Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2012 Alexander Block. All rights reserved.
4 */
5
6#include <linux/bsearch.h>
7#include <linux/fs.h>
8#include <linux/file.h>
9#include <linux/sort.h>
10#include <linux/mount.h>
11#include <linux/xattr.h>
12#include <linux/posix_acl_xattr.h>
13#include <linux/radix-tree.h>
14#include <linux/vmalloc.h>
15#include <linux/string.h>
16#include <linux/compat.h>
17#include <linux/crc32c.h>
18#include <linux/fsverity.h>
19
20#include "send.h"
21#include "ctree.h"
22#include "backref.h"
23#include "locking.h"
24#include "disk-io.h"
25#include "btrfs_inode.h"
26#include "transaction.h"
27#include "compression.h"
28#include "xattr.h"
29#include "print-tree.h"
30#include "accessors.h"
31#include "dir-item.h"
32#include "file-item.h"
33#include "ioctl.h"
34#include "verity.h"
35
36/*
37 * Maximum number of references an extent can have in order for us to attempt to
38 * issue clone operations instead of write operations. This currently exists to
39 * avoid hitting limitations of the backreference walking code (taking a lot of
40 * time and using too much memory for extents with large number of references).
41 */
42#define SEND_MAX_EXTENT_REFS 1024
43
44/*
45 * A fs_path is a helper to dynamically build path names with unknown size.
46 * It reallocates the internal buffer on demand.
47 * It allows fast adding of path elements on the right side (normal path) and
48 * fast adding to the left side (reversed path). A reversed path can also be
49 * unreversed if needed.
50 */
51struct fs_path {
52 union {
53 struct {
54 char *start;
55 char *end;
56
57 char *buf;
58 unsigned short buf_len:15;
59 unsigned short reversed:1;
60 char inline_buf[];
61 };
62 /*
63 * Average path length does not exceed 200 bytes, we'll have
64 * better packing in the slab and higher chance to satisfy
65 * a allocation later during send.
66 */
67 char pad[256];
68 };
69};
70#define FS_PATH_INLINE_SIZE \
71 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
72
73
74/* reused for each extent */
75struct clone_root {
76 struct btrfs_root *root;
77 u64 ino;
78 u64 offset;
79 u64 num_bytes;
80 bool found_ref;
81};
82
83#define SEND_CTX_MAX_NAME_CACHE_SIZE 128
84#define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
85
86/*
87 * Limit the root_ids array of struct backref_cache_entry to 12 elements.
88 * This makes the size of a cache entry to be exactly 128 bytes on x86_64.
89 * The most common case is to have a single root for cloning, which corresponds
90 * to the send root. Having the user specify more than 11 clone roots is not
91 * common, and in such rare cases we simply don't use caching if the number of
92 * cloning roots that lead down to a leaf is more than 12.
93 */
94#define SEND_MAX_BACKREF_CACHE_ROOTS 12
95
96/*
97 * Max number of entries in the cache.
98 * With SEND_MAX_BACKREF_CACHE_ROOTS as 12, the size in bytes, excluding
99 * maple tree's internal nodes, is 16K.
100 */
101#define SEND_MAX_BACKREF_CACHE_SIZE 128
102
103/*
104 * A backref cache entry maps a leaf to a list of IDs of roots from which the
105 * leaf is accessible and we can use for clone operations.
106 * With SEND_MAX_BACKREF_CACHE_ROOTS as 12, each cache entry is 128 bytes (on
107 * x86_64).
108 */
109struct backref_cache_entry {
110 /* List to link to the cache's lru list. */
111 struct list_head list;
112 /* The key for this entry in the cache. */
113 u64 key;
114 u64 root_ids[SEND_MAX_BACKREF_CACHE_ROOTS];
115 /* Number of valid elements in the root_ids array. */
116 int num_roots;
117};
118
119struct send_ctx {
120 struct file *send_filp;
121 loff_t send_off;
122 char *send_buf;
123 u32 send_size;
124 u32 send_max_size;
125 /*
126 * Whether BTRFS_SEND_A_DATA attribute was already added to current
127 * command (since protocol v2, data must be the last attribute).
128 */
129 bool put_data;
130 struct page **send_buf_pages;
131 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
132 /* Protocol version compatibility requested */
133 u32 proto;
134
135 struct btrfs_root *send_root;
136 struct btrfs_root *parent_root;
137 struct clone_root *clone_roots;
138 int clone_roots_cnt;
139
140 /* current state of the compare_tree call */
141 struct btrfs_path *left_path;
142 struct btrfs_path *right_path;
143 struct btrfs_key *cmp_key;
144
145 /*
146 * Keep track of the generation of the last transaction that was used
147 * for relocating a block group. This is periodically checked in order
148 * to detect if a relocation happened since the last check, so that we
149 * don't operate on stale extent buffers for nodes (level >= 1) or on
150 * stale disk_bytenr values of file extent items.
151 */
152 u64 last_reloc_trans;
153
154 /*
155 * infos of the currently processed inode. In case of deleted inodes,
156 * these are the values from the deleted inode.
157 */
158 u64 cur_ino;
159 u64 cur_inode_gen;
160 u64 cur_inode_size;
161 u64 cur_inode_mode;
162 u64 cur_inode_rdev;
163 u64 cur_inode_last_extent;
164 u64 cur_inode_next_write_offset;
165 bool cur_inode_new;
166 bool cur_inode_new_gen;
167 bool cur_inode_deleted;
168 bool ignore_cur_inode;
169 bool cur_inode_needs_verity;
170 void *verity_descriptor;
171
172 u64 send_progress;
173
174 struct list_head new_refs;
175 struct list_head deleted_refs;
176
177 struct radix_tree_root name_cache;
178 struct list_head name_cache_list;
179 int name_cache_size;
180
181 /*
182 * The inode we are currently processing. It's not NULL only when we
183 * need to issue write commands for data extents from this inode.
184 */
185 struct inode *cur_inode;
186 struct file_ra_state ra;
187 u64 page_cache_clear_start;
188 bool clean_page_cache;
189
190 /*
191 * We process inodes by their increasing order, so if before an
192 * incremental send we reverse the parent/child relationship of
193 * directories such that a directory with a lower inode number was
194 * the parent of a directory with a higher inode number, and the one
195 * becoming the new parent got renamed too, we can't rename/move the
196 * directory with lower inode number when we finish processing it - we
197 * must process the directory with higher inode number first, then
198 * rename/move it and then rename/move the directory with lower inode
199 * number. Example follows.
200 *
201 * Tree state when the first send was performed:
202 *
203 * .
204 * |-- a (ino 257)
205 * |-- b (ino 258)
206 * |
207 * |
208 * |-- c (ino 259)
209 * | |-- d (ino 260)
210 * |
211 * |-- c2 (ino 261)
212 *
213 * Tree state when the second (incremental) send is performed:
214 *
215 * .
216 * |-- a (ino 257)
217 * |-- b (ino 258)
218 * |-- c2 (ino 261)
219 * |-- d2 (ino 260)
220 * |-- cc (ino 259)
221 *
222 * The sequence of steps that lead to the second state was:
223 *
224 * mv /a/b/c/d /a/b/c2/d2
225 * mv /a/b/c /a/b/c2/d2/cc
226 *
227 * "c" has lower inode number, but we can't move it (2nd mv operation)
228 * before we move "d", which has higher inode number.
229 *
230 * So we just memorize which move/rename operations must be performed
231 * later when their respective parent is processed and moved/renamed.
232 */
233
234 /* Indexed by parent directory inode number. */
235 struct rb_root pending_dir_moves;
236
237 /*
238 * Reverse index, indexed by the inode number of a directory that
239 * is waiting for the move/rename of its immediate parent before its
240 * own move/rename can be performed.
241 */
242 struct rb_root waiting_dir_moves;
243
244 /*
245 * A directory that is going to be rm'ed might have a child directory
246 * which is in the pending directory moves index above. In this case,
247 * the directory can only be removed after the move/rename of its child
248 * is performed. Example:
249 *
250 * Parent snapshot:
251 *
252 * . (ino 256)
253 * |-- a/ (ino 257)
254 * |-- b/ (ino 258)
255 * |-- c/ (ino 259)
256 * | |-- x/ (ino 260)
257 * |
258 * |-- y/ (ino 261)
259 *
260 * Send snapshot:
261 *
262 * . (ino 256)
263 * |-- a/ (ino 257)
264 * |-- b/ (ino 258)
265 * |-- YY/ (ino 261)
266 * |-- x/ (ino 260)
267 *
268 * Sequence of steps that lead to the send snapshot:
269 * rm -f /a/b/c/foo.txt
270 * mv /a/b/y /a/b/YY
271 * mv /a/b/c/x /a/b/YY
272 * rmdir /a/b/c
273 *
274 * When the child is processed, its move/rename is delayed until its
275 * parent is processed (as explained above), but all other operations
276 * like update utimes, chown, chgrp, etc, are performed and the paths
277 * that it uses for those operations must use the orphanized name of
278 * its parent (the directory we're going to rm later), so we need to
279 * memorize that name.
280 *
281 * Indexed by the inode number of the directory to be deleted.
282 */
283 struct rb_root orphan_dirs;
284
285 struct rb_root rbtree_new_refs;
286 struct rb_root rbtree_deleted_refs;
287
288 struct {
289 u64 last_reloc_trans;
290 struct list_head lru_list;
291 struct maple_tree entries;
292 /* Number of entries stored in the cache. */
293 int size;
294 } backref_cache;
295};
296
297struct pending_dir_move {
298 struct rb_node node;
299 struct list_head list;
300 u64 parent_ino;
301 u64 ino;
302 u64 gen;
303 struct list_head update_refs;
304};
305
306struct waiting_dir_move {
307 struct rb_node node;
308 u64 ino;
309 /*
310 * There might be some directory that could not be removed because it
311 * was waiting for this directory inode to be moved first. Therefore
312 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
313 */
314 u64 rmdir_ino;
315 u64 rmdir_gen;
316 bool orphanized;
317};
318
319struct orphan_dir_info {
320 struct rb_node node;
321 u64 ino;
322 u64 gen;
323 u64 last_dir_index_offset;
324};
325
326struct name_cache_entry {
327 struct list_head list;
328 /*
329 * radix_tree has only 32bit entries but we need to handle 64bit inums.
330 * We use the lower 32bit of the 64bit inum to store it in the tree. If
331 * more then one inum would fall into the same entry, we use radix_list
332 * to store the additional entries. radix_list is also used to store
333 * entries where two entries have the same inum but different
334 * generations.
335 */
336 struct list_head radix_list;
337 u64 ino;
338 u64 gen;
339 u64 parent_ino;
340 u64 parent_gen;
341 int ret;
342 int need_later_update;
343 int name_len;
344 char name[];
345};
346
347#define ADVANCE 1
348#define ADVANCE_ONLY_NEXT -1
349
350enum btrfs_compare_tree_result {
351 BTRFS_COMPARE_TREE_NEW,
352 BTRFS_COMPARE_TREE_DELETED,
353 BTRFS_COMPARE_TREE_CHANGED,
354 BTRFS_COMPARE_TREE_SAME,
355};
356
357__cold
358static void inconsistent_snapshot_error(struct send_ctx *sctx,
359 enum btrfs_compare_tree_result result,
360 const char *what)
361{
362 const char *result_string;
363
364 switch (result) {
365 case BTRFS_COMPARE_TREE_NEW:
366 result_string = "new";
367 break;
368 case BTRFS_COMPARE_TREE_DELETED:
369 result_string = "deleted";
370 break;
371 case BTRFS_COMPARE_TREE_CHANGED:
372 result_string = "updated";
373 break;
374 case BTRFS_COMPARE_TREE_SAME:
375 ASSERT(0);
376 result_string = "unchanged";
377 break;
378 default:
379 ASSERT(0);
380 result_string = "unexpected";
381 }
382
383 btrfs_err(sctx->send_root->fs_info,
384 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
385 result_string, what, sctx->cmp_key->objectid,
386 sctx->send_root->root_key.objectid,
387 (sctx->parent_root ?
388 sctx->parent_root->root_key.objectid : 0));
389}
390
391__maybe_unused
392static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd)
393{
394 switch (sctx->proto) {
395 case 1: return cmd <= BTRFS_SEND_C_MAX_V1;
396 case 2: return cmd <= BTRFS_SEND_C_MAX_V2;
397 case 3: return cmd <= BTRFS_SEND_C_MAX_V3;
398 default: return false;
399 }
400}
401
402static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
403
404static struct waiting_dir_move *
405get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
406
407static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen);
408
409static int need_send_hole(struct send_ctx *sctx)
410{
411 return (sctx->parent_root && !sctx->cur_inode_new &&
412 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
413 S_ISREG(sctx->cur_inode_mode));
414}
415
416static void fs_path_reset(struct fs_path *p)
417{
418 if (p->reversed) {
419 p->start = p->buf + p->buf_len - 1;
420 p->end = p->start;
421 *p->start = 0;
422 } else {
423 p->start = p->buf;
424 p->end = p->start;
425 *p->start = 0;
426 }
427}
428
429static struct fs_path *fs_path_alloc(void)
430{
431 struct fs_path *p;
432
433 p = kmalloc(sizeof(*p), GFP_KERNEL);
434 if (!p)
435 return NULL;
436 p->reversed = 0;
437 p->buf = p->inline_buf;
438 p->buf_len = FS_PATH_INLINE_SIZE;
439 fs_path_reset(p);
440 return p;
441}
442
443static struct fs_path *fs_path_alloc_reversed(void)
444{
445 struct fs_path *p;
446
447 p = fs_path_alloc();
448 if (!p)
449 return NULL;
450 p->reversed = 1;
451 fs_path_reset(p);
452 return p;
453}
454
455static void fs_path_free(struct fs_path *p)
456{
457 if (!p)
458 return;
459 if (p->buf != p->inline_buf)
460 kfree(p->buf);
461 kfree(p);
462}
463
464static int fs_path_len(struct fs_path *p)
465{
466 return p->end - p->start;
467}
468
469static int fs_path_ensure_buf(struct fs_path *p, int len)
470{
471 char *tmp_buf;
472 int path_len;
473 int old_buf_len;
474
475 len++;
476
477 if (p->buf_len >= len)
478 return 0;
479
480 if (len > PATH_MAX) {
481 WARN_ON(1);
482 return -ENOMEM;
483 }
484
485 path_len = p->end - p->start;
486 old_buf_len = p->buf_len;
487
488 /*
489 * Allocate to the next largest kmalloc bucket size, to let
490 * the fast path happen most of the time.
491 */
492 len = kmalloc_size_roundup(len);
493 /*
494 * First time the inline_buf does not suffice
495 */
496 if (p->buf == p->inline_buf) {
497 tmp_buf = kmalloc(len, GFP_KERNEL);
498 if (tmp_buf)
499 memcpy(tmp_buf, p->buf, old_buf_len);
500 } else {
501 tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
502 }
503 if (!tmp_buf)
504 return -ENOMEM;
505 p->buf = tmp_buf;
506 p->buf_len = len;
507
508 if (p->reversed) {
509 tmp_buf = p->buf + old_buf_len - path_len - 1;
510 p->end = p->buf + p->buf_len - 1;
511 p->start = p->end - path_len;
512 memmove(p->start, tmp_buf, path_len + 1);
513 } else {
514 p->start = p->buf;
515 p->end = p->start + path_len;
516 }
517 return 0;
518}
519
520static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
521 char **prepared)
522{
523 int ret;
524 int new_len;
525
526 new_len = p->end - p->start + name_len;
527 if (p->start != p->end)
528 new_len++;
529 ret = fs_path_ensure_buf(p, new_len);
530 if (ret < 0)
531 goto out;
532
533 if (p->reversed) {
534 if (p->start != p->end)
535 *--p->start = '/';
536 p->start -= name_len;
537 *prepared = p->start;
538 } else {
539 if (p->start != p->end)
540 *p->end++ = '/';
541 *prepared = p->end;
542 p->end += name_len;
543 *p->end = 0;
544 }
545
546out:
547 return ret;
548}
549
550static int fs_path_add(struct fs_path *p, const char *name, int name_len)
551{
552 int ret;
553 char *prepared;
554
555 ret = fs_path_prepare_for_add(p, name_len, &prepared);
556 if (ret < 0)
557 goto out;
558 memcpy(prepared, name, name_len);
559
560out:
561 return ret;
562}
563
564static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
565{
566 int ret;
567 char *prepared;
568
569 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
570 if (ret < 0)
571 goto out;
572 memcpy(prepared, p2->start, p2->end - p2->start);
573
574out:
575 return ret;
576}
577
578static int fs_path_add_from_extent_buffer(struct fs_path *p,
579 struct extent_buffer *eb,
580 unsigned long off, int len)
581{
582 int ret;
583 char *prepared;
584
585 ret = fs_path_prepare_for_add(p, len, &prepared);
586 if (ret < 0)
587 goto out;
588
589 read_extent_buffer(eb, prepared, off, len);
590
591out:
592 return ret;
593}
594
595static int fs_path_copy(struct fs_path *p, struct fs_path *from)
596{
597 p->reversed = from->reversed;
598 fs_path_reset(p);
599
600 return fs_path_add_path(p, from);
601}
602
603static void fs_path_unreverse(struct fs_path *p)
604{
605 char *tmp;
606 int len;
607
608 if (!p->reversed)
609 return;
610
611 tmp = p->start;
612 len = p->end - p->start;
613 p->start = p->buf;
614 p->end = p->start + len;
615 memmove(p->start, tmp, len + 1);
616 p->reversed = 0;
617}
618
619static struct btrfs_path *alloc_path_for_send(void)
620{
621 struct btrfs_path *path;
622
623 path = btrfs_alloc_path();
624 if (!path)
625 return NULL;
626 path->search_commit_root = 1;
627 path->skip_locking = 1;
628 path->need_commit_sem = 1;
629 return path;
630}
631
632static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
633{
634 int ret;
635 u32 pos = 0;
636
637 while (pos < len) {
638 ret = kernel_write(filp, buf + pos, len - pos, off);
639 if (ret < 0)
640 return ret;
641 if (ret == 0)
642 return -EIO;
643 pos += ret;
644 }
645
646 return 0;
647}
648
649static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
650{
651 struct btrfs_tlv_header *hdr;
652 int total_len = sizeof(*hdr) + len;
653 int left = sctx->send_max_size - sctx->send_size;
654
655 if (WARN_ON_ONCE(sctx->put_data))
656 return -EINVAL;
657
658 if (unlikely(left < total_len))
659 return -EOVERFLOW;
660
661 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
662 put_unaligned_le16(attr, &hdr->tlv_type);
663 put_unaligned_le16(len, &hdr->tlv_len);
664 memcpy(hdr + 1, data, len);
665 sctx->send_size += total_len;
666
667 return 0;
668}
669
670#define TLV_PUT_DEFINE_INT(bits) \
671 static int tlv_put_u##bits(struct send_ctx *sctx, \
672 u##bits attr, u##bits value) \
673 { \
674 __le##bits __tmp = cpu_to_le##bits(value); \
675 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
676 }
677
678TLV_PUT_DEFINE_INT(8)
679TLV_PUT_DEFINE_INT(32)
680TLV_PUT_DEFINE_INT(64)
681
682static int tlv_put_string(struct send_ctx *sctx, u16 attr,
683 const char *str, int len)
684{
685 if (len == -1)
686 len = strlen(str);
687 return tlv_put(sctx, attr, str, len);
688}
689
690static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
691 const u8 *uuid)
692{
693 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
694}
695
696static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
697 struct extent_buffer *eb,
698 struct btrfs_timespec *ts)
699{
700 struct btrfs_timespec bts;
701 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
702 return tlv_put(sctx, attr, &bts, sizeof(bts));
703}
704
705
706#define TLV_PUT(sctx, attrtype, data, attrlen) \
707 do { \
708 ret = tlv_put(sctx, attrtype, data, attrlen); \
709 if (ret < 0) \
710 goto tlv_put_failure; \
711 } while (0)
712
713#define TLV_PUT_INT(sctx, attrtype, bits, value) \
714 do { \
715 ret = tlv_put_u##bits(sctx, attrtype, value); \
716 if (ret < 0) \
717 goto tlv_put_failure; \
718 } while (0)
719
720#define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
721#define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
722#define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
723#define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
724#define TLV_PUT_STRING(sctx, attrtype, str, len) \
725 do { \
726 ret = tlv_put_string(sctx, attrtype, str, len); \
727 if (ret < 0) \
728 goto tlv_put_failure; \
729 } while (0)
730#define TLV_PUT_PATH(sctx, attrtype, p) \
731 do { \
732 ret = tlv_put_string(sctx, attrtype, p->start, \
733 p->end - p->start); \
734 if (ret < 0) \
735 goto tlv_put_failure; \
736 } while(0)
737#define TLV_PUT_UUID(sctx, attrtype, uuid) \
738 do { \
739 ret = tlv_put_uuid(sctx, attrtype, uuid); \
740 if (ret < 0) \
741 goto tlv_put_failure; \
742 } while (0)
743#define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
744 do { \
745 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
746 if (ret < 0) \
747 goto tlv_put_failure; \
748 } while (0)
749
750static int send_header(struct send_ctx *sctx)
751{
752 struct btrfs_stream_header hdr;
753
754 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
755 hdr.version = cpu_to_le32(sctx->proto);
756 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
757 &sctx->send_off);
758}
759
760/*
761 * For each command/item we want to send to userspace, we call this function.
762 */
763static int begin_cmd(struct send_ctx *sctx, int cmd)
764{
765 struct btrfs_cmd_header *hdr;
766
767 if (WARN_ON(!sctx->send_buf))
768 return -EINVAL;
769
770 BUG_ON(sctx->send_size);
771
772 sctx->send_size += sizeof(*hdr);
773 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
774 put_unaligned_le16(cmd, &hdr->cmd);
775
776 return 0;
777}
778
779static int send_cmd(struct send_ctx *sctx)
780{
781 int ret;
782 struct btrfs_cmd_header *hdr;
783 u32 crc;
784
785 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
786 put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len);
787 put_unaligned_le32(0, &hdr->crc);
788
789 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
790 put_unaligned_le32(crc, &hdr->crc);
791
792 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
793 &sctx->send_off);
794
795 sctx->send_size = 0;
796 sctx->put_data = false;
797
798 return ret;
799}
800
801/*
802 * Sends a move instruction to user space
803 */
804static int send_rename(struct send_ctx *sctx,
805 struct fs_path *from, struct fs_path *to)
806{
807 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
808 int ret;
809
810 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
811
812 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
813 if (ret < 0)
814 goto out;
815
816 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
817 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
818
819 ret = send_cmd(sctx);
820
821tlv_put_failure:
822out:
823 return ret;
824}
825
826/*
827 * Sends a link instruction to user space
828 */
829static int send_link(struct send_ctx *sctx,
830 struct fs_path *path, struct fs_path *lnk)
831{
832 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
833 int ret;
834
835 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
836
837 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
838 if (ret < 0)
839 goto out;
840
841 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
842 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
843
844 ret = send_cmd(sctx);
845
846tlv_put_failure:
847out:
848 return ret;
849}
850
851/*
852 * Sends an unlink instruction to user space
853 */
854static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
855{
856 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
857 int ret;
858
859 btrfs_debug(fs_info, "send_unlink %s", path->start);
860
861 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
862 if (ret < 0)
863 goto out;
864
865 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
866
867 ret = send_cmd(sctx);
868
869tlv_put_failure:
870out:
871 return ret;
872}
873
874/*
875 * Sends a rmdir instruction to user space
876 */
877static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
878{
879 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
880 int ret;
881
882 btrfs_debug(fs_info, "send_rmdir %s", path->start);
883
884 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
885 if (ret < 0)
886 goto out;
887
888 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
889
890 ret = send_cmd(sctx);
891
892tlv_put_failure:
893out:
894 return ret;
895}
896
897struct btrfs_inode_info {
898 u64 size;
899 u64 gen;
900 u64 mode;
901 u64 uid;
902 u64 gid;
903 u64 rdev;
904 u64 fileattr;
905 u64 nlink;
906};
907
908/*
909 * Helper function to retrieve some fields from an inode item.
910 */
911static int get_inode_info(struct btrfs_root *root, u64 ino,
912 struct btrfs_inode_info *info)
913{
914 int ret;
915 struct btrfs_path *path;
916 struct btrfs_inode_item *ii;
917 struct btrfs_key key;
918
919 path = alloc_path_for_send();
920 if (!path)
921 return -ENOMEM;
922
923 key.objectid = ino;
924 key.type = BTRFS_INODE_ITEM_KEY;
925 key.offset = 0;
926 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
927 if (ret) {
928 if (ret > 0)
929 ret = -ENOENT;
930 goto out;
931 }
932
933 if (!info)
934 goto out;
935
936 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
937 struct btrfs_inode_item);
938 info->size = btrfs_inode_size(path->nodes[0], ii);
939 info->gen = btrfs_inode_generation(path->nodes[0], ii);
940 info->mode = btrfs_inode_mode(path->nodes[0], ii);
941 info->uid = btrfs_inode_uid(path->nodes[0], ii);
942 info->gid = btrfs_inode_gid(path->nodes[0], ii);
943 info->rdev = btrfs_inode_rdev(path->nodes[0], ii);
944 info->nlink = btrfs_inode_nlink(path->nodes[0], ii);
945 /*
946 * Transfer the unchanged u64 value of btrfs_inode_item::flags, that's
947 * otherwise logically split to 32/32 parts.
948 */
949 info->fileattr = btrfs_inode_flags(path->nodes[0], ii);
950
951out:
952 btrfs_free_path(path);
953 return ret;
954}
955
956static int get_inode_gen(struct btrfs_root *root, u64 ino, u64 *gen)
957{
958 int ret;
959 struct btrfs_inode_info info;
960
961 if (!gen)
962 return -EPERM;
963
964 ret = get_inode_info(root, ino, &info);
965 if (!ret)
966 *gen = info.gen;
967 return ret;
968}
969
970typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
971 struct fs_path *p,
972 void *ctx);
973
974/*
975 * Helper function to iterate the entries in ONE btrfs_inode_ref or
976 * btrfs_inode_extref.
977 * The iterate callback may return a non zero value to stop iteration. This can
978 * be a negative value for error codes or 1 to simply stop it.
979 *
980 * path must point to the INODE_REF or INODE_EXTREF when called.
981 */
982static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
983 struct btrfs_key *found_key, int resolve,
984 iterate_inode_ref_t iterate, void *ctx)
985{
986 struct extent_buffer *eb = path->nodes[0];
987 struct btrfs_inode_ref *iref;
988 struct btrfs_inode_extref *extref;
989 struct btrfs_path *tmp_path;
990 struct fs_path *p;
991 u32 cur = 0;
992 u32 total;
993 int slot = path->slots[0];
994 u32 name_len;
995 char *start;
996 int ret = 0;
997 int num = 0;
998 int index;
999 u64 dir;
1000 unsigned long name_off;
1001 unsigned long elem_size;
1002 unsigned long ptr;
1003
1004 p = fs_path_alloc_reversed();
1005 if (!p)
1006 return -ENOMEM;
1007
1008 tmp_path = alloc_path_for_send();
1009 if (!tmp_path) {
1010 fs_path_free(p);
1011 return -ENOMEM;
1012 }
1013
1014
1015 if (found_key->type == BTRFS_INODE_REF_KEY) {
1016 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
1017 struct btrfs_inode_ref);
1018 total = btrfs_item_size(eb, slot);
1019 elem_size = sizeof(*iref);
1020 } else {
1021 ptr = btrfs_item_ptr_offset(eb, slot);
1022 total = btrfs_item_size(eb, slot);
1023 elem_size = sizeof(*extref);
1024 }
1025
1026 while (cur < total) {
1027 fs_path_reset(p);
1028
1029 if (found_key->type == BTRFS_INODE_REF_KEY) {
1030 iref = (struct btrfs_inode_ref *)(ptr + cur);
1031 name_len = btrfs_inode_ref_name_len(eb, iref);
1032 name_off = (unsigned long)(iref + 1);
1033 index = btrfs_inode_ref_index(eb, iref);
1034 dir = found_key->offset;
1035 } else {
1036 extref = (struct btrfs_inode_extref *)(ptr + cur);
1037 name_len = btrfs_inode_extref_name_len(eb, extref);
1038 name_off = (unsigned long)&extref->name;
1039 index = btrfs_inode_extref_index(eb, extref);
1040 dir = btrfs_inode_extref_parent(eb, extref);
1041 }
1042
1043 if (resolve) {
1044 start = btrfs_ref_to_path(root, tmp_path, name_len,
1045 name_off, eb, dir,
1046 p->buf, p->buf_len);
1047 if (IS_ERR(start)) {
1048 ret = PTR_ERR(start);
1049 goto out;
1050 }
1051 if (start < p->buf) {
1052 /* overflow , try again with larger buffer */
1053 ret = fs_path_ensure_buf(p,
1054 p->buf_len + p->buf - start);
1055 if (ret < 0)
1056 goto out;
1057 start = btrfs_ref_to_path(root, tmp_path,
1058 name_len, name_off,
1059 eb, dir,
1060 p->buf, p->buf_len);
1061 if (IS_ERR(start)) {
1062 ret = PTR_ERR(start);
1063 goto out;
1064 }
1065 BUG_ON(start < p->buf);
1066 }
1067 p->start = start;
1068 } else {
1069 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
1070 name_len);
1071 if (ret < 0)
1072 goto out;
1073 }
1074
1075 cur += elem_size + name_len;
1076 ret = iterate(num, dir, index, p, ctx);
1077 if (ret)
1078 goto out;
1079 num++;
1080 }
1081
1082out:
1083 btrfs_free_path(tmp_path);
1084 fs_path_free(p);
1085 return ret;
1086}
1087
1088typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
1089 const char *name, int name_len,
1090 const char *data, int data_len,
1091 void *ctx);
1092
1093/*
1094 * Helper function to iterate the entries in ONE btrfs_dir_item.
1095 * The iterate callback may return a non zero value to stop iteration. This can
1096 * be a negative value for error codes or 1 to simply stop it.
1097 *
1098 * path must point to the dir item when called.
1099 */
1100static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1101 iterate_dir_item_t iterate, void *ctx)
1102{
1103 int ret = 0;
1104 struct extent_buffer *eb;
1105 struct btrfs_dir_item *di;
1106 struct btrfs_key di_key;
1107 char *buf = NULL;
1108 int buf_len;
1109 u32 name_len;
1110 u32 data_len;
1111 u32 cur;
1112 u32 len;
1113 u32 total;
1114 int slot;
1115 int num;
1116
1117 /*
1118 * Start with a small buffer (1 page). If later we end up needing more
1119 * space, which can happen for xattrs on a fs with a leaf size greater
1120 * then the page size, attempt to increase the buffer. Typically xattr
1121 * values are small.
1122 */
1123 buf_len = PATH_MAX;
1124 buf = kmalloc(buf_len, GFP_KERNEL);
1125 if (!buf) {
1126 ret = -ENOMEM;
1127 goto out;
1128 }
1129
1130 eb = path->nodes[0];
1131 slot = path->slots[0];
1132 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1133 cur = 0;
1134 len = 0;
1135 total = btrfs_item_size(eb, slot);
1136
1137 num = 0;
1138 while (cur < total) {
1139 name_len = btrfs_dir_name_len(eb, di);
1140 data_len = btrfs_dir_data_len(eb, di);
1141 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1142
1143 if (btrfs_dir_ftype(eb, di) == BTRFS_FT_XATTR) {
1144 if (name_len > XATTR_NAME_MAX) {
1145 ret = -ENAMETOOLONG;
1146 goto out;
1147 }
1148 if (name_len + data_len >
1149 BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1150 ret = -E2BIG;
1151 goto out;
1152 }
1153 } else {
1154 /*
1155 * Path too long
1156 */
1157 if (name_len + data_len > PATH_MAX) {
1158 ret = -ENAMETOOLONG;
1159 goto out;
1160 }
1161 }
1162
1163 if (name_len + data_len > buf_len) {
1164 buf_len = name_len + data_len;
1165 if (is_vmalloc_addr(buf)) {
1166 vfree(buf);
1167 buf = NULL;
1168 } else {
1169 char *tmp = krealloc(buf, buf_len,
1170 GFP_KERNEL | __GFP_NOWARN);
1171
1172 if (!tmp)
1173 kfree(buf);
1174 buf = tmp;
1175 }
1176 if (!buf) {
1177 buf = kvmalloc(buf_len, GFP_KERNEL);
1178 if (!buf) {
1179 ret = -ENOMEM;
1180 goto out;
1181 }
1182 }
1183 }
1184
1185 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1186 name_len + data_len);
1187
1188 len = sizeof(*di) + name_len + data_len;
1189 di = (struct btrfs_dir_item *)((char *)di + len);
1190 cur += len;
1191
1192 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1193 data_len, ctx);
1194 if (ret < 0)
1195 goto out;
1196 if (ret) {
1197 ret = 0;
1198 goto out;
1199 }
1200
1201 num++;
1202 }
1203
1204out:
1205 kvfree(buf);
1206 return ret;
1207}
1208
1209static int __copy_first_ref(int num, u64 dir, int index,
1210 struct fs_path *p, void *ctx)
1211{
1212 int ret;
1213 struct fs_path *pt = ctx;
1214
1215 ret = fs_path_copy(pt, p);
1216 if (ret < 0)
1217 return ret;
1218
1219 /* we want the first only */
1220 return 1;
1221}
1222
1223/*
1224 * Retrieve the first path of an inode. If an inode has more then one
1225 * ref/hardlink, this is ignored.
1226 */
1227static int get_inode_path(struct btrfs_root *root,
1228 u64 ino, struct fs_path *path)
1229{
1230 int ret;
1231 struct btrfs_key key, found_key;
1232 struct btrfs_path *p;
1233
1234 p = alloc_path_for_send();
1235 if (!p)
1236 return -ENOMEM;
1237
1238 fs_path_reset(path);
1239
1240 key.objectid = ino;
1241 key.type = BTRFS_INODE_REF_KEY;
1242 key.offset = 0;
1243
1244 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1245 if (ret < 0)
1246 goto out;
1247 if (ret) {
1248 ret = 1;
1249 goto out;
1250 }
1251 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1252 if (found_key.objectid != ino ||
1253 (found_key.type != BTRFS_INODE_REF_KEY &&
1254 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1255 ret = -ENOENT;
1256 goto out;
1257 }
1258
1259 ret = iterate_inode_ref(root, p, &found_key, 1,
1260 __copy_first_ref, path);
1261 if (ret < 0)
1262 goto out;
1263 ret = 0;
1264
1265out:
1266 btrfs_free_path(p);
1267 return ret;
1268}
1269
1270struct backref_ctx {
1271 struct send_ctx *sctx;
1272
1273 /* number of total found references */
1274 u64 found;
1275
1276 /*
1277 * used for clones found in send_root. clones found behind cur_objectid
1278 * and cur_offset are not considered as allowed clones.
1279 */
1280 u64 cur_objectid;
1281 u64 cur_offset;
1282
1283 /* may be truncated in case it's the last extent in a file */
1284 u64 extent_len;
1285
1286 /* The bytenr the file extent item we are processing refers to. */
1287 u64 bytenr;
1288 /* The owner (root id) of the data backref for the current extent. */
1289 u64 backref_owner;
1290 /* The offset of the data backref for the current extent. */
1291 u64 backref_offset;
1292};
1293
1294static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1295{
1296 u64 root = (u64)(uintptr_t)key;
1297 const struct clone_root *cr = elt;
1298
1299 if (root < cr->root->root_key.objectid)
1300 return -1;
1301 if (root > cr->root->root_key.objectid)
1302 return 1;
1303 return 0;
1304}
1305
1306static int __clone_root_cmp_sort(const void *e1, const void *e2)
1307{
1308 const struct clone_root *cr1 = e1;
1309 const struct clone_root *cr2 = e2;
1310
1311 if (cr1->root->root_key.objectid < cr2->root->root_key.objectid)
1312 return -1;
1313 if (cr1->root->root_key.objectid > cr2->root->root_key.objectid)
1314 return 1;
1315 return 0;
1316}
1317
1318/*
1319 * Called for every backref that is found for the current extent.
1320 * Results are collected in sctx->clone_roots->ino/offset.
1321 */
1322static int iterate_backrefs(u64 ino, u64 offset, u64 num_bytes, u64 root_id,
1323 void *ctx_)
1324{
1325 struct backref_ctx *bctx = ctx_;
1326 struct clone_root *clone_root;
1327
1328 /* First check if the root is in the list of accepted clone sources */
1329 clone_root = bsearch((void *)(uintptr_t)root_id, bctx->sctx->clone_roots,
1330 bctx->sctx->clone_roots_cnt,
1331 sizeof(struct clone_root),
1332 __clone_root_cmp_bsearch);
1333 if (!clone_root)
1334 return 0;
1335
1336 /* This is our own reference, bail out as we can't clone from it. */
1337 if (clone_root->root == bctx->sctx->send_root &&
1338 ino == bctx->cur_objectid &&
1339 offset == bctx->cur_offset)
1340 return 0;
1341
1342 /*
1343 * Make sure we don't consider clones from send_root that are
1344 * behind the current inode/offset.
1345 */
1346 if (clone_root->root == bctx->sctx->send_root) {
1347 /*
1348 * If the source inode was not yet processed we can't issue a
1349 * clone operation, as the source extent does not exist yet at
1350 * the destination of the stream.
1351 */
1352 if (ino > bctx->cur_objectid)
1353 return 0;
1354 /*
1355 * We clone from the inode currently being sent as long as the
1356 * source extent is already processed, otherwise we could try
1357 * to clone from an extent that does not exist yet at the
1358 * destination of the stream.
1359 */
1360 if (ino == bctx->cur_objectid &&
1361 offset + bctx->extent_len >
1362 bctx->sctx->cur_inode_next_write_offset)
1363 return 0;
1364 }
1365
1366 bctx->found++;
1367 clone_root->found_ref = true;
1368
1369 /*
1370 * If the given backref refers to a file extent item with a larger
1371 * number of bytes than what we found before, use the new one so that
1372 * we clone more optimally and end up doing less writes and getting
1373 * less exclusive, non-shared extents at the destination.
1374 */
1375 if (num_bytes > clone_root->num_bytes) {
1376 clone_root->ino = ino;
1377 clone_root->offset = offset;
1378 clone_root->num_bytes = num_bytes;
1379
1380 /*
1381 * Found a perfect candidate, so there's no need to continue
1382 * backref walking.
1383 */
1384 if (num_bytes >= bctx->extent_len)
1385 return BTRFS_ITERATE_EXTENT_INODES_STOP;
1386 }
1387
1388 return 0;
1389}
1390
1391static void empty_backref_cache(struct send_ctx *sctx)
1392{
1393 struct backref_cache_entry *entry;
1394 struct backref_cache_entry *tmp;
1395
1396 list_for_each_entry_safe(entry, tmp, &sctx->backref_cache.lru_list, list)
1397 kfree(entry);
1398
1399 INIT_LIST_HEAD(&sctx->backref_cache.lru_list);
1400 mtree_destroy(&sctx->backref_cache.entries);
1401 sctx->backref_cache.size = 0;
1402}
1403
1404static bool lookup_backref_cache(u64 leaf_bytenr, void *ctx,
1405 const u64 **root_ids_ret, int *root_count_ret)
1406{
1407 struct backref_ctx *bctx = ctx;
1408 struct send_ctx *sctx = bctx->sctx;
1409 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1410 const u64 key = leaf_bytenr >> fs_info->sectorsize_bits;
1411 struct backref_cache_entry *entry;
1412
1413 if (sctx->backref_cache.size == 0)
1414 return false;
1415
1416 /*
1417 * If relocation happened since we first filled the cache, then we must
1418 * empty the cache and can not use it, because even though we operate on
1419 * read-only roots, their leaves and nodes may have been reallocated and
1420 * now be used for different nodes/leaves of the same tree or some other
1421 * tree.
1422 *
1423 * We are called from iterate_extent_inodes() while either holding a
1424 * transaction handle or holding fs_info->commit_root_sem, so no need
1425 * to take any lock here.
1426 */
1427 if (fs_info->last_reloc_trans > sctx->backref_cache.last_reloc_trans) {
1428 empty_backref_cache(sctx);
1429 return false;
1430 }
1431
1432 entry = mtree_load(&sctx->backref_cache.entries, key);
1433 if (!entry)
1434 return false;
1435
1436 *root_ids_ret = entry->root_ids;
1437 *root_count_ret = entry->num_roots;
1438 list_move_tail(&entry->list, &sctx->backref_cache.lru_list);
1439
1440 return true;
1441}
1442
1443static void store_backref_cache(u64 leaf_bytenr, const struct ulist *root_ids,
1444 void *ctx)
1445{
1446 struct backref_ctx *bctx = ctx;
1447 struct send_ctx *sctx = bctx->sctx;
1448 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1449 struct backref_cache_entry *new_entry;
1450 struct ulist_iterator uiter;
1451 struct ulist_node *node;
1452 int ret;
1453
1454 /*
1455 * We're called while holding a transaction handle or while holding
1456 * fs_info->commit_root_sem (at iterate_extent_inodes()), so must do a
1457 * NOFS allocation.
1458 */
1459 new_entry = kmalloc(sizeof(struct backref_cache_entry), GFP_NOFS);
1460 /* No worries, cache is optional. */
1461 if (!new_entry)
1462 return;
1463
1464 new_entry->key = leaf_bytenr >> fs_info->sectorsize_bits;
1465 new_entry->num_roots = 0;
1466 ULIST_ITER_INIT(&uiter);
1467 while ((node = ulist_next(root_ids, &uiter)) != NULL) {
1468 const u64 root_id = node->val;
1469 struct clone_root *root;
1470
1471 root = bsearch((void *)(uintptr_t)root_id, sctx->clone_roots,
1472 sctx->clone_roots_cnt, sizeof(struct clone_root),
1473 __clone_root_cmp_bsearch);
1474 if (!root)
1475 continue;
1476
1477 /* Too many roots, just exit, no worries as caching is optional. */
1478 if (new_entry->num_roots >= SEND_MAX_BACKREF_CACHE_ROOTS) {
1479 kfree(new_entry);
1480 return;
1481 }
1482
1483 new_entry->root_ids[new_entry->num_roots] = root_id;
1484 new_entry->num_roots++;
1485 }
1486
1487 /*
1488 * We may have not added any roots to the new cache entry, which means
1489 * none of the roots is part of the list of roots from which we are
1490 * allowed to clone. Cache the new entry as it's still useful to avoid
1491 * backref walking to determine which roots have a path to the leaf.
1492 */
1493
1494 if (sctx->backref_cache.size >= SEND_MAX_BACKREF_CACHE_SIZE) {
1495 struct backref_cache_entry *lru_entry;
1496 struct backref_cache_entry *mt_entry;
1497
1498 lru_entry = list_first_entry(&sctx->backref_cache.lru_list,
1499 struct backref_cache_entry, list);
1500 mt_entry = mtree_erase(&sctx->backref_cache.entries, lru_entry->key);
1501 ASSERT(mt_entry == lru_entry);
1502 list_del(&mt_entry->list);
1503 kfree(mt_entry);
1504 sctx->backref_cache.size--;
1505 }
1506
1507 ret = mtree_insert(&sctx->backref_cache.entries, new_entry->key,
1508 new_entry, GFP_NOFS);
1509 ASSERT(ret == 0 || ret == -ENOMEM);
1510 if (ret) {
1511 /* Caching is optional, no worries. */
1512 kfree(new_entry);
1513 return;
1514 }
1515
1516 list_add_tail(&new_entry->list, &sctx->backref_cache.lru_list);
1517
1518 /*
1519 * We are called from iterate_extent_inodes() while either holding a
1520 * transaction handle or holding fs_info->commit_root_sem, so no need
1521 * to take any lock here.
1522 */
1523 if (sctx->backref_cache.size == 0)
1524 sctx->backref_cache.last_reloc_trans = fs_info->last_reloc_trans;
1525
1526 sctx->backref_cache.size++;
1527}
1528
1529static int check_extent_item(u64 bytenr, const struct btrfs_extent_item *ei,
1530 const struct extent_buffer *leaf, void *ctx)
1531{
1532 const u64 refs = btrfs_extent_refs(leaf, ei);
1533 const struct backref_ctx *bctx = ctx;
1534 const struct send_ctx *sctx = bctx->sctx;
1535
1536 if (bytenr == bctx->bytenr) {
1537 const u64 flags = btrfs_extent_flags(leaf, ei);
1538
1539 if (WARN_ON(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
1540 return -EUCLEAN;
1541
1542 /*
1543 * If we have only one reference and only the send root as a
1544 * clone source - meaning no clone roots were given in the
1545 * struct btrfs_ioctl_send_args passed to the send ioctl - then
1546 * it's our reference and there's no point in doing backref
1547 * walking which is expensive, so exit early.
1548 */
1549 if (refs == 1 && sctx->clone_roots_cnt == 1)
1550 return -ENOENT;
1551 }
1552
1553 /*
1554 * Backreference walking (iterate_extent_inodes() below) is currently
1555 * too expensive when an extent has a large number of references, both
1556 * in time spent and used memory. So for now just fallback to write
1557 * operations instead of clone operations when an extent has more than
1558 * a certain amount of references.
1559 */
1560 if (refs > SEND_MAX_EXTENT_REFS)
1561 return -ENOENT;
1562
1563 return 0;
1564}
1565
1566static bool skip_self_data_ref(u64 root, u64 ino, u64 offset, void *ctx)
1567{
1568 const struct backref_ctx *bctx = ctx;
1569
1570 if (ino == bctx->cur_objectid &&
1571 root == bctx->backref_owner &&
1572 offset == bctx->backref_offset)
1573 return true;
1574
1575 return false;
1576}
1577
1578/*
1579 * Given an inode, offset and extent item, it finds a good clone for a clone
1580 * instruction. Returns -ENOENT when none could be found. The function makes
1581 * sure that the returned clone is usable at the point where sending is at the
1582 * moment. This means, that no clones are accepted which lie behind the current
1583 * inode+offset.
1584 *
1585 * path must point to the extent item when called.
1586 */
1587static int find_extent_clone(struct send_ctx *sctx,
1588 struct btrfs_path *path,
1589 u64 ino, u64 data_offset,
1590 u64 ino_size,
1591 struct clone_root **found)
1592{
1593 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1594 int ret;
1595 int extent_type;
1596 u64 logical;
1597 u64 disk_byte;
1598 u64 num_bytes;
1599 struct btrfs_file_extent_item *fi;
1600 struct extent_buffer *eb = path->nodes[0];
1601 struct backref_ctx backref_ctx = { 0 };
1602 struct btrfs_backref_walk_ctx backref_walk_ctx = { 0 };
1603 struct clone_root *cur_clone_root;
1604 int compressed;
1605 u32 i;
1606
1607 /*
1608 * With fallocate we can get prealloc extents beyond the inode's i_size,
1609 * so we don't do anything here because clone operations can not clone
1610 * to a range beyond i_size without increasing the i_size of the
1611 * destination inode.
1612 */
1613 if (data_offset >= ino_size)
1614 return 0;
1615
1616 fi = btrfs_item_ptr(eb, path->slots[0], struct btrfs_file_extent_item);
1617 extent_type = btrfs_file_extent_type(eb, fi);
1618 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1619 return -ENOENT;
1620
1621 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1622 if (disk_byte == 0)
1623 return -ENOENT;
1624
1625 compressed = btrfs_file_extent_compression(eb, fi);
1626 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1627 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1628
1629 /*
1630 * Setup the clone roots.
1631 */
1632 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1633 cur_clone_root = sctx->clone_roots + i;
1634 cur_clone_root->ino = (u64)-1;
1635 cur_clone_root->offset = 0;
1636 cur_clone_root->num_bytes = 0;
1637 cur_clone_root->found_ref = false;
1638 }
1639
1640 backref_ctx.sctx = sctx;
1641 backref_ctx.cur_objectid = ino;
1642 backref_ctx.cur_offset = data_offset;
1643 backref_ctx.bytenr = disk_byte;
1644 /*
1645 * Use the header owner and not the send root's id, because in case of a
1646 * snapshot we can have shared subtrees.
1647 */
1648 backref_ctx.backref_owner = btrfs_header_owner(eb);
1649 backref_ctx.backref_offset = data_offset - btrfs_file_extent_offset(eb, fi);
1650
1651 /*
1652 * The last extent of a file may be too large due to page alignment.
1653 * We need to adjust extent_len in this case so that the checks in
1654 * iterate_backrefs() work.
1655 */
1656 if (data_offset + num_bytes >= ino_size)
1657 backref_ctx.extent_len = ino_size - data_offset;
1658 else
1659 backref_ctx.extent_len = num_bytes;
1660
1661 /*
1662 * Now collect all backrefs.
1663 */
1664 backref_walk_ctx.bytenr = disk_byte;
1665 if (compressed == BTRFS_COMPRESS_NONE)
1666 backref_walk_ctx.extent_item_pos = btrfs_file_extent_offset(eb, fi);
1667 backref_walk_ctx.fs_info = fs_info;
1668 backref_walk_ctx.cache_lookup = lookup_backref_cache;
1669 backref_walk_ctx.cache_store = store_backref_cache;
1670 backref_walk_ctx.indirect_ref_iterator = iterate_backrefs;
1671 backref_walk_ctx.check_extent_item = check_extent_item;
1672 backref_walk_ctx.user_ctx = &backref_ctx;
1673
1674 /*
1675 * If have a single clone root, then it's the send root and we can tell
1676 * the backref walking code to skip our own backref and not resolve it,
1677 * since we can not use it for cloning - the source and destination
1678 * ranges can't overlap and in case the leaf is shared through a subtree
1679 * due to snapshots, we can't use those other roots since they are not
1680 * in the list of clone roots.
1681 */
1682 if (sctx->clone_roots_cnt == 1)
1683 backref_walk_ctx.skip_data_ref = skip_self_data_ref;
1684
1685 ret = iterate_extent_inodes(&backref_walk_ctx, true, iterate_backrefs,
1686 &backref_ctx);
1687 if (ret < 0)
1688 return ret;
1689
1690 down_read(&fs_info->commit_root_sem);
1691 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
1692 /*
1693 * A transaction commit for a transaction in which block group
1694 * relocation was done just happened.
1695 * The disk_bytenr of the file extent item we processed is
1696 * possibly stale, referring to the extent's location before
1697 * relocation. So act as if we haven't found any clone sources
1698 * and fallback to write commands, which will read the correct
1699 * data from the new extent location. Otherwise we will fail
1700 * below because we haven't found our own back reference or we
1701 * could be getting incorrect sources in case the old extent
1702 * was already reallocated after the relocation.
1703 */
1704 up_read(&fs_info->commit_root_sem);
1705 return -ENOENT;
1706 }
1707 up_read(&fs_info->commit_root_sem);
1708
1709 btrfs_debug(fs_info,
1710 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1711 data_offset, ino, num_bytes, logical);
1712
1713 if (!backref_ctx.found) {
1714 btrfs_debug(fs_info, "no clones found");
1715 return -ENOENT;
1716 }
1717
1718 cur_clone_root = NULL;
1719 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1720 struct clone_root *clone_root = &sctx->clone_roots[i];
1721
1722 if (!clone_root->found_ref)
1723 continue;
1724
1725 /*
1726 * Choose the root from which we can clone more bytes, to
1727 * minimize write operations and therefore have more extent
1728 * sharing at the destination (the same as in the source).
1729 */
1730 if (!cur_clone_root ||
1731 clone_root->num_bytes > cur_clone_root->num_bytes) {
1732 cur_clone_root = clone_root;
1733
1734 /*
1735 * We found an optimal clone candidate (any inode from
1736 * any root is fine), so we're done.
1737 */
1738 if (clone_root->num_bytes >= backref_ctx.extent_len)
1739 break;
1740 }
1741 }
1742
1743 if (cur_clone_root) {
1744 *found = cur_clone_root;
1745 ret = 0;
1746 } else {
1747 ret = -ENOENT;
1748 }
1749
1750 return ret;
1751}
1752
1753static int read_symlink(struct btrfs_root *root,
1754 u64 ino,
1755 struct fs_path *dest)
1756{
1757 int ret;
1758 struct btrfs_path *path;
1759 struct btrfs_key key;
1760 struct btrfs_file_extent_item *ei;
1761 u8 type;
1762 u8 compression;
1763 unsigned long off;
1764 int len;
1765
1766 path = alloc_path_for_send();
1767 if (!path)
1768 return -ENOMEM;
1769
1770 key.objectid = ino;
1771 key.type = BTRFS_EXTENT_DATA_KEY;
1772 key.offset = 0;
1773 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1774 if (ret < 0)
1775 goto out;
1776 if (ret) {
1777 /*
1778 * An empty symlink inode. Can happen in rare error paths when
1779 * creating a symlink (transaction committed before the inode
1780 * eviction handler removed the symlink inode items and a crash
1781 * happened in between or the subvol was snapshoted in between).
1782 * Print an informative message to dmesg/syslog so that the user
1783 * can delete the symlink.
1784 */
1785 btrfs_err(root->fs_info,
1786 "Found empty symlink inode %llu at root %llu",
1787 ino, root->root_key.objectid);
1788 ret = -EIO;
1789 goto out;
1790 }
1791
1792 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1793 struct btrfs_file_extent_item);
1794 type = btrfs_file_extent_type(path->nodes[0], ei);
1795 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1796 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1797 BUG_ON(compression);
1798
1799 off = btrfs_file_extent_inline_start(ei);
1800 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1801
1802 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1803
1804out:
1805 btrfs_free_path(path);
1806 return ret;
1807}
1808
1809/*
1810 * Helper function to generate a file name that is unique in the root of
1811 * send_root and parent_root. This is used to generate names for orphan inodes.
1812 */
1813static int gen_unique_name(struct send_ctx *sctx,
1814 u64 ino, u64 gen,
1815 struct fs_path *dest)
1816{
1817 int ret = 0;
1818 struct btrfs_path *path;
1819 struct btrfs_dir_item *di;
1820 char tmp[64];
1821 int len;
1822 u64 idx = 0;
1823
1824 path = alloc_path_for_send();
1825 if (!path)
1826 return -ENOMEM;
1827
1828 while (1) {
1829 struct fscrypt_str tmp_name;
1830
1831 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1832 ino, gen, idx);
1833 ASSERT(len < sizeof(tmp));
1834 tmp_name.name = tmp;
1835 tmp_name.len = strlen(tmp);
1836
1837 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1838 path, BTRFS_FIRST_FREE_OBJECTID,
1839 &tmp_name, 0);
1840 btrfs_release_path(path);
1841 if (IS_ERR(di)) {
1842 ret = PTR_ERR(di);
1843 goto out;
1844 }
1845 if (di) {
1846 /* not unique, try again */
1847 idx++;
1848 continue;
1849 }
1850
1851 if (!sctx->parent_root) {
1852 /* unique */
1853 ret = 0;
1854 break;
1855 }
1856
1857 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1858 path, BTRFS_FIRST_FREE_OBJECTID,
1859 &tmp_name, 0);
1860 btrfs_release_path(path);
1861 if (IS_ERR(di)) {
1862 ret = PTR_ERR(di);
1863 goto out;
1864 }
1865 if (di) {
1866 /* not unique, try again */
1867 idx++;
1868 continue;
1869 }
1870 /* unique */
1871 break;
1872 }
1873
1874 ret = fs_path_add(dest, tmp, strlen(tmp));
1875
1876out:
1877 btrfs_free_path(path);
1878 return ret;
1879}
1880
1881enum inode_state {
1882 inode_state_no_change,
1883 inode_state_will_create,
1884 inode_state_did_create,
1885 inode_state_will_delete,
1886 inode_state_did_delete,
1887};
1888
1889static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1890{
1891 int ret;
1892 int left_ret;
1893 int right_ret;
1894 u64 left_gen;
1895 u64 right_gen;
1896 struct btrfs_inode_info info;
1897
1898 ret = get_inode_info(sctx->send_root, ino, &info);
1899 if (ret < 0 && ret != -ENOENT)
1900 goto out;
1901 left_ret = (info.nlink == 0) ? -ENOENT : ret;
1902 left_gen = info.gen;
1903
1904 if (!sctx->parent_root) {
1905 right_ret = -ENOENT;
1906 } else {
1907 ret = get_inode_info(sctx->parent_root, ino, &info);
1908 if (ret < 0 && ret != -ENOENT)
1909 goto out;
1910 right_ret = (info.nlink == 0) ? -ENOENT : ret;
1911 right_gen = info.gen;
1912 }
1913
1914 if (!left_ret && !right_ret) {
1915 if (left_gen == gen && right_gen == gen) {
1916 ret = inode_state_no_change;
1917 } else if (left_gen == gen) {
1918 if (ino < sctx->send_progress)
1919 ret = inode_state_did_create;
1920 else
1921 ret = inode_state_will_create;
1922 } else if (right_gen == gen) {
1923 if (ino < sctx->send_progress)
1924 ret = inode_state_did_delete;
1925 else
1926 ret = inode_state_will_delete;
1927 } else {
1928 ret = -ENOENT;
1929 }
1930 } else if (!left_ret) {
1931 if (left_gen == gen) {
1932 if (ino < sctx->send_progress)
1933 ret = inode_state_did_create;
1934 else
1935 ret = inode_state_will_create;
1936 } else {
1937 ret = -ENOENT;
1938 }
1939 } else if (!right_ret) {
1940 if (right_gen == gen) {
1941 if (ino < sctx->send_progress)
1942 ret = inode_state_did_delete;
1943 else
1944 ret = inode_state_will_delete;
1945 } else {
1946 ret = -ENOENT;
1947 }
1948 } else {
1949 ret = -ENOENT;
1950 }
1951
1952out:
1953 return ret;
1954}
1955
1956static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1957{
1958 int ret;
1959
1960 if (ino == BTRFS_FIRST_FREE_OBJECTID)
1961 return 1;
1962
1963 ret = get_cur_inode_state(sctx, ino, gen);
1964 if (ret < 0)
1965 goto out;
1966
1967 if (ret == inode_state_no_change ||
1968 ret == inode_state_did_create ||
1969 ret == inode_state_will_delete)
1970 ret = 1;
1971 else
1972 ret = 0;
1973
1974out:
1975 return ret;
1976}
1977
1978/*
1979 * Helper function to lookup a dir item in a dir.
1980 */
1981static int lookup_dir_item_inode(struct btrfs_root *root,
1982 u64 dir, const char *name, int name_len,
1983 u64 *found_inode)
1984{
1985 int ret = 0;
1986 struct btrfs_dir_item *di;
1987 struct btrfs_key key;
1988 struct btrfs_path *path;
1989 struct fscrypt_str name_str = FSTR_INIT((char *)name, name_len);
1990
1991 path = alloc_path_for_send();
1992 if (!path)
1993 return -ENOMEM;
1994
1995 di = btrfs_lookup_dir_item(NULL, root, path, dir, &name_str, 0);
1996 if (IS_ERR_OR_NULL(di)) {
1997 ret = di ? PTR_ERR(di) : -ENOENT;
1998 goto out;
1999 }
2000 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
2001 if (key.type == BTRFS_ROOT_ITEM_KEY) {
2002 ret = -ENOENT;
2003 goto out;
2004 }
2005 *found_inode = key.objectid;
2006
2007out:
2008 btrfs_free_path(path);
2009 return ret;
2010}
2011
2012/*
2013 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
2014 * generation of the parent dir and the name of the dir entry.
2015 */
2016static int get_first_ref(struct btrfs_root *root, u64 ino,
2017 u64 *dir, u64 *dir_gen, struct fs_path *name)
2018{
2019 int ret;
2020 struct btrfs_key key;
2021 struct btrfs_key found_key;
2022 struct btrfs_path *path;
2023 int len;
2024 u64 parent_dir;
2025
2026 path = alloc_path_for_send();
2027 if (!path)
2028 return -ENOMEM;
2029
2030 key.objectid = ino;
2031 key.type = BTRFS_INODE_REF_KEY;
2032 key.offset = 0;
2033
2034 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
2035 if (ret < 0)
2036 goto out;
2037 if (!ret)
2038 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2039 path->slots[0]);
2040 if (ret || found_key.objectid != ino ||
2041 (found_key.type != BTRFS_INODE_REF_KEY &&
2042 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
2043 ret = -ENOENT;
2044 goto out;
2045 }
2046
2047 if (found_key.type == BTRFS_INODE_REF_KEY) {
2048 struct btrfs_inode_ref *iref;
2049 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2050 struct btrfs_inode_ref);
2051 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
2052 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2053 (unsigned long)(iref + 1),
2054 len);
2055 parent_dir = found_key.offset;
2056 } else {
2057 struct btrfs_inode_extref *extref;
2058 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2059 struct btrfs_inode_extref);
2060 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
2061 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2062 (unsigned long)&extref->name, len);
2063 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
2064 }
2065 if (ret < 0)
2066 goto out;
2067 btrfs_release_path(path);
2068
2069 if (dir_gen) {
2070 ret = get_inode_gen(root, parent_dir, dir_gen);
2071 if (ret < 0)
2072 goto out;
2073 }
2074
2075 *dir = parent_dir;
2076
2077out:
2078 btrfs_free_path(path);
2079 return ret;
2080}
2081
2082static int is_first_ref(struct btrfs_root *root,
2083 u64 ino, u64 dir,
2084 const char *name, int name_len)
2085{
2086 int ret;
2087 struct fs_path *tmp_name;
2088 u64 tmp_dir;
2089
2090 tmp_name = fs_path_alloc();
2091 if (!tmp_name)
2092 return -ENOMEM;
2093
2094 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
2095 if (ret < 0)
2096 goto out;
2097
2098 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
2099 ret = 0;
2100 goto out;
2101 }
2102
2103 ret = !memcmp(tmp_name->start, name, name_len);
2104
2105out:
2106 fs_path_free(tmp_name);
2107 return ret;
2108}
2109
2110/*
2111 * Used by process_recorded_refs to determine if a new ref would overwrite an
2112 * already existing ref. In case it detects an overwrite, it returns the
2113 * inode/gen in who_ino/who_gen.
2114 * When an overwrite is detected, process_recorded_refs does proper orphanizing
2115 * to make sure later references to the overwritten inode are possible.
2116 * Orphanizing is however only required for the first ref of an inode.
2117 * process_recorded_refs does an additional is_first_ref check to see if
2118 * orphanizing is really required.
2119 */
2120static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2121 const char *name, int name_len,
2122 u64 *who_ino, u64 *who_gen, u64 *who_mode)
2123{
2124 int ret = 0;
2125 u64 gen;
2126 u64 other_inode = 0;
2127 struct btrfs_inode_info info;
2128
2129 if (!sctx->parent_root)
2130 goto out;
2131
2132 ret = is_inode_existent(sctx, dir, dir_gen);
2133 if (ret <= 0)
2134 goto out;
2135
2136 /*
2137 * If we have a parent root we need to verify that the parent dir was
2138 * not deleted and then re-created, if it was then we have no overwrite
2139 * and we can just unlink this entry.
2140 */
2141 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
2142 ret = get_inode_gen(sctx->parent_root, dir, &gen);
2143 if (ret < 0 && ret != -ENOENT)
2144 goto out;
2145 if (ret) {
2146 ret = 0;
2147 goto out;
2148 }
2149 if (gen != dir_gen)
2150 goto out;
2151 }
2152
2153 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
2154 &other_inode);
2155 if (ret < 0 && ret != -ENOENT)
2156 goto out;
2157 if (ret) {
2158 ret = 0;
2159 goto out;
2160 }
2161
2162 /*
2163 * Check if the overwritten ref was already processed. If yes, the ref
2164 * was already unlinked/moved, so we can safely assume that we will not
2165 * overwrite anything at this point in time.
2166 */
2167 if (other_inode > sctx->send_progress ||
2168 is_waiting_for_move(sctx, other_inode)) {
2169 ret = get_inode_info(sctx->parent_root, other_inode, &info);
2170 if (ret < 0)
2171 goto out;
2172
2173 ret = 1;
2174 *who_ino = other_inode;
2175 *who_gen = info.gen;
2176 *who_mode = info.mode;
2177 } else {
2178 ret = 0;
2179 }
2180
2181out:
2182 return ret;
2183}
2184
2185/*
2186 * Checks if the ref was overwritten by an already processed inode. This is
2187 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
2188 * thus the orphan name needs be used.
2189 * process_recorded_refs also uses it to avoid unlinking of refs that were
2190 * overwritten.
2191 */
2192static int did_overwrite_ref(struct send_ctx *sctx,
2193 u64 dir, u64 dir_gen,
2194 u64 ino, u64 ino_gen,
2195 const char *name, int name_len)
2196{
2197 int ret = 0;
2198 u64 gen;
2199 u64 ow_inode;
2200
2201 if (!sctx->parent_root)
2202 goto out;
2203
2204 ret = is_inode_existent(sctx, dir, dir_gen);
2205 if (ret <= 0)
2206 goto out;
2207
2208 if (dir != BTRFS_FIRST_FREE_OBJECTID) {
2209 ret = get_inode_gen(sctx->send_root, dir, &gen);
2210 if (ret < 0 && ret != -ENOENT)
2211 goto out;
2212 if (ret) {
2213 ret = 0;
2214 goto out;
2215 }
2216 if (gen != dir_gen)
2217 goto out;
2218 }
2219
2220 /* check if the ref was overwritten by another ref */
2221 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
2222 &ow_inode);
2223 if (ret < 0 && ret != -ENOENT)
2224 goto out;
2225 if (ret) {
2226 /* was never and will never be overwritten */
2227 ret = 0;
2228 goto out;
2229 }
2230
2231 ret = get_inode_gen(sctx->send_root, ow_inode, &gen);
2232 if (ret < 0)
2233 goto out;
2234
2235 if (ow_inode == ino && gen == ino_gen) {
2236 ret = 0;
2237 goto out;
2238 }
2239
2240 /*
2241 * We know that it is or will be overwritten. Check this now.
2242 * The current inode being processed might have been the one that caused
2243 * inode 'ino' to be orphanized, therefore check if ow_inode matches
2244 * the current inode being processed.
2245 */
2246 if ((ow_inode < sctx->send_progress) ||
2247 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
2248 gen == sctx->cur_inode_gen))
2249 ret = 1;
2250 else
2251 ret = 0;
2252
2253out:
2254 return ret;
2255}
2256
2257/*
2258 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
2259 * that got overwritten. This is used by process_recorded_refs to determine
2260 * if it has to use the path as returned by get_cur_path or the orphan name.
2261 */
2262static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
2263{
2264 int ret = 0;
2265 struct fs_path *name = NULL;
2266 u64 dir;
2267 u64 dir_gen;
2268
2269 if (!sctx->parent_root)
2270 goto out;
2271
2272 name = fs_path_alloc();
2273 if (!name)
2274 return -ENOMEM;
2275
2276 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2277 if (ret < 0)
2278 goto out;
2279
2280 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2281 name->start, fs_path_len(name));
2282
2283out:
2284 fs_path_free(name);
2285 return ret;
2286}
2287
2288/*
2289 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
2290 * so we need to do some special handling in case we have clashes. This function
2291 * takes care of this with the help of name_cache_entry::radix_list.
2292 * In case of error, nce is kfreed.
2293 */
2294static int name_cache_insert(struct send_ctx *sctx,
2295 struct name_cache_entry *nce)
2296{
2297 int ret = 0;
2298 struct list_head *nce_head;
2299
2300 nce_head = radix_tree_lookup(&sctx->name_cache,
2301 (unsigned long)nce->ino);
2302 if (!nce_head) {
2303 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2304 if (!nce_head) {
2305 kfree(nce);
2306 return -ENOMEM;
2307 }
2308 INIT_LIST_HEAD(nce_head);
2309
2310 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2311 if (ret < 0) {
2312 kfree(nce_head);
2313 kfree(nce);
2314 return ret;
2315 }
2316 }
2317 list_add_tail(&nce->radix_list, nce_head);
2318 list_add_tail(&nce->list, &sctx->name_cache_list);
2319 sctx->name_cache_size++;
2320
2321 return ret;
2322}
2323
2324static void name_cache_delete(struct send_ctx *sctx,
2325 struct name_cache_entry *nce)
2326{
2327 struct list_head *nce_head;
2328
2329 nce_head = radix_tree_lookup(&sctx->name_cache,
2330 (unsigned long)nce->ino);
2331 if (!nce_head) {
2332 btrfs_err(sctx->send_root->fs_info,
2333 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2334 nce->ino, sctx->name_cache_size);
2335 }
2336
2337 list_del(&nce->radix_list);
2338 list_del(&nce->list);
2339 sctx->name_cache_size--;
2340
2341 /*
2342 * We may not get to the final release of nce_head if the lookup fails
2343 */
2344 if (nce_head && list_empty(nce_head)) {
2345 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2346 kfree(nce_head);
2347 }
2348}
2349
2350static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2351 u64 ino, u64 gen)
2352{
2353 struct list_head *nce_head;
2354 struct name_cache_entry *cur;
2355
2356 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2357 if (!nce_head)
2358 return NULL;
2359
2360 list_for_each_entry(cur, nce_head, radix_list) {
2361 if (cur->ino == ino && cur->gen == gen)
2362 return cur;
2363 }
2364 return NULL;
2365}
2366
2367/*
2368 * Remove some entries from the beginning of name_cache_list.
2369 */
2370static void name_cache_clean_unused(struct send_ctx *sctx)
2371{
2372 struct name_cache_entry *nce;
2373
2374 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2375 return;
2376
2377 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2378 nce = list_entry(sctx->name_cache_list.next,
2379 struct name_cache_entry, list);
2380 name_cache_delete(sctx, nce);
2381 kfree(nce);
2382 }
2383}
2384
2385static void name_cache_free(struct send_ctx *sctx)
2386{
2387 struct name_cache_entry *nce;
2388
2389 while (!list_empty(&sctx->name_cache_list)) {
2390 nce = list_entry(sctx->name_cache_list.next,
2391 struct name_cache_entry, list);
2392 name_cache_delete(sctx, nce);
2393 kfree(nce);
2394 }
2395}
2396
2397/*
2398 * Used by get_cur_path for each ref up to the root.
2399 * Returns 0 if it succeeded.
2400 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2401 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2402 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2403 * Returns <0 in case of error.
2404 */
2405static int __get_cur_name_and_parent(struct send_ctx *sctx,
2406 u64 ino, u64 gen,
2407 u64 *parent_ino,
2408 u64 *parent_gen,
2409 struct fs_path *dest)
2410{
2411 int ret;
2412 int nce_ret;
2413 struct name_cache_entry *nce = NULL;
2414
2415 /*
2416 * First check if we already did a call to this function with the same
2417 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2418 * return the cached result.
2419 */
2420 nce = name_cache_search(sctx, ino, gen);
2421 if (nce) {
2422 if (ino < sctx->send_progress && nce->need_later_update) {
2423 name_cache_delete(sctx, nce);
2424 kfree(nce);
2425 nce = NULL;
2426 } else {
2427 /*
2428 * Removes the entry from the list and adds it back to
2429 * the end. This marks the entry as recently used so
2430 * that name_cache_clean_unused does not remove it.
2431 */
2432 list_move_tail(&nce->list, &sctx->name_cache_list);
2433
2434 *parent_ino = nce->parent_ino;
2435 *parent_gen = nce->parent_gen;
2436 ret = fs_path_add(dest, nce->name, nce->name_len);
2437 if (ret < 0)
2438 goto out;
2439 ret = nce->ret;
2440 goto out;
2441 }
2442 }
2443
2444 /*
2445 * If the inode is not existent yet, add the orphan name and return 1.
2446 * This should only happen for the parent dir that we determine in
2447 * record_new_ref_if_needed().
2448 */
2449 ret = is_inode_existent(sctx, ino, gen);
2450 if (ret < 0)
2451 goto out;
2452
2453 if (!ret) {
2454 ret = gen_unique_name(sctx, ino, gen, dest);
2455 if (ret < 0)
2456 goto out;
2457 ret = 1;
2458 goto out_cache;
2459 }
2460
2461 /*
2462 * Depending on whether the inode was already processed or not, use
2463 * send_root or parent_root for ref lookup.
2464 */
2465 if (ino < sctx->send_progress)
2466 ret = get_first_ref(sctx->send_root, ino,
2467 parent_ino, parent_gen, dest);
2468 else
2469 ret = get_first_ref(sctx->parent_root, ino,
2470 parent_ino, parent_gen, dest);
2471 if (ret < 0)
2472 goto out;
2473
2474 /*
2475 * Check if the ref was overwritten by an inode's ref that was processed
2476 * earlier. If yes, treat as orphan and return 1.
2477 */
2478 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2479 dest->start, dest->end - dest->start);
2480 if (ret < 0)
2481 goto out;
2482 if (ret) {
2483 fs_path_reset(dest);
2484 ret = gen_unique_name(sctx, ino, gen, dest);
2485 if (ret < 0)
2486 goto out;
2487 ret = 1;
2488 }
2489
2490out_cache:
2491 /*
2492 * Store the result of the lookup in the name cache.
2493 */
2494 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2495 if (!nce) {
2496 ret = -ENOMEM;
2497 goto out;
2498 }
2499
2500 nce->ino = ino;
2501 nce->gen = gen;
2502 nce->parent_ino = *parent_ino;
2503 nce->parent_gen = *parent_gen;
2504 nce->name_len = fs_path_len(dest);
2505 nce->ret = ret;
2506 strcpy(nce->name, dest->start);
2507
2508 if (ino < sctx->send_progress)
2509 nce->need_later_update = 0;
2510 else
2511 nce->need_later_update = 1;
2512
2513 nce_ret = name_cache_insert(sctx, nce);
2514 if (nce_ret < 0)
2515 ret = nce_ret;
2516 name_cache_clean_unused(sctx);
2517
2518out:
2519 return ret;
2520}
2521
2522/*
2523 * Magic happens here. This function returns the first ref to an inode as it
2524 * would look like while receiving the stream at this point in time.
2525 * We walk the path up to the root. For every inode in between, we check if it
2526 * was already processed/sent. If yes, we continue with the parent as found
2527 * in send_root. If not, we continue with the parent as found in parent_root.
2528 * If we encounter an inode that was deleted at this point in time, we use the
2529 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2530 * that were not created yet and overwritten inodes/refs.
2531 *
2532 * When do we have orphan inodes:
2533 * 1. When an inode is freshly created and thus no valid refs are available yet
2534 * 2. When a directory lost all it's refs (deleted) but still has dir items
2535 * inside which were not processed yet (pending for move/delete). If anyone
2536 * tried to get the path to the dir items, it would get a path inside that
2537 * orphan directory.
2538 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2539 * of an unprocessed inode. If in that case the first ref would be
2540 * overwritten, the overwritten inode gets "orphanized". Later when we
2541 * process this overwritten inode, it is restored at a new place by moving
2542 * the orphan inode.
2543 *
2544 * sctx->send_progress tells this function at which point in time receiving
2545 * would be.
2546 */
2547static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2548 struct fs_path *dest)
2549{
2550 int ret = 0;
2551 struct fs_path *name = NULL;
2552 u64 parent_inode = 0;
2553 u64 parent_gen = 0;
2554 int stop = 0;
2555
2556 name = fs_path_alloc();
2557 if (!name) {
2558 ret = -ENOMEM;
2559 goto out;
2560 }
2561
2562 dest->reversed = 1;
2563 fs_path_reset(dest);
2564
2565 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2566 struct waiting_dir_move *wdm;
2567
2568 fs_path_reset(name);
2569
2570 if (is_waiting_for_rm(sctx, ino, gen)) {
2571 ret = gen_unique_name(sctx, ino, gen, name);
2572 if (ret < 0)
2573 goto out;
2574 ret = fs_path_add_path(dest, name);
2575 break;
2576 }
2577
2578 wdm = get_waiting_dir_move(sctx, ino);
2579 if (wdm && wdm->orphanized) {
2580 ret = gen_unique_name(sctx, ino, gen, name);
2581 stop = 1;
2582 } else if (wdm) {
2583 ret = get_first_ref(sctx->parent_root, ino,
2584 &parent_inode, &parent_gen, name);
2585 } else {
2586 ret = __get_cur_name_and_parent(sctx, ino, gen,
2587 &parent_inode,
2588 &parent_gen, name);
2589 if (ret)
2590 stop = 1;
2591 }
2592
2593 if (ret < 0)
2594 goto out;
2595
2596 ret = fs_path_add_path(dest, name);
2597 if (ret < 0)
2598 goto out;
2599
2600 ino = parent_inode;
2601 gen = parent_gen;
2602 }
2603
2604out:
2605 fs_path_free(name);
2606 if (!ret)
2607 fs_path_unreverse(dest);
2608 return ret;
2609}
2610
2611/*
2612 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2613 */
2614static int send_subvol_begin(struct send_ctx *sctx)
2615{
2616 int ret;
2617 struct btrfs_root *send_root = sctx->send_root;
2618 struct btrfs_root *parent_root = sctx->parent_root;
2619 struct btrfs_path *path;
2620 struct btrfs_key key;
2621 struct btrfs_root_ref *ref;
2622 struct extent_buffer *leaf;
2623 char *name = NULL;
2624 int namelen;
2625
2626 path = btrfs_alloc_path();
2627 if (!path)
2628 return -ENOMEM;
2629
2630 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2631 if (!name) {
2632 btrfs_free_path(path);
2633 return -ENOMEM;
2634 }
2635
2636 key.objectid = send_root->root_key.objectid;
2637 key.type = BTRFS_ROOT_BACKREF_KEY;
2638 key.offset = 0;
2639
2640 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2641 &key, path, 1, 0);
2642 if (ret < 0)
2643 goto out;
2644 if (ret) {
2645 ret = -ENOENT;
2646 goto out;
2647 }
2648
2649 leaf = path->nodes[0];
2650 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2651 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2652 key.objectid != send_root->root_key.objectid) {
2653 ret = -ENOENT;
2654 goto out;
2655 }
2656 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2657 namelen = btrfs_root_ref_name_len(leaf, ref);
2658 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2659 btrfs_release_path(path);
2660
2661 if (parent_root) {
2662 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2663 if (ret < 0)
2664 goto out;
2665 } else {
2666 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2667 if (ret < 0)
2668 goto out;
2669 }
2670
2671 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2672
2673 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2674 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2675 sctx->send_root->root_item.received_uuid);
2676 else
2677 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2678 sctx->send_root->root_item.uuid);
2679
2680 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2681 btrfs_root_ctransid(&sctx->send_root->root_item));
2682 if (parent_root) {
2683 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2684 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2685 parent_root->root_item.received_uuid);
2686 else
2687 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2688 parent_root->root_item.uuid);
2689 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2690 btrfs_root_ctransid(&sctx->parent_root->root_item));
2691 }
2692
2693 ret = send_cmd(sctx);
2694
2695tlv_put_failure:
2696out:
2697 btrfs_free_path(path);
2698 kfree(name);
2699 return ret;
2700}
2701
2702static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2703{
2704 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2705 int ret = 0;
2706 struct fs_path *p;
2707
2708 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2709
2710 p = fs_path_alloc();
2711 if (!p)
2712 return -ENOMEM;
2713
2714 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2715 if (ret < 0)
2716 goto out;
2717
2718 ret = get_cur_path(sctx, ino, gen, p);
2719 if (ret < 0)
2720 goto out;
2721 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2722 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2723
2724 ret = send_cmd(sctx);
2725
2726tlv_put_failure:
2727out:
2728 fs_path_free(p);
2729 return ret;
2730}
2731
2732static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2733{
2734 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2735 int ret = 0;
2736 struct fs_path *p;
2737
2738 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2739
2740 p = fs_path_alloc();
2741 if (!p)
2742 return -ENOMEM;
2743
2744 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2745 if (ret < 0)
2746 goto out;
2747
2748 ret = get_cur_path(sctx, ino, gen, p);
2749 if (ret < 0)
2750 goto out;
2751 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2752 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2753
2754 ret = send_cmd(sctx);
2755
2756tlv_put_failure:
2757out:
2758 fs_path_free(p);
2759 return ret;
2760}
2761
2762static int send_fileattr(struct send_ctx *sctx, u64 ino, u64 gen, u64 fileattr)
2763{
2764 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2765 int ret = 0;
2766 struct fs_path *p;
2767
2768 if (sctx->proto < 2)
2769 return 0;
2770
2771 btrfs_debug(fs_info, "send_fileattr %llu fileattr=%llu", ino, fileattr);
2772
2773 p = fs_path_alloc();
2774 if (!p)
2775 return -ENOMEM;
2776
2777 ret = begin_cmd(sctx, BTRFS_SEND_C_FILEATTR);
2778 if (ret < 0)
2779 goto out;
2780
2781 ret = get_cur_path(sctx, ino, gen, p);
2782 if (ret < 0)
2783 goto out;
2784 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2785 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILEATTR, fileattr);
2786
2787 ret = send_cmd(sctx);
2788
2789tlv_put_failure:
2790out:
2791 fs_path_free(p);
2792 return ret;
2793}
2794
2795static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2796{
2797 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2798 int ret = 0;
2799 struct fs_path *p;
2800
2801 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2802 ino, uid, gid);
2803
2804 p = fs_path_alloc();
2805 if (!p)
2806 return -ENOMEM;
2807
2808 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2809 if (ret < 0)
2810 goto out;
2811
2812 ret = get_cur_path(sctx, ino, gen, p);
2813 if (ret < 0)
2814 goto out;
2815 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2816 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2817 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2818
2819 ret = send_cmd(sctx);
2820
2821tlv_put_failure:
2822out:
2823 fs_path_free(p);
2824 return ret;
2825}
2826
2827static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2828{
2829 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2830 int ret = 0;
2831 struct fs_path *p = NULL;
2832 struct btrfs_inode_item *ii;
2833 struct btrfs_path *path = NULL;
2834 struct extent_buffer *eb;
2835 struct btrfs_key key;
2836 int slot;
2837
2838 btrfs_debug(fs_info, "send_utimes %llu", ino);
2839
2840 p = fs_path_alloc();
2841 if (!p)
2842 return -ENOMEM;
2843
2844 path = alloc_path_for_send();
2845 if (!path) {
2846 ret = -ENOMEM;
2847 goto out;
2848 }
2849
2850 key.objectid = ino;
2851 key.type = BTRFS_INODE_ITEM_KEY;
2852 key.offset = 0;
2853 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2854 if (ret > 0)
2855 ret = -ENOENT;
2856 if (ret < 0)
2857 goto out;
2858
2859 eb = path->nodes[0];
2860 slot = path->slots[0];
2861 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2862
2863 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2864 if (ret < 0)
2865 goto out;
2866
2867 ret = get_cur_path(sctx, ino, gen, p);
2868 if (ret < 0)
2869 goto out;
2870 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2871 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2872 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2873 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2874 if (sctx->proto >= 2)
2875 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_OTIME, eb, &ii->otime);
2876
2877 ret = send_cmd(sctx);
2878
2879tlv_put_failure:
2880out:
2881 fs_path_free(p);
2882 btrfs_free_path(path);
2883 return ret;
2884}
2885
2886/*
2887 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2888 * a valid path yet because we did not process the refs yet. So, the inode
2889 * is created as orphan.
2890 */
2891static int send_create_inode(struct send_ctx *sctx, u64 ino)
2892{
2893 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2894 int ret = 0;
2895 struct fs_path *p;
2896 int cmd;
2897 struct btrfs_inode_info info;
2898 u64 gen;
2899 u64 mode;
2900 u64 rdev;
2901
2902 btrfs_debug(fs_info, "send_create_inode %llu", ino);
2903
2904 p = fs_path_alloc();
2905 if (!p)
2906 return -ENOMEM;
2907
2908 if (ino != sctx->cur_ino) {
2909 ret = get_inode_info(sctx->send_root, ino, &info);
2910 if (ret < 0)
2911 goto out;
2912 gen = info.gen;
2913 mode = info.mode;
2914 rdev = info.rdev;
2915 } else {
2916 gen = sctx->cur_inode_gen;
2917 mode = sctx->cur_inode_mode;
2918 rdev = sctx->cur_inode_rdev;
2919 }
2920
2921 if (S_ISREG(mode)) {
2922 cmd = BTRFS_SEND_C_MKFILE;
2923 } else if (S_ISDIR(mode)) {
2924 cmd = BTRFS_SEND_C_MKDIR;
2925 } else if (S_ISLNK(mode)) {
2926 cmd = BTRFS_SEND_C_SYMLINK;
2927 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2928 cmd = BTRFS_SEND_C_MKNOD;
2929 } else if (S_ISFIFO(mode)) {
2930 cmd = BTRFS_SEND_C_MKFIFO;
2931 } else if (S_ISSOCK(mode)) {
2932 cmd = BTRFS_SEND_C_MKSOCK;
2933 } else {
2934 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2935 (int)(mode & S_IFMT));
2936 ret = -EOPNOTSUPP;
2937 goto out;
2938 }
2939
2940 ret = begin_cmd(sctx, cmd);
2941 if (ret < 0)
2942 goto out;
2943
2944 ret = gen_unique_name(sctx, ino, gen, p);
2945 if (ret < 0)
2946 goto out;
2947
2948 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2949 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2950
2951 if (S_ISLNK(mode)) {
2952 fs_path_reset(p);
2953 ret = read_symlink(sctx->send_root, ino, p);
2954 if (ret < 0)
2955 goto out;
2956 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2957 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2958 S_ISFIFO(mode) || S_ISSOCK(mode)) {
2959 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2960 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2961 }
2962
2963 ret = send_cmd(sctx);
2964 if (ret < 0)
2965 goto out;
2966
2967
2968tlv_put_failure:
2969out:
2970 fs_path_free(p);
2971 return ret;
2972}
2973
2974/*
2975 * We need some special handling for inodes that get processed before the parent
2976 * directory got created. See process_recorded_refs for details.
2977 * This function does the check if we already created the dir out of order.
2978 */
2979static int did_create_dir(struct send_ctx *sctx, u64 dir)
2980{
2981 int ret = 0;
2982 int iter_ret = 0;
2983 struct btrfs_path *path = NULL;
2984 struct btrfs_key key;
2985 struct btrfs_key found_key;
2986 struct btrfs_key di_key;
2987 struct btrfs_dir_item *di;
2988
2989 path = alloc_path_for_send();
2990 if (!path)
2991 return -ENOMEM;
2992
2993 key.objectid = dir;
2994 key.type = BTRFS_DIR_INDEX_KEY;
2995 key.offset = 0;
2996
2997 btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) {
2998 struct extent_buffer *eb = path->nodes[0];
2999
3000 if (found_key.objectid != key.objectid ||
3001 found_key.type != key.type) {
3002 ret = 0;
3003 break;
3004 }
3005
3006 di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item);
3007 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
3008
3009 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
3010 di_key.objectid < sctx->send_progress) {
3011 ret = 1;
3012 break;
3013 }
3014 }
3015 /* Catch error found during iteration */
3016 if (iter_ret < 0)
3017 ret = iter_ret;
3018
3019 btrfs_free_path(path);
3020 return ret;
3021}
3022
3023/*
3024 * Only creates the inode if it is:
3025 * 1. Not a directory
3026 * 2. Or a directory which was not created already due to out of order
3027 * directories. See did_create_dir and process_recorded_refs for details.
3028 */
3029static int send_create_inode_if_needed(struct send_ctx *sctx)
3030{
3031 int ret;
3032
3033 if (S_ISDIR(sctx->cur_inode_mode)) {
3034 ret = did_create_dir(sctx, sctx->cur_ino);
3035 if (ret < 0)
3036 return ret;
3037 else if (ret > 0)
3038 return 0;
3039 }
3040
3041 return send_create_inode(sctx, sctx->cur_ino);
3042}
3043
3044struct recorded_ref {
3045 struct list_head list;
3046 char *name;
3047 struct fs_path *full_path;
3048 u64 dir;
3049 u64 dir_gen;
3050 int name_len;
3051 struct rb_node node;
3052 struct rb_root *root;
3053};
3054
3055static struct recorded_ref *recorded_ref_alloc(void)
3056{
3057 struct recorded_ref *ref;
3058
3059 ref = kzalloc(sizeof(*ref), GFP_KERNEL);
3060 if (!ref)
3061 return NULL;
3062 RB_CLEAR_NODE(&ref->node);
3063 INIT_LIST_HEAD(&ref->list);
3064 return ref;
3065}
3066
3067static void recorded_ref_free(struct recorded_ref *ref)
3068{
3069 if (!ref)
3070 return;
3071 if (!RB_EMPTY_NODE(&ref->node))
3072 rb_erase(&ref->node, ref->root);
3073 list_del(&ref->list);
3074 fs_path_free(ref->full_path);
3075 kfree(ref);
3076}
3077
3078static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
3079{
3080 ref->full_path = path;
3081 ref->name = (char *)kbasename(ref->full_path->start);
3082 ref->name_len = ref->full_path->end - ref->name;
3083}
3084
3085static int dup_ref(struct recorded_ref *ref, struct list_head *list)
3086{
3087 struct recorded_ref *new;
3088
3089 new = recorded_ref_alloc();
3090 if (!new)
3091 return -ENOMEM;
3092
3093 new->dir = ref->dir;
3094 new->dir_gen = ref->dir_gen;
3095 list_add_tail(&new->list, list);
3096 return 0;
3097}
3098
3099static void __free_recorded_refs(struct list_head *head)
3100{
3101 struct recorded_ref *cur;
3102
3103 while (!list_empty(head)) {
3104 cur = list_entry(head->next, struct recorded_ref, list);
3105 recorded_ref_free(cur);
3106 }
3107}
3108
3109static void free_recorded_refs(struct send_ctx *sctx)
3110{
3111 __free_recorded_refs(&sctx->new_refs);
3112 __free_recorded_refs(&sctx->deleted_refs);
3113}
3114
3115/*
3116 * Renames/moves a file/dir to its orphan name. Used when the first
3117 * ref of an unprocessed inode gets overwritten and for all non empty
3118 * directories.
3119 */
3120static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
3121 struct fs_path *path)
3122{
3123 int ret;
3124 struct fs_path *orphan;
3125
3126 orphan = fs_path_alloc();
3127 if (!orphan)
3128 return -ENOMEM;
3129
3130 ret = gen_unique_name(sctx, ino, gen, orphan);
3131 if (ret < 0)
3132 goto out;
3133
3134 ret = send_rename(sctx, path, orphan);
3135
3136out:
3137 fs_path_free(orphan);
3138 return ret;
3139}
3140
3141static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx,
3142 u64 dir_ino, u64 dir_gen)
3143{
3144 struct rb_node **p = &sctx->orphan_dirs.rb_node;
3145 struct rb_node *parent = NULL;
3146 struct orphan_dir_info *entry, *odi;
3147
3148 while (*p) {
3149 parent = *p;
3150 entry = rb_entry(parent, struct orphan_dir_info, node);
3151 if (dir_ino < entry->ino)
3152 p = &(*p)->rb_left;
3153 else if (dir_ino > entry->ino)
3154 p = &(*p)->rb_right;
3155 else if (dir_gen < entry->gen)
3156 p = &(*p)->rb_left;
3157 else if (dir_gen > entry->gen)
3158 p = &(*p)->rb_right;
3159 else
3160 return entry;
3161 }
3162
3163 odi = kmalloc(sizeof(*odi), GFP_KERNEL);
3164 if (!odi)
3165 return ERR_PTR(-ENOMEM);
3166 odi->ino = dir_ino;
3167 odi->gen = dir_gen;
3168 odi->last_dir_index_offset = 0;
3169
3170 rb_link_node(&odi->node, parent, p);
3171 rb_insert_color(&odi->node, &sctx->orphan_dirs);
3172 return odi;
3173}
3174
3175static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx,
3176 u64 dir_ino, u64 gen)
3177{
3178 struct rb_node *n = sctx->orphan_dirs.rb_node;
3179 struct orphan_dir_info *entry;
3180
3181 while (n) {
3182 entry = rb_entry(n, struct orphan_dir_info, node);
3183 if (dir_ino < entry->ino)
3184 n = n->rb_left;
3185 else if (dir_ino > entry->ino)
3186 n = n->rb_right;
3187 else if (gen < entry->gen)
3188 n = n->rb_left;
3189 else if (gen > entry->gen)
3190 n = n->rb_right;
3191 else
3192 return entry;
3193 }
3194 return NULL;
3195}
3196
3197static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen)
3198{
3199 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen);
3200
3201 return odi != NULL;
3202}
3203
3204static void free_orphan_dir_info(struct send_ctx *sctx,
3205 struct orphan_dir_info *odi)
3206{
3207 if (!odi)
3208 return;
3209 rb_erase(&odi->node, &sctx->orphan_dirs);
3210 kfree(odi);
3211}
3212
3213/*
3214 * Returns 1 if a directory can be removed at this point in time.
3215 * We check this by iterating all dir items and checking if the inode behind
3216 * the dir item was already processed.
3217 */
3218static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
3219 u64 send_progress)
3220{
3221 int ret = 0;
3222 int iter_ret = 0;
3223 struct btrfs_root *root = sctx->parent_root;
3224 struct btrfs_path *path;
3225 struct btrfs_key key;
3226 struct btrfs_key found_key;
3227 struct btrfs_key loc;
3228 struct btrfs_dir_item *di;
3229 struct orphan_dir_info *odi = NULL;
3230
3231 /*
3232 * Don't try to rmdir the top/root subvolume dir.
3233 */
3234 if (dir == BTRFS_FIRST_FREE_OBJECTID)
3235 return 0;
3236
3237 path = alloc_path_for_send();
3238 if (!path)
3239 return -ENOMEM;
3240
3241 key.objectid = dir;
3242 key.type = BTRFS_DIR_INDEX_KEY;
3243 key.offset = 0;
3244
3245 odi = get_orphan_dir_info(sctx, dir, dir_gen);
3246 if (odi)
3247 key.offset = odi->last_dir_index_offset;
3248
3249 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
3250 struct waiting_dir_move *dm;
3251
3252 if (found_key.objectid != key.objectid ||
3253 found_key.type != key.type)
3254 break;
3255
3256 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3257 struct btrfs_dir_item);
3258 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3259
3260 dm = get_waiting_dir_move(sctx, loc.objectid);
3261 if (dm) {
3262 odi = add_orphan_dir_info(sctx, dir, dir_gen);
3263 if (IS_ERR(odi)) {
3264 ret = PTR_ERR(odi);
3265 goto out;
3266 }
3267 odi->gen = dir_gen;
3268 odi->last_dir_index_offset = found_key.offset;
3269 dm->rmdir_ino = dir;
3270 dm->rmdir_gen = dir_gen;
3271 ret = 0;
3272 goto out;
3273 }
3274
3275 if (loc.objectid > send_progress) {
3276 odi = add_orphan_dir_info(sctx, dir, dir_gen);
3277 if (IS_ERR(odi)) {
3278 ret = PTR_ERR(odi);
3279 goto out;
3280 }
3281 odi->gen = dir_gen;
3282 odi->last_dir_index_offset = found_key.offset;
3283 ret = 0;
3284 goto out;
3285 }
3286 }
3287 if (iter_ret < 0) {
3288 ret = iter_ret;
3289 goto out;
3290 }
3291 free_orphan_dir_info(sctx, odi);
3292
3293 ret = 1;
3294
3295out:
3296 btrfs_free_path(path);
3297 return ret;
3298}
3299
3300static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3301{
3302 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3303
3304 return entry != NULL;
3305}
3306
3307static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3308{
3309 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3310 struct rb_node *parent = NULL;
3311 struct waiting_dir_move *entry, *dm;
3312
3313 dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3314 if (!dm)
3315 return -ENOMEM;
3316 dm->ino = ino;
3317 dm->rmdir_ino = 0;
3318 dm->rmdir_gen = 0;
3319 dm->orphanized = orphanized;
3320
3321 while (*p) {
3322 parent = *p;
3323 entry = rb_entry(parent, struct waiting_dir_move, node);
3324 if (ino < entry->ino) {
3325 p = &(*p)->rb_left;
3326 } else if (ino > entry->ino) {
3327 p = &(*p)->rb_right;
3328 } else {
3329 kfree(dm);
3330 return -EEXIST;
3331 }
3332 }
3333
3334 rb_link_node(&dm->node, parent, p);
3335 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3336 return 0;
3337}
3338
3339static struct waiting_dir_move *
3340get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3341{
3342 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3343 struct waiting_dir_move *entry;
3344
3345 while (n) {
3346 entry = rb_entry(n, struct waiting_dir_move, node);
3347 if (ino < entry->ino)
3348 n = n->rb_left;
3349 else if (ino > entry->ino)
3350 n = n->rb_right;
3351 else
3352 return entry;
3353 }
3354 return NULL;
3355}
3356
3357static void free_waiting_dir_move(struct send_ctx *sctx,
3358 struct waiting_dir_move *dm)
3359{
3360 if (!dm)
3361 return;
3362 rb_erase(&dm->node, &sctx->waiting_dir_moves);
3363 kfree(dm);
3364}
3365
3366static int add_pending_dir_move(struct send_ctx *sctx,
3367 u64 ino,
3368 u64 ino_gen,
3369 u64 parent_ino,
3370 struct list_head *new_refs,
3371 struct list_head *deleted_refs,
3372 const bool is_orphan)
3373{
3374 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3375 struct rb_node *parent = NULL;
3376 struct pending_dir_move *entry = NULL, *pm;
3377 struct recorded_ref *cur;
3378 int exists = 0;
3379 int ret;
3380
3381 pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3382 if (!pm)
3383 return -ENOMEM;
3384 pm->parent_ino = parent_ino;
3385 pm->ino = ino;
3386 pm->gen = ino_gen;
3387 INIT_LIST_HEAD(&pm->list);
3388 INIT_LIST_HEAD(&pm->update_refs);
3389 RB_CLEAR_NODE(&pm->node);
3390
3391 while (*p) {
3392 parent = *p;
3393 entry = rb_entry(parent, struct pending_dir_move, node);
3394 if (parent_ino < entry->parent_ino) {
3395 p = &(*p)->rb_left;
3396 } else if (parent_ino > entry->parent_ino) {
3397 p = &(*p)->rb_right;
3398 } else {
3399 exists = 1;
3400 break;
3401 }
3402 }
3403
3404 list_for_each_entry(cur, deleted_refs, list) {
3405 ret = dup_ref(cur, &pm->update_refs);
3406 if (ret < 0)
3407 goto out;
3408 }
3409 list_for_each_entry(cur, new_refs, list) {
3410 ret = dup_ref(cur, &pm->update_refs);
3411 if (ret < 0)
3412 goto out;
3413 }
3414
3415 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3416 if (ret)
3417 goto out;
3418
3419 if (exists) {
3420 list_add_tail(&pm->list, &entry->list);
3421 } else {
3422 rb_link_node(&pm->node, parent, p);
3423 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3424 }
3425 ret = 0;
3426out:
3427 if (ret) {
3428 __free_recorded_refs(&pm->update_refs);
3429 kfree(pm);
3430 }
3431 return ret;
3432}
3433
3434static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3435 u64 parent_ino)
3436{
3437 struct rb_node *n = sctx->pending_dir_moves.rb_node;
3438 struct pending_dir_move *entry;
3439
3440 while (n) {
3441 entry = rb_entry(n, struct pending_dir_move, node);
3442 if (parent_ino < entry->parent_ino)
3443 n = n->rb_left;
3444 else if (parent_ino > entry->parent_ino)
3445 n = n->rb_right;
3446 else
3447 return entry;
3448 }
3449 return NULL;
3450}
3451
3452static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3453 u64 ino, u64 gen, u64 *ancestor_ino)
3454{
3455 int ret = 0;
3456 u64 parent_inode = 0;
3457 u64 parent_gen = 0;
3458 u64 start_ino = ino;
3459
3460 *ancestor_ino = 0;
3461 while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3462 fs_path_reset(name);
3463
3464 if (is_waiting_for_rm(sctx, ino, gen))
3465 break;
3466 if (is_waiting_for_move(sctx, ino)) {
3467 if (*ancestor_ino == 0)
3468 *ancestor_ino = ino;
3469 ret = get_first_ref(sctx->parent_root, ino,
3470 &parent_inode, &parent_gen, name);
3471 } else {
3472 ret = __get_cur_name_and_parent(sctx, ino, gen,
3473 &parent_inode,
3474 &parent_gen, name);
3475 if (ret > 0) {
3476 ret = 0;
3477 break;
3478 }
3479 }
3480 if (ret < 0)
3481 break;
3482 if (parent_inode == start_ino) {
3483 ret = 1;
3484 if (*ancestor_ino == 0)
3485 *ancestor_ino = ino;
3486 break;
3487 }
3488 ino = parent_inode;
3489 gen = parent_gen;
3490 }
3491 return ret;
3492}
3493
3494static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3495{
3496 struct fs_path *from_path = NULL;
3497 struct fs_path *to_path = NULL;
3498 struct fs_path *name = NULL;
3499 u64 orig_progress = sctx->send_progress;
3500 struct recorded_ref *cur;
3501 u64 parent_ino, parent_gen;
3502 struct waiting_dir_move *dm = NULL;
3503 u64 rmdir_ino = 0;
3504 u64 rmdir_gen;
3505 u64 ancestor;
3506 bool is_orphan;
3507 int ret;
3508
3509 name = fs_path_alloc();
3510 from_path = fs_path_alloc();
3511 if (!name || !from_path) {
3512 ret = -ENOMEM;
3513 goto out;
3514 }
3515
3516 dm = get_waiting_dir_move(sctx, pm->ino);
3517 ASSERT(dm);
3518 rmdir_ino = dm->rmdir_ino;
3519 rmdir_gen = dm->rmdir_gen;
3520 is_orphan = dm->orphanized;
3521 free_waiting_dir_move(sctx, dm);
3522
3523 if (is_orphan) {
3524 ret = gen_unique_name(sctx, pm->ino,
3525 pm->gen, from_path);
3526 } else {
3527 ret = get_first_ref(sctx->parent_root, pm->ino,
3528 &parent_ino, &parent_gen, name);
3529 if (ret < 0)
3530 goto out;
3531 ret = get_cur_path(sctx, parent_ino, parent_gen,
3532 from_path);
3533 if (ret < 0)
3534 goto out;
3535 ret = fs_path_add_path(from_path, name);
3536 }
3537 if (ret < 0)
3538 goto out;
3539
3540 sctx->send_progress = sctx->cur_ino + 1;
3541 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3542 if (ret < 0)
3543 goto out;
3544 if (ret) {
3545 LIST_HEAD(deleted_refs);
3546 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3547 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3548 &pm->update_refs, &deleted_refs,
3549 is_orphan);
3550 if (ret < 0)
3551 goto out;
3552 if (rmdir_ino) {
3553 dm = get_waiting_dir_move(sctx, pm->ino);
3554 ASSERT(dm);
3555 dm->rmdir_ino = rmdir_ino;
3556 dm->rmdir_gen = rmdir_gen;
3557 }
3558 goto out;
3559 }
3560 fs_path_reset(name);
3561 to_path = name;
3562 name = NULL;
3563 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3564 if (ret < 0)
3565 goto out;
3566
3567 ret = send_rename(sctx, from_path, to_path);
3568 if (ret < 0)
3569 goto out;
3570
3571 if (rmdir_ino) {
3572 struct orphan_dir_info *odi;
3573 u64 gen;
3574
3575 odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen);
3576 if (!odi) {
3577 /* already deleted */
3578 goto finish;
3579 }
3580 gen = odi->gen;
3581
3582 ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino);
3583 if (ret < 0)
3584 goto out;
3585 if (!ret)
3586 goto finish;
3587
3588 name = fs_path_alloc();
3589 if (!name) {
3590 ret = -ENOMEM;
3591 goto out;
3592 }
3593 ret = get_cur_path(sctx, rmdir_ino, gen, name);
3594 if (ret < 0)
3595 goto out;
3596 ret = send_rmdir(sctx, name);
3597 if (ret < 0)
3598 goto out;
3599 }
3600
3601finish:
3602 ret = send_utimes(sctx, pm->ino, pm->gen);
3603 if (ret < 0)
3604 goto out;
3605
3606 /*
3607 * After rename/move, need to update the utimes of both new parent(s)
3608 * and old parent(s).
3609 */
3610 list_for_each_entry(cur, &pm->update_refs, list) {
3611 /*
3612 * The parent inode might have been deleted in the send snapshot
3613 */
3614 ret = get_inode_info(sctx->send_root, cur->dir, NULL);
3615 if (ret == -ENOENT) {
3616 ret = 0;
3617 continue;
3618 }
3619 if (ret < 0)
3620 goto out;
3621
3622 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3623 if (ret < 0)
3624 goto out;
3625 }
3626
3627out:
3628 fs_path_free(name);
3629 fs_path_free(from_path);
3630 fs_path_free(to_path);
3631 sctx->send_progress = orig_progress;
3632
3633 return ret;
3634}
3635
3636static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3637{
3638 if (!list_empty(&m->list))
3639 list_del(&m->list);
3640 if (!RB_EMPTY_NODE(&m->node))
3641 rb_erase(&m->node, &sctx->pending_dir_moves);
3642 __free_recorded_refs(&m->update_refs);
3643 kfree(m);
3644}
3645
3646static void tail_append_pending_moves(struct send_ctx *sctx,
3647 struct pending_dir_move *moves,
3648 struct list_head *stack)
3649{
3650 if (list_empty(&moves->list)) {
3651 list_add_tail(&moves->list, stack);
3652 } else {
3653 LIST_HEAD(list);
3654 list_splice_init(&moves->list, &list);
3655 list_add_tail(&moves->list, stack);
3656 list_splice_tail(&list, stack);
3657 }
3658 if (!RB_EMPTY_NODE(&moves->node)) {
3659 rb_erase(&moves->node, &sctx->pending_dir_moves);
3660 RB_CLEAR_NODE(&moves->node);
3661 }
3662}
3663
3664static int apply_children_dir_moves(struct send_ctx *sctx)
3665{
3666 struct pending_dir_move *pm;
3667 struct list_head stack;
3668 u64 parent_ino = sctx->cur_ino;
3669 int ret = 0;
3670
3671 pm = get_pending_dir_moves(sctx, parent_ino);
3672 if (!pm)
3673 return 0;
3674
3675 INIT_LIST_HEAD(&stack);
3676 tail_append_pending_moves(sctx, pm, &stack);
3677
3678 while (!list_empty(&stack)) {
3679 pm = list_first_entry(&stack, struct pending_dir_move, list);
3680 parent_ino = pm->ino;
3681 ret = apply_dir_move(sctx, pm);
3682 free_pending_move(sctx, pm);
3683 if (ret)
3684 goto out;
3685 pm = get_pending_dir_moves(sctx, parent_ino);
3686 if (pm)
3687 tail_append_pending_moves(sctx, pm, &stack);
3688 }
3689 return 0;
3690
3691out:
3692 while (!list_empty(&stack)) {
3693 pm = list_first_entry(&stack, struct pending_dir_move, list);
3694 free_pending_move(sctx, pm);
3695 }
3696 return ret;
3697}
3698
3699/*
3700 * We might need to delay a directory rename even when no ancestor directory
3701 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3702 * renamed. This happens when we rename a directory to the old name (the name
3703 * in the parent root) of some other unrelated directory that got its rename
3704 * delayed due to some ancestor with higher number that got renamed.
3705 *
3706 * Example:
3707 *
3708 * Parent snapshot:
3709 * . (ino 256)
3710 * |---- a/ (ino 257)
3711 * | |---- file (ino 260)
3712 * |
3713 * |---- b/ (ino 258)
3714 * |---- c/ (ino 259)
3715 *
3716 * Send snapshot:
3717 * . (ino 256)
3718 * |---- a/ (ino 258)
3719 * |---- x/ (ino 259)
3720 * |---- y/ (ino 257)
3721 * |----- file (ino 260)
3722 *
3723 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3724 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3725 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3726 * must issue is:
3727 *
3728 * 1 - rename 259 from 'c' to 'x'
3729 * 2 - rename 257 from 'a' to 'x/y'
3730 * 3 - rename 258 from 'b' to 'a'
3731 *
3732 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3733 * be done right away and < 0 on error.
3734 */
3735static int wait_for_dest_dir_move(struct send_ctx *sctx,
3736 struct recorded_ref *parent_ref,
3737 const bool is_orphan)
3738{
3739 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3740 struct btrfs_path *path;
3741 struct btrfs_key key;
3742 struct btrfs_key di_key;
3743 struct btrfs_dir_item *di;
3744 u64 left_gen;
3745 u64 right_gen;
3746 int ret = 0;
3747 struct waiting_dir_move *wdm;
3748
3749 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3750 return 0;
3751
3752 path = alloc_path_for_send();
3753 if (!path)
3754 return -ENOMEM;
3755
3756 key.objectid = parent_ref->dir;
3757 key.type = BTRFS_DIR_ITEM_KEY;
3758 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3759
3760 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3761 if (ret < 0) {
3762 goto out;
3763 } else if (ret > 0) {
3764 ret = 0;
3765 goto out;
3766 }
3767
3768 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3769 parent_ref->name_len);
3770 if (!di) {
3771 ret = 0;
3772 goto out;
3773 }
3774 /*
3775 * di_key.objectid has the number of the inode that has a dentry in the
3776 * parent directory with the same name that sctx->cur_ino is being
3777 * renamed to. We need to check if that inode is in the send root as
3778 * well and if it is currently marked as an inode with a pending rename,
3779 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3780 * that it happens after that other inode is renamed.
3781 */
3782 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3783 if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3784 ret = 0;
3785 goto out;
3786 }
3787
3788 ret = get_inode_gen(sctx->parent_root, di_key.objectid, &left_gen);
3789 if (ret < 0)
3790 goto out;
3791 ret = get_inode_gen(sctx->send_root, di_key.objectid, &right_gen);
3792 if (ret < 0) {
3793 if (ret == -ENOENT)
3794 ret = 0;
3795 goto out;
3796 }
3797
3798 /* Different inode, no need to delay the rename of sctx->cur_ino */
3799 if (right_gen != left_gen) {
3800 ret = 0;
3801 goto out;
3802 }
3803
3804 wdm = get_waiting_dir_move(sctx, di_key.objectid);
3805 if (wdm && !wdm->orphanized) {
3806 ret = add_pending_dir_move(sctx,
3807 sctx->cur_ino,
3808 sctx->cur_inode_gen,
3809 di_key.objectid,
3810 &sctx->new_refs,
3811 &sctx->deleted_refs,
3812 is_orphan);
3813 if (!ret)
3814 ret = 1;
3815 }
3816out:
3817 btrfs_free_path(path);
3818 return ret;
3819}
3820
3821/*
3822 * Check if inode ino2, or any of its ancestors, is inode ino1.
3823 * Return 1 if true, 0 if false and < 0 on error.
3824 */
3825static int check_ino_in_path(struct btrfs_root *root,
3826 const u64 ino1,
3827 const u64 ino1_gen,
3828 const u64 ino2,
3829 const u64 ino2_gen,
3830 struct fs_path *fs_path)
3831{
3832 u64 ino = ino2;
3833
3834 if (ino1 == ino2)
3835 return ino1_gen == ino2_gen;
3836
3837 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3838 u64 parent;
3839 u64 parent_gen;
3840 int ret;
3841
3842 fs_path_reset(fs_path);
3843 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3844 if (ret < 0)
3845 return ret;
3846 if (parent == ino1)
3847 return parent_gen == ino1_gen;
3848 ino = parent;
3849 }
3850 return 0;
3851}
3852
3853/*
3854 * Check if inode ino1 is an ancestor of inode ino2 in the given root for any
3855 * possible path (in case ino2 is not a directory and has multiple hard links).
3856 * Return 1 if true, 0 if false and < 0 on error.
3857 */
3858static int is_ancestor(struct btrfs_root *root,
3859 const u64 ino1,
3860 const u64 ino1_gen,
3861 const u64 ino2,
3862 struct fs_path *fs_path)
3863{
3864 bool free_fs_path = false;
3865 int ret = 0;
3866 int iter_ret = 0;
3867 struct btrfs_path *path = NULL;
3868 struct btrfs_key key;
3869
3870 if (!fs_path) {
3871 fs_path = fs_path_alloc();
3872 if (!fs_path)
3873 return -ENOMEM;
3874 free_fs_path = true;
3875 }
3876
3877 path = alloc_path_for_send();
3878 if (!path) {
3879 ret = -ENOMEM;
3880 goto out;
3881 }
3882
3883 key.objectid = ino2;
3884 key.type = BTRFS_INODE_REF_KEY;
3885 key.offset = 0;
3886
3887 btrfs_for_each_slot(root, &key, &key, path, iter_ret) {
3888 struct extent_buffer *leaf = path->nodes[0];
3889 int slot = path->slots[0];
3890 u32 cur_offset = 0;
3891 u32 item_size;
3892
3893 if (key.objectid != ino2)
3894 break;
3895 if (key.type != BTRFS_INODE_REF_KEY &&
3896 key.type != BTRFS_INODE_EXTREF_KEY)
3897 break;
3898
3899 item_size = btrfs_item_size(leaf, slot);
3900 while (cur_offset < item_size) {
3901 u64 parent;
3902 u64 parent_gen;
3903
3904 if (key.type == BTRFS_INODE_EXTREF_KEY) {
3905 unsigned long ptr;
3906 struct btrfs_inode_extref *extref;
3907
3908 ptr = btrfs_item_ptr_offset(leaf, slot);
3909 extref = (struct btrfs_inode_extref *)
3910 (ptr + cur_offset);
3911 parent = btrfs_inode_extref_parent(leaf,
3912 extref);
3913 cur_offset += sizeof(*extref);
3914 cur_offset += btrfs_inode_extref_name_len(leaf,
3915 extref);
3916 } else {
3917 parent = key.offset;
3918 cur_offset = item_size;
3919 }
3920
3921 ret = get_inode_gen(root, parent, &parent_gen);
3922 if (ret < 0)
3923 goto out;
3924 ret = check_ino_in_path(root, ino1, ino1_gen,
3925 parent, parent_gen, fs_path);
3926 if (ret)
3927 goto out;
3928 }
3929 }
3930 ret = 0;
3931 if (iter_ret < 0)
3932 ret = iter_ret;
3933
3934out:
3935 btrfs_free_path(path);
3936 if (free_fs_path)
3937 fs_path_free(fs_path);
3938 return ret;
3939}
3940
3941static int wait_for_parent_move(struct send_ctx *sctx,
3942 struct recorded_ref *parent_ref,
3943 const bool is_orphan)
3944{
3945 int ret = 0;
3946 u64 ino = parent_ref->dir;
3947 u64 ino_gen = parent_ref->dir_gen;
3948 u64 parent_ino_before, parent_ino_after;
3949 struct fs_path *path_before = NULL;
3950 struct fs_path *path_after = NULL;
3951 int len1, len2;
3952
3953 path_after = fs_path_alloc();
3954 path_before = fs_path_alloc();
3955 if (!path_after || !path_before) {
3956 ret = -ENOMEM;
3957 goto out;
3958 }
3959
3960 /*
3961 * Our current directory inode may not yet be renamed/moved because some
3962 * ancestor (immediate or not) has to be renamed/moved first. So find if
3963 * such ancestor exists and make sure our own rename/move happens after
3964 * that ancestor is processed to avoid path build infinite loops (done
3965 * at get_cur_path()).
3966 */
3967 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3968 u64 parent_ino_after_gen;
3969
3970 if (is_waiting_for_move(sctx, ino)) {
3971 /*
3972 * If the current inode is an ancestor of ino in the
3973 * parent root, we need to delay the rename of the
3974 * current inode, otherwise don't delayed the rename
3975 * because we can end up with a circular dependency
3976 * of renames, resulting in some directories never
3977 * getting the respective rename operations issued in
3978 * the send stream or getting into infinite path build
3979 * loops.
3980 */
3981 ret = is_ancestor(sctx->parent_root,
3982 sctx->cur_ino, sctx->cur_inode_gen,
3983 ino, path_before);
3984 if (ret)
3985 break;
3986 }
3987
3988 fs_path_reset(path_before);
3989 fs_path_reset(path_after);
3990
3991 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3992 &parent_ino_after_gen, path_after);
3993 if (ret < 0)
3994 goto out;
3995 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3996 NULL, path_before);
3997 if (ret < 0 && ret != -ENOENT) {
3998 goto out;
3999 } else if (ret == -ENOENT) {
4000 ret = 0;
4001 break;
4002 }
4003
4004 len1 = fs_path_len(path_before);
4005 len2 = fs_path_len(path_after);
4006 if (ino > sctx->cur_ino &&
4007 (parent_ino_before != parent_ino_after || len1 != len2 ||
4008 memcmp(path_before->start, path_after->start, len1))) {
4009 u64 parent_ino_gen;
4010
4011 ret = get_inode_gen(sctx->parent_root, ino, &parent_ino_gen);
4012 if (ret < 0)
4013 goto out;
4014 if (ino_gen == parent_ino_gen) {
4015 ret = 1;
4016 break;
4017 }
4018 }
4019 ino = parent_ino_after;
4020 ino_gen = parent_ino_after_gen;
4021 }
4022
4023out:
4024 fs_path_free(path_before);
4025 fs_path_free(path_after);
4026
4027 if (ret == 1) {
4028 ret = add_pending_dir_move(sctx,
4029 sctx->cur_ino,
4030 sctx->cur_inode_gen,
4031 ino,
4032 &sctx->new_refs,
4033 &sctx->deleted_refs,
4034 is_orphan);
4035 if (!ret)
4036 ret = 1;
4037 }
4038
4039 return ret;
4040}
4041
4042static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4043{
4044 int ret;
4045 struct fs_path *new_path;
4046
4047 /*
4048 * Our reference's name member points to its full_path member string, so
4049 * we use here a new path.
4050 */
4051 new_path = fs_path_alloc();
4052 if (!new_path)
4053 return -ENOMEM;
4054
4055 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
4056 if (ret < 0) {
4057 fs_path_free(new_path);
4058 return ret;
4059 }
4060 ret = fs_path_add(new_path, ref->name, ref->name_len);
4061 if (ret < 0) {
4062 fs_path_free(new_path);
4063 return ret;
4064 }
4065
4066 fs_path_free(ref->full_path);
4067 set_ref_path(ref, new_path);
4068
4069 return 0;
4070}
4071
4072/*
4073 * When processing the new references for an inode we may orphanize an existing
4074 * directory inode because its old name conflicts with one of the new references
4075 * of the current inode. Later, when processing another new reference of our
4076 * inode, we might need to orphanize another inode, but the path we have in the
4077 * reference reflects the pre-orphanization name of the directory we previously
4078 * orphanized. For example:
4079 *
4080 * parent snapshot looks like:
4081 *
4082 * . (ino 256)
4083 * |----- f1 (ino 257)
4084 * |----- f2 (ino 258)
4085 * |----- d1/ (ino 259)
4086 * |----- d2/ (ino 260)
4087 *
4088 * send snapshot looks like:
4089 *
4090 * . (ino 256)
4091 * |----- d1 (ino 258)
4092 * |----- f2/ (ino 259)
4093 * |----- f2_link/ (ino 260)
4094 * | |----- f1 (ino 257)
4095 * |
4096 * |----- d2 (ino 258)
4097 *
4098 * When processing inode 257 we compute the name for inode 259 as "d1", and we
4099 * cache it in the name cache. Later when we start processing inode 258, when
4100 * collecting all its new references we set a full path of "d1/d2" for its new
4101 * reference with name "d2". When we start processing the new references we
4102 * start by processing the new reference with name "d1", and this results in
4103 * orphanizing inode 259, since its old reference causes a conflict. Then we
4104 * move on the next new reference, with name "d2", and we find out we must
4105 * orphanize inode 260, as its old reference conflicts with ours - but for the
4106 * orphanization we use a source path corresponding to the path we stored in the
4107 * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the
4108 * receiver fail since the path component "d1/" no longer exists, it was renamed
4109 * to "o259-6-0/" when processing the previous new reference. So in this case we
4110 * must recompute the path in the new reference and use it for the new
4111 * orphanization operation.
4112 */
4113static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4114{
4115 char *name;
4116 int ret;
4117
4118 name = kmemdup(ref->name, ref->name_len, GFP_KERNEL);
4119 if (!name)
4120 return -ENOMEM;
4121
4122 fs_path_reset(ref->full_path);
4123 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path);
4124 if (ret < 0)
4125 goto out;
4126
4127 ret = fs_path_add(ref->full_path, name, ref->name_len);
4128 if (ret < 0)
4129 goto out;
4130
4131 /* Update the reference's base name pointer. */
4132 set_ref_path(ref, ref->full_path);
4133out:
4134 kfree(name);
4135 return ret;
4136}
4137
4138/*
4139 * This does all the move/link/unlink/rmdir magic.
4140 */
4141static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
4142{
4143 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4144 int ret = 0;
4145 struct recorded_ref *cur;
4146 struct recorded_ref *cur2;
4147 struct list_head check_dirs;
4148 struct fs_path *valid_path = NULL;
4149 u64 ow_inode = 0;
4150 u64 ow_gen;
4151 u64 ow_mode;
4152 int did_overwrite = 0;
4153 int is_orphan = 0;
4154 u64 last_dir_ino_rm = 0;
4155 bool can_rename = true;
4156 bool orphanized_dir = false;
4157 bool orphanized_ancestor = false;
4158
4159 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
4160
4161 /*
4162 * This should never happen as the root dir always has the same ref
4163 * which is always '..'
4164 */
4165 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
4166 INIT_LIST_HEAD(&check_dirs);
4167
4168 valid_path = fs_path_alloc();
4169 if (!valid_path) {
4170 ret = -ENOMEM;
4171 goto out;
4172 }
4173
4174 /*
4175 * First, check if the first ref of the current inode was overwritten
4176 * before. If yes, we know that the current inode was already orphanized
4177 * and thus use the orphan name. If not, we can use get_cur_path to
4178 * get the path of the first ref as it would like while receiving at
4179 * this point in time.
4180 * New inodes are always orphan at the beginning, so force to use the
4181 * orphan name in this case.
4182 * The first ref is stored in valid_path and will be updated if it
4183 * gets moved around.
4184 */
4185 if (!sctx->cur_inode_new) {
4186 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
4187 sctx->cur_inode_gen);
4188 if (ret < 0)
4189 goto out;
4190 if (ret)
4191 did_overwrite = 1;
4192 }
4193 if (sctx->cur_inode_new || did_overwrite) {
4194 ret = gen_unique_name(sctx, sctx->cur_ino,
4195 sctx->cur_inode_gen, valid_path);
4196 if (ret < 0)
4197 goto out;
4198 is_orphan = 1;
4199 } else {
4200 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4201 valid_path);
4202 if (ret < 0)
4203 goto out;
4204 }
4205
4206 /*
4207 * Before doing any rename and link operations, do a first pass on the
4208 * new references to orphanize any unprocessed inodes that may have a
4209 * reference that conflicts with one of the new references of the current
4210 * inode. This needs to happen first because a new reference may conflict
4211 * with the old reference of a parent directory, so we must make sure
4212 * that the path used for link and rename commands don't use an
4213 * orphanized name when an ancestor was not yet orphanized.
4214 *
4215 * Example:
4216 *
4217 * Parent snapshot:
4218 *
4219 * . (ino 256)
4220 * |----- testdir/ (ino 259)
4221 * | |----- a (ino 257)
4222 * |
4223 * |----- b (ino 258)
4224 *
4225 * Send snapshot:
4226 *
4227 * . (ino 256)
4228 * |----- testdir_2/ (ino 259)
4229 * | |----- a (ino 260)
4230 * |
4231 * |----- testdir (ino 257)
4232 * |----- b (ino 257)
4233 * |----- b2 (ino 258)
4234 *
4235 * Processing the new reference for inode 257 with name "b" may happen
4236 * before processing the new reference with name "testdir". If so, we
4237 * must make sure that by the time we send a link command to create the
4238 * hard link "b", inode 259 was already orphanized, since the generated
4239 * path in "valid_path" already contains the orphanized name for 259.
4240 * We are processing inode 257, so only later when processing 259 we do
4241 * the rename operation to change its temporary (orphanized) name to
4242 * "testdir_2".
4243 */
4244 list_for_each_entry(cur, &sctx->new_refs, list) {
4245 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4246 if (ret < 0)
4247 goto out;
4248 if (ret == inode_state_will_create)
4249 continue;
4250
4251 /*
4252 * Check if this new ref would overwrite the first ref of another
4253 * unprocessed inode. If yes, orphanize the overwritten inode.
4254 * If we find an overwritten ref that is not the first ref,
4255 * simply unlink it.
4256 */
4257 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4258 cur->name, cur->name_len,
4259 &ow_inode, &ow_gen, &ow_mode);
4260 if (ret < 0)
4261 goto out;
4262 if (ret) {
4263 ret = is_first_ref(sctx->parent_root,
4264 ow_inode, cur->dir, cur->name,
4265 cur->name_len);
4266 if (ret < 0)
4267 goto out;
4268 if (ret) {
4269 struct name_cache_entry *nce;
4270 struct waiting_dir_move *wdm;
4271
4272 if (orphanized_dir) {
4273 ret = refresh_ref_path(sctx, cur);
4274 if (ret < 0)
4275 goto out;
4276 }
4277
4278 ret = orphanize_inode(sctx, ow_inode, ow_gen,
4279 cur->full_path);
4280 if (ret < 0)
4281 goto out;
4282 if (S_ISDIR(ow_mode))
4283 orphanized_dir = true;
4284
4285 /*
4286 * If ow_inode has its rename operation delayed
4287 * make sure that its orphanized name is used in
4288 * the source path when performing its rename
4289 * operation.
4290 */
4291 if (is_waiting_for_move(sctx, ow_inode)) {
4292 wdm = get_waiting_dir_move(sctx,
4293 ow_inode);
4294 ASSERT(wdm);
4295 wdm->orphanized = true;
4296 }
4297
4298 /*
4299 * Make sure we clear our orphanized inode's
4300 * name from the name cache. This is because the
4301 * inode ow_inode might be an ancestor of some
4302 * other inode that will be orphanized as well
4303 * later and has an inode number greater than
4304 * sctx->send_progress. We need to prevent
4305 * future name lookups from using the old name
4306 * and get instead the orphan name.
4307 */
4308 nce = name_cache_search(sctx, ow_inode, ow_gen);
4309 if (nce) {
4310 name_cache_delete(sctx, nce);
4311 kfree(nce);
4312 }
4313
4314 /*
4315 * ow_inode might currently be an ancestor of
4316 * cur_ino, therefore compute valid_path (the
4317 * current path of cur_ino) again because it
4318 * might contain the pre-orphanization name of
4319 * ow_inode, which is no longer valid.
4320 */
4321 ret = is_ancestor(sctx->parent_root,
4322 ow_inode, ow_gen,
4323 sctx->cur_ino, NULL);
4324 if (ret > 0) {
4325 orphanized_ancestor = true;
4326 fs_path_reset(valid_path);
4327 ret = get_cur_path(sctx, sctx->cur_ino,
4328 sctx->cur_inode_gen,
4329 valid_path);
4330 }
4331 if (ret < 0)
4332 goto out;
4333 } else {
4334 /*
4335 * If we previously orphanized a directory that
4336 * collided with a new reference that we already
4337 * processed, recompute the current path because
4338 * that directory may be part of the path.
4339 */
4340 if (orphanized_dir) {
4341 ret = refresh_ref_path(sctx, cur);
4342 if (ret < 0)
4343 goto out;
4344 }
4345 ret = send_unlink(sctx, cur->full_path);
4346 if (ret < 0)
4347 goto out;
4348 }
4349 }
4350
4351 }
4352
4353 list_for_each_entry(cur, &sctx->new_refs, list) {
4354 /*
4355 * We may have refs where the parent directory does not exist
4356 * yet. This happens if the parent directories inum is higher
4357 * than the current inum. To handle this case, we create the
4358 * parent directory out of order. But we need to check if this
4359 * did already happen before due to other refs in the same dir.
4360 */
4361 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4362 if (ret < 0)
4363 goto out;
4364 if (ret == inode_state_will_create) {
4365 ret = 0;
4366 /*
4367 * First check if any of the current inodes refs did
4368 * already create the dir.
4369 */
4370 list_for_each_entry(cur2, &sctx->new_refs, list) {
4371 if (cur == cur2)
4372 break;
4373 if (cur2->dir == cur->dir) {
4374 ret = 1;
4375 break;
4376 }
4377 }
4378
4379 /*
4380 * If that did not happen, check if a previous inode
4381 * did already create the dir.
4382 */
4383 if (!ret)
4384 ret = did_create_dir(sctx, cur->dir);
4385 if (ret < 0)
4386 goto out;
4387 if (!ret) {
4388 ret = send_create_inode(sctx, cur->dir);
4389 if (ret < 0)
4390 goto out;
4391 }
4392 }
4393
4394 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4395 ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
4396 if (ret < 0)
4397 goto out;
4398 if (ret == 1) {
4399 can_rename = false;
4400 *pending_move = 1;
4401 }
4402 }
4403
4404 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4405 can_rename) {
4406 ret = wait_for_parent_move(sctx, cur, is_orphan);
4407 if (ret < 0)
4408 goto out;
4409 if (ret == 1) {
4410 can_rename = false;
4411 *pending_move = 1;
4412 }
4413 }
4414
4415 /*
4416 * link/move the ref to the new place. If we have an orphan
4417 * inode, move it and update valid_path. If not, link or move
4418 * it depending on the inode mode.
4419 */
4420 if (is_orphan && can_rename) {
4421 ret = send_rename(sctx, valid_path, cur->full_path);
4422 if (ret < 0)
4423 goto out;
4424 is_orphan = 0;
4425 ret = fs_path_copy(valid_path, cur->full_path);
4426 if (ret < 0)
4427 goto out;
4428 } else if (can_rename) {
4429 if (S_ISDIR(sctx->cur_inode_mode)) {
4430 /*
4431 * Dirs can't be linked, so move it. For moved
4432 * dirs, we always have one new and one deleted
4433 * ref. The deleted ref is ignored later.
4434 */
4435 ret = send_rename(sctx, valid_path,
4436 cur->full_path);
4437 if (!ret)
4438 ret = fs_path_copy(valid_path,
4439 cur->full_path);
4440 if (ret < 0)
4441 goto out;
4442 } else {
4443 /*
4444 * We might have previously orphanized an inode
4445 * which is an ancestor of our current inode,
4446 * so our reference's full path, which was
4447 * computed before any such orphanizations, must
4448 * be updated.
4449 */
4450 if (orphanized_dir) {
4451 ret = update_ref_path(sctx, cur);
4452 if (ret < 0)
4453 goto out;
4454 }
4455 ret = send_link(sctx, cur->full_path,
4456 valid_path);
4457 if (ret < 0)
4458 goto out;
4459 }
4460 }
4461 ret = dup_ref(cur, &check_dirs);
4462 if (ret < 0)
4463 goto out;
4464 }
4465
4466 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4467 /*
4468 * Check if we can already rmdir the directory. If not,
4469 * orphanize it. For every dir item inside that gets deleted
4470 * later, we do this check again and rmdir it then if possible.
4471 * See the use of check_dirs for more details.
4472 */
4473 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4474 sctx->cur_ino);
4475 if (ret < 0)
4476 goto out;
4477 if (ret) {
4478 ret = send_rmdir(sctx, valid_path);
4479 if (ret < 0)
4480 goto out;
4481 } else if (!is_orphan) {
4482 ret = orphanize_inode(sctx, sctx->cur_ino,
4483 sctx->cur_inode_gen, valid_path);
4484 if (ret < 0)
4485 goto out;
4486 is_orphan = 1;
4487 }
4488
4489 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4490 ret = dup_ref(cur, &check_dirs);
4491 if (ret < 0)
4492 goto out;
4493 }
4494 } else if (S_ISDIR(sctx->cur_inode_mode) &&
4495 !list_empty(&sctx->deleted_refs)) {
4496 /*
4497 * We have a moved dir. Add the old parent to check_dirs
4498 */
4499 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4500 list);
4501 ret = dup_ref(cur, &check_dirs);
4502 if (ret < 0)
4503 goto out;
4504 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
4505 /*
4506 * We have a non dir inode. Go through all deleted refs and
4507 * unlink them if they were not already overwritten by other
4508 * inodes.
4509 */
4510 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4511 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4512 sctx->cur_ino, sctx->cur_inode_gen,
4513 cur->name, cur->name_len);
4514 if (ret < 0)
4515 goto out;
4516 if (!ret) {
4517 /*
4518 * If we orphanized any ancestor before, we need
4519 * to recompute the full path for deleted names,
4520 * since any such path was computed before we
4521 * processed any references and orphanized any
4522 * ancestor inode.
4523 */
4524 if (orphanized_ancestor) {
4525 ret = update_ref_path(sctx, cur);
4526 if (ret < 0)
4527 goto out;
4528 }
4529 ret = send_unlink(sctx, cur->full_path);
4530 if (ret < 0)
4531 goto out;
4532 }
4533 ret = dup_ref(cur, &check_dirs);
4534 if (ret < 0)
4535 goto out;
4536 }
4537 /*
4538 * If the inode is still orphan, unlink the orphan. This may
4539 * happen when a previous inode did overwrite the first ref
4540 * of this inode and no new refs were added for the current
4541 * inode. Unlinking does not mean that the inode is deleted in
4542 * all cases. There may still be links to this inode in other
4543 * places.
4544 */
4545 if (is_orphan) {
4546 ret = send_unlink(sctx, valid_path);
4547 if (ret < 0)
4548 goto out;
4549 }
4550 }
4551
4552 /*
4553 * We did collect all parent dirs where cur_inode was once located. We
4554 * now go through all these dirs and check if they are pending for
4555 * deletion and if it's finally possible to perform the rmdir now.
4556 * We also update the inode stats of the parent dirs here.
4557 */
4558 list_for_each_entry(cur, &check_dirs, list) {
4559 /*
4560 * In case we had refs into dirs that were not processed yet,
4561 * we don't need to do the utime and rmdir logic for these dirs.
4562 * The dir will be processed later.
4563 */
4564 if (cur->dir > sctx->cur_ino)
4565 continue;
4566
4567 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4568 if (ret < 0)
4569 goto out;
4570
4571 if (ret == inode_state_did_create ||
4572 ret == inode_state_no_change) {
4573 /* TODO delayed utimes */
4574 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
4575 if (ret < 0)
4576 goto out;
4577 } else if (ret == inode_state_did_delete &&
4578 cur->dir != last_dir_ino_rm) {
4579 ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4580 sctx->cur_ino);
4581 if (ret < 0)
4582 goto out;
4583 if (ret) {
4584 ret = get_cur_path(sctx, cur->dir,
4585 cur->dir_gen, valid_path);
4586 if (ret < 0)
4587 goto out;
4588 ret = send_rmdir(sctx, valid_path);
4589 if (ret < 0)
4590 goto out;
4591 last_dir_ino_rm = cur->dir;
4592 }
4593 }
4594 }
4595
4596 ret = 0;
4597
4598out:
4599 __free_recorded_refs(&check_dirs);
4600 free_recorded_refs(sctx);
4601 fs_path_free(valid_path);
4602 return ret;
4603}
4604
4605static int rbtree_ref_comp(const void *k, const struct rb_node *node)
4606{
4607 const struct recorded_ref *data = k;
4608 const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node);
4609 int result;
4610
4611 if (data->dir > ref->dir)
4612 return 1;
4613 if (data->dir < ref->dir)
4614 return -1;
4615 if (data->dir_gen > ref->dir_gen)
4616 return 1;
4617 if (data->dir_gen < ref->dir_gen)
4618 return -1;
4619 if (data->name_len > ref->name_len)
4620 return 1;
4621 if (data->name_len < ref->name_len)
4622 return -1;
4623 result = strcmp(data->name, ref->name);
4624 if (result > 0)
4625 return 1;
4626 if (result < 0)
4627 return -1;
4628 return 0;
4629}
4630
4631static bool rbtree_ref_less(struct rb_node *node, const struct rb_node *parent)
4632{
4633 const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node);
4634
4635 return rbtree_ref_comp(entry, parent) < 0;
4636}
4637
4638static int record_ref_in_tree(struct rb_root *root, struct list_head *refs,
4639 struct fs_path *name, u64 dir, u64 dir_gen,
4640 struct send_ctx *sctx)
4641{
4642 int ret = 0;
4643 struct fs_path *path = NULL;
4644 struct recorded_ref *ref = NULL;
4645
4646 path = fs_path_alloc();
4647 if (!path) {
4648 ret = -ENOMEM;
4649 goto out;
4650 }
4651
4652 ref = recorded_ref_alloc();
4653 if (!ref) {
4654 ret = -ENOMEM;
4655 goto out;
4656 }
4657
4658 ret = get_cur_path(sctx, dir, dir_gen, path);
4659 if (ret < 0)
4660 goto out;
4661 ret = fs_path_add_path(path, name);
4662 if (ret < 0)
4663 goto out;
4664
4665 ref->dir = dir;
4666 ref->dir_gen = dir_gen;
4667 set_ref_path(ref, path);
4668 list_add_tail(&ref->list, refs);
4669 rb_add(&ref->node, root, rbtree_ref_less);
4670 ref->root = root;
4671out:
4672 if (ret) {
4673 if (path && (!ref || !ref->full_path))
4674 fs_path_free(path);
4675 recorded_ref_free(ref);
4676 }
4677 return ret;
4678}
4679
4680static int record_new_ref_if_needed(int num, u64 dir, int index,
4681 struct fs_path *name, void *ctx)
4682{
4683 int ret = 0;
4684 struct send_ctx *sctx = ctx;
4685 struct rb_node *node = NULL;
4686 struct recorded_ref data;
4687 struct recorded_ref *ref;
4688 u64 dir_gen;
4689
4690 ret = get_inode_gen(sctx->send_root, dir, &dir_gen);
4691 if (ret < 0)
4692 goto out;
4693
4694 data.dir = dir;
4695 data.dir_gen = dir_gen;
4696 set_ref_path(&data, name);
4697 node = rb_find(&data, &sctx->rbtree_deleted_refs, rbtree_ref_comp);
4698 if (node) {
4699 ref = rb_entry(node, struct recorded_ref, node);
4700 recorded_ref_free(ref);
4701 } else {
4702 ret = record_ref_in_tree(&sctx->rbtree_new_refs,
4703 &sctx->new_refs, name, dir, dir_gen,
4704 sctx);
4705 }
4706out:
4707 return ret;
4708}
4709
4710static int record_deleted_ref_if_needed(int num, u64 dir, int index,
4711 struct fs_path *name, void *ctx)
4712{
4713 int ret = 0;
4714 struct send_ctx *sctx = ctx;
4715 struct rb_node *node = NULL;
4716 struct recorded_ref data;
4717 struct recorded_ref *ref;
4718 u64 dir_gen;
4719
4720 ret = get_inode_gen(sctx->parent_root, dir, &dir_gen);
4721 if (ret < 0)
4722 goto out;
4723
4724 data.dir = dir;
4725 data.dir_gen = dir_gen;
4726 set_ref_path(&data, name);
4727 node = rb_find(&data, &sctx->rbtree_new_refs, rbtree_ref_comp);
4728 if (node) {
4729 ref = rb_entry(node, struct recorded_ref, node);
4730 recorded_ref_free(ref);
4731 } else {
4732 ret = record_ref_in_tree(&sctx->rbtree_deleted_refs,
4733 &sctx->deleted_refs, name, dir,
4734 dir_gen, sctx);
4735 }
4736out:
4737 return ret;
4738}
4739
4740static int record_new_ref(struct send_ctx *sctx)
4741{
4742 int ret;
4743
4744 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4745 sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4746 if (ret < 0)
4747 goto out;
4748 ret = 0;
4749
4750out:
4751 return ret;
4752}
4753
4754static int record_deleted_ref(struct send_ctx *sctx)
4755{
4756 int ret;
4757
4758 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4759 sctx->cmp_key, 0, record_deleted_ref_if_needed,
4760 sctx);
4761 if (ret < 0)
4762 goto out;
4763 ret = 0;
4764
4765out:
4766 return ret;
4767}
4768
4769static int record_changed_ref(struct send_ctx *sctx)
4770{
4771 int ret = 0;
4772
4773 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4774 sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4775 if (ret < 0)
4776 goto out;
4777 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4778 sctx->cmp_key, 0, record_deleted_ref_if_needed, sctx);
4779 if (ret < 0)
4780 goto out;
4781 ret = 0;
4782
4783out:
4784 return ret;
4785}
4786
4787/*
4788 * Record and process all refs at once. Needed when an inode changes the
4789 * generation number, which means that it was deleted and recreated.
4790 */
4791static int process_all_refs(struct send_ctx *sctx,
4792 enum btrfs_compare_tree_result cmd)
4793{
4794 int ret = 0;
4795 int iter_ret = 0;
4796 struct btrfs_root *root;
4797 struct btrfs_path *path;
4798 struct btrfs_key key;
4799 struct btrfs_key found_key;
4800 iterate_inode_ref_t cb;
4801 int pending_move = 0;
4802
4803 path = alloc_path_for_send();
4804 if (!path)
4805 return -ENOMEM;
4806
4807 if (cmd == BTRFS_COMPARE_TREE_NEW) {
4808 root = sctx->send_root;
4809 cb = record_new_ref_if_needed;
4810 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4811 root = sctx->parent_root;
4812 cb = record_deleted_ref_if_needed;
4813 } else {
4814 btrfs_err(sctx->send_root->fs_info,
4815 "Wrong command %d in process_all_refs", cmd);
4816 ret = -EINVAL;
4817 goto out;
4818 }
4819
4820 key.objectid = sctx->cmp_key->objectid;
4821 key.type = BTRFS_INODE_REF_KEY;
4822 key.offset = 0;
4823 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
4824 if (found_key.objectid != key.objectid ||
4825 (found_key.type != BTRFS_INODE_REF_KEY &&
4826 found_key.type != BTRFS_INODE_EXTREF_KEY))
4827 break;
4828
4829 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4830 if (ret < 0)
4831 goto out;
4832 }
4833 /* Catch error found during iteration */
4834 if (iter_ret < 0) {
4835 ret = iter_ret;
4836 goto out;
4837 }
4838 btrfs_release_path(path);
4839
4840 /*
4841 * We don't actually care about pending_move as we are simply
4842 * re-creating this inode and will be rename'ing it into place once we
4843 * rename the parent directory.
4844 */
4845 ret = process_recorded_refs(sctx, &pending_move);
4846out:
4847 btrfs_free_path(path);
4848 return ret;
4849}
4850
4851static int send_set_xattr(struct send_ctx *sctx,
4852 struct fs_path *path,
4853 const char *name, int name_len,
4854 const char *data, int data_len)
4855{
4856 int ret = 0;
4857
4858 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4859 if (ret < 0)
4860 goto out;
4861
4862 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4863 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4864 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4865
4866 ret = send_cmd(sctx);
4867
4868tlv_put_failure:
4869out:
4870 return ret;
4871}
4872
4873static int send_remove_xattr(struct send_ctx *sctx,
4874 struct fs_path *path,
4875 const char *name, int name_len)
4876{
4877 int ret = 0;
4878
4879 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4880 if (ret < 0)
4881 goto out;
4882
4883 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4884 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4885
4886 ret = send_cmd(sctx);
4887
4888tlv_put_failure:
4889out:
4890 return ret;
4891}
4892
4893static int __process_new_xattr(int num, struct btrfs_key *di_key,
4894 const char *name, int name_len, const char *data,
4895 int data_len, void *ctx)
4896{
4897 int ret;
4898 struct send_ctx *sctx = ctx;
4899 struct fs_path *p;
4900 struct posix_acl_xattr_header dummy_acl;
4901
4902 /* Capabilities are emitted by finish_inode_if_needed */
4903 if (!strncmp(name, XATTR_NAME_CAPS, name_len))
4904 return 0;
4905
4906 p = fs_path_alloc();
4907 if (!p)
4908 return -ENOMEM;
4909
4910 /*
4911 * This hack is needed because empty acls are stored as zero byte
4912 * data in xattrs. Problem with that is, that receiving these zero byte
4913 * acls will fail later. To fix this, we send a dummy acl list that
4914 * only contains the version number and no entries.
4915 */
4916 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4917 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4918 if (data_len == 0) {
4919 dummy_acl.a_version =
4920 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4921 data = (char *)&dummy_acl;
4922 data_len = sizeof(dummy_acl);
4923 }
4924 }
4925
4926 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4927 if (ret < 0)
4928 goto out;
4929
4930 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4931
4932out:
4933 fs_path_free(p);
4934 return ret;
4935}
4936
4937static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4938 const char *name, int name_len,
4939 const char *data, int data_len, void *ctx)
4940{
4941 int ret;
4942 struct send_ctx *sctx = ctx;
4943 struct fs_path *p;
4944
4945 p = fs_path_alloc();
4946 if (!p)
4947 return -ENOMEM;
4948
4949 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4950 if (ret < 0)
4951 goto out;
4952
4953 ret = send_remove_xattr(sctx, p, name, name_len);
4954
4955out:
4956 fs_path_free(p);
4957 return ret;
4958}
4959
4960static int process_new_xattr(struct send_ctx *sctx)
4961{
4962 int ret = 0;
4963
4964 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4965 __process_new_xattr, sctx);
4966
4967 return ret;
4968}
4969
4970static int process_deleted_xattr(struct send_ctx *sctx)
4971{
4972 return iterate_dir_item(sctx->parent_root, sctx->right_path,
4973 __process_deleted_xattr, sctx);
4974}
4975
4976struct find_xattr_ctx {
4977 const char *name;
4978 int name_len;
4979 int found_idx;
4980 char *found_data;
4981 int found_data_len;
4982};
4983
4984static int __find_xattr(int num, struct btrfs_key *di_key, const char *name,
4985 int name_len, const char *data, int data_len, void *vctx)
4986{
4987 struct find_xattr_ctx *ctx = vctx;
4988
4989 if (name_len == ctx->name_len &&
4990 strncmp(name, ctx->name, name_len) == 0) {
4991 ctx->found_idx = num;
4992 ctx->found_data_len = data_len;
4993 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4994 if (!ctx->found_data)
4995 return -ENOMEM;
4996 return 1;
4997 }
4998 return 0;
4999}
5000
5001static int find_xattr(struct btrfs_root *root,
5002 struct btrfs_path *path,
5003 struct btrfs_key *key,
5004 const char *name, int name_len,
5005 char **data, int *data_len)
5006{
5007 int ret;
5008 struct find_xattr_ctx ctx;
5009
5010 ctx.name = name;
5011 ctx.name_len = name_len;
5012 ctx.found_idx = -1;
5013 ctx.found_data = NULL;
5014 ctx.found_data_len = 0;
5015
5016 ret = iterate_dir_item(root, path, __find_xattr, &ctx);
5017 if (ret < 0)
5018 return ret;
5019
5020 if (ctx.found_idx == -1)
5021 return -ENOENT;
5022 if (data) {
5023 *data = ctx.found_data;
5024 *data_len = ctx.found_data_len;
5025 } else {
5026 kfree(ctx.found_data);
5027 }
5028 return ctx.found_idx;
5029}
5030
5031
5032static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
5033 const char *name, int name_len,
5034 const char *data, int data_len,
5035 void *ctx)
5036{
5037 int ret;
5038 struct send_ctx *sctx = ctx;
5039 char *found_data = NULL;
5040 int found_data_len = 0;
5041
5042 ret = find_xattr(sctx->parent_root, sctx->right_path,
5043 sctx->cmp_key, name, name_len, &found_data,
5044 &found_data_len);
5045 if (ret == -ENOENT) {
5046 ret = __process_new_xattr(num, di_key, name, name_len, data,
5047 data_len, ctx);
5048 } else if (ret >= 0) {
5049 if (data_len != found_data_len ||
5050 memcmp(data, found_data, data_len)) {
5051 ret = __process_new_xattr(num, di_key, name, name_len,
5052 data, data_len, ctx);
5053 } else {
5054 ret = 0;
5055 }
5056 }
5057
5058 kfree(found_data);
5059 return ret;
5060}
5061
5062static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
5063 const char *name, int name_len,
5064 const char *data, int data_len,
5065 void *ctx)
5066{
5067 int ret;
5068 struct send_ctx *sctx = ctx;
5069
5070 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
5071 name, name_len, NULL, NULL);
5072 if (ret == -ENOENT)
5073 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
5074 data_len, ctx);
5075 else if (ret >= 0)
5076 ret = 0;
5077
5078 return ret;
5079}
5080
5081static int process_changed_xattr(struct send_ctx *sctx)
5082{
5083 int ret = 0;
5084
5085 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
5086 __process_changed_new_xattr, sctx);
5087 if (ret < 0)
5088 goto out;
5089 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
5090 __process_changed_deleted_xattr, sctx);
5091
5092out:
5093 return ret;
5094}
5095
5096static int process_all_new_xattrs(struct send_ctx *sctx)
5097{
5098 int ret = 0;
5099 int iter_ret = 0;
5100 struct btrfs_root *root;
5101 struct btrfs_path *path;
5102 struct btrfs_key key;
5103 struct btrfs_key found_key;
5104
5105 path = alloc_path_for_send();
5106 if (!path)
5107 return -ENOMEM;
5108
5109 root = sctx->send_root;
5110
5111 key.objectid = sctx->cmp_key->objectid;
5112 key.type = BTRFS_XATTR_ITEM_KEY;
5113 key.offset = 0;
5114 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
5115 if (found_key.objectid != key.objectid ||
5116 found_key.type != key.type) {
5117 ret = 0;
5118 break;
5119 }
5120
5121 ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
5122 if (ret < 0)
5123 break;
5124 }
5125 /* Catch error found during iteration */
5126 if (iter_ret < 0)
5127 ret = iter_ret;
5128
5129 btrfs_free_path(path);
5130 return ret;
5131}
5132
5133static int send_verity(struct send_ctx *sctx, struct fs_path *path,
5134 struct fsverity_descriptor *desc)
5135{
5136 int ret;
5137
5138 ret = begin_cmd(sctx, BTRFS_SEND_C_ENABLE_VERITY);
5139 if (ret < 0)
5140 goto out;
5141
5142 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
5143 TLV_PUT_U8(sctx, BTRFS_SEND_A_VERITY_ALGORITHM,
5144 le8_to_cpu(desc->hash_algorithm));
5145 TLV_PUT_U32(sctx, BTRFS_SEND_A_VERITY_BLOCK_SIZE,
5146 1U << le8_to_cpu(desc->log_blocksize));
5147 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SALT_DATA, desc->salt,
5148 le8_to_cpu(desc->salt_size));
5149 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SIG_DATA, desc->signature,
5150 le32_to_cpu(desc->sig_size));
5151
5152 ret = send_cmd(sctx);
5153
5154tlv_put_failure:
5155out:
5156 return ret;
5157}
5158
5159static int process_verity(struct send_ctx *sctx)
5160{
5161 int ret = 0;
5162 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5163 struct inode *inode;
5164 struct fs_path *p;
5165
5166 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, sctx->send_root);
5167 if (IS_ERR(inode))
5168 return PTR_ERR(inode);
5169
5170 ret = btrfs_get_verity_descriptor(inode, NULL, 0);
5171 if (ret < 0)
5172 goto iput;
5173
5174 if (ret > FS_VERITY_MAX_DESCRIPTOR_SIZE) {
5175 ret = -EMSGSIZE;
5176 goto iput;
5177 }
5178 if (!sctx->verity_descriptor) {
5179 sctx->verity_descriptor = kvmalloc(FS_VERITY_MAX_DESCRIPTOR_SIZE,
5180 GFP_KERNEL);
5181 if (!sctx->verity_descriptor) {
5182 ret = -ENOMEM;
5183 goto iput;
5184 }
5185 }
5186
5187 ret = btrfs_get_verity_descriptor(inode, sctx->verity_descriptor, ret);
5188 if (ret < 0)
5189 goto iput;
5190
5191 p = fs_path_alloc();
5192 if (!p) {
5193 ret = -ENOMEM;
5194 goto iput;
5195 }
5196 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5197 if (ret < 0)
5198 goto free_path;
5199
5200 ret = send_verity(sctx, p, sctx->verity_descriptor);
5201 if (ret < 0)
5202 goto free_path;
5203
5204free_path:
5205 fs_path_free(p);
5206iput:
5207 iput(inode);
5208 return ret;
5209}
5210
5211static inline u64 max_send_read_size(const struct send_ctx *sctx)
5212{
5213 return sctx->send_max_size - SZ_16K;
5214}
5215
5216static int put_data_header(struct send_ctx *sctx, u32 len)
5217{
5218 if (WARN_ON_ONCE(sctx->put_data))
5219 return -EINVAL;
5220 sctx->put_data = true;
5221 if (sctx->proto >= 2) {
5222 /*
5223 * Since v2, the data attribute header doesn't include a length,
5224 * it is implicitly to the end of the command.
5225 */
5226 if (sctx->send_max_size - sctx->send_size < sizeof(__le16) + len)
5227 return -EOVERFLOW;
5228 put_unaligned_le16(BTRFS_SEND_A_DATA, sctx->send_buf + sctx->send_size);
5229 sctx->send_size += sizeof(__le16);
5230 } else {
5231 struct btrfs_tlv_header *hdr;
5232
5233 if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len)
5234 return -EOVERFLOW;
5235 hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size);
5236 put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type);
5237 put_unaligned_le16(len, &hdr->tlv_len);
5238 sctx->send_size += sizeof(*hdr);
5239 }
5240 return 0;
5241}
5242
5243static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len)
5244{
5245 struct btrfs_root *root = sctx->send_root;
5246 struct btrfs_fs_info *fs_info = root->fs_info;
5247 struct page *page;
5248 pgoff_t index = offset >> PAGE_SHIFT;
5249 pgoff_t last_index;
5250 unsigned pg_offset = offset_in_page(offset);
5251 int ret;
5252
5253 ret = put_data_header(sctx, len);
5254 if (ret)
5255 return ret;
5256
5257 last_index = (offset + len - 1) >> PAGE_SHIFT;
5258
5259 while (index <= last_index) {
5260 unsigned cur_len = min_t(unsigned, len,
5261 PAGE_SIZE - pg_offset);
5262
5263 page = find_lock_page(sctx->cur_inode->i_mapping, index);
5264 if (!page) {
5265 page_cache_sync_readahead(sctx->cur_inode->i_mapping,
5266 &sctx->ra, NULL, index,
5267 last_index + 1 - index);
5268
5269 page = find_or_create_page(sctx->cur_inode->i_mapping,
5270 index, GFP_KERNEL);
5271 if (!page) {
5272 ret = -ENOMEM;
5273 break;
5274 }
5275 }
5276
5277 if (PageReadahead(page))
5278 page_cache_async_readahead(sctx->cur_inode->i_mapping,
5279 &sctx->ra, NULL, page_folio(page),
5280 index, last_index + 1 - index);
5281
5282 if (!PageUptodate(page)) {
5283 btrfs_read_folio(NULL, page_folio(page));
5284 lock_page(page);
5285 if (!PageUptodate(page)) {
5286 unlock_page(page);
5287 btrfs_err(fs_info,
5288 "send: IO error at offset %llu for inode %llu root %llu",
5289 page_offset(page), sctx->cur_ino,
5290 sctx->send_root->root_key.objectid);
5291 put_page(page);
5292 ret = -EIO;
5293 break;
5294 }
5295 }
5296
5297 memcpy_from_page(sctx->send_buf + sctx->send_size, page,
5298 pg_offset, cur_len);
5299 unlock_page(page);
5300 put_page(page);
5301 index++;
5302 pg_offset = 0;
5303 len -= cur_len;
5304 sctx->send_size += cur_len;
5305 }
5306
5307 return ret;
5308}
5309
5310/*
5311 * Read some bytes from the current inode/file and send a write command to
5312 * user space.
5313 */
5314static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
5315{
5316 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5317 int ret = 0;
5318 struct fs_path *p;
5319
5320 p = fs_path_alloc();
5321 if (!p)
5322 return -ENOMEM;
5323
5324 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
5325
5326 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5327 if (ret < 0)
5328 goto out;
5329
5330 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5331 if (ret < 0)
5332 goto out;
5333
5334 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5335 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5336 ret = put_file_data(sctx, offset, len);
5337 if (ret < 0)
5338 goto out;
5339
5340 ret = send_cmd(sctx);
5341
5342tlv_put_failure:
5343out:
5344 fs_path_free(p);
5345 return ret;
5346}
5347
5348/*
5349 * Send a clone command to user space.
5350 */
5351static int send_clone(struct send_ctx *sctx,
5352 u64 offset, u32 len,
5353 struct clone_root *clone_root)
5354{
5355 int ret = 0;
5356 struct fs_path *p;
5357 u64 gen;
5358
5359 btrfs_debug(sctx->send_root->fs_info,
5360 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
5361 offset, len, clone_root->root->root_key.objectid,
5362 clone_root->ino, clone_root->offset);
5363
5364 p = fs_path_alloc();
5365 if (!p)
5366 return -ENOMEM;
5367
5368 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
5369 if (ret < 0)
5370 goto out;
5371
5372 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5373 if (ret < 0)
5374 goto out;
5375
5376 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5377 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
5378 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5379
5380 if (clone_root->root == sctx->send_root) {
5381 ret = get_inode_gen(sctx->send_root, clone_root->ino, &gen);
5382 if (ret < 0)
5383 goto out;
5384 ret = get_cur_path(sctx, clone_root->ino, gen, p);
5385 } else {
5386 ret = get_inode_path(clone_root->root, clone_root->ino, p);
5387 }
5388 if (ret < 0)
5389 goto out;
5390
5391 /*
5392 * If the parent we're using has a received_uuid set then use that as
5393 * our clone source as that is what we will look for when doing a
5394 * receive.
5395 *
5396 * This covers the case that we create a snapshot off of a received
5397 * subvolume and then use that as the parent and try to receive on a
5398 * different host.
5399 */
5400 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
5401 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5402 clone_root->root->root_item.received_uuid);
5403 else
5404 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5405 clone_root->root->root_item.uuid);
5406 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5407 btrfs_root_ctransid(&clone_root->root->root_item));
5408 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
5409 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
5410 clone_root->offset);
5411
5412 ret = send_cmd(sctx);
5413
5414tlv_put_failure:
5415out:
5416 fs_path_free(p);
5417 return ret;
5418}
5419
5420/*
5421 * Send an update extent command to user space.
5422 */
5423static int send_update_extent(struct send_ctx *sctx,
5424 u64 offset, u32 len)
5425{
5426 int ret = 0;
5427 struct fs_path *p;
5428
5429 p = fs_path_alloc();
5430 if (!p)
5431 return -ENOMEM;
5432
5433 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5434 if (ret < 0)
5435 goto out;
5436
5437 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5438 if (ret < 0)
5439 goto out;
5440
5441 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5442 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5443 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5444
5445 ret = send_cmd(sctx);
5446
5447tlv_put_failure:
5448out:
5449 fs_path_free(p);
5450 return ret;
5451}
5452
5453static int send_hole(struct send_ctx *sctx, u64 end)
5454{
5455 struct fs_path *p = NULL;
5456 u64 read_size = max_send_read_size(sctx);
5457 u64 offset = sctx->cur_inode_last_extent;
5458 int ret = 0;
5459
5460 /*
5461 * A hole that starts at EOF or beyond it. Since we do not yet support
5462 * fallocate (for extent preallocation and hole punching), sending a
5463 * write of zeroes starting at EOF or beyond would later require issuing
5464 * a truncate operation which would undo the write and achieve nothing.
5465 */
5466 if (offset >= sctx->cur_inode_size)
5467 return 0;
5468
5469 /*
5470 * Don't go beyond the inode's i_size due to prealloc extents that start
5471 * after the i_size.
5472 */
5473 end = min_t(u64, end, sctx->cur_inode_size);
5474
5475 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5476 return send_update_extent(sctx, offset, end - offset);
5477
5478 p = fs_path_alloc();
5479 if (!p)
5480 return -ENOMEM;
5481 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5482 if (ret < 0)
5483 goto tlv_put_failure;
5484 while (offset < end) {
5485 u64 len = min(end - offset, read_size);
5486
5487 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5488 if (ret < 0)
5489 break;
5490 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5491 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5492 ret = put_data_header(sctx, len);
5493 if (ret < 0)
5494 break;
5495 memset(sctx->send_buf + sctx->send_size, 0, len);
5496 sctx->send_size += len;
5497 ret = send_cmd(sctx);
5498 if (ret < 0)
5499 break;
5500 offset += len;
5501 }
5502 sctx->cur_inode_next_write_offset = offset;
5503tlv_put_failure:
5504 fs_path_free(p);
5505 return ret;
5506}
5507
5508static int send_encoded_inline_extent(struct send_ctx *sctx,
5509 struct btrfs_path *path, u64 offset,
5510 u64 len)
5511{
5512 struct btrfs_root *root = sctx->send_root;
5513 struct btrfs_fs_info *fs_info = root->fs_info;
5514 struct inode *inode;
5515 struct fs_path *fspath;
5516 struct extent_buffer *leaf = path->nodes[0];
5517 struct btrfs_key key;
5518 struct btrfs_file_extent_item *ei;
5519 u64 ram_bytes;
5520 size_t inline_size;
5521 int ret;
5522
5523 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root);
5524 if (IS_ERR(inode))
5525 return PTR_ERR(inode);
5526
5527 fspath = fs_path_alloc();
5528 if (!fspath) {
5529 ret = -ENOMEM;
5530 goto out;
5531 }
5532
5533 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5534 if (ret < 0)
5535 goto out;
5536
5537 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5538 if (ret < 0)
5539 goto out;
5540
5541 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5542 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5543 ram_bytes = btrfs_file_extent_ram_bytes(leaf, ei);
5544 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
5545
5546 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5547 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5548 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5549 min(key.offset + ram_bytes - offset, len));
5550 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, ram_bytes);
5551 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, offset - key.offset);
5552 ret = btrfs_encoded_io_compression_from_extent(fs_info,
5553 btrfs_file_extent_compression(leaf, ei));
5554 if (ret < 0)
5555 goto out;
5556 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5557
5558 ret = put_data_header(sctx, inline_size);
5559 if (ret < 0)
5560 goto out;
5561 read_extent_buffer(leaf, sctx->send_buf + sctx->send_size,
5562 btrfs_file_extent_inline_start(ei), inline_size);
5563 sctx->send_size += inline_size;
5564
5565 ret = send_cmd(sctx);
5566
5567tlv_put_failure:
5568out:
5569 fs_path_free(fspath);
5570 iput(inode);
5571 return ret;
5572}
5573
5574static int send_encoded_extent(struct send_ctx *sctx, struct btrfs_path *path,
5575 u64 offset, u64 len)
5576{
5577 struct btrfs_root *root = sctx->send_root;
5578 struct btrfs_fs_info *fs_info = root->fs_info;
5579 struct inode *inode;
5580 struct fs_path *fspath;
5581 struct extent_buffer *leaf = path->nodes[0];
5582 struct btrfs_key key;
5583 struct btrfs_file_extent_item *ei;
5584 u64 disk_bytenr, disk_num_bytes;
5585 u32 data_offset;
5586 struct btrfs_cmd_header *hdr;
5587 u32 crc;
5588 int ret;
5589
5590 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root);
5591 if (IS_ERR(inode))
5592 return PTR_ERR(inode);
5593
5594 fspath = fs_path_alloc();
5595 if (!fspath) {
5596 ret = -ENOMEM;
5597 goto out;
5598 }
5599
5600 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5601 if (ret < 0)
5602 goto out;
5603
5604 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5605 if (ret < 0)
5606 goto out;
5607
5608 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5609 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5610 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
5611 disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, ei);
5612
5613 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5614 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5615 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5616 min(key.offset + btrfs_file_extent_num_bytes(leaf, ei) - offset,
5617 len));
5618 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN,
5619 btrfs_file_extent_ram_bytes(leaf, ei));
5620 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET,
5621 offset - key.offset + btrfs_file_extent_offset(leaf, ei));
5622 ret = btrfs_encoded_io_compression_from_extent(fs_info,
5623 btrfs_file_extent_compression(leaf, ei));
5624 if (ret < 0)
5625 goto out;
5626 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5627 TLV_PUT_U32(sctx, BTRFS_SEND_A_ENCRYPTION, 0);
5628
5629 ret = put_data_header(sctx, disk_num_bytes);
5630 if (ret < 0)
5631 goto out;
5632
5633 /*
5634 * We want to do I/O directly into the send buffer, so get the next page
5635 * boundary in the send buffer. This means that there may be a gap
5636 * between the beginning of the command and the file data.
5637 */
5638 data_offset = ALIGN(sctx->send_size, PAGE_SIZE);
5639 if (data_offset > sctx->send_max_size ||
5640 sctx->send_max_size - data_offset < disk_num_bytes) {
5641 ret = -EOVERFLOW;
5642 goto out;
5643 }
5644
5645 /*
5646 * Note that send_buf is a mapping of send_buf_pages, so this is really
5647 * reading into send_buf.
5648 */
5649 ret = btrfs_encoded_read_regular_fill_pages(BTRFS_I(inode), offset,
5650 disk_bytenr, disk_num_bytes,
5651 sctx->send_buf_pages +
5652 (data_offset >> PAGE_SHIFT));
5653 if (ret)
5654 goto out;
5655
5656 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
5657 hdr->len = cpu_to_le32(sctx->send_size + disk_num_bytes - sizeof(*hdr));
5658 hdr->crc = 0;
5659 crc = btrfs_crc32c(0, sctx->send_buf, sctx->send_size);
5660 crc = btrfs_crc32c(crc, sctx->send_buf + data_offset, disk_num_bytes);
5661 hdr->crc = cpu_to_le32(crc);
5662
5663 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
5664 &sctx->send_off);
5665 if (!ret) {
5666 ret = write_buf(sctx->send_filp, sctx->send_buf + data_offset,
5667 disk_num_bytes, &sctx->send_off);
5668 }
5669 sctx->send_size = 0;
5670 sctx->put_data = false;
5671
5672tlv_put_failure:
5673out:
5674 fs_path_free(fspath);
5675 iput(inode);
5676 return ret;
5677}
5678
5679static int send_extent_data(struct send_ctx *sctx, struct btrfs_path *path,
5680 const u64 offset, const u64 len)
5681{
5682 const u64 end = offset + len;
5683 struct extent_buffer *leaf = path->nodes[0];
5684 struct btrfs_file_extent_item *ei;
5685 u64 read_size = max_send_read_size(sctx);
5686 u64 sent = 0;
5687
5688 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5689 return send_update_extent(sctx, offset, len);
5690
5691 ei = btrfs_item_ptr(leaf, path->slots[0],
5692 struct btrfs_file_extent_item);
5693 if ((sctx->flags & BTRFS_SEND_FLAG_COMPRESSED) &&
5694 btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) {
5695 bool is_inline = (btrfs_file_extent_type(leaf, ei) ==
5696 BTRFS_FILE_EXTENT_INLINE);
5697
5698 /*
5699 * Send the compressed extent unless the compressed data is
5700 * larger than the decompressed data. This can happen if we're
5701 * not sending the entire extent, either because it has been
5702 * partially overwritten/truncated or because this is a part of
5703 * the extent that we couldn't clone in clone_range().
5704 */
5705 if (is_inline &&
5706 btrfs_file_extent_inline_item_len(leaf,
5707 path->slots[0]) <= len) {
5708 return send_encoded_inline_extent(sctx, path, offset,
5709 len);
5710 } else if (!is_inline &&
5711 btrfs_file_extent_disk_num_bytes(leaf, ei) <= len) {
5712 return send_encoded_extent(sctx, path, offset, len);
5713 }
5714 }
5715
5716 if (sctx->cur_inode == NULL) {
5717 struct btrfs_root *root = sctx->send_root;
5718
5719 sctx->cur_inode = btrfs_iget(root->fs_info->sb, sctx->cur_ino, root);
5720 if (IS_ERR(sctx->cur_inode)) {
5721 int err = PTR_ERR(sctx->cur_inode);
5722
5723 sctx->cur_inode = NULL;
5724 return err;
5725 }
5726 memset(&sctx->ra, 0, sizeof(struct file_ra_state));
5727 file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping);
5728
5729 /*
5730 * It's very likely there are no pages from this inode in the page
5731 * cache, so after reading extents and sending their data, we clean
5732 * the page cache to avoid trashing the page cache (adding pressure
5733 * to the page cache and forcing eviction of other data more useful
5734 * for applications).
5735 *
5736 * We decide if we should clean the page cache simply by checking
5737 * if the inode's mapping nrpages is 0 when we first open it, and
5738 * not by using something like filemap_range_has_page() before
5739 * reading an extent because when we ask the readahead code to
5740 * read a given file range, it may (and almost always does) read
5741 * pages from beyond that range (see the documentation for
5742 * page_cache_sync_readahead()), so it would not be reliable,
5743 * because after reading the first extent future calls to
5744 * filemap_range_has_page() would return true because the readahead
5745 * on the previous extent resulted in reading pages of the current
5746 * extent as well.
5747 */
5748 sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0);
5749 sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE);
5750 }
5751
5752 while (sent < len) {
5753 u64 size = min(len - sent, read_size);
5754 int ret;
5755
5756 ret = send_write(sctx, offset + sent, size);
5757 if (ret < 0)
5758 return ret;
5759 sent += size;
5760 }
5761
5762 if (sctx->clean_page_cache && IS_ALIGNED(end, PAGE_SIZE)) {
5763 /*
5764 * Always operate only on ranges that are a multiple of the page
5765 * size. This is not only to prevent zeroing parts of a page in
5766 * the case of subpage sector size, but also to guarantee we evict
5767 * pages, as passing a range that is smaller than page size does
5768 * not evict the respective page (only zeroes part of its content).
5769 *
5770 * Always start from the end offset of the last range cleared.
5771 * This is because the readahead code may (and very often does)
5772 * reads pages beyond the range we request for readahead. So if
5773 * we have an extent layout like this:
5774 *
5775 * [ extent A ] [ extent B ] [ extent C ]
5776 *
5777 * When we ask page_cache_sync_readahead() to read extent A, it
5778 * may also trigger reads for pages of extent B. If we are doing
5779 * an incremental send and extent B has not changed between the
5780 * parent and send snapshots, some or all of its pages may end
5781 * up being read and placed in the page cache. So when truncating
5782 * the page cache we always start from the end offset of the
5783 * previously processed extent up to the end of the current
5784 * extent.
5785 */
5786 truncate_inode_pages_range(&sctx->cur_inode->i_data,
5787 sctx->page_cache_clear_start,
5788 end - 1);
5789 sctx->page_cache_clear_start = end;
5790 }
5791
5792 return 0;
5793}
5794
5795/*
5796 * Search for a capability xattr related to sctx->cur_ino. If the capability is
5797 * found, call send_set_xattr function to emit it.
5798 *
5799 * Return 0 if there isn't a capability, or when the capability was emitted
5800 * successfully, or < 0 if an error occurred.
5801 */
5802static int send_capabilities(struct send_ctx *sctx)
5803{
5804 struct fs_path *fspath = NULL;
5805 struct btrfs_path *path;
5806 struct btrfs_dir_item *di;
5807 struct extent_buffer *leaf;
5808 unsigned long data_ptr;
5809 char *buf = NULL;
5810 int buf_len;
5811 int ret = 0;
5812
5813 path = alloc_path_for_send();
5814 if (!path)
5815 return -ENOMEM;
5816
5817 di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
5818 XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
5819 if (!di) {
5820 /* There is no xattr for this inode */
5821 goto out;
5822 } else if (IS_ERR(di)) {
5823 ret = PTR_ERR(di);
5824 goto out;
5825 }
5826
5827 leaf = path->nodes[0];
5828 buf_len = btrfs_dir_data_len(leaf, di);
5829
5830 fspath = fs_path_alloc();
5831 buf = kmalloc(buf_len, GFP_KERNEL);
5832 if (!fspath || !buf) {
5833 ret = -ENOMEM;
5834 goto out;
5835 }
5836
5837 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5838 if (ret < 0)
5839 goto out;
5840
5841 data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
5842 read_extent_buffer(leaf, buf, data_ptr, buf_len);
5843
5844 ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS,
5845 strlen(XATTR_NAME_CAPS), buf, buf_len);
5846out:
5847 kfree(buf);
5848 fs_path_free(fspath);
5849 btrfs_free_path(path);
5850 return ret;
5851}
5852
5853static int clone_range(struct send_ctx *sctx, struct btrfs_path *dst_path,
5854 struct clone_root *clone_root, const u64 disk_byte,
5855 u64 data_offset, u64 offset, u64 len)
5856{
5857 struct btrfs_path *path;
5858 struct btrfs_key key;
5859 int ret;
5860 struct btrfs_inode_info info;
5861 u64 clone_src_i_size = 0;
5862
5863 /*
5864 * Prevent cloning from a zero offset with a length matching the sector
5865 * size because in some scenarios this will make the receiver fail.
5866 *
5867 * For example, if in the source filesystem the extent at offset 0
5868 * has a length of sectorsize and it was written using direct IO, then
5869 * it can never be an inline extent (even if compression is enabled).
5870 * Then this extent can be cloned in the original filesystem to a non
5871 * zero file offset, but it may not be possible to clone in the
5872 * destination filesystem because it can be inlined due to compression
5873 * on the destination filesystem (as the receiver's write operations are
5874 * always done using buffered IO). The same happens when the original
5875 * filesystem does not have compression enabled but the destination
5876 * filesystem has.
5877 */
5878 if (clone_root->offset == 0 &&
5879 len == sctx->send_root->fs_info->sectorsize)
5880 return send_extent_data(sctx, dst_path, offset, len);
5881
5882 path = alloc_path_for_send();
5883 if (!path)
5884 return -ENOMEM;
5885
5886 /*
5887 * There are inodes that have extents that lie behind its i_size. Don't
5888 * accept clones from these extents.
5889 */
5890 ret = get_inode_info(clone_root->root, clone_root->ino, &info);
5891 btrfs_release_path(path);
5892 if (ret < 0)
5893 goto out;
5894 clone_src_i_size = info.size;
5895
5896 /*
5897 * We can't send a clone operation for the entire range if we find
5898 * extent items in the respective range in the source file that
5899 * refer to different extents or if we find holes.
5900 * So check for that and do a mix of clone and regular write/copy
5901 * operations if needed.
5902 *
5903 * Example:
5904 *
5905 * mkfs.btrfs -f /dev/sda
5906 * mount /dev/sda /mnt
5907 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5908 * cp --reflink=always /mnt/foo /mnt/bar
5909 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5910 * btrfs subvolume snapshot -r /mnt /mnt/snap
5911 *
5912 * If when we send the snapshot and we are processing file bar (which
5913 * has a higher inode number than foo) we blindly send a clone operation
5914 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5915 * a file bar that matches the content of file foo - iow, doesn't match
5916 * the content from bar in the original filesystem.
5917 */
5918 key.objectid = clone_root->ino;
5919 key.type = BTRFS_EXTENT_DATA_KEY;
5920 key.offset = clone_root->offset;
5921 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5922 if (ret < 0)
5923 goto out;
5924 if (ret > 0 && path->slots[0] > 0) {
5925 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5926 if (key.objectid == clone_root->ino &&
5927 key.type == BTRFS_EXTENT_DATA_KEY)
5928 path->slots[0]--;
5929 }
5930
5931 while (true) {
5932 struct extent_buffer *leaf = path->nodes[0];
5933 int slot = path->slots[0];
5934 struct btrfs_file_extent_item *ei;
5935 u8 type;
5936 u64 ext_len;
5937 u64 clone_len;
5938 u64 clone_data_offset;
5939 bool crossed_src_i_size = false;
5940
5941 if (slot >= btrfs_header_nritems(leaf)) {
5942 ret = btrfs_next_leaf(clone_root->root, path);
5943 if (ret < 0)
5944 goto out;
5945 else if (ret > 0)
5946 break;
5947 continue;
5948 }
5949
5950 btrfs_item_key_to_cpu(leaf, &key, slot);
5951
5952 /*
5953 * We might have an implicit trailing hole (NO_HOLES feature
5954 * enabled). We deal with it after leaving this loop.
5955 */
5956 if (key.objectid != clone_root->ino ||
5957 key.type != BTRFS_EXTENT_DATA_KEY)
5958 break;
5959
5960 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5961 type = btrfs_file_extent_type(leaf, ei);
5962 if (type == BTRFS_FILE_EXTENT_INLINE) {
5963 ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5964 ext_len = PAGE_ALIGN(ext_len);
5965 } else {
5966 ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5967 }
5968
5969 if (key.offset + ext_len <= clone_root->offset)
5970 goto next;
5971
5972 if (key.offset > clone_root->offset) {
5973 /* Implicit hole, NO_HOLES feature enabled. */
5974 u64 hole_len = key.offset - clone_root->offset;
5975
5976 if (hole_len > len)
5977 hole_len = len;
5978 ret = send_extent_data(sctx, dst_path, offset,
5979 hole_len);
5980 if (ret < 0)
5981 goto out;
5982
5983 len -= hole_len;
5984 if (len == 0)
5985 break;
5986 offset += hole_len;
5987 clone_root->offset += hole_len;
5988 data_offset += hole_len;
5989 }
5990
5991 if (key.offset >= clone_root->offset + len)
5992 break;
5993
5994 if (key.offset >= clone_src_i_size)
5995 break;
5996
5997 if (key.offset + ext_len > clone_src_i_size) {
5998 ext_len = clone_src_i_size - key.offset;
5999 crossed_src_i_size = true;
6000 }
6001
6002 clone_data_offset = btrfs_file_extent_offset(leaf, ei);
6003 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
6004 clone_root->offset = key.offset;
6005 if (clone_data_offset < data_offset &&
6006 clone_data_offset + ext_len > data_offset) {
6007 u64 extent_offset;
6008
6009 extent_offset = data_offset - clone_data_offset;
6010 ext_len -= extent_offset;
6011 clone_data_offset += extent_offset;
6012 clone_root->offset += extent_offset;
6013 }
6014 }
6015
6016 clone_len = min_t(u64, ext_len, len);
6017
6018 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
6019 clone_data_offset == data_offset) {
6020 const u64 src_end = clone_root->offset + clone_len;
6021 const u64 sectorsize = SZ_64K;
6022
6023 /*
6024 * We can't clone the last block, when its size is not
6025 * sector size aligned, into the middle of a file. If we
6026 * do so, the receiver will get a failure (-EINVAL) when
6027 * trying to clone or will silently corrupt the data in
6028 * the destination file if it's on a kernel without the
6029 * fix introduced by commit ac765f83f1397646
6030 * ("Btrfs: fix data corruption due to cloning of eof
6031 * block).
6032 *
6033 * So issue a clone of the aligned down range plus a
6034 * regular write for the eof block, if we hit that case.
6035 *
6036 * Also, we use the maximum possible sector size, 64K,
6037 * because we don't know what's the sector size of the
6038 * filesystem that receives the stream, so we have to
6039 * assume the largest possible sector size.
6040 */
6041 if (src_end == clone_src_i_size &&
6042 !IS_ALIGNED(src_end, sectorsize) &&
6043 offset + clone_len < sctx->cur_inode_size) {
6044 u64 slen;
6045
6046 slen = ALIGN_DOWN(src_end - clone_root->offset,
6047 sectorsize);
6048 if (slen > 0) {
6049 ret = send_clone(sctx, offset, slen,
6050 clone_root);
6051 if (ret < 0)
6052 goto out;
6053 }
6054 ret = send_extent_data(sctx, dst_path,
6055 offset + slen,
6056 clone_len - slen);
6057 } else {
6058 ret = send_clone(sctx, offset, clone_len,
6059 clone_root);
6060 }
6061 } else if (crossed_src_i_size && clone_len < len) {
6062 /*
6063 * If we are at i_size of the clone source inode and we
6064 * can not clone from it, terminate the loop. This is
6065 * to avoid sending two write operations, one with a
6066 * length matching clone_len and the final one after
6067 * this loop with a length of len - clone_len.
6068 *
6069 * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED
6070 * was passed to the send ioctl), this helps avoid
6071 * sending an encoded write for an offset that is not
6072 * sector size aligned, in case the i_size of the source
6073 * inode is not sector size aligned. That will make the
6074 * receiver fallback to decompression of the data and
6075 * writing it using regular buffered IO, therefore while
6076 * not incorrect, it's not optimal due decompression and
6077 * possible re-compression at the receiver.
6078 */
6079 break;
6080 } else {
6081 ret = send_extent_data(sctx, dst_path, offset,
6082 clone_len);
6083 }
6084
6085 if (ret < 0)
6086 goto out;
6087
6088 len -= clone_len;
6089 if (len == 0)
6090 break;
6091 offset += clone_len;
6092 clone_root->offset += clone_len;
6093
6094 /*
6095 * If we are cloning from the file we are currently processing,
6096 * and using the send root as the clone root, we must stop once
6097 * the current clone offset reaches the current eof of the file
6098 * at the receiver, otherwise we would issue an invalid clone
6099 * operation (source range going beyond eof) and cause the
6100 * receiver to fail. So if we reach the current eof, bail out
6101 * and fallback to a regular write.
6102 */
6103 if (clone_root->root == sctx->send_root &&
6104 clone_root->ino == sctx->cur_ino &&
6105 clone_root->offset >= sctx->cur_inode_next_write_offset)
6106 break;
6107
6108 data_offset += clone_len;
6109next:
6110 path->slots[0]++;
6111 }
6112
6113 if (len > 0)
6114 ret = send_extent_data(sctx, dst_path, offset, len);
6115 else
6116 ret = 0;
6117out:
6118 btrfs_free_path(path);
6119 return ret;
6120}
6121
6122static int send_write_or_clone(struct send_ctx *sctx,
6123 struct btrfs_path *path,
6124 struct btrfs_key *key,
6125 struct clone_root *clone_root)
6126{
6127 int ret = 0;
6128 u64 offset = key->offset;
6129 u64 end;
6130 u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
6131
6132 end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size);
6133 if (offset >= end)
6134 return 0;
6135
6136 if (clone_root && IS_ALIGNED(end, bs)) {
6137 struct btrfs_file_extent_item *ei;
6138 u64 disk_byte;
6139 u64 data_offset;
6140
6141 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6142 struct btrfs_file_extent_item);
6143 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
6144 data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
6145 ret = clone_range(sctx, path, clone_root, disk_byte,
6146 data_offset, offset, end - offset);
6147 } else {
6148 ret = send_extent_data(sctx, path, offset, end - offset);
6149 }
6150 sctx->cur_inode_next_write_offset = end;
6151 return ret;
6152}
6153
6154static int is_extent_unchanged(struct send_ctx *sctx,
6155 struct btrfs_path *left_path,
6156 struct btrfs_key *ekey)
6157{
6158 int ret = 0;
6159 struct btrfs_key key;
6160 struct btrfs_path *path = NULL;
6161 struct extent_buffer *eb;
6162 int slot;
6163 struct btrfs_key found_key;
6164 struct btrfs_file_extent_item *ei;
6165 u64 left_disknr;
6166 u64 right_disknr;
6167 u64 left_offset;
6168 u64 right_offset;
6169 u64 left_offset_fixed;
6170 u64 left_len;
6171 u64 right_len;
6172 u64 left_gen;
6173 u64 right_gen;
6174 u8 left_type;
6175 u8 right_type;
6176
6177 path = alloc_path_for_send();
6178 if (!path)
6179 return -ENOMEM;
6180
6181 eb = left_path->nodes[0];
6182 slot = left_path->slots[0];
6183 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6184 left_type = btrfs_file_extent_type(eb, ei);
6185
6186 if (left_type != BTRFS_FILE_EXTENT_REG) {
6187 ret = 0;
6188 goto out;
6189 }
6190 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6191 left_len = btrfs_file_extent_num_bytes(eb, ei);
6192 left_offset = btrfs_file_extent_offset(eb, ei);
6193 left_gen = btrfs_file_extent_generation(eb, ei);
6194
6195 /*
6196 * Following comments will refer to these graphics. L is the left
6197 * extents which we are checking at the moment. 1-8 are the right
6198 * extents that we iterate.
6199 *
6200 * |-----L-----|
6201 * |-1-|-2a-|-3-|-4-|-5-|-6-|
6202 *
6203 * |-----L-----|
6204 * |--1--|-2b-|...(same as above)
6205 *
6206 * Alternative situation. Happens on files where extents got split.
6207 * |-----L-----|
6208 * |-----------7-----------|-6-|
6209 *
6210 * Alternative situation. Happens on files which got larger.
6211 * |-----L-----|
6212 * |-8-|
6213 * Nothing follows after 8.
6214 */
6215
6216 key.objectid = ekey->objectid;
6217 key.type = BTRFS_EXTENT_DATA_KEY;
6218 key.offset = ekey->offset;
6219 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
6220 if (ret < 0)
6221 goto out;
6222 if (ret) {
6223 ret = 0;
6224 goto out;
6225 }
6226
6227 /*
6228 * Handle special case where the right side has no extents at all.
6229 */
6230 eb = path->nodes[0];
6231 slot = path->slots[0];
6232 btrfs_item_key_to_cpu(eb, &found_key, slot);
6233 if (found_key.objectid != key.objectid ||
6234 found_key.type != key.type) {
6235 /* If we're a hole then just pretend nothing changed */
6236 ret = (left_disknr) ? 0 : 1;
6237 goto out;
6238 }
6239
6240 /*
6241 * We're now on 2a, 2b or 7.
6242 */
6243 key = found_key;
6244 while (key.offset < ekey->offset + left_len) {
6245 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6246 right_type = btrfs_file_extent_type(eb, ei);
6247 if (right_type != BTRFS_FILE_EXTENT_REG &&
6248 right_type != BTRFS_FILE_EXTENT_INLINE) {
6249 ret = 0;
6250 goto out;
6251 }
6252
6253 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6254 right_len = btrfs_file_extent_ram_bytes(eb, ei);
6255 right_len = PAGE_ALIGN(right_len);
6256 } else {
6257 right_len = btrfs_file_extent_num_bytes(eb, ei);
6258 }
6259
6260 /*
6261 * Are we at extent 8? If yes, we know the extent is changed.
6262 * This may only happen on the first iteration.
6263 */
6264 if (found_key.offset + right_len <= ekey->offset) {
6265 /* If we're a hole just pretend nothing changed */
6266 ret = (left_disknr) ? 0 : 1;
6267 goto out;
6268 }
6269
6270 /*
6271 * We just wanted to see if when we have an inline extent, what
6272 * follows it is a regular extent (wanted to check the above
6273 * condition for inline extents too). This should normally not
6274 * happen but it's possible for example when we have an inline
6275 * compressed extent representing data with a size matching
6276 * the page size (currently the same as sector size).
6277 */
6278 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6279 ret = 0;
6280 goto out;
6281 }
6282
6283 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6284 right_offset = btrfs_file_extent_offset(eb, ei);
6285 right_gen = btrfs_file_extent_generation(eb, ei);
6286
6287 left_offset_fixed = left_offset;
6288 if (key.offset < ekey->offset) {
6289 /* Fix the right offset for 2a and 7. */
6290 right_offset += ekey->offset - key.offset;
6291 } else {
6292 /* Fix the left offset for all behind 2a and 2b */
6293 left_offset_fixed += key.offset - ekey->offset;
6294 }
6295
6296 /*
6297 * Check if we have the same extent.
6298 */
6299 if (left_disknr != right_disknr ||
6300 left_offset_fixed != right_offset ||
6301 left_gen != right_gen) {
6302 ret = 0;
6303 goto out;
6304 }
6305
6306 /*
6307 * Go to the next extent.
6308 */
6309 ret = btrfs_next_item(sctx->parent_root, path);
6310 if (ret < 0)
6311 goto out;
6312 if (!ret) {
6313 eb = path->nodes[0];
6314 slot = path->slots[0];
6315 btrfs_item_key_to_cpu(eb, &found_key, slot);
6316 }
6317 if (ret || found_key.objectid != key.objectid ||
6318 found_key.type != key.type) {
6319 key.offset += right_len;
6320 break;
6321 }
6322 if (found_key.offset != key.offset + right_len) {
6323 ret = 0;
6324 goto out;
6325 }
6326 key = found_key;
6327 }
6328
6329 /*
6330 * We're now behind the left extent (treat as unchanged) or at the end
6331 * of the right side (treat as changed).
6332 */
6333 if (key.offset >= ekey->offset + left_len)
6334 ret = 1;
6335 else
6336 ret = 0;
6337
6338
6339out:
6340 btrfs_free_path(path);
6341 return ret;
6342}
6343
6344static int get_last_extent(struct send_ctx *sctx, u64 offset)
6345{
6346 struct btrfs_path *path;
6347 struct btrfs_root *root = sctx->send_root;
6348 struct btrfs_key key;
6349 int ret;
6350
6351 path = alloc_path_for_send();
6352 if (!path)
6353 return -ENOMEM;
6354
6355 sctx->cur_inode_last_extent = 0;
6356
6357 key.objectid = sctx->cur_ino;
6358 key.type = BTRFS_EXTENT_DATA_KEY;
6359 key.offset = offset;
6360 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
6361 if (ret < 0)
6362 goto out;
6363 ret = 0;
6364 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
6365 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
6366 goto out;
6367
6368 sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6369out:
6370 btrfs_free_path(path);
6371 return ret;
6372}
6373
6374static int range_is_hole_in_parent(struct send_ctx *sctx,
6375 const u64 start,
6376 const u64 end)
6377{
6378 struct btrfs_path *path;
6379 struct btrfs_key key;
6380 struct btrfs_root *root = sctx->parent_root;
6381 u64 search_start = start;
6382 int ret;
6383
6384 path = alloc_path_for_send();
6385 if (!path)
6386 return -ENOMEM;
6387
6388 key.objectid = sctx->cur_ino;
6389 key.type = BTRFS_EXTENT_DATA_KEY;
6390 key.offset = search_start;
6391 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6392 if (ret < 0)
6393 goto out;
6394 if (ret > 0 && path->slots[0] > 0)
6395 path->slots[0]--;
6396
6397 while (search_start < end) {
6398 struct extent_buffer *leaf = path->nodes[0];
6399 int slot = path->slots[0];
6400 struct btrfs_file_extent_item *fi;
6401 u64 extent_end;
6402
6403 if (slot >= btrfs_header_nritems(leaf)) {
6404 ret = btrfs_next_leaf(root, path);
6405 if (ret < 0)
6406 goto out;
6407 else if (ret > 0)
6408 break;
6409 continue;
6410 }
6411
6412 btrfs_item_key_to_cpu(leaf, &key, slot);
6413 if (key.objectid < sctx->cur_ino ||
6414 key.type < BTRFS_EXTENT_DATA_KEY)
6415 goto next;
6416 if (key.objectid > sctx->cur_ino ||
6417 key.type > BTRFS_EXTENT_DATA_KEY ||
6418 key.offset >= end)
6419 break;
6420
6421 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6422 extent_end = btrfs_file_extent_end(path);
6423 if (extent_end <= start)
6424 goto next;
6425 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
6426 search_start = extent_end;
6427 goto next;
6428 }
6429 ret = 0;
6430 goto out;
6431next:
6432 path->slots[0]++;
6433 }
6434 ret = 1;
6435out:
6436 btrfs_free_path(path);
6437 return ret;
6438}
6439
6440static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
6441 struct btrfs_key *key)
6442{
6443 int ret = 0;
6444
6445 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
6446 return 0;
6447
6448 if (sctx->cur_inode_last_extent == (u64)-1) {
6449 ret = get_last_extent(sctx, key->offset - 1);
6450 if (ret)
6451 return ret;
6452 }
6453
6454 if (path->slots[0] == 0 &&
6455 sctx->cur_inode_last_extent < key->offset) {
6456 /*
6457 * We might have skipped entire leafs that contained only
6458 * file extent items for our current inode. These leafs have
6459 * a generation number smaller (older) than the one in the
6460 * current leaf and the leaf our last extent came from, and
6461 * are located between these 2 leafs.
6462 */
6463 ret = get_last_extent(sctx, key->offset - 1);
6464 if (ret)
6465 return ret;
6466 }
6467
6468 if (sctx->cur_inode_last_extent < key->offset) {
6469 ret = range_is_hole_in_parent(sctx,
6470 sctx->cur_inode_last_extent,
6471 key->offset);
6472 if (ret < 0)
6473 return ret;
6474 else if (ret == 0)
6475 ret = send_hole(sctx, key->offset);
6476 else
6477 ret = 0;
6478 }
6479 sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6480 return ret;
6481}
6482
6483static int process_extent(struct send_ctx *sctx,
6484 struct btrfs_path *path,
6485 struct btrfs_key *key)
6486{
6487 struct clone_root *found_clone = NULL;
6488 int ret = 0;
6489
6490 if (S_ISLNK(sctx->cur_inode_mode))
6491 return 0;
6492
6493 if (sctx->parent_root && !sctx->cur_inode_new) {
6494 ret = is_extent_unchanged(sctx, path, key);
6495 if (ret < 0)
6496 goto out;
6497 if (ret) {
6498 ret = 0;
6499 goto out_hole;
6500 }
6501 } else {
6502 struct btrfs_file_extent_item *ei;
6503 u8 type;
6504
6505 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6506 struct btrfs_file_extent_item);
6507 type = btrfs_file_extent_type(path->nodes[0], ei);
6508 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
6509 type == BTRFS_FILE_EXTENT_REG) {
6510 /*
6511 * The send spec does not have a prealloc command yet,
6512 * so just leave a hole for prealloc'ed extents until
6513 * we have enough commands queued up to justify rev'ing
6514 * the send spec.
6515 */
6516 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
6517 ret = 0;
6518 goto out;
6519 }
6520
6521 /* Have a hole, just skip it. */
6522 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
6523 ret = 0;
6524 goto out;
6525 }
6526 }
6527 }
6528
6529 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
6530 sctx->cur_inode_size, &found_clone);
6531 if (ret != -ENOENT && ret < 0)
6532 goto out;
6533
6534 ret = send_write_or_clone(sctx, path, key, found_clone);
6535 if (ret)
6536 goto out;
6537out_hole:
6538 ret = maybe_send_hole(sctx, path, key);
6539out:
6540 return ret;
6541}
6542
6543static int process_all_extents(struct send_ctx *sctx)
6544{
6545 int ret = 0;
6546 int iter_ret = 0;
6547 struct btrfs_root *root;
6548 struct btrfs_path *path;
6549 struct btrfs_key key;
6550 struct btrfs_key found_key;
6551
6552 root = sctx->send_root;
6553 path = alloc_path_for_send();
6554 if (!path)
6555 return -ENOMEM;
6556
6557 key.objectid = sctx->cmp_key->objectid;
6558 key.type = BTRFS_EXTENT_DATA_KEY;
6559 key.offset = 0;
6560 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
6561 if (found_key.objectid != key.objectid ||
6562 found_key.type != key.type) {
6563 ret = 0;
6564 break;
6565 }
6566
6567 ret = process_extent(sctx, path, &found_key);
6568 if (ret < 0)
6569 break;
6570 }
6571 /* Catch error found during iteration */
6572 if (iter_ret < 0)
6573 ret = iter_ret;
6574
6575 btrfs_free_path(path);
6576 return ret;
6577}
6578
6579static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
6580 int *pending_move,
6581 int *refs_processed)
6582{
6583 int ret = 0;
6584
6585 if (sctx->cur_ino == 0)
6586 goto out;
6587 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
6588 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
6589 goto out;
6590 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
6591 goto out;
6592
6593 ret = process_recorded_refs(sctx, pending_move);
6594 if (ret < 0)
6595 goto out;
6596
6597 *refs_processed = 1;
6598out:
6599 return ret;
6600}
6601
6602static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
6603{
6604 int ret = 0;
6605 struct btrfs_inode_info info;
6606 u64 left_mode;
6607 u64 left_uid;
6608 u64 left_gid;
6609 u64 left_fileattr;
6610 u64 right_mode;
6611 u64 right_uid;
6612 u64 right_gid;
6613 u64 right_fileattr;
6614 int need_chmod = 0;
6615 int need_chown = 0;
6616 bool need_fileattr = false;
6617 int need_truncate = 1;
6618 int pending_move = 0;
6619 int refs_processed = 0;
6620
6621 if (sctx->ignore_cur_inode)
6622 return 0;
6623
6624 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
6625 &refs_processed);
6626 if (ret < 0)
6627 goto out;
6628
6629 /*
6630 * We have processed the refs and thus need to advance send_progress.
6631 * Now, calls to get_cur_xxx will take the updated refs of the current
6632 * inode into account.
6633 *
6634 * On the other hand, if our current inode is a directory and couldn't
6635 * be moved/renamed because its parent was renamed/moved too and it has
6636 * a higher inode number, we can only move/rename our current inode
6637 * after we moved/renamed its parent. Therefore in this case operate on
6638 * the old path (pre move/rename) of our current inode, and the
6639 * move/rename will be performed later.
6640 */
6641 if (refs_processed && !pending_move)
6642 sctx->send_progress = sctx->cur_ino + 1;
6643
6644 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
6645 goto out;
6646 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
6647 goto out;
6648 ret = get_inode_info(sctx->send_root, sctx->cur_ino, &info);
6649 if (ret < 0)
6650 goto out;
6651 left_mode = info.mode;
6652 left_uid = info.uid;
6653 left_gid = info.gid;
6654 left_fileattr = info.fileattr;
6655
6656 if (!sctx->parent_root || sctx->cur_inode_new) {
6657 need_chown = 1;
6658 if (!S_ISLNK(sctx->cur_inode_mode))
6659 need_chmod = 1;
6660 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
6661 need_truncate = 0;
6662 } else {
6663 u64 old_size;
6664
6665 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, &info);
6666 if (ret < 0)
6667 goto out;
6668 old_size = info.size;
6669 right_mode = info.mode;
6670 right_uid = info.uid;
6671 right_gid = info.gid;
6672 right_fileattr = info.fileattr;
6673
6674 if (left_uid != right_uid || left_gid != right_gid)
6675 need_chown = 1;
6676 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
6677 need_chmod = 1;
6678 if (!S_ISLNK(sctx->cur_inode_mode) && left_fileattr != right_fileattr)
6679 need_fileattr = true;
6680 if ((old_size == sctx->cur_inode_size) ||
6681 (sctx->cur_inode_size > old_size &&
6682 sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
6683 need_truncate = 0;
6684 }
6685
6686 if (S_ISREG(sctx->cur_inode_mode)) {
6687 if (need_send_hole(sctx)) {
6688 if (sctx->cur_inode_last_extent == (u64)-1 ||
6689 sctx->cur_inode_last_extent <
6690 sctx->cur_inode_size) {
6691 ret = get_last_extent(sctx, (u64)-1);
6692 if (ret)
6693 goto out;
6694 }
6695 if (sctx->cur_inode_last_extent <
6696 sctx->cur_inode_size) {
6697 ret = send_hole(sctx, sctx->cur_inode_size);
6698 if (ret)
6699 goto out;
6700 }
6701 }
6702 if (need_truncate) {
6703 ret = send_truncate(sctx, sctx->cur_ino,
6704 sctx->cur_inode_gen,
6705 sctx->cur_inode_size);
6706 if (ret < 0)
6707 goto out;
6708 }
6709 }
6710
6711 if (need_chown) {
6712 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6713 left_uid, left_gid);
6714 if (ret < 0)
6715 goto out;
6716 }
6717 if (need_chmod) {
6718 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6719 left_mode);
6720 if (ret < 0)
6721 goto out;
6722 }
6723 if (need_fileattr) {
6724 ret = send_fileattr(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6725 left_fileattr);
6726 if (ret < 0)
6727 goto out;
6728 }
6729
6730 if (proto_cmd_ok(sctx, BTRFS_SEND_C_ENABLE_VERITY)
6731 && sctx->cur_inode_needs_verity) {
6732 ret = process_verity(sctx);
6733 if (ret < 0)
6734 goto out;
6735 }
6736
6737 ret = send_capabilities(sctx);
6738 if (ret < 0)
6739 goto out;
6740
6741 /*
6742 * If other directory inodes depended on our current directory
6743 * inode's move/rename, now do their move/rename operations.
6744 */
6745 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6746 ret = apply_children_dir_moves(sctx);
6747 if (ret)
6748 goto out;
6749 /*
6750 * Need to send that every time, no matter if it actually
6751 * changed between the two trees as we have done changes to
6752 * the inode before. If our inode is a directory and it's
6753 * waiting to be moved/renamed, we will send its utimes when
6754 * it's moved/renamed, therefore we don't need to do it here.
6755 */
6756 sctx->send_progress = sctx->cur_ino + 1;
6757 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6758 if (ret < 0)
6759 goto out;
6760 }
6761
6762out:
6763 return ret;
6764}
6765
6766static void close_current_inode(struct send_ctx *sctx)
6767{
6768 u64 i_size;
6769
6770 if (sctx->cur_inode == NULL)
6771 return;
6772
6773 i_size = i_size_read(sctx->cur_inode);
6774
6775 /*
6776 * If we are doing an incremental send, we may have extents between the
6777 * last processed extent and the i_size that have not been processed
6778 * because they haven't changed but we may have read some of their pages
6779 * through readahead, see the comments at send_extent_data().
6780 */
6781 if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size)
6782 truncate_inode_pages_range(&sctx->cur_inode->i_data,
6783 sctx->page_cache_clear_start,
6784 round_up(i_size, PAGE_SIZE) - 1);
6785
6786 iput(sctx->cur_inode);
6787 sctx->cur_inode = NULL;
6788}
6789
6790static int changed_inode(struct send_ctx *sctx,
6791 enum btrfs_compare_tree_result result)
6792{
6793 int ret = 0;
6794 struct btrfs_key *key = sctx->cmp_key;
6795 struct btrfs_inode_item *left_ii = NULL;
6796 struct btrfs_inode_item *right_ii = NULL;
6797 u64 left_gen = 0;
6798 u64 right_gen = 0;
6799
6800 close_current_inode(sctx);
6801
6802 sctx->cur_ino = key->objectid;
6803 sctx->cur_inode_new_gen = false;
6804 sctx->cur_inode_last_extent = (u64)-1;
6805 sctx->cur_inode_next_write_offset = 0;
6806 sctx->ignore_cur_inode = false;
6807
6808 /*
6809 * Set send_progress to current inode. This will tell all get_cur_xxx
6810 * functions that the current inode's refs are not updated yet. Later,
6811 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6812 */
6813 sctx->send_progress = sctx->cur_ino;
6814
6815 if (result == BTRFS_COMPARE_TREE_NEW ||
6816 result == BTRFS_COMPARE_TREE_CHANGED) {
6817 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6818 sctx->left_path->slots[0],
6819 struct btrfs_inode_item);
6820 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6821 left_ii);
6822 } else {
6823 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6824 sctx->right_path->slots[0],
6825 struct btrfs_inode_item);
6826 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6827 right_ii);
6828 }
6829 if (result == BTRFS_COMPARE_TREE_CHANGED) {
6830 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6831 sctx->right_path->slots[0],
6832 struct btrfs_inode_item);
6833
6834 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6835 right_ii);
6836
6837 /*
6838 * The cur_ino = root dir case is special here. We can't treat
6839 * the inode as deleted+reused because it would generate a
6840 * stream that tries to delete/mkdir the root dir.
6841 */
6842 if (left_gen != right_gen &&
6843 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6844 sctx->cur_inode_new_gen = true;
6845 }
6846
6847 /*
6848 * Normally we do not find inodes with a link count of zero (orphans)
6849 * because the most common case is to create a snapshot and use it
6850 * for a send operation. However other less common use cases involve
6851 * using a subvolume and send it after turning it to RO mode just
6852 * after deleting all hard links of a file while holding an open
6853 * file descriptor against it or turning a RO snapshot into RW mode,
6854 * keep an open file descriptor against a file, delete it and then
6855 * turn the snapshot back to RO mode before using it for a send
6856 * operation. The former is what the receiver operation does.
6857 * Therefore, if we want to send these snapshots soon after they're
6858 * received, we need to handle orphan inodes as well. Moreover, orphans
6859 * can appear not only in the send snapshot but also in the parent
6860 * snapshot. Here are several cases:
6861 *
6862 * Case 1: BTRFS_COMPARE_TREE_NEW
6863 * | send snapshot | action
6864 * --------------------------------
6865 * nlink | 0 | ignore
6866 *
6867 * Case 2: BTRFS_COMPARE_TREE_DELETED
6868 * | parent snapshot | action
6869 * ----------------------------------
6870 * nlink | 0 | as usual
6871 * Note: No unlinks will be sent because there're no paths for it.
6872 *
6873 * Case 3: BTRFS_COMPARE_TREE_CHANGED
6874 * | | parent snapshot | send snapshot | action
6875 * -----------------------------------------------------------------------
6876 * subcase 1 | nlink | 0 | 0 | ignore
6877 * subcase 2 | nlink | >0 | 0 | new_gen(deletion)
6878 * subcase 3 | nlink | 0 | >0 | new_gen(creation)
6879 *
6880 */
6881 if (result == BTRFS_COMPARE_TREE_NEW) {
6882 if (btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii) == 0) {
6883 sctx->ignore_cur_inode = true;
6884 goto out;
6885 }
6886 sctx->cur_inode_gen = left_gen;
6887 sctx->cur_inode_new = true;
6888 sctx->cur_inode_deleted = false;
6889 sctx->cur_inode_size = btrfs_inode_size(
6890 sctx->left_path->nodes[0], left_ii);
6891 sctx->cur_inode_mode = btrfs_inode_mode(
6892 sctx->left_path->nodes[0], left_ii);
6893 sctx->cur_inode_rdev = btrfs_inode_rdev(
6894 sctx->left_path->nodes[0], left_ii);
6895 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6896 ret = send_create_inode_if_needed(sctx);
6897 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
6898 sctx->cur_inode_gen = right_gen;
6899 sctx->cur_inode_new = false;
6900 sctx->cur_inode_deleted = true;
6901 sctx->cur_inode_size = btrfs_inode_size(
6902 sctx->right_path->nodes[0], right_ii);
6903 sctx->cur_inode_mode = btrfs_inode_mode(
6904 sctx->right_path->nodes[0], right_ii);
6905 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
6906 u32 new_nlinks, old_nlinks;
6907
6908 new_nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6909 old_nlinks = btrfs_inode_nlink(sctx->right_path->nodes[0], right_ii);
6910 if (new_nlinks == 0 && old_nlinks == 0) {
6911 sctx->ignore_cur_inode = true;
6912 goto out;
6913 } else if (new_nlinks == 0 || old_nlinks == 0) {
6914 sctx->cur_inode_new_gen = 1;
6915 }
6916 /*
6917 * We need to do some special handling in case the inode was
6918 * reported as changed with a changed generation number. This
6919 * means that the original inode was deleted and new inode
6920 * reused the same inum. So we have to treat the old inode as
6921 * deleted and the new one as new.
6922 */
6923 if (sctx->cur_inode_new_gen) {
6924 /*
6925 * First, process the inode as if it was deleted.
6926 */
6927 if (old_nlinks > 0) {
6928 sctx->cur_inode_gen = right_gen;
6929 sctx->cur_inode_new = false;
6930 sctx->cur_inode_deleted = true;
6931 sctx->cur_inode_size = btrfs_inode_size(
6932 sctx->right_path->nodes[0], right_ii);
6933 sctx->cur_inode_mode = btrfs_inode_mode(
6934 sctx->right_path->nodes[0], right_ii);
6935 ret = process_all_refs(sctx,
6936 BTRFS_COMPARE_TREE_DELETED);
6937 if (ret < 0)
6938 goto out;
6939 }
6940
6941 /*
6942 * Now process the inode as if it was new.
6943 */
6944 if (new_nlinks > 0) {
6945 sctx->cur_inode_gen = left_gen;
6946 sctx->cur_inode_new = true;
6947 sctx->cur_inode_deleted = false;
6948 sctx->cur_inode_size = btrfs_inode_size(
6949 sctx->left_path->nodes[0],
6950 left_ii);
6951 sctx->cur_inode_mode = btrfs_inode_mode(
6952 sctx->left_path->nodes[0],
6953 left_ii);
6954 sctx->cur_inode_rdev = btrfs_inode_rdev(
6955 sctx->left_path->nodes[0],
6956 left_ii);
6957 ret = send_create_inode_if_needed(sctx);
6958 if (ret < 0)
6959 goto out;
6960
6961 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6962 if (ret < 0)
6963 goto out;
6964 /*
6965 * Advance send_progress now as we did not get
6966 * into process_recorded_refs_if_needed in the
6967 * new_gen case.
6968 */
6969 sctx->send_progress = sctx->cur_ino + 1;
6970
6971 /*
6972 * Now process all extents and xattrs of the
6973 * inode as if they were all new.
6974 */
6975 ret = process_all_extents(sctx);
6976 if (ret < 0)
6977 goto out;
6978 ret = process_all_new_xattrs(sctx);
6979 if (ret < 0)
6980 goto out;
6981 }
6982 } else {
6983 sctx->cur_inode_gen = left_gen;
6984 sctx->cur_inode_new = false;
6985 sctx->cur_inode_new_gen = false;
6986 sctx->cur_inode_deleted = false;
6987 sctx->cur_inode_size = btrfs_inode_size(
6988 sctx->left_path->nodes[0], left_ii);
6989 sctx->cur_inode_mode = btrfs_inode_mode(
6990 sctx->left_path->nodes[0], left_ii);
6991 }
6992 }
6993
6994out:
6995 return ret;
6996}
6997
6998/*
6999 * We have to process new refs before deleted refs, but compare_trees gives us
7000 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
7001 * first and later process them in process_recorded_refs.
7002 * For the cur_inode_new_gen case, we skip recording completely because
7003 * changed_inode did already initiate processing of refs. The reason for this is
7004 * that in this case, compare_tree actually compares the refs of 2 different
7005 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
7006 * refs of the right tree as deleted and all refs of the left tree as new.
7007 */
7008static int changed_ref(struct send_ctx *sctx,
7009 enum btrfs_compare_tree_result result)
7010{
7011 int ret = 0;
7012
7013 if (sctx->cur_ino != sctx->cmp_key->objectid) {
7014 inconsistent_snapshot_error(sctx, result, "reference");
7015 return -EIO;
7016 }
7017
7018 if (!sctx->cur_inode_new_gen &&
7019 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
7020 if (result == BTRFS_COMPARE_TREE_NEW)
7021 ret = record_new_ref(sctx);
7022 else if (result == BTRFS_COMPARE_TREE_DELETED)
7023 ret = record_deleted_ref(sctx);
7024 else if (result == BTRFS_COMPARE_TREE_CHANGED)
7025 ret = record_changed_ref(sctx);
7026 }
7027
7028 return ret;
7029}
7030
7031/*
7032 * Process new/deleted/changed xattrs. We skip processing in the
7033 * cur_inode_new_gen case because changed_inode did already initiate processing
7034 * of xattrs. The reason is the same as in changed_ref
7035 */
7036static int changed_xattr(struct send_ctx *sctx,
7037 enum btrfs_compare_tree_result result)
7038{
7039 int ret = 0;
7040
7041 if (sctx->cur_ino != sctx->cmp_key->objectid) {
7042 inconsistent_snapshot_error(sctx, result, "xattr");
7043 return -EIO;
7044 }
7045
7046 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7047 if (result == BTRFS_COMPARE_TREE_NEW)
7048 ret = process_new_xattr(sctx);
7049 else if (result == BTRFS_COMPARE_TREE_DELETED)
7050 ret = process_deleted_xattr(sctx);
7051 else if (result == BTRFS_COMPARE_TREE_CHANGED)
7052 ret = process_changed_xattr(sctx);
7053 }
7054
7055 return ret;
7056}
7057
7058/*
7059 * Process new/deleted/changed extents. We skip processing in the
7060 * cur_inode_new_gen case because changed_inode did already initiate processing
7061 * of extents. The reason is the same as in changed_ref
7062 */
7063static int changed_extent(struct send_ctx *sctx,
7064 enum btrfs_compare_tree_result result)
7065{
7066 int ret = 0;
7067
7068 /*
7069 * We have found an extent item that changed without the inode item
7070 * having changed. This can happen either after relocation (where the
7071 * disk_bytenr of an extent item is replaced at
7072 * relocation.c:replace_file_extents()) or after deduplication into a
7073 * file in both the parent and send snapshots (where an extent item can
7074 * get modified or replaced with a new one). Note that deduplication
7075 * updates the inode item, but it only changes the iversion (sequence
7076 * field in the inode item) of the inode, so if a file is deduplicated
7077 * the same amount of times in both the parent and send snapshots, its
7078 * iversion becomes the same in both snapshots, whence the inode item is
7079 * the same on both snapshots.
7080 */
7081 if (sctx->cur_ino != sctx->cmp_key->objectid)
7082 return 0;
7083
7084 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7085 if (result != BTRFS_COMPARE_TREE_DELETED)
7086 ret = process_extent(sctx, sctx->left_path,
7087 sctx->cmp_key);
7088 }
7089
7090 return ret;
7091}
7092
7093static int changed_verity(struct send_ctx *sctx, enum btrfs_compare_tree_result result)
7094{
7095 int ret = 0;
7096
7097 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7098 if (result == BTRFS_COMPARE_TREE_NEW)
7099 sctx->cur_inode_needs_verity = true;
7100 }
7101 return ret;
7102}
7103
7104static int dir_changed(struct send_ctx *sctx, u64 dir)
7105{
7106 u64 orig_gen, new_gen;
7107 int ret;
7108
7109 ret = get_inode_gen(sctx->send_root, dir, &new_gen);
7110 if (ret)
7111 return ret;
7112
7113 ret = get_inode_gen(sctx->parent_root, dir, &orig_gen);
7114 if (ret)
7115 return ret;
7116
7117 return (orig_gen != new_gen) ? 1 : 0;
7118}
7119
7120static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
7121 struct btrfs_key *key)
7122{
7123 struct btrfs_inode_extref *extref;
7124 struct extent_buffer *leaf;
7125 u64 dirid = 0, last_dirid = 0;
7126 unsigned long ptr;
7127 u32 item_size;
7128 u32 cur_offset = 0;
7129 int ref_name_len;
7130 int ret = 0;
7131
7132 /* Easy case, just check this one dirid */
7133 if (key->type == BTRFS_INODE_REF_KEY) {
7134 dirid = key->offset;
7135
7136 ret = dir_changed(sctx, dirid);
7137 goto out;
7138 }
7139
7140 leaf = path->nodes[0];
7141 item_size = btrfs_item_size(leaf, path->slots[0]);
7142 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
7143 while (cur_offset < item_size) {
7144 extref = (struct btrfs_inode_extref *)(ptr +
7145 cur_offset);
7146 dirid = btrfs_inode_extref_parent(leaf, extref);
7147 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
7148 cur_offset += ref_name_len + sizeof(*extref);
7149 if (dirid == last_dirid)
7150 continue;
7151 ret = dir_changed(sctx, dirid);
7152 if (ret)
7153 break;
7154 last_dirid = dirid;
7155 }
7156out:
7157 return ret;
7158}
7159
7160/*
7161 * Updates compare related fields in sctx and simply forwards to the actual
7162 * changed_xxx functions.
7163 */
7164static int changed_cb(struct btrfs_path *left_path,
7165 struct btrfs_path *right_path,
7166 struct btrfs_key *key,
7167 enum btrfs_compare_tree_result result,
7168 struct send_ctx *sctx)
7169{
7170 int ret = 0;
7171
7172 /*
7173 * We can not hold the commit root semaphore here. This is because in
7174 * the case of sending and receiving to the same filesystem, using a
7175 * pipe, could result in a deadlock:
7176 *
7177 * 1) The task running send blocks on the pipe because it's full;
7178 *
7179 * 2) The task running receive, which is the only consumer of the pipe,
7180 * is waiting for a transaction commit (for example due to a space
7181 * reservation when doing a write or triggering a transaction commit
7182 * when creating a subvolume);
7183 *
7184 * 3) The transaction is waiting to write lock the commit root semaphore,
7185 * but can not acquire it since it's being held at 1).
7186 *
7187 * Down this call chain we write to the pipe through kernel_write().
7188 * The same type of problem can also happen when sending to a file that
7189 * is stored in the same filesystem - when reserving space for a write
7190 * into the file, we can trigger a transaction commit.
7191 *
7192 * Our caller has supplied us with clones of leaves from the send and
7193 * parent roots, so we're safe here from a concurrent relocation and
7194 * further reallocation of metadata extents while we are here. Below we
7195 * also assert that the leaves are clones.
7196 */
7197 lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem);
7198
7199 /*
7200 * We always have a send root, so left_path is never NULL. We will not
7201 * have a leaf when we have reached the end of the send root but have
7202 * not yet reached the end of the parent root.
7203 */
7204 if (left_path->nodes[0])
7205 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7206 &left_path->nodes[0]->bflags));
7207 /*
7208 * When doing a full send we don't have a parent root, so right_path is
7209 * NULL. When doing an incremental send, we may have reached the end of
7210 * the parent root already, so we don't have a leaf at right_path.
7211 */
7212 if (right_path && right_path->nodes[0])
7213 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7214 &right_path->nodes[0]->bflags));
7215
7216 if (result == BTRFS_COMPARE_TREE_SAME) {
7217 if (key->type == BTRFS_INODE_REF_KEY ||
7218 key->type == BTRFS_INODE_EXTREF_KEY) {
7219 ret = compare_refs(sctx, left_path, key);
7220 if (!ret)
7221 return 0;
7222 if (ret < 0)
7223 return ret;
7224 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
7225 return maybe_send_hole(sctx, left_path, key);
7226 } else {
7227 return 0;
7228 }
7229 result = BTRFS_COMPARE_TREE_CHANGED;
7230 ret = 0;
7231 }
7232
7233 sctx->left_path = left_path;
7234 sctx->right_path = right_path;
7235 sctx->cmp_key = key;
7236
7237 ret = finish_inode_if_needed(sctx, 0);
7238 if (ret < 0)
7239 goto out;
7240
7241 /* Ignore non-FS objects */
7242 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
7243 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
7244 goto out;
7245
7246 if (key->type == BTRFS_INODE_ITEM_KEY) {
7247 ret = changed_inode(sctx, result);
7248 } else if (!sctx->ignore_cur_inode) {
7249 if (key->type == BTRFS_INODE_REF_KEY ||
7250 key->type == BTRFS_INODE_EXTREF_KEY)
7251 ret = changed_ref(sctx, result);
7252 else if (key->type == BTRFS_XATTR_ITEM_KEY)
7253 ret = changed_xattr(sctx, result);
7254 else if (key->type == BTRFS_EXTENT_DATA_KEY)
7255 ret = changed_extent(sctx, result);
7256 else if (key->type == BTRFS_VERITY_DESC_ITEM_KEY &&
7257 key->offset == 0)
7258 ret = changed_verity(sctx, result);
7259 }
7260
7261out:
7262 return ret;
7263}
7264
7265static int search_key_again(const struct send_ctx *sctx,
7266 struct btrfs_root *root,
7267 struct btrfs_path *path,
7268 const struct btrfs_key *key)
7269{
7270 int ret;
7271
7272 if (!path->need_commit_sem)
7273 lockdep_assert_held_read(&root->fs_info->commit_root_sem);
7274
7275 /*
7276 * Roots used for send operations are readonly and no one can add,
7277 * update or remove keys from them, so we should be able to find our
7278 * key again. The only exception is deduplication, which can operate on
7279 * readonly roots and add, update or remove keys to/from them - but at
7280 * the moment we don't allow it to run in parallel with send.
7281 */
7282 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7283 ASSERT(ret <= 0);
7284 if (ret > 0) {
7285 btrfs_print_tree(path->nodes[path->lowest_level], false);
7286 btrfs_err(root->fs_info,
7287"send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d",
7288 key->objectid, key->type, key->offset,
7289 (root == sctx->parent_root ? "parent" : "send"),
7290 root->root_key.objectid, path->lowest_level,
7291 path->slots[path->lowest_level]);
7292 return -EUCLEAN;
7293 }
7294
7295 return ret;
7296}
7297
7298static int full_send_tree(struct send_ctx *sctx)
7299{
7300 int ret;
7301 struct btrfs_root *send_root = sctx->send_root;
7302 struct btrfs_key key;
7303 struct btrfs_fs_info *fs_info = send_root->fs_info;
7304 struct btrfs_path *path;
7305
7306 path = alloc_path_for_send();
7307 if (!path)
7308 return -ENOMEM;
7309 path->reada = READA_FORWARD_ALWAYS;
7310
7311 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
7312 key.type = BTRFS_INODE_ITEM_KEY;
7313 key.offset = 0;
7314
7315 down_read(&fs_info->commit_root_sem);
7316 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7317 up_read(&fs_info->commit_root_sem);
7318
7319 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
7320 if (ret < 0)
7321 goto out;
7322 if (ret)
7323 goto out_finish;
7324
7325 while (1) {
7326 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
7327
7328 ret = changed_cb(path, NULL, &key,
7329 BTRFS_COMPARE_TREE_NEW, sctx);
7330 if (ret < 0)
7331 goto out;
7332
7333 down_read(&fs_info->commit_root_sem);
7334 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7335 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7336 up_read(&fs_info->commit_root_sem);
7337 /*
7338 * A transaction used for relocating a block group was
7339 * committed or is about to finish its commit. Release
7340 * our path (leaf) and restart the search, so that we
7341 * avoid operating on any file extent items that are
7342 * stale, with a disk_bytenr that reflects a pre
7343 * relocation value. This way we avoid as much as
7344 * possible to fallback to regular writes when checking
7345 * if we can clone file ranges.
7346 */
7347 btrfs_release_path(path);
7348 ret = search_key_again(sctx, send_root, path, &key);
7349 if (ret < 0)
7350 goto out;
7351 } else {
7352 up_read(&fs_info->commit_root_sem);
7353 }
7354
7355 ret = btrfs_next_item(send_root, path);
7356 if (ret < 0)
7357 goto out;
7358 if (ret) {
7359 ret = 0;
7360 break;
7361 }
7362 }
7363
7364out_finish:
7365 ret = finish_inode_if_needed(sctx, 1);
7366
7367out:
7368 btrfs_free_path(path);
7369 return ret;
7370}
7371
7372static int replace_node_with_clone(struct btrfs_path *path, int level)
7373{
7374 struct extent_buffer *clone;
7375
7376 clone = btrfs_clone_extent_buffer(path->nodes[level]);
7377 if (!clone)
7378 return -ENOMEM;
7379
7380 free_extent_buffer(path->nodes[level]);
7381 path->nodes[level] = clone;
7382
7383 return 0;
7384}
7385
7386static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen)
7387{
7388 struct extent_buffer *eb;
7389 struct extent_buffer *parent = path->nodes[*level];
7390 int slot = path->slots[*level];
7391 const int nritems = btrfs_header_nritems(parent);
7392 u64 reada_max;
7393 u64 reada_done = 0;
7394
7395 lockdep_assert_held_read(&parent->fs_info->commit_root_sem);
7396
7397 BUG_ON(*level == 0);
7398 eb = btrfs_read_node_slot(parent, slot);
7399 if (IS_ERR(eb))
7400 return PTR_ERR(eb);
7401
7402 /*
7403 * Trigger readahead for the next leaves we will process, so that it is
7404 * very likely that when we need them they are already in memory and we
7405 * will not block on disk IO. For nodes we only do readahead for one,
7406 * since the time window between processing nodes is typically larger.
7407 */
7408 reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize);
7409
7410 for (slot++; slot < nritems && reada_done < reada_max; slot++) {
7411 if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) {
7412 btrfs_readahead_node_child(parent, slot);
7413 reada_done += eb->fs_info->nodesize;
7414 }
7415 }
7416
7417 path->nodes[*level - 1] = eb;
7418 path->slots[*level - 1] = 0;
7419 (*level)--;
7420
7421 if (*level == 0)
7422 return replace_node_with_clone(path, 0);
7423
7424 return 0;
7425}
7426
7427static int tree_move_next_or_upnext(struct btrfs_path *path,
7428 int *level, int root_level)
7429{
7430 int ret = 0;
7431 int nritems;
7432 nritems = btrfs_header_nritems(path->nodes[*level]);
7433
7434 path->slots[*level]++;
7435
7436 while (path->slots[*level] >= nritems) {
7437 if (*level == root_level) {
7438 path->slots[*level] = nritems - 1;
7439 return -1;
7440 }
7441
7442 /* move upnext */
7443 path->slots[*level] = 0;
7444 free_extent_buffer(path->nodes[*level]);
7445 path->nodes[*level] = NULL;
7446 (*level)++;
7447 path->slots[*level]++;
7448
7449 nritems = btrfs_header_nritems(path->nodes[*level]);
7450 ret = 1;
7451 }
7452 return ret;
7453}
7454
7455/*
7456 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
7457 * or down.
7458 */
7459static int tree_advance(struct btrfs_path *path,
7460 int *level, int root_level,
7461 int allow_down,
7462 struct btrfs_key *key,
7463 u64 reada_min_gen)
7464{
7465 int ret;
7466
7467 if (*level == 0 || !allow_down) {
7468 ret = tree_move_next_or_upnext(path, level, root_level);
7469 } else {
7470 ret = tree_move_down(path, level, reada_min_gen);
7471 }
7472
7473 /*
7474 * Even if we have reached the end of a tree, ret is -1, update the key
7475 * anyway, so that in case we need to restart due to a block group
7476 * relocation, we can assert that the last key of the root node still
7477 * exists in the tree.
7478 */
7479 if (*level == 0)
7480 btrfs_item_key_to_cpu(path->nodes[*level], key,
7481 path->slots[*level]);
7482 else
7483 btrfs_node_key_to_cpu(path->nodes[*level], key,
7484 path->slots[*level]);
7485
7486 return ret;
7487}
7488
7489static int tree_compare_item(struct btrfs_path *left_path,
7490 struct btrfs_path *right_path,
7491 char *tmp_buf)
7492{
7493 int cmp;
7494 int len1, len2;
7495 unsigned long off1, off2;
7496
7497 len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]);
7498 len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]);
7499 if (len1 != len2)
7500 return 1;
7501
7502 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
7503 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
7504 right_path->slots[0]);
7505
7506 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
7507
7508 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
7509 if (cmp)
7510 return 1;
7511 return 0;
7512}
7513
7514/*
7515 * A transaction used for relocating a block group was committed or is about to
7516 * finish its commit. Release our paths and restart the search, so that we are
7517 * not using stale extent buffers:
7518 *
7519 * 1) For levels > 0, we are only holding references of extent buffers, without
7520 * any locks on them, which does not prevent them from having been relocated
7521 * and reallocated after the last time we released the commit root semaphore.
7522 * The exception are the root nodes, for which we always have a clone, see
7523 * the comment at btrfs_compare_trees();
7524 *
7525 * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so
7526 * we are safe from the concurrent relocation and reallocation. However they
7527 * can have file extent items with a pre relocation disk_bytenr value, so we
7528 * restart the start from the current commit roots and clone the new leaves so
7529 * that we get the post relocation disk_bytenr values. Not doing so, could
7530 * make us clone the wrong data in case there are new extents using the old
7531 * disk_bytenr that happen to be shared.
7532 */
7533static int restart_after_relocation(struct btrfs_path *left_path,
7534 struct btrfs_path *right_path,
7535 const struct btrfs_key *left_key,
7536 const struct btrfs_key *right_key,
7537 int left_level,
7538 int right_level,
7539 const struct send_ctx *sctx)
7540{
7541 int root_level;
7542 int ret;
7543
7544 lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem);
7545
7546 btrfs_release_path(left_path);
7547 btrfs_release_path(right_path);
7548
7549 /*
7550 * Since keys can not be added or removed to/from our roots because they
7551 * are readonly and we do not allow deduplication to run in parallel
7552 * (which can add, remove or change keys), the layout of the trees should
7553 * not change.
7554 */
7555 left_path->lowest_level = left_level;
7556 ret = search_key_again(sctx, sctx->send_root, left_path, left_key);
7557 if (ret < 0)
7558 return ret;
7559
7560 right_path->lowest_level = right_level;
7561 ret = search_key_again(sctx, sctx->parent_root, right_path, right_key);
7562 if (ret < 0)
7563 return ret;
7564
7565 /*
7566 * If the lowest level nodes are leaves, clone them so that they can be
7567 * safely used by changed_cb() while not under the protection of the
7568 * commit root semaphore, even if relocation and reallocation happens in
7569 * parallel.
7570 */
7571 if (left_level == 0) {
7572 ret = replace_node_with_clone(left_path, 0);
7573 if (ret < 0)
7574 return ret;
7575 }
7576
7577 if (right_level == 0) {
7578 ret = replace_node_with_clone(right_path, 0);
7579 if (ret < 0)
7580 return ret;
7581 }
7582
7583 /*
7584 * Now clone the root nodes (unless they happen to be the leaves we have
7585 * already cloned). This is to protect against concurrent snapshotting of
7586 * the send and parent roots (see the comment at btrfs_compare_trees()).
7587 */
7588 root_level = btrfs_header_level(sctx->send_root->commit_root);
7589 if (root_level > 0) {
7590 ret = replace_node_with_clone(left_path, root_level);
7591 if (ret < 0)
7592 return ret;
7593 }
7594
7595 root_level = btrfs_header_level(sctx->parent_root->commit_root);
7596 if (root_level > 0) {
7597 ret = replace_node_with_clone(right_path, root_level);
7598 if (ret < 0)
7599 return ret;
7600 }
7601
7602 return 0;
7603}
7604
7605/*
7606 * This function compares two trees and calls the provided callback for
7607 * every changed/new/deleted item it finds.
7608 * If shared tree blocks are encountered, whole subtrees are skipped, making
7609 * the compare pretty fast on snapshotted subvolumes.
7610 *
7611 * This currently works on commit roots only. As commit roots are read only,
7612 * we don't do any locking. The commit roots are protected with transactions.
7613 * Transactions are ended and rejoined when a commit is tried in between.
7614 *
7615 * This function checks for modifications done to the trees while comparing.
7616 * If it detects a change, it aborts immediately.
7617 */
7618static int btrfs_compare_trees(struct btrfs_root *left_root,
7619 struct btrfs_root *right_root, struct send_ctx *sctx)
7620{
7621 struct btrfs_fs_info *fs_info = left_root->fs_info;
7622 int ret;
7623 int cmp;
7624 struct btrfs_path *left_path = NULL;
7625 struct btrfs_path *right_path = NULL;
7626 struct btrfs_key left_key;
7627 struct btrfs_key right_key;
7628 char *tmp_buf = NULL;
7629 int left_root_level;
7630 int right_root_level;
7631 int left_level;
7632 int right_level;
7633 int left_end_reached = 0;
7634 int right_end_reached = 0;
7635 int advance_left = 0;
7636 int advance_right = 0;
7637 u64 left_blockptr;
7638 u64 right_blockptr;
7639 u64 left_gen;
7640 u64 right_gen;
7641 u64 reada_min_gen;
7642
7643 left_path = btrfs_alloc_path();
7644 if (!left_path) {
7645 ret = -ENOMEM;
7646 goto out;
7647 }
7648 right_path = btrfs_alloc_path();
7649 if (!right_path) {
7650 ret = -ENOMEM;
7651 goto out;
7652 }
7653
7654 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
7655 if (!tmp_buf) {
7656 ret = -ENOMEM;
7657 goto out;
7658 }
7659
7660 left_path->search_commit_root = 1;
7661 left_path->skip_locking = 1;
7662 right_path->search_commit_root = 1;
7663 right_path->skip_locking = 1;
7664
7665 /*
7666 * Strategy: Go to the first items of both trees. Then do
7667 *
7668 * If both trees are at level 0
7669 * Compare keys of current items
7670 * If left < right treat left item as new, advance left tree
7671 * and repeat
7672 * If left > right treat right item as deleted, advance right tree
7673 * and repeat
7674 * If left == right do deep compare of items, treat as changed if
7675 * needed, advance both trees and repeat
7676 * If both trees are at the same level but not at level 0
7677 * Compare keys of current nodes/leafs
7678 * If left < right advance left tree and repeat
7679 * If left > right advance right tree and repeat
7680 * If left == right compare blockptrs of the next nodes/leafs
7681 * If they match advance both trees but stay at the same level
7682 * and repeat
7683 * If they don't match advance both trees while allowing to go
7684 * deeper and repeat
7685 * If tree levels are different
7686 * Advance the tree that needs it and repeat
7687 *
7688 * Advancing a tree means:
7689 * If we are at level 0, try to go to the next slot. If that's not
7690 * possible, go one level up and repeat. Stop when we found a level
7691 * where we could go to the next slot. We may at this point be on a
7692 * node or a leaf.
7693 *
7694 * If we are not at level 0 and not on shared tree blocks, go one
7695 * level deeper.
7696 *
7697 * If we are not at level 0 and on shared tree blocks, go one slot to
7698 * the right if possible or go up and right.
7699 */
7700
7701 down_read(&fs_info->commit_root_sem);
7702 left_level = btrfs_header_level(left_root->commit_root);
7703 left_root_level = left_level;
7704 /*
7705 * We clone the root node of the send and parent roots to prevent races
7706 * with snapshot creation of these roots. Snapshot creation COWs the
7707 * root node of a tree, so after the transaction is committed the old
7708 * extent can be reallocated while this send operation is still ongoing.
7709 * So we clone them, under the commit root semaphore, to be race free.
7710 */
7711 left_path->nodes[left_level] =
7712 btrfs_clone_extent_buffer(left_root->commit_root);
7713 if (!left_path->nodes[left_level]) {
7714 ret = -ENOMEM;
7715 goto out_unlock;
7716 }
7717
7718 right_level = btrfs_header_level(right_root->commit_root);
7719 right_root_level = right_level;
7720 right_path->nodes[right_level] =
7721 btrfs_clone_extent_buffer(right_root->commit_root);
7722 if (!right_path->nodes[right_level]) {
7723 ret = -ENOMEM;
7724 goto out_unlock;
7725 }
7726 /*
7727 * Our right root is the parent root, while the left root is the "send"
7728 * root. We know that all new nodes/leaves in the left root must have
7729 * a generation greater than the right root's generation, so we trigger
7730 * readahead for those nodes and leaves of the left root, as we know we
7731 * will need to read them at some point.
7732 */
7733 reada_min_gen = btrfs_header_generation(right_root->commit_root);
7734
7735 if (left_level == 0)
7736 btrfs_item_key_to_cpu(left_path->nodes[left_level],
7737 &left_key, left_path->slots[left_level]);
7738 else
7739 btrfs_node_key_to_cpu(left_path->nodes[left_level],
7740 &left_key, left_path->slots[left_level]);
7741 if (right_level == 0)
7742 btrfs_item_key_to_cpu(right_path->nodes[right_level],
7743 &right_key, right_path->slots[right_level]);
7744 else
7745 btrfs_node_key_to_cpu(right_path->nodes[right_level],
7746 &right_key, right_path->slots[right_level]);
7747
7748 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7749
7750 while (1) {
7751 if (need_resched() ||
7752 rwsem_is_contended(&fs_info->commit_root_sem)) {
7753 up_read(&fs_info->commit_root_sem);
7754 cond_resched();
7755 down_read(&fs_info->commit_root_sem);
7756 }
7757
7758 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7759 ret = restart_after_relocation(left_path, right_path,
7760 &left_key, &right_key,
7761 left_level, right_level,
7762 sctx);
7763 if (ret < 0)
7764 goto out_unlock;
7765 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7766 }
7767
7768 if (advance_left && !left_end_reached) {
7769 ret = tree_advance(left_path, &left_level,
7770 left_root_level,
7771 advance_left != ADVANCE_ONLY_NEXT,
7772 &left_key, reada_min_gen);
7773 if (ret == -1)
7774 left_end_reached = ADVANCE;
7775 else if (ret < 0)
7776 goto out_unlock;
7777 advance_left = 0;
7778 }
7779 if (advance_right && !right_end_reached) {
7780 ret = tree_advance(right_path, &right_level,
7781 right_root_level,
7782 advance_right != ADVANCE_ONLY_NEXT,
7783 &right_key, reada_min_gen);
7784 if (ret == -1)
7785 right_end_reached = ADVANCE;
7786 else if (ret < 0)
7787 goto out_unlock;
7788 advance_right = 0;
7789 }
7790
7791 if (left_end_reached && right_end_reached) {
7792 ret = 0;
7793 goto out_unlock;
7794 } else if (left_end_reached) {
7795 if (right_level == 0) {
7796 up_read(&fs_info->commit_root_sem);
7797 ret = changed_cb(left_path, right_path,
7798 &right_key,
7799 BTRFS_COMPARE_TREE_DELETED,
7800 sctx);
7801 if (ret < 0)
7802 goto out;
7803 down_read(&fs_info->commit_root_sem);
7804 }
7805 advance_right = ADVANCE;
7806 continue;
7807 } else if (right_end_reached) {
7808 if (left_level == 0) {
7809 up_read(&fs_info->commit_root_sem);
7810 ret = changed_cb(left_path, right_path,
7811 &left_key,
7812 BTRFS_COMPARE_TREE_NEW,
7813 sctx);
7814 if (ret < 0)
7815 goto out;
7816 down_read(&fs_info->commit_root_sem);
7817 }
7818 advance_left = ADVANCE;
7819 continue;
7820 }
7821
7822 if (left_level == 0 && right_level == 0) {
7823 up_read(&fs_info->commit_root_sem);
7824 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7825 if (cmp < 0) {
7826 ret = changed_cb(left_path, right_path,
7827 &left_key,
7828 BTRFS_COMPARE_TREE_NEW,
7829 sctx);
7830 advance_left = ADVANCE;
7831 } else if (cmp > 0) {
7832 ret = changed_cb(left_path, right_path,
7833 &right_key,
7834 BTRFS_COMPARE_TREE_DELETED,
7835 sctx);
7836 advance_right = ADVANCE;
7837 } else {
7838 enum btrfs_compare_tree_result result;
7839
7840 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7841 ret = tree_compare_item(left_path, right_path,
7842 tmp_buf);
7843 if (ret)
7844 result = BTRFS_COMPARE_TREE_CHANGED;
7845 else
7846 result = BTRFS_COMPARE_TREE_SAME;
7847 ret = changed_cb(left_path, right_path,
7848 &left_key, result, sctx);
7849 advance_left = ADVANCE;
7850 advance_right = ADVANCE;
7851 }
7852
7853 if (ret < 0)
7854 goto out;
7855 down_read(&fs_info->commit_root_sem);
7856 } else if (left_level == right_level) {
7857 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7858 if (cmp < 0) {
7859 advance_left = ADVANCE;
7860 } else if (cmp > 0) {
7861 advance_right = ADVANCE;
7862 } else {
7863 left_blockptr = btrfs_node_blockptr(
7864 left_path->nodes[left_level],
7865 left_path->slots[left_level]);
7866 right_blockptr = btrfs_node_blockptr(
7867 right_path->nodes[right_level],
7868 right_path->slots[right_level]);
7869 left_gen = btrfs_node_ptr_generation(
7870 left_path->nodes[left_level],
7871 left_path->slots[left_level]);
7872 right_gen = btrfs_node_ptr_generation(
7873 right_path->nodes[right_level],
7874 right_path->slots[right_level]);
7875 if (left_blockptr == right_blockptr &&
7876 left_gen == right_gen) {
7877 /*
7878 * As we're on a shared block, don't
7879 * allow to go deeper.
7880 */
7881 advance_left = ADVANCE_ONLY_NEXT;
7882 advance_right = ADVANCE_ONLY_NEXT;
7883 } else {
7884 advance_left = ADVANCE;
7885 advance_right = ADVANCE;
7886 }
7887 }
7888 } else if (left_level < right_level) {
7889 advance_right = ADVANCE;
7890 } else {
7891 advance_left = ADVANCE;
7892 }
7893 }
7894
7895out_unlock:
7896 up_read(&fs_info->commit_root_sem);
7897out:
7898 btrfs_free_path(left_path);
7899 btrfs_free_path(right_path);
7900 kvfree(tmp_buf);
7901 return ret;
7902}
7903
7904static int send_subvol(struct send_ctx *sctx)
7905{
7906 int ret;
7907
7908 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
7909 ret = send_header(sctx);
7910 if (ret < 0)
7911 goto out;
7912 }
7913
7914 ret = send_subvol_begin(sctx);
7915 if (ret < 0)
7916 goto out;
7917
7918 if (sctx->parent_root) {
7919 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx);
7920 if (ret < 0)
7921 goto out;
7922 ret = finish_inode_if_needed(sctx, 1);
7923 if (ret < 0)
7924 goto out;
7925 } else {
7926 ret = full_send_tree(sctx);
7927 if (ret < 0)
7928 goto out;
7929 }
7930
7931out:
7932 free_recorded_refs(sctx);
7933 return ret;
7934}
7935
7936/*
7937 * If orphan cleanup did remove any orphans from a root, it means the tree
7938 * was modified and therefore the commit root is not the same as the current
7939 * root anymore. This is a problem, because send uses the commit root and
7940 * therefore can see inode items that don't exist in the current root anymore,
7941 * and for example make calls to btrfs_iget, which will do tree lookups based
7942 * on the current root and not on the commit root. Those lookups will fail,
7943 * returning a -ESTALE error, and making send fail with that error. So make
7944 * sure a send does not see any orphans we have just removed, and that it will
7945 * see the same inodes regardless of whether a transaction commit happened
7946 * before it started (meaning that the commit root will be the same as the
7947 * current root) or not.
7948 */
7949static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
7950{
7951 int i;
7952 struct btrfs_trans_handle *trans = NULL;
7953
7954again:
7955 if (sctx->parent_root &&
7956 sctx->parent_root->node != sctx->parent_root->commit_root)
7957 goto commit_trans;
7958
7959 for (i = 0; i < sctx->clone_roots_cnt; i++)
7960 if (sctx->clone_roots[i].root->node !=
7961 sctx->clone_roots[i].root->commit_root)
7962 goto commit_trans;
7963
7964 if (trans)
7965 return btrfs_end_transaction(trans);
7966
7967 return 0;
7968
7969commit_trans:
7970 /* Use any root, all fs roots will get their commit roots updated. */
7971 if (!trans) {
7972 trans = btrfs_join_transaction(sctx->send_root);
7973 if (IS_ERR(trans))
7974 return PTR_ERR(trans);
7975 goto again;
7976 }
7977
7978 return btrfs_commit_transaction(trans);
7979}
7980
7981/*
7982 * Make sure any existing dellaloc is flushed for any root used by a send
7983 * operation so that we do not miss any data and we do not race with writeback
7984 * finishing and changing a tree while send is using the tree. This could
7985 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
7986 * a send operation then uses the subvolume.
7987 * After flushing delalloc ensure_commit_roots_uptodate() must be called.
7988 */
7989static int flush_delalloc_roots(struct send_ctx *sctx)
7990{
7991 struct btrfs_root *root = sctx->parent_root;
7992 int ret;
7993 int i;
7994
7995 if (root) {
7996 ret = btrfs_start_delalloc_snapshot(root, false);
7997 if (ret)
7998 return ret;
7999 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
8000 }
8001
8002 for (i = 0; i < sctx->clone_roots_cnt; i++) {
8003 root = sctx->clone_roots[i].root;
8004 ret = btrfs_start_delalloc_snapshot(root, false);
8005 if (ret)
8006 return ret;
8007 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
8008 }
8009
8010 return 0;
8011}
8012
8013static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
8014{
8015 spin_lock(&root->root_item_lock);
8016 root->send_in_progress--;
8017 /*
8018 * Not much left to do, we don't know why it's unbalanced and
8019 * can't blindly reset it to 0.
8020 */
8021 if (root->send_in_progress < 0)
8022 btrfs_err(root->fs_info,
8023 "send_in_progress unbalanced %d root %llu",
8024 root->send_in_progress, root->root_key.objectid);
8025 spin_unlock(&root->root_item_lock);
8026}
8027
8028static void dedupe_in_progress_warn(const struct btrfs_root *root)
8029{
8030 btrfs_warn_rl(root->fs_info,
8031"cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
8032 root->root_key.objectid, root->dedupe_in_progress);
8033}
8034
8035long btrfs_ioctl_send(struct inode *inode, struct btrfs_ioctl_send_args *arg)
8036{
8037 int ret = 0;
8038 struct btrfs_root *send_root = BTRFS_I(inode)->root;
8039 struct btrfs_fs_info *fs_info = send_root->fs_info;
8040 struct btrfs_root *clone_root;
8041 struct send_ctx *sctx = NULL;
8042 u32 i;
8043 u64 *clone_sources_tmp = NULL;
8044 int clone_sources_to_rollback = 0;
8045 size_t alloc_size;
8046 int sort_clone_roots = 0;
8047
8048 if (!capable(CAP_SYS_ADMIN))
8049 return -EPERM;
8050
8051 /*
8052 * The subvolume must remain read-only during send, protect against
8053 * making it RW. This also protects against deletion.
8054 */
8055 spin_lock(&send_root->root_item_lock);
8056 if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) {
8057 dedupe_in_progress_warn(send_root);
8058 spin_unlock(&send_root->root_item_lock);
8059 return -EAGAIN;
8060 }
8061 send_root->send_in_progress++;
8062 spin_unlock(&send_root->root_item_lock);
8063
8064 /*
8065 * Userspace tools do the checks and warn the user if it's
8066 * not RO.
8067 */
8068 if (!btrfs_root_readonly(send_root)) {
8069 ret = -EPERM;
8070 goto out;
8071 }
8072
8073 /*
8074 * Check that we don't overflow at later allocations, we request
8075 * clone_sources_count + 1 items, and compare to unsigned long inside
8076 * access_ok. Also set an upper limit for allocation size so this can't
8077 * easily exhaust memory. Max number of clone sources is about 200K.
8078 */
8079 if (arg->clone_sources_count > SZ_8M / sizeof(struct clone_root)) {
8080 ret = -EINVAL;
8081 goto out;
8082 }
8083
8084 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
8085 ret = -EINVAL;
8086 goto out;
8087 }
8088
8089 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
8090 if (!sctx) {
8091 ret = -ENOMEM;
8092 goto out;
8093 }
8094
8095 INIT_LIST_HEAD(&sctx->new_refs);
8096 INIT_LIST_HEAD(&sctx->deleted_refs);
8097 INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
8098 INIT_LIST_HEAD(&sctx->name_cache_list);
8099
8100 INIT_LIST_HEAD(&sctx->backref_cache.lru_list);
8101 mt_init(&sctx->backref_cache.entries);
8102
8103 sctx->flags = arg->flags;
8104
8105 if (arg->flags & BTRFS_SEND_FLAG_VERSION) {
8106 if (arg->version > BTRFS_SEND_STREAM_VERSION) {
8107 ret = -EPROTO;
8108 goto out;
8109 }
8110 /* Zero means "use the highest version" */
8111 sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION;
8112 } else {
8113 sctx->proto = 1;
8114 }
8115 if ((arg->flags & BTRFS_SEND_FLAG_COMPRESSED) && sctx->proto < 2) {
8116 ret = -EINVAL;
8117 goto out;
8118 }
8119
8120 sctx->send_filp = fget(arg->send_fd);
8121 if (!sctx->send_filp) {
8122 ret = -EBADF;
8123 goto out;
8124 }
8125
8126 sctx->send_root = send_root;
8127 /*
8128 * Unlikely but possible, if the subvolume is marked for deletion but
8129 * is slow to remove the directory entry, send can still be started
8130 */
8131 if (btrfs_root_dead(sctx->send_root)) {
8132 ret = -EPERM;
8133 goto out;
8134 }
8135
8136 sctx->clone_roots_cnt = arg->clone_sources_count;
8137
8138 if (sctx->proto >= 2) {
8139 u32 send_buf_num_pages;
8140
8141 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V2;
8142 sctx->send_buf = vmalloc(sctx->send_max_size);
8143 if (!sctx->send_buf) {
8144 ret = -ENOMEM;
8145 goto out;
8146 }
8147 send_buf_num_pages = sctx->send_max_size >> PAGE_SHIFT;
8148 sctx->send_buf_pages = kcalloc(send_buf_num_pages,
8149 sizeof(*sctx->send_buf_pages),
8150 GFP_KERNEL);
8151 if (!sctx->send_buf_pages) {
8152 ret = -ENOMEM;
8153 goto out;
8154 }
8155 for (i = 0; i < send_buf_num_pages; i++) {
8156 sctx->send_buf_pages[i] =
8157 vmalloc_to_page(sctx->send_buf + (i << PAGE_SHIFT));
8158 }
8159 } else {
8160 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V1;
8161 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
8162 }
8163 if (!sctx->send_buf) {
8164 ret = -ENOMEM;
8165 goto out;
8166 }
8167
8168 sctx->pending_dir_moves = RB_ROOT;
8169 sctx->waiting_dir_moves = RB_ROOT;
8170 sctx->orphan_dirs = RB_ROOT;
8171 sctx->rbtree_new_refs = RB_ROOT;
8172 sctx->rbtree_deleted_refs = RB_ROOT;
8173
8174 sctx->clone_roots = kvcalloc(sizeof(*sctx->clone_roots),
8175 arg->clone_sources_count + 1,
8176 GFP_KERNEL);
8177 if (!sctx->clone_roots) {
8178 ret = -ENOMEM;
8179 goto out;
8180 }
8181
8182 alloc_size = array_size(sizeof(*arg->clone_sources),
8183 arg->clone_sources_count);
8184
8185 if (arg->clone_sources_count) {
8186 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
8187 if (!clone_sources_tmp) {
8188 ret = -ENOMEM;
8189 goto out;
8190 }
8191
8192 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
8193 alloc_size);
8194 if (ret) {
8195 ret = -EFAULT;
8196 goto out;
8197 }
8198
8199 for (i = 0; i < arg->clone_sources_count; i++) {
8200 clone_root = btrfs_get_fs_root(fs_info,
8201 clone_sources_tmp[i], true);
8202 if (IS_ERR(clone_root)) {
8203 ret = PTR_ERR(clone_root);
8204 goto out;
8205 }
8206 spin_lock(&clone_root->root_item_lock);
8207 if (!btrfs_root_readonly(clone_root) ||
8208 btrfs_root_dead(clone_root)) {
8209 spin_unlock(&clone_root->root_item_lock);
8210 btrfs_put_root(clone_root);
8211 ret = -EPERM;
8212 goto out;
8213 }
8214 if (clone_root->dedupe_in_progress) {
8215 dedupe_in_progress_warn(clone_root);
8216 spin_unlock(&clone_root->root_item_lock);
8217 btrfs_put_root(clone_root);
8218 ret = -EAGAIN;
8219 goto out;
8220 }
8221 clone_root->send_in_progress++;
8222 spin_unlock(&clone_root->root_item_lock);
8223
8224 sctx->clone_roots[i].root = clone_root;
8225 clone_sources_to_rollback = i + 1;
8226 }
8227 kvfree(clone_sources_tmp);
8228 clone_sources_tmp = NULL;
8229 }
8230
8231 if (arg->parent_root) {
8232 sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root,
8233 true);
8234 if (IS_ERR(sctx->parent_root)) {
8235 ret = PTR_ERR(sctx->parent_root);
8236 goto out;
8237 }
8238
8239 spin_lock(&sctx->parent_root->root_item_lock);
8240 sctx->parent_root->send_in_progress++;
8241 if (!btrfs_root_readonly(sctx->parent_root) ||
8242 btrfs_root_dead(sctx->parent_root)) {
8243 spin_unlock(&sctx->parent_root->root_item_lock);
8244 ret = -EPERM;
8245 goto out;
8246 }
8247 if (sctx->parent_root->dedupe_in_progress) {
8248 dedupe_in_progress_warn(sctx->parent_root);
8249 spin_unlock(&sctx->parent_root->root_item_lock);
8250 ret = -EAGAIN;
8251 goto out;
8252 }
8253 spin_unlock(&sctx->parent_root->root_item_lock);
8254 }
8255
8256 /*
8257 * Clones from send_root are allowed, but only if the clone source
8258 * is behind the current send position. This is checked while searching
8259 * for possible clone sources.
8260 */
8261 sctx->clone_roots[sctx->clone_roots_cnt++].root =
8262 btrfs_grab_root(sctx->send_root);
8263
8264 /* We do a bsearch later */
8265 sort(sctx->clone_roots, sctx->clone_roots_cnt,
8266 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
8267 NULL);
8268 sort_clone_roots = 1;
8269
8270 ret = flush_delalloc_roots(sctx);
8271 if (ret)
8272 goto out;
8273
8274 ret = ensure_commit_roots_uptodate(sctx);
8275 if (ret)
8276 goto out;
8277
8278 ret = send_subvol(sctx);
8279 if (ret < 0)
8280 goto out;
8281
8282 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
8283 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
8284 if (ret < 0)
8285 goto out;
8286 ret = send_cmd(sctx);
8287 if (ret < 0)
8288 goto out;
8289 }
8290
8291out:
8292 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
8293 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
8294 struct rb_node *n;
8295 struct pending_dir_move *pm;
8296
8297 n = rb_first(&sctx->pending_dir_moves);
8298 pm = rb_entry(n, struct pending_dir_move, node);
8299 while (!list_empty(&pm->list)) {
8300 struct pending_dir_move *pm2;
8301
8302 pm2 = list_first_entry(&pm->list,
8303 struct pending_dir_move, list);
8304 free_pending_move(sctx, pm2);
8305 }
8306 free_pending_move(sctx, pm);
8307 }
8308
8309 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
8310 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
8311 struct rb_node *n;
8312 struct waiting_dir_move *dm;
8313
8314 n = rb_first(&sctx->waiting_dir_moves);
8315 dm = rb_entry(n, struct waiting_dir_move, node);
8316 rb_erase(&dm->node, &sctx->waiting_dir_moves);
8317 kfree(dm);
8318 }
8319
8320 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
8321 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
8322 struct rb_node *n;
8323 struct orphan_dir_info *odi;
8324
8325 n = rb_first(&sctx->orphan_dirs);
8326 odi = rb_entry(n, struct orphan_dir_info, node);
8327 free_orphan_dir_info(sctx, odi);
8328 }
8329
8330 if (sort_clone_roots) {
8331 for (i = 0; i < sctx->clone_roots_cnt; i++) {
8332 btrfs_root_dec_send_in_progress(
8333 sctx->clone_roots[i].root);
8334 btrfs_put_root(sctx->clone_roots[i].root);
8335 }
8336 } else {
8337 for (i = 0; sctx && i < clone_sources_to_rollback; i++) {
8338 btrfs_root_dec_send_in_progress(
8339 sctx->clone_roots[i].root);
8340 btrfs_put_root(sctx->clone_roots[i].root);
8341 }
8342
8343 btrfs_root_dec_send_in_progress(send_root);
8344 }
8345 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) {
8346 btrfs_root_dec_send_in_progress(sctx->parent_root);
8347 btrfs_put_root(sctx->parent_root);
8348 }
8349
8350 kvfree(clone_sources_tmp);
8351
8352 if (sctx) {
8353 if (sctx->send_filp)
8354 fput(sctx->send_filp);
8355
8356 kvfree(sctx->clone_roots);
8357 kfree(sctx->send_buf_pages);
8358 kvfree(sctx->send_buf);
8359 kvfree(sctx->verity_descriptor);
8360
8361 name_cache_free(sctx);
8362
8363 close_current_inode(sctx);
8364
8365 empty_backref_cache(sctx);
8366
8367 kfree(sctx);
8368 }
8369
8370 return ret;
8371}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2012 Alexander Block. All rights reserved.
4 */
5
6#include <linux/bsearch.h>
7#include <linux/fs.h>
8#include <linux/file.h>
9#include <linux/sort.h>
10#include <linux/mount.h>
11#include <linux/xattr.h>
12#include <linux/posix_acl_xattr.h>
13#include <linux/radix-tree.h>
14#include <linux/vmalloc.h>
15#include <linux/string.h>
16#include <linux/compat.h>
17#include <linux/crc32c.h>
18
19#include "send.h"
20#include "backref.h"
21#include "locking.h"
22#include "disk-io.h"
23#include "btrfs_inode.h"
24#include "transaction.h"
25#include "compression.h"
26
27/*
28 * A fs_path is a helper to dynamically build path names with unknown size.
29 * It reallocates the internal buffer on demand.
30 * It allows fast adding of path elements on the right side (normal path) and
31 * fast adding to the left side (reversed path). A reversed path can also be
32 * unreversed if needed.
33 */
34struct fs_path {
35 union {
36 struct {
37 char *start;
38 char *end;
39
40 char *buf;
41 unsigned short buf_len:15;
42 unsigned short reversed:1;
43 char inline_buf[];
44 };
45 /*
46 * Average path length does not exceed 200 bytes, we'll have
47 * better packing in the slab and higher chance to satisfy
48 * a allocation later during send.
49 */
50 char pad[256];
51 };
52};
53#define FS_PATH_INLINE_SIZE \
54 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
55
56
57/* reused for each extent */
58struct clone_root {
59 struct btrfs_root *root;
60 u64 ino;
61 u64 offset;
62
63 u64 found_refs;
64};
65
66#define SEND_CTX_MAX_NAME_CACHE_SIZE 128
67#define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
68
69struct send_ctx {
70 struct file *send_filp;
71 loff_t send_off;
72 char *send_buf;
73 u32 send_size;
74 u32 send_max_size;
75 u64 total_send_size;
76 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
77 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
78
79 struct btrfs_root *send_root;
80 struct btrfs_root *parent_root;
81 struct clone_root *clone_roots;
82 int clone_roots_cnt;
83
84 /* current state of the compare_tree call */
85 struct btrfs_path *left_path;
86 struct btrfs_path *right_path;
87 struct btrfs_key *cmp_key;
88
89 /*
90 * infos of the currently processed inode. In case of deleted inodes,
91 * these are the values from the deleted inode.
92 */
93 u64 cur_ino;
94 u64 cur_inode_gen;
95 int cur_inode_new;
96 int cur_inode_new_gen;
97 int cur_inode_deleted;
98 u64 cur_inode_size;
99 u64 cur_inode_mode;
100 u64 cur_inode_rdev;
101 u64 cur_inode_last_extent;
102 u64 cur_inode_next_write_offset;
103
104 u64 send_progress;
105
106 struct list_head new_refs;
107 struct list_head deleted_refs;
108
109 struct radix_tree_root name_cache;
110 struct list_head name_cache_list;
111 int name_cache_size;
112
113 struct file_ra_state ra;
114
115 char *read_buf;
116
117 /*
118 * We process inodes by their increasing order, so if before an
119 * incremental send we reverse the parent/child relationship of
120 * directories such that a directory with a lower inode number was
121 * the parent of a directory with a higher inode number, and the one
122 * becoming the new parent got renamed too, we can't rename/move the
123 * directory with lower inode number when we finish processing it - we
124 * must process the directory with higher inode number first, then
125 * rename/move it and then rename/move the directory with lower inode
126 * number. Example follows.
127 *
128 * Tree state when the first send was performed:
129 *
130 * .
131 * |-- a (ino 257)
132 * |-- b (ino 258)
133 * |
134 * |
135 * |-- c (ino 259)
136 * | |-- d (ino 260)
137 * |
138 * |-- c2 (ino 261)
139 *
140 * Tree state when the second (incremental) send is performed:
141 *
142 * .
143 * |-- a (ino 257)
144 * |-- b (ino 258)
145 * |-- c2 (ino 261)
146 * |-- d2 (ino 260)
147 * |-- cc (ino 259)
148 *
149 * The sequence of steps that lead to the second state was:
150 *
151 * mv /a/b/c/d /a/b/c2/d2
152 * mv /a/b/c /a/b/c2/d2/cc
153 *
154 * "c" has lower inode number, but we can't move it (2nd mv operation)
155 * before we move "d", which has higher inode number.
156 *
157 * So we just memorize which move/rename operations must be performed
158 * later when their respective parent is processed and moved/renamed.
159 */
160
161 /* Indexed by parent directory inode number. */
162 struct rb_root pending_dir_moves;
163
164 /*
165 * Reverse index, indexed by the inode number of a directory that
166 * is waiting for the move/rename of its immediate parent before its
167 * own move/rename can be performed.
168 */
169 struct rb_root waiting_dir_moves;
170
171 /*
172 * A directory that is going to be rm'ed might have a child directory
173 * which is in the pending directory moves index above. In this case,
174 * the directory can only be removed after the move/rename of its child
175 * is performed. Example:
176 *
177 * Parent snapshot:
178 *
179 * . (ino 256)
180 * |-- a/ (ino 257)
181 * |-- b/ (ino 258)
182 * |-- c/ (ino 259)
183 * | |-- x/ (ino 260)
184 * |
185 * |-- y/ (ino 261)
186 *
187 * Send snapshot:
188 *
189 * . (ino 256)
190 * |-- a/ (ino 257)
191 * |-- b/ (ino 258)
192 * |-- YY/ (ino 261)
193 * |-- x/ (ino 260)
194 *
195 * Sequence of steps that lead to the send snapshot:
196 * rm -f /a/b/c/foo.txt
197 * mv /a/b/y /a/b/YY
198 * mv /a/b/c/x /a/b/YY
199 * rmdir /a/b/c
200 *
201 * When the child is processed, its move/rename is delayed until its
202 * parent is processed (as explained above), but all other operations
203 * like update utimes, chown, chgrp, etc, are performed and the paths
204 * that it uses for those operations must use the orphanized name of
205 * its parent (the directory we're going to rm later), so we need to
206 * memorize that name.
207 *
208 * Indexed by the inode number of the directory to be deleted.
209 */
210 struct rb_root orphan_dirs;
211};
212
213struct pending_dir_move {
214 struct rb_node node;
215 struct list_head list;
216 u64 parent_ino;
217 u64 ino;
218 u64 gen;
219 struct list_head update_refs;
220};
221
222struct waiting_dir_move {
223 struct rb_node node;
224 u64 ino;
225 /*
226 * There might be some directory that could not be removed because it
227 * was waiting for this directory inode to be moved first. Therefore
228 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
229 */
230 u64 rmdir_ino;
231 bool orphanized;
232};
233
234struct orphan_dir_info {
235 struct rb_node node;
236 u64 ino;
237 u64 gen;
238};
239
240struct name_cache_entry {
241 struct list_head list;
242 /*
243 * radix_tree has only 32bit entries but we need to handle 64bit inums.
244 * We use the lower 32bit of the 64bit inum to store it in the tree. If
245 * more then one inum would fall into the same entry, we use radix_list
246 * to store the additional entries. radix_list is also used to store
247 * entries where two entries have the same inum but different
248 * generations.
249 */
250 struct list_head radix_list;
251 u64 ino;
252 u64 gen;
253 u64 parent_ino;
254 u64 parent_gen;
255 int ret;
256 int need_later_update;
257 int name_len;
258 char name[];
259};
260
261__cold
262static void inconsistent_snapshot_error(struct send_ctx *sctx,
263 enum btrfs_compare_tree_result result,
264 const char *what)
265{
266 const char *result_string;
267
268 switch (result) {
269 case BTRFS_COMPARE_TREE_NEW:
270 result_string = "new";
271 break;
272 case BTRFS_COMPARE_TREE_DELETED:
273 result_string = "deleted";
274 break;
275 case BTRFS_COMPARE_TREE_CHANGED:
276 result_string = "updated";
277 break;
278 case BTRFS_COMPARE_TREE_SAME:
279 ASSERT(0);
280 result_string = "unchanged";
281 break;
282 default:
283 ASSERT(0);
284 result_string = "unexpected";
285 }
286
287 btrfs_err(sctx->send_root->fs_info,
288 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
289 result_string, what, sctx->cmp_key->objectid,
290 sctx->send_root->root_key.objectid,
291 (sctx->parent_root ?
292 sctx->parent_root->root_key.objectid : 0));
293}
294
295static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
296
297static struct waiting_dir_move *
298get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
299
300static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
301
302static int need_send_hole(struct send_ctx *sctx)
303{
304 return (sctx->parent_root && !sctx->cur_inode_new &&
305 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
306 S_ISREG(sctx->cur_inode_mode));
307}
308
309static void fs_path_reset(struct fs_path *p)
310{
311 if (p->reversed) {
312 p->start = p->buf + p->buf_len - 1;
313 p->end = p->start;
314 *p->start = 0;
315 } else {
316 p->start = p->buf;
317 p->end = p->start;
318 *p->start = 0;
319 }
320}
321
322static struct fs_path *fs_path_alloc(void)
323{
324 struct fs_path *p;
325
326 p = kmalloc(sizeof(*p), GFP_KERNEL);
327 if (!p)
328 return NULL;
329 p->reversed = 0;
330 p->buf = p->inline_buf;
331 p->buf_len = FS_PATH_INLINE_SIZE;
332 fs_path_reset(p);
333 return p;
334}
335
336static struct fs_path *fs_path_alloc_reversed(void)
337{
338 struct fs_path *p;
339
340 p = fs_path_alloc();
341 if (!p)
342 return NULL;
343 p->reversed = 1;
344 fs_path_reset(p);
345 return p;
346}
347
348static void fs_path_free(struct fs_path *p)
349{
350 if (!p)
351 return;
352 if (p->buf != p->inline_buf)
353 kfree(p->buf);
354 kfree(p);
355}
356
357static int fs_path_len(struct fs_path *p)
358{
359 return p->end - p->start;
360}
361
362static int fs_path_ensure_buf(struct fs_path *p, int len)
363{
364 char *tmp_buf;
365 int path_len;
366 int old_buf_len;
367
368 len++;
369
370 if (p->buf_len >= len)
371 return 0;
372
373 if (len > PATH_MAX) {
374 WARN_ON(1);
375 return -ENOMEM;
376 }
377
378 path_len = p->end - p->start;
379 old_buf_len = p->buf_len;
380
381 /*
382 * First time the inline_buf does not suffice
383 */
384 if (p->buf == p->inline_buf) {
385 tmp_buf = kmalloc(len, GFP_KERNEL);
386 if (tmp_buf)
387 memcpy(tmp_buf, p->buf, old_buf_len);
388 } else {
389 tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
390 }
391 if (!tmp_buf)
392 return -ENOMEM;
393 p->buf = tmp_buf;
394 /*
395 * The real size of the buffer is bigger, this will let the fast path
396 * happen most of the time
397 */
398 p->buf_len = ksize(p->buf);
399
400 if (p->reversed) {
401 tmp_buf = p->buf + old_buf_len - path_len - 1;
402 p->end = p->buf + p->buf_len - 1;
403 p->start = p->end - path_len;
404 memmove(p->start, tmp_buf, path_len + 1);
405 } else {
406 p->start = p->buf;
407 p->end = p->start + path_len;
408 }
409 return 0;
410}
411
412static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
413 char **prepared)
414{
415 int ret;
416 int new_len;
417
418 new_len = p->end - p->start + name_len;
419 if (p->start != p->end)
420 new_len++;
421 ret = fs_path_ensure_buf(p, new_len);
422 if (ret < 0)
423 goto out;
424
425 if (p->reversed) {
426 if (p->start != p->end)
427 *--p->start = '/';
428 p->start -= name_len;
429 *prepared = p->start;
430 } else {
431 if (p->start != p->end)
432 *p->end++ = '/';
433 *prepared = p->end;
434 p->end += name_len;
435 *p->end = 0;
436 }
437
438out:
439 return ret;
440}
441
442static int fs_path_add(struct fs_path *p, const char *name, int name_len)
443{
444 int ret;
445 char *prepared;
446
447 ret = fs_path_prepare_for_add(p, name_len, &prepared);
448 if (ret < 0)
449 goto out;
450 memcpy(prepared, name, name_len);
451
452out:
453 return ret;
454}
455
456static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
457{
458 int ret;
459 char *prepared;
460
461 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
462 if (ret < 0)
463 goto out;
464 memcpy(prepared, p2->start, p2->end - p2->start);
465
466out:
467 return ret;
468}
469
470static int fs_path_add_from_extent_buffer(struct fs_path *p,
471 struct extent_buffer *eb,
472 unsigned long off, int len)
473{
474 int ret;
475 char *prepared;
476
477 ret = fs_path_prepare_for_add(p, len, &prepared);
478 if (ret < 0)
479 goto out;
480
481 read_extent_buffer(eb, prepared, off, len);
482
483out:
484 return ret;
485}
486
487static int fs_path_copy(struct fs_path *p, struct fs_path *from)
488{
489 int ret;
490
491 p->reversed = from->reversed;
492 fs_path_reset(p);
493
494 ret = fs_path_add_path(p, from);
495
496 return ret;
497}
498
499
500static void fs_path_unreverse(struct fs_path *p)
501{
502 char *tmp;
503 int len;
504
505 if (!p->reversed)
506 return;
507
508 tmp = p->start;
509 len = p->end - p->start;
510 p->start = p->buf;
511 p->end = p->start + len;
512 memmove(p->start, tmp, len + 1);
513 p->reversed = 0;
514}
515
516static struct btrfs_path *alloc_path_for_send(void)
517{
518 struct btrfs_path *path;
519
520 path = btrfs_alloc_path();
521 if (!path)
522 return NULL;
523 path->search_commit_root = 1;
524 path->skip_locking = 1;
525 path->need_commit_sem = 1;
526 return path;
527}
528
529static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
530{
531 int ret;
532 u32 pos = 0;
533
534 while (pos < len) {
535 ret = kernel_write(filp, buf + pos, len - pos, off);
536 /* TODO handle that correctly */
537 /*if (ret == -ERESTARTSYS) {
538 continue;
539 }*/
540 if (ret < 0)
541 return ret;
542 if (ret == 0) {
543 return -EIO;
544 }
545 pos += ret;
546 }
547
548 return 0;
549}
550
551static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
552{
553 struct btrfs_tlv_header *hdr;
554 int total_len = sizeof(*hdr) + len;
555 int left = sctx->send_max_size - sctx->send_size;
556
557 if (unlikely(left < total_len))
558 return -EOVERFLOW;
559
560 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
561 hdr->tlv_type = cpu_to_le16(attr);
562 hdr->tlv_len = cpu_to_le16(len);
563 memcpy(hdr + 1, data, len);
564 sctx->send_size += total_len;
565
566 return 0;
567}
568
569#define TLV_PUT_DEFINE_INT(bits) \
570 static int tlv_put_u##bits(struct send_ctx *sctx, \
571 u##bits attr, u##bits value) \
572 { \
573 __le##bits __tmp = cpu_to_le##bits(value); \
574 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
575 }
576
577TLV_PUT_DEFINE_INT(64)
578
579static int tlv_put_string(struct send_ctx *sctx, u16 attr,
580 const char *str, int len)
581{
582 if (len == -1)
583 len = strlen(str);
584 return tlv_put(sctx, attr, str, len);
585}
586
587static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
588 const u8 *uuid)
589{
590 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
591}
592
593static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
594 struct extent_buffer *eb,
595 struct btrfs_timespec *ts)
596{
597 struct btrfs_timespec bts;
598 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
599 return tlv_put(sctx, attr, &bts, sizeof(bts));
600}
601
602
603#define TLV_PUT(sctx, attrtype, data, attrlen) \
604 do { \
605 ret = tlv_put(sctx, attrtype, data, attrlen); \
606 if (ret < 0) \
607 goto tlv_put_failure; \
608 } while (0)
609
610#define TLV_PUT_INT(sctx, attrtype, bits, value) \
611 do { \
612 ret = tlv_put_u##bits(sctx, attrtype, value); \
613 if (ret < 0) \
614 goto tlv_put_failure; \
615 } while (0)
616
617#define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
618#define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
619#define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
620#define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
621#define TLV_PUT_STRING(sctx, attrtype, str, len) \
622 do { \
623 ret = tlv_put_string(sctx, attrtype, str, len); \
624 if (ret < 0) \
625 goto tlv_put_failure; \
626 } while (0)
627#define TLV_PUT_PATH(sctx, attrtype, p) \
628 do { \
629 ret = tlv_put_string(sctx, attrtype, p->start, \
630 p->end - p->start); \
631 if (ret < 0) \
632 goto tlv_put_failure; \
633 } while(0)
634#define TLV_PUT_UUID(sctx, attrtype, uuid) \
635 do { \
636 ret = tlv_put_uuid(sctx, attrtype, uuid); \
637 if (ret < 0) \
638 goto tlv_put_failure; \
639 } while (0)
640#define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
641 do { \
642 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
643 if (ret < 0) \
644 goto tlv_put_failure; \
645 } while (0)
646
647static int send_header(struct send_ctx *sctx)
648{
649 struct btrfs_stream_header hdr;
650
651 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
652 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
653
654 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
655 &sctx->send_off);
656}
657
658/*
659 * For each command/item we want to send to userspace, we call this function.
660 */
661static int begin_cmd(struct send_ctx *sctx, int cmd)
662{
663 struct btrfs_cmd_header *hdr;
664
665 if (WARN_ON(!sctx->send_buf))
666 return -EINVAL;
667
668 BUG_ON(sctx->send_size);
669
670 sctx->send_size += sizeof(*hdr);
671 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
672 hdr->cmd = cpu_to_le16(cmd);
673
674 return 0;
675}
676
677static int send_cmd(struct send_ctx *sctx)
678{
679 int ret;
680 struct btrfs_cmd_header *hdr;
681 u32 crc;
682
683 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
684 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
685 hdr->crc = 0;
686
687 crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
688 hdr->crc = cpu_to_le32(crc);
689
690 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
691 &sctx->send_off);
692
693 sctx->total_send_size += sctx->send_size;
694 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
695 sctx->send_size = 0;
696
697 return ret;
698}
699
700/*
701 * Sends a move instruction to user space
702 */
703static int send_rename(struct send_ctx *sctx,
704 struct fs_path *from, struct fs_path *to)
705{
706 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
707 int ret;
708
709 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
710
711 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
712 if (ret < 0)
713 goto out;
714
715 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
716 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
717
718 ret = send_cmd(sctx);
719
720tlv_put_failure:
721out:
722 return ret;
723}
724
725/*
726 * Sends a link instruction to user space
727 */
728static int send_link(struct send_ctx *sctx,
729 struct fs_path *path, struct fs_path *lnk)
730{
731 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
732 int ret;
733
734 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
735
736 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
737 if (ret < 0)
738 goto out;
739
740 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
741 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
742
743 ret = send_cmd(sctx);
744
745tlv_put_failure:
746out:
747 return ret;
748}
749
750/*
751 * Sends an unlink instruction to user space
752 */
753static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
754{
755 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
756 int ret;
757
758 btrfs_debug(fs_info, "send_unlink %s", path->start);
759
760 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
761 if (ret < 0)
762 goto out;
763
764 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
765
766 ret = send_cmd(sctx);
767
768tlv_put_failure:
769out:
770 return ret;
771}
772
773/*
774 * Sends a rmdir instruction to user space
775 */
776static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
777{
778 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
779 int ret;
780
781 btrfs_debug(fs_info, "send_rmdir %s", path->start);
782
783 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
784 if (ret < 0)
785 goto out;
786
787 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
788
789 ret = send_cmd(sctx);
790
791tlv_put_failure:
792out:
793 return ret;
794}
795
796/*
797 * Helper function to retrieve some fields from an inode item.
798 */
799static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
800 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
801 u64 *gid, u64 *rdev)
802{
803 int ret;
804 struct btrfs_inode_item *ii;
805 struct btrfs_key key;
806
807 key.objectid = ino;
808 key.type = BTRFS_INODE_ITEM_KEY;
809 key.offset = 0;
810 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
811 if (ret) {
812 if (ret > 0)
813 ret = -ENOENT;
814 return ret;
815 }
816
817 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
818 struct btrfs_inode_item);
819 if (size)
820 *size = btrfs_inode_size(path->nodes[0], ii);
821 if (gen)
822 *gen = btrfs_inode_generation(path->nodes[0], ii);
823 if (mode)
824 *mode = btrfs_inode_mode(path->nodes[0], ii);
825 if (uid)
826 *uid = btrfs_inode_uid(path->nodes[0], ii);
827 if (gid)
828 *gid = btrfs_inode_gid(path->nodes[0], ii);
829 if (rdev)
830 *rdev = btrfs_inode_rdev(path->nodes[0], ii);
831
832 return ret;
833}
834
835static int get_inode_info(struct btrfs_root *root,
836 u64 ino, u64 *size, u64 *gen,
837 u64 *mode, u64 *uid, u64 *gid,
838 u64 *rdev)
839{
840 struct btrfs_path *path;
841 int ret;
842
843 path = alloc_path_for_send();
844 if (!path)
845 return -ENOMEM;
846 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
847 rdev);
848 btrfs_free_path(path);
849 return ret;
850}
851
852typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
853 struct fs_path *p,
854 void *ctx);
855
856/*
857 * Helper function to iterate the entries in ONE btrfs_inode_ref or
858 * btrfs_inode_extref.
859 * The iterate callback may return a non zero value to stop iteration. This can
860 * be a negative value for error codes or 1 to simply stop it.
861 *
862 * path must point to the INODE_REF or INODE_EXTREF when called.
863 */
864static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
865 struct btrfs_key *found_key, int resolve,
866 iterate_inode_ref_t iterate, void *ctx)
867{
868 struct extent_buffer *eb = path->nodes[0];
869 struct btrfs_item *item;
870 struct btrfs_inode_ref *iref;
871 struct btrfs_inode_extref *extref;
872 struct btrfs_path *tmp_path;
873 struct fs_path *p;
874 u32 cur = 0;
875 u32 total;
876 int slot = path->slots[0];
877 u32 name_len;
878 char *start;
879 int ret = 0;
880 int num = 0;
881 int index;
882 u64 dir;
883 unsigned long name_off;
884 unsigned long elem_size;
885 unsigned long ptr;
886
887 p = fs_path_alloc_reversed();
888 if (!p)
889 return -ENOMEM;
890
891 tmp_path = alloc_path_for_send();
892 if (!tmp_path) {
893 fs_path_free(p);
894 return -ENOMEM;
895 }
896
897
898 if (found_key->type == BTRFS_INODE_REF_KEY) {
899 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
900 struct btrfs_inode_ref);
901 item = btrfs_item_nr(slot);
902 total = btrfs_item_size(eb, item);
903 elem_size = sizeof(*iref);
904 } else {
905 ptr = btrfs_item_ptr_offset(eb, slot);
906 total = btrfs_item_size_nr(eb, slot);
907 elem_size = sizeof(*extref);
908 }
909
910 while (cur < total) {
911 fs_path_reset(p);
912
913 if (found_key->type == BTRFS_INODE_REF_KEY) {
914 iref = (struct btrfs_inode_ref *)(ptr + cur);
915 name_len = btrfs_inode_ref_name_len(eb, iref);
916 name_off = (unsigned long)(iref + 1);
917 index = btrfs_inode_ref_index(eb, iref);
918 dir = found_key->offset;
919 } else {
920 extref = (struct btrfs_inode_extref *)(ptr + cur);
921 name_len = btrfs_inode_extref_name_len(eb, extref);
922 name_off = (unsigned long)&extref->name;
923 index = btrfs_inode_extref_index(eb, extref);
924 dir = btrfs_inode_extref_parent(eb, extref);
925 }
926
927 if (resolve) {
928 start = btrfs_ref_to_path(root, tmp_path, name_len,
929 name_off, eb, dir,
930 p->buf, p->buf_len);
931 if (IS_ERR(start)) {
932 ret = PTR_ERR(start);
933 goto out;
934 }
935 if (start < p->buf) {
936 /* overflow , try again with larger buffer */
937 ret = fs_path_ensure_buf(p,
938 p->buf_len + p->buf - start);
939 if (ret < 0)
940 goto out;
941 start = btrfs_ref_to_path(root, tmp_path,
942 name_len, name_off,
943 eb, dir,
944 p->buf, p->buf_len);
945 if (IS_ERR(start)) {
946 ret = PTR_ERR(start);
947 goto out;
948 }
949 BUG_ON(start < p->buf);
950 }
951 p->start = start;
952 } else {
953 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
954 name_len);
955 if (ret < 0)
956 goto out;
957 }
958
959 cur += elem_size + name_len;
960 ret = iterate(num, dir, index, p, ctx);
961 if (ret)
962 goto out;
963 num++;
964 }
965
966out:
967 btrfs_free_path(tmp_path);
968 fs_path_free(p);
969 return ret;
970}
971
972typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
973 const char *name, int name_len,
974 const char *data, int data_len,
975 u8 type, void *ctx);
976
977/*
978 * Helper function to iterate the entries in ONE btrfs_dir_item.
979 * The iterate callback may return a non zero value to stop iteration. This can
980 * be a negative value for error codes or 1 to simply stop it.
981 *
982 * path must point to the dir item when called.
983 */
984static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
985 iterate_dir_item_t iterate, void *ctx)
986{
987 int ret = 0;
988 struct extent_buffer *eb;
989 struct btrfs_item *item;
990 struct btrfs_dir_item *di;
991 struct btrfs_key di_key;
992 char *buf = NULL;
993 int buf_len;
994 u32 name_len;
995 u32 data_len;
996 u32 cur;
997 u32 len;
998 u32 total;
999 int slot;
1000 int num;
1001 u8 type;
1002
1003 /*
1004 * Start with a small buffer (1 page). If later we end up needing more
1005 * space, which can happen for xattrs on a fs with a leaf size greater
1006 * then the page size, attempt to increase the buffer. Typically xattr
1007 * values are small.
1008 */
1009 buf_len = PATH_MAX;
1010 buf = kmalloc(buf_len, GFP_KERNEL);
1011 if (!buf) {
1012 ret = -ENOMEM;
1013 goto out;
1014 }
1015
1016 eb = path->nodes[0];
1017 slot = path->slots[0];
1018 item = btrfs_item_nr(slot);
1019 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1020 cur = 0;
1021 len = 0;
1022 total = btrfs_item_size(eb, item);
1023
1024 num = 0;
1025 while (cur < total) {
1026 name_len = btrfs_dir_name_len(eb, di);
1027 data_len = btrfs_dir_data_len(eb, di);
1028 type = btrfs_dir_type(eb, di);
1029 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1030
1031 if (type == BTRFS_FT_XATTR) {
1032 if (name_len > XATTR_NAME_MAX) {
1033 ret = -ENAMETOOLONG;
1034 goto out;
1035 }
1036 if (name_len + data_len >
1037 BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1038 ret = -E2BIG;
1039 goto out;
1040 }
1041 } else {
1042 /*
1043 * Path too long
1044 */
1045 if (name_len + data_len > PATH_MAX) {
1046 ret = -ENAMETOOLONG;
1047 goto out;
1048 }
1049 }
1050
1051 if (name_len + data_len > buf_len) {
1052 buf_len = name_len + data_len;
1053 if (is_vmalloc_addr(buf)) {
1054 vfree(buf);
1055 buf = NULL;
1056 } else {
1057 char *tmp = krealloc(buf, buf_len,
1058 GFP_KERNEL | __GFP_NOWARN);
1059
1060 if (!tmp)
1061 kfree(buf);
1062 buf = tmp;
1063 }
1064 if (!buf) {
1065 buf = kvmalloc(buf_len, GFP_KERNEL);
1066 if (!buf) {
1067 ret = -ENOMEM;
1068 goto out;
1069 }
1070 }
1071 }
1072
1073 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1074 name_len + data_len);
1075
1076 len = sizeof(*di) + name_len + data_len;
1077 di = (struct btrfs_dir_item *)((char *)di + len);
1078 cur += len;
1079
1080 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1081 data_len, type, ctx);
1082 if (ret < 0)
1083 goto out;
1084 if (ret) {
1085 ret = 0;
1086 goto out;
1087 }
1088
1089 num++;
1090 }
1091
1092out:
1093 kvfree(buf);
1094 return ret;
1095}
1096
1097static int __copy_first_ref(int num, u64 dir, int index,
1098 struct fs_path *p, void *ctx)
1099{
1100 int ret;
1101 struct fs_path *pt = ctx;
1102
1103 ret = fs_path_copy(pt, p);
1104 if (ret < 0)
1105 return ret;
1106
1107 /* we want the first only */
1108 return 1;
1109}
1110
1111/*
1112 * Retrieve the first path of an inode. If an inode has more then one
1113 * ref/hardlink, this is ignored.
1114 */
1115static int get_inode_path(struct btrfs_root *root,
1116 u64 ino, struct fs_path *path)
1117{
1118 int ret;
1119 struct btrfs_key key, found_key;
1120 struct btrfs_path *p;
1121
1122 p = alloc_path_for_send();
1123 if (!p)
1124 return -ENOMEM;
1125
1126 fs_path_reset(path);
1127
1128 key.objectid = ino;
1129 key.type = BTRFS_INODE_REF_KEY;
1130 key.offset = 0;
1131
1132 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1133 if (ret < 0)
1134 goto out;
1135 if (ret) {
1136 ret = 1;
1137 goto out;
1138 }
1139 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1140 if (found_key.objectid != ino ||
1141 (found_key.type != BTRFS_INODE_REF_KEY &&
1142 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1143 ret = -ENOENT;
1144 goto out;
1145 }
1146
1147 ret = iterate_inode_ref(root, p, &found_key, 1,
1148 __copy_first_ref, path);
1149 if (ret < 0)
1150 goto out;
1151 ret = 0;
1152
1153out:
1154 btrfs_free_path(p);
1155 return ret;
1156}
1157
1158struct backref_ctx {
1159 struct send_ctx *sctx;
1160
1161 struct btrfs_path *path;
1162 /* number of total found references */
1163 u64 found;
1164
1165 /*
1166 * used for clones found in send_root. clones found behind cur_objectid
1167 * and cur_offset are not considered as allowed clones.
1168 */
1169 u64 cur_objectid;
1170 u64 cur_offset;
1171
1172 /* may be truncated in case it's the last extent in a file */
1173 u64 extent_len;
1174
1175 /* data offset in the file extent item */
1176 u64 data_offset;
1177
1178 /* Just to check for bugs in backref resolving */
1179 int found_itself;
1180};
1181
1182static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1183{
1184 u64 root = (u64)(uintptr_t)key;
1185 struct clone_root *cr = (struct clone_root *)elt;
1186
1187 if (root < cr->root->objectid)
1188 return -1;
1189 if (root > cr->root->objectid)
1190 return 1;
1191 return 0;
1192}
1193
1194static int __clone_root_cmp_sort(const void *e1, const void *e2)
1195{
1196 struct clone_root *cr1 = (struct clone_root *)e1;
1197 struct clone_root *cr2 = (struct clone_root *)e2;
1198
1199 if (cr1->root->objectid < cr2->root->objectid)
1200 return -1;
1201 if (cr1->root->objectid > cr2->root->objectid)
1202 return 1;
1203 return 0;
1204}
1205
1206/*
1207 * Called for every backref that is found for the current extent.
1208 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1209 */
1210static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1211{
1212 struct backref_ctx *bctx = ctx_;
1213 struct clone_root *found;
1214 int ret;
1215 u64 i_size;
1216
1217 /* First check if the root is in the list of accepted clone sources */
1218 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1219 bctx->sctx->clone_roots_cnt,
1220 sizeof(struct clone_root),
1221 __clone_root_cmp_bsearch);
1222 if (!found)
1223 return 0;
1224
1225 if (found->root == bctx->sctx->send_root &&
1226 ino == bctx->cur_objectid &&
1227 offset == bctx->cur_offset) {
1228 bctx->found_itself = 1;
1229 }
1230
1231 /*
1232 * There are inodes that have extents that lie behind its i_size. Don't
1233 * accept clones from these extents.
1234 */
1235 ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1236 NULL, NULL, NULL);
1237 btrfs_release_path(bctx->path);
1238 if (ret < 0)
1239 return ret;
1240
1241 if (offset + bctx->data_offset + bctx->extent_len > i_size)
1242 return 0;
1243
1244 /*
1245 * Make sure we don't consider clones from send_root that are
1246 * behind the current inode/offset.
1247 */
1248 if (found->root == bctx->sctx->send_root) {
1249 /*
1250 * TODO for the moment we don't accept clones from the inode
1251 * that is currently send. We may change this when
1252 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1253 * file.
1254 */
1255 if (ino >= bctx->cur_objectid)
1256 return 0;
1257 }
1258
1259 bctx->found++;
1260 found->found_refs++;
1261 if (ino < found->ino) {
1262 found->ino = ino;
1263 found->offset = offset;
1264 } else if (found->ino == ino) {
1265 /*
1266 * same extent found more then once in the same file.
1267 */
1268 if (found->offset > offset + bctx->extent_len)
1269 found->offset = offset;
1270 }
1271
1272 return 0;
1273}
1274
1275/*
1276 * Given an inode, offset and extent item, it finds a good clone for a clone
1277 * instruction. Returns -ENOENT when none could be found. The function makes
1278 * sure that the returned clone is usable at the point where sending is at the
1279 * moment. This means, that no clones are accepted which lie behind the current
1280 * inode+offset.
1281 *
1282 * path must point to the extent item when called.
1283 */
1284static int find_extent_clone(struct send_ctx *sctx,
1285 struct btrfs_path *path,
1286 u64 ino, u64 data_offset,
1287 u64 ino_size,
1288 struct clone_root **found)
1289{
1290 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1291 int ret;
1292 int extent_type;
1293 u64 logical;
1294 u64 disk_byte;
1295 u64 num_bytes;
1296 u64 extent_item_pos;
1297 u64 flags = 0;
1298 struct btrfs_file_extent_item *fi;
1299 struct extent_buffer *eb = path->nodes[0];
1300 struct backref_ctx *backref_ctx = NULL;
1301 struct clone_root *cur_clone_root;
1302 struct btrfs_key found_key;
1303 struct btrfs_path *tmp_path;
1304 int compressed;
1305 u32 i;
1306
1307 tmp_path = alloc_path_for_send();
1308 if (!tmp_path)
1309 return -ENOMEM;
1310
1311 /* We only use this path under the commit sem */
1312 tmp_path->need_commit_sem = 0;
1313
1314 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1315 if (!backref_ctx) {
1316 ret = -ENOMEM;
1317 goto out;
1318 }
1319
1320 backref_ctx->path = tmp_path;
1321
1322 if (data_offset >= ino_size) {
1323 /*
1324 * There may be extents that lie behind the file's size.
1325 * I at least had this in combination with snapshotting while
1326 * writing large files.
1327 */
1328 ret = 0;
1329 goto out;
1330 }
1331
1332 fi = btrfs_item_ptr(eb, path->slots[0],
1333 struct btrfs_file_extent_item);
1334 extent_type = btrfs_file_extent_type(eb, fi);
1335 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1336 ret = -ENOENT;
1337 goto out;
1338 }
1339 compressed = btrfs_file_extent_compression(eb, fi);
1340
1341 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1342 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1343 if (disk_byte == 0) {
1344 ret = -ENOENT;
1345 goto out;
1346 }
1347 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1348
1349 down_read(&fs_info->commit_root_sem);
1350 ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1351 &found_key, &flags);
1352 up_read(&fs_info->commit_root_sem);
1353 btrfs_release_path(tmp_path);
1354
1355 if (ret < 0)
1356 goto out;
1357 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1358 ret = -EIO;
1359 goto out;
1360 }
1361
1362 /*
1363 * Setup the clone roots.
1364 */
1365 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1366 cur_clone_root = sctx->clone_roots + i;
1367 cur_clone_root->ino = (u64)-1;
1368 cur_clone_root->offset = 0;
1369 cur_clone_root->found_refs = 0;
1370 }
1371
1372 backref_ctx->sctx = sctx;
1373 backref_ctx->found = 0;
1374 backref_ctx->cur_objectid = ino;
1375 backref_ctx->cur_offset = data_offset;
1376 backref_ctx->found_itself = 0;
1377 backref_ctx->extent_len = num_bytes;
1378 /*
1379 * For non-compressed extents iterate_extent_inodes() gives us extent
1380 * offsets that already take into account the data offset, but not for
1381 * compressed extents, since the offset is logical and not relative to
1382 * the physical extent locations. We must take this into account to
1383 * avoid sending clone offsets that go beyond the source file's size,
1384 * which would result in the clone ioctl failing with -EINVAL on the
1385 * receiving end.
1386 */
1387 if (compressed == BTRFS_COMPRESS_NONE)
1388 backref_ctx->data_offset = 0;
1389 else
1390 backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1391
1392 /*
1393 * The last extent of a file may be too large due to page alignment.
1394 * We need to adjust extent_len in this case so that the checks in
1395 * __iterate_backrefs work.
1396 */
1397 if (data_offset + num_bytes >= ino_size)
1398 backref_ctx->extent_len = ino_size - data_offset;
1399
1400 /*
1401 * Now collect all backrefs.
1402 */
1403 if (compressed == BTRFS_COMPRESS_NONE)
1404 extent_item_pos = logical - found_key.objectid;
1405 else
1406 extent_item_pos = 0;
1407 ret = iterate_extent_inodes(fs_info, found_key.objectid,
1408 extent_item_pos, 1, __iterate_backrefs,
1409 backref_ctx, false);
1410
1411 if (ret < 0)
1412 goto out;
1413
1414 if (!backref_ctx->found_itself) {
1415 /* found a bug in backref code? */
1416 ret = -EIO;
1417 btrfs_err(fs_info,
1418 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1419 ino, data_offset, disk_byte, found_key.objectid);
1420 goto out;
1421 }
1422
1423 btrfs_debug(fs_info,
1424 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1425 data_offset, ino, num_bytes, logical);
1426
1427 if (!backref_ctx->found)
1428 btrfs_debug(fs_info, "no clones found");
1429
1430 cur_clone_root = NULL;
1431 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1432 if (sctx->clone_roots[i].found_refs) {
1433 if (!cur_clone_root)
1434 cur_clone_root = sctx->clone_roots + i;
1435 else if (sctx->clone_roots[i].root == sctx->send_root)
1436 /* prefer clones from send_root over others */
1437 cur_clone_root = sctx->clone_roots + i;
1438 }
1439
1440 }
1441
1442 if (cur_clone_root) {
1443 *found = cur_clone_root;
1444 ret = 0;
1445 } else {
1446 ret = -ENOENT;
1447 }
1448
1449out:
1450 btrfs_free_path(tmp_path);
1451 kfree(backref_ctx);
1452 return ret;
1453}
1454
1455static int read_symlink(struct btrfs_root *root,
1456 u64 ino,
1457 struct fs_path *dest)
1458{
1459 int ret;
1460 struct btrfs_path *path;
1461 struct btrfs_key key;
1462 struct btrfs_file_extent_item *ei;
1463 u8 type;
1464 u8 compression;
1465 unsigned long off;
1466 int len;
1467
1468 path = alloc_path_for_send();
1469 if (!path)
1470 return -ENOMEM;
1471
1472 key.objectid = ino;
1473 key.type = BTRFS_EXTENT_DATA_KEY;
1474 key.offset = 0;
1475 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1476 if (ret < 0)
1477 goto out;
1478 if (ret) {
1479 /*
1480 * An empty symlink inode. Can happen in rare error paths when
1481 * creating a symlink (transaction committed before the inode
1482 * eviction handler removed the symlink inode items and a crash
1483 * happened in between or the subvol was snapshoted in between).
1484 * Print an informative message to dmesg/syslog so that the user
1485 * can delete the symlink.
1486 */
1487 btrfs_err(root->fs_info,
1488 "Found empty symlink inode %llu at root %llu",
1489 ino, root->root_key.objectid);
1490 ret = -EIO;
1491 goto out;
1492 }
1493
1494 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1495 struct btrfs_file_extent_item);
1496 type = btrfs_file_extent_type(path->nodes[0], ei);
1497 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1498 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1499 BUG_ON(compression);
1500
1501 off = btrfs_file_extent_inline_start(ei);
1502 len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1503
1504 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1505
1506out:
1507 btrfs_free_path(path);
1508 return ret;
1509}
1510
1511/*
1512 * Helper function to generate a file name that is unique in the root of
1513 * send_root and parent_root. This is used to generate names for orphan inodes.
1514 */
1515static int gen_unique_name(struct send_ctx *sctx,
1516 u64 ino, u64 gen,
1517 struct fs_path *dest)
1518{
1519 int ret = 0;
1520 struct btrfs_path *path;
1521 struct btrfs_dir_item *di;
1522 char tmp[64];
1523 int len;
1524 u64 idx = 0;
1525
1526 path = alloc_path_for_send();
1527 if (!path)
1528 return -ENOMEM;
1529
1530 while (1) {
1531 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1532 ino, gen, idx);
1533 ASSERT(len < sizeof(tmp));
1534
1535 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1536 path, BTRFS_FIRST_FREE_OBJECTID,
1537 tmp, strlen(tmp), 0);
1538 btrfs_release_path(path);
1539 if (IS_ERR(di)) {
1540 ret = PTR_ERR(di);
1541 goto out;
1542 }
1543 if (di) {
1544 /* not unique, try again */
1545 idx++;
1546 continue;
1547 }
1548
1549 if (!sctx->parent_root) {
1550 /* unique */
1551 ret = 0;
1552 break;
1553 }
1554
1555 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1556 path, BTRFS_FIRST_FREE_OBJECTID,
1557 tmp, strlen(tmp), 0);
1558 btrfs_release_path(path);
1559 if (IS_ERR(di)) {
1560 ret = PTR_ERR(di);
1561 goto out;
1562 }
1563 if (di) {
1564 /* not unique, try again */
1565 idx++;
1566 continue;
1567 }
1568 /* unique */
1569 break;
1570 }
1571
1572 ret = fs_path_add(dest, tmp, strlen(tmp));
1573
1574out:
1575 btrfs_free_path(path);
1576 return ret;
1577}
1578
1579enum inode_state {
1580 inode_state_no_change,
1581 inode_state_will_create,
1582 inode_state_did_create,
1583 inode_state_will_delete,
1584 inode_state_did_delete,
1585};
1586
1587static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1588{
1589 int ret;
1590 int left_ret;
1591 int right_ret;
1592 u64 left_gen;
1593 u64 right_gen;
1594
1595 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1596 NULL, NULL);
1597 if (ret < 0 && ret != -ENOENT)
1598 goto out;
1599 left_ret = ret;
1600
1601 if (!sctx->parent_root) {
1602 right_ret = -ENOENT;
1603 } else {
1604 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1605 NULL, NULL, NULL, NULL);
1606 if (ret < 0 && ret != -ENOENT)
1607 goto out;
1608 right_ret = ret;
1609 }
1610
1611 if (!left_ret && !right_ret) {
1612 if (left_gen == gen && right_gen == gen) {
1613 ret = inode_state_no_change;
1614 } else if (left_gen == gen) {
1615 if (ino < sctx->send_progress)
1616 ret = inode_state_did_create;
1617 else
1618 ret = inode_state_will_create;
1619 } else if (right_gen == gen) {
1620 if (ino < sctx->send_progress)
1621 ret = inode_state_did_delete;
1622 else
1623 ret = inode_state_will_delete;
1624 } else {
1625 ret = -ENOENT;
1626 }
1627 } else if (!left_ret) {
1628 if (left_gen == gen) {
1629 if (ino < sctx->send_progress)
1630 ret = inode_state_did_create;
1631 else
1632 ret = inode_state_will_create;
1633 } else {
1634 ret = -ENOENT;
1635 }
1636 } else if (!right_ret) {
1637 if (right_gen == gen) {
1638 if (ino < sctx->send_progress)
1639 ret = inode_state_did_delete;
1640 else
1641 ret = inode_state_will_delete;
1642 } else {
1643 ret = -ENOENT;
1644 }
1645 } else {
1646 ret = -ENOENT;
1647 }
1648
1649out:
1650 return ret;
1651}
1652
1653static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1654{
1655 int ret;
1656
1657 if (ino == BTRFS_FIRST_FREE_OBJECTID)
1658 return 1;
1659
1660 ret = get_cur_inode_state(sctx, ino, gen);
1661 if (ret < 0)
1662 goto out;
1663
1664 if (ret == inode_state_no_change ||
1665 ret == inode_state_did_create ||
1666 ret == inode_state_will_delete)
1667 ret = 1;
1668 else
1669 ret = 0;
1670
1671out:
1672 return ret;
1673}
1674
1675/*
1676 * Helper function to lookup a dir item in a dir.
1677 */
1678static int lookup_dir_item_inode(struct btrfs_root *root,
1679 u64 dir, const char *name, int name_len,
1680 u64 *found_inode,
1681 u8 *found_type)
1682{
1683 int ret = 0;
1684 struct btrfs_dir_item *di;
1685 struct btrfs_key key;
1686 struct btrfs_path *path;
1687
1688 path = alloc_path_for_send();
1689 if (!path)
1690 return -ENOMEM;
1691
1692 di = btrfs_lookup_dir_item(NULL, root, path,
1693 dir, name, name_len, 0);
1694 if (!di) {
1695 ret = -ENOENT;
1696 goto out;
1697 }
1698 if (IS_ERR(di)) {
1699 ret = PTR_ERR(di);
1700 goto out;
1701 }
1702 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1703 if (key.type == BTRFS_ROOT_ITEM_KEY) {
1704 ret = -ENOENT;
1705 goto out;
1706 }
1707 *found_inode = key.objectid;
1708 *found_type = btrfs_dir_type(path->nodes[0], di);
1709
1710out:
1711 btrfs_free_path(path);
1712 return ret;
1713}
1714
1715/*
1716 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1717 * generation of the parent dir and the name of the dir entry.
1718 */
1719static int get_first_ref(struct btrfs_root *root, u64 ino,
1720 u64 *dir, u64 *dir_gen, struct fs_path *name)
1721{
1722 int ret;
1723 struct btrfs_key key;
1724 struct btrfs_key found_key;
1725 struct btrfs_path *path;
1726 int len;
1727 u64 parent_dir;
1728
1729 path = alloc_path_for_send();
1730 if (!path)
1731 return -ENOMEM;
1732
1733 key.objectid = ino;
1734 key.type = BTRFS_INODE_REF_KEY;
1735 key.offset = 0;
1736
1737 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1738 if (ret < 0)
1739 goto out;
1740 if (!ret)
1741 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1742 path->slots[0]);
1743 if (ret || found_key.objectid != ino ||
1744 (found_key.type != BTRFS_INODE_REF_KEY &&
1745 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1746 ret = -ENOENT;
1747 goto out;
1748 }
1749
1750 if (found_key.type == BTRFS_INODE_REF_KEY) {
1751 struct btrfs_inode_ref *iref;
1752 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1753 struct btrfs_inode_ref);
1754 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1755 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1756 (unsigned long)(iref + 1),
1757 len);
1758 parent_dir = found_key.offset;
1759 } else {
1760 struct btrfs_inode_extref *extref;
1761 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1762 struct btrfs_inode_extref);
1763 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1764 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1765 (unsigned long)&extref->name, len);
1766 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1767 }
1768 if (ret < 0)
1769 goto out;
1770 btrfs_release_path(path);
1771
1772 if (dir_gen) {
1773 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1774 NULL, NULL, NULL);
1775 if (ret < 0)
1776 goto out;
1777 }
1778
1779 *dir = parent_dir;
1780
1781out:
1782 btrfs_free_path(path);
1783 return ret;
1784}
1785
1786static int is_first_ref(struct btrfs_root *root,
1787 u64 ino, u64 dir,
1788 const char *name, int name_len)
1789{
1790 int ret;
1791 struct fs_path *tmp_name;
1792 u64 tmp_dir;
1793
1794 tmp_name = fs_path_alloc();
1795 if (!tmp_name)
1796 return -ENOMEM;
1797
1798 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1799 if (ret < 0)
1800 goto out;
1801
1802 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1803 ret = 0;
1804 goto out;
1805 }
1806
1807 ret = !memcmp(tmp_name->start, name, name_len);
1808
1809out:
1810 fs_path_free(tmp_name);
1811 return ret;
1812}
1813
1814/*
1815 * Used by process_recorded_refs to determine if a new ref would overwrite an
1816 * already existing ref. In case it detects an overwrite, it returns the
1817 * inode/gen in who_ino/who_gen.
1818 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1819 * to make sure later references to the overwritten inode are possible.
1820 * Orphanizing is however only required for the first ref of an inode.
1821 * process_recorded_refs does an additional is_first_ref check to see if
1822 * orphanizing is really required.
1823 */
1824static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1825 const char *name, int name_len,
1826 u64 *who_ino, u64 *who_gen, u64 *who_mode)
1827{
1828 int ret = 0;
1829 u64 gen;
1830 u64 other_inode = 0;
1831 u8 other_type = 0;
1832
1833 if (!sctx->parent_root)
1834 goto out;
1835
1836 ret = is_inode_existent(sctx, dir, dir_gen);
1837 if (ret <= 0)
1838 goto out;
1839
1840 /*
1841 * If we have a parent root we need to verify that the parent dir was
1842 * not deleted and then re-created, if it was then we have no overwrite
1843 * and we can just unlink this entry.
1844 */
1845 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1846 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1847 NULL, NULL, NULL);
1848 if (ret < 0 && ret != -ENOENT)
1849 goto out;
1850 if (ret) {
1851 ret = 0;
1852 goto out;
1853 }
1854 if (gen != dir_gen)
1855 goto out;
1856 }
1857
1858 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1859 &other_inode, &other_type);
1860 if (ret < 0 && ret != -ENOENT)
1861 goto out;
1862 if (ret) {
1863 ret = 0;
1864 goto out;
1865 }
1866
1867 /*
1868 * Check if the overwritten ref was already processed. If yes, the ref
1869 * was already unlinked/moved, so we can safely assume that we will not
1870 * overwrite anything at this point in time.
1871 */
1872 if (other_inode > sctx->send_progress ||
1873 is_waiting_for_move(sctx, other_inode)) {
1874 ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1875 who_gen, who_mode, NULL, NULL, NULL);
1876 if (ret < 0)
1877 goto out;
1878
1879 ret = 1;
1880 *who_ino = other_inode;
1881 } else {
1882 ret = 0;
1883 }
1884
1885out:
1886 return ret;
1887}
1888
1889/*
1890 * Checks if the ref was overwritten by an already processed inode. This is
1891 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1892 * thus the orphan name needs be used.
1893 * process_recorded_refs also uses it to avoid unlinking of refs that were
1894 * overwritten.
1895 */
1896static int did_overwrite_ref(struct send_ctx *sctx,
1897 u64 dir, u64 dir_gen,
1898 u64 ino, u64 ino_gen,
1899 const char *name, int name_len)
1900{
1901 int ret = 0;
1902 u64 gen;
1903 u64 ow_inode;
1904 u8 other_type;
1905
1906 if (!sctx->parent_root)
1907 goto out;
1908
1909 ret = is_inode_existent(sctx, dir, dir_gen);
1910 if (ret <= 0)
1911 goto out;
1912
1913 if (dir != BTRFS_FIRST_FREE_OBJECTID) {
1914 ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
1915 NULL, NULL, NULL);
1916 if (ret < 0 && ret != -ENOENT)
1917 goto out;
1918 if (ret) {
1919 ret = 0;
1920 goto out;
1921 }
1922 if (gen != dir_gen)
1923 goto out;
1924 }
1925
1926 /* check if the ref was overwritten by another ref */
1927 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1928 &ow_inode, &other_type);
1929 if (ret < 0 && ret != -ENOENT)
1930 goto out;
1931 if (ret) {
1932 /* was never and will never be overwritten */
1933 ret = 0;
1934 goto out;
1935 }
1936
1937 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1938 NULL, NULL);
1939 if (ret < 0)
1940 goto out;
1941
1942 if (ow_inode == ino && gen == ino_gen) {
1943 ret = 0;
1944 goto out;
1945 }
1946
1947 /*
1948 * We know that it is or will be overwritten. Check this now.
1949 * The current inode being processed might have been the one that caused
1950 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1951 * the current inode being processed.
1952 */
1953 if ((ow_inode < sctx->send_progress) ||
1954 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1955 gen == sctx->cur_inode_gen))
1956 ret = 1;
1957 else
1958 ret = 0;
1959
1960out:
1961 return ret;
1962}
1963
1964/*
1965 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1966 * that got overwritten. This is used by process_recorded_refs to determine
1967 * if it has to use the path as returned by get_cur_path or the orphan name.
1968 */
1969static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1970{
1971 int ret = 0;
1972 struct fs_path *name = NULL;
1973 u64 dir;
1974 u64 dir_gen;
1975
1976 if (!sctx->parent_root)
1977 goto out;
1978
1979 name = fs_path_alloc();
1980 if (!name)
1981 return -ENOMEM;
1982
1983 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1984 if (ret < 0)
1985 goto out;
1986
1987 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1988 name->start, fs_path_len(name));
1989
1990out:
1991 fs_path_free(name);
1992 return ret;
1993}
1994
1995/*
1996 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1997 * so we need to do some special handling in case we have clashes. This function
1998 * takes care of this with the help of name_cache_entry::radix_list.
1999 * In case of error, nce is kfreed.
2000 */
2001static int name_cache_insert(struct send_ctx *sctx,
2002 struct name_cache_entry *nce)
2003{
2004 int ret = 0;
2005 struct list_head *nce_head;
2006
2007 nce_head = radix_tree_lookup(&sctx->name_cache,
2008 (unsigned long)nce->ino);
2009 if (!nce_head) {
2010 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2011 if (!nce_head) {
2012 kfree(nce);
2013 return -ENOMEM;
2014 }
2015 INIT_LIST_HEAD(nce_head);
2016
2017 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2018 if (ret < 0) {
2019 kfree(nce_head);
2020 kfree(nce);
2021 return ret;
2022 }
2023 }
2024 list_add_tail(&nce->radix_list, nce_head);
2025 list_add_tail(&nce->list, &sctx->name_cache_list);
2026 sctx->name_cache_size++;
2027
2028 return ret;
2029}
2030
2031static void name_cache_delete(struct send_ctx *sctx,
2032 struct name_cache_entry *nce)
2033{
2034 struct list_head *nce_head;
2035
2036 nce_head = radix_tree_lookup(&sctx->name_cache,
2037 (unsigned long)nce->ino);
2038 if (!nce_head) {
2039 btrfs_err(sctx->send_root->fs_info,
2040 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2041 nce->ino, sctx->name_cache_size);
2042 }
2043
2044 list_del(&nce->radix_list);
2045 list_del(&nce->list);
2046 sctx->name_cache_size--;
2047
2048 /*
2049 * We may not get to the final release of nce_head if the lookup fails
2050 */
2051 if (nce_head && list_empty(nce_head)) {
2052 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2053 kfree(nce_head);
2054 }
2055}
2056
2057static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2058 u64 ino, u64 gen)
2059{
2060 struct list_head *nce_head;
2061 struct name_cache_entry *cur;
2062
2063 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2064 if (!nce_head)
2065 return NULL;
2066
2067 list_for_each_entry(cur, nce_head, radix_list) {
2068 if (cur->ino == ino && cur->gen == gen)
2069 return cur;
2070 }
2071 return NULL;
2072}
2073
2074/*
2075 * Removes the entry from the list and adds it back to the end. This marks the
2076 * entry as recently used so that name_cache_clean_unused does not remove it.
2077 */
2078static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2079{
2080 list_del(&nce->list);
2081 list_add_tail(&nce->list, &sctx->name_cache_list);
2082}
2083
2084/*
2085 * Remove some entries from the beginning of name_cache_list.
2086 */
2087static void name_cache_clean_unused(struct send_ctx *sctx)
2088{
2089 struct name_cache_entry *nce;
2090
2091 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2092 return;
2093
2094 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2095 nce = list_entry(sctx->name_cache_list.next,
2096 struct name_cache_entry, list);
2097 name_cache_delete(sctx, nce);
2098 kfree(nce);
2099 }
2100}
2101
2102static void name_cache_free(struct send_ctx *sctx)
2103{
2104 struct name_cache_entry *nce;
2105
2106 while (!list_empty(&sctx->name_cache_list)) {
2107 nce = list_entry(sctx->name_cache_list.next,
2108 struct name_cache_entry, list);
2109 name_cache_delete(sctx, nce);
2110 kfree(nce);
2111 }
2112}
2113
2114/*
2115 * Used by get_cur_path for each ref up to the root.
2116 * Returns 0 if it succeeded.
2117 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2118 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2119 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2120 * Returns <0 in case of error.
2121 */
2122static int __get_cur_name_and_parent(struct send_ctx *sctx,
2123 u64 ino, u64 gen,
2124 u64 *parent_ino,
2125 u64 *parent_gen,
2126 struct fs_path *dest)
2127{
2128 int ret;
2129 int nce_ret;
2130 struct name_cache_entry *nce = NULL;
2131
2132 /*
2133 * First check if we already did a call to this function with the same
2134 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2135 * return the cached result.
2136 */
2137 nce = name_cache_search(sctx, ino, gen);
2138 if (nce) {
2139 if (ino < sctx->send_progress && nce->need_later_update) {
2140 name_cache_delete(sctx, nce);
2141 kfree(nce);
2142 nce = NULL;
2143 } else {
2144 name_cache_used(sctx, nce);
2145 *parent_ino = nce->parent_ino;
2146 *parent_gen = nce->parent_gen;
2147 ret = fs_path_add(dest, nce->name, nce->name_len);
2148 if (ret < 0)
2149 goto out;
2150 ret = nce->ret;
2151 goto out;
2152 }
2153 }
2154
2155 /*
2156 * If the inode is not existent yet, add the orphan name and return 1.
2157 * This should only happen for the parent dir that we determine in
2158 * __record_new_ref
2159 */
2160 ret = is_inode_existent(sctx, ino, gen);
2161 if (ret < 0)
2162 goto out;
2163
2164 if (!ret) {
2165 ret = gen_unique_name(sctx, ino, gen, dest);
2166 if (ret < 0)
2167 goto out;
2168 ret = 1;
2169 goto out_cache;
2170 }
2171
2172 /*
2173 * Depending on whether the inode was already processed or not, use
2174 * send_root or parent_root for ref lookup.
2175 */
2176 if (ino < sctx->send_progress)
2177 ret = get_first_ref(sctx->send_root, ino,
2178 parent_ino, parent_gen, dest);
2179 else
2180 ret = get_first_ref(sctx->parent_root, ino,
2181 parent_ino, parent_gen, dest);
2182 if (ret < 0)
2183 goto out;
2184
2185 /*
2186 * Check if the ref was overwritten by an inode's ref that was processed
2187 * earlier. If yes, treat as orphan and return 1.
2188 */
2189 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2190 dest->start, dest->end - dest->start);
2191 if (ret < 0)
2192 goto out;
2193 if (ret) {
2194 fs_path_reset(dest);
2195 ret = gen_unique_name(sctx, ino, gen, dest);
2196 if (ret < 0)
2197 goto out;
2198 ret = 1;
2199 }
2200
2201out_cache:
2202 /*
2203 * Store the result of the lookup in the name cache.
2204 */
2205 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2206 if (!nce) {
2207 ret = -ENOMEM;
2208 goto out;
2209 }
2210
2211 nce->ino = ino;
2212 nce->gen = gen;
2213 nce->parent_ino = *parent_ino;
2214 nce->parent_gen = *parent_gen;
2215 nce->name_len = fs_path_len(dest);
2216 nce->ret = ret;
2217 strcpy(nce->name, dest->start);
2218
2219 if (ino < sctx->send_progress)
2220 nce->need_later_update = 0;
2221 else
2222 nce->need_later_update = 1;
2223
2224 nce_ret = name_cache_insert(sctx, nce);
2225 if (nce_ret < 0)
2226 ret = nce_ret;
2227 name_cache_clean_unused(sctx);
2228
2229out:
2230 return ret;
2231}
2232
2233/*
2234 * Magic happens here. This function returns the first ref to an inode as it
2235 * would look like while receiving the stream at this point in time.
2236 * We walk the path up to the root. For every inode in between, we check if it
2237 * was already processed/sent. If yes, we continue with the parent as found
2238 * in send_root. If not, we continue with the parent as found in parent_root.
2239 * If we encounter an inode that was deleted at this point in time, we use the
2240 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2241 * that were not created yet and overwritten inodes/refs.
2242 *
2243 * When do we have have orphan inodes:
2244 * 1. When an inode is freshly created and thus no valid refs are available yet
2245 * 2. When a directory lost all it's refs (deleted) but still has dir items
2246 * inside which were not processed yet (pending for move/delete). If anyone
2247 * tried to get the path to the dir items, it would get a path inside that
2248 * orphan directory.
2249 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2250 * of an unprocessed inode. If in that case the first ref would be
2251 * overwritten, the overwritten inode gets "orphanized". Later when we
2252 * process this overwritten inode, it is restored at a new place by moving
2253 * the orphan inode.
2254 *
2255 * sctx->send_progress tells this function at which point in time receiving
2256 * would be.
2257 */
2258static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2259 struct fs_path *dest)
2260{
2261 int ret = 0;
2262 struct fs_path *name = NULL;
2263 u64 parent_inode = 0;
2264 u64 parent_gen = 0;
2265 int stop = 0;
2266
2267 name = fs_path_alloc();
2268 if (!name) {
2269 ret = -ENOMEM;
2270 goto out;
2271 }
2272
2273 dest->reversed = 1;
2274 fs_path_reset(dest);
2275
2276 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2277 struct waiting_dir_move *wdm;
2278
2279 fs_path_reset(name);
2280
2281 if (is_waiting_for_rm(sctx, ino)) {
2282 ret = gen_unique_name(sctx, ino, gen, name);
2283 if (ret < 0)
2284 goto out;
2285 ret = fs_path_add_path(dest, name);
2286 break;
2287 }
2288
2289 wdm = get_waiting_dir_move(sctx, ino);
2290 if (wdm && wdm->orphanized) {
2291 ret = gen_unique_name(sctx, ino, gen, name);
2292 stop = 1;
2293 } else if (wdm) {
2294 ret = get_first_ref(sctx->parent_root, ino,
2295 &parent_inode, &parent_gen, name);
2296 } else {
2297 ret = __get_cur_name_and_parent(sctx, ino, gen,
2298 &parent_inode,
2299 &parent_gen, name);
2300 if (ret)
2301 stop = 1;
2302 }
2303
2304 if (ret < 0)
2305 goto out;
2306
2307 ret = fs_path_add_path(dest, name);
2308 if (ret < 0)
2309 goto out;
2310
2311 ino = parent_inode;
2312 gen = parent_gen;
2313 }
2314
2315out:
2316 fs_path_free(name);
2317 if (!ret)
2318 fs_path_unreverse(dest);
2319 return ret;
2320}
2321
2322/*
2323 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2324 */
2325static int send_subvol_begin(struct send_ctx *sctx)
2326{
2327 int ret;
2328 struct btrfs_root *send_root = sctx->send_root;
2329 struct btrfs_root *parent_root = sctx->parent_root;
2330 struct btrfs_path *path;
2331 struct btrfs_key key;
2332 struct btrfs_root_ref *ref;
2333 struct extent_buffer *leaf;
2334 char *name = NULL;
2335 int namelen;
2336
2337 path = btrfs_alloc_path();
2338 if (!path)
2339 return -ENOMEM;
2340
2341 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2342 if (!name) {
2343 btrfs_free_path(path);
2344 return -ENOMEM;
2345 }
2346
2347 key.objectid = send_root->objectid;
2348 key.type = BTRFS_ROOT_BACKREF_KEY;
2349 key.offset = 0;
2350
2351 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2352 &key, path, 1, 0);
2353 if (ret < 0)
2354 goto out;
2355 if (ret) {
2356 ret = -ENOENT;
2357 goto out;
2358 }
2359
2360 leaf = path->nodes[0];
2361 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2362 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2363 key.objectid != send_root->objectid) {
2364 ret = -ENOENT;
2365 goto out;
2366 }
2367 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2368 namelen = btrfs_root_ref_name_len(leaf, ref);
2369 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2370 btrfs_release_path(path);
2371
2372 if (parent_root) {
2373 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2374 if (ret < 0)
2375 goto out;
2376 } else {
2377 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2378 if (ret < 0)
2379 goto out;
2380 }
2381
2382 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2383
2384 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2385 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2386 sctx->send_root->root_item.received_uuid);
2387 else
2388 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2389 sctx->send_root->root_item.uuid);
2390
2391 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2392 le64_to_cpu(sctx->send_root->root_item.ctransid));
2393 if (parent_root) {
2394 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2395 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2396 parent_root->root_item.received_uuid);
2397 else
2398 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2399 parent_root->root_item.uuid);
2400 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2401 le64_to_cpu(sctx->parent_root->root_item.ctransid));
2402 }
2403
2404 ret = send_cmd(sctx);
2405
2406tlv_put_failure:
2407out:
2408 btrfs_free_path(path);
2409 kfree(name);
2410 return ret;
2411}
2412
2413static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2414{
2415 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2416 int ret = 0;
2417 struct fs_path *p;
2418
2419 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2420
2421 p = fs_path_alloc();
2422 if (!p)
2423 return -ENOMEM;
2424
2425 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2426 if (ret < 0)
2427 goto out;
2428
2429 ret = get_cur_path(sctx, ino, gen, p);
2430 if (ret < 0)
2431 goto out;
2432 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2433 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2434
2435 ret = send_cmd(sctx);
2436
2437tlv_put_failure:
2438out:
2439 fs_path_free(p);
2440 return ret;
2441}
2442
2443static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2444{
2445 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2446 int ret = 0;
2447 struct fs_path *p;
2448
2449 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2450
2451 p = fs_path_alloc();
2452 if (!p)
2453 return -ENOMEM;
2454
2455 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2456 if (ret < 0)
2457 goto out;
2458
2459 ret = get_cur_path(sctx, ino, gen, p);
2460 if (ret < 0)
2461 goto out;
2462 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2463 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2464
2465 ret = send_cmd(sctx);
2466
2467tlv_put_failure:
2468out:
2469 fs_path_free(p);
2470 return ret;
2471}
2472
2473static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2474{
2475 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2476 int ret = 0;
2477 struct fs_path *p;
2478
2479 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2480 ino, uid, gid);
2481
2482 p = fs_path_alloc();
2483 if (!p)
2484 return -ENOMEM;
2485
2486 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2487 if (ret < 0)
2488 goto out;
2489
2490 ret = get_cur_path(sctx, ino, gen, p);
2491 if (ret < 0)
2492 goto out;
2493 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2494 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2495 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2496
2497 ret = send_cmd(sctx);
2498
2499tlv_put_failure:
2500out:
2501 fs_path_free(p);
2502 return ret;
2503}
2504
2505static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2506{
2507 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2508 int ret = 0;
2509 struct fs_path *p = NULL;
2510 struct btrfs_inode_item *ii;
2511 struct btrfs_path *path = NULL;
2512 struct extent_buffer *eb;
2513 struct btrfs_key key;
2514 int slot;
2515
2516 btrfs_debug(fs_info, "send_utimes %llu", ino);
2517
2518 p = fs_path_alloc();
2519 if (!p)
2520 return -ENOMEM;
2521
2522 path = alloc_path_for_send();
2523 if (!path) {
2524 ret = -ENOMEM;
2525 goto out;
2526 }
2527
2528 key.objectid = ino;
2529 key.type = BTRFS_INODE_ITEM_KEY;
2530 key.offset = 0;
2531 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2532 if (ret > 0)
2533 ret = -ENOENT;
2534 if (ret < 0)
2535 goto out;
2536
2537 eb = path->nodes[0];
2538 slot = path->slots[0];
2539 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2540
2541 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2542 if (ret < 0)
2543 goto out;
2544
2545 ret = get_cur_path(sctx, ino, gen, p);
2546 if (ret < 0)
2547 goto out;
2548 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2549 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2550 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2551 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2552 /* TODO Add otime support when the otime patches get into upstream */
2553
2554 ret = send_cmd(sctx);
2555
2556tlv_put_failure:
2557out:
2558 fs_path_free(p);
2559 btrfs_free_path(path);
2560 return ret;
2561}
2562
2563/*
2564 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2565 * a valid path yet because we did not process the refs yet. So, the inode
2566 * is created as orphan.
2567 */
2568static int send_create_inode(struct send_ctx *sctx, u64 ino)
2569{
2570 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2571 int ret = 0;
2572 struct fs_path *p;
2573 int cmd;
2574 u64 gen;
2575 u64 mode;
2576 u64 rdev;
2577
2578 btrfs_debug(fs_info, "send_create_inode %llu", ino);
2579
2580 p = fs_path_alloc();
2581 if (!p)
2582 return -ENOMEM;
2583
2584 if (ino != sctx->cur_ino) {
2585 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2586 NULL, NULL, &rdev);
2587 if (ret < 0)
2588 goto out;
2589 } else {
2590 gen = sctx->cur_inode_gen;
2591 mode = sctx->cur_inode_mode;
2592 rdev = sctx->cur_inode_rdev;
2593 }
2594
2595 if (S_ISREG(mode)) {
2596 cmd = BTRFS_SEND_C_MKFILE;
2597 } else if (S_ISDIR(mode)) {
2598 cmd = BTRFS_SEND_C_MKDIR;
2599 } else if (S_ISLNK(mode)) {
2600 cmd = BTRFS_SEND_C_SYMLINK;
2601 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2602 cmd = BTRFS_SEND_C_MKNOD;
2603 } else if (S_ISFIFO(mode)) {
2604 cmd = BTRFS_SEND_C_MKFIFO;
2605 } else if (S_ISSOCK(mode)) {
2606 cmd = BTRFS_SEND_C_MKSOCK;
2607 } else {
2608 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2609 (int)(mode & S_IFMT));
2610 ret = -EOPNOTSUPP;
2611 goto out;
2612 }
2613
2614 ret = begin_cmd(sctx, cmd);
2615 if (ret < 0)
2616 goto out;
2617
2618 ret = gen_unique_name(sctx, ino, gen, p);
2619 if (ret < 0)
2620 goto out;
2621
2622 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2623 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2624
2625 if (S_ISLNK(mode)) {
2626 fs_path_reset(p);
2627 ret = read_symlink(sctx->send_root, ino, p);
2628 if (ret < 0)
2629 goto out;
2630 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2631 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2632 S_ISFIFO(mode) || S_ISSOCK(mode)) {
2633 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2634 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2635 }
2636
2637 ret = send_cmd(sctx);
2638 if (ret < 0)
2639 goto out;
2640
2641
2642tlv_put_failure:
2643out:
2644 fs_path_free(p);
2645 return ret;
2646}
2647
2648/*
2649 * We need some special handling for inodes that get processed before the parent
2650 * directory got created. See process_recorded_refs for details.
2651 * This function does the check if we already created the dir out of order.
2652 */
2653static int did_create_dir(struct send_ctx *sctx, u64 dir)
2654{
2655 int ret = 0;
2656 struct btrfs_path *path = NULL;
2657 struct btrfs_key key;
2658 struct btrfs_key found_key;
2659 struct btrfs_key di_key;
2660 struct extent_buffer *eb;
2661 struct btrfs_dir_item *di;
2662 int slot;
2663
2664 path = alloc_path_for_send();
2665 if (!path) {
2666 ret = -ENOMEM;
2667 goto out;
2668 }
2669
2670 key.objectid = dir;
2671 key.type = BTRFS_DIR_INDEX_KEY;
2672 key.offset = 0;
2673 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2674 if (ret < 0)
2675 goto out;
2676
2677 while (1) {
2678 eb = path->nodes[0];
2679 slot = path->slots[0];
2680 if (slot >= btrfs_header_nritems(eb)) {
2681 ret = btrfs_next_leaf(sctx->send_root, path);
2682 if (ret < 0) {
2683 goto out;
2684 } else if (ret > 0) {
2685 ret = 0;
2686 break;
2687 }
2688 continue;
2689 }
2690
2691 btrfs_item_key_to_cpu(eb, &found_key, slot);
2692 if (found_key.objectid != key.objectid ||
2693 found_key.type != key.type) {
2694 ret = 0;
2695 goto out;
2696 }
2697
2698 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2699 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2700
2701 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2702 di_key.objectid < sctx->send_progress) {
2703 ret = 1;
2704 goto out;
2705 }
2706
2707 path->slots[0]++;
2708 }
2709
2710out:
2711 btrfs_free_path(path);
2712 return ret;
2713}
2714
2715/*
2716 * Only creates the inode if it is:
2717 * 1. Not a directory
2718 * 2. Or a directory which was not created already due to out of order
2719 * directories. See did_create_dir and process_recorded_refs for details.
2720 */
2721static int send_create_inode_if_needed(struct send_ctx *sctx)
2722{
2723 int ret;
2724
2725 if (S_ISDIR(sctx->cur_inode_mode)) {
2726 ret = did_create_dir(sctx, sctx->cur_ino);
2727 if (ret < 0)
2728 goto out;
2729 if (ret) {
2730 ret = 0;
2731 goto out;
2732 }
2733 }
2734
2735 ret = send_create_inode(sctx, sctx->cur_ino);
2736 if (ret < 0)
2737 goto out;
2738
2739out:
2740 return ret;
2741}
2742
2743struct recorded_ref {
2744 struct list_head list;
2745 char *name;
2746 struct fs_path *full_path;
2747 u64 dir;
2748 u64 dir_gen;
2749 int name_len;
2750};
2751
2752static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
2753{
2754 ref->full_path = path;
2755 ref->name = (char *)kbasename(ref->full_path->start);
2756 ref->name_len = ref->full_path->end - ref->name;
2757}
2758
2759/*
2760 * We need to process new refs before deleted refs, but compare_tree gives us
2761 * everything mixed. So we first record all refs and later process them.
2762 * This function is a helper to record one ref.
2763 */
2764static int __record_ref(struct list_head *head, u64 dir,
2765 u64 dir_gen, struct fs_path *path)
2766{
2767 struct recorded_ref *ref;
2768
2769 ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2770 if (!ref)
2771 return -ENOMEM;
2772
2773 ref->dir = dir;
2774 ref->dir_gen = dir_gen;
2775 set_ref_path(ref, path);
2776 list_add_tail(&ref->list, head);
2777 return 0;
2778}
2779
2780static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2781{
2782 struct recorded_ref *new;
2783
2784 new = kmalloc(sizeof(*ref), GFP_KERNEL);
2785 if (!new)
2786 return -ENOMEM;
2787
2788 new->dir = ref->dir;
2789 new->dir_gen = ref->dir_gen;
2790 new->full_path = NULL;
2791 INIT_LIST_HEAD(&new->list);
2792 list_add_tail(&new->list, list);
2793 return 0;
2794}
2795
2796static void __free_recorded_refs(struct list_head *head)
2797{
2798 struct recorded_ref *cur;
2799
2800 while (!list_empty(head)) {
2801 cur = list_entry(head->next, struct recorded_ref, list);
2802 fs_path_free(cur->full_path);
2803 list_del(&cur->list);
2804 kfree(cur);
2805 }
2806}
2807
2808static void free_recorded_refs(struct send_ctx *sctx)
2809{
2810 __free_recorded_refs(&sctx->new_refs);
2811 __free_recorded_refs(&sctx->deleted_refs);
2812}
2813
2814/*
2815 * Renames/moves a file/dir to its orphan name. Used when the first
2816 * ref of an unprocessed inode gets overwritten and for all non empty
2817 * directories.
2818 */
2819static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2820 struct fs_path *path)
2821{
2822 int ret;
2823 struct fs_path *orphan;
2824
2825 orphan = fs_path_alloc();
2826 if (!orphan)
2827 return -ENOMEM;
2828
2829 ret = gen_unique_name(sctx, ino, gen, orphan);
2830 if (ret < 0)
2831 goto out;
2832
2833 ret = send_rename(sctx, path, orphan);
2834
2835out:
2836 fs_path_free(orphan);
2837 return ret;
2838}
2839
2840static struct orphan_dir_info *
2841add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2842{
2843 struct rb_node **p = &sctx->orphan_dirs.rb_node;
2844 struct rb_node *parent = NULL;
2845 struct orphan_dir_info *entry, *odi;
2846
2847 odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2848 if (!odi)
2849 return ERR_PTR(-ENOMEM);
2850 odi->ino = dir_ino;
2851 odi->gen = 0;
2852
2853 while (*p) {
2854 parent = *p;
2855 entry = rb_entry(parent, struct orphan_dir_info, node);
2856 if (dir_ino < entry->ino) {
2857 p = &(*p)->rb_left;
2858 } else if (dir_ino > entry->ino) {
2859 p = &(*p)->rb_right;
2860 } else {
2861 kfree(odi);
2862 return entry;
2863 }
2864 }
2865
2866 rb_link_node(&odi->node, parent, p);
2867 rb_insert_color(&odi->node, &sctx->orphan_dirs);
2868 return odi;
2869}
2870
2871static struct orphan_dir_info *
2872get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2873{
2874 struct rb_node *n = sctx->orphan_dirs.rb_node;
2875 struct orphan_dir_info *entry;
2876
2877 while (n) {
2878 entry = rb_entry(n, struct orphan_dir_info, node);
2879 if (dir_ino < entry->ino)
2880 n = n->rb_left;
2881 else if (dir_ino > entry->ino)
2882 n = n->rb_right;
2883 else
2884 return entry;
2885 }
2886 return NULL;
2887}
2888
2889static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2890{
2891 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2892
2893 return odi != NULL;
2894}
2895
2896static void free_orphan_dir_info(struct send_ctx *sctx,
2897 struct orphan_dir_info *odi)
2898{
2899 if (!odi)
2900 return;
2901 rb_erase(&odi->node, &sctx->orphan_dirs);
2902 kfree(odi);
2903}
2904
2905/*
2906 * Returns 1 if a directory can be removed at this point in time.
2907 * We check this by iterating all dir items and checking if the inode behind
2908 * the dir item was already processed.
2909 */
2910static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2911 u64 send_progress)
2912{
2913 int ret = 0;
2914 struct btrfs_root *root = sctx->parent_root;
2915 struct btrfs_path *path;
2916 struct btrfs_key key;
2917 struct btrfs_key found_key;
2918 struct btrfs_key loc;
2919 struct btrfs_dir_item *di;
2920
2921 /*
2922 * Don't try to rmdir the top/root subvolume dir.
2923 */
2924 if (dir == BTRFS_FIRST_FREE_OBJECTID)
2925 return 0;
2926
2927 path = alloc_path_for_send();
2928 if (!path)
2929 return -ENOMEM;
2930
2931 key.objectid = dir;
2932 key.type = BTRFS_DIR_INDEX_KEY;
2933 key.offset = 0;
2934 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2935 if (ret < 0)
2936 goto out;
2937
2938 while (1) {
2939 struct waiting_dir_move *dm;
2940
2941 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2942 ret = btrfs_next_leaf(root, path);
2943 if (ret < 0)
2944 goto out;
2945 else if (ret > 0)
2946 break;
2947 continue;
2948 }
2949 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2950 path->slots[0]);
2951 if (found_key.objectid != key.objectid ||
2952 found_key.type != key.type)
2953 break;
2954
2955 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2956 struct btrfs_dir_item);
2957 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2958
2959 dm = get_waiting_dir_move(sctx, loc.objectid);
2960 if (dm) {
2961 struct orphan_dir_info *odi;
2962
2963 odi = add_orphan_dir_info(sctx, dir);
2964 if (IS_ERR(odi)) {
2965 ret = PTR_ERR(odi);
2966 goto out;
2967 }
2968 odi->gen = dir_gen;
2969 dm->rmdir_ino = dir;
2970 ret = 0;
2971 goto out;
2972 }
2973
2974 if (loc.objectid > send_progress) {
2975 struct orphan_dir_info *odi;
2976
2977 odi = get_orphan_dir_info(sctx, dir);
2978 free_orphan_dir_info(sctx, odi);
2979 ret = 0;
2980 goto out;
2981 }
2982
2983 path->slots[0]++;
2984 }
2985
2986 ret = 1;
2987
2988out:
2989 btrfs_free_path(path);
2990 return ret;
2991}
2992
2993static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
2994{
2995 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
2996
2997 return entry != NULL;
2998}
2999
3000static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3001{
3002 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3003 struct rb_node *parent = NULL;
3004 struct waiting_dir_move *entry, *dm;
3005
3006 dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3007 if (!dm)
3008 return -ENOMEM;
3009 dm->ino = ino;
3010 dm->rmdir_ino = 0;
3011 dm->orphanized = orphanized;
3012
3013 while (*p) {
3014 parent = *p;
3015 entry = rb_entry(parent, struct waiting_dir_move, node);
3016 if (ino < entry->ino) {
3017 p = &(*p)->rb_left;
3018 } else if (ino > entry->ino) {
3019 p = &(*p)->rb_right;
3020 } else {
3021 kfree(dm);
3022 return -EEXIST;
3023 }
3024 }
3025
3026 rb_link_node(&dm->node, parent, p);
3027 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3028 return 0;
3029}
3030
3031static struct waiting_dir_move *
3032get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3033{
3034 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3035 struct waiting_dir_move *entry;
3036
3037 while (n) {
3038 entry = rb_entry(n, struct waiting_dir_move, node);
3039 if (ino < entry->ino)
3040 n = n->rb_left;
3041 else if (ino > entry->ino)
3042 n = n->rb_right;
3043 else
3044 return entry;
3045 }
3046 return NULL;
3047}
3048
3049static void free_waiting_dir_move(struct send_ctx *sctx,
3050 struct waiting_dir_move *dm)
3051{
3052 if (!dm)
3053 return;
3054 rb_erase(&dm->node, &sctx->waiting_dir_moves);
3055 kfree(dm);
3056}
3057
3058static int add_pending_dir_move(struct send_ctx *sctx,
3059 u64 ino,
3060 u64 ino_gen,
3061 u64 parent_ino,
3062 struct list_head *new_refs,
3063 struct list_head *deleted_refs,
3064 const bool is_orphan)
3065{
3066 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3067 struct rb_node *parent = NULL;
3068 struct pending_dir_move *entry = NULL, *pm;
3069 struct recorded_ref *cur;
3070 int exists = 0;
3071 int ret;
3072
3073 pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3074 if (!pm)
3075 return -ENOMEM;
3076 pm->parent_ino = parent_ino;
3077 pm->ino = ino;
3078 pm->gen = ino_gen;
3079 INIT_LIST_HEAD(&pm->list);
3080 INIT_LIST_HEAD(&pm->update_refs);
3081 RB_CLEAR_NODE(&pm->node);
3082
3083 while (*p) {
3084 parent = *p;
3085 entry = rb_entry(parent, struct pending_dir_move, node);
3086 if (parent_ino < entry->parent_ino) {
3087 p = &(*p)->rb_left;
3088 } else if (parent_ino > entry->parent_ino) {
3089 p = &(*p)->rb_right;
3090 } else {
3091 exists = 1;
3092 break;
3093 }
3094 }
3095
3096 list_for_each_entry(cur, deleted_refs, list) {
3097 ret = dup_ref(cur, &pm->update_refs);
3098 if (ret < 0)
3099 goto out;
3100 }
3101 list_for_each_entry(cur, new_refs, list) {
3102 ret = dup_ref(cur, &pm->update_refs);
3103 if (ret < 0)
3104 goto out;
3105 }
3106
3107 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3108 if (ret)
3109 goto out;
3110
3111 if (exists) {
3112 list_add_tail(&pm->list, &entry->list);
3113 } else {
3114 rb_link_node(&pm->node, parent, p);
3115 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3116 }
3117 ret = 0;
3118out:
3119 if (ret) {
3120 __free_recorded_refs(&pm->update_refs);
3121 kfree(pm);
3122 }
3123 return ret;
3124}
3125
3126static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3127 u64 parent_ino)
3128{
3129 struct rb_node *n = sctx->pending_dir_moves.rb_node;
3130 struct pending_dir_move *entry;
3131
3132 while (n) {
3133 entry = rb_entry(n, struct pending_dir_move, node);
3134 if (parent_ino < entry->parent_ino)
3135 n = n->rb_left;
3136 else if (parent_ino > entry->parent_ino)
3137 n = n->rb_right;
3138 else
3139 return entry;
3140 }
3141 return NULL;
3142}
3143
3144static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3145 u64 ino, u64 gen, u64 *ancestor_ino)
3146{
3147 int ret = 0;
3148 u64 parent_inode = 0;
3149 u64 parent_gen = 0;
3150 u64 start_ino = ino;
3151
3152 *ancestor_ino = 0;
3153 while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3154 fs_path_reset(name);
3155
3156 if (is_waiting_for_rm(sctx, ino))
3157 break;
3158 if (is_waiting_for_move(sctx, ino)) {
3159 if (*ancestor_ino == 0)
3160 *ancestor_ino = ino;
3161 ret = get_first_ref(sctx->parent_root, ino,
3162 &parent_inode, &parent_gen, name);
3163 } else {
3164 ret = __get_cur_name_and_parent(sctx, ino, gen,
3165 &parent_inode,
3166 &parent_gen, name);
3167 if (ret > 0) {
3168 ret = 0;
3169 break;
3170 }
3171 }
3172 if (ret < 0)
3173 break;
3174 if (parent_inode == start_ino) {
3175 ret = 1;
3176 if (*ancestor_ino == 0)
3177 *ancestor_ino = ino;
3178 break;
3179 }
3180 ino = parent_inode;
3181 gen = parent_gen;
3182 }
3183 return ret;
3184}
3185
3186static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3187{
3188 struct fs_path *from_path = NULL;
3189 struct fs_path *to_path = NULL;
3190 struct fs_path *name = NULL;
3191 u64 orig_progress = sctx->send_progress;
3192 struct recorded_ref *cur;
3193 u64 parent_ino, parent_gen;
3194 struct waiting_dir_move *dm = NULL;
3195 u64 rmdir_ino = 0;
3196 u64 ancestor;
3197 bool is_orphan;
3198 int ret;
3199
3200 name = fs_path_alloc();
3201 from_path = fs_path_alloc();
3202 if (!name || !from_path) {
3203 ret = -ENOMEM;
3204 goto out;
3205 }
3206
3207 dm = get_waiting_dir_move(sctx, pm->ino);
3208 ASSERT(dm);
3209 rmdir_ino = dm->rmdir_ino;
3210 is_orphan = dm->orphanized;
3211 free_waiting_dir_move(sctx, dm);
3212
3213 if (is_orphan) {
3214 ret = gen_unique_name(sctx, pm->ino,
3215 pm->gen, from_path);
3216 } else {
3217 ret = get_first_ref(sctx->parent_root, pm->ino,
3218 &parent_ino, &parent_gen, name);
3219 if (ret < 0)
3220 goto out;
3221 ret = get_cur_path(sctx, parent_ino, parent_gen,
3222 from_path);
3223 if (ret < 0)
3224 goto out;
3225 ret = fs_path_add_path(from_path, name);
3226 }
3227 if (ret < 0)
3228 goto out;
3229
3230 sctx->send_progress = sctx->cur_ino + 1;
3231 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3232 if (ret < 0)
3233 goto out;
3234 if (ret) {
3235 LIST_HEAD(deleted_refs);
3236 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3237 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3238 &pm->update_refs, &deleted_refs,
3239 is_orphan);
3240 if (ret < 0)
3241 goto out;
3242 if (rmdir_ino) {
3243 dm = get_waiting_dir_move(sctx, pm->ino);
3244 ASSERT(dm);
3245 dm->rmdir_ino = rmdir_ino;
3246 }
3247 goto out;
3248 }
3249 fs_path_reset(name);
3250 to_path = name;
3251 name = NULL;
3252 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3253 if (ret < 0)
3254 goto out;
3255
3256 ret = send_rename(sctx, from_path, to_path);
3257 if (ret < 0)
3258 goto out;
3259
3260 if (rmdir_ino) {
3261 struct orphan_dir_info *odi;
3262
3263 odi = get_orphan_dir_info(sctx, rmdir_ino);
3264 if (!odi) {
3265 /* already deleted */
3266 goto finish;
3267 }
3268 ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino);
3269 if (ret < 0)
3270 goto out;
3271 if (!ret)
3272 goto finish;
3273
3274 name = fs_path_alloc();
3275 if (!name) {
3276 ret = -ENOMEM;
3277 goto out;
3278 }
3279 ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
3280 if (ret < 0)
3281 goto out;
3282 ret = send_rmdir(sctx, name);
3283 if (ret < 0)
3284 goto out;
3285 free_orphan_dir_info(sctx, odi);
3286 }
3287
3288finish:
3289 ret = send_utimes(sctx, pm->ino, pm->gen);
3290 if (ret < 0)
3291 goto out;
3292
3293 /*
3294 * After rename/move, need to update the utimes of both new parent(s)
3295 * and old parent(s).
3296 */
3297 list_for_each_entry(cur, &pm->update_refs, list) {
3298 /*
3299 * The parent inode might have been deleted in the send snapshot
3300 */
3301 ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3302 NULL, NULL, NULL, NULL, NULL);
3303 if (ret == -ENOENT) {
3304 ret = 0;
3305 continue;
3306 }
3307 if (ret < 0)
3308 goto out;
3309
3310 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3311 if (ret < 0)
3312 goto out;
3313 }
3314
3315out:
3316 fs_path_free(name);
3317 fs_path_free(from_path);
3318 fs_path_free(to_path);
3319 sctx->send_progress = orig_progress;
3320
3321 return ret;
3322}
3323
3324static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3325{
3326 if (!list_empty(&m->list))
3327 list_del(&m->list);
3328 if (!RB_EMPTY_NODE(&m->node))
3329 rb_erase(&m->node, &sctx->pending_dir_moves);
3330 __free_recorded_refs(&m->update_refs);
3331 kfree(m);
3332}
3333
3334static void tail_append_pending_moves(struct pending_dir_move *moves,
3335 struct list_head *stack)
3336{
3337 if (list_empty(&moves->list)) {
3338 list_add_tail(&moves->list, stack);
3339 } else {
3340 LIST_HEAD(list);
3341 list_splice_init(&moves->list, &list);
3342 list_add_tail(&moves->list, stack);
3343 list_splice_tail(&list, stack);
3344 }
3345}
3346
3347static int apply_children_dir_moves(struct send_ctx *sctx)
3348{
3349 struct pending_dir_move *pm;
3350 struct list_head stack;
3351 u64 parent_ino = sctx->cur_ino;
3352 int ret = 0;
3353
3354 pm = get_pending_dir_moves(sctx, parent_ino);
3355 if (!pm)
3356 return 0;
3357
3358 INIT_LIST_HEAD(&stack);
3359 tail_append_pending_moves(pm, &stack);
3360
3361 while (!list_empty(&stack)) {
3362 pm = list_first_entry(&stack, struct pending_dir_move, list);
3363 parent_ino = pm->ino;
3364 ret = apply_dir_move(sctx, pm);
3365 free_pending_move(sctx, pm);
3366 if (ret)
3367 goto out;
3368 pm = get_pending_dir_moves(sctx, parent_ino);
3369 if (pm)
3370 tail_append_pending_moves(pm, &stack);
3371 }
3372 return 0;
3373
3374out:
3375 while (!list_empty(&stack)) {
3376 pm = list_first_entry(&stack, struct pending_dir_move, list);
3377 free_pending_move(sctx, pm);
3378 }
3379 return ret;
3380}
3381
3382/*
3383 * We might need to delay a directory rename even when no ancestor directory
3384 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3385 * renamed. This happens when we rename a directory to the old name (the name
3386 * in the parent root) of some other unrelated directory that got its rename
3387 * delayed due to some ancestor with higher number that got renamed.
3388 *
3389 * Example:
3390 *
3391 * Parent snapshot:
3392 * . (ino 256)
3393 * |---- a/ (ino 257)
3394 * | |---- file (ino 260)
3395 * |
3396 * |---- b/ (ino 258)
3397 * |---- c/ (ino 259)
3398 *
3399 * Send snapshot:
3400 * . (ino 256)
3401 * |---- a/ (ino 258)
3402 * |---- x/ (ino 259)
3403 * |---- y/ (ino 257)
3404 * |----- file (ino 260)
3405 *
3406 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3407 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3408 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3409 * must issue is:
3410 *
3411 * 1 - rename 259 from 'c' to 'x'
3412 * 2 - rename 257 from 'a' to 'x/y'
3413 * 3 - rename 258 from 'b' to 'a'
3414 *
3415 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3416 * be done right away and < 0 on error.
3417 */
3418static int wait_for_dest_dir_move(struct send_ctx *sctx,
3419 struct recorded_ref *parent_ref,
3420 const bool is_orphan)
3421{
3422 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3423 struct btrfs_path *path;
3424 struct btrfs_key key;
3425 struct btrfs_key di_key;
3426 struct btrfs_dir_item *di;
3427 u64 left_gen;
3428 u64 right_gen;
3429 int ret = 0;
3430 struct waiting_dir_move *wdm;
3431
3432 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3433 return 0;
3434
3435 path = alloc_path_for_send();
3436 if (!path)
3437 return -ENOMEM;
3438
3439 key.objectid = parent_ref->dir;
3440 key.type = BTRFS_DIR_ITEM_KEY;
3441 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3442
3443 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3444 if (ret < 0) {
3445 goto out;
3446 } else if (ret > 0) {
3447 ret = 0;
3448 goto out;
3449 }
3450
3451 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3452 parent_ref->name_len);
3453 if (!di) {
3454 ret = 0;
3455 goto out;
3456 }
3457 /*
3458 * di_key.objectid has the number of the inode that has a dentry in the
3459 * parent directory with the same name that sctx->cur_ino is being
3460 * renamed to. We need to check if that inode is in the send root as
3461 * well and if it is currently marked as an inode with a pending rename,
3462 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3463 * that it happens after that other inode is renamed.
3464 */
3465 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3466 if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3467 ret = 0;
3468 goto out;
3469 }
3470
3471 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3472 &left_gen, NULL, NULL, NULL, NULL);
3473 if (ret < 0)
3474 goto out;
3475 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3476 &right_gen, NULL, NULL, NULL, NULL);
3477 if (ret < 0) {
3478 if (ret == -ENOENT)
3479 ret = 0;
3480 goto out;
3481 }
3482
3483 /* Different inode, no need to delay the rename of sctx->cur_ino */
3484 if (right_gen != left_gen) {
3485 ret = 0;
3486 goto out;
3487 }
3488
3489 wdm = get_waiting_dir_move(sctx, di_key.objectid);
3490 if (wdm && !wdm->orphanized) {
3491 ret = add_pending_dir_move(sctx,
3492 sctx->cur_ino,
3493 sctx->cur_inode_gen,
3494 di_key.objectid,
3495 &sctx->new_refs,
3496 &sctx->deleted_refs,
3497 is_orphan);
3498 if (!ret)
3499 ret = 1;
3500 }
3501out:
3502 btrfs_free_path(path);
3503 return ret;
3504}
3505
3506/*
3507 * Check if inode ino2, or any of its ancestors, is inode ino1.
3508 * Return 1 if true, 0 if false and < 0 on error.
3509 */
3510static int check_ino_in_path(struct btrfs_root *root,
3511 const u64 ino1,
3512 const u64 ino1_gen,
3513 const u64 ino2,
3514 const u64 ino2_gen,
3515 struct fs_path *fs_path)
3516{
3517 u64 ino = ino2;
3518
3519 if (ino1 == ino2)
3520 return ino1_gen == ino2_gen;
3521
3522 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3523 u64 parent;
3524 u64 parent_gen;
3525 int ret;
3526
3527 fs_path_reset(fs_path);
3528 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3529 if (ret < 0)
3530 return ret;
3531 if (parent == ino1)
3532 return parent_gen == ino1_gen;
3533 ino = parent;
3534 }
3535 return 0;
3536}
3537
3538/*
3539 * Check if ino ino1 is an ancestor of inode ino2 in the given root for any
3540 * possible path (in case ino2 is not a directory and has multiple hard links).
3541 * Return 1 if true, 0 if false and < 0 on error.
3542 */
3543static int is_ancestor(struct btrfs_root *root,
3544 const u64 ino1,
3545 const u64 ino1_gen,
3546 const u64 ino2,
3547 struct fs_path *fs_path)
3548{
3549 bool free_fs_path = false;
3550 int ret = 0;
3551 struct btrfs_path *path = NULL;
3552 struct btrfs_key key;
3553
3554 if (!fs_path) {
3555 fs_path = fs_path_alloc();
3556 if (!fs_path)
3557 return -ENOMEM;
3558 free_fs_path = true;
3559 }
3560
3561 path = alloc_path_for_send();
3562 if (!path) {
3563 ret = -ENOMEM;
3564 goto out;
3565 }
3566
3567 key.objectid = ino2;
3568 key.type = BTRFS_INODE_REF_KEY;
3569 key.offset = 0;
3570
3571 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3572 if (ret < 0)
3573 goto out;
3574
3575 while (true) {
3576 struct extent_buffer *leaf = path->nodes[0];
3577 int slot = path->slots[0];
3578 u32 cur_offset = 0;
3579 u32 item_size;
3580
3581 if (slot >= btrfs_header_nritems(leaf)) {
3582 ret = btrfs_next_leaf(root, path);
3583 if (ret < 0)
3584 goto out;
3585 if (ret > 0)
3586 break;
3587 continue;
3588 }
3589
3590 btrfs_item_key_to_cpu(leaf, &key, slot);
3591 if (key.objectid != ino2)
3592 break;
3593 if (key.type != BTRFS_INODE_REF_KEY &&
3594 key.type != BTRFS_INODE_EXTREF_KEY)
3595 break;
3596
3597 item_size = btrfs_item_size_nr(leaf, slot);
3598 while (cur_offset < item_size) {
3599 u64 parent;
3600 u64 parent_gen;
3601
3602 if (key.type == BTRFS_INODE_EXTREF_KEY) {
3603 unsigned long ptr;
3604 struct btrfs_inode_extref *extref;
3605
3606 ptr = btrfs_item_ptr_offset(leaf, slot);
3607 extref = (struct btrfs_inode_extref *)
3608 (ptr + cur_offset);
3609 parent = btrfs_inode_extref_parent(leaf,
3610 extref);
3611 cur_offset += sizeof(*extref);
3612 cur_offset += btrfs_inode_extref_name_len(leaf,
3613 extref);
3614 } else {
3615 parent = key.offset;
3616 cur_offset = item_size;
3617 }
3618
3619 ret = get_inode_info(root, parent, NULL, &parent_gen,
3620 NULL, NULL, NULL, NULL);
3621 if (ret < 0)
3622 goto out;
3623 ret = check_ino_in_path(root, ino1, ino1_gen,
3624 parent, parent_gen, fs_path);
3625 if (ret)
3626 goto out;
3627 }
3628 path->slots[0]++;
3629 }
3630 ret = 0;
3631 out:
3632 btrfs_free_path(path);
3633 if (free_fs_path)
3634 fs_path_free(fs_path);
3635 return ret;
3636}
3637
3638static int wait_for_parent_move(struct send_ctx *sctx,
3639 struct recorded_ref *parent_ref,
3640 const bool is_orphan)
3641{
3642 int ret = 0;
3643 u64 ino = parent_ref->dir;
3644 u64 ino_gen = parent_ref->dir_gen;
3645 u64 parent_ino_before, parent_ino_after;
3646 struct fs_path *path_before = NULL;
3647 struct fs_path *path_after = NULL;
3648 int len1, len2;
3649
3650 path_after = fs_path_alloc();
3651 path_before = fs_path_alloc();
3652 if (!path_after || !path_before) {
3653 ret = -ENOMEM;
3654 goto out;
3655 }
3656
3657 /*
3658 * Our current directory inode may not yet be renamed/moved because some
3659 * ancestor (immediate or not) has to be renamed/moved first. So find if
3660 * such ancestor exists and make sure our own rename/move happens after
3661 * that ancestor is processed to avoid path build infinite loops (done
3662 * at get_cur_path()).
3663 */
3664 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3665 u64 parent_ino_after_gen;
3666
3667 if (is_waiting_for_move(sctx, ino)) {
3668 /*
3669 * If the current inode is an ancestor of ino in the
3670 * parent root, we need to delay the rename of the
3671 * current inode, otherwise don't delayed the rename
3672 * because we can end up with a circular dependency
3673 * of renames, resulting in some directories never
3674 * getting the respective rename operations issued in
3675 * the send stream or getting into infinite path build
3676 * loops.
3677 */
3678 ret = is_ancestor(sctx->parent_root,
3679 sctx->cur_ino, sctx->cur_inode_gen,
3680 ino, path_before);
3681 if (ret)
3682 break;
3683 }
3684
3685 fs_path_reset(path_before);
3686 fs_path_reset(path_after);
3687
3688 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3689 &parent_ino_after_gen, path_after);
3690 if (ret < 0)
3691 goto out;
3692 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3693 NULL, path_before);
3694 if (ret < 0 && ret != -ENOENT) {
3695 goto out;
3696 } else if (ret == -ENOENT) {
3697 ret = 0;
3698 break;
3699 }
3700
3701 len1 = fs_path_len(path_before);
3702 len2 = fs_path_len(path_after);
3703 if (ino > sctx->cur_ino &&
3704 (parent_ino_before != parent_ino_after || len1 != len2 ||
3705 memcmp(path_before->start, path_after->start, len1))) {
3706 u64 parent_ino_gen;
3707
3708 ret = get_inode_info(sctx->parent_root, ino, NULL,
3709 &parent_ino_gen, NULL, NULL, NULL,
3710 NULL);
3711 if (ret < 0)
3712 goto out;
3713 if (ino_gen == parent_ino_gen) {
3714 ret = 1;
3715 break;
3716 }
3717 }
3718 ino = parent_ino_after;
3719 ino_gen = parent_ino_after_gen;
3720 }
3721
3722out:
3723 fs_path_free(path_before);
3724 fs_path_free(path_after);
3725
3726 if (ret == 1) {
3727 ret = add_pending_dir_move(sctx,
3728 sctx->cur_ino,
3729 sctx->cur_inode_gen,
3730 ino,
3731 &sctx->new_refs,
3732 &sctx->deleted_refs,
3733 is_orphan);
3734 if (!ret)
3735 ret = 1;
3736 }
3737
3738 return ret;
3739}
3740
3741static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3742{
3743 int ret;
3744 struct fs_path *new_path;
3745
3746 /*
3747 * Our reference's name member points to its full_path member string, so
3748 * we use here a new path.
3749 */
3750 new_path = fs_path_alloc();
3751 if (!new_path)
3752 return -ENOMEM;
3753
3754 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
3755 if (ret < 0) {
3756 fs_path_free(new_path);
3757 return ret;
3758 }
3759 ret = fs_path_add(new_path, ref->name, ref->name_len);
3760 if (ret < 0) {
3761 fs_path_free(new_path);
3762 return ret;
3763 }
3764
3765 fs_path_free(ref->full_path);
3766 set_ref_path(ref, new_path);
3767
3768 return 0;
3769}
3770
3771/*
3772 * This does all the move/link/unlink/rmdir magic.
3773 */
3774static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3775{
3776 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3777 int ret = 0;
3778 struct recorded_ref *cur;
3779 struct recorded_ref *cur2;
3780 struct list_head check_dirs;
3781 struct fs_path *valid_path = NULL;
3782 u64 ow_inode = 0;
3783 u64 ow_gen;
3784 u64 ow_mode;
3785 int did_overwrite = 0;
3786 int is_orphan = 0;
3787 u64 last_dir_ino_rm = 0;
3788 bool can_rename = true;
3789 bool orphanized_dir = false;
3790 bool orphanized_ancestor = false;
3791
3792 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3793
3794 /*
3795 * This should never happen as the root dir always has the same ref
3796 * which is always '..'
3797 */
3798 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3799 INIT_LIST_HEAD(&check_dirs);
3800
3801 valid_path = fs_path_alloc();
3802 if (!valid_path) {
3803 ret = -ENOMEM;
3804 goto out;
3805 }
3806
3807 /*
3808 * First, check if the first ref of the current inode was overwritten
3809 * before. If yes, we know that the current inode was already orphanized
3810 * and thus use the orphan name. If not, we can use get_cur_path to
3811 * get the path of the first ref as it would like while receiving at
3812 * this point in time.
3813 * New inodes are always orphan at the beginning, so force to use the
3814 * orphan name in this case.
3815 * The first ref is stored in valid_path and will be updated if it
3816 * gets moved around.
3817 */
3818 if (!sctx->cur_inode_new) {
3819 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3820 sctx->cur_inode_gen);
3821 if (ret < 0)
3822 goto out;
3823 if (ret)
3824 did_overwrite = 1;
3825 }
3826 if (sctx->cur_inode_new || did_overwrite) {
3827 ret = gen_unique_name(sctx, sctx->cur_ino,
3828 sctx->cur_inode_gen, valid_path);
3829 if (ret < 0)
3830 goto out;
3831 is_orphan = 1;
3832 } else {
3833 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3834 valid_path);
3835 if (ret < 0)
3836 goto out;
3837 }
3838
3839 list_for_each_entry(cur, &sctx->new_refs, list) {
3840 /*
3841 * We may have refs where the parent directory does not exist
3842 * yet. This happens if the parent directories inum is higher
3843 * the the current inum. To handle this case, we create the
3844 * parent directory out of order. But we need to check if this
3845 * did already happen before due to other refs in the same dir.
3846 */
3847 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3848 if (ret < 0)
3849 goto out;
3850 if (ret == inode_state_will_create) {
3851 ret = 0;
3852 /*
3853 * First check if any of the current inodes refs did
3854 * already create the dir.
3855 */
3856 list_for_each_entry(cur2, &sctx->new_refs, list) {
3857 if (cur == cur2)
3858 break;
3859 if (cur2->dir == cur->dir) {
3860 ret = 1;
3861 break;
3862 }
3863 }
3864
3865 /*
3866 * If that did not happen, check if a previous inode
3867 * did already create the dir.
3868 */
3869 if (!ret)
3870 ret = did_create_dir(sctx, cur->dir);
3871 if (ret < 0)
3872 goto out;
3873 if (!ret) {
3874 ret = send_create_inode(sctx, cur->dir);
3875 if (ret < 0)
3876 goto out;
3877 }
3878 }
3879
3880 /*
3881 * Check if this new ref would overwrite the first ref of
3882 * another unprocessed inode. If yes, orphanize the
3883 * overwritten inode. If we find an overwritten ref that is
3884 * not the first ref, simply unlink it.
3885 */
3886 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3887 cur->name, cur->name_len,
3888 &ow_inode, &ow_gen, &ow_mode);
3889 if (ret < 0)
3890 goto out;
3891 if (ret) {
3892 ret = is_first_ref(sctx->parent_root,
3893 ow_inode, cur->dir, cur->name,
3894 cur->name_len);
3895 if (ret < 0)
3896 goto out;
3897 if (ret) {
3898 struct name_cache_entry *nce;
3899 struct waiting_dir_move *wdm;
3900
3901 ret = orphanize_inode(sctx, ow_inode, ow_gen,
3902 cur->full_path);
3903 if (ret < 0)
3904 goto out;
3905 if (S_ISDIR(ow_mode))
3906 orphanized_dir = true;
3907
3908 /*
3909 * If ow_inode has its rename operation delayed
3910 * make sure that its orphanized name is used in
3911 * the source path when performing its rename
3912 * operation.
3913 */
3914 if (is_waiting_for_move(sctx, ow_inode)) {
3915 wdm = get_waiting_dir_move(sctx,
3916 ow_inode);
3917 ASSERT(wdm);
3918 wdm->orphanized = true;
3919 }
3920
3921 /*
3922 * Make sure we clear our orphanized inode's
3923 * name from the name cache. This is because the
3924 * inode ow_inode might be an ancestor of some
3925 * other inode that will be orphanized as well
3926 * later and has an inode number greater than
3927 * sctx->send_progress. We need to prevent
3928 * future name lookups from using the old name
3929 * and get instead the orphan name.
3930 */
3931 nce = name_cache_search(sctx, ow_inode, ow_gen);
3932 if (nce) {
3933 name_cache_delete(sctx, nce);
3934 kfree(nce);
3935 }
3936
3937 /*
3938 * ow_inode might currently be an ancestor of
3939 * cur_ino, therefore compute valid_path (the
3940 * current path of cur_ino) again because it
3941 * might contain the pre-orphanization name of
3942 * ow_inode, which is no longer valid.
3943 */
3944 ret = is_ancestor(sctx->parent_root,
3945 ow_inode, ow_gen,
3946 sctx->cur_ino, NULL);
3947 if (ret > 0) {
3948 orphanized_ancestor = true;
3949 fs_path_reset(valid_path);
3950 ret = get_cur_path(sctx, sctx->cur_ino,
3951 sctx->cur_inode_gen,
3952 valid_path);
3953 }
3954 if (ret < 0)
3955 goto out;
3956 } else {
3957 ret = send_unlink(sctx, cur->full_path);
3958 if (ret < 0)
3959 goto out;
3960 }
3961 }
3962
3963 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3964 ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3965 if (ret < 0)
3966 goto out;
3967 if (ret == 1) {
3968 can_rename = false;
3969 *pending_move = 1;
3970 }
3971 }
3972
3973 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
3974 can_rename) {
3975 ret = wait_for_parent_move(sctx, cur, is_orphan);
3976 if (ret < 0)
3977 goto out;
3978 if (ret == 1) {
3979 can_rename = false;
3980 *pending_move = 1;
3981 }
3982 }
3983
3984 /*
3985 * link/move the ref to the new place. If we have an orphan
3986 * inode, move it and update valid_path. If not, link or move
3987 * it depending on the inode mode.
3988 */
3989 if (is_orphan && can_rename) {
3990 ret = send_rename(sctx, valid_path, cur->full_path);
3991 if (ret < 0)
3992 goto out;
3993 is_orphan = 0;
3994 ret = fs_path_copy(valid_path, cur->full_path);
3995 if (ret < 0)
3996 goto out;
3997 } else if (can_rename) {
3998 if (S_ISDIR(sctx->cur_inode_mode)) {
3999 /*
4000 * Dirs can't be linked, so move it. For moved
4001 * dirs, we always have one new and one deleted
4002 * ref. The deleted ref is ignored later.
4003 */
4004 ret = send_rename(sctx, valid_path,
4005 cur->full_path);
4006 if (!ret)
4007 ret = fs_path_copy(valid_path,
4008 cur->full_path);
4009 if (ret < 0)
4010 goto out;
4011 } else {
4012 /*
4013 * We might have previously orphanized an inode
4014 * which is an ancestor of our current inode,
4015 * so our reference's full path, which was
4016 * computed before any such orphanizations, must
4017 * be updated.
4018 */
4019 if (orphanized_dir) {
4020 ret = update_ref_path(sctx, cur);
4021 if (ret < 0)
4022 goto out;
4023 }
4024 ret = send_link(sctx, cur->full_path,
4025 valid_path);
4026 if (ret < 0)
4027 goto out;
4028 }
4029 }
4030 ret = dup_ref(cur, &check_dirs);
4031 if (ret < 0)
4032 goto out;
4033 }
4034
4035 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4036 /*
4037 * Check if we can already rmdir the directory. If not,
4038 * orphanize it. For every dir item inside that gets deleted
4039 * later, we do this check again and rmdir it then if possible.
4040 * See the use of check_dirs for more details.
4041 */
4042 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4043 sctx->cur_ino);
4044 if (ret < 0)
4045 goto out;
4046 if (ret) {
4047 ret = send_rmdir(sctx, valid_path);
4048 if (ret < 0)
4049 goto out;
4050 } else if (!is_orphan) {
4051 ret = orphanize_inode(sctx, sctx->cur_ino,
4052 sctx->cur_inode_gen, valid_path);
4053 if (ret < 0)
4054 goto out;
4055 is_orphan = 1;
4056 }
4057
4058 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4059 ret = dup_ref(cur, &check_dirs);
4060 if (ret < 0)
4061 goto out;
4062 }
4063 } else if (S_ISDIR(sctx->cur_inode_mode) &&
4064 !list_empty(&sctx->deleted_refs)) {
4065 /*
4066 * We have a moved dir. Add the old parent to check_dirs
4067 */
4068 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4069 list);
4070 ret = dup_ref(cur, &check_dirs);
4071 if (ret < 0)
4072 goto out;
4073 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
4074 /*
4075 * We have a non dir inode. Go through all deleted refs and
4076 * unlink them if they were not already overwritten by other
4077 * inodes.
4078 */
4079 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4080 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4081 sctx->cur_ino, sctx->cur_inode_gen,
4082 cur->name, cur->name_len);
4083 if (ret < 0)
4084 goto out;
4085 if (!ret) {
4086 /*
4087 * If we orphanized any ancestor before, we need
4088 * to recompute the full path for deleted names,
4089 * since any such path was computed before we
4090 * processed any references and orphanized any
4091 * ancestor inode.
4092 */
4093 if (orphanized_ancestor) {
4094 ret = update_ref_path(sctx, cur);
4095 if (ret < 0)
4096 goto out;
4097 }
4098 ret = send_unlink(sctx, cur->full_path);
4099 if (ret < 0)
4100 goto out;
4101 }
4102 ret = dup_ref(cur, &check_dirs);
4103 if (ret < 0)
4104 goto out;
4105 }
4106 /*
4107 * If the inode is still orphan, unlink the orphan. This may
4108 * happen when a previous inode did overwrite the first ref
4109 * of this inode and no new refs were added for the current
4110 * inode. Unlinking does not mean that the inode is deleted in
4111 * all cases. There may still be links to this inode in other
4112 * places.
4113 */
4114 if (is_orphan) {
4115 ret = send_unlink(sctx, valid_path);
4116 if (ret < 0)
4117 goto out;
4118 }
4119 }
4120
4121 /*
4122 * We did collect all parent dirs where cur_inode was once located. We
4123 * now go through all these dirs and check if they are pending for
4124 * deletion and if it's finally possible to perform the rmdir now.
4125 * We also update the inode stats of the parent dirs here.
4126 */
4127 list_for_each_entry(cur, &check_dirs, list) {
4128 /*
4129 * In case we had refs into dirs that were not processed yet,
4130 * we don't need to do the utime and rmdir logic for these dirs.
4131 * The dir will be processed later.
4132 */
4133 if (cur->dir > sctx->cur_ino)
4134 continue;
4135
4136 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4137 if (ret < 0)
4138 goto out;
4139
4140 if (ret == inode_state_did_create ||
4141 ret == inode_state_no_change) {
4142 /* TODO delayed utimes */
4143 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
4144 if (ret < 0)
4145 goto out;
4146 } else if (ret == inode_state_did_delete &&
4147 cur->dir != last_dir_ino_rm) {
4148 ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4149 sctx->cur_ino);
4150 if (ret < 0)
4151 goto out;
4152 if (ret) {
4153 ret = get_cur_path(sctx, cur->dir,
4154 cur->dir_gen, valid_path);
4155 if (ret < 0)
4156 goto out;
4157 ret = send_rmdir(sctx, valid_path);
4158 if (ret < 0)
4159 goto out;
4160 last_dir_ino_rm = cur->dir;
4161 }
4162 }
4163 }
4164
4165 ret = 0;
4166
4167out:
4168 __free_recorded_refs(&check_dirs);
4169 free_recorded_refs(sctx);
4170 fs_path_free(valid_path);
4171 return ret;
4172}
4173
4174static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name,
4175 void *ctx, struct list_head *refs)
4176{
4177 int ret = 0;
4178 struct send_ctx *sctx = ctx;
4179 struct fs_path *p;
4180 u64 gen;
4181
4182 p = fs_path_alloc();
4183 if (!p)
4184 return -ENOMEM;
4185
4186 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
4187 NULL, NULL);
4188 if (ret < 0)
4189 goto out;
4190
4191 ret = get_cur_path(sctx, dir, gen, p);
4192 if (ret < 0)
4193 goto out;
4194 ret = fs_path_add_path(p, name);
4195 if (ret < 0)
4196 goto out;
4197
4198 ret = __record_ref(refs, dir, gen, p);
4199
4200out:
4201 if (ret)
4202 fs_path_free(p);
4203 return ret;
4204}
4205
4206static int __record_new_ref(int num, u64 dir, int index,
4207 struct fs_path *name,
4208 void *ctx)
4209{
4210 struct send_ctx *sctx = ctx;
4211 return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs);
4212}
4213
4214
4215static int __record_deleted_ref(int num, u64 dir, int index,
4216 struct fs_path *name,
4217 void *ctx)
4218{
4219 struct send_ctx *sctx = ctx;
4220 return record_ref(sctx->parent_root, dir, name, ctx,
4221 &sctx->deleted_refs);
4222}
4223
4224static int record_new_ref(struct send_ctx *sctx)
4225{
4226 int ret;
4227
4228 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4229 sctx->cmp_key, 0, __record_new_ref, sctx);
4230 if (ret < 0)
4231 goto out;
4232 ret = 0;
4233
4234out:
4235 return ret;
4236}
4237
4238static int record_deleted_ref(struct send_ctx *sctx)
4239{
4240 int ret;
4241
4242 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4243 sctx->cmp_key, 0, __record_deleted_ref, sctx);
4244 if (ret < 0)
4245 goto out;
4246 ret = 0;
4247
4248out:
4249 return ret;
4250}
4251
4252struct find_ref_ctx {
4253 u64 dir;
4254 u64 dir_gen;
4255 struct btrfs_root *root;
4256 struct fs_path *name;
4257 int found_idx;
4258};
4259
4260static int __find_iref(int num, u64 dir, int index,
4261 struct fs_path *name,
4262 void *ctx_)
4263{
4264 struct find_ref_ctx *ctx = ctx_;
4265 u64 dir_gen;
4266 int ret;
4267
4268 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4269 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4270 /*
4271 * To avoid doing extra lookups we'll only do this if everything
4272 * else matches.
4273 */
4274 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4275 NULL, NULL, NULL);
4276 if (ret)
4277 return ret;
4278 if (dir_gen != ctx->dir_gen)
4279 return 0;
4280 ctx->found_idx = num;
4281 return 1;
4282 }
4283 return 0;
4284}
4285
4286static int find_iref(struct btrfs_root *root,
4287 struct btrfs_path *path,
4288 struct btrfs_key *key,
4289 u64 dir, u64 dir_gen, struct fs_path *name)
4290{
4291 int ret;
4292 struct find_ref_ctx ctx;
4293
4294 ctx.dir = dir;
4295 ctx.name = name;
4296 ctx.dir_gen = dir_gen;
4297 ctx.found_idx = -1;
4298 ctx.root = root;
4299
4300 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4301 if (ret < 0)
4302 return ret;
4303
4304 if (ctx.found_idx == -1)
4305 return -ENOENT;
4306
4307 return ctx.found_idx;
4308}
4309
4310static int __record_changed_new_ref(int num, u64 dir, int index,
4311 struct fs_path *name,
4312 void *ctx)
4313{
4314 u64 dir_gen;
4315 int ret;
4316 struct send_ctx *sctx = ctx;
4317
4318 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4319 NULL, NULL, NULL);
4320 if (ret)
4321 return ret;
4322
4323 ret = find_iref(sctx->parent_root, sctx->right_path,
4324 sctx->cmp_key, dir, dir_gen, name);
4325 if (ret == -ENOENT)
4326 ret = __record_new_ref(num, dir, index, name, sctx);
4327 else if (ret > 0)
4328 ret = 0;
4329
4330 return ret;
4331}
4332
4333static int __record_changed_deleted_ref(int num, u64 dir, int index,
4334 struct fs_path *name,
4335 void *ctx)
4336{
4337 u64 dir_gen;
4338 int ret;
4339 struct send_ctx *sctx = ctx;
4340
4341 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4342 NULL, NULL, NULL);
4343 if (ret)
4344 return ret;
4345
4346 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4347 dir, dir_gen, name);
4348 if (ret == -ENOENT)
4349 ret = __record_deleted_ref(num, dir, index, name, sctx);
4350 else if (ret > 0)
4351 ret = 0;
4352
4353 return ret;
4354}
4355
4356static int record_changed_ref(struct send_ctx *sctx)
4357{
4358 int ret = 0;
4359
4360 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4361 sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4362 if (ret < 0)
4363 goto out;
4364 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4365 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4366 if (ret < 0)
4367 goto out;
4368 ret = 0;
4369
4370out:
4371 return ret;
4372}
4373
4374/*
4375 * Record and process all refs at once. Needed when an inode changes the
4376 * generation number, which means that it was deleted and recreated.
4377 */
4378static int process_all_refs(struct send_ctx *sctx,
4379 enum btrfs_compare_tree_result cmd)
4380{
4381 int ret;
4382 struct btrfs_root *root;
4383 struct btrfs_path *path;
4384 struct btrfs_key key;
4385 struct btrfs_key found_key;
4386 struct extent_buffer *eb;
4387 int slot;
4388 iterate_inode_ref_t cb;
4389 int pending_move = 0;
4390
4391 path = alloc_path_for_send();
4392 if (!path)
4393 return -ENOMEM;
4394
4395 if (cmd == BTRFS_COMPARE_TREE_NEW) {
4396 root = sctx->send_root;
4397 cb = __record_new_ref;
4398 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4399 root = sctx->parent_root;
4400 cb = __record_deleted_ref;
4401 } else {
4402 btrfs_err(sctx->send_root->fs_info,
4403 "Wrong command %d in process_all_refs", cmd);
4404 ret = -EINVAL;
4405 goto out;
4406 }
4407
4408 key.objectid = sctx->cmp_key->objectid;
4409 key.type = BTRFS_INODE_REF_KEY;
4410 key.offset = 0;
4411 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4412 if (ret < 0)
4413 goto out;
4414
4415 while (1) {
4416 eb = path->nodes[0];
4417 slot = path->slots[0];
4418 if (slot >= btrfs_header_nritems(eb)) {
4419 ret = btrfs_next_leaf(root, path);
4420 if (ret < 0)
4421 goto out;
4422 else if (ret > 0)
4423 break;
4424 continue;
4425 }
4426
4427 btrfs_item_key_to_cpu(eb, &found_key, slot);
4428
4429 if (found_key.objectid != key.objectid ||
4430 (found_key.type != BTRFS_INODE_REF_KEY &&
4431 found_key.type != BTRFS_INODE_EXTREF_KEY))
4432 break;
4433
4434 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4435 if (ret < 0)
4436 goto out;
4437
4438 path->slots[0]++;
4439 }
4440 btrfs_release_path(path);
4441
4442 /*
4443 * We don't actually care about pending_move as we are simply
4444 * re-creating this inode and will be rename'ing it into place once we
4445 * rename the parent directory.
4446 */
4447 ret = process_recorded_refs(sctx, &pending_move);
4448out:
4449 btrfs_free_path(path);
4450 return ret;
4451}
4452
4453static int send_set_xattr(struct send_ctx *sctx,
4454 struct fs_path *path,
4455 const char *name, int name_len,
4456 const char *data, int data_len)
4457{
4458 int ret = 0;
4459
4460 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4461 if (ret < 0)
4462 goto out;
4463
4464 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4465 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4466 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4467
4468 ret = send_cmd(sctx);
4469
4470tlv_put_failure:
4471out:
4472 return ret;
4473}
4474
4475static int send_remove_xattr(struct send_ctx *sctx,
4476 struct fs_path *path,
4477 const char *name, int name_len)
4478{
4479 int ret = 0;
4480
4481 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4482 if (ret < 0)
4483 goto out;
4484
4485 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4486 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4487
4488 ret = send_cmd(sctx);
4489
4490tlv_put_failure:
4491out:
4492 return ret;
4493}
4494
4495static int __process_new_xattr(int num, struct btrfs_key *di_key,
4496 const char *name, int name_len,
4497 const char *data, int data_len,
4498 u8 type, void *ctx)
4499{
4500 int ret;
4501 struct send_ctx *sctx = ctx;
4502 struct fs_path *p;
4503 struct posix_acl_xattr_header dummy_acl;
4504
4505 p = fs_path_alloc();
4506 if (!p)
4507 return -ENOMEM;
4508
4509 /*
4510 * This hack is needed because empty acls are stored as zero byte
4511 * data in xattrs. Problem with that is, that receiving these zero byte
4512 * acls will fail later. To fix this, we send a dummy acl list that
4513 * only contains the version number and no entries.
4514 */
4515 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4516 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4517 if (data_len == 0) {
4518 dummy_acl.a_version =
4519 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4520 data = (char *)&dummy_acl;
4521 data_len = sizeof(dummy_acl);
4522 }
4523 }
4524
4525 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4526 if (ret < 0)
4527 goto out;
4528
4529 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4530
4531out:
4532 fs_path_free(p);
4533 return ret;
4534}
4535
4536static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4537 const char *name, int name_len,
4538 const char *data, int data_len,
4539 u8 type, void *ctx)
4540{
4541 int ret;
4542 struct send_ctx *sctx = ctx;
4543 struct fs_path *p;
4544
4545 p = fs_path_alloc();
4546 if (!p)
4547 return -ENOMEM;
4548
4549 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4550 if (ret < 0)
4551 goto out;
4552
4553 ret = send_remove_xattr(sctx, p, name, name_len);
4554
4555out:
4556 fs_path_free(p);
4557 return ret;
4558}
4559
4560static int process_new_xattr(struct send_ctx *sctx)
4561{
4562 int ret = 0;
4563
4564 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4565 __process_new_xattr, sctx);
4566
4567 return ret;
4568}
4569
4570static int process_deleted_xattr(struct send_ctx *sctx)
4571{
4572 return iterate_dir_item(sctx->parent_root, sctx->right_path,
4573 __process_deleted_xattr, sctx);
4574}
4575
4576struct find_xattr_ctx {
4577 const char *name;
4578 int name_len;
4579 int found_idx;
4580 char *found_data;
4581 int found_data_len;
4582};
4583
4584static int __find_xattr(int num, struct btrfs_key *di_key,
4585 const char *name, int name_len,
4586 const char *data, int data_len,
4587 u8 type, void *vctx)
4588{
4589 struct find_xattr_ctx *ctx = vctx;
4590
4591 if (name_len == ctx->name_len &&
4592 strncmp(name, ctx->name, name_len) == 0) {
4593 ctx->found_idx = num;
4594 ctx->found_data_len = data_len;
4595 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4596 if (!ctx->found_data)
4597 return -ENOMEM;
4598 return 1;
4599 }
4600 return 0;
4601}
4602
4603static int find_xattr(struct btrfs_root *root,
4604 struct btrfs_path *path,
4605 struct btrfs_key *key,
4606 const char *name, int name_len,
4607 char **data, int *data_len)
4608{
4609 int ret;
4610 struct find_xattr_ctx ctx;
4611
4612 ctx.name = name;
4613 ctx.name_len = name_len;
4614 ctx.found_idx = -1;
4615 ctx.found_data = NULL;
4616 ctx.found_data_len = 0;
4617
4618 ret = iterate_dir_item(root, path, __find_xattr, &ctx);
4619 if (ret < 0)
4620 return ret;
4621
4622 if (ctx.found_idx == -1)
4623 return -ENOENT;
4624 if (data) {
4625 *data = ctx.found_data;
4626 *data_len = ctx.found_data_len;
4627 } else {
4628 kfree(ctx.found_data);
4629 }
4630 return ctx.found_idx;
4631}
4632
4633
4634static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4635 const char *name, int name_len,
4636 const char *data, int data_len,
4637 u8 type, void *ctx)
4638{
4639 int ret;
4640 struct send_ctx *sctx = ctx;
4641 char *found_data = NULL;
4642 int found_data_len = 0;
4643
4644 ret = find_xattr(sctx->parent_root, sctx->right_path,
4645 sctx->cmp_key, name, name_len, &found_data,
4646 &found_data_len);
4647 if (ret == -ENOENT) {
4648 ret = __process_new_xattr(num, di_key, name, name_len, data,
4649 data_len, type, ctx);
4650 } else if (ret >= 0) {
4651 if (data_len != found_data_len ||
4652 memcmp(data, found_data, data_len)) {
4653 ret = __process_new_xattr(num, di_key, name, name_len,
4654 data, data_len, type, ctx);
4655 } else {
4656 ret = 0;
4657 }
4658 }
4659
4660 kfree(found_data);
4661 return ret;
4662}
4663
4664static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4665 const char *name, int name_len,
4666 const char *data, int data_len,
4667 u8 type, void *ctx)
4668{
4669 int ret;
4670 struct send_ctx *sctx = ctx;
4671
4672 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4673 name, name_len, NULL, NULL);
4674 if (ret == -ENOENT)
4675 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4676 data_len, type, ctx);
4677 else if (ret >= 0)
4678 ret = 0;
4679
4680 return ret;
4681}
4682
4683static int process_changed_xattr(struct send_ctx *sctx)
4684{
4685 int ret = 0;
4686
4687 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4688 __process_changed_new_xattr, sctx);
4689 if (ret < 0)
4690 goto out;
4691 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4692 __process_changed_deleted_xattr, sctx);
4693
4694out:
4695 return ret;
4696}
4697
4698static int process_all_new_xattrs(struct send_ctx *sctx)
4699{
4700 int ret;
4701 struct btrfs_root *root;
4702 struct btrfs_path *path;
4703 struct btrfs_key key;
4704 struct btrfs_key found_key;
4705 struct extent_buffer *eb;
4706 int slot;
4707
4708 path = alloc_path_for_send();
4709 if (!path)
4710 return -ENOMEM;
4711
4712 root = sctx->send_root;
4713
4714 key.objectid = sctx->cmp_key->objectid;
4715 key.type = BTRFS_XATTR_ITEM_KEY;
4716 key.offset = 0;
4717 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4718 if (ret < 0)
4719 goto out;
4720
4721 while (1) {
4722 eb = path->nodes[0];
4723 slot = path->slots[0];
4724 if (slot >= btrfs_header_nritems(eb)) {
4725 ret = btrfs_next_leaf(root, path);
4726 if (ret < 0) {
4727 goto out;
4728 } else if (ret > 0) {
4729 ret = 0;
4730 break;
4731 }
4732 continue;
4733 }
4734
4735 btrfs_item_key_to_cpu(eb, &found_key, slot);
4736 if (found_key.objectid != key.objectid ||
4737 found_key.type != key.type) {
4738 ret = 0;
4739 goto out;
4740 }
4741
4742 ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
4743 if (ret < 0)
4744 goto out;
4745
4746 path->slots[0]++;
4747 }
4748
4749out:
4750 btrfs_free_path(path);
4751 return ret;
4752}
4753
4754static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4755{
4756 struct btrfs_root *root = sctx->send_root;
4757 struct btrfs_fs_info *fs_info = root->fs_info;
4758 struct inode *inode;
4759 struct page *page;
4760 char *addr;
4761 struct btrfs_key key;
4762 pgoff_t index = offset >> PAGE_SHIFT;
4763 pgoff_t last_index;
4764 unsigned pg_offset = offset & ~PAGE_MASK;
4765 ssize_t ret = 0;
4766
4767 key.objectid = sctx->cur_ino;
4768 key.type = BTRFS_INODE_ITEM_KEY;
4769 key.offset = 0;
4770
4771 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4772 if (IS_ERR(inode))
4773 return PTR_ERR(inode);
4774
4775 if (offset + len > i_size_read(inode)) {
4776 if (offset > i_size_read(inode))
4777 len = 0;
4778 else
4779 len = offset - i_size_read(inode);
4780 }
4781 if (len == 0)
4782 goto out;
4783
4784 last_index = (offset + len - 1) >> PAGE_SHIFT;
4785
4786 /* initial readahead */
4787 memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4788 file_ra_state_init(&sctx->ra, inode->i_mapping);
4789
4790 while (index <= last_index) {
4791 unsigned cur_len = min_t(unsigned, len,
4792 PAGE_SIZE - pg_offset);
4793
4794 page = find_lock_page(inode->i_mapping, index);
4795 if (!page) {
4796 page_cache_sync_readahead(inode->i_mapping, &sctx->ra,
4797 NULL, index, last_index + 1 - index);
4798
4799 page = find_or_create_page(inode->i_mapping, index,
4800 GFP_KERNEL);
4801 if (!page) {
4802 ret = -ENOMEM;
4803 break;
4804 }
4805 }
4806
4807 if (PageReadahead(page)) {
4808 page_cache_async_readahead(inode->i_mapping, &sctx->ra,
4809 NULL, page, index, last_index + 1 - index);
4810 }
4811
4812 if (!PageUptodate(page)) {
4813 btrfs_readpage(NULL, page);
4814 lock_page(page);
4815 if (!PageUptodate(page)) {
4816 unlock_page(page);
4817 put_page(page);
4818 ret = -EIO;
4819 break;
4820 }
4821 }
4822
4823 addr = kmap(page);
4824 memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4825 kunmap(page);
4826 unlock_page(page);
4827 put_page(page);
4828 index++;
4829 pg_offset = 0;
4830 len -= cur_len;
4831 ret += cur_len;
4832 }
4833out:
4834 iput(inode);
4835 return ret;
4836}
4837
4838/*
4839 * Read some bytes from the current inode/file and send a write command to
4840 * user space.
4841 */
4842static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4843{
4844 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4845 int ret = 0;
4846 struct fs_path *p;
4847 ssize_t num_read = 0;
4848
4849 p = fs_path_alloc();
4850 if (!p)
4851 return -ENOMEM;
4852
4853 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
4854
4855 num_read = fill_read_buf(sctx, offset, len);
4856 if (num_read <= 0) {
4857 if (num_read < 0)
4858 ret = num_read;
4859 goto out;
4860 }
4861
4862 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4863 if (ret < 0)
4864 goto out;
4865
4866 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4867 if (ret < 0)
4868 goto out;
4869
4870 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4871 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4872 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4873
4874 ret = send_cmd(sctx);
4875
4876tlv_put_failure:
4877out:
4878 fs_path_free(p);
4879 if (ret < 0)
4880 return ret;
4881 return num_read;
4882}
4883
4884/*
4885 * Send a clone command to user space.
4886 */
4887static int send_clone(struct send_ctx *sctx,
4888 u64 offset, u32 len,
4889 struct clone_root *clone_root)
4890{
4891 int ret = 0;
4892 struct fs_path *p;
4893 u64 gen;
4894
4895 btrfs_debug(sctx->send_root->fs_info,
4896 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
4897 offset, len, clone_root->root->objectid, clone_root->ino,
4898 clone_root->offset);
4899
4900 p = fs_path_alloc();
4901 if (!p)
4902 return -ENOMEM;
4903
4904 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4905 if (ret < 0)
4906 goto out;
4907
4908 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4909 if (ret < 0)
4910 goto out;
4911
4912 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4913 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4914 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4915
4916 if (clone_root->root == sctx->send_root) {
4917 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4918 &gen, NULL, NULL, NULL, NULL);
4919 if (ret < 0)
4920 goto out;
4921 ret = get_cur_path(sctx, clone_root->ino, gen, p);
4922 } else {
4923 ret = get_inode_path(clone_root->root, clone_root->ino, p);
4924 }
4925 if (ret < 0)
4926 goto out;
4927
4928 /*
4929 * If the parent we're using has a received_uuid set then use that as
4930 * our clone source as that is what we will look for when doing a
4931 * receive.
4932 *
4933 * This covers the case that we create a snapshot off of a received
4934 * subvolume and then use that as the parent and try to receive on a
4935 * different host.
4936 */
4937 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4938 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4939 clone_root->root->root_item.received_uuid);
4940 else
4941 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4942 clone_root->root->root_item.uuid);
4943 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4944 le64_to_cpu(clone_root->root->root_item.ctransid));
4945 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4946 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4947 clone_root->offset);
4948
4949 ret = send_cmd(sctx);
4950
4951tlv_put_failure:
4952out:
4953 fs_path_free(p);
4954 return ret;
4955}
4956
4957/*
4958 * Send an update extent command to user space.
4959 */
4960static int send_update_extent(struct send_ctx *sctx,
4961 u64 offset, u32 len)
4962{
4963 int ret = 0;
4964 struct fs_path *p;
4965
4966 p = fs_path_alloc();
4967 if (!p)
4968 return -ENOMEM;
4969
4970 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4971 if (ret < 0)
4972 goto out;
4973
4974 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4975 if (ret < 0)
4976 goto out;
4977
4978 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4979 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4980 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4981
4982 ret = send_cmd(sctx);
4983
4984tlv_put_failure:
4985out:
4986 fs_path_free(p);
4987 return ret;
4988}
4989
4990static int send_hole(struct send_ctx *sctx, u64 end)
4991{
4992 struct fs_path *p = NULL;
4993 u64 offset = sctx->cur_inode_last_extent;
4994 u64 len;
4995 int ret = 0;
4996
4997 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
4998 return send_update_extent(sctx, offset, end - offset);
4999
5000 p = fs_path_alloc();
5001 if (!p)
5002 return -ENOMEM;
5003 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5004 if (ret < 0)
5005 goto tlv_put_failure;
5006 memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
5007 while (offset < end) {
5008 len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
5009
5010 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5011 if (ret < 0)
5012 break;
5013 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5014 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5015 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
5016 ret = send_cmd(sctx);
5017 if (ret < 0)
5018 break;
5019 offset += len;
5020 }
5021 sctx->cur_inode_next_write_offset = offset;
5022tlv_put_failure:
5023 fs_path_free(p);
5024 return ret;
5025}
5026
5027static int send_extent_data(struct send_ctx *sctx,
5028 const u64 offset,
5029 const u64 len)
5030{
5031 u64 sent = 0;
5032
5033 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5034 return send_update_extent(sctx, offset, len);
5035
5036 while (sent < len) {
5037 u64 size = len - sent;
5038 int ret;
5039
5040 if (size > BTRFS_SEND_READ_SIZE)
5041 size = BTRFS_SEND_READ_SIZE;
5042 ret = send_write(sctx, offset + sent, size);
5043 if (ret < 0)
5044 return ret;
5045 if (!ret)
5046 break;
5047 sent += ret;
5048 }
5049 return 0;
5050}
5051
5052static int clone_range(struct send_ctx *sctx,
5053 struct clone_root *clone_root,
5054 const u64 disk_byte,
5055 u64 data_offset,
5056 u64 offset,
5057 u64 len)
5058{
5059 struct btrfs_path *path;
5060 struct btrfs_key key;
5061 int ret;
5062
5063 /*
5064 * Prevent cloning from a zero offset with a length matching the sector
5065 * size because in some scenarios this will make the receiver fail.
5066 *
5067 * For example, if in the source filesystem the extent at offset 0
5068 * has a length of sectorsize and it was written using direct IO, then
5069 * it can never be an inline extent (even if compression is enabled).
5070 * Then this extent can be cloned in the original filesystem to a non
5071 * zero file offset, but it may not be possible to clone in the
5072 * destination filesystem because it can be inlined due to compression
5073 * on the destination filesystem (as the receiver's write operations are
5074 * always done using buffered IO). The same happens when the original
5075 * filesystem does not have compression enabled but the destination
5076 * filesystem has.
5077 */
5078 if (clone_root->offset == 0 &&
5079 len == sctx->send_root->fs_info->sectorsize)
5080 return send_extent_data(sctx, offset, len);
5081
5082 path = alloc_path_for_send();
5083 if (!path)
5084 return -ENOMEM;
5085
5086 /*
5087 * We can't send a clone operation for the entire range if we find
5088 * extent items in the respective range in the source file that
5089 * refer to different extents or if we find holes.
5090 * So check for that and do a mix of clone and regular write/copy
5091 * operations if needed.
5092 *
5093 * Example:
5094 *
5095 * mkfs.btrfs -f /dev/sda
5096 * mount /dev/sda /mnt
5097 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5098 * cp --reflink=always /mnt/foo /mnt/bar
5099 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5100 * btrfs subvolume snapshot -r /mnt /mnt/snap
5101 *
5102 * If when we send the snapshot and we are processing file bar (which
5103 * has a higher inode number than foo) we blindly send a clone operation
5104 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5105 * a file bar that matches the content of file foo - iow, doesn't match
5106 * the content from bar in the original filesystem.
5107 */
5108 key.objectid = clone_root->ino;
5109 key.type = BTRFS_EXTENT_DATA_KEY;
5110 key.offset = clone_root->offset;
5111 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5112 if (ret < 0)
5113 goto out;
5114 if (ret > 0 && path->slots[0] > 0) {
5115 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5116 if (key.objectid == clone_root->ino &&
5117 key.type == BTRFS_EXTENT_DATA_KEY)
5118 path->slots[0]--;
5119 }
5120
5121 while (true) {
5122 struct extent_buffer *leaf = path->nodes[0];
5123 int slot = path->slots[0];
5124 struct btrfs_file_extent_item *ei;
5125 u8 type;
5126 u64 ext_len;
5127 u64 clone_len;
5128
5129 if (slot >= btrfs_header_nritems(leaf)) {
5130 ret = btrfs_next_leaf(clone_root->root, path);
5131 if (ret < 0)
5132 goto out;
5133 else if (ret > 0)
5134 break;
5135 continue;
5136 }
5137
5138 btrfs_item_key_to_cpu(leaf, &key, slot);
5139
5140 /*
5141 * We might have an implicit trailing hole (NO_HOLES feature
5142 * enabled). We deal with it after leaving this loop.
5143 */
5144 if (key.objectid != clone_root->ino ||
5145 key.type != BTRFS_EXTENT_DATA_KEY)
5146 break;
5147
5148 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5149 type = btrfs_file_extent_type(leaf, ei);
5150 if (type == BTRFS_FILE_EXTENT_INLINE) {
5151 ext_len = btrfs_file_extent_inline_len(leaf, slot, ei);
5152 ext_len = PAGE_ALIGN(ext_len);
5153 } else {
5154 ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5155 }
5156
5157 if (key.offset + ext_len <= clone_root->offset)
5158 goto next;
5159
5160 if (key.offset > clone_root->offset) {
5161 /* Implicit hole, NO_HOLES feature enabled. */
5162 u64 hole_len = key.offset - clone_root->offset;
5163
5164 if (hole_len > len)
5165 hole_len = len;
5166 ret = send_extent_data(sctx, offset, hole_len);
5167 if (ret < 0)
5168 goto out;
5169
5170 len -= hole_len;
5171 if (len == 0)
5172 break;
5173 offset += hole_len;
5174 clone_root->offset += hole_len;
5175 data_offset += hole_len;
5176 }
5177
5178 if (key.offset >= clone_root->offset + len)
5179 break;
5180
5181 clone_len = min_t(u64, ext_len, len);
5182
5183 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
5184 btrfs_file_extent_offset(leaf, ei) == data_offset)
5185 ret = send_clone(sctx, offset, clone_len, clone_root);
5186 else
5187 ret = send_extent_data(sctx, offset, clone_len);
5188
5189 if (ret < 0)
5190 goto out;
5191
5192 len -= clone_len;
5193 if (len == 0)
5194 break;
5195 offset += clone_len;
5196 clone_root->offset += clone_len;
5197 data_offset += clone_len;
5198next:
5199 path->slots[0]++;
5200 }
5201
5202 if (len > 0)
5203 ret = send_extent_data(sctx, offset, len);
5204 else
5205 ret = 0;
5206out:
5207 btrfs_free_path(path);
5208 return ret;
5209}
5210
5211static int send_write_or_clone(struct send_ctx *sctx,
5212 struct btrfs_path *path,
5213 struct btrfs_key *key,
5214 struct clone_root *clone_root)
5215{
5216 int ret = 0;
5217 struct btrfs_file_extent_item *ei;
5218 u64 offset = key->offset;
5219 u64 len;
5220 u8 type;
5221 u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5222
5223 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5224 struct btrfs_file_extent_item);
5225 type = btrfs_file_extent_type(path->nodes[0], ei);
5226 if (type == BTRFS_FILE_EXTENT_INLINE) {
5227 len = btrfs_file_extent_inline_len(path->nodes[0],
5228 path->slots[0], ei);
5229 /*
5230 * it is possible the inline item won't cover the whole page,
5231 * but there may be items after this page. Make
5232 * sure to send the whole thing
5233 */
5234 len = PAGE_ALIGN(len);
5235 } else {
5236 len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
5237 }
5238
5239 if (offset >= sctx->cur_inode_size) {
5240 ret = 0;
5241 goto out;
5242 }
5243 if (offset + len > sctx->cur_inode_size)
5244 len = sctx->cur_inode_size - offset;
5245 if (len == 0) {
5246 ret = 0;
5247 goto out;
5248 }
5249
5250 if (clone_root && IS_ALIGNED(offset + len, bs)) {
5251 u64 disk_byte;
5252 u64 data_offset;
5253
5254 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5255 data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5256 ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5257 offset, len);
5258 } else {
5259 ret = send_extent_data(sctx, offset, len);
5260 }
5261 sctx->cur_inode_next_write_offset = offset + len;
5262out:
5263 return ret;
5264}
5265
5266static int is_extent_unchanged(struct send_ctx *sctx,
5267 struct btrfs_path *left_path,
5268 struct btrfs_key *ekey)
5269{
5270 int ret = 0;
5271 struct btrfs_key key;
5272 struct btrfs_path *path = NULL;
5273 struct extent_buffer *eb;
5274 int slot;
5275 struct btrfs_key found_key;
5276 struct btrfs_file_extent_item *ei;
5277 u64 left_disknr;
5278 u64 right_disknr;
5279 u64 left_offset;
5280 u64 right_offset;
5281 u64 left_offset_fixed;
5282 u64 left_len;
5283 u64 right_len;
5284 u64 left_gen;
5285 u64 right_gen;
5286 u8 left_type;
5287 u8 right_type;
5288
5289 path = alloc_path_for_send();
5290 if (!path)
5291 return -ENOMEM;
5292
5293 eb = left_path->nodes[0];
5294 slot = left_path->slots[0];
5295 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5296 left_type = btrfs_file_extent_type(eb, ei);
5297
5298 if (left_type != BTRFS_FILE_EXTENT_REG) {
5299 ret = 0;
5300 goto out;
5301 }
5302 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5303 left_len = btrfs_file_extent_num_bytes(eb, ei);
5304 left_offset = btrfs_file_extent_offset(eb, ei);
5305 left_gen = btrfs_file_extent_generation(eb, ei);
5306
5307 /*
5308 * Following comments will refer to these graphics. L is the left
5309 * extents which we are checking at the moment. 1-8 are the right
5310 * extents that we iterate.
5311 *
5312 * |-----L-----|
5313 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5314 *
5315 * |-----L-----|
5316 * |--1--|-2b-|...(same as above)
5317 *
5318 * Alternative situation. Happens on files where extents got split.
5319 * |-----L-----|
5320 * |-----------7-----------|-6-|
5321 *
5322 * Alternative situation. Happens on files which got larger.
5323 * |-----L-----|
5324 * |-8-|
5325 * Nothing follows after 8.
5326 */
5327
5328 key.objectid = ekey->objectid;
5329 key.type = BTRFS_EXTENT_DATA_KEY;
5330 key.offset = ekey->offset;
5331 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5332 if (ret < 0)
5333 goto out;
5334 if (ret) {
5335 ret = 0;
5336 goto out;
5337 }
5338
5339 /*
5340 * Handle special case where the right side has no extents at all.
5341 */
5342 eb = path->nodes[0];
5343 slot = path->slots[0];
5344 btrfs_item_key_to_cpu(eb, &found_key, slot);
5345 if (found_key.objectid != key.objectid ||
5346 found_key.type != key.type) {
5347 /* If we're a hole then just pretend nothing changed */
5348 ret = (left_disknr) ? 0 : 1;
5349 goto out;
5350 }
5351
5352 /*
5353 * We're now on 2a, 2b or 7.
5354 */
5355 key = found_key;
5356 while (key.offset < ekey->offset + left_len) {
5357 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5358 right_type = btrfs_file_extent_type(eb, ei);
5359 if (right_type != BTRFS_FILE_EXTENT_REG &&
5360 right_type != BTRFS_FILE_EXTENT_INLINE) {
5361 ret = 0;
5362 goto out;
5363 }
5364
5365 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5366 right_len = btrfs_file_extent_inline_len(eb, slot, ei);
5367 right_len = PAGE_ALIGN(right_len);
5368 } else {
5369 right_len = btrfs_file_extent_num_bytes(eb, ei);
5370 }
5371
5372 /*
5373 * Are we at extent 8? If yes, we know the extent is changed.
5374 * This may only happen on the first iteration.
5375 */
5376 if (found_key.offset + right_len <= ekey->offset) {
5377 /* If we're a hole just pretend nothing changed */
5378 ret = (left_disknr) ? 0 : 1;
5379 goto out;
5380 }
5381
5382 /*
5383 * We just wanted to see if when we have an inline extent, what
5384 * follows it is a regular extent (wanted to check the above
5385 * condition for inline extents too). This should normally not
5386 * happen but it's possible for example when we have an inline
5387 * compressed extent representing data with a size matching
5388 * the page size (currently the same as sector size).
5389 */
5390 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5391 ret = 0;
5392 goto out;
5393 }
5394
5395 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5396 right_offset = btrfs_file_extent_offset(eb, ei);
5397 right_gen = btrfs_file_extent_generation(eb, ei);
5398
5399 left_offset_fixed = left_offset;
5400 if (key.offset < ekey->offset) {
5401 /* Fix the right offset for 2a and 7. */
5402 right_offset += ekey->offset - key.offset;
5403 } else {
5404 /* Fix the left offset for all behind 2a and 2b */
5405 left_offset_fixed += key.offset - ekey->offset;
5406 }
5407
5408 /*
5409 * Check if we have the same extent.
5410 */
5411 if (left_disknr != right_disknr ||
5412 left_offset_fixed != right_offset ||
5413 left_gen != right_gen) {
5414 ret = 0;
5415 goto out;
5416 }
5417
5418 /*
5419 * Go to the next extent.
5420 */
5421 ret = btrfs_next_item(sctx->parent_root, path);
5422 if (ret < 0)
5423 goto out;
5424 if (!ret) {
5425 eb = path->nodes[0];
5426 slot = path->slots[0];
5427 btrfs_item_key_to_cpu(eb, &found_key, slot);
5428 }
5429 if (ret || found_key.objectid != key.objectid ||
5430 found_key.type != key.type) {
5431 key.offset += right_len;
5432 break;
5433 }
5434 if (found_key.offset != key.offset + right_len) {
5435 ret = 0;
5436 goto out;
5437 }
5438 key = found_key;
5439 }
5440
5441 /*
5442 * We're now behind the left extent (treat as unchanged) or at the end
5443 * of the right side (treat as changed).
5444 */
5445 if (key.offset >= ekey->offset + left_len)
5446 ret = 1;
5447 else
5448 ret = 0;
5449
5450
5451out:
5452 btrfs_free_path(path);
5453 return ret;
5454}
5455
5456static int get_last_extent(struct send_ctx *sctx, u64 offset)
5457{
5458 struct btrfs_path *path;
5459 struct btrfs_root *root = sctx->send_root;
5460 struct btrfs_file_extent_item *fi;
5461 struct btrfs_key key;
5462 u64 extent_end;
5463 u8 type;
5464 int ret;
5465
5466 path = alloc_path_for_send();
5467 if (!path)
5468 return -ENOMEM;
5469
5470 sctx->cur_inode_last_extent = 0;
5471
5472 key.objectid = sctx->cur_ino;
5473 key.type = BTRFS_EXTENT_DATA_KEY;
5474 key.offset = offset;
5475 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5476 if (ret < 0)
5477 goto out;
5478 ret = 0;
5479 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5480 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5481 goto out;
5482
5483 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5484 struct btrfs_file_extent_item);
5485 type = btrfs_file_extent_type(path->nodes[0], fi);
5486 if (type == BTRFS_FILE_EXTENT_INLINE) {
5487 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5488 path->slots[0], fi);
5489 extent_end = ALIGN(key.offset + size,
5490 sctx->send_root->fs_info->sectorsize);
5491 } else {
5492 extent_end = key.offset +
5493 btrfs_file_extent_num_bytes(path->nodes[0], fi);
5494 }
5495 sctx->cur_inode_last_extent = extent_end;
5496out:
5497 btrfs_free_path(path);
5498 return ret;
5499}
5500
5501static int range_is_hole_in_parent(struct send_ctx *sctx,
5502 const u64 start,
5503 const u64 end)
5504{
5505 struct btrfs_path *path;
5506 struct btrfs_key key;
5507 struct btrfs_root *root = sctx->parent_root;
5508 u64 search_start = start;
5509 int ret;
5510
5511 path = alloc_path_for_send();
5512 if (!path)
5513 return -ENOMEM;
5514
5515 key.objectid = sctx->cur_ino;
5516 key.type = BTRFS_EXTENT_DATA_KEY;
5517 key.offset = search_start;
5518 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5519 if (ret < 0)
5520 goto out;
5521 if (ret > 0 && path->slots[0] > 0)
5522 path->slots[0]--;
5523
5524 while (search_start < end) {
5525 struct extent_buffer *leaf = path->nodes[0];
5526 int slot = path->slots[0];
5527 struct btrfs_file_extent_item *fi;
5528 u64 extent_end;
5529
5530 if (slot >= btrfs_header_nritems(leaf)) {
5531 ret = btrfs_next_leaf(root, path);
5532 if (ret < 0)
5533 goto out;
5534 else if (ret > 0)
5535 break;
5536 continue;
5537 }
5538
5539 btrfs_item_key_to_cpu(leaf, &key, slot);
5540 if (key.objectid < sctx->cur_ino ||
5541 key.type < BTRFS_EXTENT_DATA_KEY)
5542 goto next;
5543 if (key.objectid > sctx->cur_ino ||
5544 key.type > BTRFS_EXTENT_DATA_KEY ||
5545 key.offset >= end)
5546 break;
5547
5548 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5549 if (btrfs_file_extent_type(leaf, fi) ==
5550 BTRFS_FILE_EXTENT_INLINE) {
5551 u64 size = btrfs_file_extent_inline_len(leaf, slot, fi);
5552
5553 extent_end = ALIGN(key.offset + size,
5554 root->fs_info->sectorsize);
5555 } else {
5556 extent_end = key.offset +
5557 btrfs_file_extent_num_bytes(leaf, fi);
5558 }
5559 if (extent_end <= start)
5560 goto next;
5561 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
5562 search_start = extent_end;
5563 goto next;
5564 }
5565 ret = 0;
5566 goto out;
5567next:
5568 path->slots[0]++;
5569 }
5570 ret = 1;
5571out:
5572 btrfs_free_path(path);
5573 return ret;
5574}
5575
5576static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5577 struct btrfs_key *key)
5578{
5579 struct btrfs_file_extent_item *fi;
5580 u64 extent_end;
5581 u8 type;
5582 int ret = 0;
5583
5584 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5585 return 0;
5586
5587 if (sctx->cur_inode_last_extent == (u64)-1) {
5588 ret = get_last_extent(sctx, key->offset - 1);
5589 if (ret)
5590 return ret;
5591 }
5592
5593 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5594 struct btrfs_file_extent_item);
5595 type = btrfs_file_extent_type(path->nodes[0], fi);
5596 if (type == BTRFS_FILE_EXTENT_INLINE) {
5597 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5598 path->slots[0], fi);
5599 extent_end = ALIGN(key->offset + size,
5600 sctx->send_root->fs_info->sectorsize);
5601 } else {
5602 extent_end = key->offset +
5603 btrfs_file_extent_num_bytes(path->nodes[0], fi);
5604 }
5605
5606 if (path->slots[0] == 0 &&
5607 sctx->cur_inode_last_extent < key->offset) {
5608 /*
5609 * We might have skipped entire leafs that contained only
5610 * file extent items for our current inode. These leafs have
5611 * a generation number smaller (older) than the one in the
5612 * current leaf and the leaf our last extent came from, and
5613 * are located between these 2 leafs.
5614 */
5615 ret = get_last_extent(sctx, key->offset - 1);
5616 if (ret)
5617 return ret;
5618 }
5619
5620 if (sctx->cur_inode_last_extent < key->offset) {
5621 ret = range_is_hole_in_parent(sctx,
5622 sctx->cur_inode_last_extent,
5623 key->offset);
5624 if (ret < 0)
5625 return ret;
5626 else if (ret == 0)
5627 ret = send_hole(sctx, key->offset);
5628 else
5629 ret = 0;
5630 }
5631 sctx->cur_inode_last_extent = extent_end;
5632 return ret;
5633}
5634
5635static int process_extent(struct send_ctx *sctx,
5636 struct btrfs_path *path,
5637 struct btrfs_key *key)
5638{
5639 struct clone_root *found_clone = NULL;
5640 int ret = 0;
5641
5642 if (S_ISLNK(sctx->cur_inode_mode))
5643 return 0;
5644
5645 if (sctx->parent_root && !sctx->cur_inode_new) {
5646 ret = is_extent_unchanged(sctx, path, key);
5647 if (ret < 0)
5648 goto out;
5649 if (ret) {
5650 ret = 0;
5651 goto out_hole;
5652 }
5653 } else {
5654 struct btrfs_file_extent_item *ei;
5655 u8 type;
5656
5657 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5658 struct btrfs_file_extent_item);
5659 type = btrfs_file_extent_type(path->nodes[0], ei);
5660 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5661 type == BTRFS_FILE_EXTENT_REG) {
5662 /*
5663 * The send spec does not have a prealloc command yet,
5664 * so just leave a hole for prealloc'ed extents until
5665 * we have enough commands queued up to justify rev'ing
5666 * the send spec.
5667 */
5668 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5669 ret = 0;
5670 goto out;
5671 }
5672
5673 /* Have a hole, just skip it. */
5674 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5675 ret = 0;
5676 goto out;
5677 }
5678 }
5679 }
5680
5681 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5682 sctx->cur_inode_size, &found_clone);
5683 if (ret != -ENOENT && ret < 0)
5684 goto out;
5685
5686 ret = send_write_or_clone(sctx, path, key, found_clone);
5687 if (ret)
5688 goto out;
5689out_hole:
5690 ret = maybe_send_hole(sctx, path, key);
5691out:
5692 return ret;
5693}
5694
5695static int process_all_extents(struct send_ctx *sctx)
5696{
5697 int ret;
5698 struct btrfs_root *root;
5699 struct btrfs_path *path;
5700 struct btrfs_key key;
5701 struct btrfs_key found_key;
5702 struct extent_buffer *eb;
5703 int slot;
5704
5705 root = sctx->send_root;
5706 path = alloc_path_for_send();
5707 if (!path)
5708 return -ENOMEM;
5709
5710 key.objectid = sctx->cmp_key->objectid;
5711 key.type = BTRFS_EXTENT_DATA_KEY;
5712 key.offset = 0;
5713 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5714 if (ret < 0)
5715 goto out;
5716
5717 while (1) {
5718 eb = path->nodes[0];
5719 slot = path->slots[0];
5720
5721 if (slot >= btrfs_header_nritems(eb)) {
5722 ret = btrfs_next_leaf(root, path);
5723 if (ret < 0) {
5724 goto out;
5725 } else if (ret > 0) {
5726 ret = 0;
5727 break;
5728 }
5729 continue;
5730 }
5731
5732 btrfs_item_key_to_cpu(eb, &found_key, slot);
5733
5734 if (found_key.objectid != key.objectid ||
5735 found_key.type != key.type) {
5736 ret = 0;
5737 goto out;
5738 }
5739
5740 ret = process_extent(sctx, path, &found_key);
5741 if (ret < 0)
5742 goto out;
5743
5744 path->slots[0]++;
5745 }
5746
5747out:
5748 btrfs_free_path(path);
5749 return ret;
5750}
5751
5752static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5753 int *pending_move,
5754 int *refs_processed)
5755{
5756 int ret = 0;
5757
5758 if (sctx->cur_ino == 0)
5759 goto out;
5760 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5761 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5762 goto out;
5763 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5764 goto out;
5765
5766 ret = process_recorded_refs(sctx, pending_move);
5767 if (ret < 0)
5768 goto out;
5769
5770 *refs_processed = 1;
5771out:
5772 return ret;
5773}
5774
5775static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5776{
5777 int ret = 0;
5778 u64 left_mode;
5779 u64 left_uid;
5780 u64 left_gid;
5781 u64 right_mode;
5782 u64 right_uid;
5783 u64 right_gid;
5784 int need_chmod = 0;
5785 int need_chown = 0;
5786 int need_truncate = 1;
5787 int pending_move = 0;
5788 int refs_processed = 0;
5789
5790 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5791 &refs_processed);
5792 if (ret < 0)
5793 goto out;
5794
5795 /*
5796 * We have processed the refs and thus need to advance send_progress.
5797 * Now, calls to get_cur_xxx will take the updated refs of the current
5798 * inode into account.
5799 *
5800 * On the other hand, if our current inode is a directory and couldn't
5801 * be moved/renamed because its parent was renamed/moved too and it has
5802 * a higher inode number, we can only move/rename our current inode
5803 * after we moved/renamed its parent. Therefore in this case operate on
5804 * the old path (pre move/rename) of our current inode, and the
5805 * move/rename will be performed later.
5806 */
5807 if (refs_processed && !pending_move)
5808 sctx->send_progress = sctx->cur_ino + 1;
5809
5810 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5811 goto out;
5812 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5813 goto out;
5814
5815 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5816 &left_mode, &left_uid, &left_gid, NULL);
5817 if (ret < 0)
5818 goto out;
5819
5820 if (!sctx->parent_root || sctx->cur_inode_new) {
5821 need_chown = 1;
5822 if (!S_ISLNK(sctx->cur_inode_mode))
5823 need_chmod = 1;
5824 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
5825 need_truncate = 0;
5826 } else {
5827 u64 old_size;
5828
5829 ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5830 &old_size, NULL, &right_mode, &right_uid,
5831 &right_gid, NULL);
5832 if (ret < 0)
5833 goto out;
5834
5835 if (left_uid != right_uid || left_gid != right_gid)
5836 need_chown = 1;
5837 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5838 need_chmod = 1;
5839 if ((old_size == sctx->cur_inode_size) ||
5840 (sctx->cur_inode_size > old_size &&
5841 sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
5842 need_truncate = 0;
5843 }
5844
5845 if (S_ISREG(sctx->cur_inode_mode)) {
5846 if (need_send_hole(sctx)) {
5847 if (sctx->cur_inode_last_extent == (u64)-1 ||
5848 sctx->cur_inode_last_extent <
5849 sctx->cur_inode_size) {
5850 ret = get_last_extent(sctx, (u64)-1);
5851 if (ret)
5852 goto out;
5853 }
5854 if (sctx->cur_inode_last_extent <
5855 sctx->cur_inode_size) {
5856 ret = send_hole(sctx, sctx->cur_inode_size);
5857 if (ret)
5858 goto out;
5859 }
5860 }
5861 if (need_truncate) {
5862 ret = send_truncate(sctx, sctx->cur_ino,
5863 sctx->cur_inode_gen,
5864 sctx->cur_inode_size);
5865 if (ret < 0)
5866 goto out;
5867 }
5868 }
5869
5870 if (need_chown) {
5871 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5872 left_uid, left_gid);
5873 if (ret < 0)
5874 goto out;
5875 }
5876 if (need_chmod) {
5877 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5878 left_mode);
5879 if (ret < 0)
5880 goto out;
5881 }
5882
5883 /*
5884 * If other directory inodes depended on our current directory
5885 * inode's move/rename, now do their move/rename operations.
5886 */
5887 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5888 ret = apply_children_dir_moves(sctx);
5889 if (ret)
5890 goto out;
5891 /*
5892 * Need to send that every time, no matter if it actually
5893 * changed between the two trees as we have done changes to
5894 * the inode before. If our inode is a directory and it's
5895 * waiting to be moved/renamed, we will send its utimes when
5896 * it's moved/renamed, therefore we don't need to do it here.
5897 */
5898 sctx->send_progress = sctx->cur_ino + 1;
5899 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5900 if (ret < 0)
5901 goto out;
5902 }
5903
5904out:
5905 return ret;
5906}
5907
5908static int changed_inode(struct send_ctx *sctx,
5909 enum btrfs_compare_tree_result result)
5910{
5911 int ret = 0;
5912 struct btrfs_key *key = sctx->cmp_key;
5913 struct btrfs_inode_item *left_ii = NULL;
5914 struct btrfs_inode_item *right_ii = NULL;
5915 u64 left_gen = 0;
5916 u64 right_gen = 0;
5917
5918 sctx->cur_ino = key->objectid;
5919 sctx->cur_inode_new_gen = 0;
5920 sctx->cur_inode_last_extent = (u64)-1;
5921 sctx->cur_inode_next_write_offset = 0;
5922
5923 /*
5924 * Set send_progress to current inode. This will tell all get_cur_xxx
5925 * functions that the current inode's refs are not updated yet. Later,
5926 * when process_recorded_refs is finished, it is set to cur_ino + 1.
5927 */
5928 sctx->send_progress = sctx->cur_ino;
5929
5930 if (result == BTRFS_COMPARE_TREE_NEW ||
5931 result == BTRFS_COMPARE_TREE_CHANGED) {
5932 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
5933 sctx->left_path->slots[0],
5934 struct btrfs_inode_item);
5935 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
5936 left_ii);
5937 } else {
5938 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5939 sctx->right_path->slots[0],
5940 struct btrfs_inode_item);
5941 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5942 right_ii);
5943 }
5944 if (result == BTRFS_COMPARE_TREE_CHANGED) {
5945 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5946 sctx->right_path->slots[0],
5947 struct btrfs_inode_item);
5948
5949 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5950 right_ii);
5951
5952 /*
5953 * The cur_ino = root dir case is special here. We can't treat
5954 * the inode as deleted+reused because it would generate a
5955 * stream that tries to delete/mkdir the root dir.
5956 */
5957 if (left_gen != right_gen &&
5958 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5959 sctx->cur_inode_new_gen = 1;
5960 }
5961
5962 if (result == BTRFS_COMPARE_TREE_NEW) {
5963 sctx->cur_inode_gen = left_gen;
5964 sctx->cur_inode_new = 1;
5965 sctx->cur_inode_deleted = 0;
5966 sctx->cur_inode_size = btrfs_inode_size(
5967 sctx->left_path->nodes[0], left_ii);
5968 sctx->cur_inode_mode = btrfs_inode_mode(
5969 sctx->left_path->nodes[0], left_ii);
5970 sctx->cur_inode_rdev = btrfs_inode_rdev(
5971 sctx->left_path->nodes[0], left_ii);
5972 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5973 ret = send_create_inode_if_needed(sctx);
5974 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
5975 sctx->cur_inode_gen = right_gen;
5976 sctx->cur_inode_new = 0;
5977 sctx->cur_inode_deleted = 1;
5978 sctx->cur_inode_size = btrfs_inode_size(
5979 sctx->right_path->nodes[0], right_ii);
5980 sctx->cur_inode_mode = btrfs_inode_mode(
5981 sctx->right_path->nodes[0], right_ii);
5982 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
5983 /*
5984 * We need to do some special handling in case the inode was
5985 * reported as changed with a changed generation number. This
5986 * means that the original inode was deleted and new inode
5987 * reused the same inum. So we have to treat the old inode as
5988 * deleted and the new one as new.
5989 */
5990 if (sctx->cur_inode_new_gen) {
5991 /*
5992 * First, process the inode as if it was deleted.
5993 */
5994 sctx->cur_inode_gen = right_gen;
5995 sctx->cur_inode_new = 0;
5996 sctx->cur_inode_deleted = 1;
5997 sctx->cur_inode_size = btrfs_inode_size(
5998 sctx->right_path->nodes[0], right_ii);
5999 sctx->cur_inode_mode = btrfs_inode_mode(
6000 sctx->right_path->nodes[0], right_ii);
6001 ret = process_all_refs(sctx,
6002 BTRFS_COMPARE_TREE_DELETED);
6003 if (ret < 0)
6004 goto out;
6005
6006 /*
6007 * Now process the inode as if it was new.
6008 */
6009 sctx->cur_inode_gen = left_gen;
6010 sctx->cur_inode_new = 1;
6011 sctx->cur_inode_deleted = 0;
6012 sctx->cur_inode_size = btrfs_inode_size(
6013 sctx->left_path->nodes[0], left_ii);
6014 sctx->cur_inode_mode = btrfs_inode_mode(
6015 sctx->left_path->nodes[0], left_ii);
6016 sctx->cur_inode_rdev = btrfs_inode_rdev(
6017 sctx->left_path->nodes[0], left_ii);
6018 ret = send_create_inode_if_needed(sctx);
6019 if (ret < 0)
6020 goto out;
6021
6022 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6023 if (ret < 0)
6024 goto out;
6025 /*
6026 * Advance send_progress now as we did not get into
6027 * process_recorded_refs_if_needed in the new_gen case.
6028 */
6029 sctx->send_progress = sctx->cur_ino + 1;
6030
6031 /*
6032 * Now process all extents and xattrs of the inode as if
6033 * they were all new.
6034 */
6035 ret = process_all_extents(sctx);
6036 if (ret < 0)
6037 goto out;
6038 ret = process_all_new_xattrs(sctx);
6039 if (ret < 0)
6040 goto out;
6041 } else {
6042 sctx->cur_inode_gen = left_gen;
6043 sctx->cur_inode_new = 0;
6044 sctx->cur_inode_new_gen = 0;
6045 sctx->cur_inode_deleted = 0;
6046 sctx->cur_inode_size = btrfs_inode_size(
6047 sctx->left_path->nodes[0], left_ii);
6048 sctx->cur_inode_mode = btrfs_inode_mode(
6049 sctx->left_path->nodes[0], left_ii);
6050 }
6051 }
6052
6053out:
6054 return ret;
6055}
6056
6057/*
6058 * We have to process new refs before deleted refs, but compare_trees gives us
6059 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
6060 * first and later process them in process_recorded_refs.
6061 * For the cur_inode_new_gen case, we skip recording completely because
6062 * changed_inode did already initiate processing of refs. The reason for this is
6063 * that in this case, compare_tree actually compares the refs of 2 different
6064 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
6065 * refs of the right tree as deleted and all refs of the left tree as new.
6066 */
6067static int changed_ref(struct send_ctx *sctx,
6068 enum btrfs_compare_tree_result result)
6069{
6070 int ret = 0;
6071
6072 if (sctx->cur_ino != sctx->cmp_key->objectid) {
6073 inconsistent_snapshot_error(sctx, result, "reference");
6074 return -EIO;
6075 }
6076
6077 if (!sctx->cur_inode_new_gen &&
6078 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
6079 if (result == BTRFS_COMPARE_TREE_NEW)
6080 ret = record_new_ref(sctx);
6081 else if (result == BTRFS_COMPARE_TREE_DELETED)
6082 ret = record_deleted_ref(sctx);
6083 else if (result == BTRFS_COMPARE_TREE_CHANGED)
6084 ret = record_changed_ref(sctx);
6085 }
6086
6087 return ret;
6088}
6089
6090/*
6091 * Process new/deleted/changed xattrs. We skip processing in the
6092 * cur_inode_new_gen case because changed_inode did already initiate processing
6093 * of xattrs. The reason is the same as in changed_ref
6094 */
6095static int changed_xattr(struct send_ctx *sctx,
6096 enum btrfs_compare_tree_result result)
6097{
6098 int ret = 0;
6099
6100 if (sctx->cur_ino != sctx->cmp_key->objectid) {
6101 inconsistent_snapshot_error(sctx, result, "xattr");
6102 return -EIO;
6103 }
6104
6105 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6106 if (result == BTRFS_COMPARE_TREE_NEW)
6107 ret = process_new_xattr(sctx);
6108 else if (result == BTRFS_COMPARE_TREE_DELETED)
6109 ret = process_deleted_xattr(sctx);
6110 else if (result == BTRFS_COMPARE_TREE_CHANGED)
6111 ret = process_changed_xattr(sctx);
6112 }
6113
6114 return ret;
6115}
6116
6117/*
6118 * Process new/deleted/changed extents. We skip processing in the
6119 * cur_inode_new_gen case because changed_inode did already initiate processing
6120 * of extents. The reason is the same as in changed_ref
6121 */
6122static int changed_extent(struct send_ctx *sctx,
6123 enum btrfs_compare_tree_result result)
6124{
6125 int ret = 0;
6126
6127 if (sctx->cur_ino != sctx->cmp_key->objectid) {
6128
6129 if (result == BTRFS_COMPARE_TREE_CHANGED) {
6130 struct extent_buffer *leaf_l;
6131 struct extent_buffer *leaf_r;
6132 struct btrfs_file_extent_item *ei_l;
6133 struct btrfs_file_extent_item *ei_r;
6134
6135 leaf_l = sctx->left_path->nodes[0];
6136 leaf_r = sctx->right_path->nodes[0];
6137 ei_l = btrfs_item_ptr(leaf_l,
6138 sctx->left_path->slots[0],
6139 struct btrfs_file_extent_item);
6140 ei_r = btrfs_item_ptr(leaf_r,
6141 sctx->right_path->slots[0],
6142 struct btrfs_file_extent_item);
6143
6144 /*
6145 * We may have found an extent item that has changed
6146 * only its disk_bytenr field and the corresponding
6147 * inode item was not updated. This case happens due to
6148 * very specific timings during relocation when a leaf
6149 * that contains file extent items is COWed while
6150 * relocation is ongoing and its in the stage where it
6151 * updates data pointers. So when this happens we can
6152 * safely ignore it since we know it's the same extent,
6153 * but just at different logical and physical locations
6154 * (when an extent is fully replaced with a new one, we
6155 * know the generation number must have changed too,
6156 * since snapshot creation implies committing the current
6157 * transaction, and the inode item must have been updated
6158 * as well).
6159 * This replacement of the disk_bytenr happens at
6160 * relocation.c:replace_file_extents() through
6161 * relocation.c:btrfs_reloc_cow_block().
6162 */
6163 if (btrfs_file_extent_generation(leaf_l, ei_l) ==
6164 btrfs_file_extent_generation(leaf_r, ei_r) &&
6165 btrfs_file_extent_ram_bytes(leaf_l, ei_l) ==
6166 btrfs_file_extent_ram_bytes(leaf_r, ei_r) &&
6167 btrfs_file_extent_compression(leaf_l, ei_l) ==
6168 btrfs_file_extent_compression(leaf_r, ei_r) &&
6169 btrfs_file_extent_encryption(leaf_l, ei_l) ==
6170 btrfs_file_extent_encryption(leaf_r, ei_r) &&
6171 btrfs_file_extent_other_encoding(leaf_l, ei_l) ==
6172 btrfs_file_extent_other_encoding(leaf_r, ei_r) &&
6173 btrfs_file_extent_type(leaf_l, ei_l) ==
6174 btrfs_file_extent_type(leaf_r, ei_r) &&
6175 btrfs_file_extent_disk_bytenr(leaf_l, ei_l) !=
6176 btrfs_file_extent_disk_bytenr(leaf_r, ei_r) &&
6177 btrfs_file_extent_disk_num_bytes(leaf_l, ei_l) ==
6178 btrfs_file_extent_disk_num_bytes(leaf_r, ei_r) &&
6179 btrfs_file_extent_offset(leaf_l, ei_l) ==
6180 btrfs_file_extent_offset(leaf_r, ei_r) &&
6181 btrfs_file_extent_num_bytes(leaf_l, ei_l) ==
6182 btrfs_file_extent_num_bytes(leaf_r, ei_r))
6183 return 0;
6184 }
6185
6186 inconsistent_snapshot_error(sctx, result, "extent");
6187 return -EIO;
6188 }
6189
6190 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6191 if (result != BTRFS_COMPARE_TREE_DELETED)
6192 ret = process_extent(sctx, sctx->left_path,
6193 sctx->cmp_key);
6194 }
6195
6196 return ret;
6197}
6198
6199static int dir_changed(struct send_ctx *sctx, u64 dir)
6200{
6201 u64 orig_gen, new_gen;
6202 int ret;
6203
6204 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
6205 NULL, NULL);
6206 if (ret)
6207 return ret;
6208
6209 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
6210 NULL, NULL, NULL);
6211 if (ret)
6212 return ret;
6213
6214 return (orig_gen != new_gen) ? 1 : 0;
6215}
6216
6217static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
6218 struct btrfs_key *key)
6219{
6220 struct btrfs_inode_extref *extref;
6221 struct extent_buffer *leaf;
6222 u64 dirid = 0, last_dirid = 0;
6223 unsigned long ptr;
6224 u32 item_size;
6225 u32 cur_offset = 0;
6226 int ref_name_len;
6227 int ret = 0;
6228
6229 /* Easy case, just check this one dirid */
6230 if (key->type == BTRFS_INODE_REF_KEY) {
6231 dirid = key->offset;
6232
6233 ret = dir_changed(sctx, dirid);
6234 goto out;
6235 }
6236
6237 leaf = path->nodes[0];
6238 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6239 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
6240 while (cur_offset < item_size) {
6241 extref = (struct btrfs_inode_extref *)(ptr +
6242 cur_offset);
6243 dirid = btrfs_inode_extref_parent(leaf, extref);
6244 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
6245 cur_offset += ref_name_len + sizeof(*extref);
6246 if (dirid == last_dirid)
6247 continue;
6248 ret = dir_changed(sctx, dirid);
6249 if (ret)
6250 break;
6251 last_dirid = dirid;
6252 }
6253out:
6254 return ret;
6255}
6256
6257/*
6258 * Updates compare related fields in sctx and simply forwards to the actual
6259 * changed_xxx functions.
6260 */
6261static int changed_cb(struct btrfs_path *left_path,
6262 struct btrfs_path *right_path,
6263 struct btrfs_key *key,
6264 enum btrfs_compare_tree_result result,
6265 void *ctx)
6266{
6267 int ret = 0;
6268 struct send_ctx *sctx = ctx;
6269
6270 if (result == BTRFS_COMPARE_TREE_SAME) {
6271 if (key->type == BTRFS_INODE_REF_KEY ||
6272 key->type == BTRFS_INODE_EXTREF_KEY) {
6273 ret = compare_refs(sctx, left_path, key);
6274 if (!ret)
6275 return 0;
6276 if (ret < 0)
6277 return ret;
6278 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
6279 return maybe_send_hole(sctx, left_path, key);
6280 } else {
6281 return 0;
6282 }
6283 result = BTRFS_COMPARE_TREE_CHANGED;
6284 ret = 0;
6285 }
6286
6287 sctx->left_path = left_path;
6288 sctx->right_path = right_path;
6289 sctx->cmp_key = key;
6290
6291 ret = finish_inode_if_needed(sctx, 0);
6292 if (ret < 0)
6293 goto out;
6294
6295 /* Ignore non-FS objects */
6296 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
6297 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
6298 goto out;
6299
6300 if (key->type == BTRFS_INODE_ITEM_KEY)
6301 ret = changed_inode(sctx, result);
6302 else if (key->type == BTRFS_INODE_REF_KEY ||
6303 key->type == BTRFS_INODE_EXTREF_KEY)
6304 ret = changed_ref(sctx, result);
6305 else if (key->type == BTRFS_XATTR_ITEM_KEY)
6306 ret = changed_xattr(sctx, result);
6307 else if (key->type == BTRFS_EXTENT_DATA_KEY)
6308 ret = changed_extent(sctx, result);
6309
6310out:
6311 return ret;
6312}
6313
6314static int full_send_tree(struct send_ctx *sctx)
6315{
6316 int ret;
6317 struct btrfs_root *send_root = sctx->send_root;
6318 struct btrfs_key key;
6319 struct btrfs_key found_key;
6320 struct btrfs_path *path;
6321 struct extent_buffer *eb;
6322 int slot;
6323
6324 path = alloc_path_for_send();
6325 if (!path)
6326 return -ENOMEM;
6327
6328 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6329 key.type = BTRFS_INODE_ITEM_KEY;
6330 key.offset = 0;
6331
6332 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
6333 if (ret < 0)
6334 goto out;
6335 if (ret)
6336 goto out_finish;
6337
6338 while (1) {
6339 eb = path->nodes[0];
6340 slot = path->slots[0];
6341 btrfs_item_key_to_cpu(eb, &found_key, slot);
6342
6343 ret = changed_cb(path, NULL, &found_key,
6344 BTRFS_COMPARE_TREE_NEW, sctx);
6345 if (ret < 0)
6346 goto out;
6347
6348 key.objectid = found_key.objectid;
6349 key.type = found_key.type;
6350 key.offset = found_key.offset + 1;
6351
6352 ret = btrfs_next_item(send_root, path);
6353 if (ret < 0)
6354 goto out;
6355 if (ret) {
6356 ret = 0;
6357 break;
6358 }
6359 }
6360
6361out_finish:
6362 ret = finish_inode_if_needed(sctx, 1);
6363
6364out:
6365 btrfs_free_path(path);
6366 return ret;
6367}
6368
6369static int send_subvol(struct send_ctx *sctx)
6370{
6371 int ret;
6372
6373 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
6374 ret = send_header(sctx);
6375 if (ret < 0)
6376 goto out;
6377 }
6378
6379 ret = send_subvol_begin(sctx);
6380 if (ret < 0)
6381 goto out;
6382
6383 if (sctx->parent_root) {
6384 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
6385 changed_cb, sctx);
6386 if (ret < 0)
6387 goto out;
6388 ret = finish_inode_if_needed(sctx, 1);
6389 if (ret < 0)
6390 goto out;
6391 } else {
6392 ret = full_send_tree(sctx);
6393 if (ret < 0)
6394 goto out;
6395 }
6396
6397out:
6398 free_recorded_refs(sctx);
6399 return ret;
6400}
6401
6402/*
6403 * If orphan cleanup did remove any orphans from a root, it means the tree
6404 * was modified and therefore the commit root is not the same as the current
6405 * root anymore. This is a problem, because send uses the commit root and
6406 * therefore can see inode items that don't exist in the current root anymore,
6407 * and for example make calls to btrfs_iget, which will do tree lookups based
6408 * on the current root and not on the commit root. Those lookups will fail,
6409 * returning a -ESTALE error, and making send fail with that error. So make
6410 * sure a send does not see any orphans we have just removed, and that it will
6411 * see the same inodes regardless of whether a transaction commit happened
6412 * before it started (meaning that the commit root will be the same as the
6413 * current root) or not.
6414 */
6415static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
6416{
6417 int i;
6418 struct btrfs_trans_handle *trans = NULL;
6419
6420again:
6421 if (sctx->parent_root &&
6422 sctx->parent_root->node != sctx->parent_root->commit_root)
6423 goto commit_trans;
6424
6425 for (i = 0; i < sctx->clone_roots_cnt; i++)
6426 if (sctx->clone_roots[i].root->node !=
6427 sctx->clone_roots[i].root->commit_root)
6428 goto commit_trans;
6429
6430 if (trans)
6431 return btrfs_end_transaction(trans);
6432
6433 return 0;
6434
6435commit_trans:
6436 /* Use any root, all fs roots will get their commit roots updated. */
6437 if (!trans) {
6438 trans = btrfs_join_transaction(sctx->send_root);
6439 if (IS_ERR(trans))
6440 return PTR_ERR(trans);
6441 goto again;
6442 }
6443
6444 return btrfs_commit_transaction(trans);
6445}
6446
6447static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
6448{
6449 spin_lock(&root->root_item_lock);
6450 root->send_in_progress--;
6451 /*
6452 * Not much left to do, we don't know why it's unbalanced and
6453 * can't blindly reset it to 0.
6454 */
6455 if (root->send_in_progress < 0)
6456 btrfs_err(root->fs_info,
6457 "send_in_progres unbalanced %d root %llu",
6458 root->send_in_progress, root->root_key.objectid);
6459 spin_unlock(&root->root_item_lock);
6460}
6461
6462long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg)
6463{
6464 int ret = 0;
6465 struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root;
6466 struct btrfs_fs_info *fs_info = send_root->fs_info;
6467 struct btrfs_root *clone_root;
6468 struct btrfs_key key;
6469 struct send_ctx *sctx = NULL;
6470 u32 i;
6471 u64 *clone_sources_tmp = NULL;
6472 int clone_sources_to_rollback = 0;
6473 unsigned alloc_size;
6474 int sort_clone_roots = 0;
6475 int index;
6476
6477 if (!capable(CAP_SYS_ADMIN))
6478 return -EPERM;
6479
6480 /*
6481 * The subvolume must remain read-only during send, protect against
6482 * making it RW. This also protects against deletion.
6483 */
6484 spin_lock(&send_root->root_item_lock);
6485 send_root->send_in_progress++;
6486 spin_unlock(&send_root->root_item_lock);
6487
6488 /*
6489 * This is done when we lookup the root, it should already be complete
6490 * by the time we get here.
6491 */
6492 WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
6493
6494 /*
6495 * Userspace tools do the checks and warn the user if it's
6496 * not RO.
6497 */
6498 if (!btrfs_root_readonly(send_root)) {
6499 ret = -EPERM;
6500 goto out;
6501 }
6502
6503 /*
6504 * Check that we don't overflow at later allocations, we request
6505 * clone_sources_count + 1 items, and compare to unsigned long inside
6506 * access_ok.
6507 */
6508 if (arg->clone_sources_count >
6509 ULONG_MAX / sizeof(struct clone_root) - 1) {
6510 ret = -EINVAL;
6511 goto out;
6512 }
6513
6514 if (!access_ok(VERIFY_READ, arg->clone_sources,
6515 sizeof(*arg->clone_sources) *
6516 arg->clone_sources_count)) {
6517 ret = -EFAULT;
6518 goto out;
6519 }
6520
6521 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
6522 ret = -EINVAL;
6523 goto out;
6524 }
6525
6526 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
6527 if (!sctx) {
6528 ret = -ENOMEM;
6529 goto out;
6530 }
6531
6532 INIT_LIST_HEAD(&sctx->new_refs);
6533 INIT_LIST_HEAD(&sctx->deleted_refs);
6534 INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
6535 INIT_LIST_HEAD(&sctx->name_cache_list);
6536
6537 sctx->flags = arg->flags;
6538
6539 sctx->send_filp = fget(arg->send_fd);
6540 if (!sctx->send_filp) {
6541 ret = -EBADF;
6542 goto out;
6543 }
6544
6545 sctx->send_root = send_root;
6546 /*
6547 * Unlikely but possible, if the subvolume is marked for deletion but
6548 * is slow to remove the directory entry, send can still be started
6549 */
6550 if (btrfs_root_dead(sctx->send_root)) {
6551 ret = -EPERM;
6552 goto out;
6553 }
6554
6555 sctx->clone_roots_cnt = arg->clone_sources_count;
6556
6557 sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
6558 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
6559 if (!sctx->send_buf) {
6560 ret = -ENOMEM;
6561 goto out;
6562 }
6563
6564 sctx->read_buf = kvmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL);
6565 if (!sctx->read_buf) {
6566 ret = -ENOMEM;
6567 goto out;
6568 }
6569
6570 sctx->pending_dir_moves = RB_ROOT;
6571 sctx->waiting_dir_moves = RB_ROOT;
6572 sctx->orphan_dirs = RB_ROOT;
6573
6574 alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1);
6575
6576 sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL);
6577 if (!sctx->clone_roots) {
6578 ret = -ENOMEM;
6579 goto out;
6580 }
6581
6582 alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources);
6583
6584 if (arg->clone_sources_count) {
6585 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
6586 if (!clone_sources_tmp) {
6587 ret = -ENOMEM;
6588 goto out;
6589 }
6590
6591 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
6592 alloc_size);
6593 if (ret) {
6594 ret = -EFAULT;
6595 goto out;
6596 }
6597
6598 for (i = 0; i < arg->clone_sources_count; i++) {
6599 key.objectid = clone_sources_tmp[i];
6600 key.type = BTRFS_ROOT_ITEM_KEY;
6601 key.offset = (u64)-1;
6602
6603 index = srcu_read_lock(&fs_info->subvol_srcu);
6604
6605 clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
6606 if (IS_ERR(clone_root)) {
6607 srcu_read_unlock(&fs_info->subvol_srcu, index);
6608 ret = PTR_ERR(clone_root);
6609 goto out;
6610 }
6611 spin_lock(&clone_root->root_item_lock);
6612 if (!btrfs_root_readonly(clone_root) ||
6613 btrfs_root_dead(clone_root)) {
6614 spin_unlock(&clone_root->root_item_lock);
6615 srcu_read_unlock(&fs_info->subvol_srcu, index);
6616 ret = -EPERM;
6617 goto out;
6618 }
6619 clone_root->send_in_progress++;
6620 spin_unlock(&clone_root->root_item_lock);
6621 srcu_read_unlock(&fs_info->subvol_srcu, index);
6622
6623 sctx->clone_roots[i].root = clone_root;
6624 clone_sources_to_rollback = i + 1;
6625 }
6626 kvfree(clone_sources_tmp);
6627 clone_sources_tmp = NULL;
6628 }
6629
6630 if (arg->parent_root) {
6631 key.objectid = arg->parent_root;
6632 key.type = BTRFS_ROOT_ITEM_KEY;
6633 key.offset = (u64)-1;
6634
6635 index = srcu_read_lock(&fs_info->subvol_srcu);
6636
6637 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
6638 if (IS_ERR(sctx->parent_root)) {
6639 srcu_read_unlock(&fs_info->subvol_srcu, index);
6640 ret = PTR_ERR(sctx->parent_root);
6641 goto out;
6642 }
6643
6644 spin_lock(&sctx->parent_root->root_item_lock);
6645 sctx->parent_root->send_in_progress++;
6646 if (!btrfs_root_readonly(sctx->parent_root) ||
6647 btrfs_root_dead(sctx->parent_root)) {
6648 spin_unlock(&sctx->parent_root->root_item_lock);
6649 srcu_read_unlock(&fs_info->subvol_srcu, index);
6650 ret = -EPERM;
6651 goto out;
6652 }
6653 spin_unlock(&sctx->parent_root->root_item_lock);
6654
6655 srcu_read_unlock(&fs_info->subvol_srcu, index);
6656 }
6657
6658 /*
6659 * Clones from send_root are allowed, but only if the clone source
6660 * is behind the current send position. This is checked while searching
6661 * for possible clone sources.
6662 */
6663 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
6664
6665 /* We do a bsearch later */
6666 sort(sctx->clone_roots, sctx->clone_roots_cnt,
6667 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
6668 NULL);
6669 sort_clone_roots = 1;
6670
6671 ret = ensure_commit_roots_uptodate(sctx);
6672 if (ret)
6673 goto out;
6674
6675 current->journal_info = BTRFS_SEND_TRANS_STUB;
6676 ret = send_subvol(sctx);
6677 current->journal_info = NULL;
6678 if (ret < 0)
6679 goto out;
6680
6681 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
6682 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
6683 if (ret < 0)
6684 goto out;
6685 ret = send_cmd(sctx);
6686 if (ret < 0)
6687 goto out;
6688 }
6689
6690out:
6691 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
6692 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
6693 struct rb_node *n;
6694 struct pending_dir_move *pm;
6695
6696 n = rb_first(&sctx->pending_dir_moves);
6697 pm = rb_entry(n, struct pending_dir_move, node);
6698 while (!list_empty(&pm->list)) {
6699 struct pending_dir_move *pm2;
6700
6701 pm2 = list_first_entry(&pm->list,
6702 struct pending_dir_move, list);
6703 free_pending_move(sctx, pm2);
6704 }
6705 free_pending_move(sctx, pm);
6706 }
6707
6708 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
6709 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
6710 struct rb_node *n;
6711 struct waiting_dir_move *dm;
6712
6713 n = rb_first(&sctx->waiting_dir_moves);
6714 dm = rb_entry(n, struct waiting_dir_move, node);
6715 rb_erase(&dm->node, &sctx->waiting_dir_moves);
6716 kfree(dm);
6717 }
6718
6719 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
6720 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
6721 struct rb_node *n;
6722 struct orphan_dir_info *odi;
6723
6724 n = rb_first(&sctx->orphan_dirs);
6725 odi = rb_entry(n, struct orphan_dir_info, node);
6726 free_orphan_dir_info(sctx, odi);
6727 }
6728
6729 if (sort_clone_roots) {
6730 for (i = 0; i < sctx->clone_roots_cnt; i++)
6731 btrfs_root_dec_send_in_progress(
6732 sctx->clone_roots[i].root);
6733 } else {
6734 for (i = 0; sctx && i < clone_sources_to_rollback; i++)
6735 btrfs_root_dec_send_in_progress(
6736 sctx->clone_roots[i].root);
6737
6738 btrfs_root_dec_send_in_progress(send_root);
6739 }
6740 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
6741 btrfs_root_dec_send_in_progress(sctx->parent_root);
6742
6743 kvfree(clone_sources_tmp);
6744
6745 if (sctx) {
6746 if (sctx->send_filp)
6747 fput(sctx->send_filp);
6748
6749 kvfree(sctx->clone_roots);
6750 kvfree(sctx->send_buf);
6751 kvfree(sctx->read_buf);
6752
6753 name_cache_free(sctx);
6754
6755 kfree(sctx);
6756 }
6757
6758 return ret;
6759}