Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  NSA Security-Enhanced Linux (SELinux) security module
  4 *
  5 *  This file contains the SELinux XFRM hook function implementations.
  6 *
  7 *  Authors:  Serge Hallyn <sergeh@us.ibm.com>
  8 *	      Trent Jaeger <jaegert@us.ibm.com>
  9 *
 10 *  Updated: Venkat Yekkirala <vyekkirala@TrustedCS.com>
 11 *
 12 *           Granular IPSec Associations for use in MLS environments.
 13 *
 14 *  Copyright (C) 2005 International Business Machines Corporation
 15 *  Copyright (C) 2006 Trusted Computer Solutions, Inc.
 
 
 
 
 16 */
 17
 18/*
 19 * USAGE:
 20 * NOTES:
 21 *   1. Make sure to enable the following options in your kernel config:
 22 *	CONFIG_SECURITY=y
 23 *	CONFIG_SECURITY_NETWORK=y
 24 *	CONFIG_SECURITY_NETWORK_XFRM=y
 25 *	CONFIG_SECURITY_SELINUX=m/y
 26 * ISSUES:
 27 *   1. Caching packets, so they are not dropped during negotiation
 28 *   2. Emulating a reasonable SO_PEERSEC across machines
 29 *   3. Testing addition of sk_policy's with security context via setsockopt
 30 */
 31#include <linux/kernel.h>
 32#include <linux/init.h>
 33#include <linux/security.h>
 34#include <linux/types.h>
 35#include <linux/slab.h>
 36#include <linux/ip.h>
 37#include <linux/tcp.h>
 38#include <linux/skbuff.h>
 39#include <linux/xfrm.h>
 40#include <net/xfrm.h>
 41#include <net/checksum.h>
 42#include <net/udp.h>
 43#include <linux/atomic.h>
 44
 45#include "avc.h"
 46#include "objsec.h"
 47#include "xfrm.h"
 48
 49/* Labeled XFRM instance counter */
 50atomic_t selinux_xfrm_refcount __read_mostly = ATOMIC_INIT(0);
 51
 52/*
 53 * Returns true if the context is an LSM/SELinux context.
 54 */
 55static inline int selinux_authorizable_ctx(struct xfrm_sec_ctx *ctx)
 56{
 57	return (ctx &&
 58		(ctx->ctx_doi == XFRM_SC_DOI_LSM) &&
 59		(ctx->ctx_alg == XFRM_SC_ALG_SELINUX));
 60}
 61
 62/*
 63 * Returns true if the xfrm contains a security blob for SELinux.
 64 */
 65static inline int selinux_authorizable_xfrm(struct xfrm_state *x)
 66{
 67	return selinux_authorizable_ctx(x->security);
 68}
 69
 70/*
 71 * Allocates a xfrm_sec_state and populates it using the supplied security
 72 * xfrm_user_sec_ctx context.
 73 */
 74static int selinux_xfrm_alloc_user(struct xfrm_sec_ctx **ctxp,
 75				   struct xfrm_user_sec_ctx *uctx,
 76				   gfp_t gfp)
 77{
 78	int rc;
 79	const struct task_security_struct *tsec = selinux_cred(current_cred());
 80	struct xfrm_sec_ctx *ctx = NULL;
 81	u32 str_len;
 82
 83	if (ctxp == NULL || uctx == NULL ||
 84	    uctx->ctx_doi != XFRM_SC_DOI_LSM ||
 85	    uctx->ctx_alg != XFRM_SC_ALG_SELINUX)
 86		return -EINVAL;
 87
 88	str_len = uctx->ctx_len;
 89	if (str_len >= PAGE_SIZE)
 90		return -ENOMEM;
 91
 92	ctx = kmalloc(struct_size(ctx, ctx_str, str_len + 1), gfp);
 93	if (!ctx)
 94		return -ENOMEM;
 95
 96	ctx->ctx_doi = XFRM_SC_DOI_LSM;
 97	ctx->ctx_alg = XFRM_SC_ALG_SELINUX;
 98	ctx->ctx_len = str_len;
 99	memcpy(ctx->ctx_str, &uctx[1], str_len);
100	ctx->ctx_str[str_len] = '\0';
101	rc = security_context_to_sid(&selinux_state, ctx->ctx_str, str_len,
102				     &ctx->ctx_sid, gfp);
103	if (rc)
104		goto err;
105
106	rc = avc_has_perm(&selinux_state,
107			  tsec->sid, ctx->ctx_sid,
108			  SECCLASS_ASSOCIATION, ASSOCIATION__SETCONTEXT, NULL);
109	if (rc)
110		goto err;
111
112	*ctxp = ctx;
113	atomic_inc(&selinux_xfrm_refcount);
114	return 0;
115
116err:
117	kfree(ctx);
118	return rc;
119}
120
121/*
122 * Free the xfrm_sec_ctx structure.
123 */
124static void selinux_xfrm_free(struct xfrm_sec_ctx *ctx)
125{
126	if (!ctx)
127		return;
128
129	atomic_dec(&selinux_xfrm_refcount);
130	kfree(ctx);
131}
132
133/*
134 * Authorize the deletion of a labeled SA or policy rule.
135 */
136static int selinux_xfrm_delete(struct xfrm_sec_ctx *ctx)
137{
138	const struct task_security_struct *tsec = selinux_cred(current_cred());
139
140	if (!ctx)
141		return 0;
142
143	return avc_has_perm(&selinux_state,
144			    tsec->sid, ctx->ctx_sid,
145			    SECCLASS_ASSOCIATION, ASSOCIATION__SETCONTEXT,
146			    NULL);
147}
148
149/*
150 * LSM hook implementation that authorizes that a flow can use a xfrm policy
151 * rule.
152 */
153int selinux_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
154{
155	int rc;
156
157	/* All flows should be treated as polmatch'ing an otherwise applicable
158	 * "non-labeled" policy. This would prevent inadvertent "leaks". */
159	if (!ctx)
160		return 0;
161
162	/* Context sid is either set to label or ANY_ASSOC */
163	if (!selinux_authorizable_ctx(ctx))
164		return -EINVAL;
165
166	rc = avc_has_perm(&selinux_state,
167			  fl_secid, ctx->ctx_sid,
168			  SECCLASS_ASSOCIATION, ASSOCIATION__POLMATCH, NULL);
169	return (rc == -EACCES ? -ESRCH : rc);
170}
171
172/*
173 * LSM hook implementation that authorizes that a state matches
174 * the given policy, flow combo.
175 */
176int selinux_xfrm_state_pol_flow_match(struct xfrm_state *x,
177				      struct xfrm_policy *xp,
178				      const struct flowi_common *flic)
179{
180	u32 state_sid;
181	u32 flic_sid;
182
183	if (!xp->security)
184		if (x->security)
185			/* unlabeled policy and labeled SA can't match */
186			return 0;
187		else
188			/* unlabeled policy and unlabeled SA match all flows */
189			return 1;
190	else
191		if (!x->security)
192			/* unlabeled SA and labeled policy can't match */
193			return 0;
194		else
195			if (!selinux_authorizable_xfrm(x))
196				/* Not a SELinux-labeled SA */
197				return 0;
198
199	state_sid = x->security->ctx_sid;
200	flic_sid = flic->flowic_secid;
201
202	if (flic_sid != state_sid)
203		return 0;
204
205	/* We don't need a separate SA Vs. policy polmatch check since the SA
206	 * is now of the same label as the flow and a flow Vs. policy polmatch
207	 * check had already happened in selinux_xfrm_policy_lookup() above. */
208	return (avc_has_perm(&selinux_state, flic_sid, state_sid,
209			     SECCLASS_ASSOCIATION, ASSOCIATION__SENDTO,
210			     NULL) ? 0 : 1);
 
211}
212
213static u32 selinux_xfrm_skb_sid_egress(struct sk_buff *skb)
214{
215	struct dst_entry *dst = skb_dst(skb);
216	struct xfrm_state *x;
217
218	if (dst == NULL)
219		return SECSID_NULL;
220	x = dst->xfrm;
221	if (x == NULL || !selinux_authorizable_xfrm(x))
222		return SECSID_NULL;
223
224	return x->security->ctx_sid;
225}
226
227static int selinux_xfrm_skb_sid_ingress(struct sk_buff *skb,
228					u32 *sid, int ckall)
229{
230	u32 sid_session = SECSID_NULL;
231	struct sec_path *sp = skb_sec_path(skb);
232
233	if (sp) {
234		int i;
235
236		for (i = sp->len - 1; i >= 0; i--) {
237			struct xfrm_state *x = sp->xvec[i];
238			if (selinux_authorizable_xfrm(x)) {
239				struct xfrm_sec_ctx *ctx = x->security;
240
241				if (sid_session == SECSID_NULL) {
242					sid_session = ctx->ctx_sid;
243					if (!ckall)
244						goto out;
245				} else if (sid_session != ctx->ctx_sid) {
246					*sid = SECSID_NULL;
247					return -EINVAL;
248				}
249			}
250		}
251	}
252
253out:
254	*sid = sid_session;
255	return 0;
256}
257
258/*
259 * LSM hook implementation that checks and/or returns the xfrm sid for the
260 * incoming packet.
261 */
262int selinux_xfrm_decode_session(struct sk_buff *skb, u32 *sid, int ckall)
263{
264	if (skb == NULL) {
265		*sid = SECSID_NULL;
266		return 0;
267	}
268	return selinux_xfrm_skb_sid_ingress(skb, sid, ckall);
269}
270
271int selinux_xfrm_skb_sid(struct sk_buff *skb, u32 *sid)
272{
273	int rc;
274
275	rc = selinux_xfrm_skb_sid_ingress(skb, sid, 0);
276	if (rc == 0 && *sid == SECSID_NULL)
277		*sid = selinux_xfrm_skb_sid_egress(skb);
278
279	return rc;
280}
281
282/*
283 * LSM hook implementation that allocs and transfers uctx spec to xfrm_policy.
284 */
285int selinux_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
286			      struct xfrm_user_sec_ctx *uctx,
287			      gfp_t gfp)
288{
289	return selinux_xfrm_alloc_user(ctxp, uctx, gfp);
290}
291
292/*
293 * LSM hook implementation that copies security data structure from old to new
294 * for policy cloning.
295 */
296int selinux_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
297			      struct xfrm_sec_ctx **new_ctxp)
298{
299	struct xfrm_sec_ctx *new_ctx;
300
301	if (!old_ctx)
302		return 0;
303
304	new_ctx = kmemdup(old_ctx, sizeof(*old_ctx) + old_ctx->ctx_len,
305			  GFP_ATOMIC);
306	if (!new_ctx)
307		return -ENOMEM;
308	atomic_inc(&selinux_xfrm_refcount);
309	*new_ctxp = new_ctx;
310
311	return 0;
312}
313
314/*
315 * LSM hook implementation that frees xfrm_sec_ctx security information.
316 */
317void selinux_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
318{
319	selinux_xfrm_free(ctx);
320}
321
322/*
323 * LSM hook implementation that authorizes deletion of labeled policies.
324 */
325int selinux_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
326{
327	return selinux_xfrm_delete(ctx);
328}
329
330/*
331 * LSM hook implementation that allocates a xfrm_sec_state, populates it using
332 * the supplied security context, and assigns it to the xfrm_state.
333 */
334int selinux_xfrm_state_alloc(struct xfrm_state *x,
335			     struct xfrm_user_sec_ctx *uctx)
336{
337	return selinux_xfrm_alloc_user(&x->security, uctx, GFP_KERNEL);
338}
339
340/*
341 * LSM hook implementation that allocates a xfrm_sec_state and populates based
342 * on a secid.
343 */
344int selinux_xfrm_state_alloc_acquire(struct xfrm_state *x,
345				     struct xfrm_sec_ctx *polsec, u32 secid)
346{
347	int rc;
348	struct xfrm_sec_ctx *ctx;
349	char *ctx_str = NULL;
350	u32 str_len;
351
352	if (!polsec)
353		return 0;
354
355	if (secid == 0)
356		return -EINVAL;
357
358	rc = security_sid_to_context(&selinux_state, secid, &ctx_str,
359				     &str_len);
360	if (rc)
361		return rc;
362
363	ctx = kmalloc(struct_size(ctx, ctx_str, str_len), GFP_ATOMIC);
364	if (!ctx) {
365		rc = -ENOMEM;
366		goto out;
367	}
368
369	ctx->ctx_doi = XFRM_SC_DOI_LSM;
370	ctx->ctx_alg = XFRM_SC_ALG_SELINUX;
371	ctx->ctx_sid = secid;
372	ctx->ctx_len = str_len;
373	memcpy(ctx->ctx_str, ctx_str, str_len);
374
375	x->security = ctx;
376	atomic_inc(&selinux_xfrm_refcount);
377out:
378	kfree(ctx_str);
379	return rc;
380}
381
382/*
383 * LSM hook implementation that frees xfrm_state security information.
384 */
385void selinux_xfrm_state_free(struct xfrm_state *x)
386{
387	selinux_xfrm_free(x->security);
388}
389
390/*
391 * LSM hook implementation that authorizes deletion of labeled SAs.
392 */
393int selinux_xfrm_state_delete(struct xfrm_state *x)
394{
395	return selinux_xfrm_delete(x->security);
396}
397
398/*
399 * LSM hook that controls access to unlabelled packets.  If
400 * a xfrm_state is authorizable (defined by macro) then it was
401 * already authorized by the IPSec process.  If not, then
402 * we need to check for unlabelled access since this may not have
403 * gone thru the IPSec process.
404 */
405int selinux_xfrm_sock_rcv_skb(u32 sk_sid, struct sk_buff *skb,
406			      struct common_audit_data *ad)
407{
408	int i;
409	struct sec_path *sp = skb_sec_path(skb);
410	u32 peer_sid = SECINITSID_UNLABELED;
411
412	if (sp) {
413		for (i = 0; i < sp->len; i++) {
414			struct xfrm_state *x = sp->xvec[i];
415
416			if (x && selinux_authorizable_xfrm(x)) {
417				struct xfrm_sec_ctx *ctx = x->security;
418				peer_sid = ctx->ctx_sid;
419				break;
420			}
421		}
422	}
423
424	/* This check even when there's no association involved is intended,
425	 * according to Trent Jaeger, to make sure a process can't engage in
426	 * non-IPsec communication unless explicitly allowed by policy. */
427	return avc_has_perm(&selinux_state,
428			    sk_sid, peer_sid,
429			    SECCLASS_ASSOCIATION, ASSOCIATION__RECVFROM, ad);
430}
431
432/*
433 * POSTROUTE_LAST hook's XFRM processing:
434 * If we have no security association, then we need to determine
435 * whether the socket is allowed to send to an unlabelled destination.
436 * If we do have a authorizable security association, then it has already been
437 * checked in the selinux_xfrm_state_pol_flow_match hook above.
438 */
439int selinux_xfrm_postroute_last(u32 sk_sid, struct sk_buff *skb,
440				struct common_audit_data *ad, u8 proto)
441{
442	struct dst_entry *dst;
443
444	switch (proto) {
445	case IPPROTO_AH:
446	case IPPROTO_ESP:
447	case IPPROTO_COMP:
448		/* We should have already seen this packet once before it
449		 * underwent xfrm(s). No need to subject it to the unlabeled
450		 * check. */
451		return 0;
452	default:
453		break;
454	}
455
456	dst = skb_dst(skb);
457	if (dst) {
458		struct dst_entry *iter;
459
460		for (iter = dst; iter != NULL; iter = xfrm_dst_child(iter)) {
461			struct xfrm_state *x = iter->xfrm;
462
463			if (x && selinux_authorizable_xfrm(x))
464				return 0;
465		}
466	}
467
468	/* This check even when there's no association involved is intended,
469	 * according to Trent Jaeger, to make sure a process can't engage in
470	 * non-IPsec communication unless explicitly allowed by policy. */
471	return avc_has_perm(&selinux_state, sk_sid, SECINITSID_UNLABELED,
472			    SECCLASS_ASSOCIATION, ASSOCIATION__SENDTO, ad);
473}
v4.17
 
  1/*
  2 *  NSA Security-Enhanced Linux (SELinux) security module
  3 *
  4 *  This file contains the SELinux XFRM hook function implementations.
  5 *
  6 *  Authors:  Serge Hallyn <sergeh@us.ibm.com>
  7 *	      Trent Jaeger <jaegert@us.ibm.com>
  8 *
  9 *  Updated: Venkat Yekkirala <vyekkirala@TrustedCS.com>
 10 *
 11 *           Granular IPSec Associations for use in MLS environments.
 12 *
 13 *  Copyright (C) 2005 International Business Machines Corporation
 14 *  Copyright (C) 2006 Trusted Computer Solutions, Inc.
 15 *
 16 *	This program is free software; you can redistribute it and/or modify
 17 *	it under the terms of the GNU General Public License version 2,
 18 *	as published by the Free Software Foundation.
 19 */
 20
 21/*
 22 * USAGE:
 23 * NOTES:
 24 *   1. Make sure to enable the following options in your kernel config:
 25 *	CONFIG_SECURITY=y
 26 *	CONFIG_SECURITY_NETWORK=y
 27 *	CONFIG_SECURITY_NETWORK_XFRM=y
 28 *	CONFIG_SECURITY_SELINUX=m/y
 29 * ISSUES:
 30 *   1. Caching packets, so they are not dropped during negotiation
 31 *   2. Emulating a reasonable SO_PEERSEC across machines
 32 *   3. Testing addition of sk_policy's with security context via setsockopt
 33 */
 34#include <linux/kernel.h>
 35#include <linux/init.h>
 36#include <linux/security.h>
 37#include <linux/types.h>
 38#include <linux/slab.h>
 39#include <linux/ip.h>
 40#include <linux/tcp.h>
 41#include <linux/skbuff.h>
 42#include <linux/xfrm.h>
 43#include <net/xfrm.h>
 44#include <net/checksum.h>
 45#include <net/udp.h>
 46#include <linux/atomic.h>
 47
 48#include "avc.h"
 49#include "objsec.h"
 50#include "xfrm.h"
 51
 52/* Labeled XFRM instance counter */
 53atomic_t selinux_xfrm_refcount = ATOMIC_INIT(0);
 54
 55/*
 56 * Returns true if the context is an LSM/SELinux context.
 57 */
 58static inline int selinux_authorizable_ctx(struct xfrm_sec_ctx *ctx)
 59{
 60	return (ctx &&
 61		(ctx->ctx_doi == XFRM_SC_DOI_LSM) &&
 62		(ctx->ctx_alg == XFRM_SC_ALG_SELINUX));
 63}
 64
 65/*
 66 * Returns true if the xfrm contains a security blob for SELinux.
 67 */
 68static inline int selinux_authorizable_xfrm(struct xfrm_state *x)
 69{
 70	return selinux_authorizable_ctx(x->security);
 71}
 72
 73/*
 74 * Allocates a xfrm_sec_state and populates it using the supplied security
 75 * xfrm_user_sec_ctx context.
 76 */
 77static int selinux_xfrm_alloc_user(struct xfrm_sec_ctx **ctxp,
 78				   struct xfrm_user_sec_ctx *uctx,
 79				   gfp_t gfp)
 80{
 81	int rc;
 82	const struct task_security_struct *tsec = current_security();
 83	struct xfrm_sec_ctx *ctx = NULL;
 84	u32 str_len;
 85
 86	if (ctxp == NULL || uctx == NULL ||
 87	    uctx->ctx_doi != XFRM_SC_DOI_LSM ||
 88	    uctx->ctx_alg != XFRM_SC_ALG_SELINUX)
 89		return -EINVAL;
 90
 91	str_len = uctx->ctx_len;
 92	if (str_len >= PAGE_SIZE)
 93		return -ENOMEM;
 94
 95	ctx = kmalloc(sizeof(*ctx) + str_len + 1, gfp);
 96	if (!ctx)
 97		return -ENOMEM;
 98
 99	ctx->ctx_doi = XFRM_SC_DOI_LSM;
100	ctx->ctx_alg = XFRM_SC_ALG_SELINUX;
101	ctx->ctx_len = str_len;
102	memcpy(ctx->ctx_str, &uctx[1], str_len);
103	ctx->ctx_str[str_len] = '\0';
104	rc = security_context_to_sid(&selinux_state, ctx->ctx_str, str_len,
105				     &ctx->ctx_sid, gfp);
106	if (rc)
107		goto err;
108
109	rc = avc_has_perm(&selinux_state,
110			  tsec->sid, ctx->ctx_sid,
111			  SECCLASS_ASSOCIATION, ASSOCIATION__SETCONTEXT, NULL);
112	if (rc)
113		goto err;
114
115	*ctxp = ctx;
116	atomic_inc(&selinux_xfrm_refcount);
117	return 0;
118
119err:
120	kfree(ctx);
121	return rc;
122}
123
124/*
125 * Free the xfrm_sec_ctx structure.
126 */
127static void selinux_xfrm_free(struct xfrm_sec_ctx *ctx)
128{
129	if (!ctx)
130		return;
131
132	atomic_dec(&selinux_xfrm_refcount);
133	kfree(ctx);
134}
135
136/*
137 * Authorize the deletion of a labeled SA or policy rule.
138 */
139static int selinux_xfrm_delete(struct xfrm_sec_ctx *ctx)
140{
141	const struct task_security_struct *tsec = current_security();
142
143	if (!ctx)
144		return 0;
145
146	return avc_has_perm(&selinux_state,
147			    tsec->sid, ctx->ctx_sid,
148			    SECCLASS_ASSOCIATION, ASSOCIATION__SETCONTEXT,
149			    NULL);
150}
151
152/*
153 * LSM hook implementation that authorizes that a flow can use a xfrm policy
154 * rule.
155 */
156int selinux_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
157{
158	int rc;
159
160	/* All flows should be treated as polmatch'ing an otherwise applicable
161	 * "non-labeled" policy. This would prevent inadvertent "leaks". */
162	if (!ctx)
163		return 0;
164
165	/* Context sid is either set to label or ANY_ASSOC */
166	if (!selinux_authorizable_ctx(ctx))
167		return -EINVAL;
168
169	rc = avc_has_perm(&selinux_state,
170			  fl_secid, ctx->ctx_sid,
171			  SECCLASS_ASSOCIATION, ASSOCIATION__POLMATCH, NULL);
172	return (rc == -EACCES ? -ESRCH : rc);
173}
174
175/*
176 * LSM hook implementation that authorizes that a state matches
177 * the given policy, flow combo.
178 */
179int selinux_xfrm_state_pol_flow_match(struct xfrm_state *x,
180				      struct xfrm_policy *xp,
181				      const struct flowi *fl)
182{
183	u32 state_sid;
 
184
185	if (!xp->security)
186		if (x->security)
187			/* unlabeled policy and labeled SA can't match */
188			return 0;
189		else
190			/* unlabeled policy and unlabeled SA match all flows */
191			return 1;
192	else
193		if (!x->security)
194			/* unlabeled SA and labeled policy can't match */
195			return 0;
196		else
197			if (!selinux_authorizable_xfrm(x))
198				/* Not a SELinux-labeled SA */
199				return 0;
200
201	state_sid = x->security->ctx_sid;
 
202
203	if (fl->flowi_secid != state_sid)
204		return 0;
205
206	/* We don't need a separate SA Vs. policy polmatch check since the SA
207	 * is now of the same label as the flow and a flow Vs. policy polmatch
208	 * check had already happened in selinux_xfrm_policy_lookup() above. */
209	return (avc_has_perm(&selinux_state,
210			     fl->flowi_secid, state_sid,
211			    SECCLASS_ASSOCIATION, ASSOCIATION__SENDTO,
212			    NULL) ? 0 : 1);
213}
214
215static u32 selinux_xfrm_skb_sid_egress(struct sk_buff *skb)
216{
217	struct dst_entry *dst = skb_dst(skb);
218	struct xfrm_state *x;
219
220	if (dst == NULL)
221		return SECSID_NULL;
222	x = dst->xfrm;
223	if (x == NULL || !selinux_authorizable_xfrm(x))
224		return SECSID_NULL;
225
226	return x->security->ctx_sid;
227}
228
229static int selinux_xfrm_skb_sid_ingress(struct sk_buff *skb,
230					u32 *sid, int ckall)
231{
232	u32 sid_session = SECSID_NULL;
233	struct sec_path *sp = skb->sp;
234
235	if (sp) {
236		int i;
237
238		for (i = sp->len - 1; i >= 0; i--) {
239			struct xfrm_state *x = sp->xvec[i];
240			if (selinux_authorizable_xfrm(x)) {
241				struct xfrm_sec_ctx *ctx = x->security;
242
243				if (sid_session == SECSID_NULL) {
244					sid_session = ctx->ctx_sid;
245					if (!ckall)
246						goto out;
247				} else if (sid_session != ctx->ctx_sid) {
248					*sid = SECSID_NULL;
249					return -EINVAL;
250				}
251			}
252		}
253	}
254
255out:
256	*sid = sid_session;
257	return 0;
258}
259
260/*
261 * LSM hook implementation that checks and/or returns the xfrm sid for the
262 * incoming packet.
263 */
264int selinux_xfrm_decode_session(struct sk_buff *skb, u32 *sid, int ckall)
265{
266	if (skb == NULL) {
267		*sid = SECSID_NULL;
268		return 0;
269	}
270	return selinux_xfrm_skb_sid_ingress(skb, sid, ckall);
271}
272
273int selinux_xfrm_skb_sid(struct sk_buff *skb, u32 *sid)
274{
275	int rc;
276
277	rc = selinux_xfrm_skb_sid_ingress(skb, sid, 0);
278	if (rc == 0 && *sid == SECSID_NULL)
279		*sid = selinux_xfrm_skb_sid_egress(skb);
280
281	return rc;
282}
283
284/*
285 * LSM hook implementation that allocs and transfers uctx spec to xfrm_policy.
286 */
287int selinux_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
288			      struct xfrm_user_sec_ctx *uctx,
289			      gfp_t gfp)
290{
291	return selinux_xfrm_alloc_user(ctxp, uctx, gfp);
292}
293
294/*
295 * LSM hook implementation that copies security data structure from old to new
296 * for policy cloning.
297 */
298int selinux_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
299			      struct xfrm_sec_ctx **new_ctxp)
300{
301	struct xfrm_sec_ctx *new_ctx;
302
303	if (!old_ctx)
304		return 0;
305
306	new_ctx = kmemdup(old_ctx, sizeof(*old_ctx) + old_ctx->ctx_len,
307			  GFP_ATOMIC);
308	if (!new_ctx)
309		return -ENOMEM;
310	atomic_inc(&selinux_xfrm_refcount);
311	*new_ctxp = new_ctx;
312
313	return 0;
314}
315
316/*
317 * LSM hook implementation that frees xfrm_sec_ctx security information.
318 */
319void selinux_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
320{
321	selinux_xfrm_free(ctx);
322}
323
324/*
325 * LSM hook implementation that authorizes deletion of labeled policies.
326 */
327int selinux_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
328{
329	return selinux_xfrm_delete(ctx);
330}
331
332/*
333 * LSM hook implementation that allocates a xfrm_sec_state, populates it using
334 * the supplied security context, and assigns it to the xfrm_state.
335 */
336int selinux_xfrm_state_alloc(struct xfrm_state *x,
337			     struct xfrm_user_sec_ctx *uctx)
338{
339	return selinux_xfrm_alloc_user(&x->security, uctx, GFP_KERNEL);
340}
341
342/*
343 * LSM hook implementation that allocates a xfrm_sec_state and populates based
344 * on a secid.
345 */
346int selinux_xfrm_state_alloc_acquire(struct xfrm_state *x,
347				     struct xfrm_sec_ctx *polsec, u32 secid)
348{
349	int rc;
350	struct xfrm_sec_ctx *ctx;
351	char *ctx_str = NULL;
352	int str_len;
353
354	if (!polsec)
355		return 0;
356
357	if (secid == 0)
358		return -EINVAL;
359
360	rc = security_sid_to_context(&selinux_state, secid, &ctx_str,
361				     &str_len);
362	if (rc)
363		return rc;
364
365	ctx = kmalloc(sizeof(*ctx) + str_len, GFP_ATOMIC);
366	if (!ctx) {
367		rc = -ENOMEM;
368		goto out;
369	}
370
371	ctx->ctx_doi = XFRM_SC_DOI_LSM;
372	ctx->ctx_alg = XFRM_SC_ALG_SELINUX;
373	ctx->ctx_sid = secid;
374	ctx->ctx_len = str_len;
375	memcpy(ctx->ctx_str, ctx_str, str_len);
376
377	x->security = ctx;
378	atomic_inc(&selinux_xfrm_refcount);
379out:
380	kfree(ctx_str);
381	return rc;
382}
383
384/*
385 * LSM hook implementation that frees xfrm_state security information.
386 */
387void selinux_xfrm_state_free(struct xfrm_state *x)
388{
389	selinux_xfrm_free(x->security);
390}
391
392/*
393 * LSM hook implementation that authorizes deletion of labeled SAs.
394 */
395int selinux_xfrm_state_delete(struct xfrm_state *x)
396{
397	return selinux_xfrm_delete(x->security);
398}
399
400/*
401 * LSM hook that controls access to unlabelled packets.  If
402 * a xfrm_state is authorizable (defined by macro) then it was
403 * already authorized by the IPSec process.  If not, then
404 * we need to check for unlabelled access since this may not have
405 * gone thru the IPSec process.
406 */
407int selinux_xfrm_sock_rcv_skb(u32 sk_sid, struct sk_buff *skb,
408			      struct common_audit_data *ad)
409{
410	int i;
411	struct sec_path *sp = skb->sp;
412	u32 peer_sid = SECINITSID_UNLABELED;
413
414	if (sp) {
415		for (i = 0; i < sp->len; i++) {
416			struct xfrm_state *x = sp->xvec[i];
417
418			if (x && selinux_authorizable_xfrm(x)) {
419				struct xfrm_sec_ctx *ctx = x->security;
420				peer_sid = ctx->ctx_sid;
421				break;
422			}
423		}
424	}
425
426	/* This check even when there's no association involved is intended,
427	 * according to Trent Jaeger, to make sure a process can't engage in
428	 * non-IPsec communication unless explicitly allowed by policy. */
429	return avc_has_perm(&selinux_state,
430			    sk_sid, peer_sid,
431			    SECCLASS_ASSOCIATION, ASSOCIATION__RECVFROM, ad);
432}
433
434/*
435 * POSTROUTE_LAST hook's XFRM processing:
436 * If we have no security association, then we need to determine
437 * whether the socket is allowed to send to an unlabelled destination.
438 * If we do have a authorizable security association, then it has already been
439 * checked in the selinux_xfrm_state_pol_flow_match hook above.
440 */
441int selinux_xfrm_postroute_last(u32 sk_sid, struct sk_buff *skb,
442				struct common_audit_data *ad, u8 proto)
443{
444	struct dst_entry *dst;
445
446	switch (proto) {
447	case IPPROTO_AH:
448	case IPPROTO_ESP:
449	case IPPROTO_COMP:
450		/* We should have already seen this packet once before it
451		 * underwent xfrm(s). No need to subject it to the unlabeled
452		 * check. */
453		return 0;
454	default:
455		break;
456	}
457
458	dst = skb_dst(skb);
459	if (dst) {
460		struct dst_entry *iter;
461
462		for (iter = dst; iter != NULL; iter = xfrm_dst_child(iter)) {
463			struct xfrm_state *x = iter->xfrm;
464
465			if (x && selinux_authorizable_xfrm(x))
466				return 0;
467		}
468	}
469
470	/* This check even when there's no association involved is intended,
471	 * according to Trent Jaeger, to make sure a process can't engage in
472	 * non-IPsec communication unless explicitly allowed by policy. */
473	return avc_has_perm(&selinux_state, sk_sid, SECINITSID_UNLABELED,
474			    SECCLASS_ASSOCIATION, ASSOCIATION__SENDTO, ad);
475}