Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.17.
  1/* SPDX-License-Identifier: GPL-2.0 */
  2
  3#ifndef _KERNEL_PRINTK_RINGBUFFER_H
  4#define _KERNEL_PRINTK_RINGBUFFER_H
  5
  6#include <linux/atomic.h>
  7#include <linux/dev_printk.h>
  8
  9/*
 10 * Meta information about each stored message.
 11 *
 12 * All fields are set by the printk code except for @seq, which is
 13 * set by the ringbuffer code.
 14 */
 15struct printk_info {
 16	u64	seq;		/* sequence number */
 17	u64	ts_nsec;	/* timestamp in nanoseconds */
 18	u16	text_len;	/* length of text message */
 19	u8	facility;	/* syslog facility */
 20	u8	flags:5;	/* internal record flags */
 21	u8	level:3;	/* syslog level */
 22	u32	caller_id;	/* thread id or processor id */
 23
 24	struct dev_printk_info	dev_info;
 25};
 26
 27/*
 28 * A structure providing the buffers, used by writers and readers.
 29 *
 30 * Writers:
 31 * Using prb_rec_init_wr(), a writer sets @text_buf_size before calling
 32 * prb_reserve(). On success, prb_reserve() sets @info and @text_buf to
 33 * buffers reserved for that writer.
 34 *
 35 * Readers:
 36 * Using prb_rec_init_rd(), a reader sets all fields before calling
 37 * prb_read_valid(). Note that the reader provides the @info and @text_buf,
 38 * buffers. On success, the struct pointed to by @info will be filled and
 39 * the char array pointed to by @text_buf will be filled with text data.
 40 */
 41struct printk_record {
 42	struct printk_info	*info;
 43	char			*text_buf;
 44	unsigned int		text_buf_size;
 45};
 46
 47/* Specifies the logical position and span of a data block. */
 48struct prb_data_blk_lpos {
 49	unsigned long	begin;
 50	unsigned long	next;
 51};
 52
 53/*
 54 * A descriptor: the complete meta-data for a record.
 55 *
 56 * @state_var: A bitwise combination of descriptor ID and descriptor state.
 57 */
 58struct prb_desc {
 59	atomic_long_t			state_var;
 60	struct prb_data_blk_lpos	text_blk_lpos;
 61};
 62
 63/* A ringbuffer of "ID + data" elements. */
 64struct prb_data_ring {
 65	unsigned int	size_bits;
 66	char		*data;
 67	atomic_long_t	head_lpos;
 68	atomic_long_t	tail_lpos;
 69};
 70
 71/* A ringbuffer of "struct prb_desc" elements. */
 72struct prb_desc_ring {
 73	unsigned int		count_bits;
 74	struct prb_desc		*descs;
 75	struct printk_info	*infos;
 76	atomic_long_t		head_id;
 77	atomic_long_t		tail_id;
 78	atomic_long_t		last_finalized_id;
 79};
 80
 81/*
 82 * The high level structure representing the printk ringbuffer.
 83 *
 84 * @fail: Count of failed prb_reserve() calls where not even a data-less
 85 *        record was created.
 86 */
 87struct printk_ringbuffer {
 88	struct prb_desc_ring	desc_ring;
 89	struct prb_data_ring	text_data_ring;
 90	atomic_long_t		fail;
 91};
 92
 93/*
 94 * Used by writers as a reserve/commit handle.
 95 *
 96 * @rb:         Ringbuffer where the entry is reserved.
 97 * @irqflags:   Saved irq flags to restore on entry commit.
 98 * @id:         ID of the reserved descriptor.
 99 * @text_space: Total occupied buffer space in the text data ring, including
100 *              ID, alignment padding, and wrapping data blocks.
101 *
102 * This structure is an opaque handle for writers. Its contents are only
103 * to be used by the ringbuffer implementation.
104 */
105struct prb_reserved_entry {
106	struct printk_ringbuffer	*rb;
107	unsigned long			irqflags;
108	unsigned long			id;
109	unsigned int			text_space;
110};
111
112/* The possible responses of a descriptor state-query. */
113enum desc_state {
114	desc_miss	=  -1,	/* ID mismatch (pseudo state) */
115	desc_reserved	= 0x0,	/* reserved, in use by writer */
116	desc_committed	= 0x1,	/* committed by writer, could get reopened */
117	desc_finalized	= 0x2,	/* committed, no further modification allowed */
118	desc_reusable	= 0x3,	/* free, not yet used by any writer */
119};
120
121#define _DATA_SIZE(sz_bits)	(1UL << (sz_bits))
122#define _DESCS_COUNT(ct_bits)	(1U << (ct_bits))
123#define DESC_SV_BITS		(sizeof(unsigned long) * 8)
124#define DESC_FLAGS_SHIFT	(DESC_SV_BITS - 2)
125#define DESC_FLAGS_MASK		(3UL << DESC_FLAGS_SHIFT)
126#define DESC_STATE(sv)		(3UL & (sv >> DESC_FLAGS_SHIFT))
127#define DESC_SV(id, state)	(((unsigned long)state << DESC_FLAGS_SHIFT) | id)
128#define DESC_ID_MASK		(~DESC_FLAGS_MASK)
129#define DESC_ID(sv)		((sv) & DESC_ID_MASK)
130#define FAILED_LPOS		0x1
131#define NO_LPOS			0x3
132
133#define FAILED_BLK_LPOS	\
134{				\
135	.begin	= FAILED_LPOS,	\
136	.next	= FAILED_LPOS,	\
137}
138
139/*
140 * Descriptor Bootstrap
141 *
142 * The descriptor array is minimally initialized to allow immediate usage
143 * by readers and writers. The requirements that the descriptor array
144 * initialization must satisfy:
145 *
146 *   Req1
147 *     The tail must point to an existing (committed or reusable) descriptor.
148 *     This is required by the implementation of prb_first_seq().
149 *
150 *   Req2
151 *     Readers must see that the ringbuffer is initially empty.
152 *
153 *   Req3
154 *     The first record reserved by a writer is assigned sequence number 0.
155 *
156 * To satisfy Req1, the tail initially points to a descriptor that is
157 * minimally initialized (having no data block, i.e. data-less with the
158 * data block's lpos @begin and @next values set to FAILED_LPOS).
159 *
160 * To satisfy Req2, the initial tail descriptor is initialized to the
161 * reusable state. Readers recognize reusable descriptors as existing
162 * records, but skip over them.
163 *
164 * To satisfy Req3, the last descriptor in the array is used as the initial
165 * head (and tail) descriptor. This allows the first record reserved by a
166 * writer (head + 1) to be the first descriptor in the array. (Only the first
167 * descriptor in the array could have a valid sequence number of 0.)
168 *
169 * The first time a descriptor is reserved, it is assigned a sequence number
170 * with the value of the array index. A "first time reserved" descriptor can
171 * be recognized because it has a sequence number of 0 but does not have an
172 * index of 0. (Only the first descriptor in the array could have a valid
173 * sequence number of 0.) After the first reservation, all future reservations
174 * (recycling) simply involve incrementing the sequence number by the array
175 * count.
176 *
177 *   Hack #1
178 *     Only the first descriptor in the array is allowed to have the sequence
179 *     number 0. In this case it is not possible to recognize if it is being
180 *     reserved the first time (set to index value) or has been reserved
181 *     previously (increment by the array count). This is handled by _always_
182 *     incrementing the sequence number by the array count when reserving the
183 *     first descriptor in the array. In order to satisfy Req3, the sequence
184 *     number of the first descriptor in the array is initialized to minus
185 *     the array count. Then, upon the first reservation, it is incremented
186 *     to 0, thus satisfying Req3.
187 *
188 *   Hack #2
189 *     prb_first_seq() can be called at any time by readers to retrieve the
190 *     sequence number of the tail descriptor. However, due to Req2 and Req3,
191 *     initially there are no records to report the sequence number of
192 *     (sequence numbers are u64 and there is nothing less than 0). To handle
193 *     this, the sequence number of the initial tail descriptor is initialized
194 *     to 0. Technically this is incorrect, because there is no record with
195 *     sequence number 0 (yet) and the tail descriptor is not the first
196 *     descriptor in the array. But it allows prb_read_valid() to correctly
197 *     report the existence of a record for _any_ given sequence number at all
198 *     times. Bootstrapping is complete when the tail is pushed the first
199 *     time, thus finally pointing to the first descriptor reserved by a
200 *     writer, which has the assigned sequence number 0.
201 */
202
203/*
204 * Initiating Logical Value Overflows
205 *
206 * Both logical position (lpos) and ID values can be mapped to array indexes
207 * but may experience overflows during the lifetime of the system. To ensure
208 * that printk_ringbuffer can handle the overflows for these types, initial
209 * values are chosen that map to the correct initial array indexes, but will
210 * result in overflows soon.
211 *
212 *   BLK0_LPOS
213 *     The initial @head_lpos and @tail_lpos for data rings. It is at index
214 *     0 and the lpos value is such that it will overflow on the first wrap.
215 *
216 *   DESC0_ID
217 *     The initial @head_id and @tail_id for the desc ring. It is at the last
218 *     index of the descriptor array (see Req3 above) and the ID value is such
219 *     that it will overflow on the second wrap.
220 */
221#define BLK0_LPOS(sz_bits)	(-(_DATA_SIZE(sz_bits)))
222#define DESC0_ID(ct_bits)	DESC_ID(-(_DESCS_COUNT(ct_bits) + 1))
223#define DESC0_SV(ct_bits)	DESC_SV(DESC0_ID(ct_bits), desc_reusable)
224
225/*
226 * Define a ringbuffer with an external text data buffer. The same as
227 * DEFINE_PRINTKRB() but requires specifying an external buffer for the
228 * text data.
229 *
230 * Note: The specified external buffer must be of the size:
231 *       2 ^ (descbits + avgtextbits)
232 */
233#define _DEFINE_PRINTKRB(name, descbits, avgtextbits, text_buf)			\
234static struct prb_desc _##name##_descs[_DESCS_COUNT(descbits)] = {				\
235	/* the initial head and tail */								\
236	[_DESCS_COUNT(descbits) - 1] = {							\
237		/* reusable */									\
238		.state_var	= ATOMIC_INIT(DESC0_SV(descbits)),				\
239		/* no associated data block */							\
240		.text_blk_lpos	= FAILED_BLK_LPOS,						\
241	},											\
242};												\
243static struct printk_info _##name##_infos[_DESCS_COUNT(descbits)] = {				\
244	/* this will be the first record reserved by a writer */				\
245	[0] = {											\
246		/* will be incremented to 0 on the first reservation */				\
247		.seq = -(u64)_DESCS_COUNT(descbits),						\
248	},											\
249	/* the initial head and tail */								\
250	[_DESCS_COUNT(descbits) - 1] = {							\
251		/* reports the first seq value during the bootstrap phase */			\
252		.seq = 0,									\
253	},											\
254};												\
255static struct printk_ringbuffer name = {							\
256	.desc_ring = {										\
257		.count_bits	= descbits,							\
258		.descs		= &_##name##_descs[0],						\
259		.infos		= &_##name##_infos[0],						\
260		.head_id	= ATOMIC_INIT(DESC0_ID(descbits)),				\
261		.tail_id	= ATOMIC_INIT(DESC0_ID(descbits)),				\
262		.last_finalized_id = ATOMIC_INIT(DESC0_ID(descbits)),				\
263	},											\
264	.text_data_ring = {									\
265		.size_bits	= (avgtextbits) + (descbits),					\
266		.data		= text_buf,							\
267		.head_lpos	= ATOMIC_LONG_INIT(BLK0_LPOS((avgtextbits) + (descbits))),	\
268		.tail_lpos	= ATOMIC_LONG_INIT(BLK0_LPOS((avgtextbits) + (descbits))),	\
269	},											\
270	.fail			= ATOMIC_LONG_INIT(0),						\
271}
272
273/**
274 * DEFINE_PRINTKRB() - Define a ringbuffer.
275 *
276 * @name:        The name of the ringbuffer variable.
277 * @descbits:    The number of descriptors as a power-of-2 value.
278 * @avgtextbits: The average text data size per record as a power-of-2 value.
279 *
280 * This is a macro for defining a ringbuffer and all internal structures
281 * such that it is ready for immediate use. See _DEFINE_PRINTKRB() for a
282 * variant where the text data buffer can be specified externally.
283 */
284#define DEFINE_PRINTKRB(name, descbits, avgtextbits)				\
285static char _##name##_text[1U << ((avgtextbits) + (descbits))]			\
286			__aligned(__alignof__(unsigned long));			\
287_DEFINE_PRINTKRB(name, descbits, avgtextbits, &_##name##_text[0])
288
289/* Writer Interface */
290
291/**
292 * prb_rec_init_wr() - Initialize a buffer for writing records.
293 *
294 * @r:             The record to initialize.
295 * @text_buf_size: The needed text buffer size.
296 */
297static inline void prb_rec_init_wr(struct printk_record *r,
298				   unsigned int text_buf_size)
299{
300	r->info = NULL;
301	r->text_buf = NULL;
302	r->text_buf_size = text_buf_size;
303}
304
305bool prb_reserve(struct prb_reserved_entry *e, struct printk_ringbuffer *rb,
306		 struct printk_record *r);
307bool prb_reserve_in_last(struct prb_reserved_entry *e, struct printk_ringbuffer *rb,
308			 struct printk_record *r, u32 caller_id, unsigned int max_size);
309void prb_commit(struct prb_reserved_entry *e);
310void prb_final_commit(struct prb_reserved_entry *e);
311
312void prb_init(struct printk_ringbuffer *rb,
313	      char *text_buf, unsigned int text_buf_size,
314	      struct prb_desc *descs, unsigned int descs_count_bits,
315	      struct printk_info *infos);
316unsigned int prb_record_text_space(struct prb_reserved_entry *e);
317
318/* Reader Interface */
319
320/**
321 * prb_rec_init_rd() - Initialize a buffer for reading records.
322 *
323 * @r:             The record to initialize.
324 * @info:          A buffer to store record meta-data.
325 * @text_buf:      A buffer to store text data.
326 * @text_buf_size: The size of @text_buf.
327 *
328 * Initialize all the fields that a reader is interested in. All arguments
329 * (except @r) are optional. Only record data for arguments that are
330 * non-NULL or non-zero will be read.
331 */
332static inline void prb_rec_init_rd(struct printk_record *r,
333				   struct printk_info *info,
334				   char *text_buf, unsigned int text_buf_size)
335{
336	r->info = info;
337	r->text_buf = text_buf;
338	r->text_buf_size = text_buf_size;
339}
340
341/**
342 * prb_for_each_record() - Iterate over the records of a ringbuffer.
343 *
344 * @from: The sequence number to begin with.
345 * @rb:   The ringbuffer to iterate over.
346 * @s:    A u64 to store the sequence number on each iteration.
347 * @r:    A printk_record to store the record on each iteration.
348 *
349 * This is a macro for conveniently iterating over a ringbuffer.
350 * Note that @s may not be the sequence number of the record on each
351 * iteration. For the sequence number, @r->info->seq should be checked.
352 *
353 * Context: Any context.
354 */
355#define prb_for_each_record(from, rb, s, r) \
356for ((s) = from; prb_read_valid(rb, s, r); (s) = (r)->info->seq + 1)
357
358/**
359 * prb_for_each_info() - Iterate over the meta data of a ringbuffer.
360 *
361 * @from: The sequence number to begin with.
362 * @rb:   The ringbuffer to iterate over.
363 * @s:    A u64 to store the sequence number on each iteration.
364 * @i:    A printk_info to store the record meta data on each iteration.
365 * @lc:   An unsigned int to store the text line count of each record.
366 *
367 * This is a macro for conveniently iterating over a ringbuffer.
368 * Note that @s may not be the sequence number of the record on each
369 * iteration. For the sequence number, @r->info->seq should be checked.
370 *
371 * Context: Any context.
372 */
373#define prb_for_each_info(from, rb, s, i, lc) \
374for ((s) = from; prb_read_valid_info(rb, s, i, lc); (s) = (i)->seq + 1)
375
376bool prb_read_valid(struct printk_ringbuffer *rb, u64 seq,
377		    struct printk_record *r);
378bool prb_read_valid_info(struct printk_ringbuffer *rb, u64 seq,
379			 struct printk_info *info, unsigned int *line_count);
380
381u64 prb_first_valid_seq(struct printk_ringbuffer *rb);
382u64 prb_next_seq(struct printk_ringbuffer *rb);
383
384#endif /* _KERNEL_PRINTK_RINGBUFFER_H */