Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Pid namespaces
  4 *
  5 * Authors:
  6 *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
  7 *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
  8 *     Many thanks to Oleg Nesterov for comments and help
  9 *
 10 */
 11
 12#include <linux/pid.h>
 13#include <linux/pid_namespace.h>
 14#include <linux/user_namespace.h>
 15#include <linux/syscalls.h>
 16#include <linux/cred.h>
 17#include <linux/err.h>
 18#include <linux/acct.h>
 19#include <linux/slab.h>
 20#include <linux/proc_ns.h>
 21#include <linux/reboot.h>
 22#include <linux/export.h>
 23#include <linux/sched/task.h>
 24#include <linux/sched/signal.h>
 25#include <linux/idr.h>
 26
 27static DEFINE_MUTEX(pid_caches_mutex);
 28static struct kmem_cache *pid_ns_cachep;
 
 
 29/* Write once array, filled from the beginning. */
 30static struct kmem_cache *pid_cache[MAX_PID_NS_LEVEL];
 31
 32/*
 33 * creates the kmem cache to allocate pids from.
 34 * @level: pid namespace level
 35 */
 36
 37static struct kmem_cache *create_pid_cachep(unsigned int level)
 38{
 39	/* Level 0 is init_pid_ns.pid_cachep */
 40	struct kmem_cache **pkc = &pid_cache[level - 1];
 41	struct kmem_cache *kc;
 42	char name[4 + 10 + 1];
 43	unsigned int len;
 44
 45	kc = READ_ONCE(*pkc);
 46	if (kc)
 47		return kc;
 48
 49	snprintf(name, sizeof(name), "pid_%u", level + 1);
 50	len = sizeof(struct pid) + level * sizeof(struct upid);
 51	mutex_lock(&pid_caches_mutex);
 52	/* Name collision forces to do allocation under mutex. */
 53	if (!*pkc)
 54		*pkc = kmem_cache_create(name, len, 0,
 55					 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT, NULL);
 56	mutex_unlock(&pid_caches_mutex);
 57	/* current can fail, but someone else can succeed. */
 58	return READ_ONCE(*pkc);
 59}
 60
 
 
 
 
 
 
 61static struct ucounts *inc_pid_namespaces(struct user_namespace *ns)
 62{
 63	return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES);
 64}
 65
 66static void dec_pid_namespaces(struct ucounts *ucounts)
 67{
 68	dec_ucount(ucounts, UCOUNT_PID_NAMESPACES);
 69}
 70
 71static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
 72	struct pid_namespace *parent_pid_ns)
 73{
 74	struct pid_namespace *ns;
 75	unsigned int level = parent_pid_ns->level + 1;
 76	struct ucounts *ucounts;
 77	int err;
 78
 79	err = -EINVAL;
 80	if (!in_userns(parent_pid_ns->user_ns, user_ns))
 81		goto out;
 82
 83	err = -ENOSPC;
 84	if (level > MAX_PID_NS_LEVEL)
 85		goto out;
 86	ucounts = inc_pid_namespaces(user_ns);
 87	if (!ucounts)
 88		goto out;
 89
 90	err = -ENOMEM;
 91	ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
 92	if (ns == NULL)
 93		goto out_dec;
 94
 95	idr_init(&ns->idr);
 96
 97	ns->pid_cachep = create_pid_cachep(level);
 98	if (ns->pid_cachep == NULL)
 99		goto out_free_idr;
100
101	err = ns_alloc_inum(&ns->ns);
102	if (err)
103		goto out_free_idr;
104	ns->ns.ops = &pidns_operations;
105
106	refcount_set(&ns->ns.count, 1);
107	ns->level = level;
108	ns->parent = get_pid_ns(parent_pid_ns);
109	ns->user_ns = get_user_ns(user_ns);
110	ns->ucounts = ucounts;
111	ns->pid_allocated = PIDNS_ADDING;
 
112
113	return ns;
114
115out_free_idr:
116	idr_destroy(&ns->idr);
117	kmem_cache_free(pid_ns_cachep, ns);
118out_dec:
119	dec_pid_namespaces(ucounts);
120out:
121	return ERR_PTR(err);
122}
123
124static void delayed_free_pidns(struct rcu_head *p)
125{
126	struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu);
127
128	dec_pid_namespaces(ns->ucounts);
129	put_user_ns(ns->user_ns);
130
131	kmem_cache_free(pid_ns_cachep, ns);
132}
133
134static void destroy_pid_namespace(struct pid_namespace *ns)
135{
136	ns_free_inum(&ns->ns);
137
138	idr_destroy(&ns->idr);
139	call_rcu(&ns->rcu, delayed_free_pidns);
140}
141
142struct pid_namespace *copy_pid_ns(unsigned long flags,
143	struct user_namespace *user_ns, struct pid_namespace *old_ns)
144{
145	if (!(flags & CLONE_NEWPID))
146		return get_pid_ns(old_ns);
147	if (task_active_pid_ns(current) != old_ns)
148		return ERR_PTR(-EINVAL);
149	return create_pid_namespace(user_ns, old_ns);
150}
151
 
 
 
 
 
 
 
 
152void put_pid_ns(struct pid_namespace *ns)
153{
154	struct pid_namespace *parent;
155
156	while (ns != &init_pid_ns) {
157		parent = ns->parent;
158		if (!refcount_dec_and_test(&ns->ns.count))
159			break;
160		destroy_pid_namespace(ns);
161		ns = parent;
162	}
163}
164EXPORT_SYMBOL_GPL(put_pid_ns);
165
166void zap_pid_ns_processes(struct pid_namespace *pid_ns)
167{
168	int nr;
169	int rc;
170	struct task_struct *task, *me = current;
171	int init_pids = thread_group_leader(me) ? 1 : 2;
172	struct pid *pid;
173
174	/* Don't allow any more processes into the pid namespace */
175	disable_pid_allocation(pid_ns);
176
177	/*
178	 * Ignore SIGCHLD causing any terminated children to autoreap.
179	 * This speeds up the namespace shutdown, plus see the comment
180	 * below.
181	 */
182	spin_lock_irq(&me->sighand->siglock);
183	me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
184	spin_unlock_irq(&me->sighand->siglock);
185
186	/*
187	 * The last thread in the cgroup-init thread group is terminating.
188	 * Find remaining pid_ts in the namespace, signal and wait for them
189	 * to exit.
190	 *
191	 * Note:  This signals each threads in the namespace - even those that
192	 * 	  belong to the same thread group, To avoid this, we would have
193	 * 	  to walk the entire tasklist looking a processes in this
194	 * 	  namespace, but that could be unnecessarily expensive if the
195	 * 	  pid namespace has just a few processes. Or we need to
196	 * 	  maintain a tasklist for each pid namespace.
197	 *
198	 */
199	rcu_read_lock();
200	read_lock(&tasklist_lock);
201	nr = 2;
202	idr_for_each_entry_continue(&pid_ns->idr, pid, nr) {
203		task = pid_task(pid, PIDTYPE_PID);
204		if (task && !__fatal_signal_pending(task))
205			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, task, PIDTYPE_MAX);
206	}
207	read_unlock(&tasklist_lock);
208	rcu_read_unlock();
209
210	/*
211	 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
212	 * kernel_wait4() will also block until our children traced from the
213	 * parent namespace are detached and become EXIT_DEAD.
214	 */
215	do {
216		clear_thread_flag(TIF_SIGPENDING);
217		rc = kernel_wait4(-1, NULL, __WALL, NULL);
218	} while (rc != -ECHILD);
219
220	/*
221	 * kernel_wait4() misses EXIT_DEAD children, and EXIT_ZOMBIE
222	 * process whose parents processes are outside of the pid
223	 * namespace.  Such processes are created with setns()+fork().
224	 *
225	 * If those EXIT_ZOMBIE processes are not reaped by their
226	 * parents before their parents exit, they will be reparented
227	 * to pid_ns->child_reaper.  Thus pidns->child_reaper needs to
228	 * stay valid until they all go away.
229	 *
230	 * The code relies on the pid_ns->child_reaper ignoring
231	 * SIGCHILD to cause those EXIT_ZOMBIE processes to be
232	 * autoreaped if reparented.
233	 *
234	 * Semantically it is also desirable to wait for EXIT_ZOMBIE
235	 * processes before allowing the child_reaper to be reaped, as
236	 * that gives the invariant that when the init process of a
237	 * pid namespace is reaped all of the processes in the pid
238	 * namespace are gone.
239	 *
240	 * Once all of the other tasks are gone from the pid_namespace
241	 * free_pid() will awaken this task.
242	 */
243	for (;;) {
244		set_current_state(TASK_INTERRUPTIBLE);
245		if (pid_ns->pid_allocated == init_pids)
246			break;
247		schedule();
248	}
249	__set_current_state(TASK_RUNNING);
250
251	if (pid_ns->reboot)
252		current->signal->group_exit_code = pid_ns->reboot;
253
254	acct_exit_ns(pid_ns);
255	return;
256}
257
258#ifdef CONFIG_CHECKPOINT_RESTORE
259static int pid_ns_ctl_handler(struct ctl_table *table, int write,
260		void *buffer, size_t *lenp, loff_t *ppos)
261{
262	struct pid_namespace *pid_ns = task_active_pid_ns(current);
263	struct ctl_table tmp = *table;
264	int ret, next;
265
266	if (write && !checkpoint_restore_ns_capable(pid_ns->user_ns))
267		return -EPERM;
268
269	/*
270	 * Writing directly to ns' last_pid field is OK, since this field
271	 * is volatile in a living namespace anyway and a code writing to
272	 * it should synchronize its usage with external means.
273	 */
274
275	next = idr_get_cursor(&pid_ns->idr) - 1;
276
277	tmp.data = &next;
278	ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
279	if (!ret && write)
280		idr_set_cursor(&pid_ns->idr, next + 1);
281
282	return ret;
283}
284
285extern int pid_max;
 
286static struct ctl_table pid_ns_ctl_table[] = {
287	{
288		.procname = "ns_last_pid",
289		.maxlen = sizeof(int),
290		.mode = 0666, /* permissions are checked in the handler */
291		.proc_handler = pid_ns_ctl_handler,
292		.extra1 = SYSCTL_ZERO,
293		.extra2 = &pid_max,
294	},
295	{ }
296};
297static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
298#endif	/* CONFIG_CHECKPOINT_RESTORE */
299
300int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
301{
302	if (pid_ns == &init_pid_ns)
303		return 0;
304
305	switch (cmd) {
306	case LINUX_REBOOT_CMD_RESTART2:
307	case LINUX_REBOOT_CMD_RESTART:
308		pid_ns->reboot = SIGHUP;
309		break;
310
311	case LINUX_REBOOT_CMD_POWER_OFF:
312	case LINUX_REBOOT_CMD_HALT:
313		pid_ns->reboot = SIGINT;
314		break;
315	default:
316		return -EINVAL;
317	}
318
319	read_lock(&tasklist_lock);
320	send_sig(SIGKILL, pid_ns->child_reaper, 1);
321	read_unlock(&tasklist_lock);
322
323	do_exit(0);
324
325	/* Not reached */
326	return 0;
327}
328
329static inline struct pid_namespace *to_pid_ns(struct ns_common *ns)
330{
331	return container_of(ns, struct pid_namespace, ns);
332}
333
334static struct ns_common *pidns_get(struct task_struct *task)
335{
336	struct pid_namespace *ns;
337
338	rcu_read_lock();
339	ns = task_active_pid_ns(task);
340	if (ns)
341		get_pid_ns(ns);
342	rcu_read_unlock();
343
344	return ns ? &ns->ns : NULL;
345}
346
347static struct ns_common *pidns_for_children_get(struct task_struct *task)
348{
349	struct pid_namespace *ns = NULL;
350
351	task_lock(task);
352	if (task->nsproxy) {
353		ns = task->nsproxy->pid_ns_for_children;
354		get_pid_ns(ns);
355	}
356	task_unlock(task);
357
358	if (ns) {
359		read_lock(&tasklist_lock);
360		if (!ns->child_reaper) {
361			put_pid_ns(ns);
362			ns = NULL;
363		}
364		read_unlock(&tasklist_lock);
365	}
366
367	return ns ? &ns->ns : NULL;
368}
369
370static void pidns_put(struct ns_common *ns)
371{
372	put_pid_ns(to_pid_ns(ns));
373}
374
375static int pidns_install(struct nsset *nsset, struct ns_common *ns)
376{
377	struct nsproxy *nsproxy = nsset->nsproxy;
378	struct pid_namespace *active = task_active_pid_ns(current);
379	struct pid_namespace *ancestor, *new = to_pid_ns(ns);
380
381	if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
382	    !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN))
383		return -EPERM;
384
385	/*
386	 * Only allow entering the current active pid namespace
387	 * or a child of the current active pid namespace.
388	 *
389	 * This is required for fork to return a usable pid value and
390	 * this maintains the property that processes and their
391	 * children can not escape their current pid namespace.
392	 */
393	if (new->level < active->level)
394		return -EINVAL;
395
396	ancestor = new;
397	while (ancestor->level > active->level)
398		ancestor = ancestor->parent;
399	if (ancestor != active)
400		return -EINVAL;
401
402	put_pid_ns(nsproxy->pid_ns_for_children);
403	nsproxy->pid_ns_for_children = get_pid_ns(new);
404	return 0;
405}
406
407static struct ns_common *pidns_get_parent(struct ns_common *ns)
408{
409	struct pid_namespace *active = task_active_pid_ns(current);
410	struct pid_namespace *pid_ns, *p;
411
412	/* See if the parent is in the current namespace */
413	pid_ns = p = to_pid_ns(ns)->parent;
414	for (;;) {
415		if (!p)
416			return ERR_PTR(-EPERM);
417		if (p == active)
418			break;
419		p = p->parent;
420	}
421
422	return &get_pid_ns(pid_ns)->ns;
423}
424
425static struct user_namespace *pidns_owner(struct ns_common *ns)
426{
427	return to_pid_ns(ns)->user_ns;
428}
429
430const struct proc_ns_operations pidns_operations = {
431	.name		= "pid",
432	.type		= CLONE_NEWPID,
433	.get		= pidns_get,
434	.put		= pidns_put,
435	.install	= pidns_install,
436	.owner		= pidns_owner,
437	.get_parent	= pidns_get_parent,
438};
439
440const struct proc_ns_operations pidns_for_children_operations = {
441	.name		= "pid_for_children",
442	.real_ns_name	= "pid",
443	.type		= CLONE_NEWPID,
444	.get		= pidns_for_children_get,
445	.put		= pidns_put,
446	.install	= pidns_install,
447	.owner		= pidns_owner,
448	.get_parent	= pidns_get_parent,
449};
450
451static __init int pid_namespaces_init(void)
452{
453	pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC | SLAB_ACCOUNT);
454
455#ifdef CONFIG_CHECKPOINT_RESTORE
456	register_sysctl_paths(kern_path, pid_ns_ctl_table);
457#endif
458	return 0;
459}
460
461__initcall(pid_namespaces_init);
v4.17
 
  1/*
  2 * Pid namespaces
  3 *
  4 * Authors:
  5 *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
  6 *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
  7 *     Many thanks to Oleg Nesterov for comments and help
  8 *
  9 */
 10
 11#include <linux/pid.h>
 12#include <linux/pid_namespace.h>
 13#include <linux/user_namespace.h>
 14#include <linux/syscalls.h>
 15#include <linux/cred.h>
 16#include <linux/err.h>
 17#include <linux/acct.h>
 18#include <linux/slab.h>
 19#include <linux/proc_ns.h>
 20#include <linux/reboot.h>
 21#include <linux/export.h>
 22#include <linux/sched/task.h>
 23#include <linux/sched/signal.h>
 24#include <linux/idr.h>
 25
 26static DEFINE_MUTEX(pid_caches_mutex);
 27static struct kmem_cache *pid_ns_cachep;
 28/* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */
 29#define MAX_PID_NS_LEVEL 32
 30/* Write once array, filled from the beginning. */
 31static struct kmem_cache *pid_cache[MAX_PID_NS_LEVEL];
 32
 33/*
 34 * creates the kmem cache to allocate pids from.
 35 * @level: pid namespace level
 36 */
 37
 38static struct kmem_cache *create_pid_cachep(unsigned int level)
 39{
 40	/* Level 0 is init_pid_ns.pid_cachep */
 41	struct kmem_cache **pkc = &pid_cache[level - 1];
 42	struct kmem_cache *kc;
 43	char name[4 + 10 + 1];
 44	unsigned int len;
 45
 46	kc = READ_ONCE(*pkc);
 47	if (kc)
 48		return kc;
 49
 50	snprintf(name, sizeof(name), "pid_%u", level + 1);
 51	len = sizeof(struct pid) + level * sizeof(struct upid);
 52	mutex_lock(&pid_caches_mutex);
 53	/* Name collision forces to do allocation under mutex. */
 54	if (!*pkc)
 55		*pkc = kmem_cache_create(name, len, 0, SLAB_HWCACHE_ALIGN, 0);
 
 56	mutex_unlock(&pid_caches_mutex);
 57	/* current can fail, but someone else can succeed. */
 58	return READ_ONCE(*pkc);
 59}
 60
 61static void proc_cleanup_work(struct work_struct *work)
 62{
 63	struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work);
 64	pid_ns_release_proc(ns);
 65}
 66
 67static struct ucounts *inc_pid_namespaces(struct user_namespace *ns)
 68{
 69	return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES);
 70}
 71
 72static void dec_pid_namespaces(struct ucounts *ucounts)
 73{
 74	dec_ucount(ucounts, UCOUNT_PID_NAMESPACES);
 75}
 76
 77static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
 78	struct pid_namespace *parent_pid_ns)
 79{
 80	struct pid_namespace *ns;
 81	unsigned int level = parent_pid_ns->level + 1;
 82	struct ucounts *ucounts;
 83	int err;
 84
 85	err = -EINVAL;
 86	if (!in_userns(parent_pid_ns->user_ns, user_ns))
 87		goto out;
 88
 89	err = -ENOSPC;
 90	if (level > MAX_PID_NS_LEVEL)
 91		goto out;
 92	ucounts = inc_pid_namespaces(user_ns);
 93	if (!ucounts)
 94		goto out;
 95
 96	err = -ENOMEM;
 97	ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
 98	if (ns == NULL)
 99		goto out_dec;
100
101	idr_init(&ns->idr);
102
103	ns->pid_cachep = create_pid_cachep(level);
104	if (ns->pid_cachep == NULL)
105		goto out_free_idr;
106
107	err = ns_alloc_inum(&ns->ns);
108	if (err)
109		goto out_free_idr;
110	ns->ns.ops = &pidns_operations;
111
112	kref_init(&ns->kref);
113	ns->level = level;
114	ns->parent = get_pid_ns(parent_pid_ns);
115	ns->user_ns = get_user_ns(user_ns);
116	ns->ucounts = ucounts;
117	ns->pid_allocated = PIDNS_ADDING;
118	INIT_WORK(&ns->proc_work, proc_cleanup_work);
119
120	return ns;
121
122out_free_idr:
123	idr_destroy(&ns->idr);
124	kmem_cache_free(pid_ns_cachep, ns);
125out_dec:
126	dec_pid_namespaces(ucounts);
127out:
128	return ERR_PTR(err);
129}
130
131static void delayed_free_pidns(struct rcu_head *p)
132{
133	struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu);
134
135	dec_pid_namespaces(ns->ucounts);
136	put_user_ns(ns->user_ns);
137
138	kmem_cache_free(pid_ns_cachep, ns);
139}
140
141static void destroy_pid_namespace(struct pid_namespace *ns)
142{
143	ns_free_inum(&ns->ns);
144
145	idr_destroy(&ns->idr);
146	call_rcu(&ns->rcu, delayed_free_pidns);
147}
148
149struct pid_namespace *copy_pid_ns(unsigned long flags,
150	struct user_namespace *user_ns, struct pid_namespace *old_ns)
151{
152	if (!(flags & CLONE_NEWPID))
153		return get_pid_ns(old_ns);
154	if (task_active_pid_ns(current) != old_ns)
155		return ERR_PTR(-EINVAL);
156	return create_pid_namespace(user_ns, old_ns);
157}
158
159static void free_pid_ns(struct kref *kref)
160{
161	struct pid_namespace *ns;
162
163	ns = container_of(kref, struct pid_namespace, kref);
164	destroy_pid_namespace(ns);
165}
166
167void put_pid_ns(struct pid_namespace *ns)
168{
169	struct pid_namespace *parent;
170
171	while (ns != &init_pid_ns) {
172		parent = ns->parent;
173		if (!kref_put(&ns->kref, free_pid_ns))
174			break;
 
175		ns = parent;
176	}
177}
178EXPORT_SYMBOL_GPL(put_pid_ns);
179
180void zap_pid_ns_processes(struct pid_namespace *pid_ns)
181{
182	int nr;
183	int rc;
184	struct task_struct *task, *me = current;
185	int init_pids = thread_group_leader(me) ? 1 : 2;
186	struct pid *pid;
187
188	/* Don't allow any more processes into the pid namespace */
189	disable_pid_allocation(pid_ns);
190
191	/*
192	 * Ignore SIGCHLD causing any terminated children to autoreap.
193	 * This speeds up the namespace shutdown, plus see the comment
194	 * below.
195	 */
196	spin_lock_irq(&me->sighand->siglock);
197	me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
198	spin_unlock_irq(&me->sighand->siglock);
199
200	/*
201	 * The last thread in the cgroup-init thread group is terminating.
202	 * Find remaining pid_ts in the namespace, signal and wait for them
203	 * to exit.
204	 *
205	 * Note:  This signals each threads in the namespace - even those that
206	 * 	  belong to the same thread group, To avoid this, we would have
207	 * 	  to walk the entire tasklist looking a processes in this
208	 * 	  namespace, but that could be unnecessarily expensive if the
209	 * 	  pid namespace has just a few processes. Or we need to
210	 * 	  maintain a tasklist for each pid namespace.
211	 *
212	 */
213	rcu_read_lock();
214	read_lock(&tasklist_lock);
215	nr = 2;
216	idr_for_each_entry_continue(&pid_ns->idr, pid, nr) {
217		task = pid_task(pid, PIDTYPE_PID);
218		if (task && !__fatal_signal_pending(task))
219			send_sig_info(SIGKILL, SEND_SIG_FORCED, task);
220	}
221	read_unlock(&tasklist_lock);
222	rcu_read_unlock();
223
224	/*
225	 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
226	 * kernel_wait4() will also block until our children traced from the
227	 * parent namespace are detached and become EXIT_DEAD.
228	 */
229	do {
230		clear_thread_flag(TIF_SIGPENDING);
231		rc = kernel_wait4(-1, NULL, __WALL, NULL);
232	} while (rc != -ECHILD);
233
234	/*
235	 * kernel_wait4() above can't reap the EXIT_DEAD children but we do not
236	 * really care, we could reparent them to the global init. We could
237	 * exit and reap ->child_reaper even if it is not the last thread in
238	 * this pid_ns, free_pid(pid_allocated == 0) calls proc_cleanup_work(),
239	 * pid_ns can not go away until proc_kill_sb() drops the reference.
 
 
 
 
 
 
 
240	 *
241	 * But this ns can also have other tasks injected by setns()+fork().
242	 * Again, ignoring the user visible semantics we do not really need
243	 * to wait until they are all reaped, but they can be reparented to
244	 * us and thus we need to ensure that pid->child_reaper stays valid
245	 * until they all go away. See free_pid()->wake_up_process().
246	 *
247	 * We rely on ignored SIGCHLD, an injected zombie must be autoreaped
248	 * if reparented.
249	 */
250	for (;;) {
251		set_current_state(TASK_INTERRUPTIBLE);
252		if (pid_ns->pid_allocated == init_pids)
253			break;
254		schedule();
255	}
256	__set_current_state(TASK_RUNNING);
257
258	if (pid_ns->reboot)
259		current->signal->group_exit_code = pid_ns->reboot;
260
261	acct_exit_ns(pid_ns);
262	return;
263}
264
265#ifdef CONFIG_CHECKPOINT_RESTORE
266static int pid_ns_ctl_handler(struct ctl_table *table, int write,
267		void __user *buffer, size_t *lenp, loff_t *ppos)
268{
269	struct pid_namespace *pid_ns = task_active_pid_ns(current);
270	struct ctl_table tmp = *table;
271	int ret, next;
272
273	if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN))
274		return -EPERM;
275
276	/*
277	 * Writing directly to ns' last_pid field is OK, since this field
278	 * is volatile in a living namespace anyway and a code writing to
279	 * it should synchronize its usage with external means.
280	 */
281
282	next = idr_get_cursor(&pid_ns->idr) - 1;
283
284	tmp.data = &next;
285	ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
286	if (!ret && write)
287		idr_set_cursor(&pid_ns->idr, next + 1);
288
289	return ret;
290}
291
292extern int pid_max;
293static int zero = 0;
294static struct ctl_table pid_ns_ctl_table[] = {
295	{
296		.procname = "ns_last_pid",
297		.maxlen = sizeof(int),
298		.mode = 0666, /* permissions are checked in the handler */
299		.proc_handler = pid_ns_ctl_handler,
300		.extra1 = &zero,
301		.extra2 = &pid_max,
302	},
303	{ }
304};
305static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
306#endif	/* CONFIG_CHECKPOINT_RESTORE */
307
308int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
309{
310	if (pid_ns == &init_pid_ns)
311		return 0;
312
313	switch (cmd) {
314	case LINUX_REBOOT_CMD_RESTART2:
315	case LINUX_REBOOT_CMD_RESTART:
316		pid_ns->reboot = SIGHUP;
317		break;
318
319	case LINUX_REBOOT_CMD_POWER_OFF:
320	case LINUX_REBOOT_CMD_HALT:
321		pid_ns->reboot = SIGINT;
322		break;
323	default:
324		return -EINVAL;
325	}
326
327	read_lock(&tasklist_lock);
328	force_sig(SIGKILL, pid_ns->child_reaper);
329	read_unlock(&tasklist_lock);
330
331	do_exit(0);
332
333	/* Not reached */
334	return 0;
335}
336
337static inline struct pid_namespace *to_pid_ns(struct ns_common *ns)
338{
339	return container_of(ns, struct pid_namespace, ns);
340}
341
342static struct ns_common *pidns_get(struct task_struct *task)
343{
344	struct pid_namespace *ns;
345
346	rcu_read_lock();
347	ns = task_active_pid_ns(task);
348	if (ns)
349		get_pid_ns(ns);
350	rcu_read_unlock();
351
352	return ns ? &ns->ns : NULL;
353}
354
355static struct ns_common *pidns_for_children_get(struct task_struct *task)
356{
357	struct pid_namespace *ns = NULL;
358
359	task_lock(task);
360	if (task->nsproxy) {
361		ns = task->nsproxy->pid_ns_for_children;
362		get_pid_ns(ns);
363	}
364	task_unlock(task);
365
366	if (ns) {
367		read_lock(&tasklist_lock);
368		if (!ns->child_reaper) {
369			put_pid_ns(ns);
370			ns = NULL;
371		}
372		read_unlock(&tasklist_lock);
373	}
374
375	return ns ? &ns->ns : NULL;
376}
377
378static void pidns_put(struct ns_common *ns)
379{
380	put_pid_ns(to_pid_ns(ns));
381}
382
383static int pidns_install(struct nsproxy *nsproxy, struct ns_common *ns)
384{
 
385	struct pid_namespace *active = task_active_pid_ns(current);
386	struct pid_namespace *ancestor, *new = to_pid_ns(ns);
387
388	if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
389	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
390		return -EPERM;
391
392	/*
393	 * Only allow entering the current active pid namespace
394	 * or a child of the current active pid namespace.
395	 *
396	 * This is required for fork to return a usable pid value and
397	 * this maintains the property that processes and their
398	 * children can not escape their current pid namespace.
399	 */
400	if (new->level < active->level)
401		return -EINVAL;
402
403	ancestor = new;
404	while (ancestor->level > active->level)
405		ancestor = ancestor->parent;
406	if (ancestor != active)
407		return -EINVAL;
408
409	put_pid_ns(nsproxy->pid_ns_for_children);
410	nsproxy->pid_ns_for_children = get_pid_ns(new);
411	return 0;
412}
413
414static struct ns_common *pidns_get_parent(struct ns_common *ns)
415{
416	struct pid_namespace *active = task_active_pid_ns(current);
417	struct pid_namespace *pid_ns, *p;
418
419	/* See if the parent is in the current namespace */
420	pid_ns = p = to_pid_ns(ns)->parent;
421	for (;;) {
422		if (!p)
423			return ERR_PTR(-EPERM);
424		if (p == active)
425			break;
426		p = p->parent;
427	}
428
429	return &get_pid_ns(pid_ns)->ns;
430}
431
432static struct user_namespace *pidns_owner(struct ns_common *ns)
433{
434	return to_pid_ns(ns)->user_ns;
435}
436
437const struct proc_ns_operations pidns_operations = {
438	.name		= "pid",
439	.type		= CLONE_NEWPID,
440	.get		= pidns_get,
441	.put		= pidns_put,
442	.install	= pidns_install,
443	.owner		= pidns_owner,
444	.get_parent	= pidns_get_parent,
445};
446
447const struct proc_ns_operations pidns_for_children_operations = {
448	.name		= "pid_for_children",
449	.real_ns_name	= "pid",
450	.type		= CLONE_NEWPID,
451	.get		= pidns_for_children_get,
452	.put		= pidns_put,
453	.install	= pidns_install,
454	.owner		= pidns_owner,
455	.get_parent	= pidns_get_parent,
456};
457
458static __init int pid_namespaces_init(void)
459{
460	pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
461
462#ifdef CONFIG_CHECKPOINT_RESTORE
463	register_sysctl_paths(kern_path, pid_ns_ctl_table);
464#endif
465	return 0;
466}
467
468__initcall(pid_namespaces_init);