Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2#include <linux/bitmap.h>
3#include <linux/bug.h>
4#include <linux/export.h>
5#include <linux/idr.h>
6#include <linux/slab.h>
7#include <linux/spinlock.h>
8#include <linux/xarray.h>
9
10/**
11 * idr_alloc_u32() - Allocate an ID.
12 * @idr: IDR handle.
13 * @ptr: Pointer to be associated with the new ID.
14 * @nextid: Pointer to an ID.
15 * @max: The maximum ID to allocate (inclusive).
16 * @gfp: Memory allocation flags.
17 *
18 * Allocates an unused ID in the range specified by @nextid and @max.
19 * Note that @max is inclusive whereas the @end parameter to idr_alloc()
20 * is exclusive. The new ID is assigned to @nextid before the pointer
21 * is inserted into the IDR, so if @nextid points into the object pointed
22 * to by @ptr, a concurrent lookup will not find an uninitialised ID.
23 *
24 * The caller should provide their own locking to ensure that two
25 * concurrent modifications to the IDR are not possible. Read-only
26 * accesses to the IDR may be done under the RCU read lock or may
27 * exclude simultaneous writers.
28 *
29 * Return: 0 if an ID was allocated, -ENOMEM if memory allocation failed,
30 * or -ENOSPC if no free IDs could be found. If an error occurred,
31 * @nextid is unchanged.
32 */
33int idr_alloc_u32(struct idr *idr, void *ptr, u32 *nextid,
34 unsigned long max, gfp_t gfp)
35{
36 struct radix_tree_iter iter;
37 void __rcu **slot;
38 unsigned int base = idr->idr_base;
39 unsigned int id = *nextid;
40
41 if (WARN_ON_ONCE(!(idr->idr_rt.xa_flags & ROOT_IS_IDR)))
42 idr->idr_rt.xa_flags |= IDR_RT_MARKER;
43
44 id = (id < base) ? 0 : id - base;
45 radix_tree_iter_init(&iter, id);
46 slot = idr_get_free(&idr->idr_rt, &iter, gfp, max - base);
47 if (IS_ERR(slot))
48 return PTR_ERR(slot);
49
50 *nextid = iter.index + base;
51 /* there is a memory barrier inside radix_tree_iter_replace() */
52 radix_tree_iter_replace(&idr->idr_rt, &iter, slot, ptr);
53 radix_tree_iter_tag_clear(&idr->idr_rt, &iter, IDR_FREE);
54
55 return 0;
56}
57EXPORT_SYMBOL_GPL(idr_alloc_u32);
58
59/**
60 * idr_alloc() - Allocate an ID.
61 * @idr: IDR handle.
62 * @ptr: Pointer to be associated with the new ID.
63 * @start: The minimum ID (inclusive).
64 * @end: The maximum ID (exclusive).
65 * @gfp: Memory allocation flags.
66 *
67 * Allocates an unused ID in the range specified by @start and @end. If
68 * @end is <= 0, it is treated as one larger than %INT_MAX. This allows
69 * callers to use @start + N as @end as long as N is within integer range.
70 *
71 * The caller should provide their own locking to ensure that two
72 * concurrent modifications to the IDR are not possible. Read-only
73 * accesses to the IDR may be done under the RCU read lock or may
74 * exclude simultaneous writers.
75 *
76 * Return: The newly allocated ID, -ENOMEM if memory allocation failed,
77 * or -ENOSPC if no free IDs could be found.
78 */
79int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
80{
81 u32 id = start;
82 int ret;
83
84 if (WARN_ON_ONCE(start < 0))
85 return -EINVAL;
86
87 ret = idr_alloc_u32(idr, ptr, &id, end > 0 ? end - 1 : INT_MAX, gfp);
88 if (ret)
89 return ret;
90
91 return id;
92}
93EXPORT_SYMBOL_GPL(idr_alloc);
94
95/**
96 * idr_alloc_cyclic() - Allocate an ID cyclically.
97 * @idr: IDR handle.
98 * @ptr: Pointer to be associated with the new ID.
99 * @start: The minimum ID (inclusive).
100 * @end: The maximum ID (exclusive).
101 * @gfp: Memory allocation flags.
102 *
103 * Allocates an unused ID in the range specified by @nextid and @end. If
104 * @end is <= 0, it is treated as one larger than %INT_MAX. This allows
105 * callers to use @start + N as @end as long as N is within integer range.
106 * The search for an unused ID will start at the last ID allocated and will
107 * wrap around to @start if no free IDs are found before reaching @end.
108 *
109 * The caller should provide their own locking to ensure that two
110 * concurrent modifications to the IDR are not possible. Read-only
111 * accesses to the IDR may be done under the RCU read lock or may
112 * exclude simultaneous writers.
113 *
114 * Return: The newly allocated ID, -ENOMEM if memory allocation failed,
115 * or -ENOSPC if no free IDs could be found.
116 */
117int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
118{
119 u32 id = idr->idr_next;
120 int err, max = end > 0 ? end - 1 : INT_MAX;
121
122 if ((int)id < start)
123 id = start;
124
125 err = idr_alloc_u32(idr, ptr, &id, max, gfp);
126 if ((err == -ENOSPC) && (id > start)) {
127 id = start;
128 err = idr_alloc_u32(idr, ptr, &id, max, gfp);
129 }
130 if (err)
131 return err;
132
133 idr->idr_next = id + 1;
134 return id;
135}
136EXPORT_SYMBOL(idr_alloc_cyclic);
137
138/**
139 * idr_remove() - Remove an ID from the IDR.
140 * @idr: IDR handle.
141 * @id: Pointer ID.
142 *
143 * Removes this ID from the IDR. If the ID was not previously in the IDR,
144 * this function returns %NULL.
145 *
146 * Since this function modifies the IDR, the caller should provide their
147 * own locking to ensure that concurrent modification of the same IDR is
148 * not possible.
149 *
150 * Return: The pointer formerly associated with this ID.
151 */
152void *idr_remove(struct idr *idr, unsigned long id)
153{
154 return radix_tree_delete_item(&idr->idr_rt, id - idr->idr_base, NULL);
155}
156EXPORT_SYMBOL_GPL(idr_remove);
157
158/**
159 * idr_find() - Return pointer for given ID.
160 * @idr: IDR handle.
161 * @id: Pointer ID.
162 *
163 * Looks up the pointer associated with this ID. A %NULL pointer may
164 * indicate that @id is not allocated or that the %NULL pointer was
165 * associated with this ID.
166 *
167 * This function can be called under rcu_read_lock(), given that the leaf
168 * pointers lifetimes are correctly managed.
169 *
170 * Return: The pointer associated with this ID.
171 */
172void *idr_find(const struct idr *idr, unsigned long id)
173{
174 return radix_tree_lookup(&idr->idr_rt, id - idr->idr_base);
175}
176EXPORT_SYMBOL_GPL(idr_find);
177
178/**
179 * idr_for_each() - Iterate through all stored pointers.
180 * @idr: IDR handle.
181 * @fn: Function to be called for each pointer.
182 * @data: Data passed to callback function.
183 *
184 * The callback function will be called for each entry in @idr, passing
185 * the ID, the entry and @data.
186 *
187 * If @fn returns anything other than %0, the iteration stops and that
188 * value is returned from this function.
189 *
190 * idr_for_each() can be called concurrently with idr_alloc() and
191 * idr_remove() if protected by RCU. Newly added entries may not be
192 * seen and deleted entries may be seen, but adding and removing entries
193 * will not cause other entries to be skipped, nor spurious ones to be seen.
194 */
195int idr_for_each(const struct idr *idr,
196 int (*fn)(int id, void *p, void *data), void *data)
197{
198 struct radix_tree_iter iter;
199 void __rcu **slot;
200 int base = idr->idr_base;
201
202 radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, 0) {
203 int ret;
204 unsigned long id = iter.index + base;
205
206 if (WARN_ON_ONCE(id > INT_MAX))
207 break;
208 ret = fn(id, rcu_dereference_raw(*slot), data);
209 if (ret)
210 return ret;
211 }
212
213 return 0;
214}
215EXPORT_SYMBOL(idr_for_each);
216
217/**
218 * idr_get_next_ul() - Find next populated entry.
219 * @idr: IDR handle.
220 * @nextid: Pointer to an ID.
221 *
222 * Returns the next populated entry in the tree with an ID greater than
223 * or equal to the value pointed to by @nextid. On exit, @nextid is updated
224 * to the ID of the found value. To use in a loop, the value pointed to by
225 * nextid must be incremented by the user.
226 */
227void *idr_get_next_ul(struct idr *idr, unsigned long *nextid)
228{
229 struct radix_tree_iter iter;
230 void __rcu **slot;
231 void *entry = NULL;
232 unsigned long base = idr->idr_base;
233 unsigned long id = *nextid;
234
235 id = (id < base) ? 0 : id - base;
236 radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, id) {
237 entry = rcu_dereference_raw(*slot);
238 if (!entry)
239 continue;
240 if (!xa_is_internal(entry))
241 break;
242 if (slot != &idr->idr_rt.xa_head && !xa_is_retry(entry))
243 break;
244 slot = radix_tree_iter_retry(&iter);
245 }
246 if (!slot)
247 return NULL;
248
249 *nextid = iter.index + base;
250 return entry;
251}
252EXPORT_SYMBOL(idr_get_next_ul);
253
254/**
255 * idr_get_next() - Find next populated entry.
256 * @idr: IDR handle.
257 * @nextid: Pointer to an ID.
258 *
259 * Returns the next populated entry in the tree with an ID greater than
260 * or equal to the value pointed to by @nextid. On exit, @nextid is updated
261 * to the ID of the found value. To use in a loop, the value pointed to by
262 * nextid must be incremented by the user.
263 */
264void *idr_get_next(struct idr *idr, int *nextid)
265{
266 unsigned long id = *nextid;
267 void *entry = idr_get_next_ul(idr, &id);
268
269 if (WARN_ON_ONCE(id > INT_MAX))
270 return NULL;
271 *nextid = id;
272 return entry;
273}
274EXPORT_SYMBOL(idr_get_next);
275
276/**
277 * idr_replace() - replace pointer for given ID.
278 * @idr: IDR handle.
279 * @ptr: New pointer to associate with the ID.
280 * @id: ID to change.
281 *
282 * Replace the pointer registered with an ID and return the old value.
283 * This function can be called under the RCU read lock concurrently with
284 * idr_alloc() and idr_remove() (as long as the ID being removed is not
285 * the one being replaced!).
286 *
287 * Returns: the old value on success. %-ENOENT indicates that @id was not
288 * found. %-EINVAL indicates that @ptr was not valid.
289 */
290void *idr_replace(struct idr *idr, void *ptr, unsigned long id)
291{
292 struct radix_tree_node *node;
293 void __rcu **slot = NULL;
294 void *entry;
295
296 id -= idr->idr_base;
297
298 entry = __radix_tree_lookup(&idr->idr_rt, id, &node, &slot);
299 if (!slot || radix_tree_tag_get(&idr->idr_rt, id, IDR_FREE))
300 return ERR_PTR(-ENOENT);
301
302 __radix_tree_replace(&idr->idr_rt, node, slot, ptr);
303
304 return entry;
305}
306EXPORT_SYMBOL(idr_replace);
307
308/**
309 * DOC: IDA description
310 *
311 * The IDA is an ID allocator which does not provide the ability to
312 * associate an ID with a pointer. As such, it only needs to store one
313 * bit per ID, and so is more space efficient than an IDR. To use an IDA,
314 * define it using DEFINE_IDA() (or embed a &struct ida in a data structure,
315 * then initialise it using ida_init()). To allocate a new ID, call
316 * ida_alloc(), ida_alloc_min(), ida_alloc_max() or ida_alloc_range().
317 * To free an ID, call ida_free().
318 *
319 * ida_destroy() can be used to dispose of an IDA without needing to
320 * free the individual IDs in it. You can use ida_is_empty() to find
321 * out whether the IDA has any IDs currently allocated.
322 *
323 * The IDA handles its own locking. It is safe to call any of the IDA
324 * functions without synchronisation in your code.
325 *
326 * IDs are currently limited to the range [0-INT_MAX]. If this is an awkward
327 * limitation, it should be quite straightforward to raise the maximum.
328 */
329
330/*
331 * Developer's notes:
332 *
333 * The IDA uses the functionality provided by the XArray to store bitmaps in
334 * each entry. The XA_FREE_MARK is only cleared when all bits in the bitmap
335 * have been set.
336 *
337 * I considered telling the XArray that each slot is an order-10 node
338 * and indexing by bit number, but the XArray can't allow a single multi-index
339 * entry in the head, which would significantly increase memory consumption
340 * for the IDA. So instead we divide the index by the number of bits in the
341 * leaf bitmap before doing a radix tree lookup.
342 *
343 * As an optimisation, if there are only a few low bits set in any given
344 * leaf, instead of allocating a 128-byte bitmap, we store the bits
345 * as a value entry. Value entries never have the XA_FREE_MARK cleared
346 * because we can always convert them into a bitmap entry.
347 *
348 * It would be possible to optimise further; once we've run out of a
349 * single 128-byte bitmap, we currently switch to a 576-byte node, put
350 * the 128-byte bitmap in the first entry and then start allocating extra
351 * 128-byte entries. We could instead use the 512 bytes of the node's
352 * data as a bitmap before moving to that scheme. I do not believe this
353 * is a worthwhile optimisation; Rasmus Villemoes surveyed the current
354 * users of the IDA and almost none of them use more than 1024 entries.
355 * Those that do use more than the 8192 IDs that the 512 bytes would
356 * provide.
357 *
358 * The IDA always uses a lock to alloc/free. If we add a 'test_bit'
359 * equivalent, it will still need locking. Going to RCU lookup would require
360 * using RCU to free bitmaps, and that's not trivial without embedding an
361 * RCU head in the bitmap, which adds a 2-pointer overhead to each 128-byte
362 * bitmap, which is excessive.
363 */
364
365/**
366 * ida_alloc_range() - Allocate an unused ID.
367 * @ida: IDA handle.
368 * @min: Lowest ID to allocate.
369 * @max: Highest ID to allocate.
370 * @gfp: Memory allocation flags.
371 *
372 * Allocate an ID between @min and @max, inclusive. The allocated ID will
373 * not exceed %INT_MAX, even if @max is larger.
374 *
375 * Context: Any context. It is safe to call this function without
376 * locking in your code.
377 * Return: The allocated ID, or %-ENOMEM if memory could not be allocated,
378 * or %-ENOSPC if there are no free IDs.
379 */
380int ida_alloc_range(struct ida *ida, unsigned int min, unsigned int max,
381 gfp_t gfp)
382{
383 XA_STATE(xas, &ida->xa, min / IDA_BITMAP_BITS);
384 unsigned bit = min % IDA_BITMAP_BITS;
385 unsigned long flags;
386 struct ida_bitmap *bitmap, *alloc = NULL;
387
388 if ((int)min < 0)
389 return -ENOSPC;
390
391 if ((int)max < 0)
392 max = INT_MAX;
393
394retry:
395 xas_lock_irqsave(&xas, flags);
396next:
397 bitmap = xas_find_marked(&xas, max / IDA_BITMAP_BITS, XA_FREE_MARK);
398 if (xas.xa_index > min / IDA_BITMAP_BITS)
399 bit = 0;
400 if (xas.xa_index * IDA_BITMAP_BITS + bit > max)
401 goto nospc;
402
403 if (xa_is_value(bitmap)) {
404 unsigned long tmp = xa_to_value(bitmap);
405
406 if (bit < BITS_PER_XA_VALUE) {
407 bit = find_next_zero_bit(&tmp, BITS_PER_XA_VALUE, bit);
408 if (xas.xa_index * IDA_BITMAP_BITS + bit > max)
409 goto nospc;
410 if (bit < BITS_PER_XA_VALUE) {
411 tmp |= 1UL << bit;
412 xas_store(&xas, xa_mk_value(tmp));
413 goto out;
414 }
415 }
416 bitmap = alloc;
417 if (!bitmap)
418 bitmap = kzalloc(sizeof(*bitmap), GFP_NOWAIT);
419 if (!bitmap)
420 goto alloc;
421 bitmap->bitmap[0] = tmp;
422 xas_store(&xas, bitmap);
423 if (xas_error(&xas)) {
424 bitmap->bitmap[0] = 0;
425 goto out;
426 }
427 }
428
429 if (bitmap) {
430 bit = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, bit);
431 if (xas.xa_index * IDA_BITMAP_BITS + bit > max)
432 goto nospc;
433 if (bit == IDA_BITMAP_BITS)
434 goto next;
435
436 __set_bit(bit, bitmap->bitmap);
437 if (bitmap_full(bitmap->bitmap, IDA_BITMAP_BITS))
438 xas_clear_mark(&xas, XA_FREE_MARK);
439 } else {
440 if (bit < BITS_PER_XA_VALUE) {
441 bitmap = xa_mk_value(1UL << bit);
442 } else {
443 bitmap = alloc;
444 if (!bitmap)
445 bitmap = kzalloc(sizeof(*bitmap), GFP_NOWAIT);
446 if (!bitmap)
447 goto alloc;
448 __set_bit(bit, bitmap->bitmap);
449 }
450 xas_store(&xas, bitmap);
451 }
452out:
453 xas_unlock_irqrestore(&xas, flags);
454 if (xas_nomem(&xas, gfp)) {
455 xas.xa_index = min / IDA_BITMAP_BITS;
456 bit = min % IDA_BITMAP_BITS;
457 goto retry;
458 }
459 if (bitmap != alloc)
460 kfree(alloc);
461 if (xas_error(&xas))
462 return xas_error(&xas);
463 return xas.xa_index * IDA_BITMAP_BITS + bit;
464alloc:
465 xas_unlock_irqrestore(&xas, flags);
466 alloc = kzalloc(sizeof(*bitmap), gfp);
467 if (!alloc)
468 return -ENOMEM;
469 xas_set(&xas, min / IDA_BITMAP_BITS);
470 bit = min % IDA_BITMAP_BITS;
471 goto retry;
472nospc:
473 xas_unlock_irqrestore(&xas, flags);
474 kfree(alloc);
475 return -ENOSPC;
476}
477EXPORT_SYMBOL(ida_alloc_range);
478
479/**
480 * ida_free() - Release an allocated ID.
481 * @ida: IDA handle.
482 * @id: Previously allocated ID.
483 *
484 * Context: Any context. It is safe to call this function without
485 * locking in your code.
486 */
487void ida_free(struct ida *ida, unsigned int id)
488{
489 XA_STATE(xas, &ida->xa, id / IDA_BITMAP_BITS);
490 unsigned bit = id % IDA_BITMAP_BITS;
491 struct ida_bitmap *bitmap;
492 unsigned long flags;
493
494 if ((int)id < 0)
495 return;
496
497 xas_lock_irqsave(&xas, flags);
498 bitmap = xas_load(&xas);
499
500 if (xa_is_value(bitmap)) {
501 unsigned long v = xa_to_value(bitmap);
502 if (bit >= BITS_PER_XA_VALUE)
503 goto err;
504 if (!(v & (1UL << bit)))
505 goto err;
506 v &= ~(1UL << bit);
507 if (!v)
508 goto delete;
509 xas_store(&xas, xa_mk_value(v));
510 } else {
511 if (!test_bit(bit, bitmap->bitmap))
512 goto err;
513 __clear_bit(bit, bitmap->bitmap);
514 xas_set_mark(&xas, XA_FREE_MARK);
515 if (bitmap_empty(bitmap->bitmap, IDA_BITMAP_BITS)) {
516 kfree(bitmap);
517delete:
518 xas_store(&xas, NULL);
519 }
520 }
521 xas_unlock_irqrestore(&xas, flags);
522 return;
523 err:
524 xas_unlock_irqrestore(&xas, flags);
525 WARN(1, "ida_free called for id=%d which is not allocated.\n", id);
526}
527EXPORT_SYMBOL(ida_free);
528
529/**
530 * ida_destroy() - Free all IDs.
531 * @ida: IDA handle.
532 *
533 * Calling this function frees all IDs and releases all resources used
534 * by an IDA. When this call returns, the IDA is empty and can be reused
535 * or freed. If the IDA is already empty, there is no need to call this
536 * function.
537 *
538 * Context: Any context. It is safe to call this function without
539 * locking in your code.
540 */
541void ida_destroy(struct ida *ida)
542{
543 XA_STATE(xas, &ida->xa, 0);
544 struct ida_bitmap *bitmap;
545 unsigned long flags;
546
547 xas_lock_irqsave(&xas, flags);
548 xas_for_each(&xas, bitmap, ULONG_MAX) {
549 if (!xa_is_value(bitmap))
550 kfree(bitmap);
551 xas_store(&xas, NULL);
552 }
553 xas_unlock_irqrestore(&xas, flags);
554}
555EXPORT_SYMBOL(ida_destroy);
556
557#ifndef __KERNEL__
558extern void xa_dump_index(unsigned long index, unsigned int shift);
559#define IDA_CHUNK_SHIFT ilog2(IDA_BITMAP_BITS)
560
561static void ida_dump_entry(void *entry, unsigned long index)
562{
563 unsigned long i;
564
565 if (!entry)
566 return;
567
568 if (xa_is_node(entry)) {
569 struct xa_node *node = xa_to_node(entry);
570 unsigned int shift = node->shift + IDA_CHUNK_SHIFT +
571 XA_CHUNK_SHIFT;
572
573 xa_dump_index(index * IDA_BITMAP_BITS, shift);
574 xa_dump_node(node);
575 for (i = 0; i < XA_CHUNK_SIZE; i++)
576 ida_dump_entry(node->slots[i],
577 index | (i << node->shift));
578 } else if (xa_is_value(entry)) {
579 xa_dump_index(index * IDA_BITMAP_BITS, ilog2(BITS_PER_LONG));
580 pr_cont("value: data %lx [%px]\n", xa_to_value(entry), entry);
581 } else {
582 struct ida_bitmap *bitmap = entry;
583
584 xa_dump_index(index * IDA_BITMAP_BITS, IDA_CHUNK_SHIFT);
585 pr_cont("bitmap: %p data", bitmap);
586 for (i = 0; i < IDA_BITMAP_LONGS; i++)
587 pr_cont(" %lx", bitmap->bitmap[i]);
588 pr_cont("\n");
589 }
590}
591
592static void ida_dump(struct ida *ida)
593{
594 struct xarray *xa = &ida->xa;
595 pr_debug("ida: %p node %p free %d\n", ida, xa->xa_head,
596 xa->xa_flags >> ROOT_TAG_SHIFT);
597 ida_dump_entry(xa->xa_head, 0);
598}
599#endif
1#include <linux/bitmap.h>
2#include <linux/bug.h>
3#include <linux/export.h>
4#include <linux/idr.h>
5#include <linux/slab.h>
6#include <linux/spinlock.h>
7
8DEFINE_PER_CPU(struct ida_bitmap *, ida_bitmap);
9static DEFINE_SPINLOCK(simple_ida_lock);
10
11/**
12 * idr_alloc_u32() - Allocate an ID.
13 * @idr: IDR handle.
14 * @ptr: Pointer to be associated with the new ID.
15 * @nextid: Pointer to an ID.
16 * @max: The maximum ID to allocate (inclusive).
17 * @gfp: Memory allocation flags.
18 *
19 * Allocates an unused ID in the range specified by @nextid and @max.
20 * Note that @max is inclusive whereas the @end parameter to idr_alloc()
21 * is exclusive. The new ID is assigned to @nextid before the pointer
22 * is inserted into the IDR, so if @nextid points into the object pointed
23 * to by @ptr, a concurrent lookup will not find an uninitialised ID.
24 *
25 * The caller should provide their own locking to ensure that two
26 * concurrent modifications to the IDR are not possible. Read-only
27 * accesses to the IDR may be done under the RCU read lock or may
28 * exclude simultaneous writers.
29 *
30 * Return: 0 if an ID was allocated, -ENOMEM if memory allocation failed,
31 * or -ENOSPC if no free IDs could be found. If an error occurred,
32 * @nextid is unchanged.
33 */
34int idr_alloc_u32(struct idr *idr, void *ptr, u32 *nextid,
35 unsigned long max, gfp_t gfp)
36{
37 struct radix_tree_iter iter;
38 void __rcu **slot;
39 unsigned int base = idr->idr_base;
40 unsigned int id = *nextid;
41
42 if (WARN_ON_ONCE(radix_tree_is_internal_node(ptr)))
43 return -EINVAL;
44 if (WARN_ON_ONCE(!(idr->idr_rt.gfp_mask & ROOT_IS_IDR)))
45 idr->idr_rt.gfp_mask |= IDR_RT_MARKER;
46
47 id = (id < base) ? 0 : id - base;
48 radix_tree_iter_init(&iter, id);
49 slot = idr_get_free(&idr->idr_rt, &iter, gfp, max - base);
50 if (IS_ERR(slot))
51 return PTR_ERR(slot);
52
53 *nextid = iter.index + base;
54 /* there is a memory barrier inside radix_tree_iter_replace() */
55 radix_tree_iter_replace(&idr->idr_rt, &iter, slot, ptr);
56 radix_tree_iter_tag_clear(&idr->idr_rt, &iter, IDR_FREE);
57
58 return 0;
59}
60EXPORT_SYMBOL_GPL(idr_alloc_u32);
61
62/**
63 * idr_alloc() - Allocate an ID.
64 * @idr: IDR handle.
65 * @ptr: Pointer to be associated with the new ID.
66 * @start: The minimum ID (inclusive).
67 * @end: The maximum ID (exclusive).
68 * @gfp: Memory allocation flags.
69 *
70 * Allocates an unused ID in the range specified by @start and @end. If
71 * @end is <= 0, it is treated as one larger than %INT_MAX. This allows
72 * callers to use @start + N as @end as long as N is within integer range.
73 *
74 * The caller should provide their own locking to ensure that two
75 * concurrent modifications to the IDR are not possible. Read-only
76 * accesses to the IDR may be done under the RCU read lock or may
77 * exclude simultaneous writers.
78 *
79 * Return: The newly allocated ID, -ENOMEM if memory allocation failed,
80 * or -ENOSPC if no free IDs could be found.
81 */
82int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
83{
84 u32 id = start;
85 int ret;
86
87 if (WARN_ON_ONCE(start < 0))
88 return -EINVAL;
89
90 ret = idr_alloc_u32(idr, ptr, &id, end > 0 ? end - 1 : INT_MAX, gfp);
91 if (ret)
92 return ret;
93
94 return id;
95}
96EXPORT_SYMBOL_GPL(idr_alloc);
97
98/**
99 * idr_alloc_cyclic() - Allocate an ID cyclically.
100 * @idr: IDR handle.
101 * @ptr: Pointer to be associated with the new ID.
102 * @start: The minimum ID (inclusive).
103 * @end: The maximum ID (exclusive).
104 * @gfp: Memory allocation flags.
105 *
106 * Allocates an unused ID in the range specified by @nextid and @end. If
107 * @end is <= 0, it is treated as one larger than %INT_MAX. This allows
108 * callers to use @start + N as @end as long as N is within integer range.
109 * The search for an unused ID will start at the last ID allocated and will
110 * wrap around to @start if no free IDs are found before reaching @end.
111 *
112 * The caller should provide their own locking to ensure that two
113 * concurrent modifications to the IDR are not possible. Read-only
114 * accesses to the IDR may be done under the RCU read lock or may
115 * exclude simultaneous writers.
116 *
117 * Return: The newly allocated ID, -ENOMEM if memory allocation failed,
118 * or -ENOSPC if no free IDs could be found.
119 */
120int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
121{
122 u32 id = idr->idr_next;
123 int err, max = end > 0 ? end - 1 : INT_MAX;
124
125 if ((int)id < start)
126 id = start;
127
128 err = idr_alloc_u32(idr, ptr, &id, max, gfp);
129 if ((err == -ENOSPC) && (id > start)) {
130 id = start;
131 err = idr_alloc_u32(idr, ptr, &id, max, gfp);
132 }
133 if (err)
134 return err;
135
136 idr->idr_next = id + 1;
137 return id;
138}
139EXPORT_SYMBOL(idr_alloc_cyclic);
140
141/**
142 * idr_remove() - Remove an ID from the IDR.
143 * @idr: IDR handle.
144 * @id: Pointer ID.
145 *
146 * Removes this ID from the IDR. If the ID was not previously in the IDR,
147 * this function returns %NULL.
148 *
149 * Since this function modifies the IDR, the caller should provide their
150 * own locking to ensure that concurrent modification of the same IDR is
151 * not possible.
152 *
153 * Return: The pointer formerly associated with this ID.
154 */
155void *idr_remove(struct idr *idr, unsigned long id)
156{
157 return radix_tree_delete_item(&idr->idr_rt, id - idr->idr_base, NULL);
158}
159EXPORT_SYMBOL_GPL(idr_remove);
160
161/**
162 * idr_find() - Return pointer for given ID.
163 * @idr: IDR handle.
164 * @id: Pointer ID.
165 *
166 * Looks up the pointer associated with this ID. A %NULL pointer may
167 * indicate that @id is not allocated or that the %NULL pointer was
168 * associated with this ID.
169 *
170 * This function can be called under rcu_read_lock(), given that the leaf
171 * pointers lifetimes are correctly managed.
172 *
173 * Return: The pointer associated with this ID.
174 */
175void *idr_find(const struct idr *idr, unsigned long id)
176{
177 return radix_tree_lookup(&idr->idr_rt, id - idr->idr_base);
178}
179EXPORT_SYMBOL_GPL(idr_find);
180
181/**
182 * idr_for_each() - Iterate through all stored pointers.
183 * @idr: IDR handle.
184 * @fn: Function to be called for each pointer.
185 * @data: Data passed to callback function.
186 *
187 * The callback function will be called for each entry in @idr, passing
188 * the ID, the entry and @data.
189 *
190 * If @fn returns anything other than %0, the iteration stops and that
191 * value is returned from this function.
192 *
193 * idr_for_each() can be called concurrently with idr_alloc() and
194 * idr_remove() if protected by RCU. Newly added entries may not be
195 * seen and deleted entries may be seen, but adding and removing entries
196 * will not cause other entries to be skipped, nor spurious ones to be seen.
197 */
198int idr_for_each(const struct idr *idr,
199 int (*fn)(int id, void *p, void *data), void *data)
200{
201 struct radix_tree_iter iter;
202 void __rcu **slot;
203 int base = idr->idr_base;
204
205 radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, 0) {
206 int ret;
207 unsigned long id = iter.index + base;
208
209 if (WARN_ON_ONCE(id > INT_MAX))
210 break;
211 ret = fn(id, rcu_dereference_raw(*slot), data);
212 if (ret)
213 return ret;
214 }
215
216 return 0;
217}
218EXPORT_SYMBOL(idr_for_each);
219
220/**
221 * idr_get_next() - Find next populated entry.
222 * @idr: IDR handle.
223 * @nextid: Pointer to an ID.
224 *
225 * Returns the next populated entry in the tree with an ID greater than
226 * or equal to the value pointed to by @nextid. On exit, @nextid is updated
227 * to the ID of the found value. To use in a loop, the value pointed to by
228 * nextid must be incremented by the user.
229 */
230void *idr_get_next(struct idr *idr, int *nextid)
231{
232 struct radix_tree_iter iter;
233 void __rcu **slot;
234 unsigned long base = idr->idr_base;
235 unsigned long id = *nextid;
236
237 id = (id < base) ? 0 : id - base;
238 slot = radix_tree_iter_find(&idr->idr_rt, &iter, id);
239 if (!slot)
240 return NULL;
241 id = iter.index + base;
242
243 if (WARN_ON_ONCE(id > INT_MAX))
244 return NULL;
245
246 *nextid = id;
247 return rcu_dereference_raw(*slot);
248}
249EXPORT_SYMBOL(idr_get_next);
250
251/**
252 * idr_get_next_ul() - Find next populated entry.
253 * @idr: IDR handle.
254 * @nextid: Pointer to an ID.
255 *
256 * Returns the next populated entry in the tree with an ID greater than
257 * or equal to the value pointed to by @nextid. On exit, @nextid is updated
258 * to the ID of the found value. To use in a loop, the value pointed to by
259 * nextid must be incremented by the user.
260 */
261void *idr_get_next_ul(struct idr *idr, unsigned long *nextid)
262{
263 struct radix_tree_iter iter;
264 void __rcu **slot;
265 unsigned long base = idr->idr_base;
266 unsigned long id = *nextid;
267
268 id = (id < base) ? 0 : id - base;
269 slot = radix_tree_iter_find(&idr->idr_rt, &iter, id);
270 if (!slot)
271 return NULL;
272
273 *nextid = iter.index + base;
274 return rcu_dereference_raw(*slot);
275}
276EXPORT_SYMBOL(idr_get_next_ul);
277
278/**
279 * idr_replace() - replace pointer for given ID.
280 * @idr: IDR handle.
281 * @ptr: New pointer to associate with the ID.
282 * @id: ID to change.
283 *
284 * Replace the pointer registered with an ID and return the old value.
285 * This function can be called under the RCU read lock concurrently with
286 * idr_alloc() and idr_remove() (as long as the ID being removed is not
287 * the one being replaced!).
288 *
289 * Returns: the old value on success. %-ENOENT indicates that @id was not
290 * found. %-EINVAL indicates that @ptr was not valid.
291 */
292void *idr_replace(struct idr *idr, void *ptr, unsigned long id)
293{
294 struct radix_tree_node *node;
295 void __rcu **slot = NULL;
296 void *entry;
297
298 if (WARN_ON_ONCE(radix_tree_is_internal_node(ptr)))
299 return ERR_PTR(-EINVAL);
300 id -= idr->idr_base;
301
302 entry = __radix_tree_lookup(&idr->idr_rt, id, &node, &slot);
303 if (!slot || radix_tree_tag_get(&idr->idr_rt, id, IDR_FREE))
304 return ERR_PTR(-ENOENT);
305
306 __radix_tree_replace(&idr->idr_rt, node, slot, ptr, NULL);
307
308 return entry;
309}
310EXPORT_SYMBOL(idr_replace);
311
312/**
313 * DOC: IDA description
314 *
315 * The IDA is an ID allocator which does not provide the ability to
316 * associate an ID with a pointer. As such, it only needs to store one
317 * bit per ID, and so is more space efficient than an IDR. To use an IDA,
318 * define it using DEFINE_IDA() (or embed a &struct ida in a data structure,
319 * then initialise it using ida_init()). To allocate a new ID, call
320 * ida_simple_get(). To free an ID, call ida_simple_remove().
321 *
322 * If you have more complex locking requirements, use a loop around
323 * ida_pre_get() and ida_get_new() to allocate a new ID. Then use
324 * ida_remove() to free an ID. You must make sure that ida_get_new() and
325 * ida_remove() cannot be called at the same time as each other for the
326 * same IDA.
327 *
328 * You can also use ida_get_new_above() if you need an ID to be allocated
329 * above a particular number. ida_destroy() can be used to dispose of an
330 * IDA without needing to free the individual IDs in it. You can use
331 * ida_is_empty() to find out whether the IDA has any IDs currently allocated.
332 *
333 * IDs are currently limited to the range [0-INT_MAX]. If this is an awkward
334 * limitation, it should be quite straightforward to raise the maximum.
335 */
336
337/*
338 * Developer's notes:
339 *
340 * The IDA uses the functionality provided by the IDR & radix tree to store
341 * bitmaps in each entry. The IDR_FREE tag means there is at least one bit
342 * free, unlike the IDR where it means at least one entry is free.
343 *
344 * I considered telling the radix tree that each slot is an order-10 node
345 * and storing the bit numbers in the radix tree, but the radix tree can't
346 * allow a single multiorder entry at index 0, which would significantly
347 * increase memory consumption for the IDA. So instead we divide the index
348 * by the number of bits in the leaf bitmap before doing a radix tree lookup.
349 *
350 * As an optimisation, if there are only a few low bits set in any given
351 * leaf, instead of allocating a 128-byte bitmap, we use the 'exceptional
352 * entry' functionality of the radix tree to store BITS_PER_LONG - 2 bits
353 * directly in the entry. By being really tricksy, we could store
354 * BITS_PER_LONG - 1 bits, but there're diminishing returns after optimising
355 * for 0-3 allocated IDs.
356 *
357 * We allow the radix tree 'exceptional' count to get out of date. Nothing
358 * in the IDA nor the radix tree code checks it. If it becomes important
359 * to maintain an accurate exceptional count, switch the rcu_assign_pointer()
360 * calls to radix_tree_iter_replace() which will correct the exceptional
361 * count.
362 *
363 * The IDA always requires a lock to alloc/free. If we add a 'test_bit'
364 * equivalent, it will still need locking. Going to RCU lookup would require
365 * using RCU to free bitmaps, and that's not trivial without embedding an
366 * RCU head in the bitmap, which adds a 2-pointer overhead to each 128-byte
367 * bitmap, which is excessive.
368 */
369
370#define IDA_MAX (0x80000000U / IDA_BITMAP_BITS - 1)
371
372/**
373 * ida_get_new_above - allocate new ID above or equal to a start id
374 * @ida: ida handle
375 * @start: id to start search at
376 * @id: pointer to the allocated handle
377 *
378 * Allocate new ID above or equal to @start. It should be called
379 * with any required locks to ensure that concurrent calls to
380 * ida_get_new_above() / ida_get_new() / ida_remove() are not allowed.
381 * Consider using ida_simple_get() if you do not have complex locking
382 * requirements.
383 *
384 * If memory is required, it will return %-EAGAIN, you should unlock
385 * and go back to the ida_pre_get() call. If the ida is full, it will
386 * return %-ENOSPC. On success, it will return 0.
387 *
388 * @id returns a value in the range @start ... %0x7fffffff.
389 */
390int ida_get_new_above(struct ida *ida, int start, int *id)
391{
392 struct radix_tree_root *root = &ida->ida_rt;
393 void __rcu **slot;
394 struct radix_tree_iter iter;
395 struct ida_bitmap *bitmap;
396 unsigned long index;
397 unsigned bit, ebit;
398 int new;
399
400 index = start / IDA_BITMAP_BITS;
401 bit = start % IDA_BITMAP_BITS;
402 ebit = bit + RADIX_TREE_EXCEPTIONAL_SHIFT;
403
404 slot = radix_tree_iter_init(&iter, index);
405 for (;;) {
406 if (slot)
407 slot = radix_tree_next_slot(slot, &iter,
408 RADIX_TREE_ITER_TAGGED);
409 if (!slot) {
410 slot = idr_get_free(root, &iter, GFP_NOWAIT, IDA_MAX);
411 if (IS_ERR(slot)) {
412 if (slot == ERR_PTR(-ENOMEM))
413 return -EAGAIN;
414 return PTR_ERR(slot);
415 }
416 }
417 if (iter.index > index) {
418 bit = 0;
419 ebit = RADIX_TREE_EXCEPTIONAL_SHIFT;
420 }
421 new = iter.index * IDA_BITMAP_BITS;
422 bitmap = rcu_dereference_raw(*slot);
423 if (radix_tree_exception(bitmap)) {
424 unsigned long tmp = (unsigned long)bitmap;
425 ebit = find_next_zero_bit(&tmp, BITS_PER_LONG, ebit);
426 if (ebit < BITS_PER_LONG) {
427 tmp |= 1UL << ebit;
428 rcu_assign_pointer(*slot, (void *)tmp);
429 *id = new + ebit - RADIX_TREE_EXCEPTIONAL_SHIFT;
430 return 0;
431 }
432 bitmap = this_cpu_xchg(ida_bitmap, NULL);
433 if (!bitmap)
434 return -EAGAIN;
435 bitmap->bitmap[0] = tmp >> RADIX_TREE_EXCEPTIONAL_SHIFT;
436 rcu_assign_pointer(*slot, bitmap);
437 }
438
439 if (bitmap) {
440 bit = find_next_zero_bit(bitmap->bitmap,
441 IDA_BITMAP_BITS, bit);
442 new += bit;
443 if (new < 0)
444 return -ENOSPC;
445 if (bit == IDA_BITMAP_BITS)
446 continue;
447
448 __set_bit(bit, bitmap->bitmap);
449 if (bitmap_full(bitmap->bitmap, IDA_BITMAP_BITS))
450 radix_tree_iter_tag_clear(root, &iter,
451 IDR_FREE);
452 } else {
453 new += bit;
454 if (new < 0)
455 return -ENOSPC;
456 if (ebit < BITS_PER_LONG) {
457 bitmap = (void *)((1UL << ebit) |
458 RADIX_TREE_EXCEPTIONAL_ENTRY);
459 radix_tree_iter_replace(root, &iter, slot,
460 bitmap);
461 *id = new;
462 return 0;
463 }
464 bitmap = this_cpu_xchg(ida_bitmap, NULL);
465 if (!bitmap)
466 return -EAGAIN;
467 __set_bit(bit, bitmap->bitmap);
468 radix_tree_iter_replace(root, &iter, slot, bitmap);
469 }
470
471 *id = new;
472 return 0;
473 }
474}
475EXPORT_SYMBOL(ida_get_new_above);
476
477/**
478 * ida_remove - Free the given ID
479 * @ida: ida handle
480 * @id: ID to free
481 *
482 * This function should not be called at the same time as ida_get_new_above().
483 */
484void ida_remove(struct ida *ida, int id)
485{
486 unsigned long index = id / IDA_BITMAP_BITS;
487 unsigned offset = id % IDA_BITMAP_BITS;
488 struct ida_bitmap *bitmap;
489 unsigned long *btmp;
490 struct radix_tree_iter iter;
491 void __rcu **slot;
492
493 slot = radix_tree_iter_lookup(&ida->ida_rt, &iter, index);
494 if (!slot)
495 goto err;
496
497 bitmap = rcu_dereference_raw(*slot);
498 if (radix_tree_exception(bitmap)) {
499 btmp = (unsigned long *)slot;
500 offset += RADIX_TREE_EXCEPTIONAL_SHIFT;
501 if (offset >= BITS_PER_LONG)
502 goto err;
503 } else {
504 btmp = bitmap->bitmap;
505 }
506 if (!test_bit(offset, btmp))
507 goto err;
508
509 __clear_bit(offset, btmp);
510 radix_tree_iter_tag_set(&ida->ida_rt, &iter, IDR_FREE);
511 if (radix_tree_exception(bitmap)) {
512 if (rcu_dereference_raw(*slot) ==
513 (void *)RADIX_TREE_EXCEPTIONAL_ENTRY)
514 radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
515 } else if (bitmap_empty(btmp, IDA_BITMAP_BITS)) {
516 kfree(bitmap);
517 radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
518 }
519 return;
520 err:
521 WARN(1, "ida_remove called for id=%d which is not allocated.\n", id);
522}
523EXPORT_SYMBOL(ida_remove);
524
525/**
526 * ida_destroy - Free the contents of an ida
527 * @ida: ida handle
528 *
529 * Calling this function releases all resources associated with an IDA. When
530 * this call returns, the IDA is empty and can be reused or freed. The caller
531 * should not allow ida_remove() or ida_get_new_above() to be called at the
532 * same time.
533 */
534void ida_destroy(struct ida *ida)
535{
536 struct radix_tree_iter iter;
537 void __rcu **slot;
538
539 radix_tree_for_each_slot(slot, &ida->ida_rt, &iter, 0) {
540 struct ida_bitmap *bitmap = rcu_dereference_raw(*slot);
541 if (!radix_tree_exception(bitmap))
542 kfree(bitmap);
543 radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
544 }
545}
546EXPORT_SYMBOL(ida_destroy);
547
548/**
549 * ida_simple_get - get a new id.
550 * @ida: the (initialized) ida.
551 * @start: the minimum id (inclusive, < 0x8000000)
552 * @end: the maximum id (exclusive, < 0x8000000 or 0)
553 * @gfp_mask: memory allocation flags
554 *
555 * Allocates an id in the range start <= id < end, or returns -ENOSPC.
556 * On memory allocation failure, returns -ENOMEM.
557 *
558 * Compared to ida_get_new_above() this function does its own locking, and
559 * should be used unless there are special requirements.
560 *
561 * Use ida_simple_remove() to get rid of an id.
562 */
563int ida_simple_get(struct ida *ida, unsigned int start, unsigned int end,
564 gfp_t gfp_mask)
565{
566 int ret, id;
567 unsigned int max;
568 unsigned long flags;
569
570 BUG_ON((int)start < 0);
571 BUG_ON((int)end < 0);
572
573 if (end == 0)
574 max = 0x80000000;
575 else {
576 BUG_ON(end < start);
577 max = end - 1;
578 }
579
580again:
581 if (!ida_pre_get(ida, gfp_mask))
582 return -ENOMEM;
583
584 spin_lock_irqsave(&simple_ida_lock, flags);
585 ret = ida_get_new_above(ida, start, &id);
586 if (!ret) {
587 if (id > max) {
588 ida_remove(ida, id);
589 ret = -ENOSPC;
590 } else {
591 ret = id;
592 }
593 }
594 spin_unlock_irqrestore(&simple_ida_lock, flags);
595
596 if (unlikely(ret == -EAGAIN))
597 goto again;
598
599 return ret;
600}
601EXPORT_SYMBOL(ida_simple_get);
602
603/**
604 * ida_simple_remove - remove an allocated id.
605 * @ida: the (initialized) ida.
606 * @id: the id returned by ida_simple_get.
607 *
608 * Use to release an id allocated with ida_simple_get().
609 *
610 * Compared to ida_remove() this function does its own locking, and should be
611 * used unless there are special requirements.
612 */
613void ida_simple_remove(struct ida *ida, unsigned int id)
614{
615 unsigned long flags;
616
617 BUG_ON((int)id < 0);
618 spin_lock_irqsave(&simple_ida_lock, flags);
619 ida_remove(ida, id);
620 spin_unlock_irqrestore(&simple_ida_lock, flags);
621}
622EXPORT_SYMBOL(ida_simple_remove);