Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
  4 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
  5 */
  6#include "xfs.h"
  7#include "xfs_fs.h"
  8#include "xfs_shared.h"
  9#include "xfs_format.h"
 10#include "xfs_log_format.h"
 11#include "xfs_trans_resv.h"
 12#include "xfs_bit.h"
 13#include "xfs_mount.h"
 
 14#include "xfs_inode.h"
 15#include "xfs_trans.h"
 
 16#include "xfs_alloc.h"
 17#include "xfs_btree.h"
 18#include "xfs_bmap_btree.h"
 19#include "xfs_bmap.h"
 20#include "xfs_error.h"
 21#include "xfs_quota.h"
 22#include "xfs_trace.h"
 
 23#include "xfs_rmap.h"
 24
 25static struct kmem_cache	*xfs_bmbt_cur_cache;
 26
 27/*
 28 * Convert on-disk form of btree root to in-memory form.
 29 */
 30void
 31xfs_bmdr_to_bmbt(
 32	struct xfs_inode	*ip,
 33	xfs_bmdr_block_t	*dblock,
 34	int			dblocklen,
 35	struct xfs_btree_block	*rblock,
 36	int			rblocklen)
 37{
 38	struct xfs_mount	*mp = ip->i_mount;
 39	int			dmxr;
 40	xfs_bmbt_key_t		*fkp;
 41	__be64			*fpp;
 42	xfs_bmbt_key_t		*tkp;
 43	__be64			*tpp;
 44
 45	xfs_btree_init_block_int(mp, rblock, XFS_BUF_DADDR_NULL,
 46				 XFS_BTNUM_BMAP, 0, 0, ip->i_ino,
 47				 XFS_BTREE_LONG_PTRS);
 48	rblock->bb_level = dblock->bb_level;
 49	ASSERT(be16_to_cpu(rblock->bb_level) > 0);
 50	rblock->bb_numrecs = dblock->bb_numrecs;
 51	dmxr = xfs_bmdr_maxrecs(dblocklen, 0);
 52	fkp = XFS_BMDR_KEY_ADDR(dblock, 1);
 53	tkp = XFS_BMBT_KEY_ADDR(mp, rblock, 1);
 54	fpp = XFS_BMDR_PTR_ADDR(dblock, 1, dmxr);
 55	tpp = XFS_BMAP_BROOT_PTR_ADDR(mp, rblock, 1, rblocklen);
 56	dmxr = be16_to_cpu(dblock->bb_numrecs);
 57	memcpy(tkp, fkp, sizeof(*fkp) * dmxr);
 58	memcpy(tpp, fpp, sizeof(*fpp) * dmxr);
 59}
 60
 61void
 62xfs_bmbt_disk_get_all(
 63	const struct xfs_bmbt_rec *rec,
 64	struct xfs_bmbt_irec	*irec)
 65{
 66	uint64_t		l0 = get_unaligned_be64(&rec->l0);
 67	uint64_t		l1 = get_unaligned_be64(&rec->l1);
 68
 69	irec->br_startoff = (l0 & xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN)) >> 9;
 70	irec->br_startblock = ((l0 & xfs_mask64lo(9)) << 43) | (l1 >> 21);
 71	irec->br_blockcount = l1 & xfs_mask64lo(21);
 72	if (l0 >> (64 - BMBT_EXNTFLAG_BITLEN))
 73		irec->br_state = XFS_EXT_UNWRITTEN;
 74	else
 75		irec->br_state = XFS_EXT_NORM;
 76}
 77
 78/*
 79 * Extract the blockcount field from an on disk bmap extent record.
 80 */
 81xfs_filblks_t
 82xfs_bmbt_disk_get_blockcount(
 83	const struct xfs_bmbt_rec	*r)
 84{
 85	return (xfs_filblks_t)(be64_to_cpu(r->l1) & xfs_mask64lo(21));
 86}
 87
 88/*
 89 * Extract the startoff field from a disk format bmap extent record.
 90 */
 91xfs_fileoff_t
 92xfs_bmbt_disk_get_startoff(
 93	const struct xfs_bmbt_rec	*r)
 94{
 95	return ((xfs_fileoff_t)be64_to_cpu(r->l0) &
 96		 xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN)) >> 9;
 97}
 98
 99/*
100 * Set all the fields in a bmap extent record from the uncompressed form.
101 */
102void
103xfs_bmbt_disk_set_all(
104	struct xfs_bmbt_rec	*r,
105	struct xfs_bmbt_irec	*s)
106{
107	int			extent_flag = (s->br_state != XFS_EXT_NORM);
108
109	ASSERT(s->br_state == XFS_EXT_NORM || s->br_state == XFS_EXT_UNWRITTEN);
110	ASSERT(!(s->br_startoff & xfs_mask64hi(64-BMBT_STARTOFF_BITLEN)));
111	ASSERT(!(s->br_blockcount & xfs_mask64hi(64-BMBT_BLOCKCOUNT_BITLEN)));
112	ASSERT(!(s->br_startblock & xfs_mask64hi(64-BMBT_STARTBLOCK_BITLEN)));
113
114	put_unaligned_be64(
115		((xfs_bmbt_rec_base_t)extent_flag << 63) |
116		 ((xfs_bmbt_rec_base_t)s->br_startoff << 9) |
117		 ((xfs_bmbt_rec_base_t)s->br_startblock >> 43), &r->l0);
118	put_unaligned_be64(
119		((xfs_bmbt_rec_base_t)s->br_startblock << 21) |
120		 ((xfs_bmbt_rec_base_t)s->br_blockcount &
121		  (xfs_bmbt_rec_base_t)xfs_mask64lo(21)), &r->l1);
122}
123
124/*
125 * Convert in-memory form of btree root to on-disk form.
126 */
127void
128xfs_bmbt_to_bmdr(
129	struct xfs_mount	*mp,
130	struct xfs_btree_block	*rblock,
131	int			rblocklen,
132	xfs_bmdr_block_t	*dblock,
133	int			dblocklen)
134{
135	int			dmxr;
136	xfs_bmbt_key_t		*fkp;
137	__be64			*fpp;
138	xfs_bmbt_key_t		*tkp;
139	__be64			*tpp;
140
141	if (xfs_has_crc(mp)) {
142		ASSERT(rblock->bb_magic == cpu_to_be32(XFS_BMAP_CRC_MAGIC));
143		ASSERT(uuid_equal(&rblock->bb_u.l.bb_uuid,
144		       &mp->m_sb.sb_meta_uuid));
145		ASSERT(rblock->bb_u.l.bb_blkno ==
146		       cpu_to_be64(XFS_BUF_DADDR_NULL));
147	} else
148		ASSERT(rblock->bb_magic == cpu_to_be32(XFS_BMAP_MAGIC));
149	ASSERT(rblock->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK));
150	ASSERT(rblock->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK));
151	ASSERT(rblock->bb_level != 0);
152	dblock->bb_level = rblock->bb_level;
153	dblock->bb_numrecs = rblock->bb_numrecs;
154	dmxr = xfs_bmdr_maxrecs(dblocklen, 0);
155	fkp = XFS_BMBT_KEY_ADDR(mp, rblock, 1);
156	tkp = XFS_BMDR_KEY_ADDR(dblock, 1);
157	fpp = XFS_BMAP_BROOT_PTR_ADDR(mp, rblock, 1, rblocklen);
158	tpp = XFS_BMDR_PTR_ADDR(dblock, 1, dmxr);
159	dmxr = be16_to_cpu(dblock->bb_numrecs);
160	memcpy(tkp, fkp, sizeof(*fkp) * dmxr);
161	memcpy(tpp, fpp, sizeof(*fpp) * dmxr);
162}
163
164STATIC struct xfs_btree_cur *
165xfs_bmbt_dup_cursor(
166	struct xfs_btree_cur	*cur)
167{
168	struct xfs_btree_cur	*new;
169
170	new = xfs_bmbt_init_cursor(cur->bc_mp, cur->bc_tp,
171			cur->bc_ino.ip, cur->bc_ino.whichfork);
172
173	/*
174	 * Copy the firstblock, dfops, and flags values,
175	 * since init cursor doesn't get them.
176	 */
177	new->bc_ino.flags = cur->bc_ino.flags;
 
 
178
179	return new;
180}
181
182STATIC void
183xfs_bmbt_update_cursor(
184	struct xfs_btree_cur	*src,
185	struct xfs_btree_cur	*dst)
186{
187	ASSERT((dst->bc_tp->t_firstblock != NULLFSBLOCK) ||
188	       (dst->bc_ino.ip->i_diflags & XFS_DIFLAG_REALTIME));
 
189
190	dst->bc_ino.allocated += src->bc_ino.allocated;
191	dst->bc_tp->t_firstblock = src->bc_tp->t_firstblock;
192
193	src->bc_ino.allocated = 0;
194}
195
196STATIC int
197xfs_bmbt_alloc_block(
198	struct xfs_btree_cur		*cur,
199	const union xfs_btree_ptr	*start,
200	union xfs_btree_ptr		*new,
201	int				*stat)
202{
203	xfs_alloc_arg_t		args;		/* block allocation args */
204	int			error;		/* error return value */
205
206	memset(&args, 0, sizeof(args));
207	args.tp = cur->bc_tp;
208	args.mp = cur->bc_mp;
209	args.fsbno = cur->bc_tp->t_firstblock;
210	xfs_rmap_ino_bmbt_owner(&args.oinfo, cur->bc_ino.ip->i_ino,
211			cur->bc_ino.whichfork);
 
212
213	if (args.fsbno == NULLFSBLOCK) {
214		args.fsbno = be64_to_cpu(start->l);
215		args.type = XFS_ALLOCTYPE_START_BNO;
216		/*
217		 * Make sure there is sufficient room left in the AG to
218		 * complete a full tree split for an extent insert.  If
219		 * we are converting the middle part of an extent then
220		 * we may need space for two tree splits.
221		 *
222		 * We are relying on the caller to make the correct block
223		 * reservation for this operation to succeed.  If the
224		 * reservation amount is insufficient then we may fail a
225		 * block allocation here and corrupt the filesystem.
226		 */
227		args.minleft = args.tp->t_blk_res;
228	} else if (cur->bc_tp->t_flags & XFS_TRANS_LOWMODE) {
229		args.type = XFS_ALLOCTYPE_START_BNO;
230	} else {
231		args.type = XFS_ALLOCTYPE_NEAR_BNO;
232	}
233
234	args.minlen = args.maxlen = args.prod = 1;
235	args.wasdel = cur->bc_ino.flags & XFS_BTCUR_BMBT_WASDEL;
236	if (!args.wasdel && args.tp->t_blk_res == 0) {
237		error = -ENOSPC;
238		goto error0;
239	}
240	error = xfs_alloc_vextent(&args);
241	if (error)
242		goto error0;
243
244	if (args.fsbno == NULLFSBLOCK && args.minleft) {
245		/*
246		 * Could not find an AG with enough free space to satisfy
247		 * a full btree split.  Try again and if
248		 * successful activate the lowspace algorithm.
249		 */
250		args.fsbno = 0;
251		args.type = XFS_ALLOCTYPE_FIRST_AG;
252		error = xfs_alloc_vextent(&args);
253		if (error)
254			goto error0;
255		cur->bc_tp->t_flags |= XFS_TRANS_LOWMODE;
256	}
257	if (WARN_ON_ONCE(args.fsbno == NULLFSBLOCK)) {
258		*stat = 0;
259		return 0;
260	}
261
262	ASSERT(args.len == 1);
263	cur->bc_tp->t_firstblock = args.fsbno;
264	cur->bc_ino.allocated++;
265	cur->bc_ino.ip->i_nblocks++;
266	xfs_trans_log_inode(args.tp, cur->bc_ino.ip, XFS_ILOG_CORE);
267	xfs_trans_mod_dquot_byino(args.tp, cur->bc_ino.ip,
268			XFS_TRANS_DQ_BCOUNT, 1L);
269
270	new->l = cpu_to_be64(args.fsbno);
271
272	*stat = 1;
273	return 0;
274
275 error0:
276	return error;
277}
278
279STATIC int
280xfs_bmbt_free_block(
281	struct xfs_btree_cur	*cur,
282	struct xfs_buf		*bp)
283{
284	struct xfs_mount	*mp = cur->bc_mp;
285	struct xfs_inode	*ip = cur->bc_ino.ip;
286	struct xfs_trans	*tp = cur->bc_tp;
287	xfs_fsblock_t		fsbno = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
288	struct xfs_owner_info	oinfo;
289
290	xfs_rmap_ino_bmbt_owner(&oinfo, ip->i_ino, cur->bc_ino.whichfork);
291	xfs_free_extent_later(cur->bc_tp, fsbno, 1, &oinfo);
292	ip->i_nblocks--;
293
294	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
295	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, -1L);
296	return 0;
297}
298
299STATIC int
300xfs_bmbt_get_minrecs(
301	struct xfs_btree_cur	*cur,
302	int			level)
303{
304	if (level == cur->bc_nlevels - 1) {
305		struct xfs_ifork	*ifp;
306
307		ifp = xfs_ifork_ptr(cur->bc_ino.ip,
308				    cur->bc_ino.whichfork);
309
310		return xfs_bmbt_maxrecs(cur->bc_mp,
311					ifp->if_broot_bytes, level == 0) / 2;
312	}
313
314	return cur->bc_mp->m_bmap_dmnr[level != 0];
315}
316
317int
318xfs_bmbt_get_maxrecs(
319	struct xfs_btree_cur	*cur,
320	int			level)
321{
322	if (level == cur->bc_nlevels - 1) {
323		struct xfs_ifork	*ifp;
324
325		ifp = xfs_ifork_ptr(cur->bc_ino.ip,
326				    cur->bc_ino.whichfork);
327
328		return xfs_bmbt_maxrecs(cur->bc_mp,
329					ifp->if_broot_bytes, level == 0);
330	}
331
332	return cur->bc_mp->m_bmap_dmxr[level != 0];
333
334}
335
336/*
337 * Get the maximum records we could store in the on-disk format.
338 *
339 * For non-root nodes this is equivalent to xfs_bmbt_get_maxrecs, but
340 * for the root node this checks the available space in the dinode fork
341 * so that we can resize the in-memory buffer to match it.  After a
342 * resize to the maximum size this function returns the same value
343 * as xfs_bmbt_get_maxrecs for the root node, too.
344 */
345STATIC int
346xfs_bmbt_get_dmaxrecs(
347	struct xfs_btree_cur	*cur,
348	int			level)
349{
350	if (level != cur->bc_nlevels - 1)
351		return cur->bc_mp->m_bmap_dmxr[level != 0];
352	return xfs_bmdr_maxrecs(cur->bc_ino.forksize, level == 0);
353}
354
355STATIC void
356xfs_bmbt_init_key_from_rec(
357	union xfs_btree_key		*key,
358	const union xfs_btree_rec	*rec)
359{
360	key->bmbt.br_startoff =
361		cpu_to_be64(xfs_bmbt_disk_get_startoff(&rec->bmbt));
362}
363
364STATIC void
365xfs_bmbt_init_high_key_from_rec(
366	union xfs_btree_key		*key,
367	const union xfs_btree_rec	*rec)
368{
369	key->bmbt.br_startoff = cpu_to_be64(
370			xfs_bmbt_disk_get_startoff(&rec->bmbt) +
371			xfs_bmbt_disk_get_blockcount(&rec->bmbt) - 1);
372}
373
374STATIC void
375xfs_bmbt_init_rec_from_cur(
376	struct xfs_btree_cur	*cur,
377	union xfs_btree_rec	*rec)
378{
379	xfs_bmbt_disk_set_all(&rec->bmbt, &cur->bc_rec.b);
380}
381
382STATIC void
383xfs_bmbt_init_ptr_from_cur(
384	struct xfs_btree_cur	*cur,
385	union xfs_btree_ptr	*ptr)
386{
387	ptr->l = 0;
388}
389
390STATIC int64_t
391xfs_bmbt_key_diff(
392	struct xfs_btree_cur		*cur,
393	const union xfs_btree_key	*key)
394{
395	return (int64_t)be64_to_cpu(key->bmbt.br_startoff) -
396				      cur->bc_rec.b.br_startoff;
397}
398
399STATIC int64_t
400xfs_bmbt_diff_two_keys(
401	struct xfs_btree_cur		*cur,
402	const union xfs_btree_key	*k1,
403	const union xfs_btree_key	*k2)
404{
405	uint64_t			a = be64_to_cpu(k1->bmbt.br_startoff);
406	uint64_t			b = be64_to_cpu(k2->bmbt.br_startoff);
407
408	/*
409	 * Note: This routine previously casted a and b to int64 and subtracted
410	 * them to generate a result.  This lead to problems if b was the
411	 * "maximum" key value (all ones) being signed incorrectly, hence this
412	 * somewhat less efficient version.
413	 */
414	if (a > b)
415		return 1;
416	if (b > a)
417		return -1;
418	return 0;
419}
420
421static xfs_failaddr_t
422xfs_bmbt_verify(
423	struct xfs_buf		*bp)
424{
425	struct xfs_mount	*mp = bp->b_mount;
426	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
427	xfs_failaddr_t		fa;
428	unsigned int		level;
429
430	if (!xfs_verify_magic(bp, block->bb_magic))
431		return __this_address;
432
433	if (xfs_has_crc(mp)) {
434		/*
435		 * XXX: need a better way of verifying the owner here. Right now
436		 * just make sure there has been one set.
437		 */
438		fa = xfs_btree_lblock_v5hdr_verify(bp, XFS_RMAP_OWN_UNKNOWN);
439		if (fa)
440			return fa;
 
 
 
 
 
441	}
442
443	/*
444	 * numrecs and level verification.
445	 *
446	 * We don't know what fork we belong to, so just verify that the level
447	 * is less than the maximum of the two. Later checks will be more
448	 * precise.
449	 */
450	level = be16_to_cpu(block->bb_level);
451	if (level > max(mp->m_bm_maxlevels[0], mp->m_bm_maxlevels[1]))
452		return __this_address;
453
454	return xfs_btree_lblock_verify(bp, mp->m_bmap_dmxr[level != 0]);
455}
456
457static void
458xfs_bmbt_read_verify(
459	struct xfs_buf	*bp)
460{
461	xfs_failaddr_t	fa;
462
463	if (!xfs_btree_lblock_verify_crc(bp))
464		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
465	else {
466		fa = xfs_bmbt_verify(bp);
467		if (fa)
468			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
469	}
470
471	if (bp->b_error)
472		trace_xfs_btree_corrupt(bp, _RET_IP_);
473}
474
475static void
476xfs_bmbt_write_verify(
477	struct xfs_buf	*bp)
478{
479	xfs_failaddr_t	fa;
480
481	fa = xfs_bmbt_verify(bp);
482	if (fa) {
483		trace_xfs_btree_corrupt(bp, _RET_IP_);
484		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
485		return;
486	}
487	xfs_btree_lblock_calc_crc(bp);
488}
489
490const struct xfs_buf_ops xfs_bmbt_buf_ops = {
491	.name = "xfs_bmbt",
492	.magic = { cpu_to_be32(XFS_BMAP_MAGIC),
493		   cpu_to_be32(XFS_BMAP_CRC_MAGIC) },
494	.verify_read = xfs_bmbt_read_verify,
495	.verify_write = xfs_bmbt_write_verify,
496	.verify_struct = xfs_bmbt_verify,
497};
498
499
500STATIC int
501xfs_bmbt_keys_inorder(
502	struct xfs_btree_cur		*cur,
503	const union xfs_btree_key	*k1,
504	const union xfs_btree_key	*k2)
505{
506	return be64_to_cpu(k1->bmbt.br_startoff) <
507		be64_to_cpu(k2->bmbt.br_startoff);
508}
509
510STATIC int
511xfs_bmbt_recs_inorder(
512	struct xfs_btree_cur		*cur,
513	const union xfs_btree_rec	*r1,
514	const union xfs_btree_rec	*r2)
515{
516	return xfs_bmbt_disk_get_startoff(&r1->bmbt) +
517		xfs_bmbt_disk_get_blockcount(&r1->bmbt) <=
518		xfs_bmbt_disk_get_startoff(&r2->bmbt);
519}
520
521static const struct xfs_btree_ops xfs_bmbt_ops = {
522	.rec_len		= sizeof(xfs_bmbt_rec_t),
523	.key_len		= sizeof(xfs_bmbt_key_t),
524
525	.dup_cursor		= xfs_bmbt_dup_cursor,
526	.update_cursor		= xfs_bmbt_update_cursor,
527	.alloc_block		= xfs_bmbt_alloc_block,
528	.free_block		= xfs_bmbt_free_block,
529	.get_maxrecs		= xfs_bmbt_get_maxrecs,
530	.get_minrecs		= xfs_bmbt_get_minrecs,
531	.get_dmaxrecs		= xfs_bmbt_get_dmaxrecs,
532	.init_key_from_rec	= xfs_bmbt_init_key_from_rec,
533	.init_high_key_from_rec	= xfs_bmbt_init_high_key_from_rec,
534	.init_rec_from_cur	= xfs_bmbt_init_rec_from_cur,
535	.init_ptr_from_cur	= xfs_bmbt_init_ptr_from_cur,
536	.key_diff		= xfs_bmbt_key_diff,
537	.diff_two_keys		= xfs_bmbt_diff_two_keys,
538	.buf_ops		= &xfs_bmbt_buf_ops,
539	.keys_inorder		= xfs_bmbt_keys_inorder,
540	.recs_inorder		= xfs_bmbt_recs_inorder,
541};
542
543/*
544 * Allocate a new bmap btree cursor.
545 */
546struct xfs_btree_cur *				/* new bmap btree cursor */
547xfs_bmbt_init_cursor(
548	struct xfs_mount	*mp,		/* file system mount point */
549	struct xfs_trans	*tp,		/* transaction pointer */
550	struct xfs_inode	*ip,		/* inode owning the btree */
551	int			whichfork)	/* data or attr fork */
552{
553	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
554	struct xfs_btree_cur	*cur;
555	ASSERT(whichfork != XFS_COW_FORK);
556
557	cur = xfs_btree_alloc_cursor(mp, tp, XFS_BTNUM_BMAP,
558			mp->m_bm_maxlevels[whichfork], xfs_bmbt_cur_cache);
 
 
559	cur->bc_nlevels = be16_to_cpu(ifp->if_broot->bb_level) + 1;
 
 
560	cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_bmbt_2);
561
562	cur->bc_ops = &xfs_bmbt_ops;
563	cur->bc_flags = XFS_BTREE_LONG_PTRS | XFS_BTREE_ROOT_IN_INODE;
564	if (xfs_has_crc(mp))
565		cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
566
567	cur->bc_ino.forksize = xfs_inode_fork_size(ip, whichfork);
568	cur->bc_ino.ip = ip;
569	cur->bc_ino.allocated = 0;
570	cur->bc_ino.flags = 0;
571	cur->bc_ino.whichfork = whichfork;
 
 
572
573	return cur;
574}
575
576/* Calculate number of records in a block mapping btree block. */
577static inline unsigned int
578xfs_bmbt_block_maxrecs(
579	unsigned int		blocklen,
580	bool			leaf)
581{
582	if (leaf)
583		return blocklen / sizeof(xfs_bmbt_rec_t);
584	return blocklen / (sizeof(xfs_bmbt_key_t) + sizeof(xfs_bmbt_ptr_t));
585}
586
587/*
588 * Calculate number of records in a bmap btree block.
589 */
590int
591xfs_bmbt_maxrecs(
592	struct xfs_mount	*mp,
593	int			blocklen,
594	int			leaf)
595{
596	blocklen -= XFS_BMBT_BLOCK_LEN(mp);
597	return xfs_bmbt_block_maxrecs(blocklen, leaf);
598}
599
600/*
601 * Calculate the maximum possible height of the btree that the on-disk format
602 * supports. This is used for sizing structures large enough to support every
603 * possible configuration of a filesystem that might get mounted.
604 */
605unsigned int
606xfs_bmbt_maxlevels_ondisk(void)
607{
608	unsigned int		minrecs[2];
609	unsigned int		blocklen;
610
611	blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN,
612		       XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN);
613
614	minrecs[0] = xfs_bmbt_block_maxrecs(blocklen, true) / 2;
615	minrecs[1] = xfs_bmbt_block_maxrecs(blocklen, false) / 2;
616
617	/* One extra level for the inode root. */
618	return xfs_btree_compute_maxlevels(minrecs,
619			XFS_MAX_EXTCNT_DATA_FORK_LARGE) + 1;
620}
621
622/*
623 * Calculate number of records in a bmap btree inode root.
624 */
625int
626xfs_bmdr_maxrecs(
627	int			blocklen,
628	int			leaf)
629{
630	blocklen -= sizeof(xfs_bmdr_block_t);
631
632	if (leaf)
633		return blocklen / sizeof(xfs_bmdr_rec_t);
634	return blocklen / (sizeof(xfs_bmdr_key_t) + sizeof(xfs_bmdr_ptr_t));
635}
636
637/*
638 * Change the owner of a btree format fork fo the inode passed in. Change it to
639 * the owner of that is passed in so that we can change owners before or after
640 * we switch forks between inodes. The operation that the caller is doing will
641 * determine whether is needs to change owner before or after the switch.
642 *
643 * For demand paged transactional modification, the fork switch should be done
644 * after reading in all the blocks, modifying them and pinning them in the
645 * transaction. For modification when the buffers are already pinned in memory,
646 * the fork switch can be done before changing the owner as we won't need to
647 * validate the owner until the btree buffers are unpinned and writes can occur
648 * again.
649 *
650 * For recovery based ownership change, there is no transactional context and
651 * so a buffer list must be supplied so that we can record the buffers that we
652 * modified for the caller to issue IO on.
653 */
654int
655xfs_bmbt_change_owner(
656	struct xfs_trans	*tp,
657	struct xfs_inode	*ip,
658	int			whichfork,
659	xfs_ino_t		new_owner,
660	struct list_head	*buffer_list)
661{
662	struct xfs_btree_cur	*cur;
663	int			error;
664
665	ASSERT(tp || buffer_list);
666	ASSERT(!(tp && buffer_list));
667	ASSERT(xfs_ifork_ptr(ip, whichfork)->if_format == XFS_DINODE_FMT_BTREE);
 
 
 
668
669	cur = xfs_bmbt_init_cursor(ip->i_mount, tp, ip, whichfork);
670	cur->bc_ino.flags |= XFS_BTCUR_BMBT_INVALID_OWNER;
 
 
671
672	error = xfs_btree_change_owner(cur, new_owner, buffer_list);
673	xfs_btree_del_cursor(cur, error);
674	return error;
675}
676
677/* Calculate the bmap btree size for some records. */
678unsigned long long
679xfs_bmbt_calc_size(
680	struct xfs_mount	*mp,
681	unsigned long long	len)
682{
683	return xfs_btree_calc_size(mp->m_bmap_dmnr, len);
684}
685
686int __init
687xfs_bmbt_init_cur_cache(void)
688{
689	xfs_bmbt_cur_cache = kmem_cache_create("xfs_bmbt_cur",
690			xfs_btree_cur_sizeof(xfs_bmbt_maxlevels_ondisk()),
691			0, 0, NULL);
692
693	if (!xfs_bmbt_cur_cache)
694		return -ENOMEM;
695	return 0;
696}
697
698void
699xfs_bmbt_destroy_cur_cache(void)
700{
701	kmem_cache_destroy(xfs_bmbt_cur_cache);
702	xfs_bmbt_cur_cache = NULL;
703}
v4.17
 
  1/*
  2 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
  3 * All Rights Reserved.
  4 *
  5 * This program is free software; you can redistribute it and/or
  6 * modify it under the terms of the GNU General Public License as
  7 * published by the Free Software Foundation.
  8 *
  9 * This program is distributed in the hope that it would be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write the Free Software Foundation,
 16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 17 */
 18#include "xfs.h"
 19#include "xfs_fs.h"
 20#include "xfs_shared.h"
 21#include "xfs_format.h"
 22#include "xfs_log_format.h"
 23#include "xfs_trans_resv.h"
 24#include "xfs_bit.h"
 25#include "xfs_mount.h"
 26#include "xfs_defer.h"
 27#include "xfs_inode.h"
 28#include "xfs_trans.h"
 29#include "xfs_inode_item.h"
 30#include "xfs_alloc.h"
 31#include "xfs_btree.h"
 32#include "xfs_bmap_btree.h"
 33#include "xfs_bmap.h"
 34#include "xfs_error.h"
 35#include "xfs_quota.h"
 36#include "xfs_trace.h"
 37#include "xfs_cksum.h"
 38#include "xfs_rmap.h"
 39
 
 
 40/*
 41 * Convert on-disk form of btree root to in-memory form.
 42 */
 43void
 44xfs_bmdr_to_bmbt(
 45	struct xfs_inode	*ip,
 46	xfs_bmdr_block_t	*dblock,
 47	int			dblocklen,
 48	struct xfs_btree_block	*rblock,
 49	int			rblocklen)
 50{
 51	struct xfs_mount	*mp = ip->i_mount;
 52	int			dmxr;
 53	xfs_bmbt_key_t		*fkp;
 54	__be64			*fpp;
 55	xfs_bmbt_key_t		*tkp;
 56	__be64			*tpp;
 57
 58	xfs_btree_init_block_int(mp, rblock, XFS_BUF_DADDR_NULL,
 59				 XFS_BTNUM_BMAP, 0, 0, ip->i_ino,
 60				 XFS_BTREE_LONG_PTRS);
 61	rblock->bb_level = dblock->bb_level;
 62	ASSERT(be16_to_cpu(rblock->bb_level) > 0);
 63	rblock->bb_numrecs = dblock->bb_numrecs;
 64	dmxr = xfs_bmdr_maxrecs(dblocklen, 0);
 65	fkp = XFS_BMDR_KEY_ADDR(dblock, 1);
 66	tkp = XFS_BMBT_KEY_ADDR(mp, rblock, 1);
 67	fpp = XFS_BMDR_PTR_ADDR(dblock, 1, dmxr);
 68	tpp = XFS_BMAP_BROOT_PTR_ADDR(mp, rblock, 1, rblocklen);
 69	dmxr = be16_to_cpu(dblock->bb_numrecs);
 70	memcpy(tkp, fkp, sizeof(*fkp) * dmxr);
 71	memcpy(tpp, fpp, sizeof(*fpp) * dmxr);
 72}
 73
 74void
 75xfs_bmbt_disk_get_all(
 76	struct xfs_bmbt_rec	*rec,
 77	struct xfs_bmbt_irec	*irec)
 78{
 79	uint64_t		l0 = get_unaligned_be64(&rec->l0);
 80	uint64_t		l1 = get_unaligned_be64(&rec->l1);
 81
 82	irec->br_startoff = (l0 & xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN)) >> 9;
 83	irec->br_startblock = ((l0 & xfs_mask64lo(9)) << 43) | (l1 >> 21);
 84	irec->br_blockcount = l1 & xfs_mask64lo(21);
 85	if (l0 >> (64 - BMBT_EXNTFLAG_BITLEN))
 86		irec->br_state = XFS_EXT_UNWRITTEN;
 87	else
 88		irec->br_state = XFS_EXT_NORM;
 89}
 90
 91/*
 92 * Extract the blockcount field from an on disk bmap extent record.
 93 */
 94xfs_filblks_t
 95xfs_bmbt_disk_get_blockcount(
 96	xfs_bmbt_rec_t	*r)
 97{
 98	return (xfs_filblks_t)(be64_to_cpu(r->l1) & xfs_mask64lo(21));
 99}
100
101/*
102 * Extract the startoff field from a disk format bmap extent record.
103 */
104xfs_fileoff_t
105xfs_bmbt_disk_get_startoff(
106	xfs_bmbt_rec_t	*r)
107{
108	return ((xfs_fileoff_t)be64_to_cpu(r->l0) &
109		 xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN)) >> 9;
110}
111
112/*
113 * Set all the fields in a bmap extent record from the uncompressed form.
114 */
115void
116xfs_bmbt_disk_set_all(
117	struct xfs_bmbt_rec	*r,
118	struct xfs_bmbt_irec	*s)
119{
120	int			extent_flag = (s->br_state != XFS_EXT_NORM);
121
122	ASSERT(s->br_state == XFS_EXT_NORM || s->br_state == XFS_EXT_UNWRITTEN);
123	ASSERT(!(s->br_startoff & xfs_mask64hi(64-BMBT_STARTOFF_BITLEN)));
124	ASSERT(!(s->br_blockcount & xfs_mask64hi(64-BMBT_BLOCKCOUNT_BITLEN)));
125	ASSERT(!(s->br_startblock & xfs_mask64hi(64-BMBT_STARTBLOCK_BITLEN)));
126
127	put_unaligned_be64(
128		((xfs_bmbt_rec_base_t)extent_flag << 63) |
129		 ((xfs_bmbt_rec_base_t)s->br_startoff << 9) |
130		 ((xfs_bmbt_rec_base_t)s->br_startblock >> 43), &r->l0);
131	put_unaligned_be64(
132		((xfs_bmbt_rec_base_t)s->br_startblock << 21) |
133		 ((xfs_bmbt_rec_base_t)s->br_blockcount &
134		  (xfs_bmbt_rec_base_t)xfs_mask64lo(21)), &r->l1);
135}
136
137/*
138 * Convert in-memory form of btree root to on-disk form.
139 */
140void
141xfs_bmbt_to_bmdr(
142	struct xfs_mount	*mp,
143	struct xfs_btree_block	*rblock,
144	int			rblocklen,
145	xfs_bmdr_block_t	*dblock,
146	int			dblocklen)
147{
148	int			dmxr;
149	xfs_bmbt_key_t		*fkp;
150	__be64			*fpp;
151	xfs_bmbt_key_t		*tkp;
152	__be64			*tpp;
153
154	if (xfs_sb_version_hascrc(&mp->m_sb)) {
155		ASSERT(rblock->bb_magic == cpu_to_be32(XFS_BMAP_CRC_MAGIC));
156		ASSERT(uuid_equal(&rblock->bb_u.l.bb_uuid,
157		       &mp->m_sb.sb_meta_uuid));
158		ASSERT(rblock->bb_u.l.bb_blkno ==
159		       cpu_to_be64(XFS_BUF_DADDR_NULL));
160	} else
161		ASSERT(rblock->bb_magic == cpu_to_be32(XFS_BMAP_MAGIC));
162	ASSERT(rblock->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK));
163	ASSERT(rblock->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK));
164	ASSERT(rblock->bb_level != 0);
165	dblock->bb_level = rblock->bb_level;
166	dblock->bb_numrecs = rblock->bb_numrecs;
167	dmxr = xfs_bmdr_maxrecs(dblocklen, 0);
168	fkp = XFS_BMBT_KEY_ADDR(mp, rblock, 1);
169	tkp = XFS_BMDR_KEY_ADDR(dblock, 1);
170	fpp = XFS_BMAP_BROOT_PTR_ADDR(mp, rblock, 1, rblocklen);
171	tpp = XFS_BMDR_PTR_ADDR(dblock, 1, dmxr);
172	dmxr = be16_to_cpu(dblock->bb_numrecs);
173	memcpy(tkp, fkp, sizeof(*fkp) * dmxr);
174	memcpy(tpp, fpp, sizeof(*fpp) * dmxr);
175}
176
177STATIC struct xfs_btree_cur *
178xfs_bmbt_dup_cursor(
179	struct xfs_btree_cur	*cur)
180{
181	struct xfs_btree_cur	*new;
182
183	new = xfs_bmbt_init_cursor(cur->bc_mp, cur->bc_tp,
184			cur->bc_private.b.ip, cur->bc_private.b.whichfork);
185
186	/*
187	 * Copy the firstblock, dfops, and flags values,
188	 * since init cursor doesn't get them.
189	 */
190	new->bc_private.b.firstblock = cur->bc_private.b.firstblock;
191	new->bc_private.b.dfops = cur->bc_private.b.dfops;
192	new->bc_private.b.flags = cur->bc_private.b.flags;
193
194	return new;
195}
196
197STATIC void
198xfs_bmbt_update_cursor(
199	struct xfs_btree_cur	*src,
200	struct xfs_btree_cur	*dst)
201{
202	ASSERT((dst->bc_private.b.firstblock != NULLFSBLOCK) ||
203	       (dst->bc_private.b.ip->i_d.di_flags & XFS_DIFLAG_REALTIME));
204	ASSERT(dst->bc_private.b.dfops == src->bc_private.b.dfops);
205
206	dst->bc_private.b.allocated += src->bc_private.b.allocated;
207	dst->bc_private.b.firstblock = src->bc_private.b.firstblock;
208
209	src->bc_private.b.allocated = 0;
210}
211
212STATIC int
213xfs_bmbt_alloc_block(
214	struct xfs_btree_cur	*cur,
215	union xfs_btree_ptr	*start,
216	union xfs_btree_ptr	*new,
217	int			*stat)
218{
219	xfs_alloc_arg_t		args;		/* block allocation args */
220	int			error;		/* error return value */
221
222	memset(&args, 0, sizeof(args));
223	args.tp = cur->bc_tp;
224	args.mp = cur->bc_mp;
225	args.fsbno = cur->bc_private.b.firstblock;
226	args.firstblock = args.fsbno;
227	xfs_rmap_ino_bmbt_owner(&args.oinfo, cur->bc_private.b.ip->i_ino,
228			cur->bc_private.b.whichfork);
229
230	if (args.fsbno == NULLFSBLOCK) {
231		args.fsbno = be64_to_cpu(start->l);
232		args.type = XFS_ALLOCTYPE_START_BNO;
233		/*
234		 * Make sure there is sufficient room left in the AG to
235		 * complete a full tree split for an extent insert.  If
236		 * we are converting the middle part of an extent then
237		 * we may need space for two tree splits.
238		 *
239		 * We are relying on the caller to make the correct block
240		 * reservation for this operation to succeed.  If the
241		 * reservation amount is insufficient then we may fail a
242		 * block allocation here and corrupt the filesystem.
243		 */
244		args.minleft = args.tp->t_blk_res;
245	} else if (cur->bc_private.b.dfops->dop_low) {
246		args.type = XFS_ALLOCTYPE_START_BNO;
247	} else {
248		args.type = XFS_ALLOCTYPE_NEAR_BNO;
249	}
250
251	args.minlen = args.maxlen = args.prod = 1;
252	args.wasdel = cur->bc_private.b.flags & XFS_BTCUR_BPRV_WASDEL;
253	if (!args.wasdel && args.tp->t_blk_res == 0) {
254		error = -ENOSPC;
255		goto error0;
256	}
257	error = xfs_alloc_vextent(&args);
258	if (error)
259		goto error0;
260
261	if (args.fsbno == NULLFSBLOCK && args.minleft) {
262		/*
263		 * Could not find an AG with enough free space to satisfy
264		 * a full btree split.  Try again and if
265		 * successful activate the lowspace algorithm.
266		 */
267		args.fsbno = 0;
268		args.type = XFS_ALLOCTYPE_FIRST_AG;
269		error = xfs_alloc_vextent(&args);
270		if (error)
271			goto error0;
272		cur->bc_private.b.dfops->dop_low = true;
273	}
274	if (WARN_ON_ONCE(args.fsbno == NULLFSBLOCK)) {
275		*stat = 0;
276		return 0;
277	}
278
279	ASSERT(args.len == 1);
280	cur->bc_private.b.firstblock = args.fsbno;
281	cur->bc_private.b.allocated++;
282	cur->bc_private.b.ip->i_d.di_nblocks++;
283	xfs_trans_log_inode(args.tp, cur->bc_private.b.ip, XFS_ILOG_CORE);
284	xfs_trans_mod_dquot_byino(args.tp, cur->bc_private.b.ip,
285			XFS_TRANS_DQ_BCOUNT, 1L);
286
287	new->l = cpu_to_be64(args.fsbno);
288
289	*stat = 1;
290	return 0;
291
292 error0:
293	return error;
294}
295
296STATIC int
297xfs_bmbt_free_block(
298	struct xfs_btree_cur	*cur,
299	struct xfs_buf		*bp)
300{
301	struct xfs_mount	*mp = cur->bc_mp;
302	struct xfs_inode	*ip = cur->bc_private.b.ip;
303	struct xfs_trans	*tp = cur->bc_tp;
304	xfs_fsblock_t		fsbno = XFS_DADDR_TO_FSB(mp, XFS_BUF_ADDR(bp));
305	struct xfs_owner_info	oinfo;
306
307	xfs_rmap_ino_bmbt_owner(&oinfo, ip->i_ino, cur->bc_private.b.whichfork);
308	xfs_bmap_add_free(mp, cur->bc_private.b.dfops, fsbno, 1, &oinfo);
309	ip->i_d.di_nblocks--;
310
311	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
312	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, -1L);
313	return 0;
314}
315
316STATIC int
317xfs_bmbt_get_minrecs(
318	struct xfs_btree_cur	*cur,
319	int			level)
320{
321	if (level == cur->bc_nlevels - 1) {
322		struct xfs_ifork	*ifp;
323
324		ifp = XFS_IFORK_PTR(cur->bc_private.b.ip,
325				    cur->bc_private.b.whichfork);
326
327		return xfs_bmbt_maxrecs(cur->bc_mp,
328					ifp->if_broot_bytes, level == 0) / 2;
329	}
330
331	return cur->bc_mp->m_bmap_dmnr[level != 0];
332}
333
334int
335xfs_bmbt_get_maxrecs(
336	struct xfs_btree_cur	*cur,
337	int			level)
338{
339	if (level == cur->bc_nlevels - 1) {
340		struct xfs_ifork	*ifp;
341
342		ifp = XFS_IFORK_PTR(cur->bc_private.b.ip,
343				    cur->bc_private.b.whichfork);
344
345		return xfs_bmbt_maxrecs(cur->bc_mp,
346					ifp->if_broot_bytes, level == 0);
347	}
348
349	return cur->bc_mp->m_bmap_dmxr[level != 0];
350
351}
352
353/*
354 * Get the maximum records we could store in the on-disk format.
355 *
356 * For non-root nodes this is equivalent to xfs_bmbt_get_maxrecs, but
357 * for the root node this checks the available space in the dinode fork
358 * so that we can resize the in-memory buffer to match it.  After a
359 * resize to the maximum size this function returns the same value
360 * as xfs_bmbt_get_maxrecs for the root node, too.
361 */
362STATIC int
363xfs_bmbt_get_dmaxrecs(
364	struct xfs_btree_cur	*cur,
365	int			level)
366{
367	if (level != cur->bc_nlevels - 1)
368		return cur->bc_mp->m_bmap_dmxr[level != 0];
369	return xfs_bmdr_maxrecs(cur->bc_private.b.forksize, level == 0);
370}
371
372STATIC void
373xfs_bmbt_init_key_from_rec(
374	union xfs_btree_key	*key,
375	union xfs_btree_rec	*rec)
376{
377	key->bmbt.br_startoff =
378		cpu_to_be64(xfs_bmbt_disk_get_startoff(&rec->bmbt));
379}
380
381STATIC void
382xfs_bmbt_init_high_key_from_rec(
383	union xfs_btree_key	*key,
384	union xfs_btree_rec	*rec)
385{
386	key->bmbt.br_startoff = cpu_to_be64(
387			xfs_bmbt_disk_get_startoff(&rec->bmbt) +
388			xfs_bmbt_disk_get_blockcount(&rec->bmbt) - 1);
389}
390
391STATIC void
392xfs_bmbt_init_rec_from_cur(
393	struct xfs_btree_cur	*cur,
394	union xfs_btree_rec	*rec)
395{
396	xfs_bmbt_disk_set_all(&rec->bmbt, &cur->bc_rec.b);
397}
398
399STATIC void
400xfs_bmbt_init_ptr_from_cur(
401	struct xfs_btree_cur	*cur,
402	union xfs_btree_ptr	*ptr)
403{
404	ptr->l = 0;
405}
406
407STATIC int64_t
408xfs_bmbt_key_diff(
409	struct xfs_btree_cur	*cur,
410	union xfs_btree_key	*key)
411{
412	return (int64_t)be64_to_cpu(key->bmbt.br_startoff) -
413				      cur->bc_rec.b.br_startoff;
414}
415
416STATIC int64_t
417xfs_bmbt_diff_two_keys(
418	struct xfs_btree_cur	*cur,
419	union xfs_btree_key	*k1,
420	union xfs_btree_key	*k2)
421{
422	return (int64_t)be64_to_cpu(k1->bmbt.br_startoff) -
423			  be64_to_cpu(k2->bmbt.br_startoff);
 
 
 
 
 
 
 
 
 
 
 
 
424}
425
426static xfs_failaddr_t
427xfs_bmbt_verify(
428	struct xfs_buf		*bp)
429{
430	struct xfs_mount	*mp = bp->b_target->bt_mount;
431	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
432	xfs_failaddr_t		fa;
433	unsigned int		level;
434
435	switch (block->bb_magic) {
436	case cpu_to_be32(XFS_BMAP_CRC_MAGIC):
 
 
437		/*
438		 * XXX: need a better way of verifying the owner here. Right now
439		 * just make sure there has been one set.
440		 */
441		fa = xfs_btree_lblock_v5hdr_verify(bp, XFS_RMAP_OWN_UNKNOWN);
442		if (fa)
443			return fa;
444		/* fall through */
445	case cpu_to_be32(XFS_BMAP_MAGIC):
446		break;
447	default:
448		return __this_address;
449	}
450
451	/*
452	 * numrecs and level verification.
453	 *
454	 * We don't know what fork we belong to, so just verify that the level
455	 * is less than the maximum of the two. Later checks will be more
456	 * precise.
457	 */
458	level = be16_to_cpu(block->bb_level);
459	if (level > max(mp->m_bm_maxlevels[0], mp->m_bm_maxlevels[1]))
460		return __this_address;
461
462	return xfs_btree_lblock_verify(bp, mp->m_bmap_dmxr[level != 0]);
463}
464
465static void
466xfs_bmbt_read_verify(
467	struct xfs_buf	*bp)
468{
469	xfs_failaddr_t	fa;
470
471	if (!xfs_btree_lblock_verify_crc(bp))
472		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
473	else {
474		fa = xfs_bmbt_verify(bp);
475		if (fa)
476			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
477	}
478
479	if (bp->b_error)
480		trace_xfs_btree_corrupt(bp, _RET_IP_);
481}
482
483static void
484xfs_bmbt_write_verify(
485	struct xfs_buf	*bp)
486{
487	xfs_failaddr_t	fa;
488
489	fa = xfs_bmbt_verify(bp);
490	if (fa) {
491		trace_xfs_btree_corrupt(bp, _RET_IP_);
492		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
493		return;
494	}
495	xfs_btree_lblock_calc_crc(bp);
496}
497
498const struct xfs_buf_ops xfs_bmbt_buf_ops = {
499	.name = "xfs_bmbt",
 
 
500	.verify_read = xfs_bmbt_read_verify,
501	.verify_write = xfs_bmbt_write_verify,
502	.verify_struct = xfs_bmbt_verify,
503};
504
505
506STATIC int
507xfs_bmbt_keys_inorder(
508	struct xfs_btree_cur	*cur,
509	union xfs_btree_key	*k1,
510	union xfs_btree_key	*k2)
511{
512	return be64_to_cpu(k1->bmbt.br_startoff) <
513		be64_to_cpu(k2->bmbt.br_startoff);
514}
515
516STATIC int
517xfs_bmbt_recs_inorder(
518	struct xfs_btree_cur	*cur,
519	union xfs_btree_rec	*r1,
520	union xfs_btree_rec	*r2)
521{
522	return xfs_bmbt_disk_get_startoff(&r1->bmbt) +
523		xfs_bmbt_disk_get_blockcount(&r1->bmbt) <=
524		xfs_bmbt_disk_get_startoff(&r2->bmbt);
525}
526
527static const struct xfs_btree_ops xfs_bmbt_ops = {
528	.rec_len		= sizeof(xfs_bmbt_rec_t),
529	.key_len		= sizeof(xfs_bmbt_key_t),
530
531	.dup_cursor		= xfs_bmbt_dup_cursor,
532	.update_cursor		= xfs_bmbt_update_cursor,
533	.alloc_block		= xfs_bmbt_alloc_block,
534	.free_block		= xfs_bmbt_free_block,
535	.get_maxrecs		= xfs_bmbt_get_maxrecs,
536	.get_minrecs		= xfs_bmbt_get_minrecs,
537	.get_dmaxrecs		= xfs_bmbt_get_dmaxrecs,
538	.init_key_from_rec	= xfs_bmbt_init_key_from_rec,
539	.init_high_key_from_rec	= xfs_bmbt_init_high_key_from_rec,
540	.init_rec_from_cur	= xfs_bmbt_init_rec_from_cur,
541	.init_ptr_from_cur	= xfs_bmbt_init_ptr_from_cur,
542	.key_diff		= xfs_bmbt_key_diff,
543	.diff_two_keys		= xfs_bmbt_diff_two_keys,
544	.buf_ops		= &xfs_bmbt_buf_ops,
545	.keys_inorder		= xfs_bmbt_keys_inorder,
546	.recs_inorder		= xfs_bmbt_recs_inorder,
547};
548
549/*
550 * Allocate a new bmap btree cursor.
551 */
552struct xfs_btree_cur *				/* new bmap btree cursor */
553xfs_bmbt_init_cursor(
554	struct xfs_mount	*mp,		/* file system mount point */
555	struct xfs_trans	*tp,		/* transaction pointer */
556	struct xfs_inode	*ip,		/* inode owning the btree */
557	int			whichfork)	/* data or attr fork */
558{
559	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, whichfork);
560	struct xfs_btree_cur	*cur;
561	ASSERT(whichfork != XFS_COW_FORK);
562
563	cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_NOFS);
564
565	cur->bc_tp = tp;
566	cur->bc_mp = mp;
567	cur->bc_nlevels = be16_to_cpu(ifp->if_broot->bb_level) + 1;
568	cur->bc_btnum = XFS_BTNUM_BMAP;
569	cur->bc_blocklog = mp->m_sb.sb_blocklog;
570	cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_bmbt_2);
571
572	cur->bc_ops = &xfs_bmbt_ops;
573	cur->bc_flags = XFS_BTREE_LONG_PTRS | XFS_BTREE_ROOT_IN_INODE;
574	if (xfs_sb_version_hascrc(&mp->m_sb))
575		cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
576
577	cur->bc_private.b.forksize = XFS_IFORK_SIZE(ip, whichfork);
578	cur->bc_private.b.ip = ip;
579	cur->bc_private.b.firstblock = NULLFSBLOCK;
580	cur->bc_private.b.dfops = NULL;
581	cur->bc_private.b.allocated = 0;
582	cur->bc_private.b.flags = 0;
583	cur->bc_private.b.whichfork = whichfork;
584
585	return cur;
586}
587
 
 
 
 
 
 
 
 
 
 
 
588/*
589 * Calculate number of records in a bmap btree block.
590 */
591int
592xfs_bmbt_maxrecs(
593	struct xfs_mount	*mp,
594	int			blocklen,
595	int			leaf)
596{
597	blocklen -= XFS_BMBT_BLOCK_LEN(mp);
 
 
598
599	if (leaf)
600		return blocklen / sizeof(xfs_bmbt_rec_t);
601	return blocklen / (sizeof(xfs_bmbt_key_t) + sizeof(xfs_bmbt_ptr_t));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
602}
603
604/*
605 * Calculate number of records in a bmap btree inode root.
606 */
607int
608xfs_bmdr_maxrecs(
609	int			blocklen,
610	int			leaf)
611{
612	blocklen -= sizeof(xfs_bmdr_block_t);
613
614	if (leaf)
615		return blocklen / sizeof(xfs_bmdr_rec_t);
616	return blocklen / (sizeof(xfs_bmdr_key_t) + sizeof(xfs_bmdr_ptr_t));
617}
618
619/*
620 * Change the owner of a btree format fork fo the inode passed in. Change it to
621 * the owner of that is passed in so that we can change owners before or after
622 * we switch forks between inodes. The operation that the caller is doing will
623 * determine whether is needs to change owner before or after the switch.
624 *
625 * For demand paged transactional modification, the fork switch should be done
626 * after reading in all the blocks, modifying them and pinning them in the
627 * transaction. For modification when the buffers are already pinned in memory,
628 * the fork switch can be done before changing the owner as we won't need to
629 * validate the owner until the btree buffers are unpinned and writes can occur
630 * again.
631 *
632 * For recovery based ownership change, there is no transactional context and
633 * so a buffer list must be supplied so that we can record the buffers that we
634 * modified for the caller to issue IO on.
635 */
636int
637xfs_bmbt_change_owner(
638	struct xfs_trans	*tp,
639	struct xfs_inode	*ip,
640	int			whichfork,
641	xfs_ino_t		new_owner,
642	struct list_head	*buffer_list)
643{
644	struct xfs_btree_cur	*cur;
645	int			error;
646
647	ASSERT(tp || buffer_list);
648	ASSERT(!(tp && buffer_list));
649	if (whichfork == XFS_DATA_FORK)
650		ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_BTREE);
651	else
652		ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE);
653
654	cur = xfs_bmbt_init_cursor(ip->i_mount, tp, ip, whichfork);
655	if (!cur)
656		return -ENOMEM;
657	cur->bc_private.b.flags |= XFS_BTCUR_BPRV_INVALID_OWNER;
658
659	error = xfs_btree_change_owner(cur, new_owner, buffer_list);
660	xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR);
661	return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
662}