Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
 
 
   3 * This file contains functions which emulate a local clock-event
   4 * device via a broadcast event source.
   5 *
   6 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   7 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   8 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
 
 
 
   9 */
  10#include <linux/cpu.h>
  11#include <linux/err.h>
  12#include <linux/hrtimer.h>
  13#include <linux/interrupt.h>
  14#include <linux/percpu.h>
  15#include <linux/profile.h>
  16#include <linux/sched.h>
  17#include <linux/smp.h>
  18#include <linux/module.h>
  19
  20#include "tick-internal.h"
  21
  22/*
  23 * Broadcast support for broken x86 hardware, where the local apic
  24 * timer stops in C3 state.
  25 */
  26
  27static struct tick_device tick_broadcast_device;
  28static cpumask_var_t tick_broadcast_mask __cpumask_var_read_mostly;
  29static cpumask_var_t tick_broadcast_on __cpumask_var_read_mostly;
  30static cpumask_var_t tmpmask __cpumask_var_read_mostly;
  31static int tick_broadcast_forced;
  32
  33static __cacheline_aligned_in_smp DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
  34
  35#ifdef CONFIG_TICK_ONESHOT
  36static DEFINE_PER_CPU(struct clock_event_device *, tick_oneshot_wakeup_device);
  37
  38static void tick_broadcast_setup_oneshot(struct clock_event_device *bc);
  39static void tick_broadcast_clear_oneshot(int cpu);
  40static void tick_resume_broadcast_oneshot(struct clock_event_device *bc);
  41# ifdef CONFIG_HOTPLUG_CPU
  42static void tick_broadcast_oneshot_offline(unsigned int cpu);
  43# endif
  44#else
  45static inline void tick_broadcast_setup_oneshot(struct clock_event_device *bc) { BUG(); }
  46static inline void tick_broadcast_clear_oneshot(int cpu) { }
  47static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { }
  48# ifdef CONFIG_HOTPLUG_CPU
  49static inline void tick_broadcast_oneshot_offline(unsigned int cpu) { }
  50# endif
  51#endif
  52
  53/*
  54 * Debugging: see timer_list.c
  55 */
  56struct tick_device *tick_get_broadcast_device(void)
  57{
  58	return &tick_broadcast_device;
  59}
  60
  61struct cpumask *tick_get_broadcast_mask(void)
  62{
  63	return tick_broadcast_mask;
  64}
  65
  66static struct clock_event_device *tick_get_oneshot_wakeup_device(int cpu);
  67
  68const struct clock_event_device *tick_get_wakeup_device(int cpu)
  69{
  70	return tick_get_oneshot_wakeup_device(cpu);
  71}
  72
  73/*
  74 * Start the device in periodic mode
  75 */
  76static void tick_broadcast_start_periodic(struct clock_event_device *bc)
  77{
  78	if (bc)
  79		tick_setup_periodic(bc, 1);
  80}
  81
  82/*
  83 * Check, if the device can be utilized as broadcast device:
  84 */
  85static bool tick_check_broadcast_device(struct clock_event_device *curdev,
  86					struct clock_event_device *newdev)
  87{
  88	if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
  89	    (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
  90	    (newdev->features & CLOCK_EVT_FEAT_C3STOP))
  91		return false;
  92
  93	if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
  94	    !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
  95		return false;
  96
  97	return !curdev || newdev->rating > curdev->rating;
  98}
  99
 100#ifdef CONFIG_TICK_ONESHOT
 101static struct clock_event_device *tick_get_oneshot_wakeup_device(int cpu)
 102{
 103	return per_cpu(tick_oneshot_wakeup_device, cpu);
 104}
 105
 106static void tick_oneshot_wakeup_handler(struct clock_event_device *wd)
 107{
 108	/*
 109	 * If we woke up early and the tick was reprogrammed in the
 110	 * meantime then this may be spurious but harmless.
 111	 */
 112	tick_receive_broadcast();
 113}
 114
 115static bool tick_set_oneshot_wakeup_device(struct clock_event_device *newdev,
 116					   int cpu)
 117{
 118	struct clock_event_device *curdev = tick_get_oneshot_wakeup_device(cpu);
 119
 120	if (!newdev)
 121		goto set_device;
 122
 123	if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
 124	    (newdev->features & CLOCK_EVT_FEAT_C3STOP))
 125		 return false;
 126
 127	if (!(newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
 128	    !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
 129		return false;
 130
 131	if (!cpumask_equal(newdev->cpumask, cpumask_of(cpu)))
 132		return false;
 133
 134	if (curdev && newdev->rating <= curdev->rating)
 135		return false;
 136
 137	if (!try_module_get(newdev->owner))
 138		return false;
 139
 140	newdev->event_handler = tick_oneshot_wakeup_handler;
 141set_device:
 142	clockevents_exchange_device(curdev, newdev);
 143	per_cpu(tick_oneshot_wakeup_device, cpu) = newdev;
 144	return true;
 145}
 146#else
 147static struct clock_event_device *tick_get_oneshot_wakeup_device(int cpu)
 148{
 149	return NULL;
 150}
 151
 152static bool tick_set_oneshot_wakeup_device(struct clock_event_device *newdev,
 153					   int cpu)
 154{
 155	return false;
 156}
 157#endif
 158
 159/*
 160 * Conditionally install/replace broadcast device
 161 */
 162void tick_install_broadcast_device(struct clock_event_device *dev, int cpu)
 163{
 164	struct clock_event_device *cur = tick_broadcast_device.evtdev;
 165
 166	if (tick_set_oneshot_wakeup_device(dev, cpu))
 167		return;
 168
 169	if (!tick_check_broadcast_device(cur, dev))
 170		return;
 171
 172	if (!try_module_get(dev->owner))
 173		return;
 174
 175	clockevents_exchange_device(cur, dev);
 176	if (cur)
 177		cur->event_handler = clockevents_handle_noop;
 178	tick_broadcast_device.evtdev = dev;
 179	if (!cpumask_empty(tick_broadcast_mask))
 180		tick_broadcast_start_periodic(dev);
 181
 182	if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT))
 183		return;
 184
 185	/*
 186	 * If the system already runs in oneshot mode, switch the newly
 187	 * registered broadcast device to oneshot mode explicitly.
 188	 */
 189	if (tick_broadcast_oneshot_active()) {
 190		tick_broadcast_switch_to_oneshot();
 191		return;
 192	}
 193
 194	/*
 195	 * Inform all cpus about this. We might be in a situation
 196	 * where we did not switch to oneshot mode because the per cpu
 197	 * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
 198	 * of a oneshot capable broadcast device. Without that
 199	 * notification the systems stays stuck in periodic mode
 200	 * forever.
 201	 */
 202	tick_clock_notify();
 
 203}
 204
 205/*
 206 * Check, if the device is the broadcast device
 207 */
 208int tick_is_broadcast_device(struct clock_event_device *dev)
 209{
 210	return (dev && tick_broadcast_device.evtdev == dev);
 211}
 212
 213int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
 214{
 215	int ret = -ENODEV;
 216
 217	if (tick_is_broadcast_device(dev)) {
 218		raw_spin_lock(&tick_broadcast_lock);
 219		ret = __clockevents_update_freq(dev, freq);
 220		raw_spin_unlock(&tick_broadcast_lock);
 221	}
 222	return ret;
 223}
 224
 225
 226static void err_broadcast(const struct cpumask *mask)
 227{
 228	pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
 229}
 230
 231static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
 232{
 233	if (!dev->broadcast)
 234		dev->broadcast = tick_broadcast;
 235	if (!dev->broadcast) {
 236		pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
 237			     dev->name);
 238		dev->broadcast = err_broadcast;
 239	}
 240}
 241
 242/*
 243 * Check, if the device is dysfunctional and a placeholder, which
 244 * needs to be handled by the broadcast device.
 245 */
 246int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
 247{
 248	struct clock_event_device *bc = tick_broadcast_device.evtdev;
 249	unsigned long flags;
 250	int ret = 0;
 251
 252	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 253
 254	/*
 255	 * Devices might be registered with both periodic and oneshot
 256	 * mode disabled. This signals, that the device needs to be
 257	 * operated from the broadcast device and is a placeholder for
 258	 * the cpu local device.
 259	 */
 260	if (!tick_device_is_functional(dev)) {
 261		dev->event_handler = tick_handle_periodic;
 262		tick_device_setup_broadcast_func(dev);
 263		cpumask_set_cpu(cpu, tick_broadcast_mask);
 264		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
 265			tick_broadcast_start_periodic(bc);
 266		else
 267			tick_broadcast_setup_oneshot(bc);
 268		ret = 1;
 269	} else {
 270		/*
 271		 * Clear the broadcast bit for this cpu if the
 272		 * device is not power state affected.
 273		 */
 274		if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
 275			cpumask_clear_cpu(cpu, tick_broadcast_mask);
 276		else
 277			tick_device_setup_broadcast_func(dev);
 278
 279		/*
 280		 * Clear the broadcast bit if the CPU is not in
 281		 * periodic broadcast on state.
 282		 */
 283		if (!cpumask_test_cpu(cpu, tick_broadcast_on))
 284			cpumask_clear_cpu(cpu, tick_broadcast_mask);
 285
 286		switch (tick_broadcast_device.mode) {
 287		case TICKDEV_MODE_ONESHOT:
 288			/*
 289			 * If the system is in oneshot mode we can
 290			 * unconditionally clear the oneshot mask bit,
 291			 * because the CPU is running and therefore
 292			 * not in an idle state which causes the power
 293			 * state affected device to stop. Let the
 294			 * caller initialize the device.
 295			 */
 296			tick_broadcast_clear_oneshot(cpu);
 297			ret = 0;
 298			break;
 299
 300		case TICKDEV_MODE_PERIODIC:
 301			/*
 302			 * If the system is in periodic mode, check
 303			 * whether the broadcast device can be
 304			 * switched off now.
 305			 */
 306			if (cpumask_empty(tick_broadcast_mask) && bc)
 307				clockevents_shutdown(bc);
 308			/*
 309			 * If we kept the cpu in the broadcast mask,
 310			 * tell the caller to leave the per cpu device
 311			 * in shutdown state. The periodic interrupt
 312			 * is delivered by the broadcast device, if
 313			 * the broadcast device exists and is not
 314			 * hrtimer based.
 315			 */
 316			if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER))
 317				ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
 318			break;
 319		default:
 320			break;
 321		}
 322	}
 323	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 324	return ret;
 325}
 326
 
 327int tick_receive_broadcast(void)
 328{
 329	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
 330	struct clock_event_device *evt = td->evtdev;
 331
 332	if (!evt)
 333		return -ENODEV;
 334
 335	if (!evt->event_handler)
 336		return -EINVAL;
 337
 338	evt->event_handler(evt);
 339	return 0;
 340}
 
 341
 342/*
 343 * Broadcast the event to the cpus, which are set in the mask (mangled).
 344 */
 345static bool tick_do_broadcast(struct cpumask *mask)
 346{
 347	int cpu = smp_processor_id();
 348	struct tick_device *td;
 349	bool local = false;
 350
 351	/*
 352	 * Check, if the current cpu is in the mask
 353	 */
 354	if (cpumask_test_cpu(cpu, mask)) {
 355		struct clock_event_device *bc = tick_broadcast_device.evtdev;
 356
 357		cpumask_clear_cpu(cpu, mask);
 358		/*
 359		 * We only run the local handler, if the broadcast
 360		 * device is not hrtimer based. Otherwise we run into
 361		 * a hrtimer recursion.
 362		 *
 363		 * local timer_interrupt()
 364		 *   local_handler()
 365		 *     expire_hrtimers()
 366		 *       bc_handler()
 367		 *         local_handler()
 368		 *	     expire_hrtimers()
 369		 */
 370		local = !(bc->features & CLOCK_EVT_FEAT_HRTIMER);
 371	}
 372
 373	if (!cpumask_empty(mask)) {
 374		/*
 375		 * It might be necessary to actually check whether the devices
 376		 * have different broadcast functions. For now, just use the
 377		 * one of the first device. This works as long as we have this
 378		 * misfeature only on x86 (lapic)
 379		 */
 380		td = &per_cpu(tick_cpu_device, cpumask_first(mask));
 381		td->evtdev->broadcast(mask);
 382	}
 383	return local;
 384}
 385
 386/*
 387 * Periodic broadcast:
 388 * - invoke the broadcast handlers
 389 */
 390static bool tick_do_periodic_broadcast(void)
 391{
 392	cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
 393	return tick_do_broadcast(tmpmask);
 394}
 395
 396/*
 397 * Event handler for periodic broadcast ticks
 398 */
 399static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
 400{
 401	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
 402	bool bc_local;
 403
 404	raw_spin_lock(&tick_broadcast_lock);
 405
 406	/* Handle spurious interrupts gracefully */
 407	if (clockevent_state_shutdown(tick_broadcast_device.evtdev)) {
 408		raw_spin_unlock(&tick_broadcast_lock);
 409		return;
 410	}
 411
 412	bc_local = tick_do_periodic_broadcast();
 413
 414	if (clockevent_state_oneshot(dev)) {
 415		ktime_t next = ktime_add_ns(dev->next_event, TICK_NSEC);
 416
 417		clockevents_program_event(dev, next, true);
 418	}
 419	raw_spin_unlock(&tick_broadcast_lock);
 420
 421	/*
 422	 * We run the handler of the local cpu after dropping
 423	 * tick_broadcast_lock because the handler might deadlock when
 424	 * trying to switch to oneshot mode.
 425	 */
 426	if (bc_local)
 427		td->evtdev->event_handler(td->evtdev);
 428}
 429
 430/**
 431 * tick_broadcast_control - Enable/disable or force broadcast mode
 432 * @mode:	The selected broadcast mode
 433 *
 434 * Called when the system enters a state where affected tick devices
 435 * might stop. Note: TICK_BROADCAST_FORCE cannot be undone.
 436 */
 437void tick_broadcast_control(enum tick_broadcast_mode mode)
 438{
 439	struct clock_event_device *bc, *dev;
 440	struct tick_device *td;
 441	int cpu, bc_stopped;
 442	unsigned long flags;
 443
 444	/* Protects also the local clockevent device. */
 445	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 446	td = this_cpu_ptr(&tick_cpu_device);
 447	dev = td->evtdev;
 448
 449	/*
 450	 * Is the device not affected by the powerstate ?
 451	 */
 452	if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
 453		goto out;
 454
 455	if (!tick_device_is_functional(dev))
 456		goto out;
 457
 458	cpu = smp_processor_id();
 459	bc = tick_broadcast_device.evtdev;
 460	bc_stopped = cpumask_empty(tick_broadcast_mask);
 461
 462	switch (mode) {
 463	case TICK_BROADCAST_FORCE:
 464		tick_broadcast_forced = 1;
 465		fallthrough;
 466	case TICK_BROADCAST_ON:
 467		cpumask_set_cpu(cpu, tick_broadcast_on);
 468		if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
 469			/*
 470			 * Only shutdown the cpu local device, if:
 471			 *
 472			 * - the broadcast device exists
 473			 * - the broadcast device is not a hrtimer based one
 474			 * - the broadcast device is in periodic mode to
 475			 *   avoid a hiccup during switch to oneshot mode
 476			 */
 477			if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER) &&
 478			    tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
 479				clockevents_shutdown(dev);
 480		}
 481		break;
 482
 483	case TICK_BROADCAST_OFF:
 484		if (tick_broadcast_forced)
 485			break;
 486		cpumask_clear_cpu(cpu, tick_broadcast_on);
 
 
 487		if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
 488			if (tick_broadcast_device.mode ==
 489			    TICKDEV_MODE_PERIODIC)
 490				tick_setup_periodic(dev, 0);
 491		}
 492		break;
 493	}
 494
 495	if (bc) {
 496		if (cpumask_empty(tick_broadcast_mask)) {
 497			if (!bc_stopped)
 498				clockevents_shutdown(bc);
 499		} else if (bc_stopped) {
 500			if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
 501				tick_broadcast_start_periodic(bc);
 502			else
 503				tick_broadcast_setup_oneshot(bc);
 504		}
 505	}
 506out:
 507	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 508}
 509EXPORT_SYMBOL_GPL(tick_broadcast_control);
 510
 511/*
 512 * Set the periodic handler depending on broadcast on/off
 513 */
 514void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
 515{
 516	if (!broadcast)
 517		dev->event_handler = tick_handle_periodic;
 518	else
 519		dev->event_handler = tick_handle_periodic_broadcast;
 520}
 521
 522#ifdef CONFIG_HOTPLUG_CPU
 523static void tick_shutdown_broadcast(void)
 
 
 
 524{
 525	struct clock_event_device *bc = tick_broadcast_device.evtdev;
 
 
 
 
 
 
 
 526
 527	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
 528		if (bc && cpumask_empty(tick_broadcast_mask))
 529			clockevents_shutdown(bc);
 530	}
 531}
 532
 533/*
 534 * Remove a CPU from broadcasting
 535 */
 536void tick_broadcast_offline(unsigned int cpu)
 537{
 538	raw_spin_lock(&tick_broadcast_lock);
 539	cpumask_clear_cpu(cpu, tick_broadcast_mask);
 540	cpumask_clear_cpu(cpu, tick_broadcast_on);
 541	tick_broadcast_oneshot_offline(cpu);
 542	tick_shutdown_broadcast();
 543	raw_spin_unlock(&tick_broadcast_lock);
 544}
 545
 546#endif
 547
 548void tick_suspend_broadcast(void)
 549{
 550	struct clock_event_device *bc;
 551	unsigned long flags;
 552
 553	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 554
 555	bc = tick_broadcast_device.evtdev;
 556	if (bc)
 557		clockevents_shutdown(bc);
 558
 559	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 560}
 561
 562/*
 563 * This is called from tick_resume_local() on a resuming CPU. That's
 564 * called from the core resume function, tick_unfreeze() and the magic XEN
 565 * resume hackery.
 566 *
 567 * In none of these cases the broadcast device mode can change and the
 568 * bit of the resuming CPU in the broadcast mask is safe as well.
 569 */
 570bool tick_resume_check_broadcast(void)
 571{
 572	if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT)
 573		return false;
 574	else
 575		return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask);
 576}
 577
 578void tick_resume_broadcast(void)
 579{
 580	struct clock_event_device *bc;
 581	unsigned long flags;
 582
 583	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 584
 585	bc = tick_broadcast_device.evtdev;
 586
 587	if (bc) {
 588		clockevents_tick_resume(bc);
 589
 590		switch (tick_broadcast_device.mode) {
 591		case TICKDEV_MODE_PERIODIC:
 592			if (!cpumask_empty(tick_broadcast_mask))
 593				tick_broadcast_start_periodic(bc);
 594			break;
 595		case TICKDEV_MODE_ONESHOT:
 596			if (!cpumask_empty(tick_broadcast_mask))
 597				tick_resume_broadcast_oneshot(bc);
 598			break;
 599		}
 600	}
 601	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 602}
 603
 604#ifdef CONFIG_TICK_ONESHOT
 605
 606static cpumask_var_t tick_broadcast_oneshot_mask __cpumask_var_read_mostly;
 607static cpumask_var_t tick_broadcast_pending_mask __cpumask_var_read_mostly;
 608static cpumask_var_t tick_broadcast_force_mask __cpumask_var_read_mostly;
 609
 610/*
 611 * Exposed for debugging: see timer_list.c
 612 */
 613struct cpumask *tick_get_broadcast_oneshot_mask(void)
 614{
 615	return tick_broadcast_oneshot_mask;
 616}
 617
 618/*
 619 * Called before going idle with interrupts disabled. Checks whether a
 620 * broadcast event from the other core is about to happen. We detected
 621 * that in tick_broadcast_oneshot_control(). The callsite can use this
 622 * to avoid a deep idle transition as we are about to get the
 623 * broadcast IPI right away.
 624 */
 625int tick_check_broadcast_expired(void)
 626{
 627	return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
 628}
 629
 630/*
 631 * Set broadcast interrupt affinity
 632 */
 633static void tick_broadcast_set_affinity(struct clock_event_device *bc,
 634					const struct cpumask *cpumask)
 635{
 636	if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
 637		return;
 638
 639	if (cpumask_equal(bc->cpumask, cpumask))
 640		return;
 641
 642	bc->cpumask = cpumask;
 643	irq_set_affinity(bc->irq, bc->cpumask);
 644}
 645
 646static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
 647				     ktime_t expires)
 648{
 649	if (!clockevent_state_oneshot(bc))
 650		clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
 651
 652	clockevents_program_event(bc, expires, 1);
 653	tick_broadcast_set_affinity(bc, cpumask_of(cpu));
 654}
 655
 656static void tick_resume_broadcast_oneshot(struct clock_event_device *bc)
 657{
 658	clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
 659}
 660
 661/*
 662 * Called from irq_enter() when idle was interrupted to reenable the
 663 * per cpu device.
 664 */
 665void tick_check_oneshot_broadcast_this_cpu(void)
 666{
 667	if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
 668		struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
 669
 670		/*
 671		 * We might be in the middle of switching over from
 672		 * periodic to oneshot. If the CPU has not yet
 673		 * switched over, leave the device alone.
 674		 */
 675		if (td->mode == TICKDEV_MODE_ONESHOT) {
 676			clockevents_switch_state(td->evtdev,
 677					      CLOCK_EVT_STATE_ONESHOT);
 678		}
 679	}
 680}
 681
 682/*
 683 * Handle oneshot mode broadcasting
 684 */
 685static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
 686{
 687	struct tick_device *td;
 688	ktime_t now, next_event;
 689	int cpu, next_cpu = 0;
 690	bool bc_local;
 691
 692	raw_spin_lock(&tick_broadcast_lock);
 693	dev->next_event = KTIME_MAX;
 694	next_event = KTIME_MAX;
 695	cpumask_clear(tmpmask);
 696	now = ktime_get();
 697	/* Find all expired events */
 698	for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
 699		/*
 700		 * Required for !SMP because for_each_cpu() reports
 701		 * unconditionally CPU0 as set on UP kernels.
 702		 */
 703		if (!IS_ENABLED(CONFIG_SMP) &&
 704		    cpumask_empty(tick_broadcast_oneshot_mask))
 705			break;
 706
 707		td = &per_cpu(tick_cpu_device, cpu);
 708		if (td->evtdev->next_event <= now) {
 709			cpumask_set_cpu(cpu, tmpmask);
 710			/*
 711			 * Mark the remote cpu in the pending mask, so
 712			 * it can avoid reprogramming the cpu local
 713			 * timer in tick_broadcast_oneshot_control().
 714			 */
 715			cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
 716		} else if (td->evtdev->next_event < next_event) {
 717			next_event = td->evtdev->next_event;
 718			next_cpu = cpu;
 719		}
 720	}
 721
 722	/*
 723	 * Remove the current cpu from the pending mask. The event is
 724	 * delivered immediately in tick_do_broadcast() !
 725	 */
 726	cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
 727
 728	/* Take care of enforced broadcast requests */
 729	cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
 730	cpumask_clear(tick_broadcast_force_mask);
 731
 732	/*
 733	 * Sanity check. Catch the case where we try to broadcast to
 734	 * offline cpus.
 735	 */
 736	if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
 737		cpumask_and(tmpmask, tmpmask, cpu_online_mask);
 738
 739	/*
 740	 * Wakeup the cpus which have an expired event.
 741	 */
 742	bc_local = tick_do_broadcast(tmpmask);
 743
 744	/*
 745	 * Two reasons for reprogram:
 746	 *
 747	 * - The global event did not expire any CPU local
 748	 * events. This happens in dyntick mode, as the maximum PIT
 749	 * delta is quite small.
 750	 *
 751	 * - There are pending events on sleeping CPUs which were not
 752	 * in the event mask
 753	 */
 754	if (next_event != KTIME_MAX)
 755		tick_broadcast_set_event(dev, next_cpu, next_event);
 756
 757	raw_spin_unlock(&tick_broadcast_lock);
 758
 759	if (bc_local) {
 760		td = this_cpu_ptr(&tick_cpu_device);
 761		td->evtdev->event_handler(td->evtdev);
 762	}
 763}
 764
 765static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
 766{
 767	if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
 768		return 0;
 769	if (bc->next_event == KTIME_MAX)
 770		return 0;
 771	return bc->bound_on == cpu ? -EBUSY : 0;
 772}
 773
 774static void broadcast_shutdown_local(struct clock_event_device *bc,
 775				     struct clock_event_device *dev)
 776{
 777	/*
 778	 * For hrtimer based broadcasting we cannot shutdown the cpu
 779	 * local device if our own event is the first one to expire or
 780	 * if we own the broadcast timer.
 781	 */
 782	if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
 783		if (broadcast_needs_cpu(bc, smp_processor_id()))
 784			return;
 785		if (dev->next_event < bc->next_event)
 786			return;
 787	}
 788	clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
 789}
 790
 791static int ___tick_broadcast_oneshot_control(enum tick_broadcast_state state,
 792					     struct tick_device *td,
 793					     int cpu)
 794{
 795	struct clock_event_device *bc, *dev = td->evtdev;
 796	int ret = 0;
 797	ktime_t now;
 798
 
 
 
 
 
 
 
 
 
 799	raw_spin_lock(&tick_broadcast_lock);
 800	bc = tick_broadcast_device.evtdev;
 
 801
 802	if (state == TICK_BROADCAST_ENTER) {
 803		/*
 804		 * If the current CPU owns the hrtimer broadcast
 805		 * mechanism, it cannot go deep idle and we do not add
 806		 * the CPU to the broadcast mask. We don't have to go
 807		 * through the EXIT path as the local timer is not
 808		 * shutdown.
 809		 */
 810		ret = broadcast_needs_cpu(bc, cpu);
 811		if (ret)
 812			goto out;
 813
 814		/*
 815		 * If the broadcast device is in periodic mode, we
 816		 * return.
 817		 */
 818		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
 819			/* If it is a hrtimer based broadcast, return busy */
 820			if (bc->features & CLOCK_EVT_FEAT_HRTIMER)
 821				ret = -EBUSY;
 822			goto out;
 823		}
 824
 825		if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
 826			WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
 827
 828			/* Conditionally shut down the local timer. */
 829			broadcast_shutdown_local(bc, dev);
 830
 831			/*
 832			 * We only reprogram the broadcast timer if we
 833			 * did not mark ourself in the force mask and
 834			 * if the cpu local event is earlier than the
 835			 * broadcast event. If the current CPU is in
 836			 * the force mask, then we are going to be
 837			 * woken by the IPI right away; we return
 838			 * busy, so the CPU does not try to go deep
 839			 * idle.
 840			 */
 841			if (cpumask_test_cpu(cpu, tick_broadcast_force_mask)) {
 842				ret = -EBUSY;
 843			} else if (dev->next_event < bc->next_event) {
 844				tick_broadcast_set_event(bc, cpu, dev->next_event);
 845				/*
 846				 * In case of hrtimer broadcasts the
 847				 * programming might have moved the
 848				 * timer to this cpu. If yes, remove
 849				 * us from the broadcast mask and
 850				 * return busy.
 851				 */
 852				ret = broadcast_needs_cpu(bc, cpu);
 853				if (ret) {
 854					cpumask_clear_cpu(cpu,
 855						tick_broadcast_oneshot_mask);
 856				}
 857			}
 858		}
 859	} else {
 860		if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
 861			clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
 862			/*
 863			 * The cpu which was handling the broadcast
 864			 * timer marked this cpu in the broadcast
 865			 * pending mask and fired the broadcast
 866			 * IPI. So we are going to handle the expired
 867			 * event anyway via the broadcast IPI
 868			 * handler. No need to reprogram the timer
 869			 * with an already expired event.
 870			 */
 871			if (cpumask_test_and_clear_cpu(cpu,
 872				       tick_broadcast_pending_mask))
 873				goto out;
 874
 875			/*
 876			 * Bail out if there is no next event.
 877			 */
 878			if (dev->next_event == KTIME_MAX)
 879				goto out;
 880			/*
 881			 * If the pending bit is not set, then we are
 882			 * either the CPU handling the broadcast
 883			 * interrupt or we got woken by something else.
 884			 *
 885			 * We are no longer in the broadcast mask, so
 886			 * if the cpu local expiry time is already
 887			 * reached, we would reprogram the cpu local
 888			 * timer with an already expired event.
 889			 *
 890			 * This can lead to a ping-pong when we return
 891			 * to idle and therefore rearm the broadcast
 892			 * timer before the cpu local timer was able
 893			 * to fire. This happens because the forced
 894			 * reprogramming makes sure that the event
 895			 * will happen in the future and depending on
 896			 * the min_delta setting this might be far
 897			 * enough out that the ping-pong starts.
 898			 *
 899			 * If the cpu local next_event has expired
 900			 * then we know that the broadcast timer
 901			 * next_event has expired as well and
 902			 * broadcast is about to be handled. So we
 903			 * avoid reprogramming and enforce that the
 904			 * broadcast handler, which did not run yet,
 905			 * will invoke the cpu local handler.
 906			 *
 907			 * We cannot call the handler directly from
 908			 * here, because we might be in a NOHZ phase
 909			 * and we did not go through the irq_enter()
 910			 * nohz fixups.
 911			 */
 912			now = ktime_get();
 913			if (dev->next_event <= now) {
 914				cpumask_set_cpu(cpu, tick_broadcast_force_mask);
 915				goto out;
 916			}
 917			/*
 918			 * We got woken by something else. Reprogram
 919			 * the cpu local timer device.
 920			 */
 921			tick_program_event(dev->next_event, 1);
 922		}
 923	}
 924out:
 925	raw_spin_unlock(&tick_broadcast_lock);
 926	return ret;
 927}
 928
 929static int tick_oneshot_wakeup_control(enum tick_broadcast_state state,
 930				       struct tick_device *td,
 931				       int cpu)
 932{
 933	struct clock_event_device *dev, *wd;
 934
 935	dev = td->evtdev;
 936	if (td->mode != TICKDEV_MODE_ONESHOT)
 937		return -EINVAL;
 938
 939	wd = tick_get_oneshot_wakeup_device(cpu);
 940	if (!wd)
 941		return -ENODEV;
 942
 943	switch (state) {
 944	case TICK_BROADCAST_ENTER:
 945		clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT_STOPPED);
 946		clockevents_switch_state(wd, CLOCK_EVT_STATE_ONESHOT);
 947		clockevents_program_event(wd, dev->next_event, 1);
 948		break;
 949	case TICK_BROADCAST_EXIT:
 950		/* We may have transitioned to oneshot mode while idle */
 951		if (clockevent_get_state(wd) != CLOCK_EVT_STATE_ONESHOT)
 952			return -ENODEV;
 953	}
 954
 955	return 0;
 956}
 957
 958int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
 959{
 960	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
 961	int cpu = smp_processor_id();
 962
 963	if (!tick_oneshot_wakeup_control(state, td, cpu))
 964		return 0;
 965
 966	if (tick_broadcast_device.evtdev)
 967		return ___tick_broadcast_oneshot_control(state, td, cpu);
 968
 969	/*
 970	 * If there is no broadcast or wakeup device, tell the caller not
 971	 * to go into deep idle.
 972	 */
 973	return -EBUSY;
 974}
 975
 976/*
 977 * Reset the one shot broadcast for a cpu
 978 *
 979 * Called with tick_broadcast_lock held
 980 */
 981static void tick_broadcast_clear_oneshot(int cpu)
 982{
 983	cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
 984	cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
 985}
 986
 987static void tick_broadcast_init_next_event(struct cpumask *mask,
 988					   ktime_t expires)
 989{
 990	struct tick_device *td;
 991	int cpu;
 992
 993	for_each_cpu(cpu, mask) {
 994		td = &per_cpu(tick_cpu_device, cpu);
 995		if (td->evtdev)
 996			td->evtdev->next_event = expires;
 997	}
 998}
 999
1000static inline ktime_t tick_get_next_period(void)
1001{
1002	ktime_t next;
1003
1004	/*
1005	 * Protect against concurrent updates (store /load tearing on
1006	 * 32bit). It does not matter if the time is already in the
1007	 * past. The broadcast device which is about to be programmed will
1008	 * fire in any case.
1009	 */
1010	raw_spin_lock(&jiffies_lock);
1011	next = tick_next_period;
1012	raw_spin_unlock(&jiffies_lock);
1013	return next;
1014}
1015
1016/**
1017 * tick_broadcast_setup_oneshot - setup the broadcast device
1018 */
1019static void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
1020{
1021	int cpu = smp_processor_id();
1022
1023	if (!bc)
1024		return;
1025
1026	/* Set it up only once ! */
1027	if (bc->event_handler != tick_handle_oneshot_broadcast) {
1028		int was_periodic = clockevent_state_periodic(bc);
1029
1030		bc->event_handler = tick_handle_oneshot_broadcast;
1031
1032		/*
1033		 * We must be careful here. There might be other CPUs
1034		 * waiting for periodic broadcast. We need to set the
1035		 * oneshot_mask bits for those and program the
1036		 * broadcast device to fire.
1037		 */
1038		cpumask_copy(tmpmask, tick_broadcast_mask);
1039		cpumask_clear_cpu(cpu, tmpmask);
1040		cpumask_or(tick_broadcast_oneshot_mask,
1041			   tick_broadcast_oneshot_mask, tmpmask);
1042
1043		if (was_periodic && !cpumask_empty(tmpmask)) {
1044			ktime_t nextevt = tick_get_next_period();
1045
1046			clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
1047			tick_broadcast_init_next_event(tmpmask, nextevt);
1048			tick_broadcast_set_event(bc, cpu, nextevt);
 
1049		} else
1050			bc->next_event = KTIME_MAX;
1051	} else {
1052		/*
1053		 * The first cpu which switches to oneshot mode sets
1054		 * the bit for all other cpus which are in the general
1055		 * (periodic) broadcast mask. So the bit is set and
1056		 * would prevent the first broadcast enter after this
1057		 * to program the bc device.
1058		 */
1059		tick_broadcast_clear_oneshot(cpu);
1060	}
1061}
1062
1063/*
1064 * Select oneshot operating mode for the broadcast device
1065 */
1066void tick_broadcast_switch_to_oneshot(void)
1067{
1068	struct clock_event_device *bc;
1069	unsigned long flags;
1070
1071	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
1072
1073	tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
1074	bc = tick_broadcast_device.evtdev;
1075	if (bc)
1076		tick_broadcast_setup_oneshot(bc);
1077
1078	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
1079}
1080
1081#ifdef CONFIG_HOTPLUG_CPU
1082void hotplug_cpu__broadcast_tick_pull(int deadcpu)
1083{
1084	struct clock_event_device *bc;
1085	unsigned long flags;
1086
1087	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
1088	bc = tick_broadcast_device.evtdev;
1089
1090	if (bc && broadcast_needs_cpu(bc, deadcpu)) {
1091		/* This moves the broadcast assignment to this CPU: */
1092		clockevents_program_event(bc, bc->next_event, 1);
1093	}
1094	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
1095}
1096
1097/*
1098 * Remove a dying CPU from broadcasting
1099 */
1100static void tick_broadcast_oneshot_offline(unsigned int cpu)
1101{
1102	if (tick_get_oneshot_wakeup_device(cpu))
1103		tick_set_oneshot_wakeup_device(NULL, cpu);
 
1104
1105	/*
1106	 * Clear the broadcast masks for the dead cpu, but do not stop
1107	 * the broadcast device!
1108	 */
1109	cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
1110	cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
1111	cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
 
 
1112}
1113#endif
1114
1115/*
1116 * Check, whether the broadcast device is in one shot mode
1117 */
1118int tick_broadcast_oneshot_active(void)
1119{
1120	return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
1121}
1122
1123/*
1124 * Check whether the broadcast device supports oneshot.
1125 */
1126bool tick_broadcast_oneshot_available(void)
1127{
1128	struct clock_event_device *bc = tick_broadcast_device.evtdev;
1129
1130	return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
1131}
1132
1133#else
1134int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
1135{
1136	struct clock_event_device *bc = tick_broadcast_device.evtdev;
1137
1138	if (!bc || (bc->features & CLOCK_EVT_FEAT_HRTIMER))
1139		return -EBUSY;
1140
1141	return 0;
1142}
1143#endif
1144
1145void __init tick_broadcast_init(void)
1146{
1147	zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
1148	zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
1149	zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
1150#ifdef CONFIG_TICK_ONESHOT
1151	zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
1152	zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
1153	zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
1154#endif
1155}
v4.17
 
   1/*
   2 * linux/kernel/time/tick-broadcast.c
   3 *
   4 * This file contains functions which emulate a local clock-event
   5 * device via a broadcast event source.
   6 *
   7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
  10 *
  11 * This code is licenced under the GPL version 2. For details see
  12 * kernel-base/COPYING.
  13 */
  14#include <linux/cpu.h>
  15#include <linux/err.h>
  16#include <linux/hrtimer.h>
  17#include <linux/interrupt.h>
  18#include <linux/percpu.h>
  19#include <linux/profile.h>
  20#include <linux/sched.h>
  21#include <linux/smp.h>
  22#include <linux/module.h>
  23
  24#include "tick-internal.h"
  25
  26/*
  27 * Broadcast support for broken x86 hardware, where the local apic
  28 * timer stops in C3 state.
  29 */
  30
  31static struct tick_device tick_broadcast_device;
  32static cpumask_var_t tick_broadcast_mask __cpumask_var_read_mostly;
  33static cpumask_var_t tick_broadcast_on __cpumask_var_read_mostly;
  34static cpumask_var_t tmpmask __cpumask_var_read_mostly;
  35static int tick_broadcast_forced;
  36
  37static __cacheline_aligned_in_smp DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
  38
  39#ifdef CONFIG_TICK_ONESHOT
 
 
  40static void tick_broadcast_setup_oneshot(struct clock_event_device *bc);
  41static void tick_broadcast_clear_oneshot(int cpu);
  42static void tick_resume_broadcast_oneshot(struct clock_event_device *bc);
 
 
 
  43#else
  44static inline void tick_broadcast_setup_oneshot(struct clock_event_device *bc) { BUG(); }
  45static inline void tick_broadcast_clear_oneshot(int cpu) { }
  46static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { }
 
 
 
  47#endif
  48
  49/*
  50 * Debugging: see timer_list.c
  51 */
  52struct tick_device *tick_get_broadcast_device(void)
  53{
  54	return &tick_broadcast_device;
  55}
  56
  57struct cpumask *tick_get_broadcast_mask(void)
  58{
  59	return tick_broadcast_mask;
  60}
  61
 
 
 
 
 
 
 
  62/*
  63 * Start the device in periodic mode
  64 */
  65static void tick_broadcast_start_periodic(struct clock_event_device *bc)
  66{
  67	if (bc)
  68		tick_setup_periodic(bc, 1);
  69}
  70
  71/*
  72 * Check, if the device can be utilized as broadcast device:
  73 */
  74static bool tick_check_broadcast_device(struct clock_event_device *curdev,
  75					struct clock_event_device *newdev)
  76{
  77	if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
  78	    (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
  79	    (newdev->features & CLOCK_EVT_FEAT_C3STOP))
  80		return false;
  81
  82	if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
  83	    !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
  84		return false;
  85
  86	return !curdev || newdev->rating > curdev->rating;
  87}
  88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  89/*
  90 * Conditionally install/replace broadcast device
  91 */
  92void tick_install_broadcast_device(struct clock_event_device *dev)
  93{
  94	struct clock_event_device *cur = tick_broadcast_device.evtdev;
  95
 
 
 
  96	if (!tick_check_broadcast_device(cur, dev))
  97		return;
  98
  99	if (!try_module_get(dev->owner))
 100		return;
 101
 102	clockevents_exchange_device(cur, dev);
 103	if (cur)
 104		cur->event_handler = clockevents_handle_noop;
 105	tick_broadcast_device.evtdev = dev;
 106	if (!cpumask_empty(tick_broadcast_mask))
 107		tick_broadcast_start_periodic(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 108	/*
 109	 * Inform all cpus about this. We might be in a situation
 110	 * where we did not switch to oneshot mode because the per cpu
 111	 * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
 112	 * of a oneshot capable broadcast device. Without that
 113	 * notification the systems stays stuck in periodic mode
 114	 * forever.
 115	 */
 116	if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
 117		tick_clock_notify();
 118}
 119
 120/*
 121 * Check, if the device is the broadcast device
 122 */
 123int tick_is_broadcast_device(struct clock_event_device *dev)
 124{
 125	return (dev && tick_broadcast_device.evtdev == dev);
 126}
 127
 128int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
 129{
 130	int ret = -ENODEV;
 131
 132	if (tick_is_broadcast_device(dev)) {
 133		raw_spin_lock(&tick_broadcast_lock);
 134		ret = __clockevents_update_freq(dev, freq);
 135		raw_spin_unlock(&tick_broadcast_lock);
 136	}
 137	return ret;
 138}
 139
 140
 141static void err_broadcast(const struct cpumask *mask)
 142{
 143	pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
 144}
 145
 146static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
 147{
 148	if (!dev->broadcast)
 149		dev->broadcast = tick_broadcast;
 150	if (!dev->broadcast) {
 151		pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
 152			     dev->name);
 153		dev->broadcast = err_broadcast;
 154	}
 155}
 156
 157/*
 158 * Check, if the device is disfunctional and a place holder, which
 159 * needs to be handled by the broadcast device.
 160 */
 161int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
 162{
 163	struct clock_event_device *bc = tick_broadcast_device.evtdev;
 164	unsigned long flags;
 165	int ret = 0;
 166
 167	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 168
 169	/*
 170	 * Devices might be registered with both periodic and oneshot
 171	 * mode disabled. This signals, that the device needs to be
 172	 * operated from the broadcast device and is a placeholder for
 173	 * the cpu local device.
 174	 */
 175	if (!tick_device_is_functional(dev)) {
 176		dev->event_handler = tick_handle_periodic;
 177		tick_device_setup_broadcast_func(dev);
 178		cpumask_set_cpu(cpu, tick_broadcast_mask);
 179		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
 180			tick_broadcast_start_periodic(bc);
 181		else
 182			tick_broadcast_setup_oneshot(bc);
 183		ret = 1;
 184	} else {
 185		/*
 186		 * Clear the broadcast bit for this cpu if the
 187		 * device is not power state affected.
 188		 */
 189		if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
 190			cpumask_clear_cpu(cpu, tick_broadcast_mask);
 191		else
 192			tick_device_setup_broadcast_func(dev);
 193
 194		/*
 195		 * Clear the broadcast bit if the CPU is not in
 196		 * periodic broadcast on state.
 197		 */
 198		if (!cpumask_test_cpu(cpu, tick_broadcast_on))
 199			cpumask_clear_cpu(cpu, tick_broadcast_mask);
 200
 201		switch (tick_broadcast_device.mode) {
 202		case TICKDEV_MODE_ONESHOT:
 203			/*
 204			 * If the system is in oneshot mode we can
 205			 * unconditionally clear the oneshot mask bit,
 206			 * because the CPU is running and therefore
 207			 * not in an idle state which causes the power
 208			 * state affected device to stop. Let the
 209			 * caller initialize the device.
 210			 */
 211			tick_broadcast_clear_oneshot(cpu);
 212			ret = 0;
 213			break;
 214
 215		case TICKDEV_MODE_PERIODIC:
 216			/*
 217			 * If the system is in periodic mode, check
 218			 * whether the broadcast device can be
 219			 * switched off now.
 220			 */
 221			if (cpumask_empty(tick_broadcast_mask) && bc)
 222				clockevents_shutdown(bc);
 223			/*
 224			 * If we kept the cpu in the broadcast mask,
 225			 * tell the caller to leave the per cpu device
 226			 * in shutdown state. The periodic interrupt
 227			 * is delivered by the broadcast device, if
 228			 * the broadcast device exists and is not
 229			 * hrtimer based.
 230			 */
 231			if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER))
 232				ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
 233			break;
 234		default:
 235			break;
 236		}
 237	}
 238	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 239	return ret;
 240}
 241
 242#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 243int tick_receive_broadcast(void)
 244{
 245	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
 246	struct clock_event_device *evt = td->evtdev;
 247
 248	if (!evt)
 249		return -ENODEV;
 250
 251	if (!evt->event_handler)
 252		return -EINVAL;
 253
 254	evt->event_handler(evt);
 255	return 0;
 256}
 257#endif
 258
 259/*
 260 * Broadcast the event to the cpus, which are set in the mask (mangled).
 261 */
 262static bool tick_do_broadcast(struct cpumask *mask)
 263{
 264	int cpu = smp_processor_id();
 265	struct tick_device *td;
 266	bool local = false;
 267
 268	/*
 269	 * Check, if the current cpu is in the mask
 270	 */
 271	if (cpumask_test_cpu(cpu, mask)) {
 272		struct clock_event_device *bc = tick_broadcast_device.evtdev;
 273
 274		cpumask_clear_cpu(cpu, mask);
 275		/*
 276		 * We only run the local handler, if the broadcast
 277		 * device is not hrtimer based. Otherwise we run into
 278		 * a hrtimer recursion.
 279		 *
 280		 * local timer_interrupt()
 281		 *   local_handler()
 282		 *     expire_hrtimers()
 283		 *       bc_handler()
 284		 *         local_handler()
 285		 *	     expire_hrtimers()
 286		 */
 287		local = !(bc->features & CLOCK_EVT_FEAT_HRTIMER);
 288	}
 289
 290	if (!cpumask_empty(mask)) {
 291		/*
 292		 * It might be necessary to actually check whether the devices
 293		 * have different broadcast functions. For now, just use the
 294		 * one of the first device. This works as long as we have this
 295		 * misfeature only on x86 (lapic)
 296		 */
 297		td = &per_cpu(tick_cpu_device, cpumask_first(mask));
 298		td->evtdev->broadcast(mask);
 299	}
 300	return local;
 301}
 302
 303/*
 304 * Periodic broadcast:
 305 * - invoke the broadcast handlers
 306 */
 307static bool tick_do_periodic_broadcast(void)
 308{
 309	cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
 310	return tick_do_broadcast(tmpmask);
 311}
 312
 313/*
 314 * Event handler for periodic broadcast ticks
 315 */
 316static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
 317{
 318	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
 319	bool bc_local;
 320
 321	raw_spin_lock(&tick_broadcast_lock);
 322
 323	/* Handle spurious interrupts gracefully */
 324	if (clockevent_state_shutdown(tick_broadcast_device.evtdev)) {
 325		raw_spin_unlock(&tick_broadcast_lock);
 326		return;
 327	}
 328
 329	bc_local = tick_do_periodic_broadcast();
 330
 331	if (clockevent_state_oneshot(dev)) {
 332		ktime_t next = ktime_add(dev->next_event, tick_period);
 333
 334		clockevents_program_event(dev, next, true);
 335	}
 336	raw_spin_unlock(&tick_broadcast_lock);
 337
 338	/*
 339	 * We run the handler of the local cpu after dropping
 340	 * tick_broadcast_lock because the handler might deadlock when
 341	 * trying to switch to oneshot mode.
 342	 */
 343	if (bc_local)
 344		td->evtdev->event_handler(td->evtdev);
 345}
 346
 347/**
 348 * tick_broadcast_control - Enable/disable or force broadcast mode
 349 * @mode:	The selected broadcast mode
 350 *
 351 * Called when the system enters a state where affected tick devices
 352 * might stop. Note: TICK_BROADCAST_FORCE cannot be undone.
 353 */
 354void tick_broadcast_control(enum tick_broadcast_mode mode)
 355{
 356	struct clock_event_device *bc, *dev;
 357	struct tick_device *td;
 358	int cpu, bc_stopped;
 359	unsigned long flags;
 360
 361	/* Protects also the local clockevent device. */
 362	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 363	td = this_cpu_ptr(&tick_cpu_device);
 364	dev = td->evtdev;
 365
 366	/*
 367	 * Is the device not affected by the powerstate ?
 368	 */
 369	if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
 370		goto out;
 371
 372	if (!tick_device_is_functional(dev))
 373		goto out;
 374
 375	cpu = smp_processor_id();
 376	bc = tick_broadcast_device.evtdev;
 377	bc_stopped = cpumask_empty(tick_broadcast_mask);
 378
 379	switch (mode) {
 380	case TICK_BROADCAST_FORCE:
 381		tick_broadcast_forced = 1;
 
 382	case TICK_BROADCAST_ON:
 383		cpumask_set_cpu(cpu, tick_broadcast_on);
 384		if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
 385			/*
 386			 * Only shutdown the cpu local device, if:
 387			 *
 388			 * - the broadcast device exists
 389			 * - the broadcast device is not a hrtimer based one
 390			 * - the broadcast device is in periodic mode to
 391			 *   avoid a hickup during switch to oneshot mode
 392			 */
 393			if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER) &&
 394			    tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
 395				clockevents_shutdown(dev);
 396		}
 397		break;
 398
 399	case TICK_BROADCAST_OFF:
 400		if (tick_broadcast_forced)
 401			break;
 402		cpumask_clear_cpu(cpu, tick_broadcast_on);
 403		if (!tick_device_is_functional(dev))
 404			break;
 405		if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
 406			if (tick_broadcast_device.mode ==
 407			    TICKDEV_MODE_PERIODIC)
 408				tick_setup_periodic(dev, 0);
 409		}
 410		break;
 411	}
 412
 413	if (bc) {
 414		if (cpumask_empty(tick_broadcast_mask)) {
 415			if (!bc_stopped)
 416				clockevents_shutdown(bc);
 417		} else if (bc_stopped) {
 418			if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
 419				tick_broadcast_start_periodic(bc);
 420			else
 421				tick_broadcast_setup_oneshot(bc);
 422		}
 423	}
 424out:
 425	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 426}
 427EXPORT_SYMBOL_GPL(tick_broadcast_control);
 428
 429/*
 430 * Set the periodic handler depending on broadcast on/off
 431 */
 432void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
 433{
 434	if (!broadcast)
 435		dev->event_handler = tick_handle_periodic;
 436	else
 437		dev->event_handler = tick_handle_periodic_broadcast;
 438}
 439
 440#ifdef CONFIG_HOTPLUG_CPU
 441/*
 442 * Remove a CPU from broadcasting
 443 */
 444void tick_shutdown_broadcast(unsigned int cpu)
 445{
 446	struct clock_event_device *bc;
 447	unsigned long flags;
 448
 449	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 450
 451	bc = tick_broadcast_device.evtdev;
 452	cpumask_clear_cpu(cpu, tick_broadcast_mask);
 453	cpumask_clear_cpu(cpu, tick_broadcast_on);
 454
 455	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
 456		if (bc && cpumask_empty(tick_broadcast_mask))
 457			clockevents_shutdown(bc);
 458	}
 
 459
 460	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 
 
 
 
 
 
 
 
 
 
 461}
 
 462#endif
 463
 464void tick_suspend_broadcast(void)
 465{
 466	struct clock_event_device *bc;
 467	unsigned long flags;
 468
 469	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 470
 471	bc = tick_broadcast_device.evtdev;
 472	if (bc)
 473		clockevents_shutdown(bc);
 474
 475	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 476}
 477
 478/*
 479 * This is called from tick_resume_local() on a resuming CPU. That's
 480 * called from the core resume function, tick_unfreeze() and the magic XEN
 481 * resume hackery.
 482 *
 483 * In none of these cases the broadcast device mode can change and the
 484 * bit of the resuming CPU in the broadcast mask is safe as well.
 485 */
 486bool tick_resume_check_broadcast(void)
 487{
 488	if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT)
 489		return false;
 490	else
 491		return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask);
 492}
 493
 494void tick_resume_broadcast(void)
 495{
 496	struct clock_event_device *bc;
 497	unsigned long flags;
 498
 499	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 500
 501	bc = tick_broadcast_device.evtdev;
 502
 503	if (bc) {
 504		clockevents_tick_resume(bc);
 505
 506		switch (tick_broadcast_device.mode) {
 507		case TICKDEV_MODE_PERIODIC:
 508			if (!cpumask_empty(tick_broadcast_mask))
 509				tick_broadcast_start_periodic(bc);
 510			break;
 511		case TICKDEV_MODE_ONESHOT:
 512			if (!cpumask_empty(tick_broadcast_mask))
 513				tick_resume_broadcast_oneshot(bc);
 514			break;
 515		}
 516	}
 517	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 518}
 519
 520#ifdef CONFIG_TICK_ONESHOT
 521
 522static cpumask_var_t tick_broadcast_oneshot_mask __cpumask_var_read_mostly;
 523static cpumask_var_t tick_broadcast_pending_mask __cpumask_var_read_mostly;
 524static cpumask_var_t tick_broadcast_force_mask __cpumask_var_read_mostly;
 525
 526/*
 527 * Exposed for debugging: see timer_list.c
 528 */
 529struct cpumask *tick_get_broadcast_oneshot_mask(void)
 530{
 531	return tick_broadcast_oneshot_mask;
 532}
 533
 534/*
 535 * Called before going idle with interrupts disabled. Checks whether a
 536 * broadcast event from the other core is about to happen. We detected
 537 * that in tick_broadcast_oneshot_control(). The callsite can use this
 538 * to avoid a deep idle transition as we are about to get the
 539 * broadcast IPI right away.
 540 */
 541int tick_check_broadcast_expired(void)
 542{
 543	return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
 544}
 545
 546/*
 547 * Set broadcast interrupt affinity
 548 */
 549static void tick_broadcast_set_affinity(struct clock_event_device *bc,
 550					const struct cpumask *cpumask)
 551{
 552	if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
 553		return;
 554
 555	if (cpumask_equal(bc->cpumask, cpumask))
 556		return;
 557
 558	bc->cpumask = cpumask;
 559	irq_set_affinity(bc->irq, bc->cpumask);
 560}
 561
 562static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
 563				     ktime_t expires)
 564{
 565	if (!clockevent_state_oneshot(bc))
 566		clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
 567
 568	clockevents_program_event(bc, expires, 1);
 569	tick_broadcast_set_affinity(bc, cpumask_of(cpu));
 570}
 571
 572static void tick_resume_broadcast_oneshot(struct clock_event_device *bc)
 573{
 574	clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
 575}
 576
 577/*
 578 * Called from irq_enter() when idle was interrupted to reenable the
 579 * per cpu device.
 580 */
 581void tick_check_oneshot_broadcast_this_cpu(void)
 582{
 583	if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
 584		struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
 585
 586		/*
 587		 * We might be in the middle of switching over from
 588		 * periodic to oneshot. If the CPU has not yet
 589		 * switched over, leave the device alone.
 590		 */
 591		if (td->mode == TICKDEV_MODE_ONESHOT) {
 592			clockevents_switch_state(td->evtdev,
 593					      CLOCK_EVT_STATE_ONESHOT);
 594		}
 595	}
 596}
 597
 598/*
 599 * Handle oneshot mode broadcasting
 600 */
 601static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
 602{
 603	struct tick_device *td;
 604	ktime_t now, next_event;
 605	int cpu, next_cpu = 0;
 606	bool bc_local;
 607
 608	raw_spin_lock(&tick_broadcast_lock);
 609	dev->next_event = KTIME_MAX;
 610	next_event = KTIME_MAX;
 611	cpumask_clear(tmpmask);
 612	now = ktime_get();
 613	/* Find all expired events */
 614	for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
 615		/*
 616		 * Required for !SMP because for_each_cpu() reports
 617		 * unconditionally CPU0 as set on UP kernels.
 618		 */
 619		if (!IS_ENABLED(CONFIG_SMP) &&
 620		    cpumask_empty(tick_broadcast_oneshot_mask))
 621			break;
 622
 623		td = &per_cpu(tick_cpu_device, cpu);
 624		if (td->evtdev->next_event <= now) {
 625			cpumask_set_cpu(cpu, tmpmask);
 626			/*
 627			 * Mark the remote cpu in the pending mask, so
 628			 * it can avoid reprogramming the cpu local
 629			 * timer in tick_broadcast_oneshot_control().
 630			 */
 631			cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
 632		} else if (td->evtdev->next_event < next_event) {
 633			next_event = td->evtdev->next_event;
 634			next_cpu = cpu;
 635		}
 636	}
 637
 638	/*
 639	 * Remove the current cpu from the pending mask. The event is
 640	 * delivered immediately in tick_do_broadcast() !
 641	 */
 642	cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
 643
 644	/* Take care of enforced broadcast requests */
 645	cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
 646	cpumask_clear(tick_broadcast_force_mask);
 647
 648	/*
 649	 * Sanity check. Catch the case where we try to broadcast to
 650	 * offline cpus.
 651	 */
 652	if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
 653		cpumask_and(tmpmask, tmpmask, cpu_online_mask);
 654
 655	/*
 656	 * Wakeup the cpus which have an expired event.
 657	 */
 658	bc_local = tick_do_broadcast(tmpmask);
 659
 660	/*
 661	 * Two reasons for reprogram:
 662	 *
 663	 * - The global event did not expire any CPU local
 664	 * events. This happens in dyntick mode, as the maximum PIT
 665	 * delta is quite small.
 666	 *
 667	 * - There are pending events on sleeping CPUs which were not
 668	 * in the event mask
 669	 */
 670	if (next_event != KTIME_MAX)
 671		tick_broadcast_set_event(dev, next_cpu, next_event);
 672
 673	raw_spin_unlock(&tick_broadcast_lock);
 674
 675	if (bc_local) {
 676		td = this_cpu_ptr(&tick_cpu_device);
 677		td->evtdev->event_handler(td->evtdev);
 678	}
 679}
 680
 681static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
 682{
 683	if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
 684		return 0;
 685	if (bc->next_event == KTIME_MAX)
 686		return 0;
 687	return bc->bound_on == cpu ? -EBUSY : 0;
 688}
 689
 690static void broadcast_shutdown_local(struct clock_event_device *bc,
 691				     struct clock_event_device *dev)
 692{
 693	/*
 694	 * For hrtimer based broadcasting we cannot shutdown the cpu
 695	 * local device if our own event is the first one to expire or
 696	 * if we own the broadcast timer.
 697	 */
 698	if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
 699		if (broadcast_needs_cpu(bc, smp_processor_id()))
 700			return;
 701		if (dev->next_event < bc->next_event)
 702			return;
 703	}
 704	clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
 705}
 706
 707int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
 
 
 708{
 709	struct clock_event_device *bc, *dev;
 710	int cpu, ret = 0;
 711	ktime_t now;
 712
 713	/*
 714	 * If there is no broadcast device, tell the caller not to go
 715	 * into deep idle.
 716	 */
 717	if (!tick_broadcast_device.evtdev)
 718		return -EBUSY;
 719
 720	dev = this_cpu_ptr(&tick_cpu_device)->evtdev;
 721
 722	raw_spin_lock(&tick_broadcast_lock);
 723	bc = tick_broadcast_device.evtdev;
 724	cpu = smp_processor_id();
 725
 726	if (state == TICK_BROADCAST_ENTER) {
 727		/*
 728		 * If the current CPU owns the hrtimer broadcast
 729		 * mechanism, it cannot go deep idle and we do not add
 730		 * the CPU to the broadcast mask. We don't have to go
 731		 * through the EXIT path as the local timer is not
 732		 * shutdown.
 733		 */
 734		ret = broadcast_needs_cpu(bc, cpu);
 735		if (ret)
 736			goto out;
 737
 738		/*
 739		 * If the broadcast device is in periodic mode, we
 740		 * return.
 741		 */
 742		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
 743			/* If it is a hrtimer based broadcast, return busy */
 744			if (bc->features & CLOCK_EVT_FEAT_HRTIMER)
 745				ret = -EBUSY;
 746			goto out;
 747		}
 748
 749		if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
 750			WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
 751
 752			/* Conditionally shut down the local timer. */
 753			broadcast_shutdown_local(bc, dev);
 754
 755			/*
 756			 * We only reprogram the broadcast timer if we
 757			 * did not mark ourself in the force mask and
 758			 * if the cpu local event is earlier than the
 759			 * broadcast event. If the current CPU is in
 760			 * the force mask, then we are going to be
 761			 * woken by the IPI right away; we return
 762			 * busy, so the CPU does not try to go deep
 763			 * idle.
 764			 */
 765			if (cpumask_test_cpu(cpu, tick_broadcast_force_mask)) {
 766				ret = -EBUSY;
 767			} else if (dev->next_event < bc->next_event) {
 768				tick_broadcast_set_event(bc, cpu, dev->next_event);
 769				/*
 770				 * In case of hrtimer broadcasts the
 771				 * programming might have moved the
 772				 * timer to this cpu. If yes, remove
 773				 * us from the broadcast mask and
 774				 * return busy.
 775				 */
 776				ret = broadcast_needs_cpu(bc, cpu);
 777				if (ret) {
 778					cpumask_clear_cpu(cpu,
 779						tick_broadcast_oneshot_mask);
 780				}
 781			}
 782		}
 783	} else {
 784		if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
 785			clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
 786			/*
 787			 * The cpu which was handling the broadcast
 788			 * timer marked this cpu in the broadcast
 789			 * pending mask and fired the broadcast
 790			 * IPI. So we are going to handle the expired
 791			 * event anyway via the broadcast IPI
 792			 * handler. No need to reprogram the timer
 793			 * with an already expired event.
 794			 */
 795			if (cpumask_test_and_clear_cpu(cpu,
 796				       tick_broadcast_pending_mask))
 797				goto out;
 798
 799			/*
 800			 * Bail out if there is no next event.
 801			 */
 802			if (dev->next_event == KTIME_MAX)
 803				goto out;
 804			/*
 805			 * If the pending bit is not set, then we are
 806			 * either the CPU handling the broadcast
 807			 * interrupt or we got woken by something else.
 808			 *
 809			 * We are not longer in the broadcast mask, so
 810			 * if the cpu local expiry time is already
 811			 * reached, we would reprogram the cpu local
 812			 * timer with an already expired event.
 813			 *
 814			 * This can lead to a ping-pong when we return
 815			 * to idle and therefor rearm the broadcast
 816			 * timer before the cpu local timer was able
 817			 * to fire. This happens because the forced
 818			 * reprogramming makes sure that the event
 819			 * will happen in the future and depending on
 820			 * the min_delta setting this might be far
 821			 * enough out that the ping-pong starts.
 822			 *
 823			 * If the cpu local next_event has expired
 824			 * then we know that the broadcast timer
 825			 * next_event has expired as well and
 826			 * broadcast is about to be handled. So we
 827			 * avoid reprogramming and enforce that the
 828			 * broadcast handler, which did not run yet,
 829			 * will invoke the cpu local handler.
 830			 *
 831			 * We cannot call the handler directly from
 832			 * here, because we might be in a NOHZ phase
 833			 * and we did not go through the irq_enter()
 834			 * nohz fixups.
 835			 */
 836			now = ktime_get();
 837			if (dev->next_event <= now) {
 838				cpumask_set_cpu(cpu, tick_broadcast_force_mask);
 839				goto out;
 840			}
 841			/*
 842			 * We got woken by something else. Reprogram
 843			 * the cpu local timer device.
 844			 */
 845			tick_program_event(dev->next_event, 1);
 846		}
 847	}
 848out:
 849	raw_spin_unlock(&tick_broadcast_lock);
 850	return ret;
 851}
 852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 853/*
 854 * Reset the one shot broadcast for a cpu
 855 *
 856 * Called with tick_broadcast_lock held
 857 */
 858static void tick_broadcast_clear_oneshot(int cpu)
 859{
 860	cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
 861	cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
 862}
 863
 864static void tick_broadcast_init_next_event(struct cpumask *mask,
 865					   ktime_t expires)
 866{
 867	struct tick_device *td;
 868	int cpu;
 869
 870	for_each_cpu(cpu, mask) {
 871		td = &per_cpu(tick_cpu_device, cpu);
 872		if (td->evtdev)
 873			td->evtdev->next_event = expires;
 874	}
 875}
 876
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 877/**
 878 * tick_broadcast_setup_oneshot - setup the broadcast device
 879 */
 880static void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
 881{
 882	int cpu = smp_processor_id();
 883
 884	if (!bc)
 885		return;
 886
 887	/* Set it up only once ! */
 888	if (bc->event_handler != tick_handle_oneshot_broadcast) {
 889		int was_periodic = clockevent_state_periodic(bc);
 890
 891		bc->event_handler = tick_handle_oneshot_broadcast;
 892
 893		/*
 894		 * We must be careful here. There might be other CPUs
 895		 * waiting for periodic broadcast. We need to set the
 896		 * oneshot_mask bits for those and program the
 897		 * broadcast device to fire.
 898		 */
 899		cpumask_copy(tmpmask, tick_broadcast_mask);
 900		cpumask_clear_cpu(cpu, tmpmask);
 901		cpumask_or(tick_broadcast_oneshot_mask,
 902			   tick_broadcast_oneshot_mask, tmpmask);
 903
 904		if (was_periodic && !cpumask_empty(tmpmask)) {
 
 
 905			clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
 906			tick_broadcast_init_next_event(tmpmask,
 907						       tick_next_period);
 908			tick_broadcast_set_event(bc, cpu, tick_next_period);
 909		} else
 910			bc->next_event = KTIME_MAX;
 911	} else {
 912		/*
 913		 * The first cpu which switches to oneshot mode sets
 914		 * the bit for all other cpus which are in the general
 915		 * (periodic) broadcast mask. So the bit is set and
 916		 * would prevent the first broadcast enter after this
 917		 * to program the bc device.
 918		 */
 919		tick_broadcast_clear_oneshot(cpu);
 920	}
 921}
 922
 923/*
 924 * Select oneshot operating mode for the broadcast device
 925 */
 926void tick_broadcast_switch_to_oneshot(void)
 927{
 928	struct clock_event_device *bc;
 929	unsigned long flags;
 930
 931	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 932
 933	tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
 934	bc = tick_broadcast_device.evtdev;
 935	if (bc)
 936		tick_broadcast_setup_oneshot(bc);
 937
 938	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 939}
 940
 941#ifdef CONFIG_HOTPLUG_CPU
 942void hotplug_cpu__broadcast_tick_pull(int deadcpu)
 943{
 944	struct clock_event_device *bc;
 945	unsigned long flags;
 946
 947	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 948	bc = tick_broadcast_device.evtdev;
 949
 950	if (bc && broadcast_needs_cpu(bc, deadcpu)) {
 951		/* This moves the broadcast assignment to this CPU: */
 952		clockevents_program_event(bc, bc->next_event, 1);
 953	}
 954	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 955}
 956
 957/*
 958 * Remove a dead CPU from broadcasting
 959 */
 960void tick_shutdown_broadcast_oneshot(unsigned int cpu)
 961{
 962	unsigned long flags;
 963
 964	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 965
 966	/*
 967	 * Clear the broadcast masks for the dead cpu, but do not stop
 968	 * the broadcast device!
 969	 */
 970	cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
 971	cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
 972	cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
 973
 974	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 975}
 976#endif
 977
 978/*
 979 * Check, whether the broadcast device is in one shot mode
 980 */
 981int tick_broadcast_oneshot_active(void)
 982{
 983	return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
 984}
 985
 986/*
 987 * Check whether the broadcast device supports oneshot.
 988 */
 989bool tick_broadcast_oneshot_available(void)
 990{
 991	struct clock_event_device *bc = tick_broadcast_device.evtdev;
 992
 993	return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
 994}
 995
 996#else
 997int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
 998{
 999	struct clock_event_device *bc = tick_broadcast_device.evtdev;
1000
1001	if (!bc || (bc->features & CLOCK_EVT_FEAT_HRTIMER))
1002		return -EBUSY;
1003
1004	return 0;
1005}
1006#endif
1007
1008void __init tick_broadcast_init(void)
1009{
1010	zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
1011	zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
1012	zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
1013#ifdef CONFIG_TICK_ONESHOT
1014	zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
1015	zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
1016	zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
1017#endif
1018}