Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2013 - 2019 Intel Corporation. */
3
4#include <linux/module.h>
5#include <linux/interrupt.h>
6#include <linux/aer.h>
7
8#include "fm10k.h"
9
10static const struct fm10k_info *fm10k_info_tbl[] = {
11 [fm10k_device_pf] = &fm10k_pf_info,
12 [fm10k_device_vf] = &fm10k_vf_info,
13};
14
15/*
16 * fm10k_pci_tbl - PCI Device ID Table
17 *
18 * Wildcard entries (PCI_ANY_ID) should come last
19 * Last entry must be all 0s
20 *
21 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
22 * Class, Class Mask, private data (not used) }
23 */
24static const struct pci_device_id fm10k_pci_tbl[] = {
25 { PCI_VDEVICE(INTEL, FM10K_DEV_ID_PF), fm10k_device_pf },
26 { PCI_VDEVICE(INTEL, FM10K_DEV_ID_SDI_FM10420_QDA2), fm10k_device_pf },
27 { PCI_VDEVICE(INTEL, FM10K_DEV_ID_SDI_FM10420_DA2), fm10k_device_pf },
28 { PCI_VDEVICE(INTEL, FM10K_DEV_ID_VF), fm10k_device_vf },
29 /* required last entry */
30 { 0, }
31};
32MODULE_DEVICE_TABLE(pci, fm10k_pci_tbl);
33
34u16 fm10k_read_pci_cfg_word(struct fm10k_hw *hw, u32 reg)
35{
36 struct fm10k_intfc *interface = hw->back;
37 u16 value = 0;
38
39 if (FM10K_REMOVED(hw->hw_addr))
40 return ~value;
41
42 pci_read_config_word(interface->pdev, reg, &value);
43 if (value == 0xFFFF)
44 fm10k_write_flush(hw);
45
46 return value;
47}
48
49u32 fm10k_read_reg(struct fm10k_hw *hw, int reg)
50{
51 u32 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
52 u32 value = 0;
53
54 if (FM10K_REMOVED(hw_addr))
55 return ~value;
56
57 value = readl(&hw_addr[reg]);
58 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
59 struct fm10k_intfc *interface = hw->back;
60 struct net_device *netdev = interface->netdev;
61
62 hw->hw_addr = NULL;
63 netif_device_detach(netdev);
64 netdev_err(netdev, "PCIe link lost, device now detached\n");
65 }
66
67 return value;
68}
69
70static int fm10k_hw_ready(struct fm10k_intfc *interface)
71{
72 struct fm10k_hw *hw = &interface->hw;
73
74 fm10k_write_flush(hw);
75
76 return FM10K_REMOVED(hw->hw_addr) ? -ENODEV : 0;
77}
78
79/**
80 * fm10k_macvlan_schedule - Schedule MAC/VLAN queue task
81 * @interface: fm10k private interface structure
82 *
83 * Schedule the MAC/VLAN queue monitor task. If the MAC/VLAN task cannot be
84 * started immediately, request that it be restarted when possible.
85 */
86void fm10k_macvlan_schedule(struct fm10k_intfc *interface)
87{
88 /* Avoid processing the MAC/VLAN queue when the service task is
89 * disabled, or when we're resetting the device.
90 */
91 if (!test_bit(__FM10K_MACVLAN_DISABLE, interface->state) &&
92 !test_and_set_bit(__FM10K_MACVLAN_SCHED, interface->state)) {
93 clear_bit(__FM10K_MACVLAN_REQUEST, interface->state);
94 /* We delay the actual start of execution in order to allow
95 * multiple MAC/VLAN updates to accumulate before handling
96 * them, and to allow some time to let the mailbox drain
97 * between runs.
98 */
99 queue_delayed_work(fm10k_workqueue,
100 &interface->macvlan_task, 10);
101 } else {
102 set_bit(__FM10K_MACVLAN_REQUEST, interface->state);
103 }
104}
105
106/**
107 * fm10k_stop_macvlan_task - Stop the MAC/VLAN queue monitor
108 * @interface: fm10k private interface structure
109 *
110 * Wait until the MAC/VLAN queue task has stopped, and cancel any future
111 * requests.
112 */
113static void fm10k_stop_macvlan_task(struct fm10k_intfc *interface)
114{
115 /* Disable the MAC/VLAN work item */
116 set_bit(__FM10K_MACVLAN_DISABLE, interface->state);
117
118 /* Make sure we waited until any current invocations have stopped */
119 cancel_delayed_work_sync(&interface->macvlan_task);
120
121 /* We set the __FM10K_MACVLAN_SCHED bit when we schedule the task.
122 * However, it may not be unset of the MAC/VLAN task never actually
123 * got a chance to run. Since we've canceled the task here, and it
124 * cannot be rescheuled right now, we need to ensure the scheduled bit
125 * gets unset.
126 */
127 clear_bit(__FM10K_MACVLAN_SCHED, interface->state);
128}
129
130/**
131 * fm10k_resume_macvlan_task - Restart the MAC/VLAN queue monitor
132 * @interface: fm10k private interface structure
133 *
134 * Clear the __FM10K_MACVLAN_DISABLE bit and, if a request occurred, schedule
135 * the MAC/VLAN work monitor.
136 */
137static void fm10k_resume_macvlan_task(struct fm10k_intfc *interface)
138{
139 /* Re-enable the MAC/VLAN work item */
140 clear_bit(__FM10K_MACVLAN_DISABLE, interface->state);
141
142 /* We might have received a MAC/VLAN request while disabled. If so,
143 * kick off the queue now.
144 */
145 if (test_bit(__FM10K_MACVLAN_REQUEST, interface->state))
146 fm10k_macvlan_schedule(interface);
147}
148
149void fm10k_service_event_schedule(struct fm10k_intfc *interface)
150{
151 if (!test_bit(__FM10K_SERVICE_DISABLE, interface->state) &&
152 !test_and_set_bit(__FM10K_SERVICE_SCHED, interface->state)) {
153 clear_bit(__FM10K_SERVICE_REQUEST, interface->state);
154 queue_work(fm10k_workqueue, &interface->service_task);
155 } else {
156 set_bit(__FM10K_SERVICE_REQUEST, interface->state);
157 }
158}
159
160static void fm10k_service_event_complete(struct fm10k_intfc *interface)
161{
162 WARN_ON(!test_bit(__FM10K_SERVICE_SCHED, interface->state));
163
164 /* flush memory to make sure state is correct before next watchog */
165 smp_mb__before_atomic();
166 clear_bit(__FM10K_SERVICE_SCHED, interface->state);
167
168 /* If a service event was requested since we started, immediately
169 * re-schedule now. This ensures we don't drop a request until the
170 * next timer event.
171 */
172 if (test_bit(__FM10K_SERVICE_REQUEST, interface->state))
173 fm10k_service_event_schedule(interface);
174}
175
176static void fm10k_stop_service_event(struct fm10k_intfc *interface)
177{
178 set_bit(__FM10K_SERVICE_DISABLE, interface->state);
179 cancel_work_sync(&interface->service_task);
180
181 /* It's possible that cancel_work_sync stopped the service task from
182 * running before it could actually start. In this case the
183 * __FM10K_SERVICE_SCHED bit will never be cleared. Since we know that
184 * the service task cannot be running at this point, we need to clear
185 * the scheduled bit, as otherwise the service task may never be
186 * restarted.
187 */
188 clear_bit(__FM10K_SERVICE_SCHED, interface->state);
189}
190
191static void fm10k_start_service_event(struct fm10k_intfc *interface)
192{
193 clear_bit(__FM10K_SERVICE_DISABLE, interface->state);
194 fm10k_service_event_schedule(interface);
195}
196
197/**
198 * fm10k_service_timer - Timer Call-back
199 * @t: pointer to timer data
200 **/
201static void fm10k_service_timer(struct timer_list *t)
202{
203 struct fm10k_intfc *interface = from_timer(interface, t,
204 service_timer);
205
206 /* Reset the timer */
207 mod_timer(&interface->service_timer, (HZ * 2) + jiffies);
208
209 fm10k_service_event_schedule(interface);
210}
211
212/**
213 * fm10k_prepare_for_reset - Prepare the driver and device for a pending reset
214 * @interface: fm10k private data structure
215 *
216 * This function prepares for a device reset by shutting as much down as we
217 * can. It does nothing and returns false if __FM10K_RESETTING was already set
218 * prior to calling this function. It returns true if it actually did work.
219 */
220static bool fm10k_prepare_for_reset(struct fm10k_intfc *interface)
221{
222 struct net_device *netdev = interface->netdev;
223
224 /* put off any impending NetWatchDogTimeout */
225 netif_trans_update(netdev);
226
227 /* Nothing to do if a reset is already in progress */
228 if (test_and_set_bit(__FM10K_RESETTING, interface->state))
229 return false;
230
231 /* As the MAC/VLAN task will be accessing registers it must not be
232 * running while we reset. Although the task will not be scheduled
233 * once we start resetting it may already be running
234 */
235 fm10k_stop_macvlan_task(interface);
236
237 rtnl_lock();
238
239 fm10k_iov_suspend(interface->pdev);
240
241 if (netif_running(netdev))
242 fm10k_close(netdev);
243
244 fm10k_mbx_free_irq(interface);
245
246 /* free interrupts */
247 fm10k_clear_queueing_scheme(interface);
248
249 /* delay any future reset requests */
250 interface->last_reset = jiffies + (10 * HZ);
251
252 rtnl_unlock();
253
254 return true;
255}
256
257static int fm10k_handle_reset(struct fm10k_intfc *interface)
258{
259 struct net_device *netdev = interface->netdev;
260 struct fm10k_hw *hw = &interface->hw;
261 int err;
262
263 WARN_ON(!test_bit(__FM10K_RESETTING, interface->state));
264
265 rtnl_lock();
266
267 pci_set_master(interface->pdev);
268
269 /* reset and initialize the hardware so it is in a known state */
270 err = hw->mac.ops.reset_hw(hw);
271 if (err) {
272 dev_err(&interface->pdev->dev, "reset_hw failed: %d\n", err);
273 goto reinit_err;
274 }
275
276 err = hw->mac.ops.init_hw(hw);
277 if (err) {
278 dev_err(&interface->pdev->dev, "init_hw failed: %d\n", err);
279 goto reinit_err;
280 }
281
282 err = fm10k_init_queueing_scheme(interface);
283 if (err) {
284 dev_err(&interface->pdev->dev,
285 "init_queueing_scheme failed: %d\n", err);
286 goto reinit_err;
287 }
288
289 /* re-associate interrupts */
290 err = fm10k_mbx_request_irq(interface);
291 if (err)
292 goto err_mbx_irq;
293
294 err = fm10k_hw_ready(interface);
295 if (err)
296 goto err_open;
297
298 /* update hardware address for VFs if perm_addr has changed */
299 if (hw->mac.type == fm10k_mac_vf) {
300 if (is_valid_ether_addr(hw->mac.perm_addr)) {
301 ether_addr_copy(hw->mac.addr, hw->mac.perm_addr);
302 ether_addr_copy(netdev->perm_addr, hw->mac.perm_addr);
303 eth_hw_addr_set(netdev, hw->mac.perm_addr);
304 netdev->addr_assign_type &= ~NET_ADDR_RANDOM;
305 }
306
307 if (hw->mac.vlan_override)
308 netdev->features &= ~NETIF_F_HW_VLAN_CTAG_RX;
309 else
310 netdev->features |= NETIF_F_HW_VLAN_CTAG_RX;
311 }
312
313 err = netif_running(netdev) ? fm10k_open(netdev) : 0;
314 if (err)
315 goto err_open;
316
317 fm10k_iov_resume(interface->pdev);
318
319 rtnl_unlock();
320
321 fm10k_resume_macvlan_task(interface);
322
323 clear_bit(__FM10K_RESETTING, interface->state);
324
325 return err;
326err_open:
327 fm10k_mbx_free_irq(interface);
328err_mbx_irq:
329 fm10k_clear_queueing_scheme(interface);
330reinit_err:
331 netif_device_detach(netdev);
332
333 rtnl_unlock();
334
335 clear_bit(__FM10K_RESETTING, interface->state);
336
337 return err;
338}
339
340static void fm10k_detach_subtask(struct fm10k_intfc *interface)
341{
342 struct net_device *netdev = interface->netdev;
343 u32 __iomem *hw_addr;
344 u32 value;
345
346 /* do nothing if netdev is still present or hw_addr is set */
347 if (netif_device_present(netdev) || interface->hw.hw_addr)
348 return;
349
350 /* We've lost the PCIe register space, and can no longer access the
351 * device. Shut everything except the detach subtask down and prepare
352 * to reset the device in case we recover. If we actually prepare for
353 * reset, indicate that we're detached.
354 */
355 if (fm10k_prepare_for_reset(interface))
356 set_bit(__FM10K_RESET_DETACHED, interface->state);
357
358 /* check the real address space to see if we've recovered */
359 hw_addr = READ_ONCE(interface->uc_addr);
360 value = readl(hw_addr);
361 if (~value) {
362 int err;
363
364 /* Make sure the reset was initiated because we detached,
365 * otherwise we might race with a different reset flow.
366 */
367 if (!test_and_clear_bit(__FM10K_RESET_DETACHED,
368 interface->state))
369 return;
370
371 /* Restore the hardware address */
372 interface->hw.hw_addr = interface->uc_addr;
373
374 /* PCIe link has been restored, and the device is active
375 * again. Restore everything and reset the device.
376 */
377 err = fm10k_handle_reset(interface);
378 if (err) {
379 netdev_err(netdev, "Unable to reset device: %d\n", err);
380 interface->hw.hw_addr = NULL;
381 return;
382 }
383
384 /* Re-attach the netdev */
385 netif_device_attach(netdev);
386 netdev_warn(netdev, "PCIe link restored, device now attached\n");
387 return;
388 }
389}
390
391static void fm10k_reset_subtask(struct fm10k_intfc *interface)
392{
393 int err;
394
395 if (!test_and_clear_bit(FM10K_FLAG_RESET_REQUESTED,
396 interface->flags))
397 return;
398
399 /* If another thread has already prepared to reset the device, we
400 * should not attempt to handle a reset here, since we'd race with
401 * that thread. This may happen if we suspend the device or if the
402 * PCIe link is lost. In this case, we'll just ignore the RESET
403 * request, as it will (eventually) be taken care of when the thread
404 * which actually started the reset is finished.
405 */
406 if (!fm10k_prepare_for_reset(interface))
407 return;
408
409 netdev_err(interface->netdev, "Reset interface\n");
410
411 err = fm10k_handle_reset(interface);
412 if (err)
413 dev_err(&interface->pdev->dev,
414 "fm10k_handle_reset failed: %d\n", err);
415}
416
417/**
418 * fm10k_configure_swpri_map - Configure Receive SWPRI to PC mapping
419 * @interface: board private structure
420 *
421 * Configure the SWPRI to PC mapping for the port.
422 **/
423static void fm10k_configure_swpri_map(struct fm10k_intfc *interface)
424{
425 struct net_device *netdev = interface->netdev;
426 struct fm10k_hw *hw = &interface->hw;
427 int i;
428
429 /* clear flag indicating update is needed */
430 clear_bit(FM10K_FLAG_SWPRI_CONFIG, interface->flags);
431
432 /* these registers are only available on the PF */
433 if (hw->mac.type != fm10k_mac_pf)
434 return;
435
436 /* configure SWPRI to PC map */
437 for (i = 0; i < FM10K_SWPRI_MAX; i++)
438 fm10k_write_reg(hw, FM10K_SWPRI_MAP(i),
439 netdev_get_prio_tc_map(netdev, i));
440}
441
442/**
443 * fm10k_watchdog_update_host_state - Update the link status based on host.
444 * @interface: board private structure
445 **/
446static void fm10k_watchdog_update_host_state(struct fm10k_intfc *interface)
447{
448 struct fm10k_hw *hw = &interface->hw;
449 s32 err;
450
451 if (test_bit(__FM10K_LINK_DOWN, interface->state)) {
452 interface->host_ready = false;
453 if (time_is_after_jiffies(interface->link_down_event))
454 return;
455 clear_bit(__FM10K_LINK_DOWN, interface->state);
456 }
457
458 if (test_bit(FM10K_FLAG_SWPRI_CONFIG, interface->flags)) {
459 if (rtnl_trylock()) {
460 fm10k_configure_swpri_map(interface);
461 rtnl_unlock();
462 }
463 }
464
465 /* lock the mailbox for transmit and receive */
466 fm10k_mbx_lock(interface);
467
468 err = hw->mac.ops.get_host_state(hw, &interface->host_ready);
469 if (err && time_is_before_jiffies(interface->last_reset))
470 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
471
472 /* free the lock */
473 fm10k_mbx_unlock(interface);
474}
475
476/**
477 * fm10k_mbx_subtask - Process upstream and downstream mailboxes
478 * @interface: board private structure
479 *
480 * This function will process both the upstream and downstream mailboxes.
481 **/
482static void fm10k_mbx_subtask(struct fm10k_intfc *interface)
483{
484 /* If we're resetting, bail out */
485 if (test_bit(__FM10K_RESETTING, interface->state))
486 return;
487
488 /* process upstream mailbox and update device state */
489 fm10k_watchdog_update_host_state(interface);
490
491 /* process downstream mailboxes */
492 fm10k_iov_mbx(interface);
493}
494
495/**
496 * fm10k_watchdog_host_is_ready - Update netdev status based on host ready
497 * @interface: board private structure
498 **/
499static void fm10k_watchdog_host_is_ready(struct fm10k_intfc *interface)
500{
501 struct net_device *netdev = interface->netdev;
502
503 /* only continue if link state is currently down */
504 if (netif_carrier_ok(netdev))
505 return;
506
507 netif_info(interface, drv, netdev, "NIC Link is up\n");
508
509 netif_carrier_on(netdev);
510 netif_tx_wake_all_queues(netdev);
511}
512
513/**
514 * fm10k_watchdog_host_not_ready - Update netdev status based on host not ready
515 * @interface: board private structure
516 **/
517static void fm10k_watchdog_host_not_ready(struct fm10k_intfc *interface)
518{
519 struct net_device *netdev = interface->netdev;
520
521 /* only continue if link state is currently up */
522 if (!netif_carrier_ok(netdev))
523 return;
524
525 netif_info(interface, drv, netdev, "NIC Link is down\n");
526
527 netif_carrier_off(netdev);
528 netif_tx_stop_all_queues(netdev);
529}
530
531/**
532 * fm10k_update_stats - Update the board statistics counters.
533 * @interface: board private structure
534 **/
535void fm10k_update_stats(struct fm10k_intfc *interface)
536{
537 struct net_device_stats *net_stats = &interface->netdev->stats;
538 struct fm10k_hw *hw = &interface->hw;
539 u64 hw_csum_tx_good = 0, hw_csum_rx_good = 0, rx_length_errors = 0;
540 u64 rx_switch_errors = 0, rx_drops = 0, rx_pp_errors = 0;
541 u64 rx_link_errors = 0;
542 u64 rx_errors = 0, rx_csum_errors = 0, tx_csum_errors = 0;
543 u64 restart_queue = 0, tx_busy = 0, alloc_failed = 0;
544 u64 rx_bytes_nic = 0, rx_pkts_nic = 0, rx_drops_nic = 0;
545 u64 tx_bytes_nic = 0, tx_pkts_nic = 0;
546 u64 bytes, pkts;
547 int i;
548
549 /* ensure only one thread updates stats at a time */
550 if (test_and_set_bit(__FM10K_UPDATING_STATS, interface->state))
551 return;
552
553 /* do not allow stats update via service task for next second */
554 interface->next_stats_update = jiffies + HZ;
555
556 /* gather some stats to the interface struct that are per queue */
557 for (bytes = 0, pkts = 0, i = 0; i < interface->num_tx_queues; i++) {
558 struct fm10k_ring *tx_ring = READ_ONCE(interface->tx_ring[i]);
559
560 if (!tx_ring)
561 continue;
562
563 restart_queue += tx_ring->tx_stats.restart_queue;
564 tx_busy += tx_ring->tx_stats.tx_busy;
565 tx_csum_errors += tx_ring->tx_stats.csum_err;
566 bytes += tx_ring->stats.bytes;
567 pkts += tx_ring->stats.packets;
568 hw_csum_tx_good += tx_ring->tx_stats.csum_good;
569 }
570
571 interface->restart_queue = restart_queue;
572 interface->tx_busy = tx_busy;
573 net_stats->tx_bytes = bytes;
574 net_stats->tx_packets = pkts;
575 interface->tx_csum_errors = tx_csum_errors;
576 interface->hw_csum_tx_good = hw_csum_tx_good;
577
578 /* gather some stats to the interface struct that are per queue */
579 for (bytes = 0, pkts = 0, i = 0; i < interface->num_rx_queues; i++) {
580 struct fm10k_ring *rx_ring = READ_ONCE(interface->rx_ring[i]);
581
582 if (!rx_ring)
583 continue;
584
585 bytes += rx_ring->stats.bytes;
586 pkts += rx_ring->stats.packets;
587 alloc_failed += rx_ring->rx_stats.alloc_failed;
588 rx_csum_errors += rx_ring->rx_stats.csum_err;
589 rx_errors += rx_ring->rx_stats.errors;
590 hw_csum_rx_good += rx_ring->rx_stats.csum_good;
591 rx_switch_errors += rx_ring->rx_stats.switch_errors;
592 rx_drops += rx_ring->rx_stats.drops;
593 rx_pp_errors += rx_ring->rx_stats.pp_errors;
594 rx_link_errors += rx_ring->rx_stats.link_errors;
595 rx_length_errors += rx_ring->rx_stats.length_errors;
596 }
597
598 net_stats->rx_bytes = bytes;
599 net_stats->rx_packets = pkts;
600 interface->alloc_failed = alloc_failed;
601 interface->rx_csum_errors = rx_csum_errors;
602 interface->hw_csum_rx_good = hw_csum_rx_good;
603 interface->rx_switch_errors = rx_switch_errors;
604 interface->rx_drops = rx_drops;
605 interface->rx_pp_errors = rx_pp_errors;
606 interface->rx_link_errors = rx_link_errors;
607 interface->rx_length_errors = rx_length_errors;
608
609 hw->mac.ops.update_hw_stats(hw, &interface->stats);
610
611 for (i = 0; i < hw->mac.max_queues; i++) {
612 struct fm10k_hw_stats_q *q = &interface->stats.q[i];
613
614 tx_bytes_nic += q->tx_bytes.count;
615 tx_pkts_nic += q->tx_packets.count;
616 rx_bytes_nic += q->rx_bytes.count;
617 rx_pkts_nic += q->rx_packets.count;
618 rx_drops_nic += q->rx_drops.count;
619 }
620
621 interface->tx_bytes_nic = tx_bytes_nic;
622 interface->tx_packets_nic = tx_pkts_nic;
623 interface->rx_bytes_nic = rx_bytes_nic;
624 interface->rx_packets_nic = rx_pkts_nic;
625 interface->rx_drops_nic = rx_drops_nic;
626
627 /* Fill out the OS statistics structure */
628 net_stats->rx_errors = rx_errors;
629 net_stats->rx_dropped = interface->stats.nodesc_drop.count;
630
631 /* Update VF statistics */
632 fm10k_iov_update_stats(interface);
633
634 clear_bit(__FM10K_UPDATING_STATS, interface->state);
635}
636
637/**
638 * fm10k_watchdog_flush_tx - flush queues on host not ready
639 * @interface: pointer to the device interface structure
640 **/
641static void fm10k_watchdog_flush_tx(struct fm10k_intfc *interface)
642{
643 int some_tx_pending = 0;
644 int i;
645
646 /* nothing to do if carrier is up */
647 if (netif_carrier_ok(interface->netdev))
648 return;
649
650 for (i = 0; i < interface->num_tx_queues; i++) {
651 struct fm10k_ring *tx_ring = interface->tx_ring[i];
652
653 if (tx_ring->next_to_use != tx_ring->next_to_clean) {
654 some_tx_pending = 1;
655 break;
656 }
657 }
658
659 /* We've lost link, so the controller stops DMA, but we've got
660 * queued Tx work that's never going to get done, so reset
661 * controller to flush Tx.
662 */
663 if (some_tx_pending)
664 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
665}
666
667/**
668 * fm10k_watchdog_subtask - check and bring link up
669 * @interface: pointer to the device interface structure
670 **/
671static void fm10k_watchdog_subtask(struct fm10k_intfc *interface)
672{
673 /* if interface is down do nothing */
674 if (test_bit(__FM10K_DOWN, interface->state) ||
675 test_bit(__FM10K_RESETTING, interface->state))
676 return;
677
678 if (interface->host_ready)
679 fm10k_watchdog_host_is_ready(interface);
680 else
681 fm10k_watchdog_host_not_ready(interface);
682
683 /* update stats only once every second */
684 if (time_is_before_jiffies(interface->next_stats_update))
685 fm10k_update_stats(interface);
686
687 /* flush any uncompleted work */
688 fm10k_watchdog_flush_tx(interface);
689}
690
691/**
692 * fm10k_check_hang_subtask - check for hung queues and dropped interrupts
693 * @interface: pointer to the device interface structure
694 *
695 * This function serves two purposes. First it strobes the interrupt lines
696 * in order to make certain interrupts are occurring. Secondly it sets the
697 * bits needed to check for TX hangs. As a result we should immediately
698 * determine if a hang has occurred.
699 */
700static void fm10k_check_hang_subtask(struct fm10k_intfc *interface)
701{
702 /* If we're down or resetting, just bail */
703 if (test_bit(__FM10K_DOWN, interface->state) ||
704 test_bit(__FM10K_RESETTING, interface->state))
705 return;
706
707 /* rate limit tx hang checks to only once every 2 seconds */
708 if (time_is_after_eq_jiffies(interface->next_tx_hang_check))
709 return;
710 interface->next_tx_hang_check = jiffies + (2 * HZ);
711
712 if (netif_carrier_ok(interface->netdev)) {
713 int i;
714
715 /* Force detection of hung controller */
716 for (i = 0; i < interface->num_tx_queues; i++)
717 set_check_for_tx_hang(interface->tx_ring[i]);
718
719 /* Rearm all in-use q_vectors for immediate firing */
720 for (i = 0; i < interface->num_q_vectors; i++) {
721 struct fm10k_q_vector *qv = interface->q_vector[i];
722
723 if (!qv->tx.count && !qv->rx.count)
724 continue;
725 writel(FM10K_ITR_ENABLE | FM10K_ITR_PENDING2, qv->itr);
726 }
727 }
728}
729
730/**
731 * fm10k_service_task - manages and runs subtasks
732 * @work: pointer to work_struct containing our data
733 **/
734static void fm10k_service_task(struct work_struct *work)
735{
736 struct fm10k_intfc *interface;
737
738 interface = container_of(work, struct fm10k_intfc, service_task);
739
740 /* Check whether we're detached first */
741 fm10k_detach_subtask(interface);
742
743 /* tasks run even when interface is down */
744 fm10k_mbx_subtask(interface);
745 fm10k_reset_subtask(interface);
746
747 /* tasks only run when interface is up */
748 fm10k_watchdog_subtask(interface);
749 fm10k_check_hang_subtask(interface);
750
751 /* release lock on service events to allow scheduling next event */
752 fm10k_service_event_complete(interface);
753}
754
755/**
756 * fm10k_macvlan_task - send queued MAC/VLAN requests to switch manager
757 * @work: pointer to work_struct containing our data
758 *
759 * This work item handles sending MAC/VLAN updates to the switch manager. When
760 * the interface is up, it will attempt to queue mailbox messages to the
761 * switch manager requesting updates for MAC/VLAN pairs. If the Tx fifo of the
762 * mailbox is full, it will reschedule itself to try again in a short while.
763 * This ensures that the driver does not overload the switch mailbox with too
764 * many simultaneous requests, causing an unnecessary reset.
765 **/
766static void fm10k_macvlan_task(struct work_struct *work)
767{
768 struct fm10k_macvlan_request *item;
769 struct fm10k_intfc *interface;
770 struct delayed_work *dwork;
771 struct list_head *requests;
772 struct fm10k_hw *hw;
773 unsigned long flags;
774
775 dwork = to_delayed_work(work);
776 interface = container_of(dwork, struct fm10k_intfc, macvlan_task);
777 hw = &interface->hw;
778 requests = &interface->macvlan_requests;
779
780 do {
781 /* Pop the first item off the list */
782 spin_lock_irqsave(&interface->macvlan_lock, flags);
783 item = list_first_entry_or_null(requests,
784 struct fm10k_macvlan_request,
785 list);
786 if (item)
787 list_del_init(&item->list);
788
789 spin_unlock_irqrestore(&interface->macvlan_lock, flags);
790
791 /* We have no more items to process */
792 if (!item)
793 goto done;
794
795 fm10k_mbx_lock(interface);
796
797 /* Check that we have plenty of space to send the message. We
798 * want to ensure that the mailbox stays low enough to avoid a
799 * change in the host state, otherwise we may see spurious
800 * link up / link down notifications.
801 */
802 if (!hw->mbx.ops.tx_ready(&hw->mbx, FM10K_VFMBX_MSG_MTU + 5)) {
803 hw->mbx.ops.process(hw, &hw->mbx);
804 set_bit(__FM10K_MACVLAN_REQUEST, interface->state);
805 fm10k_mbx_unlock(interface);
806
807 /* Put the request back on the list */
808 spin_lock_irqsave(&interface->macvlan_lock, flags);
809 list_add(&item->list, requests);
810 spin_unlock_irqrestore(&interface->macvlan_lock, flags);
811 break;
812 }
813
814 switch (item->type) {
815 case FM10K_MC_MAC_REQUEST:
816 hw->mac.ops.update_mc_addr(hw,
817 item->mac.glort,
818 item->mac.addr,
819 item->mac.vid,
820 item->set);
821 break;
822 case FM10K_UC_MAC_REQUEST:
823 hw->mac.ops.update_uc_addr(hw,
824 item->mac.glort,
825 item->mac.addr,
826 item->mac.vid,
827 item->set,
828 0);
829 break;
830 case FM10K_VLAN_REQUEST:
831 hw->mac.ops.update_vlan(hw,
832 item->vlan.vid,
833 item->vlan.vsi,
834 item->set);
835 break;
836 default:
837 break;
838 }
839
840 fm10k_mbx_unlock(interface);
841
842 /* Free the item now that we've sent the update */
843 kfree(item);
844 } while (true);
845
846done:
847 WARN_ON(!test_bit(__FM10K_MACVLAN_SCHED, interface->state));
848
849 /* flush memory to make sure state is correct */
850 smp_mb__before_atomic();
851 clear_bit(__FM10K_MACVLAN_SCHED, interface->state);
852
853 /* If a MAC/VLAN request was scheduled since we started, we should
854 * re-schedule. However, there is no reason to re-schedule if there is
855 * no work to do.
856 */
857 if (test_bit(__FM10K_MACVLAN_REQUEST, interface->state))
858 fm10k_macvlan_schedule(interface);
859}
860
861/**
862 * fm10k_configure_tx_ring - Configure Tx ring after Reset
863 * @interface: board private structure
864 * @ring: structure containing ring specific data
865 *
866 * Configure the Tx descriptor ring after a reset.
867 **/
868static void fm10k_configure_tx_ring(struct fm10k_intfc *interface,
869 struct fm10k_ring *ring)
870{
871 struct fm10k_hw *hw = &interface->hw;
872 u64 tdba = ring->dma;
873 u32 size = ring->count * sizeof(struct fm10k_tx_desc);
874 u32 txint = FM10K_INT_MAP_DISABLE;
875 u32 txdctl = BIT(FM10K_TXDCTL_MAX_TIME_SHIFT) | FM10K_TXDCTL_ENABLE;
876 u8 reg_idx = ring->reg_idx;
877
878 /* disable queue to avoid issues while updating state */
879 fm10k_write_reg(hw, FM10K_TXDCTL(reg_idx), 0);
880 fm10k_write_flush(hw);
881
882 /* possible poll here to verify ring resources have been cleaned */
883
884 /* set location and size for descriptor ring */
885 fm10k_write_reg(hw, FM10K_TDBAL(reg_idx), tdba & DMA_BIT_MASK(32));
886 fm10k_write_reg(hw, FM10K_TDBAH(reg_idx), tdba >> 32);
887 fm10k_write_reg(hw, FM10K_TDLEN(reg_idx), size);
888
889 /* reset head and tail pointers */
890 fm10k_write_reg(hw, FM10K_TDH(reg_idx), 0);
891 fm10k_write_reg(hw, FM10K_TDT(reg_idx), 0);
892
893 /* store tail pointer */
894 ring->tail = &interface->uc_addr[FM10K_TDT(reg_idx)];
895
896 /* reset ntu and ntc to place SW in sync with hardware */
897 ring->next_to_clean = 0;
898 ring->next_to_use = 0;
899
900 /* Map interrupt */
901 if (ring->q_vector) {
902 txint = ring->q_vector->v_idx + NON_Q_VECTORS;
903 txint |= FM10K_INT_MAP_TIMER0;
904 }
905
906 fm10k_write_reg(hw, FM10K_TXINT(reg_idx), txint);
907
908 /* enable use of FTAG bit in Tx descriptor, register is RO for VF */
909 fm10k_write_reg(hw, FM10K_PFVTCTL(reg_idx),
910 FM10K_PFVTCTL_FTAG_DESC_ENABLE);
911
912 /* Initialize XPS */
913 if (!test_and_set_bit(__FM10K_TX_XPS_INIT_DONE, ring->state) &&
914 ring->q_vector)
915 netif_set_xps_queue(ring->netdev,
916 &ring->q_vector->affinity_mask,
917 ring->queue_index);
918
919 /* enable queue */
920 fm10k_write_reg(hw, FM10K_TXDCTL(reg_idx), txdctl);
921}
922
923/**
924 * fm10k_enable_tx_ring - Verify Tx ring is enabled after configuration
925 * @interface: board private structure
926 * @ring: structure containing ring specific data
927 *
928 * Verify the Tx descriptor ring is ready for transmit.
929 **/
930static void fm10k_enable_tx_ring(struct fm10k_intfc *interface,
931 struct fm10k_ring *ring)
932{
933 struct fm10k_hw *hw = &interface->hw;
934 int wait_loop = 10;
935 u32 txdctl;
936 u8 reg_idx = ring->reg_idx;
937
938 /* if we are already enabled just exit */
939 if (fm10k_read_reg(hw, FM10K_TXDCTL(reg_idx)) & FM10K_TXDCTL_ENABLE)
940 return;
941
942 /* poll to verify queue is enabled */
943 do {
944 usleep_range(1000, 2000);
945 txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(reg_idx));
946 } while (!(txdctl & FM10K_TXDCTL_ENABLE) && --wait_loop);
947 if (!wait_loop)
948 netif_err(interface, drv, interface->netdev,
949 "Could not enable Tx Queue %d\n", reg_idx);
950}
951
952/**
953 * fm10k_configure_tx - Configure Transmit Unit after Reset
954 * @interface: board private structure
955 *
956 * Configure the Tx unit of the MAC after a reset.
957 **/
958static void fm10k_configure_tx(struct fm10k_intfc *interface)
959{
960 int i;
961
962 /* Setup the HW Tx Head and Tail descriptor pointers */
963 for (i = 0; i < interface->num_tx_queues; i++)
964 fm10k_configure_tx_ring(interface, interface->tx_ring[i]);
965
966 /* poll here to verify that Tx rings are now enabled */
967 for (i = 0; i < interface->num_tx_queues; i++)
968 fm10k_enable_tx_ring(interface, interface->tx_ring[i]);
969}
970
971/**
972 * fm10k_configure_rx_ring - Configure Rx ring after Reset
973 * @interface: board private structure
974 * @ring: structure containing ring specific data
975 *
976 * Configure the Rx descriptor ring after a reset.
977 **/
978static void fm10k_configure_rx_ring(struct fm10k_intfc *interface,
979 struct fm10k_ring *ring)
980{
981 u64 rdba = ring->dma;
982 struct fm10k_hw *hw = &interface->hw;
983 u32 size = ring->count * sizeof(union fm10k_rx_desc);
984 u32 rxqctl, rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY;
985 u32 srrctl = FM10K_SRRCTL_BUFFER_CHAINING_EN;
986 u32 rxint = FM10K_INT_MAP_DISABLE;
987 u8 rx_pause = interface->rx_pause;
988 u8 reg_idx = ring->reg_idx;
989
990 /* disable queue to avoid issues while updating state */
991 rxqctl = fm10k_read_reg(hw, FM10K_RXQCTL(reg_idx));
992 rxqctl &= ~FM10K_RXQCTL_ENABLE;
993 fm10k_write_reg(hw, FM10K_RXQCTL(reg_idx), rxqctl);
994 fm10k_write_flush(hw);
995
996 /* possible poll here to verify ring resources have been cleaned */
997
998 /* set location and size for descriptor ring */
999 fm10k_write_reg(hw, FM10K_RDBAL(reg_idx), rdba & DMA_BIT_MASK(32));
1000 fm10k_write_reg(hw, FM10K_RDBAH(reg_idx), rdba >> 32);
1001 fm10k_write_reg(hw, FM10K_RDLEN(reg_idx), size);
1002
1003 /* reset head and tail pointers */
1004 fm10k_write_reg(hw, FM10K_RDH(reg_idx), 0);
1005 fm10k_write_reg(hw, FM10K_RDT(reg_idx), 0);
1006
1007 /* store tail pointer */
1008 ring->tail = &interface->uc_addr[FM10K_RDT(reg_idx)];
1009
1010 /* reset ntu and ntc to place SW in sync with hardware */
1011 ring->next_to_clean = 0;
1012 ring->next_to_use = 0;
1013 ring->next_to_alloc = 0;
1014
1015 /* Configure the Rx buffer size for one buff without split */
1016 srrctl |= FM10K_RX_BUFSZ >> FM10K_SRRCTL_BSIZEPKT_SHIFT;
1017
1018 /* Configure the Rx ring to suppress loopback packets */
1019 srrctl |= FM10K_SRRCTL_LOOPBACK_SUPPRESS;
1020 fm10k_write_reg(hw, FM10K_SRRCTL(reg_idx), srrctl);
1021
1022 /* Enable drop on empty */
1023#ifdef CONFIG_DCB
1024 if (interface->pfc_en)
1025 rx_pause = interface->pfc_en;
1026#endif
1027 if (!(rx_pause & BIT(ring->qos_pc)))
1028 rxdctl |= FM10K_RXDCTL_DROP_ON_EMPTY;
1029
1030 fm10k_write_reg(hw, FM10K_RXDCTL(reg_idx), rxdctl);
1031
1032 /* assign default VLAN to queue */
1033 ring->vid = hw->mac.default_vid;
1034
1035 /* if we have an active VLAN, disable default VLAN ID */
1036 if (test_bit(hw->mac.default_vid, interface->active_vlans))
1037 ring->vid |= FM10K_VLAN_CLEAR;
1038
1039 /* Map interrupt */
1040 if (ring->q_vector) {
1041 rxint = ring->q_vector->v_idx + NON_Q_VECTORS;
1042 rxint |= FM10K_INT_MAP_TIMER1;
1043 }
1044
1045 fm10k_write_reg(hw, FM10K_RXINT(reg_idx), rxint);
1046
1047 /* enable queue */
1048 rxqctl = fm10k_read_reg(hw, FM10K_RXQCTL(reg_idx));
1049 rxqctl |= FM10K_RXQCTL_ENABLE;
1050 fm10k_write_reg(hw, FM10K_RXQCTL(reg_idx), rxqctl);
1051
1052 /* place buffers on ring for receive data */
1053 fm10k_alloc_rx_buffers(ring, fm10k_desc_unused(ring));
1054}
1055
1056/**
1057 * fm10k_update_rx_drop_en - Configures the drop enable bits for Rx rings
1058 * @interface: board private structure
1059 *
1060 * Configure the drop enable bits for the Rx rings.
1061 **/
1062void fm10k_update_rx_drop_en(struct fm10k_intfc *interface)
1063{
1064 struct fm10k_hw *hw = &interface->hw;
1065 u8 rx_pause = interface->rx_pause;
1066 int i;
1067
1068#ifdef CONFIG_DCB
1069 if (interface->pfc_en)
1070 rx_pause = interface->pfc_en;
1071
1072#endif
1073 for (i = 0; i < interface->num_rx_queues; i++) {
1074 struct fm10k_ring *ring = interface->rx_ring[i];
1075 u32 rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY;
1076 u8 reg_idx = ring->reg_idx;
1077
1078 if (!(rx_pause & BIT(ring->qos_pc)))
1079 rxdctl |= FM10K_RXDCTL_DROP_ON_EMPTY;
1080
1081 fm10k_write_reg(hw, FM10K_RXDCTL(reg_idx), rxdctl);
1082 }
1083}
1084
1085/**
1086 * fm10k_configure_dglort - Configure Receive DGLORT after reset
1087 * @interface: board private structure
1088 *
1089 * Configure the DGLORT description and RSS tables.
1090 **/
1091static void fm10k_configure_dglort(struct fm10k_intfc *interface)
1092{
1093 struct fm10k_dglort_cfg dglort = { 0 };
1094 struct fm10k_hw *hw = &interface->hw;
1095 int i;
1096 u32 mrqc;
1097
1098 /* Fill out hash function seeds */
1099 for (i = 0; i < FM10K_RSSRK_SIZE; i++)
1100 fm10k_write_reg(hw, FM10K_RSSRK(0, i), interface->rssrk[i]);
1101
1102 /* Write RETA table to hardware */
1103 for (i = 0; i < FM10K_RETA_SIZE; i++)
1104 fm10k_write_reg(hw, FM10K_RETA(0, i), interface->reta[i]);
1105
1106 /* Generate RSS hash based on packet types, TCP/UDP
1107 * port numbers and/or IPv4/v6 src and dst addresses
1108 */
1109 mrqc = FM10K_MRQC_IPV4 |
1110 FM10K_MRQC_TCP_IPV4 |
1111 FM10K_MRQC_IPV6 |
1112 FM10K_MRQC_TCP_IPV6;
1113
1114 if (test_bit(FM10K_FLAG_RSS_FIELD_IPV4_UDP, interface->flags))
1115 mrqc |= FM10K_MRQC_UDP_IPV4;
1116 if (test_bit(FM10K_FLAG_RSS_FIELD_IPV6_UDP, interface->flags))
1117 mrqc |= FM10K_MRQC_UDP_IPV6;
1118
1119 fm10k_write_reg(hw, FM10K_MRQC(0), mrqc);
1120
1121 /* configure default DGLORT mapping for RSS/DCB */
1122 dglort.inner_rss = 1;
1123 dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask);
1124 dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask);
1125 hw->mac.ops.configure_dglort_map(hw, &dglort);
1126
1127 /* assign GLORT per queue for queue mapped testing */
1128 if (interface->glort_count > 64) {
1129 memset(&dglort, 0, sizeof(dglort));
1130 dglort.inner_rss = 1;
1131 dglort.glort = interface->glort + 64;
1132 dglort.idx = fm10k_dglort_pf_queue;
1133 dglort.queue_l = fls(interface->num_rx_queues - 1);
1134 hw->mac.ops.configure_dglort_map(hw, &dglort);
1135 }
1136
1137 /* assign glort value for RSS/DCB specific to this interface */
1138 memset(&dglort, 0, sizeof(dglort));
1139 dglort.inner_rss = 1;
1140 dglort.glort = interface->glort;
1141 dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask);
1142 dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask);
1143 /* configure DGLORT mapping for RSS/DCB */
1144 dglort.idx = fm10k_dglort_pf_rss;
1145 if (interface->l2_accel)
1146 dglort.shared_l = fls(interface->l2_accel->size);
1147 hw->mac.ops.configure_dglort_map(hw, &dglort);
1148}
1149
1150/**
1151 * fm10k_configure_rx - Configure Receive Unit after Reset
1152 * @interface: board private structure
1153 *
1154 * Configure the Rx unit of the MAC after a reset.
1155 **/
1156static void fm10k_configure_rx(struct fm10k_intfc *interface)
1157{
1158 int i;
1159
1160 /* Configure SWPRI to PC map */
1161 fm10k_configure_swpri_map(interface);
1162
1163 /* Configure RSS and DGLORT map */
1164 fm10k_configure_dglort(interface);
1165
1166 /* Setup the HW Rx Head and Tail descriptor pointers */
1167 for (i = 0; i < interface->num_rx_queues; i++)
1168 fm10k_configure_rx_ring(interface, interface->rx_ring[i]);
1169
1170 /* possible poll here to verify that Rx rings are now enabled */
1171}
1172
1173static void fm10k_napi_enable_all(struct fm10k_intfc *interface)
1174{
1175 struct fm10k_q_vector *q_vector;
1176 int q_idx;
1177
1178 for (q_idx = 0; q_idx < interface->num_q_vectors; q_idx++) {
1179 q_vector = interface->q_vector[q_idx];
1180 napi_enable(&q_vector->napi);
1181 }
1182}
1183
1184static irqreturn_t fm10k_msix_clean_rings(int __always_unused irq, void *data)
1185{
1186 struct fm10k_q_vector *q_vector = data;
1187
1188 if (q_vector->rx.count || q_vector->tx.count)
1189 napi_schedule_irqoff(&q_vector->napi);
1190
1191 return IRQ_HANDLED;
1192}
1193
1194static irqreturn_t fm10k_msix_mbx_vf(int __always_unused irq, void *data)
1195{
1196 struct fm10k_intfc *interface = data;
1197 struct fm10k_hw *hw = &interface->hw;
1198 struct fm10k_mbx_info *mbx = &hw->mbx;
1199
1200 /* re-enable mailbox interrupt and indicate 20us delay */
1201 fm10k_write_reg(hw, FM10K_VFITR(FM10K_MBX_VECTOR),
1202 (FM10K_MBX_INT_DELAY >> hw->mac.itr_scale) |
1203 FM10K_ITR_ENABLE);
1204
1205 /* service upstream mailbox */
1206 if (fm10k_mbx_trylock(interface)) {
1207 mbx->ops.process(hw, mbx);
1208 fm10k_mbx_unlock(interface);
1209 }
1210
1211 hw->mac.get_host_state = true;
1212 fm10k_service_event_schedule(interface);
1213
1214 return IRQ_HANDLED;
1215}
1216
1217#define FM10K_ERR_MSG(type) case (type): error = #type; break
1218static void fm10k_handle_fault(struct fm10k_intfc *interface, int type,
1219 struct fm10k_fault *fault)
1220{
1221 struct pci_dev *pdev = interface->pdev;
1222 struct fm10k_hw *hw = &interface->hw;
1223 struct fm10k_iov_data *iov_data = interface->iov_data;
1224 char *error;
1225
1226 switch (type) {
1227 case FM10K_PCA_FAULT:
1228 switch (fault->type) {
1229 default:
1230 error = "Unknown PCA error";
1231 break;
1232 FM10K_ERR_MSG(PCA_NO_FAULT);
1233 FM10K_ERR_MSG(PCA_UNMAPPED_ADDR);
1234 FM10K_ERR_MSG(PCA_BAD_QACCESS_PF);
1235 FM10K_ERR_MSG(PCA_BAD_QACCESS_VF);
1236 FM10K_ERR_MSG(PCA_MALICIOUS_REQ);
1237 FM10K_ERR_MSG(PCA_POISONED_TLP);
1238 FM10K_ERR_MSG(PCA_TLP_ABORT);
1239 }
1240 break;
1241 case FM10K_THI_FAULT:
1242 switch (fault->type) {
1243 default:
1244 error = "Unknown THI error";
1245 break;
1246 FM10K_ERR_MSG(THI_NO_FAULT);
1247 FM10K_ERR_MSG(THI_MAL_DIS_Q_FAULT);
1248 }
1249 break;
1250 case FM10K_FUM_FAULT:
1251 switch (fault->type) {
1252 default:
1253 error = "Unknown FUM error";
1254 break;
1255 FM10K_ERR_MSG(FUM_NO_FAULT);
1256 FM10K_ERR_MSG(FUM_UNMAPPED_ADDR);
1257 FM10K_ERR_MSG(FUM_BAD_VF_QACCESS);
1258 FM10K_ERR_MSG(FUM_ADD_DECODE_ERR);
1259 FM10K_ERR_MSG(FUM_RO_ERROR);
1260 FM10K_ERR_MSG(FUM_QPRC_CRC_ERROR);
1261 FM10K_ERR_MSG(FUM_CSR_TIMEOUT);
1262 FM10K_ERR_MSG(FUM_INVALID_TYPE);
1263 FM10K_ERR_MSG(FUM_INVALID_LENGTH);
1264 FM10K_ERR_MSG(FUM_INVALID_BE);
1265 FM10K_ERR_MSG(FUM_INVALID_ALIGN);
1266 }
1267 break;
1268 default:
1269 error = "Undocumented fault";
1270 break;
1271 }
1272
1273 dev_warn(&pdev->dev,
1274 "%s Address: 0x%llx SpecInfo: 0x%x Func: %02x.%0x\n",
1275 error, fault->address, fault->specinfo,
1276 PCI_SLOT(fault->func), PCI_FUNC(fault->func));
1277
1278 /* For VF faults, clear out the respective LPORT, reset the queue
1279 * resources, and then reconnect to the mailbox. This allows the
1280 * VF in question to resume behavior. For transient faults that are
1281 * the result of non-malicious behavior this will log the fault and
1282 * allow the VF to resume functionality. Obviously for malicious VFs
1283 * they will be able to attempt malicious behavior again. In this
1284 * case, the system administrator will need to step in and manually
1285 * remove or disable the VF in question.
1286 */
1287 if (fault->func && iov_data) {
1288 int vf = fault->func - 1;
1289 struct fm10k_vf_info *vf_info = &iov_data->vf_info[vf];
1290
1291 hw->iov.ops.reset_lport(hw, vf_info);
1292 hw->iov.ops.reset_resources(hw, vf_info);
1293
1294 /* reset_lport disables the VF, so re-enable it */
1295 hw->iov.ops.set_lport(hw, vf_info, vf,
1296 FM10K_VF_FLAG_MULTI_CAPABLE);
1297
1298 /* reset_resources will disconnect from the mbx */
1299 vf_info->mbx.ops.connect(hw, &vf_info->mbx);
1300 }
1301}
1302
1303static void fm10k_report_fault(struct fm10k_intfc *interface, u32 eicr)
1304{
1305 struct fm10k_hw *hw = &interface->hw;
1306 struct fm10k_fault fault = { 0 };
1307 int type, err;
1308
1309 for (eicr &= FM10K_EICR_FAULT_MASK, type = FM10K_PCA_FAULT;
1310 eicr;
1311 eicr >>= 1, type += FM10K_FAULT_SIZE) {
1312 /* only check if there is an error reported */
1313 if (!(eicr & 0x1))
1314 continue;
1315
1316 /* retrieve fault info */
1317 err = hw->mac.ops.get_fault(hw, type, &fault);
1318 if (err) {
1319 dev_err(&interface->pdev->dev,
1320 "error reading fault\n");
1321 continue;
1322 }
1323
1324 fm10k_handle_fault(interface, type, &fault);
1325 }
1326}
1327
1328static void fm10k_reset_drop_on_empty(struct fm10k_intfc *interface, u32 eicr)
1329{
1330 struct fm10k_hw *hw = &interface->hw;
1331 const u32 rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY;
1332 u32 maxholdq;
1333 int q;
1334
1335 if (!(eicr & FM10K_EICR_MAXHOLDTIME))
1336 return;
1337
1338 maxholdq = fm10k_read_reg(hw, FM10K_MAXHOLDQ(7));
1339 if (maxholdq)
1340 fm10k_write_reg(hw, FM10K_MAXHOLDQ(7), maxholdq);
1341 for (q = 255;;) {
1342 if (maxholdq & BIT(31)) {
1343 if (q < FM10K_MAX_QUEUES_PF) {
1344 interface->rx_overrun_pf++;
1345 fm10k_write_reg(hw, FM10K_RXDCTL(q), rxdctl);
1346 } else {
1347 interface->rx_overrun_vf++;
1348 }
1349 }
1350
1351 maxholdq *= 2;
1352 if (!maxholdq)
1353 q &= ~(32 - 1);
1354
1355 if (!q)
1356 break;
1357
1358 if (q-- % 32)
1359 continue;
1360
1361 maxholdq = fm10k_read_reg(hw, FM10K_MAXHOLDQ(q / 32));
1362 if (maxholdq)
1363 fm10k_write_reg(hw, FM10K_MAXHOLDQ(q / 32), maxholdq);
1364 }
1365}
1366
1367static irqreturn_t fm10k_msix_mbx_pf(int __always_unused irq, void *data)
1368{
1369 struct fm10k_intfc *interface = data;
1370 struct fm10k_hw *hw = &interface->hw;
1371 struct fm10k_mbx_info *mbx = &hw->mbx;
1372 u32 eicr;
1373
1374 /* unmask any set bits related to this interrupt */
1375 eicr = fm10k_read_reg(hw, FM10K_EICR);
1376 fm10k_write_reg(hw, FM10K_EICR, eicr & (FM10K_EICR_MAILBOX |
1377 FM10K_EICR_SWITCHREADY |
1378 FM10K_EICR_SWITCHNOTREADY));
1379
1380 /* report any faults found to the message log */
1381 fm10k_report_fault(interface, eicr);
1382
1383 /* reset any queues disabled due to receiver overrun */
1384 fm10k_reset_drop_on_empty(interface, eicr);
1385
1386 /* service mailboxes */
1387 if (fm10k_mbx_trylock(interface)) {
1388 s32 err = mbx->ops.process(hw, mbx);
1389
1390 if (err == FM10K_ERR_RESET_REQUESTED)
1391 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1392
1393 /* handle VFLRE events */
1394 fm10k_iov_event(interface);
1395 fm10k_mbx_unlock(interface);
1396 }
1397
1398 /* if switch toggled state we should reset GLORTs */
1399 if (eicr & FM10K_EICR_SWITCHNOTREADY) {
1400 /* force link down for at least 4 seconds */
1401 interface->link_down_event = jiffies + (4 * HZ);
1402 set_bit(__FM10K_LINK_DOWN, interface->state);
1403
1404 /* reset dglort_map back to no config */
1405 hw->mac.dglort_map = FM10K_DGLORTMAP_NONE;
1406 }
1407
1408 /* we should validate host state after interrupt event */
1409 hw->mac.get_host_state = true;
1410
1411 /* validate host state, and handle VF mailboxes in the service task */
1412 fm10k_service_event_schedule(interface);
1413
1414 /* re-enable mailbox interrupt and indicate 20us delay */
1415 fm10k_write_reg(hw, FM10K_ITR(FM10K_MBX_VECTOR),
1416 (FM10K_MBX_INT_DELAY >> hw->mac.itr_scale) |
1417 FM10K_ITR_ENABLE);
1418
1419 return IRQ_HANDLED;
1420}
1421
1422void fm10k_mbx_free_irq(struct fm10k_intfc *interface)
1423{
1424 struct fm10k_hw *hw = &interface->hw;
1425 struct msix_entry *entry;
1426 int itr_reg;
1427
1428 /* no mailbox IRQ to free if MSI-X is not enabled */
1429 if (!interface->msix_entries)
1430 return;
1431
1432 entry = &interface->msix_entries[FM10K_MBX_VECTOR];
1433
1434 /* disconnect the mailbox */
1435 hw->mbx.ops.disconnect(hw, &hw->mbx);
1436
1437 /* disable Mailbox cause */
1438 if (hw->mac.type == fm10k_mac_pf) {
1439 fm10k_write_reg(hw, FM10K_EIMR,
1440 FM10K_EIMR_DISABLE(PCA_FAULT) |
1441 FM10K_EIMR_DISABLE(FUM_FAULT) |
1442 FM10K_EIMR_DISABLE(MAILBOX) |
1443 FM10K_EIMR_DISABLE(SWITCHREADY) |
1444 FM10K_EIMR_DISABLE(SWITCHNOTREADY) |
1445 FM10K_EIMR_DISABLE(SRAMERROR) |
1446 FM10K_EIMR_DISABLE(VFLR) |
1447 FM10K_EIMR_DISABLE(MAXHOLDTIME));
1448 itr_reg = FM10K_ITR(FM10K_MBX_VECTOR);
1449 } else {
1450 itr_reg = FM10K_VFITR(FM10K_MBX_VECTOR);
1451 }
1452
1453 fm10k_write_reg(hw, itr_reg, FM10K_ITR_MASK_SET);
1454
1455 free_irq(entry->vector, interface);
1456}
1457
1458static s32 fm10k_mbx_mac_addr(struct fm10k_hw *hw, u32 **results,
1459 struct fm10k_mbx_info *mbx)
1460{
1461 bool vlan_override = hw->mac.vlan_override;
1462 u16 default_vid = hw->mac.default_vid;
1463 struct fm10k_intfc *interface;
1464 s32 err;
1465
1466 err = fm10k_msg_mac_vlan_vf(hw, results, mbx);
1467 if (err)
1468 return err;
1469
1470 interface = container_of(hw, struct fm10k_intfc, hw);
1471
1472 /* MAC was changed so we need reset */
1473 if (is_valid_ether_addr(hw->mac.perm_addr) &&
1474 !ether_addr_equal(hw->mac.perm_addr, hw->mac.addr))
1475 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1476
1477 /* VLAN override was changed, or default VLAN changed */
1478 if ((vlan_override != hw->mac.vlan_override) ||
1479 (default_vid != hw->mac.default_vid))
1480 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1481
1482 return 0;
1483}
1484
1485/* generic error handler for mailbox issues */
1486static s32 fm10k_mbx_error(struct fm10k_hw *hw, u32 **results,
1487 struct fm10k_mbx_info __always_unused *mbx)
1488{
1489 struct fm10k_intfc *interface;
1490 struct pci_dev *pdev;
1491
1492 interface = container_of(hw, struct fm10k_intfc, hw);
1493 pdev = interface->pdev;
1494
1495 dev_err(&pdev->dev, "Unknown message ID %u\n",
1496 **results & FM10K_TLV_ID_MASK);
1497
1498 return 0;
1499}
1500
1501static const struct fm10k_msg_data vf_mbx_data[] = {
1502 FM10K_TLV_MSG_TEST_HANDLER(fm10k_tlv_msg_test),
1503 FM10K_VF_MSG_MAC_VLAN_HANDLER(fm10k_mbx_mac_addr),
1504 FM10K_VF_MSG_LPORT_STATE_HANDLER(fm10k_msg_lport_state_vf),
1505 FM10K_TLV_MSG_ERROR_HANDLER(fm10k_mbx_error),
1506};
1507
1508static int fm10k_mbx_request_irq_vf(struct fm10k_intfc *interface)
1509{
1510 struct msix_entry *entry = &interface->msix_entries[FM10K_MBX_VECTOR];
1511 struct net_device *dev = interface->netdev;
1512 struct fm10k_hw *hw = &interface->hw;
1513 int err;
1514
1515 /* Use timer0 for interrupt moderation on the mailbox */
1516 u32 itr = entry->entry | FM10K_INT_MAP_TIMER0;
1517
1518 /* register mailbox handlers */
1519 err = hw->mbx.ops.register_handlers(&hw->mbx, vf_mbx_data);
1520 if (err)
1521 return err;
1522
1523 /* request the IRQ */
1524 err = request_irq(entry->vector, fm10k_msix_mbx_vf, 0,
1525 dev->name, interface);
1526 if (err) {
1527 netif_err(interface, probe, dev,
1528 "request_irq for msix_mbx failed: %d\n", err);
1529 return err;
1530 }
1531
1532 /* map all of the interrupt sources */
1533 fm10k_write_reg(hw, FM10K_VFINT_MAP, itr);
1534
1535 /* enable interrupt */
1536 fm10k_write_reg(hw, FM10K_VFITR(entry->entry), FM10K_ITR_ENABLE);
1537
1538 return 0;
1539}
1540
1541static s32 fm10k_lport_map(struct fm10k_hw *hw, u32 **results,
1542 struct fm10k_mbx_info *mbx)
1543{
1544 struct fm10k_intfc *interface;
1545 u32 dglort_map = hw->mac.dglort_map;
1546 s32 err;
1547
1548 interface = container_of(hw, struct fm10k_intfc, hw);
1549
1550 err = fm10k_msg_err_pf(hw, results, mbx);
1551 if (!err && hw->swapi.status) {
1552 /* force link down for a reasonable delay */
1553 interface->link_down_event = jiffies + (2 * HZ);
1554 set_bit(__FM10K_LINK_DOWN, interface->state);
1555
1556 /* reset dglort_map back to no config */
1557 hw->mac.dglort_map = FM10K_DGLORTMAP_NONE;
1558
1559 fm10k_service_event_schedule(interface);
1560
1561 /* prevent overloading kernel message buffer */
1562 if (interface->lport_map_failed)
1563 return 0;
1564
1565 interface->lport_map_failed = true;
1566
1567 if (hw->swapi.status == FM10K_MSG_ERR_PEP_NOT_SCHEDULED)
1568 dev_warn(&interface->pdev->dev,
1569 "cannot obtain link because the host interface is configured for a PCIe host interface bandwidth of zero\n");
1570 dev_warn(&interface->pdev->dev,
1571 "request logical port map failed: %d\n",
1572 hw->swapi.status);
1573
1574 return 0;
1575 }
1576
1577 err = fm10k_msg_lport_map_pf(hw, results, mbx);
1578 if (err)
1579 return err;
1580
1581 interface->lport_map_failed = false;
1582
1583 /* we need to reset if port count was just updated */
1584 if (dglort_map != hw->mac.dglort_map)
1585 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1586
1587 return 0;
1588}
1589
1590static s32 fm10k_update_pvid(struct fm10k_hw *hw, u32 **results,
1591 struct fm10k_mbx_info __always_unused *mbx)
1592{
1593 struct fm10k_intfc *interface;
1594 u16 glort, pvid;
1595 u32 pvid_update;
1596 s32 err;
1597
1598 err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_UPDATE_PVID],
1599 &pvid_update);
1600 if (err)
1601 return err;
1602
1603 /* extract values from the pvid update */
1604 glort = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_GLORT);
1605 pvid = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_PVID);
1606
1607 /* if glort is not valid return error */
1608 if (!fm10k_glort_valid_pf(hw, glort))
1609 return FM10K_ERR_PARAM;
1610
1611 /* verify VLAN ID is valid */
1612 if (pvid >= FM10K_VLAN_TABLE_VID_MAX)
1613 return FM10K_ERR_PARAM;
1614
1615 interface = container_of(hw, struct fm10k_intfc, hw);
1616
1617 /* check to see if this belongs to one of the VFs */
1618 err = fm10k_iov_update_pvid(interface, glort, pvid);
1619 if (!err)
1620 return 0;
1621
1622 /* we need to reset if default VLAN was just updated */
1623 if (pvid != hw->mac.default_vid)
1624 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1625
1626 hw->mac.default_vid = pvid;
1627
1628 return 0;
1629}
1630
1631static const struct fm10k_msg_data pf_mbx_data[] = {
1632 FM10K_PF_MSG_ERR_HANDLER(XCAST_MODES, fm10k_msg_err_pf),
1633 FM10K_PF_MSG_ERR_HANDLER(UPDATE_MAC_FWD_RULE, fm10k_msg_err_pf),
1634 FM10K_PF_MSG_LPORT_MAP_HANDLER(fm10k_lport_map),
1635 FM10K_PF_MSG_ERR_HANDLER(LPORT_CREATE, fm10k_msg_err_pf),
1636 FM10K_PF_MSG_ERR_HANDLER(LPORT_DELETE, fm10k_msg_err_pf),
1637 FM10K_PF_MSG_UPDATE_PVID_HANDLER(fm10k_update_pvid),
1638 FM10K_TLV_MSG_ERROR_HANDLER(fm10k_mbx_error),
1639};
1640
1641static int fm10k_mbx_request_irq_pf(struct fm10k_intfc *interface)
1642{
1643 struct msix_entry *entry = &interface->msix_entries[FM10K_MBX_VECTOR];
1644 struct net_device *dev = interface->netdev;
1645 struct fm10k_hw *hw = &interface->hw;
1646 int err;
1647
1648 /* Use timer0 for interrupt moderation on the mailbox */
1649 u32 mbx_itr = entry->entry | FM10K_INT_MAP_TIMER0;
1650 u32 other_itr = entry->entry | FM10K_INT_MAP_IMMEDIATE;
1651
1652 /* register mailbox handlers */
1653 err = hw->mbx.ops.register_handlers(&hw->mbx, pf_mbx_data);
1654 if (err)
1655 return err;
1656
1657 /* request the IRQ */
1658 err = request_irq(entry->vector, fm10k_msix_mbx_pf, 0,
1659 dev->name, interface);
1660 if (err) {
1661 netif_err(interface, probe, dev,
1662 "request_irq for msix_mbx failed: %d\n", err);
1663 return err;
1664 }
1665
1666 /* Enable interrupts w/ no moderation for "other" interrupts */
1667 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_pcie_fault), other_itr);
1668 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_switch_up_down), other_itr);
1669 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_sram), other_itr);
1670 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_max_hold_time), other_itr);
1671 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_vflr), other_itr);
1672
1673 /* Enable interrupts w/ moderation for mailbox */
1674 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_mailbox), mbx_itr);
1675
1676 /* Enable individual interrupt causes */
1677 fm10k_write_reg(hw, FM10K_EIMR, FM10K_EIMR_ENABLE(PCA_FAULT) |
1678 FM10K_EIMR_ENABLE(FUM_FAULT) |
1679 FM10K_EIMR_ENABLE(MAILBOX) |
1680 FM10K_EIMR_ENABLE(SWITCHREADY) |
1681 FM10K_EIMR_ENABLE(SWITCHNOTREADY) |
1682 FM10K_EIMR_ENABLE(SRAMERROR) |
1683 FM10K_EIMR_ENABLE(VFLR) |
1684 FM10K_EIMR_ENABLE(MAXHOLDTIME));
1685
1686 /* enable interrupt */
1687 fm10k_write_reg(hw, FM10K_ITR(entry->entry), FM10K_ITR_ENABLE);
1688
1689 return 0;
1690}
1691
1692int fm10k_mbx_request_irq(struct fm10k_intfc *interface)
1693{
1694 struct fm10k_hw *hw = &interface->hw;
1695 int err;
1696
1697 /* enable Mailbox cause */
1698 if (hw->mac.type == fm10k_mac_pf)
1699 err = fm10k_mbx_request_irq_pf(interface);
1700 else
1701 err = fm10k_mbx_request_irq_vf(interface);
1702 if (err)
1703 return err;
1704
1705 /* connect mailbox */
1706 err = hw->mbx.ops.connect(hw, &hw->mbx);
1707
1708 /* if the mailbox failed to connect, then free IRQ */
1709 if (err)
1710 fm10k_mbx_free_irq(interface);
1711
1712 return err;
1713}
1714
1715/**
1716 * fm10k_qv_free_irq - release interrupts associated with queue vectors
1717 * @interface: board private structure
1718 *
1719 * Release all interrupts associated with this interface
1720 **/
1721void fm10k_qv_free_irq(struct fm10k_intfc *interface)
1722{
1723 int vector = interface->num_q_vectors;
1724 struct msix_entry *entry;
1725
1726 entry = &interface->msix_entries[NON_Q_VECTORS + vector];
1727
1728 while (vector) {
1729 struct fm10k_q_vector *q_vector;
1730
1731 vector--;
1732 entry--;
1733 q_vector = interface->q_vector[vector];
1734
1735 if (!q_vector->tx.count && !q_vector->rx.count)
1736 continue;
1737
1738 /* clear the affinity_mask in the IRQ descriptor */
1739 irq_set_affinity_hint(entry->vector, NULL);
1740
1741 /* disable interrupts */
1742 writel(FM10K_ITR_MASK_SET, q_vector->itr);
1743
1744 free_irq(entry->vector, q_vector);
1745 }
1746}
1747
1748/**
1749 * fm10k_qv_request_irq - initialize interrupts for queue vectors
1750 * @interface: board private structure
1751 *
1752 * Attempts to configure interrupts using the best available
1753 * capabilities of the hardware and kernel.
1754 **/
1755int fm10k_qv_request_irq(struct fm10k_intfc *interface)
1756{
1757 struct net_device *dev = interface->netdev;
1758 struct fm10k_hw *hw = &interface->hw;
1759 struct msix_entry *entry;
1760 unsigned int ri = 0, ti = 0;
1761 int vector, err;
1762
1763 entry = &interface->msix_entries[NON_Q_VECTORS];
1764
1765 for (vector = 0; vector < interface->num_q_vectors; vector++) {
1766 struct fm10k_q_vector *q_vector = interface->q_vector[vector];
1767
1768 /* name the vector */
1769 if (q_vector->tx.count && q_vector->rx.count) {
1770 snprintf(q_vector->name, sizeof(q_vector->name),
1771 "%s-TxRx-%u", dev->name, ri++);
1772 ti++;
1773 } else if (q_vector->rx.count) {
1774 snprintf(q_vector->name, sizeof(q_vector->name),
1775 "%s-rx-%u", dev->name, ri++);
1776 } else if (q_vector->tx.count) {
1777 snprintf(q_vector->name, sizeof(q_vector->name),
1778 "%s-tx-%u", dev->name, ti++);
1779 } else {
1780 /* skip this unused q_vector */
1781 continue;
1782 }
1783
1784 /* Assign ITR register to q_vector */
1785 q_vector->itr = (hw->mac.type == fm10k_mac_pf) ?
1786 &interface->uc_addr[FM10K_ITR(entry->entry)] :
1787 &interface->uc_addr[FM10K_VFITR(entry->entry)];
1788
1789 /* request the IRQ */
1790 err = request_irq(entry->vector, &fm10k_msix_clean_rings, 0,
1791 q_vector->name, q_vector);
1792 if (err) {
1793 netif_err(interface, probe, dev,
1794 "request_irq failed for MSIX interrupt Error: %d\n",
1795 err);
1796 goto err_out;
1797 }
1798
1799 /* assign the mask for this irq */
1800 irq_set_affinity_hint(entry->vector, &q_vector->affinity_mask);
1801
1802 /* Enable q_vector */
1803 writel(FM10K_ITR_ENABLE, q_vector->itr);
1804
1805 entry++;
1806 }
1807
1808 return 0;
1809
1810err_out:
1811 /* wind through the ring freeing all entries and vectors */
1812 while (vector) {
1813 struct fm10k_q_vector *q_vector;
1814
1815 entry--;
1816 vector--;
1817 q_vector = interface->q_vector[vector];
1818
1819 if (!q_vector->tx.count && !q_vector->rx.count)
1820 continue;
1821
1822 /* clear the affinity_mask in the IRQ descriptor */
1823 irq_set_affinity_hint(entry->vector, NULL);
1824
1825 /* disable interrupts */
1826 writel(FM10K_ITR_MASK_SET, q_vector->itr);
1827
1828 free_irq(entry->vector, q_vector);
1829 }
1830
1831 return err;
1832}
1833
1834void fm10k_up(struct fm10k_intfc *interface)
1835{
1836 struct fm10k_hw *hw = &interface->hw;
1837
1838 /* Enable Tx/Rx DMA */
1839 hw->mac.ops.start_hw(hw);
1840
1841 /* configure Tx descriptor rings */
1842 fm10k_configure_tx(interface);
1843
1844 /* configure Rx descriptor rings */
1845 fm10k_configure_rx(interface);
1846
1847 /* configure interrupts */
1848 hw->mac.ops.update_int_moderator(hw);
1849
1850 /* enable statistics capture again */
1851 clear_bit(__FM10K_UPDATING_STATS, interface->state);
1852
1853 /* clear down bit to indicate we are ready to go */
1854 clear_bit(__FM10K_DOWN, interface->state);
1855
1856 /* enable polling cleanups */
1857 fm10k_napi_enable_all(interface);
1858
1859 /* re-establish Rx filters */
1860 fm10k_restore_rx_state(interface);
1861
1862 /* enable transmits */
1863 netif_tx_start_all_queues(interface->netdev);
1864
1865 /* kick off the service timer now */
1866 hw->mac.get_host_state = true;
1867 mod_timer(&interface->service_timer, jiffies);
1868}
1869
1870static void fm10k_napi_disable_all(struct fm10k_intfc *interface)
1871{
1872 struct fm10k_q_vector *q_vector;
1873 int q_idx;
1874
1875 for (q_idx = 0; q_idx < interface->num_q_vectors; q_idx++) {
1876 q_vector = interface->q_vector[q_idx];
1877 napi_disable(&q_vector->napi);
1878 }
1879}
1880
1881void fm10k_down(struct fm10k_intfc *interface)
1882{
1883 struct net_device *netdev = interface->netdev;
1884 struct fm10k_hw *hw = &interface->hw;
1885 int err, i = 0, count = 0;
1886
1887 /* signal that we are down to the interrupt handler and service task */
1888 if (test_and_set_bit(__FM10K_DOWN, interface->state))
1889 return;
1890
1891 /* call carrier off first to avoid false dev_watchdog timeouts */
1892 netif_carrier_off(netdev);
1893
1894 /* disable transmits */
1895 netif_tx_stop_all_queues(netdev);
1896 netif_tx_disable(netdev);
1897
1898 /* reset Rx filters */
1899 fm10k_reset_rx_state(interface);
1900
1901 /* disable polling routines */
1902 fm10k_napi_disable_all(interface);
1903
1904 /* capture stats one last time before stopping interface */
1905 fm10k_update_stats(interface);
1906
1907 /* prevent updating statistics while we're down */
1908 while (test_and_set_bit(__FM10K_UPDATING_STATS, interface->state))
1909 usleep_range(1000, 2000);
1910
1911 /* skip waiting for TX DMA if we lost PCIe link */
1912 if (FM10K_REMOVED(hw->hw_addr))
1913 goto skip_tx_dma_drain;
1914
1915 /* In some rare circumstances it can take a while for Tx queues to
1916 * quiesce and be fully disabled. Attempt to .stop_hw() first, and
1917 * then if we get ERR_REQUESTS_PENDING, go ahead and wait in a loop
1918 * until the Tx queues have emptied, or until a number of retries. If
1919 * we fail to clear within the retry loop, we will issue a warning
1920 * indicating that Tx DMA is probably hung. Note this means we call
1921 * .stop_hw() twice but this shouldn't cause any problems.
1922 */
1923 err = hw->mac.ops.stop_hw(hw);
1924 if (err != FM10K_ERR_REQUESTS_PENDING)
1925 goto skip_tx_dma_drain;
1926
1927#define TX_DMA_DRAIN_RETRIES 25
1928 for (count = 0; count < TX_DMA_DRAIN_RETRIES; count++) {
1929 usleep_range(10000, 20000);
1930
1931 /* start checking at the last ring to have pending Tx */
1932 for (; i < interface->num_tx_queues; i++)
1933 if (fm10k_get_tx_pending(interface->tx_ring[i], false))
1934 break;
1935
1936 /* if all the queues are drained, we can break now */
1937 if (i == interface->num_tx_queues)
1938 break;
1939 }
1940
1941 if (count >= TX_DMA_DRAIN_RETRIES)
1942 dev_err(&interface->pdev->dev,
1943 "Tx queues failed to drain after %d tries. Tx DMA is probably hung.\n",
1944 count);
1945skip_tx_dma_drain:
1946 /* Disable DMA engine for Tx/Rx */
1947 err = hw->mac.ops.stop_hw(hw);
1948 if (err == FM10K_ERR_REQUESTS_PENDING)
1949 dev_err(&interface->pdev->dev,
1950 "due to pending requests hw was not shut down gracefully\n");
1951 else if (err)
1952 dev_err(&interface->pdev->dev, "stop_hw failed: %d\n", err);
1953
1954 /* free any buffers still on the rings */
1955 fm10k_clean_all_tx_rings(interface);
1956 fm10k_clean_all_rx_rings(interface);
1957}
1958
1959/**
1960 * fm10k_sw_init - Initialize general software structures
1961 * @interface: host interface private structure to initialize
1962 * @ent: PCI device ID entry
1963 *
1964 * fm10k_sw_init initializes the interface private data structure.
1965 * Fields are initialized based on PCI device information and
1966 * OS network device settings (MTU size).
1967 **/
1968static int fm10k_sw_init(struct fm10k_intfc *interface,
1969 const struct pci_device_id *ent)
1970{
1971 const struct fm10k_info *fi = fm10k_info_tbl[ent->driver_data];
1972 struct fm10k_hw *hw = &interface->hw;
1973 struct pci_dev *pdev = interface->pdev;
1974 struct net_device *netdev = interface->netdev;
1975 u32 rss_key[FM10K_RSSRK_SIZE];
1976 unsigned int rss;
1977 int err;
1978
1979 /* initialize back pointer */
1980 hw->back = interface;
1981 hw->hw_addr = interface->uc_addr;
1982
1983 /* PCI config space info */
1984 hw->vendor_id = pdev->vendor;
1985 hw->device_id = pdev->device;
1986 hw->revision_id = pdev->revision;
1987 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1988 hw->subsystem_device_id = pdev->subsystem_device;
1989
1990 /* Setup hw api */
1991 memcpy(&hw->mac.ops, fi->mac_ops, sizeof(hw->mac.ops));
1992 hw->mac.type = fi->mac;
1993
1994 /* Setup IOV handlers */
1995 if (fi->iov_ops)
1996 memcpy(&hw->iov.ops, fi->iov_ops, sizeof(hw->iov.ops));
1997
1998 /* Set common capability flags and settings */
1999 rss = min_t(int, FM10K_MAX_RSS_INDICES, num_online_cpus());
2000 interface->ring_feature[RING_F_RSS].limit = rss;
2001 fi->get_invariants(hw);
2002
2003 /* pick up the PCIe bus settings for reporting later */
2004 if (hw->mac.ops.get_bus_info)
2005 hw->mac.ops.get_bus_info(hw);
2006
2007 /* limit the usable DMA range */
2008 if (hw->mac.ops.set_dma_mask)
2009 hw->mac.ops.set_dma_mask(hw, dma_get_mask(&pdev->dev));
2010
2011 /* update netdev with DMA restrictions */
2012 if (dma_get_mask(&pdev->dev) > DMA_BIT_MASK(32)) {
2013 netdev->features |= NETIF_F_HIGHDMA;
2014 netdev->vlan_features |= NETIF_F_HIGHDMA;
2015 }
2016
2017 /* reset and initialize the hardware so it is in a known state */
2018 err = hw->mac.ops.reset_hw(hw);
2019 if (err) {
2020 dev_err(&pdev->dev, "reset_hw failed: %d\n", err);
2021 return err;
2022 }
2023
2024 err = hw->mac.ops.init_hw(hw);
2025 if (err) {
2026 dev_err(&pdev->dev, "init_hw failed: %d\n", err);
2027 return err;
2028 }
2029
2030 /* initialize hardware statistics */
2031 hw->mac.ops.update_hw_stats(hw, &interface->stats);
2032
2033 /* Set upper limit on IOV VFs that can be allocated */
2034 pci_sriov_set_totalvfs(pdev, hw->iov.total_vfs);
2035
2036 /* Start with random Ethernet address */
2037 eth_random_addr(hw->mac.addr);
2038
2039 /* Initialize MAC address from hardware */
2040 err = hw->mac.ops.read_mac_addr(hw);
2041 if (err) {
2042 dev_warn(&pdev->dev,
2043 "Failed to obtain MAC address defaulting to random\n");
2044 /* tag address assignment as random */
2045 netdev->addr_assign_type |= NET_ADDR_RANDOM;
2046 }
2047
2048 eth_hw_addr_set(netdev, hw->mac.addr);
2049 ether_addr_copy(netdev->perm_addr, hw->mac.addr);
2050
2051 if (!is_valid_ether_addr(netdev->perm_addr)) {
2052 dev_err(&pdev->dev, "Invalid MAC Address\n");
2053 return -EIO;
2054 }
2055
2056 /* initialize DCBNL interface */
2057 fm10k_dcbnl_set_ops(netdev);
2058
2059 /* set default ring sizes */
2060 interface->tx_ring_count = FM10K_DEFAULT_TXD;
2061 interface->rx_ring_count = FM10K_DEFAULT_RXD;
2062
2063 /* set default interrupt moderation */
2064 interface->tx_itr = FM10K_TX_ITR_DEFAULT;
2065 interface->rx_itr = FM10K_ITR_ADAPTIVE | FM10K_RX_ITR_DEFAULT;
2066
2067 /* Initialize the MAC/VLAN queue */
2068 INIT_LIST_HEAD(&interface->macvlan_requests);
2069
2070 netdev_rss_key_fill(rss_key, sizeof(rss_key));
2071 memcpy(interface->rssrk, rss_key, sizeof(rss_key));
2072
2073 /* Initialize the mailbox lock */
2074 spin_lock_init(&interface->mbx_lock);
2075 spin_lock_init(&interface->macvlan_lock);
2076
2077 /* Start off interface as being down */
2078 set_bit(__FM10K_DOWN, interface->state);
2079 set_bit(__FM10K_UPDATING_STATS, interface->state);
2080
2081 return 0;
2082}
2083
2084/**
2085 * fm10k_probe - Device Initialization Routine
2086 * @pdev: PCI device information struct
2087 * @ent: entry in fm10k_pci_tbl
2088 *
2089 * Returns 0 on success, negative on failure
2090 *
2091 * fm10k_probe initializes an interface identified by a pci_dev structure.
2092 * The OS initialization, configuring of the interface private structure,
2093 * and a hardware reset occur.
2094 **/
2095static int fm10k_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2096{
2097 struct net_device *netdev;
2098 struct fm10k_intfc *interface;
2099 int err;
2100
2101 if (pdev->error_state != pci_channel_io_normal) {
2102 dev_err(&pdev->dev,
2103 "PCI device still in an error state. Unable to load...\n");
2104 return -EIO;
2105 }
2106
2107 err = pci_enable_device_mem(pdev);
2108 if (err) {
2109 dev_err(&pdev->dev,
2110 "PCI enable device failed: %d\n", err);
2111 return err;
2112 }
2113
2114 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
2115 if (err)
2116 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2117 if (err) {
2118 dev_err(&pdev->dev,
2119 "DMA configuration failed: %d\n", err);
2120 goto err_dma;
2121 }
2122
2123 err = pci_request_mem_regions(pdev, fm10k_driver_name);
2124 if (err) {
2125 dev_err(&pdev->dev,
2126 "pci_request_selected_regions failed: %d\n", err);
2127 goto err_pci_reg;
2128 }
2129
2130 pci_enable_pcie_error_reporting(pdev);
2131
2132 pci_set_master(pdev);
2133 pci_save_state(pdev);
2134
2135 netdev = fm10k_alloc_netdev(fm10k_info_tbl[ent->driver_data]);
2136 if (!netdev) {
2137 err = -ENOMEM;
2138 goto err_alloc_netdev;
2139 }
2140
2141 SET_NETDEV_DEV(netdev, &pdev->dev);
2142
2143 interface = netdev_priv(netdev);
2144 pci_set_drvdata(pdev, interface);
2145
2146 interface->netdev = netdev;
2147 interface->pdev = pdev;
2148
2149 interface->uc_addr = ioremap(pci_resource_start(pdev, 0),
2150 FM10K_UC_ADDR_SIZE);
2151 if (!interface->uc_addr) {
2152 err = -EIO;
2153 goto err_ioremap;
2154 }
2155
2156 err = fm10k_sw_init(interface, ent);
2157 if (err)
2158 goto err_sw_init;
2159
2160 /* enable debugfs support */
2161 fm10k_dbg_intfc_init(interface);
2162
2163 err = fm10k_init_queueing_scheme(interface);
2164 if (err)
2165 goto err_sw_init;
2166
2167 /* the mbx interrupt might attempt to schedule the service task, so we
2168 * must ensure it is disabled since we haven't yet requested the timer
2169 * or work item.
2170 */
2171 set_bit(__FM10K_SERVICE_DISABLE, interface->state);
2172
2173 err = fm10k_mbx_request_irq(interface);
2174 if (err)
2175 goto err_mbx_interrupt;
2176
2177 /* final check of hardware state before registering the interface */
2178 err = fm10k_hw_ready(interface);
2179 if (err)
2180 goto err_register;
2181
2182 err = register_netdev(netdev);
2183 if (err)
2184 goto err_register;
2185
2186 /* carrier off reporting is important to ethtool even BEFORE open */
2187 netif_carrier_off(netdev);
2188
2189 /* stop all the transmit queues from transmitting until link is up */
2190 netif_tx_stop_all_queues(netdev);
2191
2192 /* Initialize service timer and service task late in order to avoid
2193 * cleanup issues.
2194 */
2195 timer_setup(&interface->service_timer, fm10k_service_timer, 0);
2196 INIT_WORK(&interface->service_task, fm10k_service_task);
2197
2198 /* Setup the MAC/VLAN queue */
2199 INIT_DELAYED_WORK(&interface->macvlan_task, fm10k_macvlan_task);
2200
2201 /* kick off service timer now, even when interface is down */
2202 mod_timer(&interface->service_timer, (HZ * 2) + jiffies);
2203
2204 /* print warning for non-optimal configurations */
2205 pcie_print_link_status(interface->pdev);
2206
2207 /* report MAC address for logging */
2208 dev_info(&pdev->dev, "%pM\n", netdev->dev_addr);
2209
2210 /* enable SR-IOV after registering netdev to enforce PF/VF ordering */
2211 fm10k_iov_configure(pdev, 0);
2212
2213 /* clear the service task disable bit and kick off service task */
2214 clear_bit(__FM10K_SERVICE_DISABLE, interface->state);
2215 fm10k_service_event_schedule(interface);
2216
2217 return 0;
2218
2219err_register:
2220 fm10k_mbx_free_irq(interface);
2221err_mbx_interrupt:
2222 fm10k_clear_queueing_scheme(interface);
2223err_sw_init:
2224 if (interface->sw_addr)
2225 iounmap(interface->sw_addr);
2226 iounmap(interface->uc_addr);
2227err_ioremap:
2228 free_netdev(netdev);
2229err_alloc_netdev:
2230 pci_disable_pcie_error_reporting(pdev);
2231 pci_release_mem_regions(pdev);
2232err_pci_reg:
2233err_dma:
2234 pci_disable_device(pdev);
2235 return err;
2236}
2237
2238/**
2239 * fm10k_remove - Device Removal Routine
2240 * @pdev: PCI device information struct
2241 *
2242 * fm10k_remove is called by the PCI subsystem to alert the driver
2243 * that it should release a PCI device. The could be caused by a
2244 * Hot-Plug event, or because the driver is going to be removed from
2245 * memory.
2246 **/
2247static void fm10k_remove(struct pci_dev *pdev)
2248{
2249 struct fm10k_intfc *interface = pci_get_drvdata(pdev);
2250 struct net_device *netdev = interface->netdev;
2251
2252 del_timer_sync(&interface->service_timer);
2253
2254 fm10k_stop_service_event(interface);
2255 fm10k_stop_macvlan_task(interface);
2256
2257 /* Remove all pending MAC/VLAN requests */
2258 fm10k_clear_macvlan_queue(interface, interface->glort, true);
2259
2260 /* free netdev, this may bounce the interrupts due to setup_tc */
2261 if (netdev->reg_state == NETREG_REGISTERED)
2262 unregister_netdev(netdev);
2263
2264 /* release VFs */
2265 fm10k_iov_disable(pdev);
2266
2267 /* disable mailbox interrupt */
2268 fm10k_mbx_free_irq(interface);
2269
2270 /* free interrupts */
2271 fm10k_clear_queueing_scheme(interface);
2272
2273 /* remove any debugfs interfaces */
2274 fm10k_dbg_intfc_exit(interface);
2275
2276 if (interface->sw_addr)
2277 iounmap(interface->sw_addr);
2278 iounmap(interface->uc_addr);
2279
2280 free_netdev(netdev);
2281
2282 pci_release_mem_regions(pdev);
2283
2284 pci_disable_pcie_error_reporting(pdev);
2285
2286 pci_disable_device(pdev);
2287}
2288
2289static void fm10k_prepare_suspend(struct fm10k_intfc *interface)
2290{
2291 /* the watchdog task reads from registers, which might appear like
2292 * a surprise remove if the PCIe device is disabled while we're
2293 * stopped. We stop the watchdog task until after we resume software
2294 * activity.
2295 *
2296 * Note that the MAC/VLAN task will be stopped as part of preparing
2297 * for reset so we don't need to handle it here.
2298 */
2299 fm10k_stop_service_event(interface);
2300
2301 if (fm10k_prepare_for_reset(interface))
2302 set_bit(__FM10K_RESET_SUSPENDED, interface->state);
2303}
2304
2305static int fm10k_handle_resume(struct fm10k_intfc *interface)
2306{
2307 struct fm10k_hw *hw = &interface->hw;
2308 int err;
2309
2310 /* Even if we didn't properly prepare for reset in
2311 * fm10k_prepare_suspend, we'll attempt to resume anyways.
2312 */
2313 if (!test_and_clear_bit(__FM10K_RESET_SUSPENDED, interface->state))
2314 dev_warn(&interface->pdev->dev,
2315 "Device was shut down as part of suspend... Attempting to recover\n");
2316
2317 /* reset statistics starting values */
2318 hw->mac.ops.rebind_hw_stats(hw, &interface->stats);
2319
2320 err = fm10k_handle_reset(interface);
2321 if (err)
2322 return err;
2323
2324 /* assume host is not ready, to prevent race with watchdog in case we
2325 * actually don't have connection to the switch
2326 */
2327 interface->host_ready = false;
2328 fm10k_watchdog_host_not_ready(interface);
2329
2330 /* force link to stay down for a second to prevent link flutter */
2331 interface->link_down_event = jiffies + (HZ);
2332 set_bit(__FM10K_LINK_DOWN, interface->state);
2333
2334 /* restart the service task */
2335 fm10k_start_service_event(interface);
2336
2337 /* Restart the MAC/VLAN request queue in-case of outstanding events */
2338 fm10k_macvlan_schedule(interface);
2339
2340 return 0;
2341}
2342
2343/**
2344 * fm10k_resume - Generic PM resume hook
2345 * @dev: generic device structure
2346 *
2347 * Generic PM hook used when waking the device from a low power state after
2348 * suspend or hibernation. This function does not need to handle lower PCIe
2349 * device state as the stack takes care of that for us.
2350 **/
2351static int __maybe_unused fm10k_resume(struct device *dev)
2352{
2353 struct fm10k_intfc *interface = dev_get_drvdata(dev);
2354 struct net_device *netdev = interface->netdev;
2355 struct fm10k_hw *hw = &interface->hw;
2356 int err;
2357
2358 /* refresh hw_addr in case it was dropped */
2359 hw->hw_addr = interface->uc_addr;
2360
2361 err = fm10k_handle_resume(interface);
2362 if (err)
2363 return err;
2364
2365 netif_device_attach(netdev);
2366
2367 return 0;
2368}
2369
2370/**
2371 * fm10k_suspend - Generic PM suspend hook
2372 * @dev: generic device structure
2373 *
2374 * Generic PM hook used when setting the device into a low power state for
2375 * system suspend or hibernation. This function does not need to handle lower
2376 * PCIe device state as the stack takes care of that for us.
2377 **/
2378static int __maybe_unused fm10k_suspend(struct device *dev)
2379{
2380 struct fm10k_intfc *interface = dev_get_drvdata(dev);
2381 struct net_device *netdev = interface->netdev;
2382
2383 netif_device_detach(netdev);
2384
2385 fm10k_prepare_suspend(interface);
2386
2387 return 0;
2388}
2389
2390/**
2391 * fm10k_io_error_detected - called when PCI error is detected
2392 * @pdev: Pointer to PCI device
2393 * @state: The current pci connection state
2394 *
2395 * This function is called after a PCI bus error affecting
2396 * this device has been detected.
2397 */
2398static pci_ers_result_t fm10k_io_error_detected(struct pci_dev *pdev,
2399 pci_channel_state_t state)
2400{
2401 struct fm10k_intfc *interface = pci_get_drvdata(pdev);
2402 struct net_device *netdev = interface->netdev;
2403
2404 netif_device_detach(netdev);
2405
2406 if (state == pci_channel_io_perm_failure)
2407 return PCI_ERS_RESULT_DISCONNECT;
2408
2409 fm10k_prepare_suspend(interface);
2410
2411 /* Request a slot reset. */
2412 return PCI_ERS_RESULT_NEED_RESET;
2413}
2414
2415/**
2416 * fm10k_io_slot_reset - called after the pci bus has been reset.
2417 * @pdev: Pointer to PCI device
2418 *
2419 * Restart the card from scratch, as if from a cold-boot.
2420 */
2421static pci_ers_result_t fm10k_io_slot_reset(struct pci_dev *pdev)
2422{
2423 pci_ers_result_t result;
2424
2425 if (pci_reenable_device(pdev)) {
2426 dev_err(&pdev->dev,
2427 "Cannot re-enable PCI device after reset.\n");
2428 result = PCI_ERS_RESULT_DISCONNECT;
2429 } else {
2430 pci_set_master(pdev);
2431 pci_restore_state(pdev);
2432
2433 /* After second error pci->state_saved is false, this
2434 * resets it so EEH doesn't break.
2435 */
2436 pci_save_state(pdev);
2437
2438 pci_wake_from_d3(pdev, false);
2439
2440 result = PCI_ERS_RESULT_RECOVERED;
2441 }
2442
2443 return result;
2444}
2445
2446/**
2447 * fm10k_io_resume - called when traffic can start flowing again.
2448 * @pdev: Pointer to PCI device
2449 *
2450 * This callback is called when the error recovery driver tells us that
2451 * its OK to resume normal operation.
2452 */
2453static void fm10k_io_resume(struct pci_dev *pdev)
2454{
2455 struct fm10k_intfc *interface = pci_get_drvdata(pdev);
2456 struct net_device *netdev = interface->netdev;
2457 int err;
2458
2459 err = fm10k_handle_resume(interface);
2460
2461 if (err)
2462 dev_warn(&pdev->dev,
2463 "%s failed: %d\n", __func__, err);
2464 else
2465 netif_device_attach(netdev);
2466}
2467
2468/**
2469 * fm10k_io_reset_prepare - called when PCI function is about to be reset
2470 * @pdev: Pointer to PCI device
2471 *
2472 * This callback is called when the PCI function is about to be reset,
2473 * allowing the device driver to prepare for it.
2474 */
2475static void fm10k_io_reset_prepare(struct pci_dev *pdev)
2476{
2477 /* warn incase we have any active VF devices */
2478 if (pci_num_vf(pdev))
2479 dev_warn(&pdev->dev,
2480 "PCIe FLR may cause issues for any active VF devices\n");
2481 fm10k_prepare_suspend(pci_get_drvdata(pdev));
2482}
2483
2484/**
2485 * fm10k_io_reset_done - called when PCI function has finished resetting
2486 * @pdev: Pointer to PCI device
2487 *
2488 * This callback is called just after the PCI function is reset, such as via
2489 * /sys/class/net/<enpX>/device/reset or similar.
2490 */
2491static void fm10k_io_reset_done(struct pci_dev *pdev)
2492{
2493 struct fm10k_intfc *interface = pci_get_drvdata(pdev);
2494 int err = fm10k_handle_resume(interface);
2495
2496 if (err) {
2497 dev_warn(&pdev->dev,
2498 "%s failed: %d\n", __func__, err);
2499 netif_device_detach(interface->netdev);
2500 }
2501}
2502
2503static const struct pci_error_handlers fm10k_err_handler = {
2504 .error_detected = fm10k_io_error_detected,
2505 .slot_reset = fm10k_io_slot_reset,
2506 .resume = fm10k_io_resume,
2507 .reset_prepare = fm10k_io_reset_prepare,
2508 .reset_done = fm10k_io_reset_done,
2509};
2510
2511static SIMPLE_DEV_PM_OPS(fm10k_pm_ops, fm10k_suspend, fm10k_resume);
2512
2513static struct pci_driver fm10k_driver = {
2514 .name = fm10k_driver_name,
2515 .id_table = fm10k_pci_tbl,
2516 .probe = fm10k_probe,
2517 .remove = fm10k_remove,
2518 .driver = {
2519 .pm = &fm10k_pm_ops,
2520 },
2521 .sriov_configure = fm10k_iov_configure,
2522 .err_handler = &fm10k_err_handler
2523};
2524
2525/**
2526 * fm10k_register_pci_driver - register driver interface
2527 *
2528 * This function is called on module load in order to register the driver.
2529 **/
2530int fm10k_register_pci_driver(void)
2531{
2532 return pci_register_driver(&fm10k_driver);
2533}
2534
2535/**
2536 * fm10k_unregister_pci_driver - unregister driver interface
2537 *
2538 * This function is called on module unload in order to remove the driver.
2539 **/
2540void fm10k_unregister_pci_driver(void)
2541{
2542 pci_unregister_driver(&fm10k_driver);
2543}
1// SPDX-License-Identifier: GPL-2.0
2/* Intel(R) Ethernet Switch Host Interface Driver
3 * Copyright(c) 2013 - 2018 Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * The full GNU General Public License is included in this distribution in
15 * the file called "COPYING".
16 *
17 * Contact Information:
18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20 */
21
22#include <linux/module.h>
23#include <linux/interrupt.h>
24#include <linux/aer.h>
25
26#include "fm10k.h"
27
28static const struct fm10k_info *fm10k_info_tbl[] = {
29 [fm10k_device_pf] = &fm10k_pf_info,
30 [fm10k_device_vf] = &fm10k_vf_info,
31};
32
33/*
34 * fm10k_pci_tbl - PCI Device ID Table
35 *
36 * Wildcard entries (PCI_ANY_ID) should come last
37 * Last entry must be all 0s
38 *
39 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
40 * Class, Class Mask, private data (not used) }
41 */
42static const struct pci_device_id fm10k_pci_tbl[] = {
43 { PCI_VDEVICE(INTEL, FM10K_DEV_ID_PF), fm10k_device_pf },
44 { PCI_VDEVICE(INTEL, FM10K_DEV_ID_VF), fm10k_device_vf },
45 /* required last entry */
46 { 0, }
47};
48MODULE_DEVICE_TABLE(pci, fm10k_pci_tbl);
49
50u16 fm10k_read_pci_cfg_word(struct fm10k_hw *hw, u32 reg)
51{
52 struct fm10k_intfc *interface = hw->back;
53 u16 value = 0;
54
55 if (FM10K_REMOVED(hw->hw_addr))
56 return ~value;
57
58 pci_read_config_word(interface->pdev, reg, &value);
59 if (value == 0xFFFF)
60 fm10k_write_flush(hw);
61
62 return value;
63}
64
65u32 fm10k_read_reg(struct fm10k_hw *hw, int reg)
66{
67 u32 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
68 u32 value = 0;
69
70 if (FM10K_REMOVED(hw_addr))
71 return ~value;
72
73 value = readl(&hw_addr[reg]);
74 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
75 struct fm10k_intfc *interface = hw->back;
76 struct net_device *netdev = interface->netdev;
77
78 hw->hw_addr = NULL;
79 netif_device_detach(netdev);
80 netdev_err(netdev, "PCIe link lost, device now detached\n");
81 }
82
83 return value;
84}
85
86static int fm10k_hw_ready(struct fm10k_intfc *interface)
87{
88 struct fm10k_hw *hw = &interface->hw;
89
90 fm10k_write_flush(hw);
91
92 return FM10K_REMOVED(hw->hw_addr) ? -ENODEV : 0;
93}
94
95/**
96 * fm10k_macvlan_schedule - Schedule MAC/VLAN queue task
97 * @interface: fm10k private interface structure
98 *
99 * Schedule the MAC/VLAN queue monitor task. If the MAC/VLAN task cannot be
100 * started immediately, request that it be restarted when possible.
101 */
102void fm10k_macvlan_schedule(struct fm10k_intfc *interface)
103{
104 /* Avoid processing the MAC/VLAN queue when the service task is
105 * disabled, or when we're resetting the device.
106 */
107 if (!test_bit(__FM10K_MACVLAN_DISABLE, interface->state) &&
108 !test_and_set_bit(__FM10K_MACVLAN_SCHED, interface->state)) {
109 clear_bit(__FM10K_MACVLAN_REQUEST, interface->state);
110 /* We delay the actual start of execution in order to allow
111 * multiple MAC/VLAN updates to accumulate before handling
112 * them, and to allow some time to let the mailbox drain
113 * between runs.
114 */
115 queue_delayed_work(fm10k_workqueue,
116 &interface->macvlan_task, 10);
117 } else {
118 set_bit(__FM10K_MACVLAN_REQUEST, interface->state);
119 }
120}
121
122/**
123 * fm10k_stop_macvlan_task - Stop the MAC/VLAN queue monitor
124 * @interface: fm10k private interface structure
125 *
126 * Wait until the MAC/VLAN queue task has stopped, and cancel any future
127 * requests.
128 */
129static void fm10k_stop_macvlan_task(struct fm10k_intfc *interface)
130{
131 /* Disable the MAC/VLAN work item */
132 set_bit(__FM10K_MACVLAN_DISABLE, interface->state);
133
134 /* Make sure we waited until any current invocations have stopped */
135 cancel_delayed_work_sync(&interface->macvlan_task);
136
137 /* We set the __FM10K_MACVLAN_SCHED bit when we schedule the task.
138 * However, it may not be unset of the MAC/VLAN task never actually
139 * got a chance to run. Since we've canceled the task here, and it
140 * cannot be rescheuled right now, we need to ensure the scheduled bit
141 * gets unset.
142 */
143 clear_bit(__FM10K_MACVLAN_SCHED, interface->state);
144}
145
146/**
147 * fm10k_resume_macvlan_task - Restart the MAC/VLAN queue monitor
148 * @interface: fm10k private interface structure
149 *
150 * Clear the __FM10K_MACVLAN_DISABLE bit and, if a request occurred, schedule
151 * the MAC/VLAN work monitor.
152 */
153static void fm10k_resume_macvlan_task(struct fm10k_intfc *interface)
154{
155 /* Re-enable the MAC/VLAN work item */
156 clear_bit(__FM10K_MACVLAN_DISABLE, interface->state);
157
158 /* We might have received a MAC/VLAN request while disabled. If so,
159 * kick off the queue now.
160 */
161 if (test_bit(__FM10K_MACVLAN_REQUEST, interface->state))
162 fm10k_macvlan_schedule(interface);
163}
164
165void fm10k_service_event_schedule(struct fm10k_intfc *interface)
166{
167 if (!test_bit(__FM10K_SERVICE_DISABLE, interface->state) &&
168 !test_and_set_bit(__FM10K_SERVICE_SCHED, interface->state)) {
169 clear_bit(__FM10K_SERVICE_REQUEST, interface->state);
170 queue_work(fm10k_workqueue, &interface->service_task);
171 } else {
172 set_bit(__FM10K_SERVICE_REQUEST, interface->state);
173 }
174}
175
176static void fm10k_service_event_complete(struct fm10k_intfc *interface)
177{
178 WARN_ON(!test_bit(__FM10K_SERVICE_SCHED, interface->state));
179
180 /* flush memory to make sure state is correct before next watchog */
181 smp_mb__before_atomic();
182 clear_bit(__FM10K_SERVICE_SCHED, interface->state);
183
184 /* If a service event was requested since we started, immediately
185 * re-schedule now. This ensures we don't drop a request until the
186 * next timer event.
187 */
188 if (test_bit(__FM10K_SERVICE_REQUEST, interface->state))
189 fm10k_service_event_schedule(interface);
190}
191
192static void fm10k_stop_service_event(struct fm10k_intfc *interface)
193{
194 set_bit(__FM10K_SERVICE_DISABLE, interface->state);
195 cancel_work_sync(&interface->service_task);
196
197 /* It's possible that cancel_work_sync stopped the service task from
198 * running before it could actually start. In this case the
199 * __FM10K_SERVICE_SCHED bit will never be cleared. Since we know that
200 * the service task cannot be running at this point, we need to clear
201 * the scheduled bit, as otherwise the service task may never be
202 * restarted.
203 */
204 clear_bit(__FM10K_SERVICE_SCHED, interface->state);
205}
206
207static void fm10k_start_service_event(struct fm10k_intfc *interface)
208{
209 clear_bit(__FM10K_SERVICE_DISABLE, interface->state);
210 fm10k_service_event_schedule(interface);
211}
212
213/**
214 * fm10k_service_timer - Timer Call-back
215 * @t: pointer to timer data
216 **/
217static void fm10k_service_timer(struct timer_list *t)
218{
219 struct fm10k_intfc *interface = from_timer(interface, t,
220 service_timer);
221
222 /* Reset the timer */
223 mod_timer(&interface->service_timer, (HZ * 2) + jiffies);
224
225 fm10k_service_event_schedule(interface);
226}
227
228/**
229 * fm10k_prepare_for_reset - Prepare the driver and device for a pending reset
230 * @interface: fm10k private data structure
231 *
232 * This function prepares for a device reset by shutting as much down as we
233 * can. It does nothing and returns false if __FM10K_RESETTING was already set
234 * prior to calling this function. It returns true if it actually did work.
235 */
236static bool fm10k_prepare_for_reset(struct fm10k_intfc *interface)
237{
238 struct net_device *netdev = interface->netdev;
239
240 WARN_ON(in_interrupt());
241
242 /* put off any impending NetWatchDogTimeout */
243 netif_trans_update(netdev);
244
245 /* Nothing to do if a reset is already in progress */
246 if (test_and_set_bit(__FM10K_RESETTING, interface->state))
247 return false;
248
249 /* As the MAC/VLAN task will be accessing registers it must not be
250 * running while we reset. Although the task will not be scheduled
251 * once we start resetting it may already be running
252 */
253 fm10k_stop_macvlan_task(interface);
254
255 rtnl_lock();
256
257 fm10k_iov_suspend(interface->pdev);
258
259 if (netif_running(netdev))
260 fm10k_close(netdev);
261
262 fm10k_mbx_free_irq(interface);
263
264 /* free interrupts */
265 fm10k_clear_queueing_scheme(interface);
266
267 /* delay any future reset requests */
268 interface->last_reset = jiffies + (10 * HZ);
269
270 rtnl_unlock();
271
272 return true;
273}
274
275static int fm10k_handle_reset(struct fm10k_intfc *interface)
276{
277 struct net_device *netdev = interface->netdev;
278 struct fm10k_hw *hw = &interface->hw;
279 int err;
280
281 WARN_ON(!test_bit(__FM10K_RESETTING, interface->state));
282
283 rtnl_lock();
284
285 pci_set_master(interface->pdev);
286
287 /* reset and initialize the hardware so it is in a known state */
288 err = hw->mac.ops.reset_hw(hw);
289 if (err) {
290 dev_err(&interface->pdev->dev, "reset_hw failed: %d\n", err);
291 goto reinit_err;
292 }
293
294 err = hw->mac.ops.init_hw(hw);
295 if (err) {
296 dev_err(&interface->pdev->dev, "init_hw failed: %d\n", err);
297 goto reinit_err;
298 }
299
300 err = fm10k_init_queueing_scheme(interface);
301 if (err) {
302 dev_err(&interface->pdev->dev,
303 "init_queueing_scheme failed: %d\n", err);
304 goto reinit_err;
305 }
306
307 /* re-associate interrupts */
308 err = fm10k_mbx_request_irq(interface);
309 if (err)
310 goto err_mbx_irq;
311
312 err = fm10k_hw_ready(interface);
313 if (err)
314 goto err_open;
315
316 /* update hardware address for VFs if perm_addr has changed */
317 if (hw->mac.type == fm10k_mac_vf) {
318 if (is_valid_ether_addr(hw->mac.perm_addr)) {
319 ether_addr_copy(hw->mac.addr, hw->mac.perm_addr);
320 ether_addr_copy(netdev->perm_addr, hw->mac.perm_addr);
321 ether_addr_copy(netdev->dev_addr, hw->mac.perm_addr);
322 netdev->addr_assign_type &= ~NET_ADDR_RANDOM;
323 }
324
325 if (hw->mac.vlan_override)
326 netdev->features &= ~NETIF_F_HW_VLAN_CTAG_RX;
327 else
328 netdev->features |= NETIF_F_HW_VLAN_CTAG_RX;
329 }
330
331 err = netif_running(netdev) ? fm10k_open(netdev) : 0;
332 if (err)
333 goto err_open;
334
335 fm10k_iov_resume(interface->pdev);
336
337 rtnl_unlock();
338
339 fm10k_resume_macvlan_task(interface);
340
341 clear_bit(__FM10K_RESETTING, interface->state);
342
343 return err;
344err_open:
345 fm10k_mbx_free_irq(interface);
346err_mbx_irq:
347 fm10k_clear_queueing_scheme(interface);
348reinit_err:
349 netif_device_detach(netdev);
350
351 rtnl_unlock();
352
353 clear_bit(__FM10K_RESETTING, interface->state);
354
355 return err;
356}
357
358static void fm10k_detach_subtask(struct fm10k_intfc *interface)
359{
360 struct net_device *netdev = interface->netdev;
361 u32 __iomem *hw_addr;
362 u32 value;
363 int err;
364
365 /* do nothing if netdev is still present or hw_addr is set */
366 if (netif_device_present(netdev) || interface->hw.hw_addr)
367 return;
368
369 /* We've lost the PCIe register space, and can no longer access the
370 * device. Shut everything except the detach subtask down and prepare
371 * to reset the device in case we recover. If we actually prepare for
372 * reset, indicate that we're detached.
373 */
374 if (fm10k_prepare_for_reset(interface))
375 set_bit(__FM10K_RESET_DETACHED, interface->state);
376
377 /* check the real address space to see if we've recovered */
378 hw_addr = READ_ONCE(interface->uc_addr);
379 value = readl(hw_addr);
380 if (~value) {
381 /* Make sure the reset was initiated because we detached,
382 * otherwise we might race with a different reset flow.
383 */
384 if (!test_and_clear_bit(__FM10K_RESET_DETACHED,
385 interface->state))
386 return;
387
388 /* Restore the hardware address */
389 interface->hw.hw_addr = interface->uc_addr;
390
391 /* PCIe link has been restored, and the device is active
392 * again. Restore everything and reset the device.
393 */
394 err = fm10k_handle_reset(interface);
395 if (err) {
396 netdev_err(netdev, "Unable to reset device: %d\n", err);
397 interface->hw.hw_addr = NULL;
398 return;
399 }
400
401 /* Re-attach the netdev */
402 netif_device_attach(netdev);
403 netdev_warn(netdev, "PCIe link restored, device now attached\n");
404 return;
405 }
406}
407
408static void fm10k_reset_subtask(struct fm10k_intfc *interface)
409{
410 int err;
411
412 if (!test_and_clear_bit(FM10K_FLAG_RESET_REQUESTED,
413 interface->flags))
414 return;
415
416 /* If another thread has already prepared to reset the device, we
417 * should not attempt to handle a reset here, since we'd race with
418 * that thread. This may happen if we suspend the device or if the
419 * PCIe link is lost. In this case, we'll just ignore the RESET
420 * request, as it will (eventually) be taken care of when the thread
421 * which actually started the reset is finished.
422 */
423 if (!fm10k_prepare_for_reset(interface))
424 return;
425
426 netdev_err(interface->netdev, "Reset interface\n");
427
428 err = fm10k_handle_reset(interface);
429 if (err)
430 dev_err(&interface->pdev->dev,
431 "fm10k_handle_reset failed: %d\n", err);
432}
433
434/**
435 * fm10k_configure_swpri_map - Configure Receive SWPRI to PC mapping
436 * @interface: board private structure
437 *
438 * Configure the SWPRI to PC mapping for the port.
439 **/
440static void fm10k_configure_swpri_map(struct fm10k_intfc *interface)
441{
442 struct net_device *netdev = interface->netdev;
443 struct fm10k_hw *hw = &interface->hw;
444 int i;
445
446 /* clear flag indicating update is needed */
447 clear_bit(FM10K_FLAG_SWPRI_CONFIG, interface->flags);
448
449 /* these registers are only available on the PF */
450 if (hw->mac.type != fm10k_mac_pf)
451 return;
452
453 /* configure SWPRI to PC map */
454 for (i = 0; i < FM10K_SWPRI_MAX; i++)
455 fm10k_write_reg(hw, FM10K_SWPRI_MAP(i),
456 netdev_get_prio_tc_map(netdev, i));
457}
458
459/**
460 * fm10k_watchdog_update_host_state - Update the link status based on host.
461 * @interface: board private structure
462 **/
463static void fm10k_watchdog_update_host_state(struct fm10k_intfc *interface)
464{
465 struct fm10k_hw *hw = &interface->hw;
466 s32 err;
467
468 if (test_bit(__FM10K_LINK_DOWN, interface->state)) {
469 interface->host_ready = false;
470 if (time_is_after_jiffies(interface->link_down_event))
471 return;
472 clear_bit(__FM10K_LINK_DOWN, interface->state);
473 }
474
475 if (test_bit(FM10K_FLAG_SWPRI_CONFIG, interface->flags)) {
476 if (rtnl_trylock()) {
477 fm10k_configure_swpri_map(interface);
478 rtnl_unlock();
479 }
480 }
481
482 /* lock the mailbox for transmit and receive */
483 fm10k_mbx_lock(interface);
484
485 err = hw->mac.ops.get_host_state(hw, &interface->host_ready);
486 if (err && time_is_before_jiffies(interface->last_reset))
487 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
488
489 /* free the lock */
490 fm10k_mbx_unlock(interface);
491}
492
493/**
494 * fm10k_mbx_subtask - Process upstream and downstream mailboxes
495 * @interface: board private structure
496 *
497 * This function will process both the upstream and downstream mailboxes.
498 **/
499static void fm10k_mbx_subtask(struct fm10k_intfc *interface)
500{
501 /* If we're resetting, bail out */
502 if (test_bit(__FM10K_RESETTING, interface->state))
503 return;
504
505 /* process upstream mailbox and update device state */
506 fm10k_watchdog_update_host_state(interface);
507
508 /* process downstream mailboxes */
509 fm10k_iov_mbx(interface);
510}
511
512/**
513 * fm10k_watchdog_host_is_ready - Update netdev status based on host ready
514 * @interface: board private structure
515 **/
516static void fm10k_watchdog_host_is_ready(struct fm10k_intfc *interface)
517{
518 struct net_device *netdev = interface->netdev;
519
520 /* only continue if link state is currently down */
521 if (netif_carrier_ok(netdev))
522 return;
523
524 netif_info(interface, drv, netdev, "NIC Link is up\n");
525
526 netif_carrier_on(netdev);
527 netif_tx_wake_all_queues(netdev);
528}
529
530/**
531 * fm10k_watchdog_host_not_ready - Update netdev status based on host not ready
532 * @interface: board private structure
533 **/
534static void fm10k_watchdog_host_not_ready(struct fm10k_intfc *interface)
535{
536 struct net_device *netdev = interface->netdev;
537
538 /* only continue if link state is currently up */
539 if (!netif_carrier_ok(netdev))
540 return;
541
542 netif_info(interface, drv, netdev, "NIC Link is down\n");
543
544 netif_carrier_off(netdev);
545 netif_tx_stop_all_queues(netdev);
546}
547
548/**
549 * fm10k_update_stats - Update the board statistics counters.
550 * @interface: board private structure
551 **/
552void fm10k_update_stats(struct fm10k_intfc *interface)
553{
554 struct net_device_stats *net_stats = &interface->netdev->stats;
555 struct fm10k_hw *hw = &interface->hw;
556 u64 hw_csum_tx_good = 0, hw_csum_rx_good = 0, rx_length_errors = 0;
557 u64 rx_switch_errors = 0, rx_drops = 0, rx_pp_errors = 0;
558 u64 rx_link_errors = 0;
559 u64 rx_errors = 0, rx_csum_errors = 0, tx_csum_errors = 0;
560 u64 restart_queue = 0, tx_busy = 0, alloc_failed = 0;
561 u64 rx_bytes_nic = 0, rx_pkts_nic = 0, rx_drops_nic = 0;
562 u64 tx_bytes_nic = 0, tx_pkts_nic = 0;
563 u64 bytes, pkts;
564 int i;
565
566 /* ensure only one thread updates stats at a time */
567 if (test_and_set_bit(__FM10K_UPDATING_STATS, interface->state))
568 return;
569
570 /* do not allow stats update via service task for next second */
571 interface->next_stats_update = jiffies + HZ;
572
573 /* gather some stats to the interface struct that are per queue */
574 for (bytes = 0, pkts = 0, i = 0; i < interface->num_tx_queues; i++) {
575 struct fm10k_ring *tx_ring = READ_ONCE(interface->tx_ring[i]);
576
577 if (!tx_ring)
578 continue;
579
580 restart_queue += tx_ring->tx_stats.restart_queue;
581 tx_busy += tx_ring->tx_stats.tx_busy;
582 tx_csum_errors += tx_ring->tx_stats.csum_err;
583 bytes += tx_ring->stats.bytes;
584 pkts += tx_ring->stats.packets;
585 hw_csum_tx_good += tx_ring->tx_stats.csum_good;
586 }
587
588 interface->restart_queue = restart_queue;
589 interface->tx_busy = tx_busy;
590 net_stats->tx_bytes = bytes;
591 net_stats->tx_packets = pkts;
592 interface->tx_csum_errors = tx_csum_errors;
593 interface->hw_csum_tx_good = hw_csum_tx_good;
594
595 /* gather some stats to the interface struct that are per queue */
596 for (bytes = 0, pkts = 0, i = 0; i < interface->num_rx_queues; i++) {
597 struct fm10k_ring *rx_ring = READ_ONCE(interface->rx_ring[i]);
598
599 if (!rx_ring)
600 continue;
601
602 bytes += rx_ring->stats.bytes;
603 pkts += rx_ring->stats.packets;
604 alloc_failed += rx_ring->rx_stats.alloc_failed;
605 rx_csum_errors += rx_ring->rx_stats.csum_err;
606 rx_errors += rx_ring->rx_stats.errors;
607 hw_csum_rx_good += rx_ring->rx_stats.csum_good;
608 rx_switch_errors += rx_ring->rx_stats.switch_errors;
609 rx_drops += rx_ring->rx_stats.drops;
610 rx_pp_errors += rx_ring->rx_stats.pp_errors;
611 rx_link_errors += rx_ring->rx_stats.link_errors;
612 rx_length_errors += rx_ring->rx_stats.length_errors;
613 }
614
615 net_stats->rx_bytes = bytes;
616 net_stats->rx_packets = pkts;
617 interface->alloc_failed = alloc_failed;
618 interface->rx_csum_errors = rx_csum_errors;
619 interface->hw_csum_rx_good = hw_csum_rx_good;
620 interface->rx_switch_errors = rx_switch_errors;
621 interface->rx_drops = rx_drops;
622 interface->rx_pp_errors = rx_pp_errors;
623 interface->rx_link_errors = rx_link_errors;
624 interface->rx_length_errors = rx_length_errors;
625
626 hw->mac.ops.update_hw_stats(hw, &interface->stats);
627
628 for (i = 0; i < hw->mac.max_queues; i++) {
629 struct fm10k_hw_stats_q *q = &interface->stats.q[i];
630
631 tx_bytes_nic += q->tx_bytes.count;
632 tx_pkts_nic += q->tx_packets.count;
633 rx_bytes_nic += q->rx_bytes.count;
634 rx_pkts_nic += q->rx_packets.count;
635 rx_drops_nic += q->rx_drops.count;
636 }
637
638 interface->tx_bytes_nic = tx_bytes_nic;
639 interface->tx_packets_nic = tx_pkts_nic;
640 interface->rx_bytes_nic = rx_bytes_nic;
641 interface->rx_packets_nic = rx_pkts_nic;
642 interface->rx_drops_nic = rx_drops_nic;
643
644 /* Fill out the OS statistics structure */
645 net_stats->rx_errors = rx_errors;
646 net_stats->rx_dropped = interface->stats.nodesc_drop.count;
647
648 clear_bit(__FM10K_UPDATING_STATS, interface->state);
649}
650
651/**
652 * fm10k_watchdog_flush_tx - flush queues on host not ready
653 * @interface: pointer to the device interface structure
654 **/
655static void fm10k_watchdog_flush_tx(struct fm10k_intfc *interface)
656{
657 int some_tx_pending = 0;
658 int i;
659
660 /* nothing to do if carrier is up */
661 if (netif_carrier_ok(interface->netdev))
662 return;
663
664 for (i = 0; i < interface->num_tx_queues; i++) {
665 struct fm10k_ring *tx_ring = interface->tx_ring[i];
666
667 if (tx_ring->next_to_use != tx_ring->next_to_clean) {
668 some_tx_pending = 1;
669 break;
670 }
671 }
672
673 /* We've lost link, so the controller stops DMA, but we've got
674 * queued Tx work that's never going to get done, so reset
675 * controller to flush Tx.
676 */
677 if (some_tx_pending)
678 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
679}
680
681/**
682 * fm10k_watchdog_subtask - check and bring link up
683 * @interface: pointer to the device interface structure
684 **/
685static void fm10k_watchdog_subtask(struct fm10k_intfc *interface)
686{
687 /* if interface is down do nothing */
688 if (test_bit(__FM10K_DOWN, interface->state) ||
689 test_bit(__FM10K_RESETTING, interface->state))
690 return;
691
692 if (interface->host_ready)
693 fm10k_watchdog_host_is_ready(interface);
694 else
695 fm10k_watchdog_host_not_ready(interface);
696
697 /* update stats only once every second */
698 if (time_is_before_jiffies(interface->next_stats_update))
699 fm10k_update_stats(interface);
700
701 /* flush any uncompleted work */
702 fm10k_watchdog_flush_tx(interface);
703}
704
705/**
706 * fm10k_check_hang_subtask - check for hung queues and dropped interrupts
707 * @interface: pointer to the device interface structure
708 *
709 * This function serves two purposes. First it strobes the interrupt lines
710 * in order to make certain interrupts are occurring. Secondly it sets the
711 * bits needed to check for TX hangs. As a result we should immediately
712 * determine if a hang has occurred.
713 */
714static void fm10k_check_hang_subtask(struct fm10k_intfc *interface)
715{
716 int i;
717
718 /* If we're down or resetting, just bail */
719 if (test_bit(__FM10K_DOWN, interface->state) ||
720 test_bit(__FM10K_RESETTING, interface->state))
721 return;
722
723 /* rate limit tx hang checks to only once every 2 seconds */
724 if (time_is_after_eq_jiffies(interface->next_tx_hang_check))
725 return;
726 interface->next_tx_hang_check = jiffies + (2 * HZ);
727
728 if (netif_carrier_ok(interface->netdev)) {
729 /* Force detection of hung controller */
730 for (i = 0; i < interface->num_tx_queues; i++)
731 set_check_for_tx_hang(interface->tx_ring[i]);
732
733 /* Rearm all in-use q_vectors for immediate firing */
734 for (i = 0; i < interface->num_q_vectors; i++) {
735 struct fm10k_q_vector *qv = interface->q_vector[i];
736
737 if (!qv->tx.count && !qv->rx.count)
738 continue;
739 writel(FM10K_ITR_ENABLE | FM10K_ITR_PENDING2, qv->itr);
740 }
741 }
742}
743
744/**
745 * fm10k_service_task - manages and runs subtasks
746 * @work: pointer to work_struct containing our data
747 **/
748static void fm10k_service_task(struct work_struct *work)
749{
750 struct fm10k_intfc *interface;
751
752 interface = container_of(work, struct fm10k_intfc, service_task);
753
754 /* Check whether we're detached first */
755 fm10k_detach_subtask(interface);
756
757 /* tasks run even when interface is down */
758 fm10k_mbx_subtask(interface);
759 fm10k_reset_subtask(interface);
760
761 /* tasks only run when interface is up */
762 fm10k_watchdog_subtask(interface);
763 fm10k_check_hang_subtask(interface);
764
765 /* release lock on service events to allow scheduling next event */
766 fm10k_service_event_complete(interface);
767}
768
769/**
770 * fm10k_macvlan_task - send queued MAC/VLAN requests to switch manager
771 * @work: pointer to work_struct containing our data
772 *
773 * This work item handles sending MAC/VLAN updates to the switch manager. When
774 * the interface is up, it will attempt to queue mailbox messages to the
775 * switch manager requesting updates for MAC/VLAN pairs. If the Tx fifo of the
776 * mailbox is full, it will reschedule itself to try again in a short while.
777 * This ensures that the driver does not overload the switch mailbox with too
778 * many simultaneous requests, causing an unnecessary reset.
779 **/
780static void fm10k_macvlan_task(struct work_struct *work)
781{
782 struct fm10k_macvlan_request *item;
783 struct fm10k_intfc *interface;
784 struct delayed_work *dwork;
785 struct list_head *requests;
786 struct fm10k_hw *hw;
787 unsigned long flags;
788
789 dwork = to_delayed_work(work);
790 interface = container_of(dwork, struct fm10k_intfc, macvlan_task);
791 hw = &interface->hw;
792 requests = &interface->macvlan_requests;
793
794 do {
795 /* Pop the first item off the list */
796 spin_lock_irqsave(&interface->macvlan_lock, flags);
797 item = list_first_entry_or_null(requests,
798 struct fm10k_macvlan_request,
799 list);
800 if (item)
801 list_del_init(&item->list);
802
803 spin_unlock_irqrestore(&interface->macvlan_lock, flags);
804
805 /* We have no more items to process */
806 if (!item)
807 goto done;
808
809 fm10k_mbx_lock(interface);
810
811 /* Check that we have plenty of space to send the message. We
812 * want to ensure that the mailbox stays low enough to avoid a
813 * change in the host state, otherwise we may see spurious
814 * link up / link down notifications.
815 */
816 if (!hw->mbx.ops.tx_ready(&hw->mbx, FM10K_VFMBX_MSG_MTU + 5)) {
817 hw->mbx.ops.process(hw, &hw->mbx);
818 set_bit(__FM10K_MACVLAN_REQUEST, interface->state);
819 fm10k_mbx_unlock(interface);
820
821 /* Put the request back on the list */
822 spin_lock_irqsave(&interface->macvlan_lock, flags);
823 list_add(&item->list, requests);
824 spin_unlock_irqrestore(&interface->macvlan_lock, flags);
825 break;
826 }
827
828 switch (item->type) {
829 case FM10K_MC_MAC_REQUEST:
830 hw->mac.ops.update_mc_addr(hw,
831 item->mac.glort,
832 item->mac.addr,
833 item->mac.vid,
834 item->set);
835 break;
836 case FM10K_UC_MAC_REQUEST:
837 hw->mac.ops.update_uc_addr(hw,
838 item->mac.glort,
839 item->mac.addr,
840 item->mac.vid,
841 item->set,
842 0);
843 break;
844 case FM10K_VLAN_REQUEST:
845 hw->mac.ops.update_vlan(hw,
846 item->vlan.vid,
847 item->vlan.vsi,
848 item->set);
849 break;
850 default:
851 break;
852 }
853
854 fm10k_mbx_unlock(interface);
855
856 /* Free the item now that we've sent the update */
857 kfree(item);
858 } while (true);
859
860done:
861 WARN_ON(!test_bit(__FM10K_MACVLAN_SCHED, interface->state));
862
863 /* flush memory to make sure state is correct */
864 smp_mb__before_atomic();
865 clear_bit(__FM10K_MACVLAN_SCHED, interface->state);
866
867 /* If a MAC/VLAN request was scheduled since we started, we should
868 * re-schedule. However, there is no reason to re-schedule if there is
869 * no work to do.
870 */
871 if (test_bit(__FM10K_MACVLAN_REQUEST, interface->state))
872 fm10k_macvlan_schedule(interface);
873}
874
875/**
876 * fm10k_configure_tx_ring - Configure Tx ring after Reset
877 * @interface: board private structure
878 * @ring: structure containing ring specific data
879 *
880 * Configure the Tx descriptor ring after a reset.
881 **/
882static void fm10k_configure_tx_ring(struct fm10k_intfc *interface,
883 struct fm10k_ring *ring)
884{
885 struct fm10k_hw *hw = &interface->hw;
886 u64 tdba = ring->dma;
887 u32 size = ring->count * sizeof(struct fm10k_tx_desc);
888 u32 txint = FM10K_INT_MAP_DISABLE;
889 u32 txdctl = BIT(FM10K_TXDCTL_MAX_TIME_SHIFT) | FM10K_TXDCTL_ENABLE;
890 u8 reg_idx = ring->reg_idx;
891
892 /* disable queue to avoid issues while updating state */
893 fm10k_write_reg(hw, FM10K_TXDCTL(reg_idx), 0);
894 fm10k_write_flush(hw);
895
896 /* possible poll here to verify ring resources have been cleaned */
897
898 /* set location and size for descriptor ring */
899 fm10k_write_reg(hw, FM10K_TDBAL(reg_idx), tdba & DMA_BIT_MASK(32));
900 fm10k_write_reg(hw, FM10K_TDBAH(reg_idx), tdba >> 32);
901 fm10k_write_reg(hw, FM10K_TDLEN(reg_idx), size);
902
903 /* reset head and tail pointers */
904 fm10k_write_reg(hw, FM10K_TDH(reg_idx), 0);
905 fm10k_write_reg(hw, FM10K_TDT(reg_idx), 0);
906
907 /* store tail pointer */
908 ring->tail = &interface->uc_addr[FM10K_TDT(reg_idx)];
909
910 /* reset ntu and ntc to place SW in sync with hardware */
911 ring->next_to_clean = 0;
912 ring->next_to_use = 0;
913
914 /* Map interrupt */
915 if (ring->q_vector) {
916 txint = ring->q_vector->v_idx + NON_Q_VECTORS(hw);
917 txint |= FM10K_INT_MAP_TIMER0;
918 }
919
920 fm10k_write_reg(hw, FM10K_TXINT(reg_idx), txint);
921
922 /* enable use of FTAG bit in Tx descriptor, register is RO for VF */
923 fm10k_write_reg(hw, FM10K_PFVTCTL(reg_idx),
924 FM10K_PFVTCTL_FTAG_DESC_ENABLE);
925
926 /* Initialize XPS */
927 if (!test_and_set_bit(__FM10K_TX_XPS_INIT_DONE, ring->state) &&
928 ring->q_vector)
929 netif_set_xps_queue(ring->netdev,
930 &ring->q_vector->affinity_mask,
931 ring->queue_index);
932
933 /* enable queue */
934 fm10k_write_reg(hw, FM10K_TXDCTL(reg_idx), txdctl);
935}
936
937/**
938 * fm10k_enable_tx_ring - Verify Tx ring is enabled after configuration
939 * @interface: board private structure
940 * @ring: structure containing ring specific data
941 *
942 * Verify the Tx descriptor ring is ready for transmit.
943 **/
944static void fm10k_enable_tx_ring(struct fm10k_intfc *interface,
945 struct fm10k_ring *ring)
946{
947 struct fm10k_hw *hw = &interface->hw;
948 int wait_loop = 10;
949 u32 txdctl;
950 u8 reg_idx = ring->reg_idx;
951
952 /* if we are already enabled just exit */
953 if (fm10k_read_reg(hw, FM10K_TXDCTL(reg_idx)) & FM10K_TXDCTL_ENABLE)
954 return;
955
956 /* poll to verify queue is enabled */
957 do {
958 usleep_range(1000, 2000);
959 txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(reg_idx));
960 } while (!(txdctl & FM10K_TXDCTL_ENABLE) && --wait_loop);
961 if (!wait_loop)
962 netif_err(interface, drv, interface->netdev,
963 "Could not enable Tx Queue %d\n", reg_idx);
964}
965
966/**
967 * fm10k_configure_tx - Configure Transmit Unit after Reset
968 * @interface: board private structure
969 *
970 * Configure the Tx unit of the MAC after a reset.
971 **/
972static void fm10k_configure_tx(struct fm10k_intfc *interface)
973{
974 int i;
975
976 /* Setup the HW Tx Head and Tail descriptor pointers */
977 for (i = 0; i < interface->num_tx_queues; i++)
978 fm10k_configure_tx_ring(interface, interface->tx_ring[i]);
979
980 /* poll here to verify that Tx rings are now enabled */
981 for (i = 0; i < interface->num_tx_queues; i++)
982 fm10k_enable_tx_ring(interface, interface->tx_ring[i]);
983}
984
985/**
986 * fm10k_configure_rx_ring - Configure Rx ring after Reset
987 * @interface: board private structure
988 * @ring: structure containing ring specific data
989 *
990 * Configure the Rx descriptor ring after a reset.
991 **/
992static void fm10k_configure_rx_ring(struct fm10k_intfc *interface,
993 struct fm10k_ring *ring)
994{
995 u64 rdba = ring->dma;
996 struct fm10k_hw *hw = &interface->hw;
997 u32 size = ring->count * sizeof(union fm10k_rx_desc);
998 u32 rxqctl, rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY;
999 u32 srrctl = FM10K_SRRCTL_BUFFER_CHAINING_EN;
1000 u32 rxint = FM10K_INT_MAP_DISABLE;
1001 u8 rx_pause = interface->rx_pause;
1002 u8 reg_idx = ring->reg_idx;
1003
1004 /* disable queue to avoid issues while updating state */
1005 rxqctl = fm10k_read_reg(hw, FM10K_RXQCTL(reg_idx));
1006 rxqctl &= ~FM10K_RXQCTL_ENABLE;
1007 fm10k_write_reg(hw, FM10K_RXQCTL(reg_idx), rxqctl);
1008 fm10k_write_flush(hw);
1009
1010 /* possible poll here to verify ring resources have been cleaned */
1011
1012 /* set location and size for descriptor ring */
1013 fm10k_write_reg(hw, FM10K_RDBAL(reg_idx), rdba & DMA_BIT_MASK(32));
1014 fm10k_write_reg(hw, FM10K_RDBAH(reg_idx), rdba >> 32);
1015 fm10k_write_reg(hw, FM10K_RDLEN(reg_idx), size);
1016
1017 /* reset head and tail pointers */
1018 fm10k_write_reg(hw, FM10K_RDH(reg_idx), 0);
1019 fm10k_write_reg(hw, FM10K_RDT(reg_idx), 0);
1020
1021 /* store tail pointer */
1022 ring->tail = &interface->uc_addr[FM10K_RDT(reg_idx)];
1023
1024 /* reset ntu and ntc to place SW in sync with hardware */
1025 ring->next_to_clean = 0;
1026 ring->next_to_use = 0;
1027 ring->next_to_alloc = 0;
1028
1029 /* Configure the Rx buffer size for one buff without split */
1030 srrctl |= FM10K_RX_BUFSZ >> FM10K_SRRCTL_BSIZEPKT_SHIFT;
1031
1032 /* Configure the Rx ring to suppress loopback packets */
1033 srrctl |= FM10K_SRRCTL_LOOPBACK_SUPPRESS;
1034 fm10k_write_reg(hw, FM10K_SRRCTL(reg_idx), srrctl);
1035
1036 /* Enable drop on empty */
1037#ifdef CONFIG_DCB
1038 if (interface->pfc_en)
1039 rx_pause = interface->pfc_en;
1040#endif
1041 if (!(rx_pause & BIT(ring->qos_pc)))
1042 rxdctl |= FM10K_RXDCTL_DROP_ON_EMPTY;
1043
1044 fm10k_write_reg(hw, FM10K_RXDCTL(reg_idx), rxdctl);
1045
1046 /* assign default VLAN to queue */
1047 ring->vid = hw->mac.default_vid;
1048
1049 /* if we have an active VLAN, disable default VLAN ID */
1050 if (test_bit(hw->mac.default_vid, interface->active_vlans))
1051 ring->vid |= FM10K_VLAN_CLEAR;
1052
1053 /* Map interrupt */
1054 if (ring->q_vector) {
1055 rxint = ring->q_vector->v_idx + NON_Q_VECTORS(hw);
1056 rxint |= FM10K_INT_MAP_TIMER1;
1057 }
1058
1059 fm10k_write_reg(hw, FM10K_RXINT(reg_idx), rxint);
1060
1061 /* enable queue */
1062 rxqctl = fm10k_read_reg(hw, FM10K_RXQCTL(reg_idx));
1063 rxqctl |= FM10K_RXQCTL_ENABLE;
1064 fm10k_write_reg(hw, FM10K_RXQCTL(reg_idx), rxqctl);
1065
1066 /* place buffers on ring for receive data */
1067 fm10k_alloc_rx_buffers(ring, fm10k_desc_unused(ring));
1068}
1069
1070/**
1071 * fm10k_update_rx_drop_en - Configures the drop enable bits for Rx rings
1072 * @interface: board private structure
1073 *
1074 * Configure the drop enable bits for the Rx rings.
1075 **/
1076void fm10k_update_rx_drop_en(struct fm10k_intfc *interface)
1077{
1078 struct fm10k_hw *hw = &interface->hw;
1079 u8 rx_pause = interface->rx_pause;
1080 int i;
1081
1082#ifdef CONFIG_DCB
1083 if (interface->pfc_en)
1084 rx_pause = interface->pfc_en;
1085
1086#endif
1087 for (i = 0; i < interface->num_rx_queues; i++) {
1088 struct fm10k_ring *ring = interface->rx_ring[i];
1089 u32 rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY;
1090 u8 reg_idx = ring->reg_idx;
1091
1092 if (!(rx_pause & BIT(ring->qos_pc)))
1093 rxdctl |= FM10K_RXDCTL_DROP_ON_EMPTY;
1094
1095 fm10k_write_reg(hw, FM10K_RXDCTL(reg_idx), rxdctl);
1096 }
1097}
1098
1099/**
1100 * fm10k_configure_dglort - Configure Receive DGLORT after reset
1101 * @interface: board private structure
1102 *
1103 * Configure the DGLORT description and RSS tables.
1104 **/
1105static void fm10k_configure_dglort(struct fm10k_intfc *interface)
1106{
1107 struct fm10k_dglort_cfg dglort = { 0 };
1108 struct fm10k_hw *hw = &interface->hw;
1109 int i;
1110 u32 mrqc;
1111
1112 /* Fill out hash function seeds */
1113 for (i = 0; i < FM10K_RSSRK_SIZE; i++)
1114 fm10k_write_reg(hw, FM10K_RSSRK(0, i), interface->rssrk[i]);
1115
1116 /* Write RETA table to hardware */
1117 for (i = 0; i < FM10K_RETA_SIZE; i++)
1118 fm10k_write_reg(hw, FM10K_RETA(0, i), interface->reta[i]);
1119
1120 /* Generate RSS hash based on packet types, TCP/UDP
1121 * port numbers and/or IPv4/v6 src and dst addresses
1122 */
1123 mrqc = FM10K_MRQC_IPV4 |
1124 FM10K_MRQC_TCP_IPV4 |
1125 FM10K_MRQC_IPV6 |
1126 FM10K_MRQC_TCP_IPV6;
1127
1128 if (test_bit(FM10K_FLAG_RSS_FIELD_IPV4_UDP, interface->flags))
1129 mrqc |= FM10K_MRQC_UDP_IPV4;
1130 if (test_bit(FM10K_FLAG_RSS_FIELD_IPV6_UDP, interface->flags))
1131 mrqc |= FM10K_MRQC_UDP_IPV6;
1132
1133 fm10k_write_reg(hw, FM10K_MRQC(0), mrqc);
1134
1135 /* configure default DGLORT mapping for RSS/DCB */
1136 dglort.inner_rss = 1;
1137 dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask);
1138 dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask);
1139 hw->mac.ops.configure_dglort_map(hw, &dglort);
1140
1141 /* assign GLORT per queue for queue mapped testing */
1142 if (interface->glort_count > 64) {
1143 memset(&dglort, 0, sizeof(dglort));
1144 dglort.inner_rss = 1;
1145 dglort.glort = interface->glort + 64;
1146 dglort.idx = fm10k_dglort_pf_queue;
1147 dglort.queue_l = fls(interface->num_rx_queues - 1);
1148 hw->mac.ops.configure_dglort_map(hw, &dglort);
1149 }
1150
1151 /* assign glort value for RSS/DCB specific to this interface */
1152 memset(&dglort, 0, sizeof(dglort));
1153 dglort.inner_rss = 1;
1154 dglort.glort = interface->glort;
1155 dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask);
1156 dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask);
1157 /* configure DGLORT mapping for RSS/DCB */
1158 dglort.idx = fm10k_dglort_pf_rss;
1159 if (interface->l2_accel)
1160 dglort.shared_l = fls(interface->l2_accel->size);
1161 hw->mac.ops.configure_dglort_map(hw, &dglort);
1162}
1163
1164/**
1165 * fm10k_configure_rx - Configure Receive Unit after Reset
1166 * @interface: board private structure
1167 *
1168 * Configure the Rx unit of the MAC after a reset.
1169 **/
1170static void fm10k_configure_rx(struct fm10k_intfc *interface)
1171{
1172 int i;
1173
1174 /* Configure SWPRI to PC map */
1175 fm10k_configure_swpri_map(interface);
1176
1177 /* Configure RSS and DGLORT map */
1178 fm10k_configure_dglort(interface);
1179
1180 /* Setup the HW Rx Head and Tail descriptor pointers */
1181 for (i = 0; i < interface->num_rx_queues; i++)
1182 fm10k_configure_rx_ring(interface, interface->rx_ring[i]);
1183
1184 /* possible poll here to verify that Rx rings are now enabled */
1185}
1186
1187static void fm10k_napi_enable_all(struct fm10k_intfc *interface)
1188{
1189 struct fm10k_q_vector *q_vector;
1190 int q_idx;
1191
1192 for (q_idx = 0; q_idx < interface->num_q_vectors; q_idx++) {
1193 q_vector = interface->q_vector[q_idx];
1194 napi_enable(&q_vector->napi);
1195 }
1196}
1197
1198static irqreturn_t fm10k_msix_clean_rings(int __always_unused irq, void *data)
1199{
1200 struct fm10k_q_vector *q_vector = data;
1201
1202 if (q_vector->rx.count || q_vector->tx.count)
1203 napi_schedule_irqoff(&q_vector->napi);
1204
1205 return IRQ_HANDLED;
1206}
1207
1208static irqreturn_t fm10k_msix_mbx_vf(int __always_unused irq, void *data)
1209{
1210 struct fm10k_intfc *interface = data;
1211 struct fm10k_hw *hw = &interface->hw;
1212 struct fm10k_mbx_info *mbx = &hw->mbx;
1213
1214 /* re-enable mailbox interrupt and indicate 20us delay */
1215 fm10k_write_reg(hw, FM10K_VFITR(FM10K_MBX_VECTOR),
1216 (FM10K_MBX_INT_DELAY >> hw->mac.itr_scale) |
1217 FM10K_ITR_ENABLE);
1218
1219 /* service upstream mailbox */
1220 if (fm10k_mbx_trylock(interface)) {
1221 mbx->ops.process(hw, mbx);
1222 fm10k_mbx_unlock(interface);
1223 }
1224
1225 hw->mac.get_host_state = true;
1226 fm10k_service_event_schedule(interface);
1227
1228 return IRQ_HANDLED;
1229}
1230
1231#ifdef CONFIG_NET_POLL_CONTROLLER
1232/**
1233 * fm10k_netpoll - A Polling 'interrupt' handler
1234 * @netdev: network interface device structure
1235 *
1236 * This is used by netconsole to send skbs without having to re-enable
1237 * interrupts. It's not called while the normal interrupt routine is executing.
1238 **/
1239void fm10k_netpoll(struct net_device *netdev)
1240{
1241 struct fm10k_intfc *interface = netdev_priv(netdev);
1242 int i;
1243
1244 /* if interface is down do nothing */
1245 if (test_bit(__FM10K_DOWN, interface->state))
1246 return;
1247
1248 for (i = 0; i < interface->num_q_vectors; i++)
1249 fm10k_msix_clean_rings(0, interface->q_vector[i]);
1250}
1251
1252#endif
1253#define FM10K_ERR_MSG(type) case (type): error = #type; break
1254static void fm10k_handle_fault(struct fm10k_intfc *interface, int type,
1255 struct fm10k_fault *fault)
1256{
1257 struct pci_dev *pdev = interface->pdev;
1258 struct fm10k_hw *hw = &interface->hw;
1259 struct fm10k_iov_data *iov_data = interface->iov_data;
1260 char *error;
1261
1262 switch (type) {
1263 case FM10K_PCA_FAULT:
1264 switch (fault->type) {
1265 default:
1266 error = "Unknown PCA error";
1267 break;
1268 FM10K_ERR_MSG(PCA_NO_FAULT);
1269 FM10K_ERR_MSG(PCA_UNMAPPED_ADDR);
1270 FM10K_ERR_MSG(PCA_BAD_QACCESS_PF);
1271 FM10K_ERR_MSG(PCA_BAD_QACCESS_VF);
1272 FM10K_ERR_MSG(PCA_MALICIOUS_REQ);
1273 FM10K_ERR_MSG(PCA_POISONED_TLP);
1274 FM10K_ERR_MSG(PCA_TLP_ABORT);
1275 }
1276 break;
1277 case FM10K_THI_FAULT:
1278 switch (fault->type) {
1279 default:
1280 error = "Unknown THI error";
1281 break;
1282 FM10K_ERR_MSG(THI_NO_FAULT);
1283 FM10K_ERR_MSG(THI_MAL_DIS_Q_FAULT);
1284 }
1285 break;
1286 case FM10K_FUM_FAULT:
1287 switch (fault->type) {
1288 default:
1289 error = "Unknown FUM error";
1290 break;
1291 FM10K_ERR_MSG(FUM_NO_FAULT);
1292 FM10K_ERR_MSG(FUM_UNMAPPED_ADDR);
1293 FM10K_ERR_MSG(FUM_BAD_VF_QACCESS);
1294 FM10K_ERR_MSG(FUM_ADD_DECODE_ERR);
1295 FM10K_ERR_MSG(FUM_RO_ERROR);
1296 FM10K_ERR_MSG(FUM_QPRC_CRC_ERROR);
1297 FM10K_ERR_MSG(FUM_CSR_TIMEOUT);
1298 FM10K_ERR_MSG(FUM_INVALID_TYPE);
1299 FM10K_ERR_MSG(FUM_INVALID_LENGTH);
1300 FM10K_ERR_MSG(FUM_INVALID_BE);
1301 FM10K_ERR_MSG(FUM_INVALID_ALIGN);
1302 }
1303 break;
1304 default:
1305 error = "Undocumented fault";
1306 break;
1307 }
1308
1309 dev_warn(&pdev->dev,
1310 "%s Address: 0x%llx SpecInfo: 0x%x Func: %02x.%0x\n",
1311 error, fault->address, fault->specinfo,
1312 PCI_SLOT(fault->func), PCI_FUNC(fault->func));
1313
1314 /* For VF faults, clear out the respective LPORT, reset the queue
1315 * resources, and then reconnect to the mailbox. This allows the
1316 * VF in question to resume behavior. For transient faults that are
1317 * the result of non-malicious behavior this will log the fault and
1318 * allow the VF to resume functionality. Obviously for malicious VFs
1319 * they will be able to attempt malicious behavior again. In this
1320 * case, the system administrator will need to step in and manually
1321 * remove or disable the VF in question.
1322 */
1323 if (fault->func && iov_data) {
1324 int vf = fault->func - 1;
1325 struct fm10k_vf_info *vf_info = &iov_data->vf_info[vf];
1326
1327 hw->iov.ops.reset_lport(hw, vf_info);
1328 hw->iov.ops.reset_resources(hw, vf_info);
1329
1330 /* reset_lport disables the VF, so re-enable it */
1331 hw->iov.ops.set_lport(hw, vf_info, vf,
1332 FM10K_VF_FLAG_MULTI_CAPABLE);
1333
1334 /* reset_resources will disconnect from the mbx */
1335 vf_info->mbx.ops.connect(hw, &vf_info->mbx);
1336 }
1337}
1338
1339static void fm10k_report_fault(struct fm10k_intfc *interface, u32 eicr)
1340{
1341 struct fm10k_hw *hw = &interface->hw;
1342 struct fm10k_fault fault = { 0 };
1343 int type, err;
1344
1345 for (eicr &= FM10K_EICR_FAULT_MASK, type = FM10K_PCA_FAULT;
1346 eicr;
1347 eicr >>= 1, type += FM10K_FAULT_SIZE) {
1348 /* only check if there is an error reported */
1349 if (!(eicr & 0x1))
1350 continue;
1351
1352 /* retrieve fault info */
1353 err = hw->mac.ops.get_fault(hw, type, &fault);
1354 if (err) {
1355 dev_err(&interface->pdev->dev,
1356 "error reading fault\n");
1357 continue;
1358 }
1359
1360 fm10k_handle_fault(interface, type, &fault);
1361 }
1362}
1363
1364static void fm10k_reset_drop_on_empty(struct fm10k_intfc *interface, u32 eicr)
1365{
1366 struct fm10k_hw *hw = &interface->hw;
1367 const u32 rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY;
1368 u32 maxholdq;
1369 int q;
1370
1371 if (!(eicr & FM10K_EICR_MAXHOLDTIME))
1372 return;
1373
1374 maxholdq = fm10k_read_reg(hw, FM10K_MAXHOLDQ(7));
1375 if (maxholdq)
1376 fm10k_write_reg(hw, FM10K_MAXHOLDQ(7), maxholdq);
1377 for (q = 255;;) {
1378 if (maxholdq & BIT(31)) {
1379 if (q < FM10K_MAX_QUEUES_PF) {
1380 interface->rx_overrun_pf++;
1381 fm10k_write_reg(hw, FM10K_RXDCTL(q), rxdctl);
1382 } else {
1383 interface->rx_overrun_vf++;
1384 }
1385 }
1386
1387 maxholdq *= 2;
1388 if (!maxholdq)
1389 q &= ~(32 - 1);
1390
1391 if (!q)
1392 break;
1393
1394 if (q-- % 32)
1395 continue;
1396
1397 maxholdq = fm10k_read_reg(hw, FM10K_MAXHOLDQ(q / 32));
1398 if (maxholdq)
1399 fm10k_write_reg(hw, FM10K_MAXHOLDQ(q / 32), maxholdq);
1400 }
1401}
1402
1403static irqreturn_t fm10k_msix_mbx_pf(int __always_unused irq, void *data)
1404{
1405 struct fm10k_intfc *interface = data;
1406 struct fm10k_hw *hw = &interface->hw;
1407 struct fm10k_mbx_info *mbx = &hw->mbx;
1408 u32 eicr;
1409 s32 err = 0;
1410
1411 /* unmask any set bits related to this interrupt */
1412 eicr = fm10k_read_reg(hw, FM10K_EICR);
1413 fm10k_write_reg(hw, FM10K_EICR, eicr & (FM10K_EICR_MAILBOX |
1414 FM10K_EICR_SWITCHREADY |
1415 FM10K_EICR_SWITCHNOTREADY));
1416
1417 /* report any faults found to the message log */
1418 fm10k_report_fault(interface, eicr);
1419
1420 /* reset any queues disabled due to receiver overrun */
1421 fm10k_reset_drop_on_empty(interface, eicr);
1422
1423 /* service mailboxes */
1424 if (fm10k_mbx_trylock(interface)) {
1425 err = mbx->ops.process(hw, mbx);
1426 /* handle VFLRE events */
1427 fm10k_iov_event(interface);
1428 fm10k_mbx_unlock(interface);
1429 }
1430
1431 if (err == FM10K_ERR_RESET_REQUESTED)
1432 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1433
1434 /* if switch toggled state we should reset GLORTs */
1435 if (eicr & FM10K_EICR_SWITCHNOTREADY) {
1436 /* force link down for at least 4 seconds */
1437 interface->link_down_event = jiffies + (4 * HZ);
1438 set_bit(__FM10K_LINK_DOWN, interface->state);
1439
1440 /* reset dglort_map back to no config */
1441 hw->mac.dglort_map = FM10K_DGLORTMAP_NONE;
1442 }
1443
1444 /* we should validate host state after interrupt event */
1445 hw->mac.get_host_state = true;
1446
1447 /* validate host state, and handle VF mailboxes in the service task */
1448 fm10k_service_event_schedule(interface);
1449
1450 /* re-enable mailbox interrupt and indicate 20us delay */
1451 fm10k_write_reg(hw, FM10K_ITR(FM10K_MBX_VECTOR),
1452 (FM10K_MBX_INT_DELAY >> hw->mac.itr_scale) |
1453 FM10K_ITR_ENABLE);
1454
1455 return IRQ_HANDLED;
1456}
1457
1458void fm10k_mbx_free_irq(struct fm10k_intfc *interface)
1459{
1460 struct fm10k_hw *hw = &interface->hw;
1461 struct msix_entry *entry;
1462 int itr_reg;
1463
1464 /* no mailbox IRQ to free if MSI-X is not enabled */
1465 if (!interface->msix_entries)
1466 return;
1467
1468 entry = &interface->msix_entries[FM10K_MBX_VECTOR];
1469
1470 /* disconnect the mailbox */
1471 hw->mbx.ops.disconnect(hw, &hw->mbx);
1472
1473 /* disable Mailbox cause */
1474 if (hw->mac.type == fm10k_mac_pf) {
1475 fm10k_write_reg(hw, FM10K_EIMR,
1476 FM10K_EIMR_DISABLE(PCA_FAULT) |
1477 FM10K_EIMR_DISABLE(FUM_FAULT) |
1478 FM10K_EIMR_DISABLE(MAILBOX) |
1479 FM10K_EIMR_DISABLE(SWITCHREADY) |
1480 FM10K_EIMR_DISABLE(SWITCHNOTREADY) |
1481 FM10K_EIMR_DISABLE(SRAMERROR) |
1482 FM10K_EIMR_DISABLE(VFLR) |
1483 FM10K_EIMR_DISABLE(MAXHOLDTIME));
1484 itr_reg = FM10K_ITR(FM10K_MBX_VECTOR);
1485 } else {
1486 itr_reg = FM10K_VFITR(FM10K_MBX_VECTOR);
1487 }
1488
1489 fm10k_write_reg(hw, itr_reg, FM10K_ITR_MASK_SET);
1490
1491 free_irq(entry->vector, interface);
1492}
1493
1494static s32 fm10k_mbx_mac_addr(struct fm10k_hw *hw, u32 **results,
1495 struct fm10k_mbx_info *mbx)
1496{
1497 bool vlan_override = hw->mac.vlan_override;
1498 u16 default_vid = hw->mac.default_vid;
1499 struct fm10k_intfc *interface;
1500 s32 err;
1501
1502 err = fm10k_msg_mac_vlan_vf(hw, results, mbx);
1503 if (err)
1504 return err;
1505
1506 interface = container_of(hw, struct fm10k_intfc, hw);
1507
1508 /* MAC was changed so we need reset */
1509 if (is_valid_ether_addr(hw->mac.perm_addr) &&
1510 !ether_addr_equal(hw->mac.perm_addr, hw->mac.addr))
1511 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1512
1513 /* VLAN override was changed, or default VLAN changed */
1514 if ((vlan_override != hw->mac.vlan_override) ||
1515 (default_vid != hw->mac.default_vid))
1516 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1517
1518 return 0;
1519}
1520
1521/* generic error handler for mailbox issues */
1522static s32 fm10k_mbx_error(struct fm10k_hw *hw, u32 **results,
1523 struct fm10k_mbx_info __always_unused *mbx)
1524{
1525 struct fm10k_intfc *interface;
1526 struct pci_dev *pdev;
1527
1528 interface = container_of(hw, struct fm10k_intfc, hw);
1529 pdev = interface->pdev;
1530
1531 dev_err(&pdev->dev, "Unknown message ID %u\n",
1532 **results & FM10K_TLV_ID_MASK);
1533
1534 return 0;
1535}
1536
1537static const struct fm10k_msg_data vf_mbx_data[] = {
1538 FM10K_TLV_MSG_TEST_HANDLER(fm10k_tlv_msg_test),
1539 FM10K_VF_MSG_MAC_VLAN_HANDLER(fm10k_mbx_mac_addr),
1540 FM10K_VF_MSG_LPORT_STATE_HANDLER(fm10k_msg_lport_state_vf),
1541 FM10K_TLV_MSG_ERROR_HANDLER(fm10k_mbx_error),
1542};
1543
1544static int fm10k_mbx_request_irq_vf(struct fm10k_intfc *interface)
1545{
1546 struct msix_entry *entry = &interface->msix_entries[FM10K_MBX_VECTOR];
1547 struct net_device *dev = interface->netdev;
1548 struct fm10k_hw *hw = &interface->hw;
1549 int err;
1550
1551 /* Use timer0 for interrupt moderation on the mailbox */
1552 u32 itr = entry->entry | FM10K_INT_MAP_TIMER0;
1553
1554 /* register mailbox handlers */
1555 err = hw->mbx.ops.register_handlers(&hw->mbx, vf_mbx_data);
1556 if (err)
1557 return err;
1558
1559 /* request the IRQ */
1560 err = request_irq(entry->vector, fm10k_msix_mbx_vf, 0,
1561 dev->name, interface);
1562 if (err) {
1563 netif_err(interface, probe, dev,
1564 "request_irq for msix_mbx failed: %d\n", err);
1565 return err;
1566 }
1567
1568 /* map all of the interrupt sources */
1569 fm10k_write_reg(hw, FM10K_VFINT_MAP, itr);
1570
1571 /* enable interrupt */
1572 fm10k_write_reg(hw, FM10K_VFITR(entry->entry), FM10K_ITR_ENABLE);
1573
1574 return 0;
1575}
1576
1577static s32 fm10k_lport_map(struct fm10k_hw *hw, u32 **results,
1578 struct fm10k_mbx_info *mbx)
1579{
1580 struct fm10k_intfc *interface;
1581 u32 dglort_map = hw->mac.dglort_map;
1582 s32 err;
1583
1584 interface = container_of(hw, struct fm10k_intfc, hw);
1585
1586 err = fm10k_msg_err_pf(hw, results, mbx);
1587 if (!err && hw->swapi.status) {
1588 /* force link down for a reasonable delay */
1589 interface->link_down_event = jiffies + (2 * HZ);
1590 set_bit(__FM10K_LINK_DOWN, interface->state);
1591
1592 /* reset dglort_map back to no config */
1593 hw->mac.dglort_map = FM10K_DGLORTMAP_NONE;
1594
1595 fm10k_service_event_schedule(interface);
1596
1597 /* prevent overloading kernel message buffer */
1598 if (interface->lport_map_failed)
1599 return 0;
1600
1601 interface->lport_map_failed = true;
1602
1603 if (hw->swapi.status == FM10K_MSG_ERR_PEP_NOT_SCHEDULED)
1604 dev_warn(&interface->pdev->dev,
1605 "cannot obtain link because the host interface is configured for a PCIe host interface bandwidth of zero\n");
1606 dev_warn(&interface->pdev->dev,
1607 "request logical port map failed: %d\n",
1608 hw->swapi.status);
1609
1610 return 0;
1611 }
1612
1613 err = fm10k_msg_lport_map_pf(hw, results, mbx);
1614 if (err)
1615 return err;
1616
1617 interface->lport_map_failed = false;
1618
1619 /* we need to reset if port count was just updated */
1620 if (dglort_map != hw->mac.dglort_map)
1621 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1622
1623 return 0;
1624}
1625
1626static s32 fm10k_update_pvid(struct fm10k_hw *hw, u32 **results,
1627 struct fm10k_mbx_info __always_unused *mbx)
1628{
1629 struct fm10k_intfc *interface;
1630 u16 glort, pvid;
1631 u32 pvid_update;
1632 s32 err;
1633
1634 err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_UPDATE_PVID],
1635 &pvid_update);
1636 if (err)
1637 return err;
1638
1639 /* extract values from the pvid update */
1640 glort = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_GLORT);
1641 pvid = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_PVID);
1642
1643 /* if glort is not valid return error */
1644 if (!fm10k_glort_valid_pf(hw, glort))
1645 return FM10K_ERR_PARAM;
1646
1647 /* verify VLAN ID is valid */
1648 if (pvid >= FM10K_VLAN_TABLE_VID_MAX)
1649 return FM10K_ERR_PARAM;
1650
1651 interface = container_of(hw, struct fm10k_intfc, hw);
1652
1653 /* check to see if this belongs to one of the VFs */
1654 err = fm10k_iov_update_pvid(interface, glort, pvid);
1655 if (!err)
1656 return 0;
1657
1658 /* we need to reset if default VLAN was just updated */
1659 if (pvid != hw->mac.default_vid)
1660 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1661
1662 hw->mac.default_vid = pvid;
1663
1664 return 0;
1665}
1666
1667static const struct fm10k_msg_data pf_mbx_data[] = {
1668 FM10K_PF_MSG_ERR_HANDLER(XCAST_MODES, fm10k_msg_err_pf),
1669 FM10K_PF_MSG_ERR_HANDLER(UPDATE_MAC_FWD_RULE, fm10k_msg_err_pf),
1670 FM10K_PF_MSG_LPORT_MAP_HANDLER(fm10k_lport_map),
1671 FM10K_PF_MSG_ERR_HANDLER(LPORT_CREATE, fm10k_msg_err_pf),
1672 FM10K_PF_MSG_ERR_HANDLER(LPORT_DELETE, fm10k_msg_err_pf),
1673 FM10K_PF_MSG_UPDATE_PVID_HANDLER(fm10k_update_pvid),
1674 FM10K_TLV_MSG_ERROR_HANDLER(fm10k_mbx_error),
1675};
1676
1677static int fm10k_mbx_request_irq_pf(struct fm10k_intfc *interface)
1678{
1679 struct msix_entry *entry = &interface->msix_entries[FM10K_MBX_VECTOR];
1680 struct net_device *dev = interface->netdev;
1681 struct fm10k_hw *hw = &interface->hw;
1682 int err;
1683
1684 /* Use timer0 for interrupt moderation on the mailbox */
1685 u32 mbx_itr = entry->entry | FM10K_INT_MAP_TIMER0;
1686 u32 other_itr = entry->entry | FM10K_INT_MAP_IMMEDIATE;
1687
1688 /* register mailbox handlers */
1689 err = hw->mbx.ops.register_handlers(&hw->mbx, pf_mbx_data);
1690 if (err)
1691 return err;
1692
1693 /* request the IRQ */
1694 err = request_irq(entry->vector, fm10k_msix_mbx_pf, 0,
1695 dev->name, interface);
1696 if (err) {
1697 netif_err(interface, probe, dev,
1698 "request_irq for msix_mbx failed: %d\n", err);
1699 return err;
1700 }
1701
1702 /* Enable interrupts w/ no moderation for "other" interrupts */
1703 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_pcie_fault), other_itr);
1704 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_switch_up_down), other_itr);
1705 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_sram), other_itr);
1706 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_max_hold_time), other_itr);
1707 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_vflr), other_itr);
1708
1709 /* Enable interrupts w/ moderation for mailbox */
1710 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_mailbox), mbx_itr);
1711
1712 /* Enable individual interrupt causes */
1713 fm10k_write_reg(hw, FM10K_EIMR, FM10K_EIMR_ENABLE(PCA_FAULT) |
1714 FM10K_EIMR_ENABLE(FUM_FAULT) |
1715 FM10K_EIMR_ENABLE(MAILBOX) |
1716 FM10K_EIMR_ENABLE(SWITCHREADY) |
1717 FM10K_EIMR_ENABLE(SWITCHNOTREADY) |
1718 FM10K_EIMR_ENABLE(SRAMERROR) |
1719 FM10K_EIMR_ENABLE(VFLR) |
1720 FM10K_EIMR_ENABLE(MAXHOLDTIME));
1721
1722 /* enable interrupt */
1723 fm10k_write_reg(hw, FM10K_ITR(entry->entry), FM10K_ITR_ENABLE);
1724
1725 return 0;
1726}
1727
1728int fm10k_mbx_request_irq(struct fm10k_intfc *interface)
1729{
1730 struct fm10k_hw *hw = &interface->hw;
1731 int err;
1732
1733 /* enable Mailbox cause */
1734 if (hw->mac.type == fm10k_mac_pf)
1735 err = fm10k_mbx_request_irq_pf(interface);
1736 else
1737 err = fm10k_mbx_request_irq_vf(interface);
1738 if (err)
1739 return err;
1740
1741 /* connect mailbox */
1742 err = hw->mbx.ops.connect(hw, &hw->mbx);
1743
1744 /* if the mailbox failed to connect, then free IRQ */
1745 if (err)
1746 fm10k_mbx_free_irq(interface);
1747
1748 return err;
1749}
1750
1751/**
1752 * fm10k_qv_free_irq - release interrupts associated with queue vectors
1753 * @interface: board private structure
1754 *
1755 * Release all interrupts associated with this interface
1756 **/
1757void fm10k_qv_free_irq(struct fm10k_intfc *interface)
1758{
1759 int vector = interface->num_q_vectors;
1760 struct fm10k_hw *hw = &interface->hw;
1761 struct msix_entry *entry;
1762
1763 entry = &interface->msix_entries[NON_Q_VECTORS(hw) + vector];
1764
1765 while (vector) {
1766 struct fm10k_q_vector *q_vector;
1767
1768 vector--;
1769 entry--;
1770 q_vector = interface->q_vector[vector];
1771
1772 if (!q_vector->tx.count && !q_vector->rx.count)
1773 continue;
1774
1775 /* clear the affinity_mask in the IRQ descriptor */
1776 irq_set_affinity_hint(entry->vector, NULL);
1777
1778 /* disable interrupts */
1779 writel(FM10K_ITR_MASK_SET, q_vector->itr);
1780
1781 free_irq(entry->vector, q_vector);
1782 }
1783}
1784
1785/**
1786 * fm10k_qv_request_irq - initialize interrupts for queue vectors
1787 * @interface: board private structure
1788 *
1789 * Attempts to configure interrupts using the best available
1790 * capabilities of the hardware and kernel.
1791 **/
1792int fm10k_qv_request_irq(struct fm10k_intfc *interface)
1793{
1794 struct net_device *dev = interface->netdev;
1795 struct fm10k_hw *hw = &interface->hw;
1796 struct msix_entry *entry;
1797 unsigned int ri = 0, ti = 0;
1798 int vector, err;
1799
1800 entry = &interface->msix_entries[NON_Q_VECTORS(hw)];
1801
1802 for (vector = 0; vector < interface->num_q_vectors; vector++) {
1803 struct fm10k_q_vector *q_vector = interface->q_vector[vector];
1804
1805 /* name the vector */
1806 if (q_vector->tx.count && q_vector->rx.count) {
1807 snprintf(q_vector->name, sizeof(q_vector->name),
1808 "%s-TxRx-%u", dev->name, ri++);
1809 ti++;
1810 } else if (q_vector->rx.count) {
1811 snprintf(q_vector->name, sizeof(q_vector->name),
1812 "%s-rx-%u", dev->name, ri++);
1813 } else if (q_vector->tx.count) {
1814 snprintf(q_vector->name, sizeof(q_vector->name),
1815 "%s-tx-%u", dev->name, ti++);
1816 } else {
1817 /* skip this unused q_vector */
1818 continue;
1819 }
1820
1821 /* Assign ITR register to q_vector */
1822 q_vector->itr = (hw->mac.type == fm10k_mac_pf) ?
1823 &interface->uc_addr[FM10K_ITR(entry->entry)] :
1824 &interface->uc_addr[FM10K_VFITR(entry->entry)];
1825
1826 /* request the IRQ */
1827 err = request_irq(entry->vector, &fm10k_msix_clean_rings, 0,
1828 q_vector->name, q_vector);
1829 if (err) {
1830 netif_err(interface, probe, dev,
1831 "request_irq failed for MSIX interrupt Error: %d\n",
1832 err);
1833 goto err_out;
1834 }
1835
1836 /* assign the mask for this irq */
1837 irq_set_affinity_hint(entry->vector, &q_vector->affinity_mask);
1838
1839 /* Enable q_vector */
1840 writel(FM10K_ITR_ENABLE, q_vector->itr);
1841
1842 entry++;
1843 }
1844
1845 return 0;
1846
1847err_out:
1848 /* wind through the ring freeing all entries and vectors */
1849 while (vector) {
1850 struct fm10k_q_vector *q_vector;
1851
1852 entry--;
1853 vector--;
1854 q_vector = interface->q_vector[vector];
1855
1856 if (!q_vector->tx.count && !q_vector->rx.count)
1857 continue;
1858
1859 /* clear the affinity_mask in the IRQ descriptor */
1860 irq_set_affinity_hint(entry->vector, NULL);
1861
1862 /* disable interrupts */
1863 writel(FM10K_ITR_MASK_SET, q_vector->itr);
1864
1865 free_irq(entry->vector, q_vector);
1866 }
1867
1868 return err;
1869}
1870
1871void fm10k_up(struct fm10k_intfc *interface)
1872{
1873 struct fm10k_hw *hw = &interface->hw;
1874
1875 /* Enable Tx/Rx DMA */
1876 hw->mac.ops.start_hw(hw);
1877
1878 /* configure Tx descriptor rings */
1879 fm10k_configure_tx(interface);
1880
1881 /* configure Rx descriptor rings */
1882 fm10k_configure_rx(interface);
1883
1884 /* configure interrupts */
1885 hw->mac.ops.update_int_moderator(hw);
1886
1887 /* enable statistics capture again */
1888 clear_bit(__FM10K_UPDATING_STATS, interface->state);
1889
1890 /* clear down bit to indicate we are ready to go */
1891 clear_bit(__FM10K_DOWN, interface->state);
1892
1893 /* enable polling cleanups */
1894 fm10k_napi_enable_all(interface);
1895
1896 /* re-establish Rx filters */
1897 fm10k_restore_rx_state(interface);
1898
1899 /* enable transmits */
1900 netif_tx_start_all_queues(interface->netdev);
1901
1902 /* kick off the service timer now */
1903 hw->mac.get_host_state = true;
1904 mod_timer(&interface->service_timer, jiffies);
1905}
1906
1907static void fm10k_napi_disable_all(struct fm10k_intfc *interface)
1908{
1909 struct fm10k_q_vector *q_vector;
1910 int q_idx;
1911
1912 for (q_idx = 0; q_idx < interface->num_q_vectors; q_idx++) {
1913 q_vector = interface->q_vector[q_idx];
1914 napi_disable(&q_vector->napi);
1915 }
1916}
1917
1918void fm10k_down(struct fm10k_intfc *interface)
1919{
1920 struct net_device *netdev = interface->netdev;
1921 struct fm10k_hw *hw = &interface->hw;
1922 int err, i = 0, count = 0;
1923
1924 /* signal that we are down to the interrupt handler and service task */
1925 if (test_and_set_bit(__FM10K_DOWN, interface->state))
1926 return;
1927
1928 /* call carrier off first to avoid false dev_watchdog timeouts */
1929 netif_carrier_off(netdev);
1930
1931 /* disable transmits */
1932 netif_tx_stop_all_queues(netdev);
1933 netif_tx_disable(netdev);
1934
1935 /* reset Rx filters */
1936 fm10k_reset_rx_state(interface);
1937
1938 /* disable polling routines */
1939 fm10k_napi_disable_all(interface);
1940
1941 /* capture stats one last time before stopping interface */
1942 fm10k_update_stats(interface);
1943
1944 /* prevent updating statistics while we're down */
1945 while (test_and_set_bit(__FM10K_UPDATING_STATS, interface->state))
1946 usleep_range(1000, 2000);
1947
1948 /* skip waiting for TX DMA if we lost PCIe link */
1949 if (FM10K_REMOVED(hw->hw_addr))
1950 goto skip_tx_dma_drain;
1951
1952 /* In some rare circumstances it can take a while for Tx queues to
1953 * quiesce and be fully disabled. Attempt to .stop_hw() first, and
1954 * then if we get ERR_REQUESTS_PENDING, go ahead and wait in a loop
1955 * until the Tx queues have emptied, or until a number of retries. If
1956 * we fail to clear within the retry loop, we will issue a warning
1957 * indicating that Tx DMA is probably hung. Note this means we call
1958 * .stop_hw() twice but this shouldn't cause any problems.
1959 */
1960 err = hw->mac.ops.stop_hw(hw);
1961 if (err != FM10K_ERR_REQUESTS_PENDING)
1962 goto skip_tx_dma_drain;
1963
1964#define TX_DMA_DRAIN_RETRIES 25
1965 for (count = 0; count < TX_DMA_DRAIN_RETRIES; count++) {
1966 usleep_range(10000, 20000);
1967
1968 /* start checking at the last ring to have pending Tx */
1969 for (; i < interface->num_tx_queues; i++)
1970 if (fm10k_get_tx_pending(interface->tx_ring[i], false))
1971 break;
1972
1973 /* if all the queues are drained, we can break now */
1974 if (i == interface->num_tx_queues)
1975 break;
1976 }
1977
1978 if (count >= TX_DMA_DRAIN_RETRIES)
1979 dev_err(&interface->pdev->dev,
1980 "Tx queues failed to drain after %d tries. Tx DMA is probably hung.\n",
1981 count);
1982skip_tx_dma_drain:
1983 /* Disable DMA engine for Tx/Rx */
1984 err = hw->mac.ops.stop_hw(hw);
1985 if (err == FM10K_ERR_REQUESTS_PENDING)
1986 dev_err(&interface->pdev->dev,
1987 "due to pending requests hw was not shut down gracefully\n");
1988 else if (err)
1989 dev_err(&interface->pdev->dev, "stop_hw failed: %d\n", err);
1990
1991 /* free any buffers still on the rings */
1992 fm10k_clean_all_tx_rings(interface);
1993 fm10k_clean_all_rx_rings(interface);
1994}
1995
1996/**
1997 * fm10k_sw_init - Initialize general software structures
1998 * @interface: host interface private structure to initialize
1999 * @ent: PCI device ID entry
2000 *
2001 * fm10k_sw_init initializes the interface private data structure.
2002 * Fields are initialized based on PCI device information and
2003 * OS network device settings (MTU size).
2004 **/
2005static int fm10k_sw_init(struct fm10k_intfc *interface,
2006 const struct pci_device_id *ent)
2007{
2008 const struct fm10k_info *fi = fm10k_info_tbl[ent->driver_data];
2009 struct fm10k_hw *hw = &interface->hw;
2010 struct pci_dev *pdev = interface->pdev;
2011 struct net_device *netdev = interface->netdev;
2012 u32 rss_key[FM10K_RSSRK_SIZE];
2013 unsigned int rss;
2014 int err;
2015
2016 /* initialize back pointer */
2017 hw->back = interface;
2018 hw->hw_addr = interface->uc_addr;
2019
2020 /* PCI config space info */
2021 hw->vendor_id = pdev->vendor;
2022 hw->device_id = pdev->device;
2023 hw->revision_id = pdev->revision;
2024 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2025 hw->subsystem_device_id = pdev->subsystem_device;
2026
2027 /* Setup hw api */
2028 memcpy(&hw->mac.ops, fi->mac_ops, sizeof(hw->mac.ops));
2029 hw->mac.type = fi->mac;
2030
2031 /* Setup IOV handlers */
2032 if (fi->iov_ops)
2033 memcpy(&hw->iov.ops, fi->iov_ops, sizeof(hw->iov.ops));
2034
2035 /* Set common capability flags and settings */
2036 rss = min_t(int, FM10K_MAX_RSS_INDICES, num_online_cpus());
2037 interface->ring_feature[RING_F_RSS].limit = rss;
2038 fi->get_invariants(hw);
2039
2040 /* pick up the PCIe bus settings for reporting later */
2041 if (hw->mac.ops.get_bus_info)
2042 hw->mac.ops.get_bus_info(hw);
2043
2044 /* limit the usable DMA range */
2045 if (hw->mac.ops.set_dma_mask)
2046 hw->mac.ops.set_dma_mask(hw, dma_get_mask(&pdev->dev));
2047
2048 /* update netdev with DMA restrictions */
2049 if (dma_get_mask(&pdev->dev) > DMA_BIT_MASK(32)) {
2050 netdev->features |= NETIF_F_HIGHDMA;
2051 netdev->vlan_features |= NETIF_F_HIGHDMA;
2052 }
2053
2054 /* reset and initialize the hardware so it is in a known state */
2055 err = hw->mac.ops.reset_hw(hw);
2056 if (err) {
2057 dev_err(&pdev->dev, "reset_hw failed: %d\n", err);
2058 return err;
2059 }
2060
2061 err = hw->mac.ops.init_hw(hw);
2062 if (err) {
2063 dev_err(&pdev->dev, "init_hw failed: %d\n", err);
2064 return err;
2065 }
2066
2067 /* initialize hardware statistics */
2068 hw->mac.ops.update_hw_stats(hw, &interface->stats);
2069
2070 /* Set upper limit on IOV VFs that can be allocated */
2071 pci_sriov_set_totalvfs(pdev, hw->iov.total_vfs);
2072
2073 /* Start with random Ethernet address */
2074 eth_random_addr(hw->mac.addr);
2075
2076 /* Initialize MAC address from hardware */
2077 err = hw->mac.ops.read_mac_addr(hw);
2078 if (err) {
2079 dev_warn(&pdev->dev,
2080 "Failed to obtain MAC address defaulting to random\n");
2081 /* tag address assignment as random */
2082 netdev->addr_assign_type |= NET_ADDR_RANDOM;
2083 }
2084
2085 ether_addr_copy(netdev->dev_addr, hw->mac.addr);
2086 ether_addr_copy(netdev->perm_addr, hw->mac.addr);
2087
2088 if (!is_valid_ether_addr(netdev->perm_addr)) {
2089 dev_err(&pdev->dev, "Invalid MAC Address\n");
2090 return -EIO;
2091 }
2092
2093 /* initialize DCBNL interface */
2094 fm10k_dcbnl_set_ops(netdev);
2095
2096 /* set default ring sizes */
2097 interface->tx_ring_count = FM10K_DEFAULT_TXD;
2098 interface->rx_ring_count = FM10K_DEFAULT_RXD;
2099
2100 /* set default interrupt moderation */
2101 interface->tx_itr = FM10K_TX_ITR_DEFAULT;
2102 interface->rx_itr = FM10K_ITR_ADAPTIVE | FM10K_RX_ITR_DEFAULT;
2103
2104 /* initialize udp port lists */
2105 INIT_LIST_HEAD(&interface->vxlan_port);
2106 INIT_LIST_HEAD(&interface->geneve_port);
2107
2108 /* Initialize the MAC/VLAN queue */
2109 INIT_LIST_HEAD(&interface->macvlan_requests);
2110
2111 netdev_rss_key_fill(rss_key, sizeof(rss_key));
2112 memcpy(interface->rssrk, rss_key, sizeof(rss_key));
2113
2114 /* Initialize the mailbox lock */
2115 spin_lock_init(&interface->mbx_lock);
2116 spin_lock_init(&interface->macvlan_lock);
2117
2118 /* Start off interface as being down */
2119 set_bit(__FM10K_DOWN, interface->state);
2120 set_bit(__FM10K_UPDATING_STATS, interface->state);
2121
2122 return 0;
2123}
2124
2125/**
2126 * fm10k_probe - Device Initialization Routine
2127 * @pdev: PCI device information struct
2128 * @ent: entry in fm10k_pci_tbl
2129 *
2130 * Returns 0 on success, negative on failure
2131 *
2132 * fm10k_probe initializes an interface identified by a pci_dev structure.
2133 * The OS initialization, configuring of the interface private structure,
2134 * and a hardware reset occur.
2135 **/
2136static int fm10k_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2137{
2138 struct net_device *netdev;
2139 struct fm10k_intfc *interface;
2140 int err;
2141
2142 if (pdev->error_state != pci_channel_io_normal) {
2143 dev_err(&pdev->dev,
2144 "PCI device still in an error state. Unable to load...\n");
2145 return -EIO;
2146 }
2147
2148 err = pci_enable_device_mem(pdev);
2149 if (err) {
2150 dev_err(&pdev->dev,
2151 "PCI enable device failed: %d\n", err);
2152 return err;
2153 }
2154
2155 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
2156 if (err)
2157 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2158 if (err) {
2159 dev_err(&pdev->dev,
2160 "DMA configuration failed: %d\n", err);
2161 goto err_dma;
2162 }
2163
2164 err = pci_request_mem_regions(pdev, fm10k_driver_name);
2165 if (err) {
2166 dev_err(&pdev->dev,
2167 "pci_request_selected_regions failed: %d\n", err);
2168 goto err_pci_reg;
2169 }
2170
2171 pci_enable_pcie_error_reporting(pdev);
2172
2173 pci_set_master(pdev);
2174 pci_save_state(pdev);
2175
2176 netdev = fm10k_alloc_netdev(fm10k_info_tbl[ent->driver_data]);
2177 if (!netdev) {
2178 err = -ENOMEM;
2179 goto err_alloc_netdev;
2180 }
2181
2182 SET_NETDEV_DEV(netdev, &pdev->dev);
2183
2184 interface = netdev_priv(netdev);
2185 pci_set_drvdata(pdev, interface);
2186
2187 interface->netdev = netdev;
2188 interface->pdev = pdev;
2189
2190 interface->uc_addr = ioremap(pci_resource_start(pdev, 0),
2191 FM10K_UC_ADDR_SIZE);
2192 if (!interface->uc_addr) {
2193 err = -EIO;
2194 goto err_ioremap;
2195 }
2196
2197 err = fm10k_sw_init(interface, ent);
2198 if (err)
2199 goto err_sw_init;
2200
2201 /* enable debugfs support */
2202 fm10k_dbg_intfc_init(interface);
2203
2204 err = fm10k_init_queueing_scheme(interface);
2205 if (err)
2206 goto err_sw_init;
2207
2208 /* the mbx interrupt might attempt to schedule the service task, so we
2209 * must ensure it is disabled since we haven't yet requested the timer
2210 * or work item.
2211 */
2212 set_bit(__FM10K_SERVICE_DISABLE, interface->state);
2213
2214 err = fm10k_mbx_request_irq(interface);
2215 if (err)
2216 goto err_mbx_interrupt;
2217
2218 /* final check of hardware state before registering the interface */
2219 err = fm10k_hw_ready(interface);
2220 if (err)
2221 goto err_register;
2222
2223 err = register_netdev(netdev);
2224 if (err)
2225 goto err_register;
2226
2227 /* carrier off reporting is important to ethtool even BEFORE open */
2228 netif_carrier_off(netdev);
2229
2230 /* stop all the transmit queues from transmitting until link is up */
2231 netif_tx_stop_all_queues(netdev);
2232
2233 /* Initialize service timer and service task late in order to avoid
2234 * cleanup issues.
2235 */
2236 timer_setup(&interface->service_timer, fm10k_service_timer, 0);
2237 INIT_WORK(&interface->service_task, fm10k_service_task);
2238
2239 /* Setup the MAC/VLAN queue */
2240 INIT_DELAYED_WORK(&interface->macvlan_task, fm10k_macvlan_task);
2241
2242 /* kick off service timer now, even when interface is down */
2243 mod_timer(&interface->service_timer, (HZ * 2) + jiffies);
2244
2245 /* print warning for non-optimal configurations */
2246 pcie_print_link_status(interface->pdev);
2247
2248 /* report MAC address for logging */
2249 dev_info(&pdev->dev, "%pM\n", netdev->dev_addr);
2250
2251 /* enable SR-IOV after registering netdev to enforce PF/VF ordering */
2252 fm10k_iov_configure(pdev, 0);
2253
2254 /* clear the service task disable bit and kick off service task */
2255 clear_bit(__FM10K_SERVICE_DISABLE, interface->state);
2256 fm10k_service_event_schedule(interface);
2257
2258 return 0;
2259
2260err_register:
2261 fm10k_mbx_free_irq(interface);
2262err_mbx_interrupt:
2263 fm10k_clear_queueing_scheme(interface);
2264err_sw_init:
2265 if (interface->sw_addr)
2266 iounmap(interface->sw_addr);
2267 iounmap(interface->uc_addr);
2268err_ioremap:
2269 free_netdev(netdev);
2270err_alloc_netdev:
2271 pci_release_mem_regions(pdev);
2272err_pci_reg:
2273err_dma:
2274 pci_disable_device(pdev);
2275 return err;
2276}
2277
2278/**
2279 * fm10k_remove - Device Removal Routine
2280 * @pdev: PCI device information struct
2281 *
2282 * fm10k_remove is called by the PCI subsystem to alert the driver
2283 * that it should release a PCI device. The could be caused by a
2284 * Hot-Plug event, or because the driver is going to be removed from
2285 * memory.
2286 **/
2287static void fm10k_remove(struct pci_dev *pdev)
2288{
2289 struct fm10k_intfc *interface = pci_get_drvdata(pdev);
2290 struct net_device *netdev = interface->netdev;
2291
2292 del_timer_sync(&interface->service_timer);
2293
2294 fm10k_stop_service_event(interface);
2295 fm10k_stop_macvlan_task(interface);
2296
2297 /* Remove all pending MAC/VLAN requests */
2298 fm10k_clear_macvlan_queue(interface, interface->glort, true);
2299
2300 /* free netdev, this may bounce the interrupts due to setup_tc */
2301 if (netdev->reg_state == NETREG_REGISTERED)
2302 unregister_netdev(netdev);
2303
2304 /* release VFs */
2305 fm10k_iov_disable(pdev);
2306
2307 /* disable mailbox interrupt */
2308 fm10k_mbx_free_irq(interface);
2309
2310 /* free interrupts */
2311 fm10k_clear_queueing_scheme(interface);
2312
2313 /* remove any debugfs interfaces */
2314 fm10k_dbg_intfc_exit(interface);
2315
2316 if (interface->sw_addr)
2317 iounmap(interface->sw_addr);
2318 iounmap(interface->uc_addr);
2319
2320 free_netdev(netdev);
2321
2322 pci_release_mem_regions(pdev);
2323
2324 pci_disable_pcie_error_reporting(pdev);
2325
2326 pci_disable_device(pdev);
2327}
2328
2329static void fm10k_prepare_suspend(struct fm10k_intfc *interface)
2330{
2331 /* the watchdog task reads from registers, which might appear like
2332 * a surprise remove if the PCIe device is disabled while we're
2333 * stopped. We stop the watchdog task until after we resume software
2334 * activity.
2335 *
2336 * Note that the MAC/VLAN task will be stopped as part of preparing
2337 * for reset so we don't need to handle it here.
2338 */
2339 fm10k_stop_service_event(interface);
2340
2341 if (fm10k_prepare_for_reset(interface))
2342 set_bit(__FM10K_RESET_SUSPENDED, interface->state);
2343}
2344
2345static int fm10k_handle_resume(struct fm10k_intfc *interface)
2346{
2347 struct fm10k_hw *hw = &interface->hw;
2348 int err;
2349
2350 /* Even if we didn't properly prepare for reset in
2351 * fm10k_prepare_suspend, we'll attempt to resume anyways.
2352 */
2353 if (!test_and_clear_bit(__FM10K_RESET_SUSPENDED, interface->state))
2354 dev_warn(&interface->pdev->dev,
2355 "Device was shut down as part of suspend... Attempting to recover\n");
2356
2357 /* reset statistics starting values */
2358 hw->mac.ops.rebind_hw_stats(hw, &interface->stats);
2359
2360 err = fm10k_handle_reset(interface);
2361 if (err)
2362 return err;
2363
2364 /* assume host is not ready, to prevent race with watchdog in case we
2365 * actually don't have connection to the switch
2366 */
2367 interface->host_ready = false;
2368 fm10k_watchdog_host_not_ready(interface);
2369
2370 /* force link to stay down for a second to prevent link flutter */
2371 interface->link_down_event = jiffies + (HZ);
2372 set_bit(__FM10K_LINK_DOWN, interface->state);
2373
2374 /* restart the service task */
2375 fm10k_start_service_event(interface);
2376
2377 /* Restart the MAC/VLAN request queue in-case of outstanding events */
2378 fm10k_macvlan_schedule(interface);
2379
2380 return err;
2381}
2382
2383/**
2384 * fm10k_resume - Generic PM resume hook
2385 * @dev: generic device structure
2386 *
2387 * Generic PM hook used when waking the device from a low power state after
2388 * suspend or hibernation. This function does not need to handle lower PCIe
2389 * device state as the stack takes care of that for us.
2390 **/
2391static int __maybe_unused fm10k_resume(struct device *dev)
2392{
2393 struct fm10k_intfc *interface = pci_get_drvdata(to_pci_dev(dev));
2394 struct net_device *netdev = interface->netdev;
2395 struct fm10k_hw *hw = &interface->hw;
2396 int err;
2397
2398 /* refresh hw_addr in case it was dropped */
2399 hw->hw_addr = interface->uc_addr;
2400
2401 err = fm10k_handle_resume(interface);
2402 if (err)
2403 return err;
2404
2405 netif_device_attach(netdev);
2406
2407 return 0;
2408}
2409
2410/**
2411 * fm10k_suspend - Generic PM suspend hook
2412 * @dev: generic device structure
2413 *
2414 * Generic PM hook used when setting the device into a low power state for
2415 * system suspend or hibernation. This function does not need to handle lower
2416 * PCIe device state as the stack takes care of that for us.
2417 **/
2418static int __maybe_unused fm10k_suspend(struct device *dev)
2419{
2420 struct fm10k_intfc *interface = pci_get_drvdata(to_pci_dev(dev));
2421 struct net_device *netdev = interface->netdev;
2422
2423 netif_device_detach(netdev);
2424
2425 fm10k_prepare_suspend(interface);
2426
2427 return 0;
2428}
2429
2430/**
2431 * fm10k_io_error_detected - called when PCI error is detected
2432 * @pdev: Pointer to PCI device
2433 * @state: The current pci connection state
2434 *
2435 * This function is called after a PCI bus error affecting
2436 * this device has been detected.
2437 */
2438static pci_ers_result_t fm10k_io_error_detected(struct pci_dev *pdev,
2439 pci_channel_state_t state)
2440{
2441 struct fm10k_intfc *interface = pci_get_drvdata(pdev);
2442 struct net_device *netdev = interface->netdev;
2443
2444 netif_device_detach(netdev);
2445
2446 if (state == pci_channel_io_perm_failure)
2447 return PCI_ERS_RESULT_DISCONNECT;
2448
2449 fm10k_prepare_suspend(interface);
2450
2451 /* Request a slot reset. */
2452 return PCI_ERS_RESULT_NEED_RESET;
2453}
2454
2455/**
2456 * fm10k_io_slot_reset - called after the pci bus has been reset.
2457 * @pdev: Pointer to PCI device
2458 *
2459 * Restart the card from scratch, as if from a cold-boot.
2460 */
2461static pci_ers_result_t fm10k_io_slot_reset(struct pci_dev *pdev)
2462{
2463 pci_ers_result_t result;
2464
2465 if (pci_reenable_device(pdev)) {
2466 dev_err(&pdev->dev,
2467 "Cannot re-enable PCI device after reset.\n");
2468 result = PCI_ERS_RESULT_DISCONNECT;
2469 } else {
2470 pci_set_master(pdev);
2471 pci_restore_state(pdev);
2472
2473 /* After second error pci->state_saved is false, this
2474 * resets it so EEH doesn't break.
2475 */
2476 pci_save_state(pdev);
2477
2478 pci_wake_from_d3(pdev, false);
2479
2480 result = PCI_ERS_RESULT_RECOVERED;
2481 }
2482
2483 pci_cleanup_aer_uncorrect_error_status(pdev);
2484
2485 return result;
2486}
2487
2488/**
2489 * fm10k_io_resume - called when traffic can start flowing again.
2490 * @pdev: Pointer to PCI device
2491 *
2492 * This callback is called when the error recovery driver tells us that
2493 * its OK to resume normal operation.
2494 */
2495static void fm10k_io_resume(struct pci_dev *pdev)
2496{
2497 struct fm10k_intfc *interface = pci_get_drvdata(pdev);
2498 struct net_device *netdev = interface->netdev;
2499 int err;
2500
2501 err = fm10k_handle_resume(interface);
2502
2503 if (err)
2504 dev_warn(&pdev->dev,
2505 "%s failed: %d\n", __func__, err);
2506 else
2507 netif_device_attach(netdev);
2508}
2509
2510/**
2511 * fm10k_io_reset_prepare - called when PCI function is about to be reset
2512 * @pdev: Pointer to PCI device
2513 *
2514 * This callback is called when the PCI function is about to be reset,
2515 * allowing the device driver to prepare for it.
2516 */
2517static void fm10k_io_reset_prepare(struct pci_dev *pdev)
2518{
2519 /* warn incase we have any active VF devices */
2520 if (pci_num_vf(pdev))
2521 dev_warn(&pdev->dev,
2522 "PCIe FLR may cause issues for any active VF devices\n");
2523 fm10k_prepare_suspend(pci_get_drvdata(pdev));
2524}
2525
2526/**
2527 * fm10k_io_reset_done - called when PCI function has finished resetting
2528 * @pdev: Pointer to PCI device
2529 *
2530 * This callback is called just after the PCI function is reset, such as via
2531 * /sys/class/net/<enpX>/device/reset or similar.
2532 */
2533static void fm10k_io_reset_done(struct pci_dev *pdev)
2534{
2535 struct fm10k_intfc *interface = pci_get_drvdata(pdev);
2536 int err = fm10k_handle_resume(interface);
2537
2538 if (err) {
2539 dev_warn(&pdev->dev,
2540 "%s failed: %d\n", __func__, err);
2541 netif_device_detach(interface->netdev);
2542 }
2543}
2544
2545static const struct pci_error_handlers fm10k_err_handler = {
2546 .error_detected = fm10k_io_error_detected,
2547 .slot_reset = fm10k_io_slot_reset,
2548 .resume = fm10k_io_resume,
2549 .reset_prepare = fm10k_io_reset_prepare,
2550 .reset_done = fm10k_io_reset_done,
2551};
2552
2553static SIMPLE_DEV_PM_OPS(fm10k_pm_ops, fm10k_suspend, fm10k_resume);
2554
2555static struct pci_driver fm10k_driver = {
2556 .name = fm10k_driver_name,
2557 .id_table = fm10k_pci_tbl,
2558 .probe = fm10k_probe,
2559 .remove = fm10k_remove,
2560 .driver = {
2561 .pm = &fm10k_pm_ops,
2562 },
2563 .sriov_configure = fm10k_iov_configure,
2564 .err_handler = &fm10k_err_handler
2565};
2566
2567/**
2568 * fm10k_register_pci_driver - register driver interface
2569 *
2570 * This function is called on module load in order to register the driver.
2571 **/
2572int fm10k_register_pci_driver(void)
2573{
2574 return pci_register_driver(&fm10k_driver);
2575}
2576
2577/**
2578 * fm10k_unregister_pci_driver - unregister driver interface
2579 *
2580 * This function is called on module unload in order to remove the driver.
2581 **/
2582void fm10k_unregister_pci_driver(void)
2583{
2584 pci_unregister_driver(&fm10k_driver);
2585}