*
1780	 * c0_config.od (bit 19) was write only (and read as 0)
1781	 * on the early revisions of Alchemy SOCs.  It disables the bus
1782	 * transaction overlapping and needs to be set to fix various errata.
1783	 */
1784	switch (read_c0_prid()) {
1785	case 0x00030100: /* Au1000 DA */
1786	case 0x00030201: /* Au1000 HA */
1787	case 0x00030202: /* Au1000 HB */
1788	case 0x01030200: /* Au1500 AB */
1789	/*
1790	 * Au1100 errata actually keeps silence about this bit, so we set it
1791	 * just in case for those revisions that require it to be set according
1792	 * to the (now gone) cpu table.
1793	 */
1794	case 0x02030200: /* Au1100 AB */
1795	case 0x02030201: /* Au1100 BA */
1796	case 0x02030202: /* Au1100 BC */
1797		set_c0_config(1 << 19);
1798		break;
1799	}
1800}
1801
1802/* CP0 hazard avoidance. */
1803#define NXP_BARRIER()							\
1804	 __asm__ __volatile__(						\
1805	".set noreorder\n\t"						\
1806	"nop; nop; nop; nop; nop; nop;\n\t"				\
1807	".set reorder\n\t")
1808
1809static void nxp_pr4450_fixup_config(void)
1810{
1811	unsigned long config0;
1812
1813	config0 = read_c0_config();
1814
1815	/* clear all three cache coherency fields */
1816	config0 &= ~(0x7 | (7 << 25) | (7 << 28));
1817	config0 |= (((_page_cachable_default >> _CACHE_SHIFT) <<  0) |
1818		    ((_page_cachable_default >> _CACHE_SHIFT) << 25) |
1819		    ((_page_cachable_default >> _CACHE_SHIFT) << 28));
1820	write_c0_config(config0);
1821	NXP_BARRIER();
1822}
1823
1824static int cca = -1;
1825
1826static int __init cca_setup(char *str)
1827{
1828	get_option(&str, &cca);
1829
1830	return 0;
1831}
1832
1833early_param("cca", cca_setup);
1834
1835static void coherency_setup(void)
1836{
1837	if (cca < 0 || cca > 7)
1838		cca = read_c0_config() & CONF_CM_CMASK;
1839	_page_cachable_default = cca << _CACHE_SHIFT;
1840
1841	pr_debug("Using cache attribute %d\n", cca);
1842	change_c0_config(CONF_CM_CMASK, cca);
1843
1844	/*
1845	 * c0_status.cu=0 specifies that updates by the sc instruction use
1846	 * the coherency mode specified by the TLB; 1 means cachable
1847	 * coherent update on write will be used.  Not all processors have
1848	 * this bit and; some wire it to zero, others like Toshiba had the
1849	 * silly idea of putting something else there ...
1850	 */
1851	switch (current_cpu_type()) {
1852	case CPU_R4000PC:
1853	case CPU_R4000SC:
1854	case CPU_R4000MC:
1855	case CPU_R4400PC:
1856	case CPU_R4400SC:
1857	case CPU_R4400MC:
1858		clear_c0_config(CONF_CU);
1859		break;
1860	/*
1861	 * We need to catch the early Alchemy SOCs with
1862	 * the write-only co_config.od bit and set it back to one on:
1863	 * Au1000 rev DA, HA, HB;  Au1100 AB, BA, BC, Au1500 AB
1864	 */
1865	case CPU_ALCHEMY:
1866		au1x00_fixup_config_od();
1867		break;
1868
1869	case PRID_IMP_PR4450:
1870		nxp_pr4450_fixup_config();
1871		break;
1872	}
1873}
1874
1875static void r4k_cache_error_setup(void)
1876{
1877	extern char __weak except_vec2_generic;
1878	extern char __weak except_vec2_sb1;
1879
1880	switch (current_cpu_type()) {
1881	case CPU_SB1:
1882	case CPU_SB1A:
1883		set_uncached_handler(0x100, &except_vec2_sb1, 0x80);
1884		break;
1885
1886	default:
1887		set_uncached_handler(0x100, &except_vec2_generic, 0x80);
1888		break;
1889	}
1890}
1891
1892void r4k_cache_init(void)
1893{
1894	extern void build_clear_page(void);
1895	extern void build_copy_page(void);
1896	struct cpuinfo_mips *c = &current_cpu_data;
1897
1898	probe_pcache();
1899	probe_vcache();
1900	setup_scache();
1901
1902	r4k_blast_dcache_page_setup();
1903	r4k_blast_dcache_page_indexed_setup();
1904	r4k_blast_dcache_setup();
1905	r4k_blast_icache_page_setup();
1906	r4k_blast_icache_page_indexed_setup();
1907	r4k_blast_icache_setup();
1908	r4k_blast_scache_page_setup();
1909	r4k_blast_scache_page_indexed_setup();
1910	r4k_blast_scache_setup();
 
1911#ifdef CONFIG_EVA
1912	r4k_blast_dcache_user_page_setup();
1913	r4k_blast_icache_user_page_setup();
1914#endif
1915
1916	/*
1917	 * Some MIPS32 and MIPS64 processors have physically indexed caches.
1918	 * This code supports virtually indexed processors and will be
1919	 * unnecessarily inefficient on physically indexed processors.
1920	 */
1921	if (c->dcache.linesz && cpu_has_dc_aliases)
1922		shm_align_mask = max_t( unsigned long,
1923					c->dcache.sets * c->dcache.linesz - 1,
1924					PAGE_SIZE - 1);
1925	else
1926		shm_align_mask = PAGE_SIZE-1;
1927
1928	__flush_cache_vmap	= r4k__flush_cache_vmap;
1929	__flush_cache_vunmap	= r4k__flush_cache_vunmap;
1930
1931	flush_cache_all		= cache_noop;
1932	__flush_cache_all	= r4k___flush_cache_all;
1933	flush_cache_mm		= r4k_flush_cache_mm;
1934	flush_cache_page	= r4k_flush_cache_page;
1935	flush_cache_range	= r4k_flush_cache_range;
1936
1937	__flush_kernel_vmap_range = r4k_flush_kernel_vmap_range;
1938
1939	flush_cache_sigtramp	= r4k_flush_cache_sigtramp;
1940	flush_icache_all	= r4k_flush_icache_all;
1941	local_flush_data_cache_page	= local_r4k_flush_data_cache_page;
1942	flush_data_cache_page	= r4k_flush_data_cache_page;
1943	flush_icache_range	= r4k_flush_icache_range;
1944	local_flush_icache_range	= local_r4k_flush_icache_range;
1945	__flush_icache_user_range	= r4k_flush_icache_user_range;
1946	__local_flush_icache_user_range	= local_r4k_flush_icache_user_range;
1947
1948#if defined(CONFIG_DMA_NONCOHERENT) || defined(CONFIG_DMA_MAYBE_COHERENT)
1949# if defined(CONFIG_DMA_PERDEV_COHERENT)
1950	if (0) {
1951# else
1952	if ((coherentio == IO_COHERENCE_ENABLED) ||
1953	    ((coherentio == IO_COHERENCE_DEFAULT) && hw_coherentio)) {
1954# endif
1955		_dma_cache_wback_inv	= (void *)cache_noop;
1956		_dma_cache_wback	= (void *)cache_noop;
1957		_dma_cache_inv		= (void *)cache_noop;
1958	} else {
1959		_dma_cache_wback_inv	= r4k_dma_cache_wback_inv;
1960		_dma_cache_wback	= r4k_dma_cache_wback_inv;
1961		_dma_cache_inv		= r4k_dma_cache_inv;
1962	}
1963#endif
1964
1965	build_clear_page();
1966	build_copy_page();
1967
1968	/*
1969	 * We want to run CMP kernels on core with and without coherent
1970	 * caches. Therefore, do not use CONFIG_MIPS_CMP to decide whether
1971	 * or not to flush caches.
1972	 */
1973	local_r4k___flush_cache_all(NULL);
1974
1975	coherency_setup();
1976	board_cache_error_setup = r4k_cache_error_setup;
1977
1978	/*
1979	 * Per-CPU overrides
1980	 */
1981	switch (current_cpu_type()) {
1982	case CPU_BMIPS4350:
1983	case CPU_BMIPS4380:
1984		/* No IPI is needed because all CPUs share the same D$ */
1985		flush_data_cache_page = r4k_blast_dcache_page;
1986		break;
1987	case CPU_BMIPS5000:
1988		/* We lose our superpowers if L2 is disabled */
1989		if (c->scache.flags & MIPS_CACHE_NOT_PRESENT)
1990			break;
1991
1992		/* I$ fills from D$ just by emptying the write buffers */
1993		flush_cache_page = (void *)b5k_instruction_hazard;
1994		flush_cache_range = (void *)b5k_instruction_hazard;
1995		flush_cache_sigtramp = (void *)b5k_instruction_hazard;
1996		local_flush_data_cache_page = (void *)b5k_instruction_hazard;
1997		flush_data_cache_page = (void *)b5k_instruction_hazard;
1998		flush_icache_range = (void *)b5k_instruction_hazard;
1999		local_flush_icache_range = (void *)b5k_instruction_hazard;
2000
2001
2002		/* Optimization: an L2 flush implicitly flushes the L1 */
2003		current_cpu_data.options |= MIPS_CPU_INCLUSIVE_CACHES;
2004		break;
2005	case CPU_LOONGSON3:
2006		/* Loongson-3 maintains cache coherency by hardware */
2007		__flush_cache_all	= cache_noop;
2008		__flush_cache_vmap	= cache_noop;
2009		__flush_cache_vunmap	= cache_noop;
2010		__flush_kernel_vmap_range = (void *)cache_noop;
2011		flush_cache_mm		= (void *)cache_noop;
2012		flush_cache_page	= (void *)cache_noop;
2013		flush_cache_range	= (void *)cache_noop;
2014		flush_cache_sigtramp	= (void *)cache_noop;
2015		flush_icache_all	= (void *)cache_noop;
2016		flush_data_cache_page	= (void *)cache_noop;
2017		local_flush_data_cache_page	= (void *)cache_noop;
2018		break;
2019	}
2020}
2021
2022static int r4k_cache_pm_notifier(struct notifier_block *self, unsigned long cmd,
2023			       void *v)
2024{
2025	switch (cmd) {
2026	case CPU_PM_ENTER_FAILED:
2027	case CPU_PM_EXIT:
2028		coherency_setup();
2029		break;
2030	}
2031
2032	return NOTIFY_OK;
2033}
2034
2035static struct notifier_block r4k_cache_pm_notifier_block = {
2036	.notifier_call = r4k_cache_pm_notifier,
2037};
2038
2039int __init r4k_cache_init_pm(void)
2040{
2041	return cpu_pm_register_notifier(&r4k_cache_pm_notifier_block);
2042}
2043arch_initcall(r4k_cache_init_pm);