Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * pkey device driver
4 *
5 * Copyright IBM Corp. 2017,2019
6 * Author(s): Harald Freudenberger
7 */
8
9#define KMSG_COMPONENT "pkey"
10#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
11
12#include <linux/fs.h>
13#include <linux/init.h>
14#include <linux/miscdevice.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/kallsyms.h>
18#include <linux/debugfs.h>
19#include <linux/random.h>
20#include <linux/cpufeature.h>
21#include <asm/zcrypt.h>
22#include <asm/cpacf.h>
23#include <asm/pkey.h>
24#include <crypto/aes.h>
25
26#include "zcrypt_api.h"
27#include "zcrypt_ccamisc.h"
28#include "zcrypt_ep11misc.h"
29
30MODULE_LICENSE("GPL");
31MODULE_AUTHOR("IBM Corporation");
32MODULE_DESCRIPTION("s390 protected key interface");
33
34#define KEYBLOBBUFSIZE 8192 /* key buffer size used for internal processing */
35#define PROTKEYBLOBBUFSIZE 256 /* protected key buffer size used internal */
36#define MAXAPQNSINLIST 64 /* max 64 apqns within a apqn list */
37
38/*
39 * debug feature data and functions
40 */
41
42static debug_info_t *debug_info;
43
44#define DEBUG_DBG(...) debug_sprintf_event(debug_info, 6, ##__VA_ARGS__)
45#define DEBUG_INFO(...) debug_sprintf_event(debug_info, 5, ##__VA_ARGS__)
46#define DEBUG_WARN(...) debug_sprintf_event(debug_info, 4, ##__VA_ARGS__)
47#define DEBUG_ERR(...) debug_sprintf_event(debug_info, 3, ##__VA_ARGS__)
48
49static void __init pkey_debug_init(void)
50{
51 /* 5 arguments per dbf entry (including the format string ptr) */
52 debug_info = debug_register("pkey", 1, 1, 5 * sizeof(long));
53 debug_register_view(debug_info, &debug_sprintf_view);
54 debug_set_level(debug_info, 3);
55}
56
57static void __exit pkey_debug_exit(void)
58{
59 debug_unregister(debug_info);
60}
61
62/* inside view of a protected key token (only type 0x00 version 0x01) */
63struct protaeskeytoken {
64 u8 type; /* 0x00 for PAES specific key tokens */
65 u8 res0[3];
66 u8 version; /* should be 0x01 for protected AES key token */
67 u8 res1[3];
68 u32 keytype; /* key type, one of the PKEY_KEYTYPE values */
69 u32 len; /* bytes actually stored in protkey[] */
70 u8 protkey[MAXPROTKEYSIZE]; /* the protected key blob */
71} __packed;
72
73/* inside view of a clear key token (type 0x00 version 0x02) */
74struct clearaeskeytoken {
75 u8 type; /* 0x00 for PAES specific key tokens */
76 u8 res0[3];
77 u8 version; /* 0x02 for clear AES key token */
78 u8 res1[3];
79 u32 keytype; /* key type, one of the PKEY_KEYTYPE values */
80 u32 len; /* bytes actually stored in clearkey[] */
81 u8 clearkey[]; /* clear key value */
82} __packed;
83
84/*
85 * Create a protected key from a clear key value.
86 */
87static int pkey_clr2protkey(u32 keytype,
88 const struct pkey_clrkey *clrkey,
89 struct pkey_protkey *protkey)
90{
91 /* mask of available pckmo subfunctions */
92 static cpacf_mask_t pckmo_functions;
93
94 long fc;
95 int keysize;
96 u8 paramblock[64];
97
98 switch (keytype) {
99 case PKEY_KEYTYPE_AES_128:
100 keysize = 16;
101 fc = CPACF_PCKMO_ENC_AES_128_KEY;
102 break;
103 case PKEY_KEYTYPE_AES_192:
104 keysize = 24;
105 fc = CPACF_PCKMO_ENC_AES_192_KEY;
106 break;
107 case PKEY_KEYTYPE_AES_256:
108 keysize = 32;
109 fc = CPACF_PCKMO_ENC_AES_256_KEY;
110 break;
111 default:
112 DEBUG_ERR("%s unknown/unsupported keytype %d\n",
113 __func__, keytype);
114 return -EINVAL;
115 }
116
117 /* Did we already check for PCKMO ? */
118 if (!pckmo_functions.bytes[0]) {
119 /* no, so check now */
120 if (!cpacf_query(CPACF_PCKMO, &pckmo_functions))
121 return -ENODEV;
122 }
123 /* check for the pckmo subfunction we need now */
124 if (!cpacf_test_func(&pckmo_functions, fc)) {
125 DEBUG_ERR("%s pckmo functions not available\n", __func__);
126 return -ENODEV;
127 }
128
129 /* prepare param block */
130 memset(paramblock, 0, sizeof(paramblock));
131 memcpy(paramblock, clrkey->clrkey, keysize);
132
133 /* call the pckmo instruction */
134 cpacf_pckmo(fc, paramblock);
135
136 /* copy created protected key */
137 protkey->type = keytype;
138 protkey->len = keysize + 32;
139 memcpy(protkey->protkey, paramblock, keysize + 32);
140
141 return 0;
142}
143
144/*
145 * Find card and transform secure key into protected key.
146 */
147static int pkey_skey2pkey(const u8 *key, struct pkey_protkey *pkey)
148{
149 int rc, verify;
150 u16 cardnr, domain;
151 struct keytoken_header *hdr = (struct keytoken_header *)key;
152
153 zcrypt_wait_api_operational();
154
155 /*
156 * The cca_xxx2protkey call may fail when a card has been
157 * addressed where the master key was changed after last fetch
158 * of the mkvp into the cache. Try 3 times: First without verify
159 * then with verify and last round with verify and old master
160 * key verification pattern match not ignored.
161 */
162 for (verify = 0; verify < 3; verify++) {
163 rc = cca_findcard(key, &cardnr, &domain, verify);
164 if (rc < 0)
165 continue;
166 if (rc > 0 && verify < 2)
167 continue;
168 switch (hdr->version) {
169 case TOKVER_CCA_AES:
170 rc = cca_sec2protkey(cardnr, domain,
171 key, pkey->protkey,
172 &pkey->len, &pkey->type);
173 break;
174 case TOKVER_CCA_VLSC:
175 rc = cca_cipher2protkey(cardnr, domain,
176 key, pkey->protkey,
177 &pkey->len, &pkey->type);
178 break;
179 default:
180 return -EINVAL;
181 }
182 if (rc == 0)
183 break;
184 }
185
186 if (rc)
187 DEBUG_DBG("%s failed rc=%d\n", __func__, rc);
188
189 return rc;
190}
191
192/*
193 * Construct EP11 key with given clear key value.
194 */
195static int pkey_clr2ep11key(const u8 *clrkey, size_t clrkeylen,
196 u8 *keybuf, size_t *keybuflen)
197{
198 int i, rc;
199 u16 card, dom;
200 u32 nr_apqns, *apqns = NULL;
201
202 zcrypt_wait_api_operational();
203
204 /* build a list of apqns suitable for ep11 keys with cpacf support */
205 rc = ep11_findcard2(&apqns, &nr_apqns, 0xFFFF, 0xFFFF,
206 ZCRYPT_CEX7, EP11_API_V, NULL);
207 if (rc)
208 goto out;
209
210 /* go through the list of apqns and try to bild an ep11 key */
211 for (rc = -ENODEV, i = 0; i < nr_apqns; i++) {
212 card = apqns[i] >> 16;
213 dom = apqns[i] & 0xFFFF;
214 rc = ep11_clr2keyblob(card, dom, clrkeylen * 8,
215 0, clrkey, keybuf, keybuflen);
216 if (rc == 0)
217 break;
218 }
219
220out:
221 kfree(apqns);
222 if (rc)
223 DEBUG_DBG("%s failed rc=%d\n", __func__, rc);
224 return rc;
225}
226
227/*
228 * Find card and transform EP11 secure key into protected key.
229 */
230static int pkey_ep11key2pkey(const u8 *key, struct pkey_protkey *pkey)
231{
232 int i, rc;
233 u16 card, dom;
234 u32 nr_apqns, *apqns = NULL;
235 struct ep11keyblob *kb = (struct ep11keyblob *)key;
236
237 zcrypt_wait_api_operational();
238
239 /* build a list of apqns suitable for this key */
240 rc = ep11_findcard2(&apqns, &nr_apqns, 0xFFFF, 0xFFFF,
241 ZCRYPT_CEX7, EP11_API_V, kb->wkvp);
242 if (rc)
243 goto out;
244
245 /* go through the list of apqns and try to derive an pkey */
246 for (rc = -ENODEV, i = 0; i < nr_apqns; i++) {
247 card = apqns[i] >> 16;
248 dom = apqns[i] & 0xFFFF;
249 pkey->len = sizeof(pkey->protkey);
250 rc = ep11_kblob2protkey(card, dom, key, kb->head.len,
251 pkey->protkey, &pkey->len, &pkey->type);
252 if (rc == 0)
253 break;
254 }
255
256out:
257 kfree(apqns);
258 if (rc)
259 DEBUG_DBG("%s failed rc=%d\n", __func__, rc);
260 return rc;
261}
262
263/*
264 * Verify key and give back some info about the key.
265 */
266static int pkey_verifykey(const struct pkey_seckey *seckey,
267 u16 *pcardnr, u16 *pdomain,
268 u16 *pkeysize, u32 *pattributes)
269{
270 struct secaeskeytoken *t = (struct secaeskeytoken *)seckey;
271 u16 cardnr, domain;
272 int rc;
273
274 /* check the secure key for valid AES secure key */
275 rc = cca_check_secaeskeytoken(debug_info, 3, (u8 *)seckey, 0);
276 if (rc)
277 goto out;
278 if (pattributes)
279 *pattributes = PKEY_VERIFY_ATTR_AES;
280 if (pkeysize)
281 *pkeysize = t->bitsize;
282
283 /* try to find a card which can handle this key */
284 rc = cca_findcard(seckey->seckey, &cardnr, &domain, 1);
285 if (rc < 0)
286 goto out;
287
288 if (rc > 0) {
289 /* key mkvp matches to old master key mkvp */
290 DEBUG_DBG("%s secure key has old mkvp\n", __func__);
291 if (pattributes)
292 *pattributes |= PKEY_VERIFY_ATTR_OLD_MKVP;
293 rc = 0;
294 }
295
296 if (pcardnr)
297 *pcardnr = cardnr;
298 if (pdomain)
299 *pdomain = domain;
300
301out:
302 DEBUG_DBG("%s rc=%d\n", __func__, rc);
303 return rc;
304}
305
306/*
307 * Generate a random protected key
308 */
309static int pkey_genprotkey(u32 keytype, struct pkey_protkey *protkey)
310{
311 struct pkey_clrkey clrkey;
312 int keysize;
313 int rc;
314
315 switch (keytype) {
316 case PKEY_KEYTYPE_AES_128:
317 keysize = 16;
318 break;
319 case PKEY_KEYTYPE_AES_192:
320 keysize = 24;
321 break;
322 case PKEY_KEYTYPE_AES_256:
323 keysize = 32;
324 break;
325 default:
326 DEBUG_ERR("%s unknown/unsupported keytype %d\n", __func__,
327 keytype);
328 return -EINVAL;
329 }
330
331 /* generate a dummy random clear key */
332 get_random_bytes(clrkey.clrkey, keysize);
333
334 /* convert it to a dummy protected key */
335 rc = pkey_clr2protkey(keytype, &clrkey, protkey);
336 if (rc)
337 return rc;
338
339 /* replace the key part of the protected key with random bytes */
340 get_random_bytes(protkey->protkey, keysize);
341
342 return 0;
343}
344
345/*
346 * Verify if a protected key is still valid
347 */
348static int pkey_verifyprotkey(const struct pkey_protkey *protkey)
349{
350 unsigned long fc;
351 struct {
352 u8 iv[AES_BLOCK_SIZE];
353 u8 key[MAXPROTKEYSIZE];
354 } param;
355 u8 null_msg[AES_BLOCK_SIZE];
356 u8 dest_buf[AES_BLOCK_SIZE];
357 unsigned int k;
358
359 switch (protkey->type) {
360 case PKEY_KEYTYPE_AES_128:
361 fc = CPACF_KMC_PAES_128;
362 break;
363 case PKEY_KEYTYPE_AES_192:
364 fc = CPACF_KMC_PAES_192;
365 break;
366 case PKEY_KEYTYPE_AES_256:
367 fc = CPACF_KMC_PAES_256;
368 break;
369 default:
370 DEBUG_ERR("%s unknown/unsupported keytype %d\n", __func__,
371 protkey->type);
372 return -EINVAL;
373 }
374
375 memset(null_msg, 0, sizeof(null_msg));
376
377 memset(param.iv, 0, sizeof(param.iv));
378 memcpy(param.key, protkey->protkey, sizeof(param.key));
379
380 k = cpacf_kmc(fc | CPACF_ENCRYPT, ¶m, null_msg, dest_buf,
381 sizeof(null_msg));
382 if (k != sizeof(null_msg)) {
383 DEBUG_ERR("%s protected key is not valid\n", __func__);
384 return -EKEYREJECTED;
385 }
386
387 return 0;
388}
389
390/*
391 * Transform a non-CCA key token into a protected key
392 */
393static int pkey_nonccatok2pkey(const u8 *key, u32 keylen,
394 struct pkey_protkey *protkey)
395{
396 int rc = -EINVAL;
397 u8 *tmpbuf = NULL;
398 struct keytoken_header *hdr = (struct keytoken_header *)key;
399
400 switch (hdr->version) {
401 case TOKVER_PROTECTED_KEY: {
402 struct protaeskeytoken *t;
403
404 if (keylen != sizeof(struct protaeskeytoken))
405 goto out;
406 t = (struct protaeskeytoken *)key;
407 protkey->len = t->len;
408 protkey->type = t->keytype;
409 memcpy(protkey->protkey, t->protkey,
410 sizeof(protkey->protkey));
411 rc = pkey_verifyprotkey(protkey);
412 break;
413 }
414 case TOKVER_CLEAR_KEY: {
415 struct clearaeskeytoken *t;
416 struct pkey_clrkey ckey;
417 union u_tmpbuf {
418 u8 skey[SECKEYBLOBSIZE];
419 u8 ep11key[MAXEP11AESKEYBLOBSIZE];
420 };
421 size_t tmpbuflen = sizeof(union u_tmpbuf);
422
423 if (keylen < sizeof(struct clearaeskeytoken))
424 goto out;
425 t = (struct clearaeskeytoken *)key;
426 if (keylen != sizeof(*t) + t->len)
427 goto out;
428 if ((t->keytype == PKEY_KEYTYPE_AES_128 && t->len == 16) ||
429 (t->keytype == PKEY_KEYTYPE_AES_192 && t->len == 24) ||
430 (t->keytype == PKEY_KEYTYPE_AES_256 && t->len == 32))
431 memcpy(ckey.clrkey, t->clearkey, t->len);
432 else
433 goto out;
434 /* alloc temp key buffer space */
435 tmpbuf = kmalloc(tmpbuflen, GFP_ATOMIC);
436 if (!tmpbuf) {
437 rc = -ENOMEM;
438 goto out;
439 }
440 /* try direct way with the PCKMO instruction */
441 rc = pkey_clr2protkey(t->keytype, &ckey, protkey);
442 if (rc == 0)
443 break;
444 /* PCKMO failed, so try the CCA secure key way */
445 zcrypt_wait_api_operational();
446 rc = cca_clr2seckey(0xFFFF, 0xFFFF, t->keytype,
447 ckey.clrkey, tmpbuf);
448 if (rc == 0)
449 rc = pkey_skey2pkey(tmpbuf, protkey);
450 if (rc == 0)
451 break;
452 /* if the CCA way also failed, let's try via EP11 */
453 rc = pkey_clr2ep11key(ckey.clrkey, t->len,
454 tmpbuf, &tmpbuflen);
455 if (rc == 0)
456 rc = pkey_ep11key2pkey(tmpbuf, protkey);
457 /* now we should really have an protected key */
458 DEBUG_ERR("%s unable to build protected key from clear",
459 __func__);
460 break;
461 }
462 case TOKVER_EP11_AES: {
463 /* check ep11 key for exportable as protected key */
464 rc = ep11_check_aes_key(debug_info, 3, key, keylen, 1);
465 if (rc)
466 goto out;
467 rc = pkey_ep11key2pkey(key, protkey);
468 break;
469 }
470 case TOKVER_EP11_AES_WITH_HEADER:
471 /* check ep11 key with header for exportable as protected key */
472 rc = ep11_check_aes_key_with_hdr(debug_info, 3, key, keylen, 1);
473 if (rc)
474 goto out;
475 rc = pkey_ep11key2pkey(key + sizeof(struct ep11kblob_header),
476 protkey);
477 break;
478 default:
479 DEBUG_ERR("%s unknown/unsupported non-CCA token version %d\n",
480 __func__, hdr->version);
481 rc = -EINVAL;
482 }
483
484out:
485 kfree(tmpbuf);
486 return rc;
487}
488
489/*
490 * Transform a CCA internal key token into a protected key
491 */
492static int pkey_ccainttok2pkey(const u8 *key, u32 keylen,
493 struct pkey_protkey *protkey)
494{
495 struct keytoken_header *hdr = (struct keytoken_header *)key;
496
497 switch (hdr->version) {
498 case TOKVER_CCA_AES:
499 if (keylen != sizeof(struct secaeskeytoken))
500 return -EINVAL;
501 break;
502 case TOKVER_CCA_VLSC:
503 if (keylen < hdr->len || keylen > MAXCCAVLSCTOKENSIZE)
504 return -EINVAL;
505 break;
506 default:
507 DEBUG_ERR("%s unknown/unsupported CCA internal token version %d\n",
508 __func__, hdr->version);
509 return -EINVAL;
510 }
511
512 return pkey_skey2pkey(key, protkey);
513}
514
515/*
516 * Transform a key blob (of any type) into a protected key
517 */
518int pkey_keyblob2pkey(const u8 *key, u32 keylen,
519 struct pkey_protkey *protkey)
520{
521 int rc;
522 struct keytoken_header *hdr = (struct keytoken_header *)key;
523
524 if (keylen < sizeof(struct keytoken_header)) {
525 DEBUG_ERR("%s invalid keylen %d\n", __func__, keylen);
526 return -EINVAL;
527 }
528
529 switch (hdr->type) {
530 case TOKTYPE_NON_CCA:
531 rc = pkey_nonccatok2pkey(key, keylen, protkey);
532 break;
533 case TOKTYPE_CCA_INTERNAL:
534 rc = pkey_ccainttok2pkey(key, keylen, protkey);
535 break;
536 default:
537 DEBUG_ERR("%s unknown/unsupported blob type %d\n",
538 __func__, hdr->type);
539 return -EINVAL;
540 }
541
542 DEBUG_DBG("%s rc=%d\n", __func__, rc);
543 return rc;
544}
545EXPORT_SYMBOL(pkey_keyblob2pkey);
546
547static int pkey_genseckey2(const struct pkey_apqn *apqns, size_t nr_apqns,
548 enum pkey_key_type ktype, enum pkey_key_size ksize,
549 u32 kflags, u8 *keybuf, size_t *keybufsize)
550{
551 int i, card, dom, rc;
552
553 /* check for at least one apqn given */
554 if (!apqns || !nr_apqns)
555 return -EINVAL;
556
557 /* check key type and size */
558 switch (ktype) {
559 case PKEY_TYPE_CCA_DATA:
560 case PKEY_TYPE_CCA_CIPHER:
561 if (*keybufsize < SECKEYBLOBSIZE)
562 return -EINVAL;
563 break;
564 case PKEY_TYPE_EP11:
565 if (*keybufsize < MINEP11AESKEYBLOBSIZE)
566 return -EINVAL;
567 break;
568 default:
569 return -EINVAL;
570 }
571 switch (ksize) {
572 case PKEY_SIZE_AES_128:
573 case PKEY_SIZE_AES_192:
574 case PKEY_SIZE_AES_256:
575 break;
576 default:
577 return -EINVAL;
578 }
579
580 /* simple try all apqns from the list */
581 for (i = 0, rc = -ENODEV; i < nr_apqns; i++) {
582 card = apqns[i].card;
583 dom = apqns[i].domain;
584 if (ktype == PKEY_TYPE_EP11) {
585 rc = ep11_genaeskey(card, dom, ksize, kflags,
586 keybuf, keybufsize);
587 } else if (ktype == PKEY_TYPE_CCA_DATA) {
588 rc = cca_genseckey(card, dom, ksize, keybuf);
589 *keybufsize = (rc ? 0 : SECKEYBLOBSIZE);
590 } else {
591 /* TOKVER_CCA_VLSC */
592 rc = cca_gencipherkey(card, dom, ksize, kflags,
593 keybuf, keybufsize);
594 }
595 if (rc == 0)
596 break;
597 }
598
599 return rc;
600}
601
602static int pkey_clr2seckey2(const struct pkey_apqn *apqns, size_t nr_apqns,
603 enum pkey_key_type ktype, enum pkey_key_size ksize,
604 u32 kflags, const u8 *clrkey,
605 u8 *keybuf, size_t *keybufsize)
606{
607 int i, card, dom, rc;
608
609 /* check for at least one apqn given */
610 if (!apqns || !nr_apqns)
611 return -EINVAL;
612
613 /* check key type and size */
614 switch (ktype) {
615 case PKEY_TYPE_CCA_DATA:
616 case PKEY_TYPE_CCA_CIPHER:
617 if (*keybufsize < SECKEYBLOBSIZE)
618 return -EINVAL;
619 break;
620 case PKEY_TYPE_EP11:
621 if (*keybufsize < MINEP11AESKEYBLOBSIZE)
622 return -EINVAL;
623 break;
624 default:
625 return -EINVAL;
626 }
627 switch (ksize) {
628 case PKEY_SIZE_AES_128:
629 case PKEY_SIZE_AES_192:
630 case PKEY_SIZE_AES_256:
631 break;
632 default:
633 return -EINVAL;
634 }
635
636 zcrypt_wait_api_operational();
637
638 /* simple try all apqns from the list */
639 for (i = 0, rc = -ENODEV; i < nr_apqns; i++) {
640 card = apqns[i].card;
641 dom = apqns[i].domain;
642 if (ktype == PKEY_TYPE_EP11) {
643 rc = ep11_clr2keyblob(card, dom, ksize, kflags,
644 clrkey, keybuf, keybufsize);
645 } else if (ktype == PKEY_TYPE_CCA_DATA) {
646 rc = cca_clr2seckey(card, dom, ksize,
647 clrkey, keybuf);
648 *keybufsize = (rc ? 0 : SECKEYBLOBSIZE);
649 } else {
650 /* TOKVER_CCA_VLSC */
651 rc = cca_clr2cipherkey(card, dom, ksize, kflags,
652 clrkey, keybuf, keybufsize);
653 }
654 if (rc == 0)
655 break;
656 }
657
658 return rc;
659}
660
661static int pkey_verifykey2(const u8 *key, size_t keylen,
662 u16 *cardnr, u16 *domain,
663 enum pkey_key_type *ktype,
664 enum pkey_key_size *ksize, u32 *flags)
665{
666 int rc;
667 u32 _nr_apqns, *_apqns = NULL;
668 struct keytoken_header *hdr = (struct keytoken_header *)key;
669
670 if (keylen < sizeof(struct keytoken_header))
671 return -EINVAL;
672
673 if (hdr->type == TOKTYPE_CCA_INTERNAL &&
674 hdr->version == TOKVER_CCA_AES) {
675 struct secaeskeytoken *t = (struct secaeskeytoken *)key;
676
677 rc = cca_check_secaeskeytoken(debug_info, 3, key, 0);
678 if (rc)
679 goto out;
680 if (ktype)
681 *ktype = PKEY_TYPE_CCA_DATA;
682 if (ksize)
683 *ksize = (enum pkey_key_size)t->bitsize;
684
685 rc = cca_findcard2(&_apqns, &_nr_apqns, *cardnr, *domain,
686 ZCRYPT_CEX3C, AES_MK_SET, t->mkvp, 0, 1);
687 if (rc == 0 && flags)
688 *flags = PKEY_FLAGS_MATCH_CUR_MKVP;
689 if (rc == -ENODEV) {
690 rc = cca_findcard2(&_apqns, &_nr_apqns,
691 *cardnr, *domain,
692 ZCRYPT_CEX3C, AES_MK_SET,
693 0, t->mkvp, 1);
694 if (rc == 0 && flags)
695 *flags = PKEY_FLAGS_MATCH_ALT_MKVP;
696 }
697 if (rc)
698 goto out;
699
700 *cardnr = ((struct pkey_apqn *)_apqns)->card;
701 *domain = ((struct pkey_apqn *)_apqns)->domain;
702
703 } else if (hdr->type == TOKTYPE_CCA_INTERNAL &&
704 hdr->version == TOKVER_CCA_VLSC) {
705 struct cipherkeytoken *t = (struct cipherkeytoken *)key;
706
707 rc = cca_check_secaescipherkey(debug_info, 3, key, 0, 1);
708 if (rc)
709 goto out;
710 if (ktype)
711 *ktype = PKEY_TYPE_CCA_CIPHER;
712 if (ksize) {
713 *ksize = PKEY_SIZE_UNKNOWN;
714 if (!t->plfver && t->wpllen == 512)
715 *ksize = PKEY_SIZE_AES_128;
716 else if (!t->plfver && t->wpllen == 576)
717 *ksize = PKEY_SIZE_AES_192;
718 else if (!t->plfver && t->wpllen == 640)
719 *ksize = PKEY_SIZE_AES_256;
720 }
721
722 rc = cca_findcard2(&_apqns, &_nr_apqns, *cardnr, *domain,
723 ZCRYPT_CEX6, AES_MK_SET, t->mkvp0, 0, 1);
724 if (rc == 0 && flags)
725 *flags = PKEY_FLAGS_MATCH_CUR_MKVP;
726 if (rc == -ENODEV) {
727 rc = cca_findcard2(&_apqns, &_nr_apqns,
728 *cardnr, *domain,
729 ZCRYPT_CEX6, AES_MK_SET,
730 0, t->mkvp0, 1);
731 if (rc == 0 && flags)
732 *flags = PKEY_FLAGS_MATCH_ALT_MKVP;
733 }
734 if (rc)
735 goto out;
736
737 *cardnr = ((struct pkey_apqn *)_apqns)->card;
738 *domain = ((struct pkey_apqn *)_apqns)->domain;
739
740 } else if (hdr->type == TOKTYPE_NON_CCA &&
741 hdr->version == TOKVER_EP11_AES) {
742 struct ep11keyblob *kb = (struct ep11keyblob *)key;
743
744 rc = ep11_check_aes_key(debug_info, 3, key, keylen, 1);
745 if (rc)
746 goto out;
747 if (ktype)
748 *ktype = PKEY_TYPE_EP11;
749 if (ksize)
750 *ksize = kb->head.keybitlen;
751
752 rc = ep11_findcard2(&_apqns, &_nr_apqns, *cardnr, *domain,
753 ZCRYPT_CEX7, EP11_API_V, kb->wkvp);
754 if (rc)
755 goto out;
756
757 if (flags)
758 *flags = PKEY_FLAGS_MATCH_CUR_MKVP;
759
760 *cardnr = ((struct pkey_apqn *)_apqns)->card;
761 *domain = ((struct pkey_apqn *)_apqns)->domain;
762
763 } else {
764 rc = -EINVAL;
765 }
766
767out:
768 kfree(_apqns);
769 return rc;
770}
771
772static int pkey_keyblob2pkey2(const struct pkey_apqn *apqns, size_t nr_apqns,
773 const u8 *key, size_t keylen,
774 struct pkey_protkey *pkey)
775{
776 int i, card, dom, rc;
777 struct keytoken_header *hdr = (struct keytoken_header *)key;
778
779 /* check for at least one apqn given */
780 if (!apqns || !nr_apqns)
781 return -EINVAL;
782
783 if (keylen < sizeof(struct keytoken_header))
784 return -EINVAL;
785
786 if (hdr->type == TOKTYPE_CCA_INTERNAL) {
787 if (hdr->version == TOKVER_CCA_AES) {
788 if (keylen != sizeof(struct secaeskeytoken))
789 return -EINVAL;
790 if (cca_check_secaeskeytoken(debug_info, 3, key, 0))
791 return -EINVAL;
792 } else if (hdr->version == TOKVER_CCA_VLSC) {
793 if (keylen < hdr->len || keylen > MAXCCAVLSCTOKENSIZE)
794 return -EINVAL;
795 if (cca_check_secaescipherkey(debug_info, 3, key, 0, 1))
796 return -EINVAL;
797 } else {
798 DEBUG_ERR("%s unknown CCA internal token version %d\n",
799 __func__, hdr->version);
800 return -EINVAL;
801 }
802 } else if (hdr->type == TOKTYPE_NON_CCA) {
803 if (hdr->version == TOKVER_EP11_AES) {
804 if (keylen < sizeof(struct ep11keyblob))
805 return -EINVAL;
806 if (ep11_check_aes_key(debug_info, 3, key, keylen, 1))
807 return -EINVAL;
808 } else {
809 return pkey_nonccatok2pkey(key, keylen, pkey);
810 }
811 } else {
812 DEBUG_ERR("%s unknown/unsupported blob type %d\n",
813 __func__, hdr->type);
814 return -EINVAL;
815 }
816
817 zcrypt_wait_api_operational();
818
819 /* simple try all apqns from the list */
820 for (i = 0, rc = -ENODEV; i < nr_apqns; i++) {
821 card = apqns[i].card;
822 dom = apqns[i].domain;
823 if (hdr->type == TOKTYPE_CCA_INTERNAL &&
824 hdr->version == TOKVER_CCA_AES) {
825 rc = cca_sec2protkey(card, dom, key, pkey->protkey,
826 &pkey->len, &pkey->type);
827 } else if (hdr->type == TOKTYPE_CCA_INTERNAL &&
828 hdr->version == TOKVER_CCA_VLSC) {
829 rc = cca_cipher2protkey(card, dom, key, pkey->protkey,
830 &pkey->len, &pkey->type);
831 } else {
832 /* EP11 AES secure key blob */
833 struct ep11keyblob *kb = (struct ep11keyblob *)key;
834
835 pkey->len = sizeof(pkey->protkey);
836 rc = ep11_kblob2protkey(card, dom, key, kb->head.len,
837 pkey->protkey, &pkey->len,
838 &pkey->type);
839 }
840 if (rc == 0)
841 break;
842 }
843
844 return rc;
845}
846
847static int pkey_apqns4key(const u8 *key, size_t keylen, u32 flags,
848 struct pkey_apqn *apqns, size_t *nr_apqns)
849{
850 int rc;
851 u32 _nr_apqns, *_apqns = NULL;
852 struct keytoken_header *hdr = (struct keytoken_header *)key;
853
854 if (keylen < sizeof(struct keytoken_header) || flags == 0)
855 return -EINVAL;
856
857 zcrypt_wait_api_operational();
858
859 if (hdr->type == TOKTYPE_NON_CCA &&
860 (hdr->version == TOKVER_EP11_AES_WITH_HEADER ||
861 hdr->version == TOKVER_EP11_ECC_WITH_HEADER) &&
862 is_ep11_keyblob(key + sizeof(struct ep11kblob_header))) {
863 int minhwtype = 0, api = 0;
864 struct ep11keyblob *kb = (struct ep11keyblob *)
865 (key + sizeof(struct ep11kblob_header));
866
867 if (flags != PKEY_FLAGS_MATCH_CUR_MKVP)
868 return -EINVAL;
869 if (kb->attr & EP11_BLOB_PKEY_EXTRACTABLE) {
870 minhwtype = ZCRYPT_CEX7;
871 api = EP11_API_V;
872 }
873 rc = ep11_findcard2(&_apqns, &_nr_apqns, 0xFFFF, 0xFFFF,
874 minhwtype, api, kb->wkvp);
875 if (rc)
876 goto out;
877 } else if (hdr->type == TOKTYPE_NON_CCA &&
878 hdr->version == TOKVER_EP11_AES &&
879 is_ep11_keyblob(key)) {
880 int minhwtype = 0, api = 0;
881 struct ep11keyblob *kb = (struct ep11keyblob *)key;
882
883 if (flags != PKEY_FLAGS_MATCH_CUR_MKVP)
884 return -EINVAL;
885 if (kb->attr & EP11_BLOB_PKEY_EXTRACTABLE) {
886 minhwtype = ZCRYPT_CEX7;
887 api = EP11_API_V;
888 }
889 rc = ep11_findcard2(&_apqns, &_nr_apqns, 0xFFFF, 0xFFFF,
890 minhwtype, api, kb->wkvp);
891 if (rc)
892 goto out;
893 } else if (hdr->type == TOKTYPE_CCA_INTERNAL) {
894 int minhwtype = ZCRYPT_CEX3C;
895 u64 cur_mkvp = 0, old_mkvp = 0;
896
897 if (hdr->version == TOKVER_CCA_AES) {
898 struct secaeskeytoken *t = (struct secaeskeytoken *)key;
899
900 if (flags & PKEY_FLAGS_MATCH_CUR_MKVP)
901 cur_mkvp = t->mkvp;
902 if (flags & PKEY_FLAGS_MATCH_ALT_MKVP)
903 old_mkvp = t->mkvp;
904 } else if (hdr->version == TOKVER_CCA_VLSC) {
905 struct cipherkeytoken *t = (struct cipherkeytoken *)key;
906
907 minhwtype = ZCRYPT_CEX6;
908 if (flags & PKEY_FLAGS_MATCH_CUR_MKVP)
909 cur_mkvp = t->mkvp0;
910 if (flags & PKEY_FLAGS_MATCH_ALT_MKVP)
911 old_mkvp = t->mkvp0;
912 } else {
913 /* unknown cca internal token type */
914 return -EINVAL;
915 }
916 rc = cca_findcard2(&_apqns, &_nr_apqns, 0xFFFF, 0xFFFF,
917 minhwtype, AES_MK_SET,
918 cur_mkvp, old_mkvp, 1);
919 if (rc)
920 goto out;
921 } else if (hdr->type == TOKTYPE_CCA_INTERNAL_PKA) {
922 u64 cur_mkvp = 0, old_mkvp = 0;
923 struct eccprivkeytoken *t = (struct eccprivkeytoken *)key;
924
925 if (t->secid == 0x20) {
926 if (flags & PKEY_FLAGS_MATCH_CUR_MKVP)
927 cur_mkvp = t->mkvp;
928 if (flags & PKEY_FLAGS_MATCH_ALT_MKVP)
929 old_mkvp = t->mkvp;
930 } else {
931 /* unknown cca internal 2 token type */
932 return -EINVAL;
933 }
934 rc = cca_findcard2(&_apqns, &_nr_apqns, 0xFFFF, 0xFFFF,
935 ZCRYPT_CEX7, APKA_MK_SET,
936 cur_mkvp, old_mkvp, 1);
937 if (rc)
938 goto out;
939 } else {
940 return -EINVAL;
941 }
942
943 if (apqns) {
944 if (*nr_apqns < _nr_apqns)
945 rc = -ENOSPC;
946 else
947 memcpy(apqns, _apqns, _nr_apqns * sizeof(u32));
948 }
949 *nr_apqns = _nr_apqns;
950
951out:
952 kfree(_apqns);
953 return rc;
954}
955
956static int pkey_apqns4keytype(enum pkey_key_type ktype,
957 u8 cur_mkvp[32], u8 alt_mkvp[32], u32 flags,
958 struct pkey_apqn *apqns, size_t *nr_apqns)
959{
960 int rc;
961 u32 _nr_apqns, *_apqns = NULL;
962
963 zcrypt_wait_api_operational();
964
965 if (ktype == PKEY_TYPE_CCA_DATA || ktype == PKEY_TYPE_CCA_CIPHER) {
966 u64 cur_mkvp = 0, old_mkvp = 0;
967 int minhwtype = ZCRYPT_CEX3C;
968
969 if (flags & PKEY_FLAGS_MATCH_CUR_MKVP)
970 cur_mkvp = *((u64 *)cur_mkvp);
971 if (flags & PKEY_FLAGS_MATCH_ALT_MKVP)
972 old_mkvp = *((u64 *)alt_mkvp);
973 if (ktype == PKEY_TYPE_CCA_CIPHER)
974 minhwtype = ZCRYPT_CEX6;
975 rc = cca_findcard2(&_apqns, &_nr_apqns, 0xFFFF, 0xFFFF,
976 minhwtype, AES_MK_SET,
977 cur_mkvp, old_mkvp, 1);
978 if (rc)
979 goto out;
980 } else if (ktype == PKEY_TYPE_CCA_ECC) {
981 u64 cur_mkvp = 0, old_mkvp = 0;
982
983 if (flags & PKEY_FLAGS_MATCH_CUR_MKVP)
984 cur_mkvp = *((u64 *)cur_mkvp);
985 if (flags & PKEY_FLAGS_MATCH_ALT_MKVP)
986 old_mkvp = *((u64 *)alt_mkvp);
987 rc = cca_findcard2(&_apqns, &_nr_apqns, 0xFFFF, 0xFFFF,
988 ZCRYPT_CEX7, APKA_MK_SET,
989 cur_mkvp, old_mkvp, 1);
990 if (rc)
991 goto out;
992
993 } else if (ktype == PKEY_TYPE_EP11 ||
994 ktype == PKEY_TYPE_EP11_AES ||
995 ktype == PKEY_TYPE_EP11_ECC) {
996 u8 *wkvp = NULL;
997
998 if (flags & PKEY_FLAGS_MATCH_CUR_MKVP)
999 wkvp = cur_mkvp;
1000 rc = ep11_findcard2(&_apqns, &_nr_apqns, 0xFFFF, 0xFFFF,
1001 ZCRYPT_CEX7, EP11_API_V, wkvp);
1002 if (rc)
1003 goto out;
1004
1005 } else {
1006 return -EINVAL;
1007 }
1008
1009 if (apqns) {
1010 if (*nr_apqns < _nr_apqns)
1011 rc = -ENOSPC;
1012 else
1013 memcpy(apqns, _apqns, _nr_apqns * sizeof(u32));
1014 }
1015 *nr_apqns = _nr_apqns;
1016
1017out:
1018 kfree(_apqns);
1019 return rc;
1020}
1021
1022static int pkey_keyblob2pkey3(const struct pkey_apqn *apqns, size_t nr_apqns,
1023 const u8 *key, size_t keylen, u32 *protkeytype,
1024 u8 *protkey, u32 *protkeylen)
1025{
1026 int i, card, dom, rc;
1027 struct keytoken_header *hdr = (struct keytoken_header *)key;
1028
1029 /* check for at least one apqn given */
1030 if (!apqns || !nr_apqns)
1031 return -EINVAL;
1032
1033 if (keylen < sizeof(struct keytoken_header))
1034 return -EINVAL;
1035
1036 if (hdr->type == TOKTYPE_NON_CCA &&
1037 hdr->version == TOKVER_EP11_AES_WITH_HEADER &&
1038 is_ep11_keyblob(key + sizeof(struct ep11kblob_header))) {
1039 /* EP11 AES key blob with header */
1040 if (ep11_check_aes_key_with_hdr(debug_info, 3, key, keylen, 1))
1041 return -EINVAL;
1042 } else if (hdr->type == TOKTYPE_NON_CCA &&
1043 hdr->version == TOKVER_EP11_ECC_WITH_HEADER &&
1044 is_ep11_keyblob(key + sizeof(struct ep11kblob_header))) {
1045 /* EP11 ECC key blob with header */
1046 if (ep11_check_ecc_key_with_hdr(debug_info, 3, key, keylen, 1))
1047 return -EINVAL;
1048 } else if (hdr->type == TOKTYPE_NON_CCA &&
1049 hdr->version == TOKVER_EP11_AES &&
1050 is_ep11_keyblob(key)) {
1051 /* EP11 AES key blob with header in session field */
1052 if (ep11_check_aes_key(debug_info, 3, key, keylen, 1))
1053 return -EINVAL;
1054 } else if (hdr->type == TOKTYPE_CCA_INTERNAL) {
1055 if (hdr->version == TOKVER_CCA_AES) {
1056 /* CCA AES data key */
1057 if (keylen != sizeof(struct secaeskeytoken))
1058 return -EINVAL;
1059 if (cca_check_secaeskeytoken(debug_info, 3, key, 0))
1060 return -EINVAL;
1061 } else if (hdr->version == TOKVER_CCA_VLSC) {
1062 /* CCA AES cipher key */
1063 if (keylen < hdr->len || keylen > MAXCCAVLSCTOKENSIZE)
1064 return -EINVAL;
1065 if (cca_check_secaescipherkey(debug_info, 3, key, 0, 1))
1066 return -EINVAL;
1067 } else {
1068 DEBUG_ERR("%s unknown CCA internal token version %d\n",
1069 __func__, hdr->version);
1070 return -EINVAL;
1071 }
1072 } else if (hdr->type == TOKTYPE_CCA_INTERNAL_PKA) {
1073 /* CCA ECC (private) key */
1074 if (keylen < sizeof(struct eccprivkeytoken))
1075 return -EINVAL;
1076 if (cca_check_sececckeytoken(debug_info, 3, key, keylen, 1))
1077 return -EINVAL;
1078 } else if (hdr->type == TOKTYPE_NON_CCA) {
1079 struct pkey_protkey pkey;
1080
1081 rc = pkey_nonccatok2pkey(key, keylen, &pkey);
1082 if (rc)
1083 return rc;
1084 memcpy(protkey, pkey.protkey, pkey.len);
1085 *protkeylen = pkey.len;
1086 *protkeytype = pkey.type;
1087 return 0;
1088 } else {
1089 DEBUG_ERR("%s unknown/unsupported blob type %d\n",
1090 __func__, hdr->type);
1091 return -EINVAL;
1092 }
1093
1094 /* simple try all apqns from the list */
1095 for (rc = -ENODEV, i = 0; rc && i < nr_apqns; i++) {
1096 card = apqns[i].card;
1097 dom = apqns[i].domain;
1098 if (hdr->type == TOKTYPE_NON_CCA &&
1099 (hdr->version == TOKVER_EP11_AES_WITH_HEADER ||
1100 hdr->version == TOKVER_EP11_ECC_WITH_HEADER) &&
1101 is_ep11_keyblob(key + sizeof(struct ep11kblob_header)))
1102 rc = ep11_kblob2protkey(card, dom, key, hdr->len,
1103 protkey, protkeylen, protkeytype);
1104 else if (hdr->type == TOKTYPE_NON_CCA &&
1105 hdr->version == TOKVER_EP11_AES &&
1106 is_ep11_keyblob(key))
1107 rc = ep11_kblob2protkey(card, dom, key, hdr->len,
1108 protkey, protkeylen, protkeytype);
1109 else if (hdr->type == TOKTYPE_CCA_INTERNAL &&
1110 hdr->version == TOKVER_CCA_AES)
1111 rc = cca_sec2protkey(card, dom, key, protkey,
1112 protkeylen, protkeytype);
1113 else if (hdr->type == TOKTYPE_CCA_INTERNAL &&
1114 hdr->version == TOKVER_CCA_VLSC)
1115 rc = cca_cipher2protkey(card, dom, key, protkey,
1116 protkeylen, protkeytype);
1117 else if (hdr->type == TOKTYPE_CCA_INTERNAL_PKA)
1118 rc = cca_ecc2protkey(card, dom, key, protkey,
1119 protkeylen, protkeytype);
1120 else
1121 return -EINVAL;
1122 }
1123
1124 return rc;
1125}
1126
1127/*
1128 * File io functions
1129 */
1130
1131static void *_copy_key_from_user(void __user *ukey, size_t keylen)
1132{
1133 if (!ukey || keylen < MINKEYBLOBSIZE || keylen > KEYBLOBBUFSIZE)
1134 return ERR_PTR(-EINVAL);
1135
1136 return memdup_user(ukey, keylen);
1137}
1138
1139static void *_copy_apqns_from_user(void __user *uapqns, size_t nr_apqns)
1140{
1141 if (!uapqns || nr_apqns == 0)
1142 return NULL;
1143
1144 return memdup_user(uapqns, nr_apqns * sizeof(struct pkey_apqn));
1145}
1146
1147static long pkey_unlocked_ioctl(struct file *filp, unsigned int cmd,
1148 unsigned long arg)
1149{
1150 int rc;
1151
1152 switch (cmd) {
1153 case PKEY_GENSECK: {
1154 struct pkey_genseck __user *ugs = (void __user *)arg;
1155 struct pkey_genseck kgs;
1156
1157 if (copy_from_user(&kgs, ugs, sizeof(kgs)))
1158 return -EFAULT;
1159 rc = cca_genseckey(kgs.cardnr, kgs.domain,
1160 kgs.keytype, kgs.seckey.seckey);
1161 DEBUG_DBG("%s cca_genseckey()=%d\n", __func__, rc);
1162 if (rc)
1163 break;
1164 if (copy_to_user(ugs, &kgs, sizeof(kgs)))
1165 return -EFAULT;
1166 break;
1167 }
1168 case PKEY_CLR2SECK: {
1169 struct pkey_clr2seck __user *ucs = (void __user *)arg;
1170 struct pkey_clr2seck kcs;
1171
1172 if (copy_from_user(&kcs, ucs, sizeof(kcs)))
1173 return -EFAULT;
1174 rc = cca_clr2seckey(kcs.cardnr, kcs.domain, kcs.keytype,
1175 kcs.clrkey.clrkey, kcs.seckey.seckey);
1176 DEBUG_DBG("%s cca_clr2seckey()=%d\n", __func__, rc);
1177 if (rc)
1178 break;
1179 if (copy_to_user(ucs, &kcs, sizeof(kcs)))
1180 return -EFAULT;
1181 memzero_explicit(&kcs, sizeof(kcs));
1182 break;
1183 }
1184 case PKEY_SEC2PROTK: {
1185 struct pkey_sec2protk __user *usp = (void __user *)arg;
1186 struct pkey_sec2protk ksp;
1187
1188 if (copy_from_user(&ksp, usp, sizeof(ksp)))
1189 return -EFAULT;
1190 rc = cca_sec2protkey(ksp.cardnr, ksp.domain,
1191 ksp.seckey.seckey, ksp.protkey.protkey,
1192 &ksp.protkey.len, &ksp.protkey.type);
1193 DEBUG_DBG("%s cca_sec2protkey()=%d\n", __func__, rc);
1194 if (rc)
1195 break;
1196 if (copy_to_user(usp, &ksp, sizeof(ksp)))
1197 return -EFAULT;
1198 break;
1199 }
1200 case PKEY_CLR2PROTK: {
1201 struct pkey_clr2protk __user *ucp = (void __user *)arg;
1202 struct pkey_clr2protk kcp;
1203
1204 if (copy_from_user(&kcp, ucp, sizeof(kcp)))
1205 return -EFAULT;
1206 rc = pkey_clr2protkey(kcp.keytype,
1207 &kcp.clrkey, &kcp.protkey);
1208 DEBUG_DBG("%s pkey_clr2protkey()=%d\n", __func__, rc);
1209 if (rc)
1210 break;
1211 if (copy_to_user(ucp, &kcp, sizeof(kcp)))
1212 return -EFAULT;
1213 memzero_explicit(&kcp, sizeof(kcp));
1214 break;
1215 }
1216 case PKEY_FINDCARD: {
1217 struct pkey_findcard __user *ufc = (void __user *)arg;
1218 struct pkey_findcard kfc;
1219
1220 if (copy_from_user(&kfc, ufc, sizeof(kfc)))
1221 return -EFAULT;
1222 rc = cca_findcard(kfc.seckey.seckey,
1223 &kfc.cardnr, &kfc.domain, 1);
1224 DEBUG_DBG("%s cca_findcard()=%d\n", __func__, rc);
1225 if (rc < 0)
1226 break;
1227 if (copy_to_user(ufc, &kfc, sizeof(kfc)))
1228 return -EFAULT;
1229 break;
1230 }
1231 case PKEY_SKEY2PKEY: {
1232 struct pkey_skey2pkey __user *usp = (void __user *)arg;
1233 struct pkey_skey2pkey ksp;
1234
1235 if (copy_from_user(&ksp, usp, sizeof(ksp)))
1236 return -EFAULT;
1237 rc = pkey_skey2pkey(ksp.seckey.seckey, &ksp.protkey);
1238 DEBUG_DBG("%s pkey_skey2pkey()=%d\n", __func__, rc);
1239 if (rc)
1240 break;
1241 if (copy_to_user(usp, &ksp, sizeof(ksp)))
1242 return -EFAULT;
1243 break;
1244 }
1245 case PKEY_VERIFYKEY: {
1246 struct pkey_verifykey __user *uvk = (void __user *)arg;
1247 struct pkey_verifykey kvk;
1248
1249 if (copy_from_user(&kvk, uvk, sizeof(kvk)))
1250 return -EFAULT;
1251 rc = pkey_verifykey(&kvk.seckey, &kvk.cardnr, &kvk.domain,
1252 &kvk.keysize, &kvk.attributes);
1253 DEBUG_DBG("%s pkey_verifykey()=%d\n", __func__, rc);
1254 if (rc)
1255 break;
1256 if (copy_to_user(uvk, &kvk, sizeof(kvk)))
1257 return -EFAULT;
1258 break;
1259 }
1260 case PKEY_GENPROTK: {
1261 struct pkey_genprotk __user *ugp = (void __user *)arg;
1262 struct pkey_genprotk kgp;
1263
1264 if (copy_from_user(&kgp, ugp, sizeof(kgp)))
1265 return -EFAULT;
1266 rc = pkey_genprotkey(kgp.keytype, &kgp.protkey);
1267 DEBUG_DBG("%s pkey_genprotkey()=%d\n", __func__, rc);
1268 if (rc)
1269 break;
1270 if (copy_to_user(ugp, &kgp, sizeof(kgp)))
1271 return -EFAULT;
1272 break;
1273 }
1274 case PKEY_VERIFYPROTK: {
1275 struct pkey_verifyprotk __user *uvp = (void __user *)arg;
1276 struct pkey_verifyprotk kvp;
1277
1278 if (copy_from_user(&kvp, uvp, sizeof(kvp)))
1279 return -EFAULT;
1280 rc = pkey_verifyprotkey(&kvp.protkey);
1281 DEBUG_DBG("%s pkey_verifyprotkey()=%d\n", __func__, rc);
1282 break;
1283 }
1284 case PKEY_KBLOB2PROTK: {
1285 struct pkey_kblob2pkey __user *utp = (void __user *)arg;
1286 struct pkey_kblob2pkey ktp;
1287 u8 *kkey;
1288
1289 if (copy_from_user(&ktp, utp, sizeof(ktp)))
1290 return -EFAULT;
1291 kkey = _copy_key_from_user(ktp.key, ktp.keylen);
1292 if (IS_ERR(kkey))
1293 return PTR_ERR(kkey);
1294 rc = pkey_keyblob2pkey(kkey, ktp.keylen, &ktp.protkey);
1295 DEBUG_DBG("%s pkey_keyblob2pkey()=%d\n", __func__, rc);
1296 kfree(kkey);
1297 if (rc)
1298 break;
1299 if (copy_to_user(utp, &ktp, sizeof(ktp)))
1300 return -EFAULT;
1301 break;
1302 }
1303 case PKEY_GENSECK2: {
1304 struct pkey_genseck2 __user *ugs = (void __user *)arg;
1305 struct pkey_genseck2 kgs;
1306 struct pkey_apqn *apqns;
1307 size_t klen = KEYBLOBBUFSIZE;
1308 u8 *kkey;
1309
1310 if (copy_from_user(&kgs, ugs, sizeof(kgs)))
1311 return -EFAULT;
1312 apqns = _copy_apqns_from_user(kgs.apqns, kgs.apqn_entries);
1313 if (IS_ERR(apqns))
1314 return PTR_ERR(apqns);
1315 kkey = kmalloc(klen, GFP_KERNEL);
1316 if (!kkey) {
1317 kfree(apqns);
1318 return -ENOMEM;
1319 }
1320 rc = pkey_genseckey2(apqns, kgs.apqn_entries,
1321 kgs.type, kgs.size, kgs.keygenflags,
1322 kkey, &klen);
1323 DEBUG_DBG("%s pkey_genseckey2()=%d\n", __func__, rc);
1324 kfree(apqns);
1325 if (rc) {
1326 kfree(kkey);
1327 break;
1328 }
1329 if (kgs.key) {
1330 if (kgs.keylen < klen) {
1331 kfree(kkey);
1332 return -EINVAL;
1333 }
1334 if (copy_to_user(kgs.key, kkey, klen)) {
1335 kfree(kkey);
1336 return -EFAULT;
1337 }
1338 }
1339 kgs.keylen = klen;
1340 if (copy_to_user(ugs, &kgs, sizeof(kgs)))
1341 rc = -EFAULT;
1342 kfree(kkey);
1343 break;
1344 }
1345 case PKEY_CLR2SECK2: {
1346 struct pkey_clr2seck2 __user *ucs = (void __user *)arg;
1347 struct pkey_clr2seck2 kcs;
1348 struct pkey_apqn *apqns;
1349 size_t klen = KEYBLOBBUFSIZE;
1350 u8 *kkey;
1351
1352 if (copy_from_user(&kcs, ucs, sizeof(kcs)))
1353 return -EFAULT;
1354 apqns = _copy_apqns_from_user(kcs.apqns, kcs.apqn_entries);
1355 if (IS_ERR(apqns))
1356 return PTR_ERR(apqns);
1357 kkey = kmalloc(klen, GFP_KERNEL);
1358 if (!kkey) {
1359 kfree(apqns);
1360 return -ENOMEM;
1361 }
1362 rc = pkey_clr2seckey2(apqns, kcs.apqn_entries,
1363 kcs.type, kcs.size, kcs.keygenflags,
1364 kcs.clrkey.clrkey, kkey, &klen);
1365 DEBUG_DBG("%s pkey_clr2seckey2()=%d\n", __func__, rc);
1366 kfree(apqns);
1367 if (rc) {
1368 kfree(kkey);
1369 break;
1370 }
1371 if (kcs.key) {
1372 if (kcs.keylen < klen) {
1373 kfree(kkey);
1374 return -EINVAL;
1375 }
1376 if (copy_to_user(kcs.key, kkey, klen)) {
1377 kfree(kkey);
1378 return -EFAULT;
1379 }
1380 }
1381 kcs.keylen = klen;
1382 if (copy_to_user(ucs, &kcs, sizeof(kcs)))
1383 rc = -EFAULT;
1384 memzero_explicit(&kcs, sizeof(kcs));
1385 kfree(kkey);
1386 break;
1387 }
1388 case PKEY_VERIFYKEY2: {
1389 struct pkey_verifykey2 __user *uvk = (void __user *)arg;
1390 struct pkey_verifykey2 kvk;
1391 u8 *kkey;
1392
1393 if (copy_from_user(&kvk, uvk, sizeof(kvk)))
1394 return -EFAULT;
1395 kkey = _copy_key_from_user(kvk.key, kvk.keylen);
1396 if (IS_ERR(kkey))
1397 return PTR_ERR(kkey);
1398 rc = pkey_verifykey2(kkey, kvk.keylen,
1399 &kvk.cardnr, &kvk.domain,
1400 &kvk.type, &kvk.size, &kvk.flags);
1401 DEBUG_DBG("%s pkey_verifykey2()=%d\n", __func__, rc);
1402 kfree(kkey);
1403 if (rc)
1404 break;
1405 if (copy_to_user(uvk, &kvk, sizeof(kvk)))
1406 return -EFAULT;
1407 break;
1408 }
1409 case PKEY_KBLOB2PROTK2: {
1410 struct pkey_kblob2pkey2 __user *utp = (void __user *)arg;
1411 struct pkey_kblob2pkey2 ktp;
1412 struct pkey_apqn *apqns = NULL;
1413 u8 *kkey;
1414
1415 if (copy_from_user(&ktp, utp, sizeof(ktp)))
1416 return -EFAULT;
1417 apqns = _copy_apqns_from_user(ktp.apqns, ktp.apqn_entries);
1418 if (IS_ERR(apqns))
1419 return PTR_ERR(apqns);
1420 kkey = _copy_key_from_user(ktp.key, ktp.keylen);
1421 if (IS_ERR(kkey)) {
1422 kfree(apqns);
1423 return PTR_ERR(kkey);
1424 }
1425 rc = pkey_keyblob2pkey2(apqns, ktp.apqn_entries,
1426 kkey, ktp.keylen, &ktp.protkey);
1427 DEBUG_DBG("%s pkey_keyblob2pkey2()=%d\n", __func__, rc);
1428 kfree(apqns);
1429 kfree(kkey);
1430 if (rc)
1431 break;
1432 if (copy_to_user(utp, &ktp, sizeof(ktp)))
1433 return -EFAULT;
1434 break;
1435 }
1436 case PKEY_APQNS4K: {
1437 struct pkey_apqns4key __user *uak = (void __user *)arg;
1438 struct pkey_apqns4key kak;
1439 struct pkey_apqn *apqns = NULL;
1440 size_t nr_apqns, len;
1441 u8 *kkey;
1442
1443 if (copy_from_user(&kak, uak, sizeof(kak)))
1444 return -EFAULT;
1445 nr_apqns = kak.apqn_entries;
1446 if (nr_apqns) {
1447 apqns = kmalloc_array(nr_apqns,
1448 sizeof(struct pkey_apqn),
1449 GFP_KERNEL);
1450 if (!apqns)
1451 return -ENOMEM;
1452 }
1453 kkey = _copy_key_from_user(kak.key, kak.keylen);
1454 if (IS_ERR(kkey)) {
1455 kfree(apqns);
1456 return PTR_ERR(kkey);
1457 }
1458 rc = pkey_apqns4key(kkey, kak.keylen, kak.flags,
1459 apqns, &nr_apqns);
1460 DEBUG_DBG("%s pkey_apqns4key()=%d\n", __func__, rc);
1461 kfree(kkey);
1462 if (rc && rc != -ENOSPC) {
1463 kfree(apqns);
1464 break;
1465 }
1466 if (!rc && kak.apqns) {
1467 if (nr_apqns > kak.apqn_entries) {
1468 kfree(apqns);
1469 return -EINVAL;
1470 }
1471 len = nr_apqns * sizeof(struct pkey_apqn);
1472 if (len) {
1473 if (copy_to_user(kak.apqns, apqns, len)) {
1474 kfree(apqns);
1475 return -EFAULT;
1476 }
1477 }
1478 }
1479 kak.apqn_entries = nr_apqns;
1480 if (copy_to_user(uak, &kak, sizeof(kak)))
1481 rc = -EFAULT;
1482 kfree(apqns);
1483 break;
1484 }
1485 case PKEY_APQNS4KT: {
1486 struct pkey_apqns4keytype __user *uat = (void __user *)arg;
1487 struct pkey_apqns4keytype kat;
1488 struct pkey_apqn *apqns = NULL;
1489 size_t nr_apqns, len;
1490
1491 if (copy_from_user(&kat, uat, sizeof(kat)))
1492 return -EFAULT;
1493 nr_apqns = kat.apqn_entries;
1494 if (nr_apqns) {
1495 apqns = kmalloc_array(nr_apqns,
1496 sizeof(struct pkey_apqn),
1497 GFP_KERNEL);
1498 if (!apqns)
1499 return -ENOMEM;
1500 }
1501 rc = pkey_apqns4keytype(kat.type, kat.cur_mkvp, kat.alt_mkvp,
1502 kat.flags, apqns, &nr_apqns);
1503 DEBUG_DBG("%s pkey_apqns4keytype()=%d\n", __func__, rc);
1504 if (rc && rc != -ENOSPC) {
1505 kfree(apqns);
1506 break;
1507 }
1508 if (!rc && kat.apqns) {
1509 if (nr_apqns > kat.apqn_entries) {
1510 kfree(apqns);
1511 return -EINVAL;
1512 }
1513 len = nr_apqns * sizeof(struct pkey_apqn);
1514 if (len) {
1515 if (copy_to_user(kat.apqns, apqns, len)) {
1516 kfree(apqns);
1517 return -EFAULT;
1518 }
1519 }
1520 }
1521 kat.apqn_entries = nr_apqns;
1522 if (copy_to_user(uat, &kat, sizeof(kat)))
1523 rc = -EFAULT;
1524 kfree(apqns);
1525 break;
1526 }
1527 case PKEY_KBLOB2PROTK3: {
1528 struct pkey_kblob2pkey3 __user *utp = (void __user *)arg;
1529 struct pkey_kblob2pkey3 ktp;
1530 struct pkey_apqn *apqns = NULL;
1531 u32 protkeylen = PROTKEYBLOBBUFSIZE;
1532 u8 *kkey, *protkey;
1533
1534 if (copy_from_user(&ktp, utp, sizeof(ktp)))
1535 return -EFAULT;
1536 apqns = _copy_apqns_from_user(ktp.apqns, ktp.apqn_entries);
1537 if (IS_ERR(apqns))
1538 return PTR_ERR(apqns);
1539 kkey = _copy_key_from_user(ktp.key, ktp.keylen);
1540 if (IS_ERR(kkey)) {
1541 kfree(apqns);
1542 return PTR_ERR(kkey);
1543 }
1544 protkey = kmalloc(protkeylen, GFP_KERNEL);
1545 if (!protkey) {
1546 kfree(apqns);
1547 kfree(kkey);
1548 return -ENOMEM;
1549 }
1550 rc = pkey_keyblob2pkey3(apqns, ktp.apqn_entries, kkey,
1551 ktp.keylen, &ktp.pkeytype,
1552 protkey, &protkeylen);
1553 DEBUG_DBG("%s pkey_keyblob2pkey3()=%d\n", __func__, rc);
1554 kfree(apqns);
1555 kfree(kkey);
1556 if (rc) {
1557 kfree(protkey);
1558 break;
1559 }
1560 if (ktp.pkey && ktp.pkeylen) {
1561 if (protkeylen > ktp.pkeylen) {
1562 kfree(protkey);
1563 return -EINVAL;
1564 }
1565 if (copy_to_user(ktp.pkey, protkey, protkeylen)) {
1566 kfree(protkey);
1567 return -EFAULT;
1568 }
1569 }
1570 kfree(protkey);
1571 ktp.pkeylen = protkeylen;
1572 if (copy_to_user(utp, &ktp, sizeof(ktp)))
1573 return -EFAULT;
1574 break;
1575 }
1576 default:
1577 /* unknown/unsupported ioctl cmd */
1578 return -ENOTTY;
1579 }
1580
1581 return rc;
1582}
1583
1584/*
1585 * Sysfs and file io operations
1586 */
1587
1588/*
1589 * Sysfs attribute read function for all protected key binary attributes.
1590 * The implementation can not deal with partial reads, because a new random
1591 * protected key blob is generated with each read. In case of partial reads
1592 * (i.e. off != 0 or count < key blob size) -EINVAL is returned.
1593 */
1594static ssize_t pkey_protkey_aes_attr_read(u32 keytype, bool is_xts, char *buf,
1595 loff_t off, size_t count)
1596{
1597 struct protaeskeytoken protkeytoken;
1598 struct pkey_protkey protkey;
1599 int rc;
1600
1601 if (off != 0 || count < sizeof(protkeytoken))
1602 return -EINVAL;
1603 if (is_xts)
1604 if (count < 2 * sizeof(protkeytoken))
1605 return -EINVAL;
1606
1607 memset(&protkeytoken, 0, sizeof(protkeytoken));
1608 protkeytoken.type = TOKTYPE_NON_CCA;
1609 protkeytoken.version = TOKVER_PROTECTED_KEY;
1610 protkeytoken.keytype = keytype;
1611
1612 rc = pkey_genprotkey(protkeytoken.keytype, &protkey);
1613 if (rc)
1614 return rc;
1615
1616 protkeytoken.len = protkey.len;
1617 memcpy(&protkeytoken.protkey, &protkey.protkey, protkey.len);
1618
1619 memcpy(buf, &protkeytoken, sizeof(protkeytoken));
1620
1621 if (is_xts) {
1622 rc = pkey_genprotkey(protkeytoken.keytype, &protkey);
1623 if (rc)
1624 return rc;
1625
1626 protkeytoken.len = protkey.len;
1627 memcpy(&protkeytoken.protkey, &protkey.protkey, protkey.len);
1628
1629 memcpy(buf + sizeof(protkeytoken), &protkeytoken,
1630 sizeof(protkeytoken));
1631
1632 return 2 * sizeof(protkeytoken);
1633 }
1634
1635 return sizeof(protkeytoken);
1636}
1637
1638static ssize_t protkey_aes_128_read(struct file *filp,
1639 struct kobject *kobj,
1640 struct bin_attribute *attr,
1641 char *buf, loff_t off,
1642 size_t count)
1643{
1644 return pkey_protkey_aes_attr_read(PKEY_KEYTYPE_AES_128, false, buf,
1645 off, count);
1646}
1647
1648static ssize_t protkey_aes_192_read(struct file *filp,
1649 struct kobject *kobj,
1650 struct bin_attribute *attr,
1651 char *buf, loff_t off,
1652 size_t count)
1653{
1654 return pkey_protkey_aes_attr_read(PKEY_KEYTYPE_AES_192, false, buf,
1655 off, count);
1656}
1657
1658static ssize_t protkey_aes_256_read(struct file *filp,
1659 struct kobject *kobj,
1660 struct bin_attribute *attr,
1661 char *buf, loff_t off,
1662 size_t count)
1663{
1664 return pkey_protkey_aes_attr_read(PKEY_KEYTYPE_AES_256, false, buf,
1665 off, count);
1666}
1667
1668static ssize_t protkey_aes_128_xts_read(struct file *filp,
1669 struct kobject *kobj,
1670 struct bin_attribute *attr,
1671 char *buf, loff_t off,
1672 size_t count)
1673{
1674 return pkey_protkey_aes_attr_read(PKEY_KEYTYPE_AES_128, true, buf,
1675 off, count);
1676}
1677
1678static ssize_t protkey_aes_256_xts_read(struct file *filp,
1679 struct kobject *kobj,
1680 struct bin_attribute *attr,
1681 char *buf, loff_t off,
1682 size_t count)
1683{
1684 return pkey_protkey_aes_attr_read(PKEY_KEYTYPE_AES_256, true, buf,
1685 off, count);
1686}
1687
1688static BIN_ATTR_RO(protkey_aes_128, sizeof(struct protaeskeytoken));
1689static BIN_ATTR_RO(protkey_aes_192, sizeof(struct protaeskeytoken));
1690static BIN_ATTR_RO(protkey_aes_256, sizeof(struct protaeskeytoken));
1691static BIN_ATTR_RO(protkey_aes_128_xts, 2 * sizeof(struct protaeskeytoken));
1692static BIN_ATTR_RO(protkey_aes_256_xts, 2 * sizeof(struct protaeskeytoken));
1693
1694static struct bin_attribute *protkey_attrs[] = {
1695 &bin_attr_protkey_aes_128,
1696 &bin_attr_protkey_aes_192,
1697 &bin_attr_protkey_aes_256,
1698 &bin_attr_protkey_aes_128_xts,
1699 &bin_attr_protkey_aes_256_xts,
1700 NULL
1701};
1702
1703static struct attribute_group protkey_attr_group = {
1704 .name = "protkey",
1705 .bin_attrs = protkey_attrs,
1706};
1707
1708/*
1709 * Sysfs attribute read function for all secure key ccadata binary attributes.
1710 * The implementation can not deal with partial reads, because a new random
1711 * protected key blob is generated with each read. In case of partial reads
1712 * (i.e. off != 0 or count < key blob size) -EINVAL is returned.
1713 */
1714static ssize_t pkey_ccadata_aes_attr_read(u32 keytype, bool is_xts, char *buf,
1715 loff_t off, size_t count)
1716{
1717 int rc;
1718 struct pkey_seckey *seckey = (struct pkey_seckey *)buf;
1719
1720 if (off != 0 || count < sizeof(struct secaeskeytoken))
1721 return -EINVAL;
1722 if (is_xts)
1723 if (count < 2 * sizeof(struct secaeskeytoken))
1724 return -EINVAL;
1725
1726 rc = cca_genseckey(-1, -1, keytype, seckey->seckey);
1727 if (rc)
1728 return rc;
1729
1730 if (is_xts) {
1731 seckey++;
1732 rc = cca_genseckey(-1, -1, keytype, seckey->seckey);
1733 if (rc)
1734 return rc;
1735
1736 return 2 * sizeof(struct secaeskeytoken);
1737 }
1738
1739 return sizeof(struct secaeskeytoken);
1740}
1741
1742static ssize_t ccadata_aes_128_read(struct file *filp,
1743 struct kobject *kobj,
1744 struct bin_attribute *attr,
1745 char *buf, loff_t off,
1746 size_t count)
1747{
1748 return pkey_ccadata_aes_attr_read(PKEY_KEYTYPE_AES_128, false, buf,
1749 off, count);
1750}
1751
1752static ssize_t ccadata_aes_192_read(struct file *filp,
1753 struct kobject *kobj,
1754 struct bin_attribute *attr,
1755 char *buf, loff_t off,
1756 size_t count)
1757{
1758 return pkey_ccadata_aes_attr_read(PKEY_KEYTYPE_AES_192, false, buf,
1759 off, count);
1760}
1761
1762static ssize_t ccadata_aes_256_read(struct file *filp,
1763 struct kobject *kobj,
1764 struct bin_attribute *attr,
1765 char *buf, loff_t off,
1766 size_t count)
1767{
1768 return pkey_ccadata_aes_attr_read(PKEY_KEYTYPE_AES_256, false, buf,
1769 off, count);
1770}
1771
1772static ssize_t ccadata_aes_128_xts_read(struct file *filp,
1773 struct kobject *kobj,
1774 struct bin_attribute *attr,
1775 char *buf, loff_t off,
1776 size_t count)
1777{
1778 return pkey_ccadata_aes_attr_read(PKEY_KEYTYPE_AES_128, true, buf,
1779 off, count);
1780}
1781
1782static ssize_t ccadata_aes_256_xts_read(struct file *filp,
1783 struct kobject *kobj,
1784 struct bin_attribute *attr,
1785 char *buf, loff_t off,
1786 size_t count)
1787{
1788 return pkey_ccadata_aes_attr_read(PKEY_KEYTYPE_AES_256, true, buf,
1789 off, count);
1790}
1791
1792static BIN_ATTR_RO(ccadata_aes_128, sizeof(struct secaeskeytoken));
1793static BIN_ATTR_RO(ccadata_aes_192, sizeof(struct secaeskeytoken));
1794static BIN_ATTR_RO(ccadata_aes_256, sizeof(struct secaeskeytoken));
1795static BIN_ATTR_RO(ccadata_aes_128_xts, 2 * sizeof(struct secaeskeytoken));
1796static BIN_ATTR_RO(ccadata_aes_256_xts, 2 * sizeof(struct secaeskeytoken));
1797
1798static struct bin_attribute *ccadata_attrs[] = {
1799 &bin_attr_ccadata_aes_128,
1800 &bin_attr_ccadata_aes_192,
1801 &bin_attr_ccadata_aes_256,
1802 &bin_attr_ccadata_aes_128_xts,
1803 &bin_attr_ccadata_aes_256_xts,
1804 NULL
1805};
1806
1807static struct attribute_group ccadata_attr_group = {
1808 .name = "ccadata",
1809 .bin_attrs = ccadata_attrs,
1810};
1811
1812#define CCACIPHERTOKENSIZE (sizeof(struct cipherkeytoken) + 80)
1813
1814/*
1815 * Sysfs attribute read function for all secure key ccacipher binary attributes.
1816 * The implementation can not deal with partial reads, because a new random
1817 * secure key blob is generated with each read. In case of partial reads
1818 * (i.e. off != 0 or count < key blob size) -EINVAL is returned.
1819 */
1820static ssize_t pkey_ccacipher_aes_attr_read(enum pkey_key_size keybits,
1821 bool is_xts, char *buf, loff_t off,
1822 size_t count)
1823{
1824 int i, rc, card, dom;
1825 u32 nr_apqns, *apqns = NULL;
1826 size_t keysize = CCACIPHERTOKENSIZE;
1827
1828 if (off != 0 || count < CCACIPHERTOKENSIZE)
1829 return -EINVAL;
1830 if (is_xts)
1831 if (count < 2 * CCACIPHERTOKENSIZE)
1832 return -EINVAL;
1833
1834 /* build a list of apqns able to generate an cipher key */
1835 rc = cca_findcard2(&apqns, &nr_apqns, 0xFFFF, 0xFFFF,
1836 ZCRYPT_CEX6, 0, 0, 0, 0);
1837 if (rc)
1838 return rc;
1839
1840 memset(buf, 0, is_xts ? 2 * keysize : keysize);
1841
1842 /* simple try all apqns from the list */
1843 for (i = 0, rc = -ENODEV; i < nr_apqns; i++) {
1844 card = apqns[i] >> 16;
1845 dom = apqns[i] & 0xFFFF;
1846 rc = cca_gencipherkey(card, dom, keybits, 0, buf, &keysize);
1847 if (rc == 0)
1848 break;
1849 }
1850 if (rc)
1851 return rc;
1852
1853 if (is_xts) {
1854 keysize = CCACIPHERTOKENSIZE;
1855 buf += CCACIPHERTOKENSIZE;
1856 rc = cca_gencipherkey(card, dom, keybits, 0, buf, &keysize);
1857 if (rc == 0)
1858 return 2 * CCACIPHERTOKENSIZE;
1859 }
1860
1861 return CCACIPHERTOKENSIZE;
1862}
1863
1864static ssize_t ccacipher_aes_128_read(struct file *filp,
1865 struct kobject *kobj,
1866 struct bin_attribute *attr,
1867 char *buf, loff_t off,
1868 size_t count)
1869{
1870 return pkey_ccacipher_aes_attr_read(PKEY_SIZE_AES_128, false, buf,
1871 off, count);
1872}
1873
1874static ssize_t ccacipher_aes_192_read(struct file *filp,
1875 struct kobject *kobj,
1876 struct bin_attribute *attr,
1877 char *buf, loff_t off,
1878 size_t count)
1879{
1880 return pkey_ccacipher_aes_attr_read(PKEY_SIZE_AES_192, false, buf,
1881 off, count);
1882}
1883
1884static ssize_t ccacipher_aes_256_read(struct file *filp,
1885 struct kobject *kobj,
1886 struct bin_attribute *attr,
1887 char *buf, loff_t off,
1888 size_t count)
1889{
1890 return pkey_ccacipher_aes_attr_read(PKEY_SIZE_AES_256, false, buf,
1891 off, count);
1892}
1893
1894static ssize_t ccacipher_aes_128_xts_read(struct file *filp,
1895 struct kobject *kobj,
1896 struct bin_attribute *attr,
1897 char *buf, loff_t off,
1898 size_t count)
1899{
1900 return pkey_ccacipher_aes_attr_read(PKEY_SIZE_AES_128, true, buf,
1901 off, count);
1902}
1903
1904static ssize_t ccacipher_aes_256_xts_read(struct file *filp,
1905 struct kobject *kobj,
1906 struct bin_attribute *attr,
1907 char *buf, loff_t off,
1908 size_t count)
1909{
1910 return pkey_ccacipher_aes_attr_read(PKEY_SIZE_AES_256, true, buf,
1911 off, count);
1912}
1913
1914static BIN_ATTR_RO(ccacipher_aes_128, CCACIPHERTOKENSIZE);
1915static BIN_ATTR_RO(ccacipher_aes_192, CCACIPHERTOKENSIZE);
1916static BIN_ATTR_RO(ccacipher_aes_256, CCACIPHERTOKENSIZE);
1917static BIN_ATTR_RO(ccacipher_aes_128_xts, 2 * CCACIPHERTOKENSIZE);
1918static BIN_ATTR_RO(ccacipher_aes_256_xts, 2 * CCACIPHERTOKENSIZE);
1919
1920static struct bin_attribute *ccacipher_attrs[] = {
1921 &bin_attr_ccacipher_aes_128,
1922 &bin_attr_ccacipher_aes_192,
1923 &bin_attr_ccacipher_aes_256,
1924 &bin_attr_ccacipher_aes_128_xts,
1925 &bin_attr_ccacipher_aes_256_xts,
1926 NULL
1927};
1928
1929static struct attribute_group ccacipher_attr_group = {
1930 .name = "ccacipher",
1931 .bin_attrs = ccacipher_attrs,
1932};
1933
1934/*
1935 * Sysfs attribute read function for all ep11 aes key binary attributes.
1936 * The implementation can not deal with partial reads, because a new random
1937 * secure key blob is generated with each read. In case of partial reads
1938 * (i.e. off != 0 or count < key blob size) -EINVAL is returned.
1939 * This function and the sysfs attributes using it provide EP11 key blobs
1940 * padded to the upper limit of MAXEP11AESKEYBLOBSIZE which is currently
1941 * 320 bytes.
1942 */
1943static ssize_t pkey_ep11_aes_attr_read(enum pkey_key_size keybits,
1944 bool is_xts, char *buf, loff_t off,
1945 size_t count)
1946{
1947 int i, rc, card, dom;
1948 u32 nr_apqns, *apqns = NULL;
1949 size_t keysize = MAXEP11AESKEYBLOBSIZE;
1950
1951 if (off != 0 || count < MAXEP11AESKEYBLOBSIZE)
1952 return -EINVAL;
1953 if (is_xts)
1954 if (count < 2 * MAXEP11AESKEYBLOBSIZE)
1955 return -EINVAL;
1956
1957 /* build a list of apqns able to generate an cipher key */
1958 rc = ep11_findcard2(&apqns, &nr_apqns, 0xFFFF, 0xFFFF,
1959 ZCRYPT_CEX7, EP11_API_V, NULL);
1960 if (rc)
1961 return rc;
1962
1963 memset(buf, 0, is_xts ? 2 * keysize : keysize);
1964
1965 /* simple try all apqns from the list */
1966 for (i = 0, rc = -ENODEV; i < nr_apqns; i++) {
1967 card = apqns[i] >> 16;
1968 dom = apqns[i] & 0xFFFF;
1969 rc = ep11_genaeskey(card, dom, keybits, 0, buf, &keysize);
1970 if (rc == 0)
1971 break;
1972 }
1973 if (rc)
1974 return rc;
1975
1976 if (is_xts) {
1977 keysize = MAXEP11AESKEYBLOBSIZE;
1978 buf += MAXEP11AESKEYBLOBSIZE;
1979 rc = ep11_genaeskey(card, dom, keybits, 0, buf, &keysize);
1980 if (rc == 0)
1981 return 2 * MAXEP11AESKEYBLOBSIZE;
1982 }
1983
1984 return MAXEP11AESKEYBLOBSIZE;
1985}
1986
1987static ssize_t ep11_aes_128_read(struct file *filp,
1988 struct kobject *kobj,
1989 struct bin_attribute *attr,
1990 char *buf, loff_t off,
1991 size_t count)
1992{
1993 return pkey_ep11_aes_attr_read(PKEY_SIZE_AES_128, false, buf,
1994 off, count);
1995}
1996
1997static ssize_t ep11_aes_192_read(struct file *filp,
1998 struct kobject *kobj,
1999 struct bin_attribute *attr,
2000 char *buf, loff_t off,
2001 size_t count)
2002{
2003 return pkey_ep11_aes_attr_read(PKEY_SIZE_AES_192, false, buf,
2004 off, count);
2005}
2006
2007static ssize_t ep11_aes_256_read(struct file *filp,
2008 struct kobject *kobj,
2009 struct bin_attribute *attr,
2010 char *buf, loff_t off,
2011 size_t count)
2012{
2013 return pkey_ep11_aes_attr_read(PKEY_SIZE_AES_256, false, buf,
2014 off, count);
2015}
2016
2017static ssize_t ep11_aes_128_xts_read(struct file *filp,
2018 struct kobject *kobj,
2019 struct bin_attribute *attr,
2020 char *buf, loff_t off,
2021 size_t count)
2022{
2023 return pkey_ep11_aes_attr_read(PKEY_SIZE_AES_128, true, buf,
2024 off, count);
2025}
2026
2027static ssize_t ep11_aes_256_xts_read(struct file *filp,
2028 struct kobject *kobj,
2029 struct bin_attribute *attr,
2030 char *buf, loff_t off,
2031 size_t count)
2032{
2033 return pkey_ep11_aes_attr_read(PKEY_SIZE_AES_256, true, buf,
2034 off, count);
2035}
2036
2037static BIN_ATTR_RO(ep11_aes_128, MAXEP11AESKEYBLOBSIZE);
2038static BIN_ATTR_RO(ep11_aes_192, MAXEP11AESKEYBLOBSIZE);
2039static BIN_ATTR_RO(ep11_aes_256, MAXEP11AESKEYBLOBSIZE);
2040static BIN_ATTR_RO(ep11_aes_128_xts, 2 * MAXEP11AESKEYBLOBSIZE);
2041static BIN_ATTR_RO(ep11_aes_256_xts, 2 * MAXEP11AESKEYBLOBSIZE);
2042
2043static struct bin_attribute *ep11_attrs[] = {
2044 &bin_attr_ep11_aes_128,
2045 &bin_attr_ep11_aes_192,
2046 &bin_attr_ep11_aes_256,
2047 &bin_attr_ep11_aes_128_xts,
2048 &bin_attr_ep11_aes_256_xts,
2049 NULL
2050};
2051
2052static struct attribute_group ep11_attr_group = {
2053 .name = "ep11",
2054 .bin_attrs = ep11_attrs,
2055};
2056
2057static const struct attribute_group *pkey_attr_groups[] = {
2058 &protkey_attr_group,
2059 &ccadata_attr_group,
2060 &ccacipher_attr_group,
2061 &ep11_attr_group,
2062 NULL,
2063};
2064
2065static const struct file_operations pkey_fops = {
2066 .owner = THIS_MODULE,
2067 .open = nonseekable_open,
2068 .llseek = no_llseek,
2069 .unlocked_ioctl = pkey_unlocked_ioctl,
2070};
2071
2072static struct miscdevice pkey_dev = {
2073 .name = "pkey",
2074 .minor = MISC_DYNAMIC_MINOR,
2075 .mode = 0666,
2076 .fops = &pkey_fops,
2077 .groups = pkey_attr_groups,
2078};
2079
2080/*
2081 * Module init
2082 */
2083static int __init pkey_init(void)
2084{
2085 cpacf_mask_t func_mask;
2086
2087 /*
2088 * The pckmo instruction should be available - even if we don't
2089 * actually invoke it. This instruction comes with MSA 3 which
2090 * is also the minimum level for the kmc instructions which
2091 * are able to work with protected keys.
2092 */
2093 if (!cpacf_query(CPACF_PCKMO, &func_mask))
2094 return -ENODEV;
2095
2096 /* check for kmc instructions available */
2097 if (!cpacf_query(CPACF_KMC, &func_mask))
2098 return -ENODEV;
2099 if (!cpacf_test_func(&func_mask, CPACF_KMC_PAES_128) ||
2100 !cpacf_test_func(&func_mask, CPACF_KMC_PAES_192) ||
2101 !cpacf_test_func(&func_mask, CPACF_KMC_PAES_256))
2102 return -ENODEV;
2103
2104 pkey_debug_init();
2105
2106 return misc_register(&pkey_dev);
2107}
2108
2109/*
2110 * Module exit
2111 */
2112static void __exit pkey_exit(void)
2113{
2114 misc_deregister(&pkey_dev);
2115 pkey_debug_exit();
2116}
2117
2118module_cpu_feature_match(S390_CPU_FEATURE_MSA, pkey_init);
2119module_exit(pkey_exit);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * pkey device driver
4 *
5 * Copyright IBM Corp. 2017
6 * Author(s): Harald Freudenberger
7 */
8
9#define KMSG_COMPONENT "pkey"
10#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
11
12#include <linux/fs.h>
13#include <linux/init.h>
14#include <linux/miscdevice.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/kallsyms.h>
18#include <linux/debugfs.h>
19#include <asm/zcrypt.h>
20#include <asm/cpacf.h>
21#include <asm/pkey.h>
22
23#include "zcrypt_api.h"
24
25MODULE_LICENSE("GPL");
26MODULE_AUTHOR("IBM Corporation");
27MODULE_DESCRIPTION("s390 protected key interface");
28
29/* Size of parameter block used for all cca requests/replies */
30#define PARMBSIZE 512
31
32/* Size of vardata block used for some of the cca requests/replies */
33#define VARDATASIZE 4096
34
35/*
36 * debug feature data and functions
37 */
38
39static debug_info_t *debug_info;
40
41#define DEBUG_DBG(...) debug_sprintf_event(debug_info, 6, ##__VA_ARGS__)
42#define DEBUG_INFO(...) debug_sprintf_event(debug_info, 5, ##__VA_ARGS__)
43#define DEBUG_WARN(...) debug_sprintf_event(debug_info, 4, ##__VA_ARGS__)
44#define DEBUG_ERR(...) debug_sprintf_event(debug_info, 3, ##__VA_ARGS__)
45
46static void __init pkey_debug_init(void)
47{
48 debug_info = debug_register("pkey", 1, 1, 4 * sizeof(long));
49 debug_register_view(debug_info, &debug_sprintf_view);
50 debug_set_level(debug_info, 3);
51}
52
53static void __exit pkey_debug_exit(void)
54{
55 debug_unregister(debug_info);
56}
57
58/* inside view of a secure key token (only type 0x01 version 0x04) */
59struct secaeskeytoken {
60 u8 type; /* 0x01 for internal key token */
61 u8 res0[3];
62 u8 version; /* should be 0x04 */
63 u8 res1[1];
64 u8 flag; /* key flags */
65 u8 res2[1];
66 u64 mkvp; /* master key verification pattern */
67 u8 key[32]; /* key value (encrypted) */
68 u8 cv[8]; /* control vector */
69 u16 bitsize; /* key bit size */
70 u16 keysize; /* key byte size */
71 u8 tvv[4]; /* token validation value */
72} __packed;
73
74/*
75 * Simple check if the token is a valid CCA secure AES key
76 * token. If keybitsize is given, the bitsize of the key is
77 * also checked. Returns 0 on success or errno value on failure.
78 */
79static int check_secaeskeytoken(const u8 *token, int keybitsize)
80{
81 struct secaeskeytoken *t = (struct secaeskeytoken *) token;
82
83 if (t->type != 0x01) {
84 DEBUG_ERR(
85 "check_secaeskeytoken secure token check failed, type mismatch 0x%02x != 0x01\n",
86 (int) t->type);
87 return -EINVAL;
88 }
89 if (t->version != 0x04) {
90 DEBUG_ERR(
91 "check_secaeskeytoken secure token check failed, version mismatch 0x%02x != 0x04\n",
92 (int) t->version);
93 return -EINVAL;
94 }
95 if (keybitsize > 0 && t->bitsize != keybitsize) {
96 DEBUG_ERR(
97 "check_secaeskeytoken secure token check failed, bitsize mismatch %d != %d\n",
98 (int) t->bitsize, keybitsize);
99 return -EINVAL;
100 }
101
102 return 0;
103}
104
105/*
106 * Allocate consecutive memory for request CPRB, request param
107 * block, reply CPRB and reply param block and fill in values
108 * for the common fields. Returns 0 on success or errno value
109 * on failure.
110 */
111static int alloc_and_prep_cprbmem(size_t paramblen,
112 u8 **pcprbmem,
113 struct CPRBX **preqCPRB,
114 struct CPRBX **prepCPRB)
115{
116 u8 *cprbmem;
117 size_t cprbplusparamblen = sizeof(struct CPRBX) + paramblen;
118 struct CPRBX *preqcblk, *prepcblk;
119
120 /*
121 * allocate consecutive memory for request CPRB, request param
122 * block, reply CPRB and reply param block
123 */
124 cprbmem = kzalloc(2 * cprbplusparamblen, GFP_KERNEL);
125 if (!cprbmem)
126 return -ENOMEM;
127
128 preqcblk = (struct CPRBX *) cprbmem;
129 prepcblk = (struct CPRBX *) (cprbmem + cprbplusparamblen);
130
131 /* fill request cprb struct */
132 preqcblk->cprb_len = sizeof(struct CPRBX);
133 preqcblk->cprb_ver_id = 0x02;
134 memcpy(preqcblk->func_id, "T2", 2);
135 preqcblk->rpl_msgbl = cprbplusparamblen;
136 if (paramblen) {
137 preqcblk->req_parmb =
138 ((u8 *) preqcblk) + sizeof(struct CPRBX);
139 preqcblk->rpl_parmb =
140 ((u8 *) prepcblk) + sizeof(struct CPRBX);
141 }
142
143 *pcprbmem = cprbmem;
144 *preqCPRB = preqcblk;
145 *prepCPRB = prepcblk;
146
147 return 0;
148}
149
150/*
151 * Free the cprb memory allocated with the function above.
152 * If the scrub value is not zero, the memory is filled
153 * with zeros before freeing (useful if there was some
154 * clear key material in there).
155 */
156static void free_cprbmem(void *mem, size_t paramblen, int scrub)
157{
158 if (scrub)
159 memzero_explicit(mem, 2 * (sizeof(struct CPRBX) + paramblen));
160 kfree(mem);
161}
162
163/*
164 * Helper function to prepare the xcrb struct
165 */
166static inline void prep_xcrb(struct ica_xcRB *pxcrb,
167 u16 cardnr,
168 struct CPRBX *preqcblk,
169 struct CPRBX *prepcblk)
170{
171 memset(pxcrb, 0, sizeof(*pxcrb));
172 pxcrb->agent_ID = 0x4341; /* 'CA' */
173 pxcrb->user_defined = (cardnr == 0xFFFF ? AUTOSELECT : cardnr);
174 pxcrb->request_control_blk_length =
175 preqcblk->cprb_len + preqcblk->req_parml;
176 pxcrb->request_control_blk_addr = (void __user *) preqcblk;
177 pxcrb->reply_control_blk_length = preqcblk->rpl_msgbl;
178 pxcrb->reply_control_blk_addr = (void __user *) prepcblk;
179}
180
181/*
182 * Helper function which calls zcrypt_send_cprb with
183 * memory management segment adjusted to kernel space
184 * so that the copy_from_user called within this
185 * function do in fact copy from kernel space.
186 */
187static inline int _zcrypt_send_cprb(struct ica_xcRB *xcrb)
188{
189 int rc;
190 mm_segment_t old_fs = get_fs();
191
192 set_fs(KERNEL_DS);
193 rc = zcrypt_send_cprb(xcrb);
194 set_fs(old_fs);
195
196 return rc;
197}
198
199/*
200 * Generate (random) AES secure key.
201 */
202int pkey_genseckey(u16 cardnr, u16 domain,
203 u32 keytype, struct pkey_seckey *seckey)
204{
205 int i, rc, keysize;
206 int seckeysize;
207 u8 *mem;
208 struct CPRBX *preqcblk, *prepcblk;
209 struct ica_xcRB xcrb;
210 struct kgreqparm {
211 u8 subfunc_code[2];
212 u16 rule_array_len;
213 struct lv1 {
214 u16 len;
215 char key_form[8];
216 char key_length[8];
217 char key_type1[8];
218 char key_type2[8];
219 } lv1;
220 struct lv2 {
221 u16 len;
222 struct keyid {
223 u16 len;
224 u16 attr;
225 u8 data[SECKEYBLOBSIZE];
226 } keyid[6];
227 } lv2;
228 } *preqparm;
229 struct kgrepparm {
230 u8 subfunc_code[2];
231 u16 rule_array_len;
232 struct lv3 {
233 u16 len;
234 u16 keyblocklen;
235 struct {
236 u16 toklen;
237 u16 tokattr;
238 u8 tok[0];
239 /* ... some more data ... */
240 } keyblock;
241 } lv3;
242 } *prepparm;
243
244 /* get already prepared memory for 2 cprbs with param block each */
245 rc = alloc_and_prep_cprbmem(PARMBSIZE, &mem, &preqcblk, &prepcblk);
246 if (rc)
247 return rc;
248
249 /* fill request cprb struct */
250 preqcblk->domain = domain;
251
252 /* fill request cprb param block with KG request */
253 preqparm = (struct kgreqparm *) preqcblk->req_parmb;
254 memcpy(preqparm->subfunc_code, "KG", 2);
255 preqparm->rule_array_len = sizeof(preqparm->rule_array_len);
256 preqparm->lv1.len = sizeof(struct lv1);
257 memcpy(preqparm->lv1.key_form, "OP ", 8);
258 switch (keytype) {
259 case PKEY_KEYTYPE_AES_128:
260 keysize = 16;
261 memcpy(preqparm->lv1.key_length, "KEYLN16 ", 8);
262 break;
263 case PKEY_KEYTYPE_AES_192:
264 keysize = 24;
265 memcpy(preqparm->lv1.key_length, "KEYLN24 ", 8);
266 break;
267 case PKEY_KEYTYPE_AES_256:
268 keysize = 32;
269 memcpy(preqparm->lv1.key_length, "KEYLN32 ", 8);
270 break;
271 default:
272 DEBUG_ERR(
273 "pkey_genseckey unknown/unsupported keytype %d\n",
274 keytype);
275 rc = -EINVAL;
276 goto out;
277 }
278 memcpy(preqparm->lv1.key_type1, "AESDATA ", 8);
279 preqparm->lv2.len = sizeof(struct lv2);
280 for (i = 0; i < 6; i++) {
281 preqparm->lv2.keyid[i].len = sizeof(struct keyid);
282 preqparm->lv2.keyid[i].attr = (i == 2 ? 0x30 : 0x10);
283 }
284 preqcblk->req_parml = sizeof(struct kgreqparm);
285
286 /* fill xcrb struct */
287 prep_xcrb(&xcrb, cardnr, preqcblk, prepcblk);
288
289 /* forward xcrb with request CPRB and reply CPRB to zcrypt dd */
290 rc = _zcrypt_send_cprb(&xcrb);
291 if (rc) {
292 DEBUG_ERR(
293 "pkey_genseckey zcrypt_send_cprb (cardnr=%d domain=%d) failed with errno %d\n",
294 (int) cardnr, (int) domain, rc);
295 goto out;
296 }
297
298 /* check response returncode and reasoncode */
299 if (prepcblk->ccp_rtcode != 0) {
300 DEBUG_ERR(
301 "pkey_genseckey secure key generate failure, card response %d/%d\n",
302 (int) prepcblk->ccp_rtcode,
303 (int) prepcblk->ccp_rscode);
304 rc = -EIO;
305 goto out;
306 }
307
308 /* process response cprb param block */
309 prepcblk->rpl_parmb = ((u8 *) prepcblk) + sizeof(struct CPRBX);
310 prepparm = (struct kgrepparm *) prepcblk->rpl_parmb;
311
312 /* check length of the returned secure key token */
313 seckeysize = prepparm->lv3.keyblock.toklen
314 - sizeof(prepparm->lv3.keyblock.toklen)
315 - sizeof(prepparm->lv3.keyblock.tokattr);
316 if (seckeysize != SECKEYBLOBSIZE) {
317 DEBUG_ERR(
318 "pkey_genseckey secure token size mismatch %d != %d bytes\n",
319 seckeysize, SECKEYBLOBSIZE);
320 rc = -EIO;
321 goto out;
322 }
323
324 /* check secure key token */
325 rc = check_secaeskeytoken(prepparm->lv3.keyblock.tok, 8*keysize);
326 if (rc) {
327 rc = -EIO;
328 goto out;
329 }
330
331 /* copy the generated secure key token */
332 memcpy(seckey->seckey, prepparm->lv3.keyblock.tok, SECKEYBLOBSIZE);
333
334out:
335 free_cprbmem(mem, PARMBSIZE, 0);
336 return rc;
337}
338EXPORT_SYMBOL(pkey_genseckey);
339
340/*
341 * Generate an AES secure key with given key value.
342 */
343int pkey_clr2seckey(u16 cardnr, u16 domain, u32 keytype,
344 const struct pkey_clrkey *clrkey,
345 struct pkey_seckey *seckey)
346{
347 int rc, keysize, seckeysize;
348 u8 *mem;
349 struct CPRBX *preqcblk, *prepcblk;
350 struct ica_xcRB xcrb;
351 struct cmreqparm {
352 u8 subfunc_code[2];
353 u16 rule_array_len;
354 char rule_array[8];
355 struct lv1 {
356 u16 len;
357 u8 clrkey[0];
358 } lv1;
359 struct lv2 {
360 u16 len;
361 struct keyid {
362 u16 len;
363 u16 attr;
364 u8 data[SECKEYBLOBSIZE];
365 } keyid;
366 } lv2;
367 } *preqparm;
368 struct lv2 *plv2;
369 struct cmrepparm {
370 u8 subfunc_code[2];
371 u16 rule_array_len;
372 struct lv3 {
373 u16 len;
374 u16 keyblocklen;
375 struct {
376 u16 toklen;
377 u16 tokattr;
378 u8 tok[0];
379 /* ... some more data ... */
380 } keyblock;
381 } lv3;
382 } *prepparm;
383
384 /* get already prepared memory for 2 cprbs with param block each */
385 rc = alloc_and_prep_cprbmem(PARMBSIZE, &mem, &preqcblk, &prepcblk);
386 if (rc)
387 return rc;
388
389 /* fill request cprb struct */
390 preqcblk->domain = domain;
391
392 /* fill request cprb param block with CM request */
393 preqparm = (struct cmreqparm *) preqcblk->req_parmb;
394 memcpy(preqparm->subfunc_code, "CM", 2);
395 memcpy(preqparm->rule_array, "AES ", 8);
396 preqparm->rule_array_len =
397 sizeof(preqparm->rule_array_len) + sizeof(preqparm->rule_array);
398 switch (keytype) {
399 case PKEY_KEYTYPE_AES_128:
400 keysize = 16;
401 break;
402 case PKEY_KEYTYPE_AES_192:
403 keysize = 24;
404 break;
405 case PKEY_KEYTYPE_AES_256:
406 keysize = 32;
407 break;
408 default:
409 DEBUG_ERR(
410 "pkey_clr2seckey unknown/unsupported keytype %d\n",
411 keytype);
412 rc = -EINVAL;
413 goto out;
414 }
415 preqparm->lv1.len = sizeof(struct lv1) + keysize;
416 memcpy(preqparm->lv1.clrkey, clrkey->clrkey, keysize);
417 plv2 = (struct lv2 *) (((u8 *) &preqparm->lv2) + keysize);
418 plv2->len = sizeof(struct lv2);
419 plv2->keyid.len = sizeof(struct keyid);
420 plv2->keyid.attr = 0x30;
421 preqcblk->req_parml = sizeof(struct cmreqparm) + keysize;
422
423 /* fill xcrb struct */
424 prep_xcrb(&xcrb, cardnr, preqcblk, prepcblk);
425
426 /* forward xcrb with request CPRB and reply CPRB to zcrypt dd */
427 rc = _zcrypt_send_cprb(&xcrb);
428 if (rc) {
429 DEBUG_ERR(
430 "pkey_clr2seckey zcrypt_send_cprb (cardnr=%d domain=%d) failed with errno %d\n",
431 (int) cardnr, (int) domain, rc);
432 goto out;
433 }
434
435 /* check response returncode and reasoncode */
436 if (prepcblk->ccp_rtcode != 0) {
437 DEBUG_ERR(
438 "pkey_clr2seckey clear key import failure, card response %d/%d\n",
439 (int) prepcblk->ccp_rtcode,
440 (int) prepcblk->ccp_rscode);
441 rc = -EIO;
442 goto out;
443 }
444
445 /* process response cprb param block */
446 prepcblk->rpl_parmb = ((u8 *) prepcblk) + sizeof(struct CPRBX);
447 prepparm = (struct cmrepparm *) prepcblk->rpl_parmb;
448
449 /* check length of the returned secure key token */
450 seckeysize = prepparm->lv3.keyblock.toklen
451 - sizeof(prepparm->lv3.keyblock.toklen)
452 - sizeof(prepparm->lv3.keyblock.tokattr);
453 if (seckeysize != SECKEYBLOBSIZE) {
454 DEBUG_ERR(
455 "pkey_clr2seckey secure token size mismatch %d != %d bytes\n",
456 seckeysize, SECKEYBLOBSIZE);
457 rc = -EIO;
458 goto out;
459 }
460
461 /* check secure key token */
462 rc = check_secaeskeytoken(prepparm->lv3.keyblock.tok, 8*keysize);
463 if (rc) {
464 rc = -EIO;
465 goto out;
466 }
467
468 /* copy the generated secure key token */
469 memcpy(seckey->seckey, prepparm->lv3.keyblock.tok, SECKEYBLOBSIZE);
470
471out:
472 free_cprbmem(mem, PARMBSIZE, 1);
473 return rc;
474}
475EXPORT_SYMBOL(pkey_clr2seckey);
476
477/*
478 * Derive a proteced key from the secure key blob.
479 */
480int pkey_sec2protkey(u16 cardnr, u16 domain,
481 const struct pkey_seckey *seckey,
482 struct pkey_protkey *protkey)
483{
484 int rc;
485 u8 *mem;
486 struct CPRBX *preqcblk, *prepcblk;
487 struct ica_xcRB xcrb;
488 struct uskreqparm {
489 u8 subfunc_code[2];
490 u16 rule_array_len;
491 struct lv1 {
492 u16 len;
493 u16 attr_len;
494 u16 attr_flags;
495 } lv1;
496 struct lv2 {
497 u16 len;
498 u16 attr_len;
499 u16 attr_flags;
500 u8 token[0]; /* cca secure key token */
501 } lv2 __packed;
502 } *preqparm;
503 struct uskrepparm {
504 u8 subfunc_code[2];
505 u16 rule_array_len;
506 struct lv3 {
507 u16 len;
508 u16 attr_len;
509 u16 attr_flags;
510 struct cpacfkeyblock {
511 u8 version; /* version of this struct */
512 u8 flags[2];
513 u8 algo;
514 u8 form;
515 u8 pad1[3];
516 u16 keylen;
517 u8 key[64]; /* the key (keylen bytes) */
518 u16 keyattrlen;
519 u8 keyattr[32];
520 u8 pad2[1];
521 u8 vptype;
522 u8 vp[32]; /* verification pattern */
523 } keyblock;
524 } lv3 __packed;
525 } *prepparm;
526
527 /* get already prepared memory for 2 cprbs with param block each */
528 rc = alloc_and_prep_cprbmem(PARMBSIZE, &mem, &preqcblk, &prepcblk);
529 if (rc)
530 return rc;
531
532 /* fill request cprb struct */
533 preqcblk->domain = domain;
534
535 /* fill request cprb param block with USK request */
536 preqparm = (struct uskreqparm *) preqcblk->req_parmb;
537 memcpy(preqparm->subfunc_code, "US", 2);
538 preqparm->rule_array_len = sizeof(preqparm->rule_array_len);
539 preqparm->lv1.len = sizeof(struct lv1);
540 preqparm->lv1.attr_len = sizeof(struct lv1) - sizeof(preqparm->lv1.len);
541 preqparm->lv1.attr_flags = 0x0001;
542 preqparm->lv2.len = sizeof(struct lv2) + SECKEYBLOBSIZE;
543 preqparm->lv2.attr_len = sizeof(struct lv2)
544 - sizeof(preqparm->lv2.len) + SECKEYBLOBSIZE;
545 preqparm->lv2.attr_flags = 0x0000;
546 memcpy(preqparm->lv2.token, seckey->seckey, SECKEYBLOBSIZE);
547 preqcblk->req_parml = sizeof(struct uskreqparm) + SECKEYBLOBSIZE;
548
549 /* fill xcrb struct */
550 prep_xcrb(&xcrb, cardnr, preqcblk, prepcblk);
551
552 /* forward xcrb with request CPRB and reply CPRB to zcrypt dd */
553 rc = _zcrypt_send_cprb(&xcrb);
554 if (rc) {
555 DEBUG_ERR(
556 "pkey_sec2protkey zcrypt_send_cprb (cardnr=%d domain=%d) failed with errno %d\n",
557 (int) cardnr, (int) domain, rc);
558 goto out;
559 }
560
561 /* check response returncode and reasoncode */
562 if (prepcblk->ccp_rtcode != 0) {
563 DEBUG_ERR(
564 "pkey_sec2protkey unwrap secure key failure, card response %d/%d\n",
565 (int) prepcblk->ccp_rtcode,
566 (int) prepcblk->ccp_rscode);
567 rc = -EIO;
568 goto out;
569 }
570 if (prepcblk->ccp_rscode != 0) {
571 DEBUG_WARN(
572 "pkey_sec2protkey unwrap secure key warning, card response %d/%d\n",
573 (int) prepcblk->ccp_rtcode,
574 (int) prepcblk->ccp_rscode);
575 }
576
577 /* process response cprb param block */
578 prepcblk->rpl_parmb = ((u8 *) prepcblk) + sizeof(struct CPRBX);
579 prepparm = (struct uskrepparm *) prepcblk->rpl_parmb;
580
581 /* check the returned keyblock */
582 if (prepparm->lv3.keyblock.version != 0x01) {
583 DEBUG_ERR(
584 "pkey_sec2protkey reply param keyblock version mismatch 0x%02x != 0x01\n",
585 (int) prepparm->lv3.keyblock.version);
586 rc = -EIO;
587 goto out;
588 }
589
590 /* copy the tanslated protected key */
591 switch (prepparm->lv3.keyblock.keylen) {
592 case 16+32:
593 protkey->type = PKEY_KEYTYPE_AES_128;
594 break;
595 case 24+32:
596 protkey->type = PKEY_KEYTYPE_AES_192;
597 break;
598 case 32+32:
599 protkey->type = PKEY_KEYTYPE_AES_256;
600 break;
601 default:
602 DEBUG_ERR("pkey_sec2protkey unknown/unsupported keytype %d\n",
603 prepparm->lv3.keyblock.keylen);
604 rc = -EIO;
605 goto out;
606 }
607 protkey->len = prepparm->lv3.keyblock.keylen;
608 memcpy(protkey->protkey, prepparm->lv3.keyblock.key, protkey->len);
609
610out:
611 free_cprbmem(mem, PARMBSIZE, 0);
612 return rc;
613}
614EXPORT_SYMBOL(pkey_sec2protkey);
615
616/*
617 * Create a protected key from a clear key value.
618 */
619int pkey_clr2protkey(u32 keytype,
620 const struct pkey_clrkey *clrkey,
621 struct pkey_protkey *protkey)
622{
623 long fc;
624 int keysize;
625 u8 paramblock[64];
626
627 switch (keytype) {
628 case PKEY_KEYTYPE_AES_128:
629 keysize = 16;
630 fc = CPACF_PCKMO_ENC_AES_128_KEY;
631 break;
632 case PKEY_KEYTYPE_AES_192:
633 keysize = 24;
634 fc = CPACF_PCKMO_ENC_AES_192_KEY;
635 break;
636 case PKEY_KEYTYPE_AES_256:
637 keysize = 32;
638 fc = CPACF_PCKMO_ENC_AES_256_KEY;
639 break;
640 default:
641 DEBUG_ERR("pkey_clr2protkey unknown/unsupported keytype %d\n",
642 keytype);
643 return -EINVAL;
644 }
645
646 /* prepare param block */
647 memset(paramblock, 0, sizeof(paramblock));
648 memcpy(paramblock, clrkey->clrkey, keysize);
649
650 /* call the pckmo instruction */
651 cpacf_pckmo(fc, paramblock);
652
653 /* copy created protected key */
654 protkey->type = keytype;
655 protkey->len = keysize + 32;
656 memcpy(protkey->protkey, paramblock, keysize + 32);
657
658 return 0;
659}
660EXPORT_SYMBOL(pkey_clr2protkey);
661
662/*
663 * query cryptographic facility from adapter
664 */
665static int query_crypto_facility(u16 cardnr, u16 domain,
666 const char *keyword,
667 u8 *rarray, size_t *rarraylen,
668 u8 *varray, size_t *varraylen)
669{
670 int rc;
671 u16 len;
672 u8 *mem, *ptr;
673 struct CPRBX *preqcblk, *prepcblk;
674 struct ica_xcRB xcrb;
675 struct fqreqparm {
676 u8 subfunc_code[2];
677 u16 rule_array_len;
678 char rule_array[8];
679 struct lv1 {
680 u16 len;
681 u8 data[VARDATASIZE];
682 } lv1;
683 u16 dummylen;
684 } *preqparm;
685 size_t parmbsize = sizeof(struct fqreqparm);
686 struct fqrepparm {
687 u8 subfunc_code[2];
688 u8 lvdata[0];
689 } *prepparm;
690
691 /* get already prepared memory for 2 cprbs with param block each */
692 rc = alloc_and_prep_cprbmem(parmbsize, &mem, &preqcblk, &prepcblk);
693 if (rc)
694 return rc;
695
696 /* fill request cprb struct */
697 preqcblk->domain = domain;
698
699 /* fill request cprb param block with FQ request */
700 preqparm = (struct fqreqparm *) preqcblk->req_parmb;
701 memcpy(preqparm->subfunc_code, "FQ", 2);
702 strncpy(preqparm->rule_array, keyword, sizeof(preqparm->rule_array));
703 preqparm->rule_array_len =
704 sizeof(preqparm->rule_array_len) + sizeof(preqparm->rule_array);
705 preqparm->lv1.len = sizeof(preqparm->lv1);
706 preqparm->dummylen = sizeof(preqparm->dummylen);
707 preqcblk->req_parml = parmbsize;
708
709 /* fill xcrb struct */
710 prep_xcrb(&xcrb, cardnr, preqcblk, prepcblk);
711
712 /* forward xcrb with request CPRB and reply CPRB to zcrypt dd */
713 rc = _zcrypt_send_cprb(&xcrb);
714 if (rc) {
715 DEBUG_ERR(
716 "query_crypto_facility zcrypt_send_cprb (cardnr=%d domain=%d) failed with errno %d\n",
717 (int) cardnr, (int) domain, rc);
718 goto out;
719 }
720
721 /* check response returncode and reasoncode */
722 if (prepcblk->ccp_rtcode != 0) {
723 DEBUG_ERR(
724 "query_crypto_facility unwrap secure key failure, card response %d/%d\n",
725 (int) prepcblk->ccp_rtcode,
726 (int) prepcblk->ccp_rscode);
727 rc = -EIO;
728 goto out;
729 }
730
731 /* process response cprb param block */
732 prepcblk->rpl_parmb = ((u8 *) prepcblk) + sizeof(struct CPRBX);
733 prepparm = (struct fqrepparm *) prepcblk->rpl_parmb;
734 ptr = prepparm->lvdata;
735
736 /* check and possibly copy reply rule array */
737 len = *((u16 *) ptr);
738 if (len > sizeof(u16)) {
739 ptr += sizeof(u16);
740 len -= sizeof(u16);
741 if (rarray && rarraylen && *rarraylen > 0) {
742 *rarraylen = (len > *rarraylen ? *rarraylen : len);
743 memcpy(rarray, ptr, *rarraylen);
744 }
745 ptr += len;
746 }
747 /* check and possible copy reply var array */
748 len = *((u16 *) ptr);
749 if (len > sizeof(u16)) {
750 ptr += sizeof(u16);
751 len -= sizeof(u16);
752 if (varray && varraylen && *varraylen > 0) {
753 *varraylen = (len > *varraylen ? *varraylen : len);
754 memcpy(varray, ptr, *varraylen);
755 }
756 ptr += len;
757 }
758
759out:
760 free_cprbmem(mem, parmbsize, 0);
761 return rc;
762}
763
764/*
765 * Fetch the current and old mkvp values via
766 * query_crypto_facility from adapter.
767 */
768static int fetch_mkvp(u16 cardnr, u16 domain, u64 mkvp[2])
769{
770 int rc, found = 0;
771 size_t rlen, vlen;
772 u8 *rarray, *varray, *pg;
773
774 pg = (u8 *) __get_free_page(GFP_KERNEL);
775 if (!pg)
776 return -ENOMEM;
777 rarray = pg;
778 varray = pg + PAGE_SIZE/2;
779 rlen = vlen = PAGE_SIZE/2;
780
781 rc = query_crypto_facility(cardnr, domain, "STATICSA",
782 rarray, &rlen, varray, &vlen);
783 if (rc == 0 && rlen > 8*8 && vlen > 184+8) {
784 if (rarray[8*8] == '2') {
785 /* current master key state is valid */
786 mkvp[0] = *((u64 *)(varray + 184));
787 mkvp[1] = *((u64 *)(varray + 172));
788 found = 1;
789 }
790 }
791
792 free_page((unsigned long) pg);
793
794 return found ? 0 : -ENOENT;
795}
796
797/* struct to hold cached mkvp info for each card/domain */
798struct mkvp_info {
799 struct list_head list;
800 u16 cardnr;
801 u16 domain;
802 u64 mkvp[2];
803};
804
805/* a list with mkvp_info entries */
806static LIST_HEAD(mkvp_list);
807static DEFINE_SPINLOCK(mkvp_list_lock);
808
809static int mkvp_cache_fetch(u16 cardnr, u16 domain, u64 mkvp[2])
810{
811 int rc = -ENOENT;
812 struct mkvp_info *ptr;
813
814 spin_lock_bh(&mkvp_list_lock);
815 list_for_each_entry(ptr, &mkvp_list, list) {
816 if (ptr->cardnr == cardnr &&
817 ptr->domain == domain) {
818 memcpy(mkvp, ptr->mkvp, 2 * sizeof(u64));
819 rc = 0;
820 break;
821 }
822 }
823 spin_unlock_bh(&mkvp_list_lock);
824
825 return rc;
826}
827
828static void mkvp_cache_update(u16 cardnr, u16 domain, u64 mkvp[2])
829{
830 int found = 0;
831 struct mkvp_info *ptr;
832
833 spin_lock_bh(&mkvp_list_lock);
834 list_for_each_entry(ptr, &mkvp_list, list) {
835 if (ptr->cardnr == cardnr &&
836 ptr->domain == domain) {
837 memcpy(ptr->mkvp, mkvp, 2 * sizeof(u64));
838 found = 1;
839 break;
840 }
841 }
842 if (!found) {
843 ptr = kmalloc(sizeof(*ptr), GFP_ATOMIC);
844 if (!ptr) {
845 spin_unlock_bh(&mkvp_list_lock);
846 return;
847 }
848 ptr->cardnr = cardnr;
849 ptr->domain = domain;
850 memcpy(ptr->mkvp, mkvp, 2 * sizeof(u64));
851 list_add(&ptr->list, &mkvp_list);
852 }
853 spin_unlock_bh(&mkvp_list_lock);
854}
855
856static void mkvp_cache_scrub(u16 cardnr, u16 domain)
857{
858 struct mkvp_info *ptr;
859
860 spin_lock_bh(&mkvp_list_lock);
861 list_for_each_entry(ptr, &mkvp_list, list) {
862 if (ptr->cardnr == cardnr &&
863 ptr->domain == domain) {
864 list_del(&ptr->list);
865 kfree(ptr);
866 break;
867 }
868 }
869 spin_unlock_bh(&mkvp_list_lock);
870}
871
872static void __exit mkvp_cache_free(void)
873{
874 struct mkvp_info *ptr, *pnext;
875
876 spin_lock_bh(&mkvp_list_lock);
877 list_for_each_entry_safe(ptr, pnext, &mkvp_list, list) {
878 list_del(&ptr->list);
879 kfree(ptr);
880 }
881 spin_unlock_bh(&mkvp_list_lock);
882}
883
884/*
885 * Search for a matching crypto card based on the Master Key
886 * Verification Pattern provided inside a secure key.
887 */
888int pkey_findcard(const struct pkey_seckey *seckey,
889 u16 *pcardnr, u16 *pdomain, int verify)
890{
891 struct secaeskeytoken *t = (struct secaeskeytoken *) seckey;
892 struct zcrypt_device_status_ext *device_status;
893 u16 card, dom;
894 u64 mkvp[2];
895 int i, rc, oi = -1;
896
897 /* mkvp must not be zero */
898 if (t->mkvp == 0)
899 return -EINVAL;
900
901 /* fetch status of all crypto cards */
902 device_status = kmalloc(MAX_ZDEV_ENTRIES_EXT
903 * sizeof(struct zcrypt_device_status_ext),
904 GFP_KERNEL);
905 if (!device_status)
906 return -ENOMEM;
907 zcrypt_device_status_mask_ext(device_status);
908
909 /* walk through all crypto cards */
910 for (i = 0; i < MAX_ZDEV_ENTRIES_EXT; i++) {
911 card = AP_QID_CARD(device_status[i].qid);
912 dom = AP_QID_QUEUE(device_status[i].qid);
913 if (device_status[i].online &&
914 device_status[i].functions & 0x04) {
915 /* an enabled CCA Coprocessor card */
916 /* try cached mkvp */
917 if (mkvp_cache_fetch(card, dom, mkvp) == 0 &&
918 t->mkvp == mkvp[0]) {
919 if (!verify)
920 break;
921 /* verify: fetch mkvp from adapter */
922 if (fetch_mkvp(card, dom, mkvp) == 0) {
923 mkvp_cache_update(card, dom, mkvp);
924 if (t->mkvp == mkvp[0])
925 break;
926 }
927 }
928 } else {
929 /* Card is offline and/or not a CCA card. */
930 /* del mkvp entry from cache if it exists */
931 mkvp_cache_scrub(card, dom);
932 }
933 }
934 if (i >= MAX_ZDEV_ENTRIES_EXT) {
935 /* nothing found, so this time without cache */
936 for (i = 0; i < MAX_ZDEV_ENTRIES_EXT; i++) {
937 if (!(device_status[i].online &&
938 device_status[i].functions & 0x04))
939 continue;
940 card = AP_QID_CARD(device_status[i].qid);
941 dom = AP_QID_QUEUE(device_status[i].qid);
942 /* fresh fetch mkvp from adapter */
943 if (fetch_mkvp(card, dom, mkvp) == 0) {
944 mkvp_cache_update(card, dom, mkvp);
945 if (t->mkvp == mkvp[0])
946 break;
947 if (t->mkvp == mkvp[1] && oi < 0)
948 oi = i;
949 }
950 }
951 if (i >= MAX_ZDEV_ENTRIES_EXT && oi >= 0) {
952 /* old mkvp matched, use this card then */
953 card = AP_QID_CARD(device_status[oi].qid);
954 dom = AP_QID_QUEUE(device_status[oi].qid);
955 }
956 }
957 if (i < MAX_ZDEV_ENTRIES_EXT || oi >= 0) {
958 if (pcardnr)
959 *pcardnr = card;
960 if (pdomain)
961 *pdomain = dom;
962 rc = 0;
963 } else
964 rc = -ENODEV;
965
966 kfree(device_status);
967 return rc;
968}
969EXPORT_SYMBOL(pkey_findcard);
970
971/*
972 * Find card and transform secure key into protected key.
973 */
974int pkey_skey2pkey(const struct pkey_seckey *seckey,
975 struct pkey_protkey *protkey)
976{
977 u16 cardnr, domain;
978 int rc, verify;
979
980 /*
981 * The pkey_sec2protkey call may fail when a card has been
982 * addressed where the master key was changed after last fetch
983 * of the mkvp into the cache. So first try without verify then
984 * with verify enabled (thus refreshing the mkvp for each card).
985 */
986 for (verify = 0; verify < 2; verify++) {
987 rc = pkey_findcard(seckey, &cardnr, &domain, verify);
988 if (rc)
989 continue;
990 rc = pkey_sec2protkey(cardnr, domain, seckey, protkey);
991 if (rc == 0)
992 break;
993 }
994
995 if (rc)
996 DEBUG_DBG("pkey_skey2pkey failed rc=%d\n", rc);
997
998 return rc;
999}
1000EXPORT_SYMBOL(pkey_skey2pkey);
1001
1002/*
1003 * Verify key and give back some info about the key.
1004 */
1005int pkey_verifykey(const struct pkey_seckey *seckey,
1006 u16 *pcardnr, u16 *pdomain,
1007 u16 *pkeysize, u32 *pattributes)
1008{
1009 struct secaeskeytoken *t = (struct secaeskeytoken *) seckey;
1010 u16 cardnr, domain;
1011 u64 mkvp[2];
1012 int rc;
1013
1014 /* check the secure key for valid AES secure key */
1015 rc = check_secaeskeytoken((u8 *) seckey, 0);
1016 if (rc)
1017 goto out;
1018 if (pattributes)
1019 *pattributes = PKEY_VERIFY_ATTR_AES;
1020 if (pkeysize)
1021 *pkeysize = t->bitsize;
1022
1023 /* try to find a card which can handle this key */
1024 rc = pkey_findcard(seckey, &cardnr, &domain, 1);
1025 if (rc)
1026 goto out;
1027
1028 /* check mkvp for old mkvp match */
1029 rc = mkvp_cache_fetch(cardnr, domain, mkvp);
1030 if (rc)
1031 goto out;
1032 if (t->mkvp == mkvp[1]) {
1033 DEBUG_DBG("pkey_verifykey secure key has old mkvp\n");
1034 if (pattributes)
1035 *pattributes |= PKEY_VERIFY_ATTR_OLD_MKVP;
1036 }
1037
1038 if (pcardnr)
1039 *pcardnr = cardnr;
1040 if (pdomain)
1041 *pdomain = domain;
1042
1043out:
1044 DEBUG_DBG("pkey_verifykey rc=%d\n", rc);
1045 return rc;
1046}
1047EXPORT_SYMBOL(pkey_verifykey);
1048
1049/*
1050 * File io functions
1051 */
1052
1053static long pkey_unlocked_ioctl(struct file *filp, unsigned int cmd,
1054 unsigned long arg)
1055{
1056 int rc;
1057
1058 switch (cmd) {
1059 case PKEY_GENSECK: {
1060 struct pkey_genseck __user *ugs = (void __user *) arg;
1061 struct pkey_genseck kgs;
1062
1063 if (copy_from_user(&kgs, ugs, sizeof(kgs)))
1064 return -EFAULT;
1065 rc = pkey_genseckey(kgs.cardnr, kgs.domain,
1066 kgs.keytype, &kgs.seckey);
1067 DEBUG_DBG("pkey_ioctl pkey_genseckey()=%d\n", rc);
1068 if (rc)
1069 break;
1070 if (copy_to_user(ugs, &kgs, sizeof(kgs)))
1071 return -EFAULT;
1072 break;
1073 }
1074 case PKEY_CLR2SECK: {
1075 struct pkey_clr2seck __user *ucs = (void __user *) arg;
1076 struct pkey_clr2seck kcs;
1077
1078 if (copy_from_user(&kcs, ucs, sizeof(kcs)))
1079 return -EFAULT;
1080 rc = pkey_clr2seckey(kcs.cardnr, kcs.domain, kcs.keytype,
1081 &kcs.clrkey, &kcs.seckey);
1082 DEBUG_DBG("pkey_ioctl pkey_clr2seckey()=%d\n", rc);
1083 if (rc)
1084 break;
1085 if (copy_to_user(ucs, &kcs, sizeof(kcs)))
1086 return -EFAULT;
1087 memzero_explicit(&kcs, sizeof(kcs));
1088 break;
1089 }
1090 case PKEY_SEC2PROTK: {
1091 struct pkey_sec2protk __user *usp = (void __user *) arg;
1092 struct pkey_sec2protk ksp;
1093
1094 if (copy_from_user(&ksp, usp, sizeof(ksp)))
1095 return -EFAULT;
1096 rc = pkey_sec2protkey(ksp.cardnr, ksp.domain,
1097 &ksp.seckey, &ksp.protkey);
1098 DEBUG_DBG("pkey_ioctl pkey_sec2protkey()=%d\n", rc);
1099 if (rc)
1100 break;
1101 if (copy_to_user(usp, &ksp, sizeof(ksp)))
1102 return -EFAULT;
1103 break;
1104 }
1105 case PKEY_CLR2PROTK: {
1106 struct pkey_clr2protk __user *ucp = (void __user *) arg;
1107 struct pkey_clr2protk kcp;
1108
1109 if (copy_from_user(&kcp, ucp, sizeof(kcp)))
1110 return -EFAULT;
1111 rc = pkey_clr2protkey(kcp.keytype,
1112 &kcp.clrkey, &kcp.protkey);
1113 DEBUG_DBG("pkey_ioctl pkey_clr2protkey()=%d\n", rc);
1114 if (rc)
1115 break;
1116 if (copy_to_user(ucp, &kcp, sizeof(kcp)))
1117 return -EFAULT;
1118 memzero_explicit(&kcp, sizeof(kcp));
1119 break;
1120 }
1121 case PKEY_FINDCARD: {
1122 struct pkey_findcard __user *ufc = (void __user *) arg;
1123 struct pkey_findcard kfc;
1124
1125 if (copy_from_user(&kfc, ufc, sizeof(kfc)))
1126 return -EFAULT;
1127 rc = pkey_findcard(&kfc.seckey,
1128 &kfc.cardnr, &kfc.domain, 1);
1129 DEBUG_DBG("pkey_ioctl pkey_findcard()=%d\n", rc);
1130 if (rc)
1131 break;
1132 if (copy_to_user(ufc, &kfc, sizeof(kfc)))
1133 return -EFAULT;
1134 break;
1135 }
1136 case PKEY_SKEY2PKEY: {
1137 struct pkey_skey2pkey __user *usp = (void __user *) arg;
1138 struct pkey_skey2pkey ksp;
1139
1140 if (copy_from_user(&ksp, usp, sizeof(ksp)))
1141 return -EFAULT;
1142 rc = pkey_skey2pkey(&ksp.seckey, &ksp.protkey);
1143 DEBUG_DBG("pkey_ioctl pkey_skey2pkey()=%d\n", rc);
1144 if (rc)
1145 break;
1146 if (copy_to_user(usp, &ksp, sizeof(ksp)))
1147 return -EFAULT;
1148 break;
1149 }
1150 case PKEY_VERIFYKEY: {
1151 struct pkey_verifykey __user *uvk = (void __user *) arg;
1152 struct pkey_verifykey kvk;
1153
1154 if (copy_from_user(&kvk, uvk, sizeof(kvk)))
1155 return -EFAULT;
1156 rc = pkey_verifykey(&kvk.seckey, &kvk.cardnr, &kvk.domain,
1157 &kvk.keysize, &kvk.attributes);
1158 DEBUG_DBG("pkey_ioctl pkey_verifykey()=%d\n", rc);
1159 if (rc)
1160 break;
1161 if (copy_to_user(uvk, &kvk, sizeof(kvk)))
1162 return -EFAULT;
1163 break;
1164 }
1165 default:
1166 /* unknown/unsupported ioctl cmd */
1167 return -ENOTTY;
1168 }
1169
1170 return rc;
1171}
1172
1173/*
1174 * Sysfs and file io operations
1175 */
1176static const struct file_operations pkey_fops = {
1177 .owner = THIS_MODULE,
1178 .open = nonseekable_open,
1179 .llseek = no_llseek,
1180 .unlocked_ioctl = pkey_unlocked_ioctl,
1181};
1182
1183static struct miscdevice pkey_dev = {
1184 .name = "pkey",
1185 .minor = MISC_DYNAMIC_MINOR,
1186 .mode = 0666,
1187 .fops = &pkey_fops,
1188};
1189
1190/*
1191 * Module init
1192 */
1193static int __init pkey_init(void)
1194{
1195 cpacf_mask_t pckmo_functions;
1196
1197 /* check for pckmo instructions available */
1198 if (!cpacf_query(CPACF_PCKMO, &pckmo_functions))
1199 return -EOPNOTSUPP;
1200 if (!cpacf_test_func(&pckmo_functions, CPACF_PCKMO_ENC_AES_128_KEY) ||
1201 !cpacf_test_func(&pckmo_functions, CPACF_PCKMO_ENC_AES_192_KEY) ||
1202 !cpacf_test_func(&pckmo_functions, CPACF_PCKMO_ENC_AES_256_KEY))
1203 return -EOPNOTSUPP;
1204
1205 pkey_debug_init();
1206
1207 return misc_register(&pkey_dev);
1208}
1209
1210/*
1211 * Module exit
1212 */
1213static void __exit pkey_exit(void)
1214{
1215 misc_deregister(&pkey_dev);
1216 mkvp_cache_free();
1217 pkey_debug_exit();
1218}
1219
1220module_init(pkey_init);
1221module_exit(pkey_exit);