Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * multiorder.c: Multi-order radix tree entry testing
  4 * Copyright (c) 2016 Intel Corporation
  5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
  6 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
 
 
 
 
 
 
 
 
 
  7 */
  8#include <linux/radix-tree.h>
  9#include <linux/slab.h>
 10#include <linux/errno.h>
 11#include <pthread.h>
 12
 13#include "test.h"
 14
 15static int item_insert_order(struct xarray *xa, unsigned long index,
 16			unsigned order)
 
 
 17{
 18	XA_STATE_ORDER(xas, xa, index, order);
 19	struct item *item = item_create(index, order);
 20
 21	do {
 22		xas_lock(&xas);
 23		xas_store(&xas, item);
 24		xas_unlock(&xas);
 25	} while (xas_nomem(&xas, GFP_KERNEL));
 26
 27	if (!xas_error(&xas))
 28		return 0;
 29
 30	free(item);
 31	return xas_error(&xas);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 32}
 33
 34void multiorder_iteration(struct xarray *xa)
 35{
 36	XA_STATE(xas, xa, 0);
 37	struct item *item;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 38	int i, j, err;
 39
 
 
 40#define NUM_ENTRIES 11
 41	int index[NUM_ENTRIES] = {0, 2, 4, 8, 16, 32, 34, 36, 64, 72, 128};
 42	int order[NUM_ENTRIES] = {1, 1, 2, 3,  4,  1,  0,  1,  3,  0, 7};
 43
 44	printv(1, "Multiorder iteration test\n");
 45
 46	for (i = 0; i < NUM_ENTRIES; i++) {
 47		err = item_insert_order(xa, index[i], order[i]);
 48		assert(!err);
 49	}
 50
 51	for (j = 0; j < 256; j++) {
 52		for (i = 0; i < NUM_ENTRIES; i++)
 53			if (j <= (index[i] | ((1 << order[i]) - 1)))
 54				break;
 55
 56		xas_set(&xas, j);
 57		xas_for_each(&xas, item, ULONG_MAX) {
 58			int height = order[i] / XA_CHUNK_SHIFT;
 59			int shift = height * XA_CHUNK_SHIFT;
 60			unsigned long mask = (1UL << order[i]) - 1;
 
 61
 62			assert((xas.xa_index | mask) == (index[i] | mask));
 63			assert(xas.xa_node->shift == shift);
 64			assert(!radix_tree_is_internal_node(item));
 65			assert((item->index | mask) == (index[i] | mask));
 66			assert(item->order == order[i]);
 67			i++;
 68		}
 69	}
 70
 71	item_kill_tree(xa);
 72}
 73
 74void multiorder_tagged_iteration(struct xarray *xa)
 75{
 76	XA_STATE(xas, xa, 0);
 77	struct item *item;
 
 78	int i, j;
 79
 
 
 80#define MT_NUM_ENTRIES 9
 81	int index[MT_NUM_ENTRIES] = {0, 2, 4, 16, 32, 40, 64, 72, 128};
 82	int order[MT_NUM_ENTRIES] = {1, 0, 2, 4,  3,  1,  3,  0,   7};
 83
 84#define TAG_ENTRIES 7
 85	int tag_index[TAG_ENTRIES] = {0, 4, 16, 40, 64, 72, 128};
 86
 87	printv(1, "Multiorder tagged iteration test\n");
 88
 89	for (i = 0; i < MT_NUM_ENTRIES; i++)
 90		assert(!item_insert_order(xa, index[i], order[i]));
 91
 92	assert(!xa_marked(xa, XA_MARK_1));
 93
 94	for (i = 0; i < TAG_ENTRIES; i++)
 95		xa_set_mark(xa, tag_index[i], XA_MARK_1);
 96
 97	for (j = 0; j < 256; j++) {
 98		int k;
 99
100		for (i = 0; i < TAG_ENTRIES; i++) {
101			for (k = i; index[k] < tag_index[i]; k++)
102				;
103			if (j <= (index[k] | ((1 << order[k]) - 1)))
104				break;
105		}
106
107		xas_set(&xas, j);
108		xas_for_each_marked(&xas, item, ULONG_MAX, XA_MARK_1) {
109			unsigned long mask;
 
110			for (k = i; index[k] < tag_index[i]; k++)
111				;
112			mask = (1UL << order[k]) - 1;
113
114			assert((xas.xa_index | mask) == (tag_index[i] | mask));
115			assert(!xa_is_internal(item));
116			assert((item->index | mask) == (tag_index[i] | mask));
117			assert(item->order == order[k]);
118			i++;
119		}
120	}
121
122	assert(tag_tagged_items(xa, 0, ULONG_MAX, TAG_ENTRIES, XA_MARK_1,
123				XA_MARK_2) == TAG_ENTRIES);
124
125	for (j = 0; j < 256; j++) {
126		int mask, k;
127
128		for (i = 0; i < TAG_ENTRIES; i++) {
129			for (k = i; index[k] < tag_index[i]; k++)
130				;
131			if (j <= (index[k] | ((1 << order[k]) - 1)))
132				break;
133		}
134
135		xas_set(&xas, j);
136		xas_for_each_marked(&xas, item, ULONG_MAX, XA_MARK_2) {
137			for (k = i; index[k] < tag_index[i]; k++)
138				;
139			mask = (1 << order[k]) - 1;
140
141			assert((xas.xa_index | mask) == (tag_index[i] | mask));
142			assert(!xa_is_internal(item));
143			assert((item->index | mask) == (tag_index[i] | mask));
144			assert(item->order == order[k]);
145			i++;
146		}
147	}
148
149	assert(tag_tagged_items(xa, 1, ULONG_MAX, MT_NUM_ENTRIES * 2, XA_MARK_1,
150				XA_MARK_0) == TAG_ENTRIES);
151	i = 0;
152	xas_set(&xas, 0);
153	xas_for_each_marked(&xas, item, ULONG_MAX, XA_MARK_0) {
154		assert(xas.xa_index == tag_index[i]);
155		i++;
156	}
157	assert(i == TAG_ENTRIES);
158
159	item_kill_tree(xa);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
160}
161
162bool stop_iteration = false;
163
164static void *creator_func(void *ptr)
165{
166	/* 'order' is set up to ensure we have sibling entries */
167	unsigned int order = RADIX_TREE_MAP_SHIFT - 1;
168	struct radix_tree_root *tree = ptr;
169	int i;
170
171	for (i = 0; i < 10000; i++) {
172		item_insert_order(tree, 0, order);
173		item_delete_rcu(tree, 0);
174	}
175
176	stop_iteration = true;
177	return NULL;
178}
179
180static void *iterator_func(void *ptr)
181{
182	XA_STATE(xas, ptr, 0);
 
183	struct item *item;
 
184
185	while (!stop_iteration) {
186		rcu_read_lock();
187		xas_for_each(&xas, item, ULONG_MAX) {
188			if (xas_retry(&xas, item))
 
 
 
 
 
189				continue;
 
190
191			item_sanity(item, xas.xa_index);
192		}
193		rcu_read_unlock();
194	}
195	return NULL;
196}
197
198static void multiorder_iteration_race(struct xarray *xa)
199{
200	const int num_threads = sysconf(_SC_NPROCESSORS_ONLN);
201	pthread_t worker_thread[num_threads];
 
202	int i;
203
204	pthread_create(&worker_thread[0], NULL, &creator_func, xa);
205	for (i = 1; i < num_threads; i++)
206		pthread_create(&worker_thread[i], NULL, &iterator_func, xa);
207
208	for (i = 0; i < num_threads; i++)
209		pthread_join(worker_thread[i], NULL);
210
211	item_kill_tree(xa);
212}
213
214static DEFINE_XARRAY(array);
215
216void multiorder_checks(void)
217{
218	multiorder_iteration(&array);
219	multiorder_tagged_iteration(&array);
220	multiorder_iteration_race(&array);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
221
222	radix_tree_cpu_dead(0);
223}
224
225int __weak main(void)
226{
227	rcu_register_thread();
228	radix_tree_init();
229	multiorder_checks();
230	rcu_unregister_thread();
231	return 0;
232}
v4.17
 
  1/*
  2 * multiorder.c: Multi-order radix tree entry testing
  3 * Copyright (c) 2016 Intel Corporation
  4 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
  5 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
  6 *
  7 * This program is free software; you can redistribute it and/or modify it
  8 * under the terms and conditions of the GNU General Public License,
  9 * version 2, as published by the Free Software Foundation.
 10 *
 11 * This program is distributed in the hope it will be useful, but WITHOUT
 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 14 * more details.
 15 */
 16#include <linux/radix-tree.h>
 17#include <linux/slab.h>
 18#include <linux/errno.h>
 19#include <pthread.h>
 20
 21#include "test.h"
 22
 23#define for_each_index(i, base, order) \
 24	for (i = base; i < base + (1 << order); i++)
 25
 26static void __multiorder_tag_test(int index, int order)
 27{
 28	RADIX_TREE(tree, GFP_KERNEL);
 29	int base, err, i;
 30
 31	/* our canonical entry */
 32	base = index & ~((1 << order) - 1);
 
 
 
 33
 34	printv(2, "Multiorder tag test with index %d, canonical entry %d\n",
 35			index, base);
 36
 37	err = item_insert_order(&tree, index, order);
 38	assert(!err);
 39
 40	/*
 41	 * Verify we get collisions for covered indices.  We try and fail to
 42	 * insert an exceptional entry so we don't leak memory via
 43	 * item_insert_order().
 44	 */
 45	for_each_index(i, base, order) {
 46		err = __radix_tree_insert(&tree, i, order,
 47				(void *)(0xA0 | RADIX_TREE_EXCEPTIONAL_ENTRY));
 48		assert(err == -EEXIST);
 49	}
 50
 51	for_each_index(i, base, order) {
 52		assert(!radix_tree_tag_get(&tree, i, 0));
 53		assert(!radix_tree_tag_get(&tree, i, 1));
 54	}
 55
 56	assert(radix_tree_tag_set(&tree, index, 0));
 57
 58	for_each_index(i, base, order) {
 59		assert(radix_tree_tag_get(&tree, i, 0));
 60		assert(!radix_tree_tag_get(&tree, i, 1));
 61	}
 62
 63	assert(tag_tagged_items(&tree, NULL, 0, ~0UL, 10, 0, 1) == 1);
 64	assert(radix_tree_tag_clear(&tree, index, 0));
 65
 66	for_each_index(i, base, order) {
 67		assert(!radix_tree_tag_get(&tree, i, 0));
 68		assert(radix_tree_tag_get(&tree, i, 1));
 69	}
 70
 71	assert(radix_tree_tag_clear(&tree, index, 1));
 72
 73	assert(!radix_tree_tagged(&tree, 0));
 74	assert(!radix_tree_tagged(&tree, 1));
 75
 76	item_kill_tree(&tree);
 77}
 78
 79static void __multiorder_tag_test2(unsigned order, unsigned long index2)
 80{
 81	RADIX_TREE(tree, GFP_KERNEL);
 82	unsigned long index = (1 << order);
 83	index2 += index;
 84
 85	assert(item_insert_order(&tree, 0, order) == 0);
 86	assert(item_insert(&tree, index2) == 0);
 87
 88	assert(radix_tree_tag_set(&tree, 0, 0));
 89	assert(radix_tree_tag_set(&tree, index2, 0));
 90
 91	assert(tag_tagged_items(&tree, NULL, 0, ~0UL, 10, 0, 1) == 2);
 92
 93	item_kill_tree(&tree);
 94}
 95
 96static void multiorder_tag_tests(void)
 97{
 98	int i, j;
 99
100	/* test multi-order entry for indices 0-7 with no sibling pointers */
101	__multiorder_tag_test(0, 3);
102	__multiorder_tag_test(5, 3);
103
104	/* test multi-order entry for indices 8-15 with no sibling pointers */
105	__multiorder_tag_test(8, 3);
106	__multiorder_tag_test(15, 3);
107
108	/*
109	 * Our order 5 entry covers indices 0-31 in a tree with height=2.
110	 * This is broken up as follows:
111	 * 0-7:		canonical entry
112	 * 8-15:	sibling 1
113	 * 16-23:	sibling 2
114	 * 24-31:	sibling 3
115	 */
116	__multiorder_tag_test(0, 5);
117	__multiorder_tag_test(29, 5);
118
119	/* same test, but with indices 32-63 */
120	__multiorder_tag_test(32, 5);
121	__multiorder_tag_test(44, 5);
122
123	/*
124	 * Our order 8 entry covers indices 0-255 in a tree with height=3.
125	 * This is broken up as follows:
126	 * 0-63:	canonical entry
127	 * 64-127:	sibling 1
128	 * 128-191:	sibling 2
129	 * 192-255:	sibling 3
130	 */
131	__multiorder_tag_test(0, 8);
132	__multiorder_tag_test(190, 8);
133
134	/* same test, but with indices 256-511 */
135	__multiorder_tag_test(256, 8);
136	__multiorder_tag_test(300, 8);
137
138	__multiorder_tag_test(0x12345678UL, 8);
139
140	for (i = 1; i < 10; i++)
141		for (j = 0; j < (10 << i); j++)
142			__multiorder_tag_test2(i, j);
143}
144
145static void multiorder_check(unsigned long index, int order)
146{
147	unsigned long i;
148	unsigned long min = index & ~((1UL << order) - 1);
149	unsigned long max = min + (1UL << order);
150	void **slot;
151	struct item *item2 = item_create(min, order);
152	RADIX_TREE(tree, GFP_KERNEL);
153
154	printv(2, "Multiorder index %ld, order %d\n", index, order);
155
156	assert(item_insert_order(&tree, index, order) == 0);
157
158	for (i = min; i < max; i++) {
159		struct item *item = item_lookup(&tree, i);
160		assert(item != 0);
161		assert(item->index == index);
162	}
163	for (i = 0; i < min; i++)
164		item_check_absent(&tree, i);
165	for (i = max; i < 2*max; i++)
166		item_check_absent(&tree, i);
167	for (i = min; i < max; i++)
168		assert(radix_tree_insert(&tree, i, item2) == -EEXIST);
169
170	slot = radix_tree_lookup_slot(&tree, index);
171	free(*slot);
172	radix_tree_replace_slot(&tree, slot, item2);
173	for (i = min; i < max; i++) {
174		struct item *item = item_lookup(&tree, i);
175		assert(item != 0);
176		assert(item->index == min);
177	}
178
179	assert(item_delete(&tree, min) != 0);
180
181	for (i = 0; i < 2*max; i++)
182		item_check_absent(&tree, i);
183}
184
185static void multiorder_shrink(unsigned long index, int order)
186{
187	unsigned long i;
188	unsigned long max = 1 << order;
189	RADIX_TREE(tree, GFP_KERNEL);
190	struct radix_tree_node *node;
191
192	printv(2, "Multiorder shrink index %ld, order %d\n", index, order);
193
194	assert(item_insert_order(&tree, 0, order) == 0);
195
196	node = tree.rnode;
197
198	assert(item_insert(&tree, index) == 0);
199	assert(node != tree.rnode);
200
201	assert(item_delete(&tree, index) != 0);
202	assert(node == tree.rnode);
203
204	for (i = 0; i < max; i++) {
205		struct item *item = item_lookup(&tree, i);
206		assert(item != 0);
207		assert(item->index == 0);
208	}
209	for (i = max; i < 2*max; i++)
210		item_check_absent(&tree, i);
211
212	if (!item_delete(&tree, 0)) {
213		printv(2, "failed to delete index %ld (order %d)\n", index, order);
214		abort();
215	}
216
217	for (i = 0; i < 2*max; i++)
218		item_check_absent(&tree, i);
219}
220
221static void multiorder_insert_bug(void)
222{
223	RADIX_TREE(tree, GFP_KERNEL);
224
225	item_insert(&tree, 0);
226	radix_tree_tag_set(&tree, 0, 0);
227	item_insert_order(&tree, 3 << 6, 6);
228
229	item_kill_tree(&tree);
230}
231
232void multiorder_iteration(void)
233{
234	RADIX_TREE(tree, GFP_KERNEL);
235	struct radix_tree_iter iter;
236	void **slot;
237	int i, j, err;
238
239	printv(1, "Multiorder iteration test\n");
240
241#define NUM_ENTRIES 11
242	int index[NUM_ENTRIES] = {0, 2, 4, 8, 16, 32, 34, 36, 64, 72, 128};
243	int order[NUM_ENTRIES] = {1, 1, 2, 3,  4,  1,  0,  1,  3,  0, 7};
244
 
 
245	for (i = 0; i < NUM_ENTRIES; i++) {
246		err = item_insert_order(&tree, index[i], order[i]);
247		assert(!err);
248	}
249
250	for (j = 0; j < 256; j++) {
251		for (i = 0; i < NUM_ENTRIES; i++)
252			if (j <= (index[i] | ((1 << order[i]) - 1)))
253				break;
254
255		radix_tree_for_each_slot(slot, &tree, &iter, j) {
256			int height = order[i] / RADIX_TREE_MAP_SHIFT;
257			int shift = height * RADIX_TREE_MAP_SHIFT;
 
258			unsigned long mask = (1UL << order[i]) - 1;
259			struct item *item = *slot;
260
261			assert((iter.index | mask) == (index[i] | mask));
262			assert(iter.shift == shift);
263			assert(!radix_tree_is_internal_node(item));
264			assert((item->index | mask) == (index[i] | mask));
265			assert(item->order == order[i]);
266			i++;
267		}
268	}
269
270	item_kill_tree(&tree);
271}
272
273void multiorder_tagged_iteration(void)
274{
275	RADIX_TREE(tree, GFP_KERNEL);
276	struct radix_tree_iter iter;
277	void **slot;
278	int i, j;
279
280	printv(1, "Multiorder tagged iteration test\n");
281
282#define MT_NUM_ENTRIES 9
283	int index[MT_NUM_ENTRIES] = {0, 2, 4, 16, 32, 40, 64, 72, 128};
284	int order[MT_NUM_ENTRIES] = {1, 0, 2, 4,  3,  1,  3,  0,   7};
285
286#define TAG_ENTRIES 7
287	int tag_index[TAG_ENTRIES] = {0, 4, 16, 40, 64, 72, 128};
288
 
 
289	for (i = 0; i < MT_NUM_ENTRIES; i++)
290		assert(!item_insert_order(&tree, index[i], order[i]));
291
292	assert(!radix_tree_tagged(&tree, 1));
293
294	for (i = 0; i < TAG_ENTRIES; i++)
295		assert(radix_tree_tag_set(&tree, tag_index[i], 1));
296
297	for (j = 0; j < 256; j++) {
298		int k;
299
300		for (i = 0; i < TAG_ENTRIES; i++) {
301			for (k = i; index[k] < tag_index[i]; k++)
302				;
303			if (j <= (index[k] | ((1 << order[k]) - 1)))
304				break;
305		}
306
307		radix_tree_for_each_tagged(slot, &tree, &iter, j, 1) {
 
308			unsigned long mask;
309			struct item *item = *slot;
310			for (k = i; index[k] < tag_index[i]; k++)
311				;
312			mask = (1UL << order[k]) - 1;
313
314			assert((iter.index | mask) == (tag_index[i] | mask));
315			assert(!radix_tree_is_internal_node(item));
316			assert((item->index | mask) == (tag_index[i] | mask));
317			assert(item->order == order[k]);
318			i++;
319		}
320	}
321
322	assert(tag_tagged_items(&tree, NULL, 0, ~0UL, TAG_ENTRIES, 1, 2) ==
323				TAG_ENTRIES);
324
325	for (j = 0; j < 256; j++) {
326		int mask, k;
327
328		for (i = 0; i < TAG_ENTRIES; i++) {
329			for (k = i; index[k] < tag_index[i]; k++)
330				;
331			if (j <= (index[k] | ((1 << order[k]) - 1)))
332				break;
333		}
334
335		radix_tree_for_each_tagged(slot, &tree, &iter, j, 2) {
336			struct item *item = *slot;
337			for (k = i; index[k] < tag_index[i]; k++)
338				;
339			mask = (1 << order[k]) - 1;
340
341			assert((iter.index | mask) == (tag_index[i] | mask));
342			assert(!radix_tree_is_internal_node(item));
343			assert((item->index | mask) == (tag_index[i] | mask));
344			assert(item->order == order[k]);
345			i++;
346		}
347	}
348
349	assert(tag_tagged_items(&tree, NULL, 1, ~0UL, MT_NUM_ENTRIES * 2, 1, 0)
350			== TAG_ENTRIES);
351	i = 0;
352	radix_tree_for_each_tagged(slot, &tree, &iter, 0, 0) {
353		assert(iter.index == tag_index[i]);
 
354		i++;
355	}
 
356
357	item_kill_tree(&tree);
358}
359
360/*
361 * Basic join checks: make sure we can't find an entry in the tree after
362 * a larger entry has replaced it
363 */
364static void multiorder_join1(unsigned long index,
365				unsigned order1, unsigned order2)
366{
367	unsigned long loc;
368	void *item, *item2 = item_create(index + 1, order1);
369	RADIX_TREE(tree, GFP_KERNEL);
370
371	item_insert_order(&tree, index, order2);
372	item = radix_tree_lookup(&tree, index);
373	radix_tree_join(&tree, index + 1, order1, item2);
374	loc = find_item(&tree, item);
375	if (loc == -1)
376		free(item);
377	item = radix_tree_lookup(&tree, index + 1);
378	assert(item == item2);
379	item_kill_tree(&tree);
380}
381
382/*
383 * Check that the accounting of exceptional entries is handled correctly
384 * by joining an exceptional entry to a normal pointer.
385 */
386static void multiorder_join2(unsigned order1, unsigned order2)
387{
388	RADIX_TREE(tree, GFP_KERNEL);
389	struct radix_tree_node *node;
390	void *item1 = item_create(0, order1);
391	void *item2;
392
393	item_insert_order(&tree, 0, order2);
394	radix_tree_insert(&tree, 1 << order2, (void *)0x12UL);
395	item2 = __radix_tree_lookup(&tree, 1 << order2, &node, NULL);
396	assert(item2 == (void *)0x12UL);
397	assert(node->exceptional == 1);
398
399	item2 = radix_tree_lookup(&tree, 0);
400	free(item2);
401
402	radix_tree_join(&tree, 0, order1, item1);
403	item2 = __radix_tree_lookup(&tree, 1 << order2, &node, NULL);
404	assert(item2 == item1);
405	assert(node->exceptional == 0);
406	item_kill_tree(&tree);
407}
408
409/*
410 * This test revealed an accounting bug for exceptional entries at one point.
411 * Nodes were being freed back into the pool with an elevated exception count
412 * by radix_tree_join() and then radix_tree_split() was failing to zero the
413 * count of exceptional entries.
414 */
415static void multiorder_join3(unsigned int order)
416{
417	RADIX_TREE(tree, GFP_KERNEL);
418	struct radix_tree_node *node;
419	void **slot;
420	struct radix_tree_iter iter;
421	unsigned long i;
422
423	for (i = 0; i < (1 << order); i++) {
424		radix_tree_insert(&tree, i, (void *)0x12UL);
425	}
426
427	radix_tree_join(&tree, 0, order, (void *)0x16UL);
428	rcu_barrier();
429
430	radix_tree_split(&tree, 0, 0);
431
432	radix_tree_for_each_slot(slot, &tree, &iter, 0) {
433		radix_tree_iter_replace(&tree, &iter, slot, (void *)0x12UL);
434	}
435
436	__radix_tree_lookup(&tree, 0, &node, NULL);
437	assert(node->exceptional == node->count);
438
439	item_kill_tree(&tree);
440}
441
442static void multiorder_join(void)
443{
444	int i, j, idx;
445
446	for (idx = 0; idx < 1024; idx = idx * 2 + 3) {
447		for (i = 1; i < 15; i++) {
448			for (j = 0; j < i; j++) {
449				multiorder_join1(idx, i, j);
450			}
451		}
452	}
453
454	for (i = 1; i < 15; i++) {
455		for (j = 0; j < i; j++) {
456			multiorder_join2(i, j);
457		}
458	}
459
460	for (i = 3; i < 10; i++) {
461		multiorder_join3(i);
462	}
463}
464
465static void check_mem(unsigned old_order, unsigned new_order, unsigned alloc)
466{
467	struct radix_tree_preload *rtp = &radix_tree_preloads;
468	if (rtp->nr != 0)
469		printv(2, "split(%u %u) remaining %u\n", old_order, new_order,
470							rtp->nr);
471	/*
472	 * Can't check for equality here as some nodes may have been
473	 * RCU-freed while we ran.  But we should never finish with more
474	 * nodes allocated since they should have all been preloaded.
475	 */
476	if (nr_allocated > alloc)
477		printv(2, "split(%u %u) allocated %u %u\n", old_order, new_order,
478							alloc, nr_allocated);
479}
480
481static void __multiorder_split(int old_order, int new_order)
482{
483	RADIX_TREE(tree, GFP_ATOMIC);
484	void **slot;
485	struct radix_tree_iter iter;
486	unsigned alloc;
487	struct item *item;
488
489	radix_tree_preload(GFP_KERNEL);
490	assert(item_insert_order(&tree, 0, old_order) == 0);
491	radix_tree_preload_end();
492
493	/* Wipe out the preloaded cache or it'll confuse check_mem() */
494	radix_tree_cpu_dead(0);
495
496	item = radix_tree_tag_set(&tree, 0, 2);
497
498	radix_tree_split_preload(old_order, new_order, GFP_KERNEL);
499	alloc = nr_allocated;
500	radix_tree_split(&tree, 0, new_order);
501	check_mem(old_order, new_order, alloc);
502	radix_tree_for_each_slot(slot, &tree, &iter, 0) {
503		radix_tree_iter_replace(&tree, &iter, slot,
504					item_create(iter.index, new_order));
505	}
506	radix_tree_preload_end();
507
508	item_kill_tree(&tree);
509	free(item);
510}
511
512static void __multiorder_split2(int old_order, int new_order)
513{
514	RADIX_TREE(tree, GFP_KERNEL);
515	void **slot;
516	struct radix_tree_iter iter;
517	struct radix_tree_node *node;
518	void *item;
519
520	__radix_tree_insert(&tree, 0, old_order, (void *)0x12);
521
522	item = __radix_tree_lookup(&tree, 0, &node, NULL);
523	assert(item == (void *)0x12);
524	assert(node->exceptional > 0);
525
526	radix_tree_split(&tree, 0, new_order);
527	radix_tree_for_each_slot(slot, &tree, &iter, 0) {
528		radix_tree_iter_replace(&tree, &iter, slot,
529					item_create(iter.index, new_order));
530	}
531
532	item = __radix_tree_lookup(&tree, 0, &node, NULL);
533	assert(item != (void *)0x12);
534	assert(node->exceptional == 0);
535
536	item_kill_tree(&tree);
537}
538
539static void __multiorder_split3(int old_order, int new_order)
540{
541	RADIX_TREE(tree, GFP_KERNEL);
542	void **slot;
543	struct radix_tree_iter iter;
544	struct radix_tree_node *node;
545	void *item;
546
547	__radix_tree_insert(&tree, 0, old_order, (void *)0x12);
548
549	item = __radix_tree_lookup(&tree, 0, &node, NULL);
550	assert(item == (void *)0x12);
551	assert(node->exceptional > 0);
552
553	radix_tree_split(&tree, 0, new_order);
554	radix_tree_for_each_slot(slot, &tree, &iter, 0) {
555		radix_tree_iter_replace(&tree, &iter, slot, (void *)0x16);
556	}
557
558	item = __radix_tree_lookup(&tree, 0, &node, NULL);
559	assert(item == (void *)0x16);
560	assert(node->exceptional > 0);
561
562	item_kill_tree(&tree);
563
564	__radix_tree_insert(&tree, 0, old_order, (void *)0x12);
565
566	item = __radix_tree_lookup(&tree, 0, &node, NULL);
567	assert(item == (void *)0x12);
568	assert(node->exceptional > 0);
569
570	radix_tree_split(&tree, 0, new_order);
571	radix_tree_for_each_slot(slot, &tree, &iter, 0) {
572		if (iter.index == (1 << new_order))
573			radix_tree_iter_replace(&tree, &iter, slot,
574						(void *)0x16);
575		else
576			radix_tree_iter_replace(&tree, &iter, slot, NULL);
577	}
578
579	item = __radix_tree_lookup(&tree, 1 << new_order, &node, NULL);
580	assert(item == (void *)0x16);
581	assert(node->count == node->exceptional);
582	do {
583		node = node->parent;
584		if (!node)
585			break;
586		assert(node->count == 1);
587		assert(node->exceptional == 0);
588	} while (1);
589
590	item_kill_tree(&tree);
591}
592
593static void multiorder_split(void)
594{
595	int i, j;
596
597	for (i = 3; i < 11; i++)
598		for (j = 0; j < i; j++) {
599			__multiorder_split(i, j);
600			__multiorder_split2(i, j);
601			__multiorder_split3(i, j);
602		}
603}
604
605static void multiorder_account(void)
606{
607	RADIX_TREE(tree, GFP_KERNEL);
608	struct radix_tree_node *node;
609	void **slot;
610
611	item_insert_order(&tree, 0, 5);
612
613	__radix_tree_insert(&tree, 1 << 5, 5, (void *)0x12);
614	__radix_tree_lookup(&tree, 0, &node, NULL);
615	assert(node->count == node->exceptional * 2);
616	radix_tree_delete(&tree, 1 << 5);
617	assert(node->exceptional == 0);
618
619	__radix_tree_insert(&tree, 1 << 5, 5, (void *)0x12);
620	__radix_tree_lookup(&tree, 1 << 5, &node, &slot);
621	assert(node->count == node->exceptional * 2);
622	__radix_tree_replace(&tree, node, slot, NULL, NULL);
623	assert(node->exceptional == 0);
624
625	item_kill_tree(&tree);
626}
627
628bool stop_iteration = false;
629
630static void *creator_func(void *ptr)
631{
632	/* 'order' is set up to ensure we have sibling entries */
633	unsigned int order = RADIX_TREE_MAP_SHIFT - 1;
634	struct radix_tree_root *tree = ptr;
635	int i;
636
637	for (i = 0; i < 10000; i++) {
638		item_insert_order(tree, 0, order);
639		item_delete_rcu(tree, 0);
640	}
641
642	stop_iteration = true;
643	return NULL;
644}
645
646static void *iterator_func(void *ptr)
647{
648	struct radix_tree_root *tree = ptr;
649	struct radix_tree_iter iter;
650	struct item *item;
651	void **slot;
652
653	while (!stop_iteration) {
654		rcu_read_lock();
655		radix_tree_for_each_slot(slot, tree, &iter, 0) {
656			item = radix_tree_deref_slot(slot);
657
658			if (!item)
659				continue;
660			if (radix_tree_deref_retry(item)) {
661				slot = radix_tree_iter_retry(&iter);
662				continue;
663			}
664
665			item_sanity(item, iter.index);
666		}
667		rcu_read_unlock();
668	}
669	return NULL;
670}
671
672static void multiorder_iteration_race(void)
673{
674	const int num_threads = sysconf(_SC_NPROCESSORS_ONLN);
675	pthread_t worker_thread[num_threads];
676	RADIX_TREE(tree, GFP_KERNEL);
677	int i;
678
679	pthread_create(&worker_thread[0], NULL, &creator_func, &tree);
680	for (i = 1; i < num_threads; i++)
681		pthread_create(&worker_thread[i], NULL, &iterator_func, &tree);
682
683	for (i = 0; i < num_threads; i++)
684		pthread_join(worker_thread[i], NULL);
685
686	item_kill_tree(&tree);
687}
688
 
 
689void multiorder_checks(void)
690{
691	int i;
692
693	for (i = 0; i < 20; i++) {
694		multiorder_check(200, i);
695		multiorder_check(0, i);
696		multiorder_check((1UL << i) + 1, i);
697	}
698
699	for (i = 0; i < 15; i++)
700		multiorder_shrink((1UL << (i + RADIX_TREE_MAP_SHIFT)), i);
701
702	multiorder_insert_bug();
703	multiorder_tag_tests();
704	multiorder_iteration();
705	multiorder_tagged_iteration();
706	multiorder_join();
707	multiorder_split();
708	multiorder_account();
709	multiorder_iteration_race();
710
711	radix_tree_cpu_dead(0);
712}
713
714int __weak main(void)
715{
 
716	radix_tree_init();
717	multiorder_checks();
 
718	return 0;
719}