Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
 
 
  3 * This file contains the base functions to manage periodic tick
  4 * related events.
  5 *
  6 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
  7 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
  8 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
 
 
 
  9 */
 10#include <linux/cpu.h>
 11#include <linux/err.h>
 12#include <linux/hrtimer.h>
 13#include <linux/interrupt.h>
 14#include <linux/nmi.h>
 15#include <linux/percpu.h>
 16#include <linux/profile.h>
 17#include <linux/sched.h>
 18#include <linux/module.h>
 19#include <trace/events/power.h>
 20
 21#include <asm/irq_regs.h>
 22
 23#include "tick-internal.h"
 24
 25/*
 26 * Tick devices
 27 */
 28DEFINE_PER_CPU(struct tick_device, tick_cpu_device);
 29/*
 30 * Tick next event: keeps track of the tick time. It's updated by the
 31 * CPU which handles the tick and protected by jiffies_lock. There is
 32 * no requirement to write hold the jiffies seqcount for it.
 33 */
 34ktime_t tick_next_period;
 
 35
 36/*
 37 * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR
 38 * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This
 39 * variable has two functions:
 40 *
 41 * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the
 42 *    timekeeping lock all at once. Only the CPU which is assigned to do the
 43 *    update is handling it.
 44 *
 45 * 2) Hand off the duty in the NOHZ idle case by setting the value to
 46 *    TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks
 47 *    at it will take over and keep the time keeping alive.  The handover
 48 *    procedure also covers cpu hotplug.
 49 */
 50int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT;
 51#ifdef CONFIG_NO_HZ_FULL
 52/*
 53 * tick_do_timer_boot_cpu indicates the boot CPU temporarily owns
 54 * tick_do_timer_cpu and it should be taken over by an eligible secondary
 55 * when one comes online.
 56 */
 57static int tick_do_timer_boot_cpu __read_mostly = -1;
 58#endif
 59
 60/*
 61 * Debugging: see timer_list.c
 62 */
 63struct tick_device *tick_get_device(int cpu)
 64{
 65	return &per_cpu(tick_cpu_device, cpu);
 66}
 67
 68/**
 69 * tick_is_oneshot_available - check for a oneshot capable event device
 70 */
 71int tick_is_oneshot_available(void)
 72{
 73	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
 74
 75	if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT))
 76		return 0;
 77	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
 78		return 1;
 79	return tick_broadcast_oneshot_available();
 80}
 81
 82/*
 83 * Periodic tick
 84 */
 85static void tick_periodic(int cpu)
 86{
 87	if (tick_do_timer_cpu == cpu) {
 88		raw_spin_lock(&jiffies_lock);
 89		write_seqcount_begin(&jiffies_seq);
 90
 91		/* Keep track of the next tick event */
 92		tick_next_period = ktime_add_ns(tick_next_period, TICK_NSEC);
 93
 94		do_timer(1);
 95		write_seqcount_end(&jiffies_seq);
 96		raw_spin_unlock(&jiffies_lock);
 97		update_wall_time();
 98	}
 99
100	update_process_times(user_mode(get_irq_regs()));
101	profile_tick(CPU_PROFILING);
102}
103
104/*
105 * Event handler for periodic ticks
106 */
107void tick_handle_periodic(struct clock_event_device *dev)
108{
109	int cpu = smp_processor_id();
110	ktime_t next = dev->next_event;
111
112	tick_periodic(cpu);
113
114#if defined(CONFIG_HIGH_RES_TIMERS) || defined(CONFIG_NO_HZ_COMMON)
115	/*
116	 * The cpu might have transitioned to HIGHRES or NOHZ mode via
117	 * update_process_times() -> run_local_timers() ->
118	 * hrtimer_run_queues().
119	 */
120	if (dev->event_handler != tick_handle_periodic)
121		return;
122#endif
123
124	if (!clockevent_state_oneshot(dev))
125		return;
126	for (;;) {
127		/*
128		 * Setup the next period for devices, which do not have
129		 * periodic mode:
130		 */
131		next = ktime_add_ns(next, TICK_NSEC);
132
133		if (!clockevents_program_event(dev, next, false))
134			return;
135		/*
136		 * Have to be careful here. If we're in oneshot mode,
137		 * before we call tick_periodic() in a loop, we need
138		 * to be sure we're using a real hardware clocksource.
139		 * Otherwise we could get trapped in an infinite
140		 * loop, as the tick_periodic() increments jiffies,
141		 * which then will increment time, possibly causing
142		 * the loop to trigger again and again.
143		 */
144		if (timekeeping_valid_for_hres())
145			tick_periodic(cpu);
146	}
147}
148
149/*
150 * Setup the device for a periodic tick
151 */
152void tick_setup_periodic(struct clock_event_device *dev, int broadcast)
153{
154	tick_set_periodic_handler(dev, broadcast);
155
156	/* Broadcast setup ? */
157	if (!tick_device_is_functional(dev))
158		return;
159
160	if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) &&
161	    !tick_broadcast_oneshot_active()) {
162		clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC);
163	} else {
164		unsigned int seq;
165		ktime_t next;
166
167		do {
168			seq = read_seqcount_begin(&jiffies_seq);
169			next = tick_next_period;
170		} while (read_seqcount_retry(&jiffies_seq, seq));
171
172		clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
173
174		for (;;) {
175			if (!clockevents_program_event(dev, next, false))
176				return;
177			next = ktime_add_ns(next, TICK_NSEC);
178		}
179	}
180}
181
182#ifdef CONFIG_NO_HZ_FULL
183static void giveup_do_timer(void *info)
184{
185	int cpu = *(unsigned int *)info;
186
187	WARN_ON(tick_do_timer_cpu != smp_processor_id());
188
189	tick_do_timer_cpu = cpu;
190}
191
192static void tick_take_do_timer_from_boot(void)
193{
194	int cpu = smp_processor_id();
195	int from = tick_do_timer_boot_cpu;
196
197	if (from >= 0 && from != cpu)
198		smp_call_function_single(from, giveup_do_timer, &cpu, 1);
199}
200#endif
201
202/*
203 * Setup the tick device
204 */
205static void tick_setup_device(struct tick_device *td,
206			      struct clock_event_device *newdev, int cpu,
207			      const struct cpumask *cpumask)
208{
209	void (*handler)(struct clock_event_device *) = NULL;
210	ktime_t next_event = 0;
211
212	/*
213	 * First device setup ?
214	 */
215	if (!td->evtdev) {
216		/*
217		 * If no cpu took the do_timer update, assign it to
218		 * this cpu:
219		 */
220		if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) {
221			tick_do_timer_cpu = cpu;
222
 
 
223			tick_next_period = ktime_get();
224#ifdef CONFIG_NO_HZ_FULL
225			/*
226			 * The boot CPU may be nohz_full, in which case set
227			 * tick_do_timer_boot_cpu so the first housekeeping
228			 * secondary that comes up will take do_timer from
229			 * us.
230			 */
231			if (tick_nohz_full_cpu(cpu))
232				tick_do_timer_boot_cpu = cpu;
233
234		} else if (tick_do_timer_boot_cpu != -1 &&
235						!tick_nohz_full_cpu(cpu)) {
236			tick_take_do_timer_from_boot();
237			tick_do_timer_boot_cpu = -1;
238			WARN_ON(tick_do_timer_cpu != cpu);
239#endif
240		}
241
242		/*
243		 * Startup in periodic mode first.
244		 */
245		td->mode = TICKDEV_MODE_PERIODIC;
246	} else {
247		handler = td->evtdev->event_handler;
248		next_event = td->evtdev->next_event;
249		td->evtdev->event_handler = clockevents_handle_noop;
250	}
251
252	td->evtdev = newdev;
253
254	/*
255	 * When the device is not per cpu, pin the interrupt to the
256	 * current cpu:
257	 */
258	if (!cpumask_equal(newdev->cpumask, cpumask))
259		irq_set_affinity(newdev->irq, cpumask);
260
261	/*
262	 * When global broadcasting is active, check if the current
263	 * device is registered as a placeholder for broadcast mode.
264	 * This allows us to handle this x86 misfeature in a generic
265	 * way. This function also returns !=0 when we keep the
266	 * current active broadcast state for this CPU.
267	 */
268	if (tick_device_uses_broadcast(newdev, cpu))
269		return;
270
271	if (td->mode == TICKDEV_MODE_PERIODIC)
272		tick_setup_periodic(newdev, 0);
273	else
274		tick_setup_oneshot(newdev, handler, next_event);
275}
276
277void tick_install_replacement(struct clock_event_device *newdev)
278{
279	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
280	int cpu = smp_processor_id();
281
282	clockevents_exchange_device(td->evtdev, newdev);
283	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
284	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
285		tick_oneshot_notify();
286}
287
288static bool tick_check_percpu(struct clock_event_device *curdev,
289			      struct clock_event_device *newdev, int cpu)
290{
291	if (!cpumask_test_cpu(cpu, newdev->cpumask))
292		return false;
293	if (cpumask_equal(newdev->cpumask, cpumask_of(cpu)))
294		return true;
295	/* Check if irq affinity can be set */
296	if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq))
297		return false;
298	/* Prefer an existing cpu local device */
299	if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu)))
300		return false;
301	return true;
302}
303
304static bool tick_check_preferred(struct clock_event_device *curdev,
305				 struct clock_event_device *newdev)
306{
307	/* Prefer oneshot capable device */
308	if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) {
309		if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT))
310			return false;
311		if (tick_oneshot_mode_active())
312			return false;
313	}
314
315	/*
316	 * Use the higher rated one, but prefer a CPU local device with a lower
317	 * rating than a non-CPU local device
318	 */
319	return !curdev ||
320		newdev->rating > curdev->rating ||
321	       !cpumask_equal(curdev->cpumask, newdev->cpumask);
322}
323
324/*
325 * Check whether the new device is a better fit than curdev. curdev
326 * can be NULL !
327 */
328bool tick_check_replacement(struct clock_event_device *curdev,
329			    struct clock_event_device *newdev)
330{
331	if (!tick_check_percpu(curdev, newdev, smp_processor_id()))
332		return false;
333
334	return tick_check_preferred(curdev, newdev);
335}
336
337/*
338 * Check, if the new registered device should be used. Called with
339 * clockevents_lock held and interrupts disabled.
340 */
341void tick_check_new_device(struct clock_event_device *newdev)
342{
343	struct clock_event_device *curdev;
344	struct tick_device *td;
345	int cpu;
346
347	cpu = smp_processor_id();
348	td = &per_cpu(tick_cpu_device, cpu);
349	curdev = td->evtdev;
350
351	if (!tick_check_replacement(curdev, newdev))
 
 
 
 
 
352		goto out_bc;
353
354	if (!try_module_get(newdev->owner))
355		return;
356
357	/*
358	 * Replace the eventually existing device by the new
359	 * device. If the current device is the broadcast device, do
360	 * not give it back to the clockevents layer !
361	 */
362	if (tick_is_broadcast_device(curdev)) {
363		clockevents_shutdown(curdev);
364		curdev = NULL;
365	}
366	clockevents_exchange_device(curdev, newdev);
367	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
368	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
369		tick_oneshot_notify();
370	return;
371
372out_bc:
373	/*
374	 * Can the new device be used as a broadcast device ?
375	 */
376	tick_install_broadcast_device(newdev, cpu);
377}
378
379/**
380 * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode
381 * @state:	The target state (enter/exit)
382 *
383 * The system enters/leaves a state, where affected devices might stop
384 * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups.
385 *
386 * Called with interrupts disabled, so clockevents_lock is not
387 * required here because the local clock event device cannot go away
388 * under us.
389 */
390int tick_broadcast_oneshot_control(enum tick_broadcast_state state)
391{
392	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
393
394	if (!(td->evtdev->features & CLOCK_EVT_FEAT_C3STOP))
395		return 0;
396
397	return __tick_broadcast_oneshot_control(state);
398}
399EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control);
400
401#ifdef CONFIG_HOTPLUG_CPU
402/*
403 * Transfer the do_timer job away from a dying cpu.
404 *
405 * Called with interrupts disabled. No locking required. If
406 * tick_do_timer_cpu is owned by this cpu, nothing can change it.
407 */
408void tick_handover_do_timer(void)
409{
410	if (tick_do_timer_cpu == smp_processor_id())
411		tick_do_timer_cpu = cpumask_first(cpu_online_mask);
 
 
 
 
412}
413
414/*
415 * Shutdown an event device on a given cpu:
416 *
417 * This is called on a life CPU, when a CPU is dead. So we cannot
418 * access the hardware device itself.
419 * We just set the mode and remove it from the lists.
420 */
421void tick_shutdown(unsigned int cpu)
422{
423	struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
424	struct clock_event_device *dev = td->evtdev;
425
426	td->mode = TICKDEV_MODE_PERIODIC;
427	if (dev) {
428		/*
429		 * Prevent that the clock events layer tries to call
430		 * the set mode function!
431		 */
432		clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED);
433		clockevents_exchange_device(dev, NULL);
434		dev->event_handler = clockevents_handle_noop;
435		td->evtdev = NULL;
436	}
437}
438#endif
439
440/**
441 * tick_suspend_local - Suspend the local tick device
442 *
443 * Called from the local cpu for freeze with interrupts disabled.
444 *
445 * No locks required. Nothing can change the per cpu device.
446 */
447void tick_suspend_local(void)
448{
449	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
450
451	clockevents_shutdown(td->evtdev);
452}
453
454/**
455 * tick_resume_local - Resume the local tick device
456 *
457 * Called from the local CPU for unfreeze or XEN resume magic.
458 *
459 * No locks required. Nothing can change the per cpu device.
460 */
461void tick_resume_local(void)
462{
463	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
464	bool broadcast = tick_resume_check_broadcast();
465
466	clockevents_tick_resume(td->evtdev);
467	if (!broadcast) {
468		if (td->mode == TICKDEV_MODE_PERIODIC)
469			tick_setup_periodic(td->evtdev, 0);
470		else
471			tick_resume_oneshot();
472	}
473
474	/*
475	 * Ensure that hrtimers are up to date and the clockevents device
476	 * is reprogrammed correctly when high resolution timers are
477	 * enabled.
478	 */
479	hrtimers_resume_local();
480}
481
482/**
483 * tick_suspend - Suspend the tick and the broadcast device
484 *
485 * Called from syscore_suspend() via timekeeping_suspend with only one
486 * CPU online and interrupts disabled or from tick_unfreeze() under
487 * tick_freeze_lock.
488 *
489 * No locks required. Nothing can change the per cpu device.
490 */
491void tick_suspend(void)
492{
493	tick_suspend_local();
494	tick_suspend_broadcast();
495}
496
497/**
498 * tick_resume - Resume the tick and the broadcast device
499 *
500 * Called from syscore_resume() via timekeeping_resume with only one
501 * CPU online and interrupts disabled.
502 *
503 * No locks required. Nothing can change the per cpu device.
504 */
505void tick_resume(void)
506{
507	tick_resume_broadcast();
508	tick_resume_local();
509}
510
511#ifdef CONFIG_SUSPEND
512static DEFINE_RAW_SPINLOCK(tick_freeze_lock);
513static unsigned int tick_freeze_depth;
514
515/**
516 * tick_freeze - Suspend the local tick and (possibly) timekeeping.
517 *
518 * Check if this is the last online CPU executing the function and if so,
519 * suspend timekeeping.  Otherwise suspend the local tick.
520 *
521 * Call with interrupts disabled.  Must be balanced with %tick_unfreeze().
522 * Interrupts must not be enabled before the subsequent %tick_unfreeze().
523 */
524void tick_freeze(void)
525{
526	raw_spin_lock(&tick_freeze_lock);
527
528	tick_freeze_depth++;
529	if (tick_freeze_depth == num_online_cpus()) {
530		trace_suspend_resume(TPS("timekeeping_freeze"),
531				     smp_processor_id(), true);
532		system_state = SYSTEM_SUSPEND;
533		sched_clock_suspend();
534		timekeeping_suspend();
535	} else {
536		tick_suspend_local();
537	}
538
539	raw_spin_unlock(&tick_freeze_lock);
540}
541
542/**
543 * tick_unfreeze - Resume the local tick and (possibly) timekeeping.
544 *
545 * Check if this is the first CPU executing the function and if so, resume
546 * timekeeping.  Otherwise resume the local tick.
547 *
548 * Call with interrupts disabled.  Must be balanced with %tick_freeze().
549 * Interrupts must not be enabled after the preceding %tick_freeze().
550 */
551void tick_unfreeze(void)
552{
553	raw_spin_lock(&tick_freeze_lock);
554
555	if (tick_freeze_depth == num_online_cpus()) {
556		timekeeping_resume();
557		sched_clock_resume();
558		system_state = SYSTEM_RUNNING;
559		trace_suspend_resume(TPS("timekeeping_freeze"),
560				     smp_processor_id(), false);
561	} else {
562		touch_softlockup_watchdog();
563		tick_resume_local();
564	}
565
566	tick_freeze_depth--;
567
568	raw_spin_unlock(&tick_freeze_lock);
569}
570#endif /* CONFIG_SUSPEND */
571
572/**
573 * tick_init - initialize the tick control
574 */
575void __init tick_init(void)
576{
577	tick_broadcast_init();
578	tick_nohz_init();
579}
v4.17
 
  1/*
  2 * linux/kernel/time/tick-common.c
  3 *
  4 * This file contains the base functions to manage periodic tick
  5 * related events.
  6 *
  7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
  8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
  9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
 10 *
 11 * This code is licenced under the GPL version 2. For details see
 12 * kernel-base/COPYING.
 13 */
 14#include <linux/cpu.h>
 15#include <linux/err.h>
 16#include <linux/hrtimer.h>
 17#include <linux/interrupt.h>
 
 18#include <linux/percpu.h>
 19#include <linux/profile.h>
 20#include <linux/sched.h>
 21#include <linux/module.h>
 22#include <trace/events/power.h>
 23
 24#include <asm/irq_regs.h>
 25
 26#include "tick-internal.h"
 27
 28/*
 29 * Tick devices
 30 */
 31DEFINE_PER_CPU(struct tick_device, tick_cpu_device);
 32/*
 33 * Tick next event: keeps track of the tick time
 
 
 34 */
 35ktime_t tick_next_period;
 36ktime_t tick_period;
 37
 38/*
 39 * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR
 40 * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This
 41 * variable has two functions:
 42 *
 43 * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the
 44 *    timekeeping lock all at once. Only the CPU which is assigned to do the
 45 *    update is handling it.
 46 *
 47 * 2) Hand off the duty in the NOHZ idle case by setting the value to
 48 *    TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks
 49 *    at it will take over and keep the time keeping alive.  The handover
 50 *    procedure also covers cpu hotplug.
 51 */
 52int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT;
 
 
 
 
 
 
 
 
 53
 54/*
 55 * Debugging: see timer_list.c
 56 */
 57struct tick_device *tick_get_device(int cpu)
 58{
 59	return &per_cpu(tick_cpu_device, cpu);
 60}
 61
 62/**
 63 * tick_is_oneshot_available - check for a oneshot capable event device
 64 */
 65int tick_is_oneshot_available(void)
 66{
 67	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
 68
 69	if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT))
 70		return 0;
 71	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
 72		return 1;
 73	return tick_broadcast_oneshot_available();
 74}
 75
 76/*
 77 * Periodic tick
 78 */
 79static void tick_periodic(int cpu)
 80{
 81	if (tick_do_timer_cpu == cpu) {
 82		write_seqlock(&jiffies_lock);
 
 83
 84		/* Keep track of the next tick event */
 85		tick_next_period = ktime_add(tick_next_period, tick_period);
 86
 87		do_timer(1);
 88		write_sequnlock(&jiffies_lock);
 
 89		update_wall_time();
 90	}
 91
 92	update_process_times(user_mode(get_irq_regs()));
 93	profile_tick(CPU_PROFILING);
 94}
 95
 96/*
 97 * Event handler for periodic ticks
 98 */
 99void tick_handle_periodic(struct clock_event_device *dev)
100{
101	int cpu = smp_processor_id();
102	ktime_t next = dev->next_event;
103
104	tick_periodic(cpu);
105
106#if defined(CONFIG_HIGH_RES_TIMERS) || defined(CONFIG_NO_HZ_COMMON)
107	/*
108	 * The cpu might have transitioned to HIGHRES or NOHZ mode via
109	 * update_process_times() -> run_local_timers() ->
110	 * hrtimer_run_queues().
111	 */
112	if (dev->event_handler != tick_handle_periodic)
113		return;
114#endif
115
116	if (!clockevent_state_oneshot(dev))
117		return;
118	for (;;) {
119		/*
120		 * Setup the next period for devices, which do not have
121		 * periodic mode:
122		 */
123		next = ktime_add(next, tick_period);
124
125		if (!clockevents_program_event(dev, next, false))
126			return;
127		/*
128		 * Have to be careful here. If we're in oneshot mode,
129		 * before we call tick_periodic() in a loop, we need
130		 * to be sure we're using a real hardware clocksource.
131		 * Otherwise we could get trapped in an infinite
132		 * loop, as the tick_periodic() increments jiffies,
133		 * which then will increment time, possibly causing
134		 * the loop to trigger again and again.
135		 */
136		if (timekeeping_valid_for_hres())
137			tick_periodic(cpu);
138	}
139}
140
141/*
142 * Setup the device for a periodic tick
143 */
144void tick_setup_periodic(struct clock_event_device *dev, int broadcast)
145{
146	tick_set_periodic_handler(dev, broadcast);
147
148	/* Broadcast setup ? */
149	if (!tick_device_is_functional(dev))
150		return;
151
152	if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) &&
153	    !tick_broadcast_oneshot_active()) {
154		clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC);
155	} else {
156		unsigned long seq;
157		ktime_t next;
158
159		do {
160			seq = read_seqbegin(&jiffies_lock);
161			next = tick_next_period;
162		} while (read_seqretry(&jiffies_lock, seq));
163
164		clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
165
166		for (;;) {
167			if (!clockevents_program_event(dev, next, false))
168				return;
169			next = ktime_add(next, tick_period);
170		}
171	}
172}
173
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
174/*
175 * Setup the tick device
176 */
177static void tick_setup_device(struct tick_device *td,
178			      struct clock_event_device *newdev, int cpu,
179			      const struct cpumask *cpumask)
180{
181	void (*handler)(struct clock_event_device *) = NULL;
182	ktime_t next_event = 0;
183
184	/*
185	 * First device setup ?
186	 */
187	if (!td->evtdev) {
188		/*
189		 * If no cpu took the do_timer update, assign it to
190		 * this cpu:
191		 */
192		if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) {
193			if (!tick_nohz_full_cpu(cpu))
194				tick_do_timer_cpu = cpu;
195			else
196				tick_do_timer_cpu = TICK_DO_TIMER_NONE;
197			tick_next_period = ktime_get();
198			tick_period = NSEC_PER_SEC / HZ;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
199		}
200
201		/*
202		 * Startup in periodic mode first.
203		 */
204		td->mode = TICKDEV_MODE_PERIODIC;
205	} else {
206		handler = td->evtdev->event_handler;
207		next_event = td->evtdev->next_event;
208		td->evtdev->event_handler = clockevents_handle_noop;
209	}
210
211	td->evtdev = newdev;
212
213	/*
214	 * When the device is not per cpu, pin the interrupt to the
215	 * current cpu:
216	 */
217	if (!cpumask_equal(newdev->cpumask, cpumask))
218		irq_set_affinity(newdev->irq, cpumask);
219
220	/*
221	 * When global broadcasting is active, check if the current
222	 * device is registered as a placeholder for broadcast mode.
223	 * This allows us to handle this x86 misfeature in a generic
224	 * way. This function also returns !=0 when we keep the
225	 * current active broadcast state for this CPU.
226	 */
227	if (tick_device_uses_broadcast(newdev, cpu))
228		return;
229
230	if (td->mode == TICKDEV_MODE_PERIODIC)
231		tick_setup_periodic(newdev, 0);
232	else
233		tick_setup_oneshot(newdev, handler, next_event);
234}
235
236void tick_install_replacement(struct clock_event_device *newdev)
237{
238	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
239	int cpu = smp_processor_id();
240
241	clockevents_exchange_device(td->evtdev, newdev);
242	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
243	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
244		tick_oneshot_notify();
245}
246
247static bool tick_check_percpu(struct clock_event_device *curdev,
248			      struct clock_event_device *newdev, int cpu)
249{
250	if (!cpumask_test_cpu(cpu, newdev->cpumask))
251		return false;
252	if (cpumask_equal(newdev->cpumask, cpumask_of(cpu)))
253		return true;
254	/* Check if irq affinity can be set */
255	if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq))
256		return false;
257	/* Prefer an existing cpu local device */
258	if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu)))
259		return false;
260	return true;
261}
262
263static bool tick_check_preferred(struct clock_event_device *curdev,
264				 struct clock_event_device *newdev)
265{
266	/* Prefer oneshot capable device */
267	if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) {
268		if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT))
269			return false;
270		if (tick_oneshot_mode_active())
271			return false;
272	}
273
274	/*
275	 * Use the higher rated one, but prefer a CPU local device with a lower
276	 * rating than a non-CPU local device
277	 */
278	return !curdev ||
279		newdev->rating > curdev->rating ||
280	       !cpumask_equal(curdev->cpumask, newdev->cpumask);
281}
282
283/*
284 * Check whether the new device is a better fit than curdev. curdev
285 * can be NULL !
286 */
287bool tick_check_replacement(struct clock_event_device *curdev,
288			    struct clock_event_device *newdev)
289{
290	if (!tick_check_percpu(curdev, newdev, smp_processor_id()))
291		return false;
292
293	return tick_check_preferred(curdev, newdev);
294}
295
296/*
297 * Check, if the new registered device should be used. Called with
298 * clockevents_lock held and interrupts disabled.
299 */
300void tick_check_new_device(struct clock_event_device *newdev)
301{
302	struct clock_event_device *curdev;
303	struct tick_device *td;
304	int cpu;
305
306	cpu = smp_processor_id();
307	td = &per_cpu(tick_cpu_device, cpu);
308	curdev = td->evtdev;
309
310	/* cpu local device ? */
311	if (!tick_check_percpu(curdev, newdev, cpu))
312		goto out_bc;
313
314	/* Preference decision */
315	if (!tick_check_preferred(curdev, newdev))
316		goto out_bc;
317
318	if (!try_module_get(newdev->owner))
319		return;
320
321	/*
322	 * Replace the eventually existing device by the new
323	 * device. If the current device is the broadcast device, do
324	 * not give it back to the clockevents layer !
325	 */
326	if (tick_is_broadcast_device(curdev)) {
327		clockevents_shutdown(curdev);
328		curdev = NULL;
329	}
330	clockevents_exchange_device(curdev, newdev);
331	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
332	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
333		tick_oneshot_notify();
334	return;
335
336out_bc:
337	/*
338	 * Can the new device be used as a broadcast device ?
339	 */
340	tick_install_broadcast_device(newdev);
341}
342
343/**
344 * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode
345 * @state:	The target state (enter/exit)
346 *
347 * The system enters/leaves a state, where affected devices might stop
348 * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups.
349 *
350 * Called with interrupts disabled, so clockevents_lock is not
351 * required here because the local clock event device cannot go away
352 * under us.
353 */
354int tick_broadcast_oneshot_control(enum tick_broadcast_state state)
355{
356	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
357
358	if (!(td->evtdev->features & CLOCK_EVT_FEAT_C3STOP))
359		return 0;
360
361	return __tick_broadcast_oneshot_control(state);
362}
363EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control);
364
365#ifdef CONFIG_HOTPLUG_CPU
366/*
367 * Transfer the do_timer job away from a dying cpu.
368 *
369 * Called with interrupts disabled. Not locking required. If
370 * tick_do_timer_cpu is owned by this cpu, nothing can change it.
371 */
372void tick_handover_do_timer(void)
373{
374	if (tick_do_timer_cpu == smp_processor_id()) {
375		int cpu = cpumask_first(cpu_online_mask);
376
377		tick_do_timer_cpu = (cpu < nr_cpu_ids) ? cpu :
378			TICK_DO_TIMER_NONE;
379	}
380}
381
382/*
383 * Shutdown an event device on a given cpu:
384 *
385 * This is called on a life CPU, when a CPU is dead. So we cannot
386 * access the hardware device itself.
387 * We just set the mode and remove it from the lists.
388 */
389void tick_shutdown(unsigned int cpu)
390{
391	struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
392	struct clock_event_device *dev = td->evtdev;
393
394	td->mode = TICKDEV_MODE_PERIODIC;
395	if (dev) {
396		/*
397		 * Prevent that the clock events layer tries to call
398		 * the set mode function!
399		 */
400		clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED);
401		clockevents_exchange_device(dev, NULL);
402		dev->event_handler = clockevents_handle_noop;
403		td->evtdev = NULL;
404	}
405}
406#endif
407
408/**
409 * tick_suspend_local - Suspend the local tick device
410 *
411 * Called from the local cpu for freeze with interrupts disabled.
412 *
413 * No locks required. Nothing can change the per cpu device.
414 */
415void tick_suspend_local(void)
416{
417	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
418
419	clockevents_shutdown(td->evtdev);
420}
421
422/**
423 * tick_resume_local - Resume the local tick device
424 *
425 * Called from the local CPU for unfreeze or XEN resume magic.
426 *
427 * No locks required. Nothing can change the per cpu device.
428 */
429void tick_resume_local(void)
430{
431	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
432	bool broadcast = tick_resume_check_broadcast();
433
434	clockevents_tick_resume(td->evtdev);
435	if (!broadcast) {
436		if (td->mode == TICKDEV_MODE_PERIODIC)
437			tick_setup_periodic(td->evtdev, 0);
438		else
439			tick_resume_oneshot();
440	}
 
 
 
 
 
 
 
441}
442
443/**
444 * tick_suspend - Suspend the tick and the broadcast device
445 *
446 * Called from syscore_suspend() via timekeeping_suspend with only one
447 * CPU online and interrupts disabled or from tick_unfreeze() under
448 * tick_freeze_lock.
449 *
450 * No locks required. Nothing can change the per cpu device.
451 */
452void tick_suspend(void)
453{
454	tick_suspend_local();
455	tick_suspend_broadcast();
456}
457
458/**
459 * tick_resume - Resume the tick and the broadcast device
460 *
461 * Called from syscore_resume() via timekeeping_resume with only one
462 * CPU online and interrupts disabled.
463 *
464 * No locks required. Nothing can change the per cpu device.
465 */
466void tick_resume(void)
467{
468	tick_resume_broadcast();
469	tick_resume_local();
470}
471
472#ifdef CONFIG_SUSPEND
473static DEFINE_RAW_SPINLOCK(tick_freeze_lock);
474static unsigned int tick_freeze_depth;
475
476/**
477 * tick_freeze - Suspend the local tick and (possibly) timekeeping.
478 *
479 * Check if this is the last online CPU executing the function and if so,
480 * suspend timekeeping.  Otherwise suspend the local tick.
481 *
482 * Call with interrupts disabled.  Must be balanced with %tick_unfreeze().
483 * Interrupts must not be enabled before the subsequent %tick_unfreeze().
484 */
485void tick_freeze(void)
486{
487	raw_spin_lock(&tick_freeze_lock);
488
489	tick_freeze_depth++;
490	if (tick_freeze_depth == num_online_cpus()) {
491		trace_suspend_resume(TPS("timekeeping_freeze"),
492				     smp_processor_id(), true);
 
 
493		timekeeping_suspend();
494	} else {
495		tick_suspend_local();
496	}
497
498	raw_spin_unlock(&tick_freeze_lock);
499}
500
501/**
502 * tick_unfreeze - Resume the local tick and (possibly) timekeeping.
503 *
504 * Check if this is the first CPU executing the function and if so, resume
505 * timekeeping.  Otherwise resume the local tick.
506 *
507 * Call with interrupts disabled.  Must be balanced with %tick_freeze().
508 * Interrupts must not be enabled after the preceding %tick_freeze().
509 */
510void tick_unfreeze(void)
511{
512	raw_spin_lock(&tick_freeze_lock);
513
514	if (tick_freeze_depth == num_online_cpus()) {
515		timekeeping_resume();
 
 
516		trace_suspend_resume(TPS("timekeeping_freeze"),
517				     smp_processor_id(), false);
518	} else {
 
519		tick_resume_local();
520	}
521
522	tick_freeze_depth--;
523
524	raw_spin_unlock(&tick_freeze_lock);
525}
526#endif /* CONFIG_SUSPEND */
527
528/**
529 * tick_init - initialize the tick control
530 */
531void __init tick_init(void)
532{
533	tick_broadcast_init();
534	tick_nohz_init();
535}