Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/mmc/core/mmc.c
   4 *
   5 *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
   6 *  Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
   7 *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
 
 
 
 
   8 */
   9
  10#include <linux/err.h>
  11#include <linux/of.h>
  12#include <linux/slab.h>
  13#include <linux/stat.h>
  14#include <linux/pm_runtime.h>
  15#include <linux/random.h>
  16#include <linux/sysfs.h>
  17
  18#include <linux/mmc/host.h>
  19#include <linux/mmc/card.h>
  20#include <linux/mmc/mmc.h>
  21
  22#include "core.h"
  23#include "card.h"
  24#include "host.h"
  25#include "bus.h"
  26#include "mmc_ops.h"
  27#include "quirks.h"
  28#include "sd_ops.h"
  29#include "pwrseq.h"
  30
  31#define DEFAULT_CMD6_TIMEOUT_MS	500
  32#define MIN_CACHE_EN_TIMEOUT_MS 1600
  33#define CACHE_FLUSH_TIMEOUT_MS 30000 /* 30s */
  34
  35static const unsigned int tran_exp[] = {
  36	10000,		100000,		1000000,	10000000,
  37	0,		0,		0,		0
  38};
  39
  40static const unsigned char tran_mant[] = {
  41	0,	10,	12,	13,	15,	20,	25,	30,
  42	35,	40,	45,	50,	55,	60,	70,	80,
  43};
  44
  45static const unsigned int taac_exp[] = {
  46	1,	10,	100,	1000,	10000,	100000,	1000000, 10000000,
  47};
  48
  49static const unsigned int taac_mant[] = {
  50	0,	10,	12,	13,	15,	20,	25,	30,
  51	35,	40,	45,	50,	55,	60,	70,	80,
  52};
  53
  54#define UNSTUFF_BITS(resp,start,size)					\
  55	({								\
  56		const int __size = size;				\
  57		const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1;	\
  58		const int __off = 3 - ((start) / 32);			\
  59		const int __shft = (start) & 31;			\
  60		u32 __res;						\
  61									\
  62		__res = resp[__off] >> __shft;				\
  63		if (__size + __shft > 32)				\
  64			__res |= resp[__off-1] << ((32 - __shft) % 32);	\
  65		__res & __mask;						\
  66	})
  67
  68/*
  69 * Given the decoded CSD structure, decode the raw CID to our CID structure.
  70 */
  71static int mmc_decode_cid(struct mmc_card *card)
  72{
  73	u32 *resp = card->raw_cid;
  74
  75	/*
  76	 * Add the raw card ID (cid) data to the entropy pool. It doesn't
  77	 * matter that not all of it is unique, it's just bonus entropy.
  78	 */
  79	add_device_randomness(&card->raw_cid, sizeof(card->raw_cid));
  80
  81	/*
  82	 * The selection of the format here is based upon published
  83	 * specs from sandisk and from what people have reported.
  84	 */
  85	switch (card->csd.mmca_vsn) {
  86	case 0: /* MMC v1.0 - v1.2 */
  87	case 1: /* MMC v1.4 */
  88		card->cid.manfid	= UNSTUFF_BITS(resp, 104, 24);
  89		card->cid.prod_name[0]	= UNSTUFF_BITS(resp, 96, 8);
  90		card->cid.prod_name[1]	= UNSTUFF_BITS(resp, 88, 8);
  91		card->cid.prod_name[2]	= UNSTUFF_BITS(resp, 80, 8);
  92		card->cid.prod_name[3]	= UNSTUFF_BITS(resp, 72, 8);
  93		card->cid.prod_name[4]	= UNSTUFF_BITS(resp, 64, 8);
  94		card->cid.prod_name[5]	= UNSTUFF_BITS(resp, 56, 8);
  95		card->cid.prod_name[6]	= UNSTUFF_BITS(resp, 48, 8);
  96		card->cid.hwrev		= UNSTUFF_BITS(resp, 44, 4);
  97		card->cid.fwrev		= UNSTUFF_BITS(resp, 40, 4);
  98		card->cid.serial	= UNSTUFF_BITS(resp, 16, 24);
  99		card->cid.month		= UNSTUFF_BITS(resp, 12, 4);
 100		card->cid.year		= UNSTUFF_BITS(resp, 8, 4) + 1997;
 101		break;
 102
 103	case 2: /* MMC v2.0 - v2.2 */
 104	case 3: /* MMC v3.1 - v3.3 */
 105	case 4: /* MMC v4 */
 106		card->cid.manfid	= UNSTUFF_BITS(resp, 120, 8);
 107		card->cid.oemid		= UNSTUFF_BITS(resp, 104, 16);
 108		card->cid.prod_name[0]	= UNSTUFF_BITS(resp, 96, 8);
 109		card->cid.prod_name[1]	= UNSTUFF_BITS(resp, 88, 8);
 110		card->cid.prod_name[2]	= UNSTUFF_BITS(resp, 80, 8);
 111		card->cid.prod_name[3]	= UNSTUFF_BITS(resp, 72, 8);
 112		card->cid.prod_name[4]	= UNSTUFF_BITS(resp, 64, 8);
 113		card->cid.prod_name[5]	= UNSTUFF_BITS(resp, 56, 8);
 114		card->cid.prv		= UNSTUFF_BITS(resp, 48, 8);
 115		card->cid.serial	= UNSTUFF_BITS(resp, 16, 32);
 116		card->cid.month		= UNSTUFF_BITS(resp, 12, 4);
 117		card->cid.year		= UNSTUFF_BITS(resp, 8, 4) + 1997;
 118		break;
 119
 120	default:
 121		pr_err("%s: card has unknown MMCA version %d\n",
 122			mmc_hostname(card->host), card->csd.mmca_vsn);
 123		return -EINVAL;
 124	}
 125
 126	return 0;
 127}
 128
 129static void mmc_set_erase_size(struct mmc_card *card)
 130{
 131	if (card->ext_csd.erase_group_def & 1)
 132		card->erase_size = card->ext_csd.hc_erase_size;
 133	else
 134		card->erase_size = card->csd.erase_size;
 135
 136	mmc_init_erase(card);
 137}
 138
 139/*
 140 * Given a 128-bit response, decode to our card CSD structure.
 141 */
 142static int mmc_decode_csd(struct mmc_card *card)
 143{
 144	struct mmc_csd *csd = &card->csd;
 145	unsigned int e, m, a, b;
 146	u32 *resp = card->raw_csd;
 147
 148	/*
 149	 * We only understand CSD structure v1.1 and v1.2.
 150	 * v1.2 has extra information in bits 15, 11 and 10.
 151	 * We also support eMMC v4.4 & v4.41.
 152	 */
 153	csd->structure = UNSTUFF_BITS(resp, 126, 2);
 154	if (csd->structure == 0) {
 155		pr_err("%s: unrecognised CSD structure version %d\n",
 156			mmc_hostname(card->host), csd->structure);
 157		return -EINVAL;
 158	}
 159
 160	csd->mmca_vsn	 = UNSTUFF_BITS(resp, 122, 4);
 161	m = UNSTUFF_BITS(resp, 115, 4);
 162	e = UNSTUFF_BITS(resp, 112, 3);
 163	csd->taac_ns	 = (taac_exp[e] * taac_mant[m] + 9) / 10;
 164	csd->taac_clks	 = UNSTUFF_BITS(resp, 104, 8) * 100;
 165
 166	m = UNSTUFF_BITS(resp, 99, 4);
 167	e = UNSTUFF_BITS(resp, 96, 3);
 168	csd->max_dtr	  = tran_exp[e] * tran_mant[m];
 169	csd->cmdclass	  = UNSTUFF_BITS(resp, 84, 12);
 170
 171	e = UNSTUFF_BITS(resp, 47, 3);
 172	m = UNSTUFF_BITS(resp, 62, 12);
 173	csd->capacity	  = (1 + m) << (e + 2);
 174
 175	csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
 176	csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
 177	csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
 178	csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
 179	csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
 180	csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
 181	csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
 182	csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
 183
 184	if (csd->write_blkbits >= 9) {
 185		a = UNSTUFF_BITS(resp, 42, 5);
 186		b = UNSTUFF_BITS(resp, 37, 5);
 187		csd->erase_size = (a + 1) * (b + 1);
 188		csd->erase_size <<= csd->write_blkbits - 9;
 189	}
 190
 191	return 0;
 192}
 193
 194static void mmc_select_card_type(struct mmc_card *card)
 195{
 196	struct mmc_host *host = card->host;
 197	u8 card_type = card->ext_csd.raw_card_type;
 198	u32 caps = host->caps, caps2 = host->caps2;
 199	unsigned int hs_max_dtr = 0, hs200_max_dtr = 0;
 200	unsigned int avail_type = 0;
 201
 202	if (caps & MMC_CAP_MMC_HIGHSPEED &&
 203	    card_type & EXT_CSD_CARD_TYPE_HS_26) {
 204		hs_max_dtr = MMC_HIGH_26_MAX_DTR;
 205		avail_type |= EXT_CSD_CARD_TYPE_HS_26;
 206	}
 207
 208	if (caps & MMC_CAP_MMC_HIGHSPEED &&
 209	    card_type & EXT_CSD_CARD_TYPE_HS_52) {
 210		hs_max_dtr = MMC_HIGH_52_MAX_DTR;
 211		avail_type |= EXT_CSD_CARD_TYPE_HS_52;
 212	}
 213
 214	if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) &&
 215	    card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) {
 216		hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
 217		avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V;
 218	}
 219
 220	if (caps & MMC_CAP_1_2V_DDR &&
 221	    card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
 222		hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
 223		avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V;
 224	}
 225
 226	if (caps2 & MMC_CAP2_HS200_1_8V_SDR &&
 227	    card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) {
 228		hs200_max_dtr = MMC_HS200_MAX_DTR;
 229		avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V;
 230	}
 231
 232	if (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
 233	    card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) {
 234		hs200_max_dtr = MMC_HS200_MAX_DTR;
 235		avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V;
 236	}
 237
 238	if (caps2 & MMC_CAP2_HS400_1_8V &&
 239	    card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) {
 240		hs200_max_dtr = MMC_HS200_MAX_DTR;
 241		avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V;
 242	}
 243
 244	if (caps2 & MMC_CAP2_HS400_1_2V &&
 245	    card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) {
 246		hs200_max_dtr = MMC_HS200_MAX_DTR;
 247		avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V;
 248	}
 249
 250	if ((caps2 & MMC_CAP2_HS400_ES) &&
 251	    card->ext_csd.strobe_support &&
 252	    (avail_type & EXT_CSD_CARD_TYPE_HS400))
 253		avail_type |= EXT_CSD_CARD_TYPE_HS400ES;
 254
 255	card->ext_csd.hs_max_dtr = hs_max_dtr;
 256	card->ext_csd.hs200_max_dtr = hs200_max_dtr;
 257	card->mmc_avail_type = avail_type;
 258}
 259
 260static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd)
 261{
 262	u8 hc_erase_grp_sz, hc_wp_grp_sz;
 263
 264	/*
 265	 * Disable these attributes by default
 266	 */
 267	card->ext_csd.enhanced_area_offset = -EINVAL;
 268	card->ext_csd.enhanced_area_size = -EINVAL;
 269
 270	/*
 271	 * Enhanced area feature support -- check whether the eMMC
 272	 * card has the Enhanced area enabled.  If so, export enhanced
 273	 * area offset and size to user by adding sysfs interface.
 274	 */
 275	if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
 276	    (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
 277		if (card->ext_csd.partition_setting_completed) {
 278			hc_erase_grp_sz =
 279				ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
 280			hc_wp_grp_sz =
 281				ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
 282
 283			/*
 284			 * calculate the enhanced data area offset, in bytes
 285			 */
 286			card->ext_csd.enhanced_area_offset =
 287				(((unsigned long long)ext_csd[139]) << 24) +
 288				(((unsigned long long)ext_csd[138]) << 16) +
 289				(((unsigned long long)ext_csd[137]) << 8) +
 290				(((unsigned long long)ext_csd[136]));
 291			if (mmc_card_blockaddr(card))
 292				card->ext_csd.enhanced_area_offset <<= 9;
 293			/*
 294			 * calculate the enhanced data area size, in kilobytes
 295			 */
 296			card->ext_csd.enhanced_area_size =
 297				(ext_csd[142] << 16) + (ext_csd[141] << 8) +
 298				ext_csd[140];
 299			card->ext_csd.enhanced_area_size *=
 300				(size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
 301			card->ext_csd.enhanced_area_size <<= 9;
 302		} else {
 303			pr_warn("%s: defines enhanced area without partition setting complete\n",
 304				mmc_hostname(card->host));
 305		}
 306	}
 307}
 308
 309static void mmc_part_add(struct mmc_card *card, u64 size,
 310			 unsigned int part_cfg, char *name, int idx, bool ro,
 311			 int area_type)
 312{
 313	card->part[card->nr_parts].size = size;
 314	card->part[card->nr_parts].part_cfg = part_cfg;
 315	sprintf(card->part[card->nr_parts].name, name, idx);
 316	card->part[card->nr_parts].force_ro = ro;
 317	card->part[card->nr_parts].area_type = area_type;
 318	card->nr_parts++;
 319}
 320
 321static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd)
 322{
 323	int idx;
 324	u8 hc_erase_grp_sz, hc_wp_grp_sz;
 325	u64 part_size;
 326
 327	/*
 328	 * General purpose partition feature support --
 329	 * If ext_csd has the size of general purpose partitions,
 330	 * set size, part_cfg, partition name in mmc_part.
 331	 */
 332	if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
 333	    EXT_CSD_PART_SUPPORT_PART_EN) {
 334		hc_erase_grp_sz =
 335			ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
 336		hc_wp_grp_sz =
 337			ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
 338
 339		for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
 340			if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
 341			    !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
 342			    !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
 343				continue;
 344			if (card->ext_csd.partition_setting_completed == 0) {
 345				pr_warn("%s: has partition size defined without partition complete\n",
 346					mmc_hostname(card->host));
 347				break;
 348			}
 349			part_size =
 350				(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
 351				<< 16) +
 352				(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
 353				<< 8) +
 354				ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
 355			part_size *= (hc_erase_grp_sz * hc_wp_grp_sz);
 
 356			mmc_part_add(card, part_size << 19,
 357				EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
 358				"gp%d", idx, false,
 359				MMC_BLK_DATA_AREA_GP);
 360		}
 361	}
 362}
 363
 364/* Minimum partition switch timeout in milliseconds */
 365#define MMC_MIN_PART_SWITCH_TIME	300
 366
 367/*
 368 * Decode extended CSD.
 369 */
 370static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd)
 371{
 372	int err = 0, idx;
 373	u64 part_size;
 374	struct device_node *np;
 375	bool broken_hpi = false;
 376
 377	/* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
 378	card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
 379	if (card->csd.structure == 3) {
 380		if (card->ext_csd.raw_ext_csd_structure > 2) {
 381			pr_err("%s: unrecognised EXT_CSD structure "
 382				"version %d\n", mmc_hostname(card->host),
 383					card->ext_csd.raw_ext_csd_structure);
 384			err = -EINVAL;
 385			goto out;
 386		}
 387	}
 388
 389	np = mmc_of_find_child_device(card->host, 0);
 390	if (np && of_device_is_compatible(np, "mmc-card"))
 391		broken_hpi = of_property_read_bool(np, "broken-hpi");
 392	of_node_put(np);
 393
 394	/*
 395	 * The EXT_CSD format is meant to be forward compatible. As long
 396	 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
 397	 * are authorized, see JEDEC JESD84-B50 section B.8.
 398	 */
 399	card->ext_csd.rev = ext_csd[EXT_CSD_REV];
 400
 401	/* fixup device after ext_csd revision field is updated */
 402	mmc_fixup_device(card, mmc_ext_csd_fixups);
 403
 404	card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
 405	card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
 406	card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
 407	card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
 408	if (card->ext_csd.rev >= 2) {
 409		card->ext_csd.sectors =
 410			ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
 411			ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
 412			ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
 413			ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
 414
 415		/* Cards with density > 2GiB are sector addressed */
 416		if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
 417			mmc_card_set_blockaddr(card);
 418	}
 419
 420	card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT];
 421	card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
 422	mmc_select_card_type(card);
 423
 424	card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
 425	card->ext_csd.raw_erase_timeout_mult =
 426		ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
 427	card->ext_csd.raw_hc_erase_grp_size =
 428		ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
 429	card->ext_csd.raw_boot_mult =
 430		ext_csd[EXT_CSD_BOOT_MULT];
 431	if (card->ext_csd.rev >= 3) {
 432		u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
 433		card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
 434
 435		/* EXT_CSD value is in units of 10ms, but we store in ms */
 436		card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
 
 
 
 
 437
 438		/* Sleep / awake timeout in 100ns units */
 439		if (sa_shift > 0 && sa_shift <= 0x17)
 440			card->ext_csd.sa_timeout =
 441					1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
 442		card->ext_csd.erase_group_def =
 443			ext_csd[EXT_CSD_ERASE_GROUP_DEF];
 444		card->ext_csd.hc_erase_timeout = 300 *
 445			ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
 446		card->ext_csd.hc_erase_size =
 447			ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
 448
 449		card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
 450
 451		/*
 452		 * There are two boot regions of equal size, defined in
 453		 * multiples of 128K.
 454		 */
 455		if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) {
 456			for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
 457				part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
 458				mmc_part_add(card, part_size,
 459					EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
 460					"boot%d", idx, true,
 461					MMC_BLK_DATA_AREA_BOOT);
 462			}
 463		}
 464	}
 465
 466	card->ext_csd.raw_hc_erase_gap_size =
 467		ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
 468	card->ext_csd.raw_sec_trim_mult =
 469		ext_csd[EXT_CSD_SEC_TRIM_MULT];
 470	card->ext_csd.raw_sec_erase_mult =
 471		ext_csd[EXT_CSD_SEC_ERASE_MULT];
 472	card->ext_csd.raw_sec_feature_support =
 473		ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
 474	card->ext_csd.raw_trim_mult =
 475		ext_csd[EXT_CSD_TRIM_MULT];
 476	card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
 477	card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH];
 478	if (card->ext_csd.rev >= 4) {
 479		if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] &
 480		    EXT_CSD_PART_SETTING_COMPLETED)
 481			card->ext_csd.partition_setting_completed = 1;
 482		else
 483			card->ext_csd.partition_setting_completed = 0;
 484
 485		mmc_manage_enhanced_area(card, ext_csd);
 486
 487		mmc_manage_gp_partitions(card, ext_csd);
 488
 489		card->ext_csd.sec_trim_mult =
 490			ext_csd[EXT_CSD_SEC_TRIM_MULT];
 491		card->ext_csd.sec_erase_mult =
 492			ext_csd[EXT_CSD_SEC_ERASE_MULT];
 493		card->ext_csd.sec_feature_support =
 494			ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
 495		card->ext_csd.trim_timeout = 300 *
 496			ext_csd[EXT_CSD_TRIM_MULT];
 497
 498		/*
 499		 * Note that the call to mmc_part_add above defaults to read
 500		 * only. If this default assumption is changed, the call must
 501		 * take into account the value of boot_locked below.
 502		 */
 503		card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
 504		card->ext_csd.boot_ro_lockable = true;
 505
 506		/* Save power class values */
 507		card->ext_csd.raw_pwr_cl_52_195 =
 508			ext_csd[EXT_CSD_PWR_CL_52_195];
 509		card->ext_csd.raw_pwr_cl_26_195 =
 510			ext_csd[EXT_CSD_PWR_CL_26_195];
 511		card->ext_csd.raw_pwr_cl_52_360 =
 512			ext_csd[EXT_CSD_PWR_CL_52_360];
 513		card->ext_csd.raw_pwr_cl_26_360 =
 514			ext_csd[EXT_CSD_PWR_CL_26_360];
 515		card->ext_csd.raw_pwr_cl_200_195 =
 516			ext_csd[EXT_CSD_PWR_CL_200_195];
 517		card->ext_csd.raw_pwr_cl_200_360 =
 518			ext_csd[EXT_CSD_PWR_CL_200_360];
 519		card->ext_csd.raw_pwr_cl_ddr_52_195 =
 520			ext_csd[EXT_CSD_PWR_CL_DDR_52_195];
 521		card->ext_csd.raw_pwr_cl_ddr_52_360 =
 522			ext_csd[EXT_CSD_PWR_CL_DDR_52_360];
 523		card->ext_csd.raw_pwr_cl_ddr_200_360 =
 524			ext_csd[EXT_CSD_PWR_CL_DDR_200_360];
 525	}
 526
 527	if (card->ext_csd.rev >= 5) {
 528		/* Adjust production date as per JEDEC JESD84-B451 */
 529		if (card->cid.year < 2010)
 530			card->cid.year += 16;
 531
 532		/* check whether the eMMC card supports BKOPS */
 533		if (ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) {
 
 534			card->ext_csd.bkops = 1;
 535			card->ext_csd.man_bkops_en =
 536					(ext_csd[EXT_CSD_BKOPS_EN] &
 537						EXT_CSD_MANUAL_BKOPS_MASK);
 538			card->ext_csd.raw_bkops_status =
 539				ext_csd[EXT_CSD_BKOPS_STATUS];
 540			if (card->ext_csd.man_bkops_en)
 541				pr_debug("%s: MAN_BKOPS_EN bit is set\n",
 542					mmc_hostname(card->host));
 543			card->ext_csd.auto_bkops_en =
 544					(ext_csd[EXT_CSD_BKOPS_EN] &
 545						EXT_CSD_AUTO_BKOPS_MASK);
 546			if (card->ext_csd.auto_bkops_en)
 547				pr_debug("%s: AUTO_BKOPS_EN bit is set\n",
 548					mmc_hostname(card->host));
 549		}
 550
 551		/* check whether the eMMC card supports HPI */
 552		if (!mmc_card_broken_hpi(card) &&
 553		    !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) {
 554			card->ext_csd.hpi = 1;
 555			if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
 556				card->ext_csd.hpi_cmd =	MMC_STOP_TRANSMISSION;
 557			else
 558				card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
 559			/*
 560			 * Indicate the maximum timeout to close
 561			 * a command interrupted by HPI
 562			 */
 563			card->ext_csd.out_of_int_time =
 564				ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
 565		}
 566
 567		card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
 568		card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
 569
 570		/*
 571		 * RPMB regions are defined in multiples of 128K.
 572		 */
 573		card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
 574		if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) {
 575			mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
 576				EXT_CSD_PART_CONFIG_ACC_RPMB,
 577				"rpmb", 0, false,
 578				MMC_BLK_DATA_AREA_RPMB);
 579		}
 580	}
 581
 582	card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
 583	if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
 584		card->erased_byte = 0xFF;
 585	else
 586		card->erased_byte = 0x0;
 587
 588	/* eMMC v4.5 or later */
 589	card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS;
 590	if (card->ext_csd.rev >= 6) {
 591		card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
 592
 593		card->ext_csd.generic_cmd6_time = 10 *
 594			ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
 595		card->ext_csd.power_off_longtime = 10 *
 596			ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
 597
 598		card->ext_csd.cache_size =
 599			ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
 600			ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
 601			ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
 602			ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
 603
 604		if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
 605			card->ext_csd.data_sector_size = 4096;
 606		else
 607			card->ext_csd.data_sector_size = 512;
 608
 609		if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
 610		    (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
 611			card->ext_csd.data_tag_unit_size =
 612			((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
 613			(card->ext_csd.data_sector_size);
 614		} else {
 615			card->ext_csd.data_tag_unit_size = 0;
 616		}
 617
 618		card->ext_csd.max_packed_writes =
 619			ext_csd[EXT_CSD_MAX_PACKED_WRITES];
 620		card->ext_csd.max_packed_reads =
 621			ext_csd[EXT_CSD_MAX_PACKED_READS];
 622	} else {
 623		card->ext_csd.data_sector_size = 512;
 624	}
 625
 626	/*
 627	 * GENERIC_CMD6_TIME is to be used "unless a specific timeout is defined
 628	 * when accessing a specific field", so use it here if there is no
 629	 * PARTITION_SWITCH_TIME.
 630	 */
 631	if (!card->ext_csd.part_time)
 632		card->ext_csd.part_time = card->ext_csd.generic_cmd6_time;
 633	/* Some eMMC set the value too low so set a minimum */
 634	if (card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME)
 635		card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME;
 636
 637	/* eMMC v5 or later */
 638	if (card->ext_csd.rev >= 7) {
 639		memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION],
 640		       MMC_FIRMWARE_LEN);
 641		card->ext_csd.ffu_capable =
 642			(ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) &&
 643			!(ext_csd[EXT_CSD_FW_CONFIG] & 0x1);
 644
 645		card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO];
 646		card->ext_csd.device_life_time_est_typ_a =
 647			ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A];
 648		card->ext_csd.device_life_time_est_typ_b =
 649			ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B];
 650	}
 651
 652	/* eMMC v5.1 or later */
 653	if (card->ext_csd.rev >= 8) {
 654		card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] &
 655					     EXT_CSD_CMDQ_SUPPORTED;
 656		card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] &
 657					    EXT_CSD_CMDQ_DEPTH_MASK) + 1;
 658		/* Exclude inefficiently small queue depths */
 659		if (card->ext_csd.cmdq_depth <= 2) {
 660			card->ext_csd.cmdq_support = false;
 661			card->ext_csd.cmdq_depth = 0;
 662		}
 663		if (card->ext_csd.cmdq_support) {
 664			pr_debug("%s: Command Queue supported depth %u\n",
 665				 mmc_hostname(card->host),
 666				 card->ext_csd.cmdq_depth);
 667		}
 668		card->ext_csd.enhanced_rpmb_supported =
 669					(card->ext_csd.rel_param &
 670					 EXT_CSD_WR_REL_PARAM_EN_RPMB_REL_WR);
 671	}
 672out:
 673	return err;
 674}
 675
 676static int mmc_read_ext_csd(struct mmc_card *card)
 677{
 678	u8 *ext_csd;
 679	int err;
 680
 681	if (!mmc_can_ext_csd(card))
 682		return 0;
 683
 684	err = mmc_get_ext_csd(card, &ext_csd);
 685	if (err) {
 686		/* If the host or the card can't do the switch,
 687		 * fail more gracefully. */
 688		if ((err != -EINVAL)
 689		 && (err != -ENOSYS)
 690		 && (err != -EFAULT))
 691			return err;
 692
 693		/*
 694		 * High capacity cards should have this "magic" size
 695		 * stored in their CSD.
 696		 */
 697		if (card->csd.capacity == (4096 * 512)) {
 698			pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
 699				mmc_hostname(card->host));
 700		} else {
 701			pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
 702				mmc_hostname(card->host));
 703			err = 0;
 704		}
 705
 706		return err;
 707	}
 708
 709	err = mmc_decode_ext_csd(card, ext_csd);
 710	kfree(ext_csd);
 711	return err;
 712}
 713
 714static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
 715{
 716	u8 *bw_ext_csd;
 717	int err;
 718
 719	if (bus_width == MMC_BUS_WIDTH_1)
 720		return 0;
 721
 722	err = mmc_get_ext_csd(card, &bw_ext_csd);
 723	if (err)
 724		return err;
 725
 726	/* only compare read only fields */
 727	err = !((card->ext_csd.raw_partition_support ==
 728			bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
 729		(card->ext_csd.raw_erased_mem_count ==
 730			bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
 731		(card->ext_csd.rev ==
 732			bw_ext_csd[EXT_CSD_REV]) &&
 733		(card->ext_csd.raw_ext_csd_structure ==
 734			bw_ext_csd[EXT_CSD_STRUCTURE]) &&
 735		(card->ext_csd.raw_card_type ==
 736			bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
 737		(card->ext_csd.raw_s_a_timeout ==
 738			bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
 739		(card->ext_csd.raw_hc_erase_gap_size ==
 740			bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
 741		(card->ext_csd.raw_erase_timeout_mult ==
 742			bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
 743		(card->ext_csd.raw_hc_erase_grp_size ==
 744			bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
 745		(card->ext_csd.raw_sec_trim_mult ==
 746			bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
 747		(card->ext_csd.raw_sec_erase_mult ==
 748			bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
 749		(card->ext_csd.raw_sec_feature_support ==
 750			bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
 751		(card->ext_csd.raw_trim_mult ==
 752			bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
 753		(card->ext_csd.raw_sectors[0] ==
 754			bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
 755		(card->ext_csd.raw_sectors[1] ==
 756			bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
 757		(card->ext_csd.raw_sectors[2] ==
 758			bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
 759		(card->ext_csd.raw_sectors[3] ==
 760			bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
 761		(card->ext_csd.raw_pwr_cl_52_195 ==
 762			bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
 763		(card->ext_csd.raw_pwr_cl_26_195 ==
 764			bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
 765		(card->ext_csd.raw_pwr_cl_52_360 ==
 766			bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
 767		(card->ext_csd.raw_pwr_cl_26_360 ==
 768			bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
 769		(card->ext_csd.raw_pwr_cl_200_195 ==
 770			bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
 771		(card->ext_csd.raw_pwr_cl_200_360 ==
 772			bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
 773		(card->ext_csd.raw_pwr_cl_ddr_52_195 ==
 774			bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
 775		(card->ext_csd.raw_pwr_cl_ddr_52_360 ==
 776			bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
 777		(card->ext_csd.raw_pwr_cl_ddr_200_360 ==
 778			bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
 779
 780	if (err)
 781		err = -EINVAL;
 782
 783	kfree(bw_ext_csd);
 784	return err;
 785}
 786
 787MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
 788	card->raw_cid[2], card->raw_cid[3]);
 789MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
 790	card->raw_csd[2], card->raw_csd[3]);
 791MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
 792MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
 793MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
 794MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable);
 795MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
 796MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
 797MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
 798MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
 799MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
 800MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev);
 801MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info);
 802MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n",
 803	card->ext_csd.device_life_time_est_typ_a,
 804	card->ext_csd.device_life_time_est_typ_b);
 805MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
 806MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
 807		card->ext_csd.enhanced_area_offset);
 808MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
 809MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
 810MMC_DEV_ATTR(enhanced_rpmb_supported, "%#x\n",
 811	card->ext_csd.enhanced_rpmb_supported);
 812MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
 813MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
 814MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
 815MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en);
 816
 817static ssize_t mmc_fwrev_show(struct device *dev,
 818			      struct device_attribute *attr,
 819			      char *buf)
 820{
 821	struct mmc_card *card = mmc_dev_to_card(dev);
 822
 823	if (card->ext_csd.rev < 7)
 824		return sysfs_emit(buf, "0x%x\n", card->cid.fwrev);
 825	else
 826		return sysfs_emit(buf, "0x%*phN\n", MMC_FIRMWARE_LEN,
 827				  card->ext_csd.fwrev);
 
 828}
 829
 830static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL);
 831
 832static ssize_t mmc_dsr_show(struct device *dev,
 833			    struct device_attribute *attr,
 834			    char *buf)
 835{
 836	struct mmc_card *card = mmc_dev_to_card(dev);
 837	struct mmc_host *host = card->host;
 838
 839	if (card->csd.dsr_imp && host->dsr_req)
 840		return sysfs_emit(buf, "0x%x\n", host->dsr);
 841	else
 842		/* return default DSR value */
 843		return sysfs_emit(buf, "0x%x\n", 0x404);
 844}
 845
 846static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
 847
 848static struct attribute *mmc_std_attrs[] = {
 849	&dev_attr_cid.attr,
 850	&dev_attr_csd.attr,
 851	&dev_attr_date.attr,
 852	&dev_attr_erase_size.attr,
 853	&dev_attr_preferred_erase_size.attr,
 854	&dev_attr_fwrev.attr,
 855	&dev_attr_ffu_capable.attr,
 856	&dev_attr_hwrev.attr,
 857	&dev_attr_manfid.attr,
 858	&dev_attr_name.attr,
 859	&dev_attr_oemid.attr,
 860	&dev_attr_prv.attr,
 861	&dev_attr_rev.attr,
 862	&dev_attr_pre_eol_info.attr,
 863	&dev_attr_life_time.attr,
 864	&dev_attr_serial.attr,
 865	&dev_attr_enhanced_area_offset.attr,
 866	&dev_attr_enhanced_area_size.attr,
 867	&dev_attr_raw_rpmb_size_mult.attr,
 868	&dev_attr_enhanced_rpmb_supported.attr,
 869	&dev_attr_rel_sectors.attr,
 870	&dev_attr_ocr.attr,
 871	&dev_attr_rca.attr,
 872	&dev_attr_dsr.attr,
 873	&dev_attr_cmdq_en.attr,
 874	NULL,
 875};
 876ATTRIBUTE_GROUPS(mmc_std);
 877
 878static struct device_type mmc_type = {
 879	.groups = mmc_std_groups,
 880};
 881
 882/*
 883 * Select the PowerClass for the current bus width
 884 * If power class is defined for 4/8 bit bus in the
 885 * extended CSD register, select it by executing the
 886 * mmc_switch command.
 887 */
 888static int __mmc_select_powerclass(struct mmc_card *card,
 889				   unsigned int bus_width)
 890{
 891	struct mmc_host *host = card->host;
 892	struct mmc_ext_csd *ext_csd = &card->ext_csd;
 893	unsigned int pwrclass_val = 0;
 894	int err = 0;
 895
 896	switch (1 << host->ios.vdd) {
 897	case MMC_VDD_165_195:
 898		if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
 899			pwrclass_val = ext_csd->raw_pwr_cl_26_195;
 900		else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
 901			pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
 902				ext_csd->raw_pwr_cl_52_195 :
 903				ext_csd->raw_pwr_cl_ddr_52_195;
 904		else if (host->ios.clock <= MMC_HS200_MAX_DTR)
 905			pwrclass_val = ext_csd->raw_pwr_cl_200_195;
 906		break;
 907	case MMC_VDD_27_28:
 908	case MMC_VDD_28_29:
 909	case MMC_VDD_29_30:
 910	case MMC_VDD_30_31:
 911	case MMC_VDD_31_32:
 912	case MMC_VDD_32_33:
 913	case MMC_VDD_33_34:
 914	case MMC_VDD_34_35:
 915	case MMC_VDD_35_36:
 916		if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
 917			pwrclass_val = ext_csd->raw_pwr_cl_26_360;
 918		else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
 919			pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
 920				ext_csd->raw_pwr_cl_52_360 :
 921				ext_csd->raw_pwr_cl_ddr_52_360;
 922		else if (host->ios.clock <= MMC_HS200_MAX_DTR)
 923			pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
 924				ext_csd->raw_pwr_cl_ddr_200_360 :
 925				ext_csd->raw_pwr_cl_200_360;
 926		break;
 927	default:
 928		pr_warn("%s: Voltage range not supported for power class\n",
 929			mmc_hostname(host));
 930		return -EINVAL;
 931	}
 932
 933	if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
 934		pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
 935				EXT_CSD_PWR_CL_8BIT_SHIFT;
 936	else
 937		pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
 938				EXT_CSD_PWR_CL_4BIT_SHIFT;
 939
 940	/* If the power class is different from the default value */
 941	if (pwrclass_val > 0) {
 942		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
 943				 EXT_CSD_POWER_CLASS,
 944				 pwrclass_val,
 945				 card->ext_csd.generic_cmd6_time);
 946	}
 947
 948	return err;
 949}
 950
 951static int mmc_select_powerclass(struct mmc_card *card)
 952{
 953	struct mmc_host *host = card->host;
 954	u32 bus_width, ext_csd_bits;
 955	int err, ddr;
 956
 957	/* Power class selection is supported for versions >= 4.0 */
 958	if (!mmc_can_ext_csd(card))
 959		return 0;
 960
 961	bus_width = host->ios.bus_width;
 962	/* Power class values are defined only for 4/8 bit bus */
 963	if (bus_width == MMC_BUS_WIDTH_1)
 964		return 0;
 965
 966	ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52;
 967	if (ddr)
 968		ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
 969			EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
 970	else
 971		ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
 972			EXT_CSD_BUS_WIDTH_8 :  EXT_CSD_BUS_WIDTH_4;
 973
 974	err = __mmc_select_powerclass(card, ext_csd_bits);
 975	if (err)
 976		pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
 977			mmc_hostname(host), 1 << bus_width, ddr);
 978
 979	return err;
 980}
 981
 982/*
 983 * Set the bus speed for the selected speed mode.
 984 */
 985static void mmc_set_bus_speed(struct mmc_card *card)
 986{
 987	unsigned int max_dtr = (unsigned int)-1;
 988
 989	if ((mmc_card_hs200(card) || mmc_card_hs400(card)) &&
 990	     max_dtr > card->ext_csd.hs200_max_dtr)
 991		max_dtr = card->ext_csd.hs200_max_dtr;
 992	else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr)
 993		max_dtr = card->ext_csd.hs_max_dtr;
 994	else if (max_dtr > card->csd.max_dtr)
 995		max_dtr = card->csd.max_dtr;
 996
 997	mmc_set_clock(card->host, max_dtr);
 998}
 999
1000/*
1001 * Select the bus width amoung 4-bit and 8-bit(SDR).
1002 * If the bus width is changed successfully, return the selected width value.
1003 * Zero is returned instead of error value if the wide width is not supported.
1004 */
1005static int mmc_select_bus_width(struct mmc_card *card)
1006{
1007	static unsigned ext_csd_bits[] = {
1008		EXT_CSD_BUS_WIDTH_8,
1009		EXT_CSD_BUS_WIDTH_4,
1010	};
1011	static unsigned bus_widths[] = {
1012		MMC_BUS_WIDTH_8,
1013		MMC_BUS_WIDTH_4,
1014	};
1015	struct mmc_host *host = card->host;
1016	unsigned idx, bus_width = 0;
1017	int err = 0;
1018
1019	if (!mmc_can_ext_csd(card) ||
1020	    !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
1021		return 0;
1022
1023	idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1;
1024
1025	/*
1026	 * Unlike SD, MMC cards dont have a configuration register to notify
1027	 * supported bus width. So bus test command should be run to identify
1028	 * the supported bus width or compare the ext csd values of current
1029	 * bus width and ext csd values of 1 bit mode read earlier.
1030	 */
1031	for (; idx < ARRAY_SIZE(bus_widths); idx++) {
1032		/*
1033		 * Host is capable of 8bit transfer, then switch
1034		 * the device to work in 8bit transfer mode. If the
1035		 * mmc switch command returns error then switch to
1036		 * 4bit transfer mode. On success set the corresponding
1037		 * bus width on the host.
1038		 */
1039		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1040				 EXT_CSD_BUS_WIDTH,
1041				 ext_csd_bits[idx],
1042				 card->ext_csd.generic_cmd6_time);
1043		if (err)
1044			continue;
1045
1046		bus_width = bus_widths[idx];
1047		mmc_set_bus_width(host, bus_width);
1048
1049		/*
1050		 * If controller can't handle bus width test,
1051		 * compare ext_csd previously read in 1 bit mode
1052		 * against ext_csd at new bus width
1053		 */
1054		if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
1055			err = mmc_compare_ext_csds(card, bus_width);
1056		else
1057			err = mmc_bus_test(card, bus_width);
1058
1059		if (!err) {
1060			err = bus_width;
1061			break;
1062		} else {
1063			pr_warn("%s: switch to bus width %d failed\n",
1064				mmc_hostname(host), 1 << bus_width);
1065		}
1066	}
1067
1068	return err;
1069}
1070
1071/*
1072 * Switch to the high-speed mode
1073 */
1074static int mmc_select_hs(struct mmc_card *card)
1075{
1076	int err;
1077
1078	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1079			   EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1080			   card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS,
1081			   true, true, MMC_CMD_RETRIES);
1082	if (err)
1083		pr_warn("%s: switch to high-speed failed, err:%d\n",
1084			mmc_hostname(card->host), err);
1085
1086	return err;
1087}
1088
1089/*
1090 * Activate wide bus and DDR if supported.
1091 */
1092static int mmc_select_hs_ddr(struct mmc_card *card)
1093{
1094	struct mmc_host *host = card->host;
1095	u32 bus_width, ext_csd_bits;
1096	int err = 0;
1097
1098	if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52))
1099		return 0;
1100
1101	bus_width = host->ios.bus_width;
1102	if (bus_width == MMC_BUS_WIDTH_1)
1103		return 0;
1104
1105	ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
1106		EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
1107
1108	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1109			   EXT_CSD_BUS_WIDTH,
1110			   ext_csd_bits,
1111			   card->ext_csd.generic_cmd6_time,
1112			   MMC_TIMING_MMC_DDR52,
1113			   true, true, MMC_CMD_RETRIES);
1114	if (err) {
1115		pr_err("%s: switch to bus width %d ddr failed\n",
1116			mmc_hostname(host), 1 << bus_width);
1117		return err;
1118	}
1119
1120	/*
1121	 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1122	 * signaling.
1123	 *
1124	 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1125	 *
1126	 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1127	 * in the JEDEC spec for DDR.
1128	 *
1129	 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1130	 * host controller can support this, like some of the SDHCI
1131	 * controller which connect to an eMMC device. Some of these
1132	 * host controller still needs to use 1.8v vccq for supporting
1133	 * DDR mode.
1134	 *
1135	 * So the sequence will be:
1136	 * if (host and device can both support 1.2v IO)
1137	 *	use 1.2v IO;
1138	 * else if (host and device can both support 1.8v IO)
1139	 *	use 1.8v IO;
1140	 * so if host and device can only support 3.3v IO, this is the
1141	 * last choice.
1142	 *
1143	 * WARNING: eMMC rules are NOT the same as SD DDR
1144	 */
1145	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
1146		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1147		if (!err)
1148			return 0;
1149	}
1150
1151	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V &&
1152	    host->caps & MMC_CAP_1_8V_DDR)
1153		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1154
1155	/* make sure vccq is 3.3v after switching disaster */
1156	if (err)
1157		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1158
1159	return err;
1160}
1161
1162static int mmc_select_hs400(struct mmc_card *card)
1163{
1164	struct mmc_host *host = card->host;
1165	unsigned int max_dtr;
1166	int err = 0;
1167	u8 val;
1168
1169	/*
1170	 * HS400 mode requires 8-bit bus width
1171	 */
1172	if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1173	      host->ios.bus_width == MMC_BUS_WIDTH_8))
1174		return 0;
1175
1176	/* Switch card to HS mode */
1177	val = EXT_CSD_TIMING_HS;
1178	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1179			   EXT_CSD_HS_TIMING, val,
1180			   card->ext_csd.generic_cmd6_time, 0,
1181			   false, true, MMC_CMD_RETRIES);
1182	if (err) {
1183		pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1184			mmc_hostname(host), err);
1185		return err;
1186	}
1187
1188	/* Prepare host to downgrade to HS timing */
1189	if (host->ops->hs400_downgrade)
1190		host->ops->hs400_downgrade(host);
1191
1192	/* Set host controller to HS timing */
1193	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1194
1195	/* Reduce frequency to HS frequency */
1196	max_dtr = card->ext_csd.hs_max_dtr;
1197	mmc_set_clock(host, max_dtr);
1198
1199	err = mmc_switch_status(card, true);
1200	if (err)
1201		goto out_err;
1202
1203	if (host->ops->hs400_prepare_ddr)
1204		host->ops->hs400_prepare_ddr(host);
1205
1206	/* Switch card to DDR */
1207	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1208			 EXT_CSD_BUS_WIDTH,
1209			 EXT_CSD_DDR_BUS_WIDTH_8,
1210			 card->ext_csd.generic_cmd6_time);
1211	if (err) {
1212		pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1213			mmc_hostname(host), err);
1214		return err;
1215	}
1216
1217	/* Switch card to HS400 */
1218	val = EXT_CSD_TIMING_HS400 |
1219	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1220	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1221			   EXT_CSD_HS_TIMING, val,
1222			   card->ext_csd.generic_cmd6_time, 0,
1223			   false, true, MMC_CMD_RETRIES);
1224	if (err) {
1225		pr_err("%s: switch to hs400 failed, err:%d\n",
1226			 mmc_hostname(host), err);
1227		return err;
1228	}
1229
1230	/* Set host controller to HS400 timing and frequency */
1231	mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1232	mmc_set_bus_speed(card);
1233
1234	if (host->ops->execute_hs400_tuning) {
1235		mmc_retune_disable(host);
1236		err = host->ops->execute_hs400_tuning(host, card);
1237		mmc_retune_enable(host);
1238		if (err)
1239			goto out_err;
1240	}
1241
1242	if (host->ops->hs400_complete)
1243		host->ops->hs400_complete(host);
1244
1245	err = mmc_switch_status(card, true);
1246	if (err)
1247		goto out_err;
1248
1249	return 0;
1250
1251out_err:
1252	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1253	       __func__, err);
1254	return err;
1255}
1256
1257int mmc_hs200_to_hs400(struct mmc_card *card)
1258{
1259	return mmc_select_hs400(card);
1260}
1261
1262int mmc_hs400_to_hs200(struct mmc_card *card)
1263{
1264	struct mmc_host *host = card->host;
1265	unsigned int max_dtr;
1266	int err;
1267	u8 val;
1268
1269	/* Reduce frequency to HS */
1270	max_dtr = card->ext_csd.hs_max_dtr;
1271	mmc_set_clock(host, max_dtr);
1272
1273	/* Switch HS400 to HS DDR */
1274	val = EXT_CSD_TIMING_HS;
1275	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1276			   val, card->ext_csd.generic_cmd6_time, 0,
1277			   false, true, MMC_CMD_RETRIES);
1278	if (err)
1279		goto out_err;
1280
1281	if (host->ops->hs400_downgrade)
1282		host->ops->hs400_downgrade(host);
1283
1284	mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1285
1286	err = mmc_switch_status(card, true);
1287	if (err)
1288		goto out_err;
1289
1290	/* Switch HS DDR to HS */
1291	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
1292			   EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time,
1293			   0, false, true, MMC_CMD_RETRIES);
1294	if (err)
1295		goto out_err;
1296
1297	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1298
1299	err = mmc_switch_status(card, true);
1300	if (err)
1301		goto out_err;
1302
1303	/* Switch HS to HS200 */
1304	val = EXT_CSD_TIMING_HS200 |
1305	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1306	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1307			   val, card->ext_csd.generic_cmd6_time, 0,
1308			   false, true, MMC_CMD_RETRIES);
1309	if (err)
1310		goto out_err;
1311
1312	mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1313
1314	/*
1315	 * For HS200, CRC errors are not a reliable way to know the switch
1316	 * failed. If there really is a problem, we would expect tuning will
1317	 * fail and the result ends up the same.
1318	 */
1319	err = mmc_switch_status(card, false);
1320	if (err)
1321		goto out_err;
1322
1323	mmc_set_bus_speed(card);
1324
1325	/* Prepare tuning for HS400 mode. */
1326	if (host->ops->prepare_hs400_tuning)
1327		host->ops->prepare_hs400_tuning(host, &host->ios);
1328
1329	return 0;
1330
1331out_err:
1332	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1333	       __func__, err);
1334	return err;
1335}
1336
1337static void mmc_select_driver_type(struct mmc_card *card)
1338{
1339	int card_drv_type, drive_strength, drv_type = 0;
1340	int fixed_drv_type = card->host->fixed_drv_type;
1341
1342	card_drv_type = card->ext_csd.raw_driver_strength |
1343			mmc_driver_type_mask(0);
1344
1345	if (fixed_drv_type >= 0)
1346		drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type)
1347				 ? fixed_drv_type : 0;
1348	else
1349		drive_strength = mmc_select_drive_strength(card,
1350							   card->ext_csd.hs200_max_dtr,
1351							   card_drv_type, &drv_type);
1352
1353	card->drive_strength = drive_strength;
1354
1355	if (drv_type)
1356		mmc_set_driver_type(card->host, drv_type);
1357}
1358
1359static int mmc_select_hs400es(struct mmc_card *card)
1360{
1361	struct mmc_host *host = card->host;
1362	int err = -EINVAL;
1363	u8 val;
1364
 
 
 
 
 
1365	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V)
1366		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1367
1368	if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V)
1369		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1370
1371	/* If fails try again during next card power cycle */
1372	if (err)
1373		goto out_err;
1374
1375	err = mmc_select_bus_width(card);
1376	if (err != MMC_BUS_WIDTH_8) {
1377		pr_err("%s: switch to 8bit bus width failed, err:%d\n",
1378			mmc_hostname(host), err);
1379		err = err < 0 ? err : -ENOTSUPP;
1380		goto out_err;
1381	}
1382
1383	/* Switch card to HS mode */
1384	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1385			   EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1386			   card->ext_csd.generic_cmd6_time, 0,
1387			   false, true, MMC_CMD_RETRIES);
1388	if (err) {
1389		pr_err("%s: switch to hs for hs400es failed, err:%d\n",
1390			mmc_hostname(host), err);
1391		goto out_err;
1392	}
1393
1394	/*
1395	 * Bump to HS timing and frequency. Some cards don't handle
1396	 * SEND_STATUS reliably at the initial frequency.
1397	 */
1398	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1399	mmc_set_bus_speed(card);
1400
1401	err = mmc_switch_status(card, true);
1402	if (err)
1403		goto out_err;
1404
 
 
1405	/* Switch card to DDR with strobe bit */
1406	val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE;
1407	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1408			 EXT_CSD_BUS_WIDTH,
1409			 val,
1410			 card->ext_csd.generic_cmd6_time);
1411	if (err) {
1412		pr_err("%s: switch to bus width for hs400es failed, err:%d\n",
1413			mmc_hostname(host), err);
1414		goto out_err;
1415	}
1416
1417	mmc_select_driver_type(card);
1418
1419	/* Switch card to HS400 */
1420	val = EXT_CSD_TIMING_HS400 |
1421	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1422	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1423			   EXT_CSD_HS_TIMING, val,
1424			   card->ext_csd.generic_cmd6_time, 0,
1425			   false, true, MMC_CMD_RETRIES);
1426	if (err) {
1427		pr_err("%s: switch to hs400es failed, err:%d\n",
1428			mmc_hostname(host), err);
1429		goto out_err;
1430	}
1431
1432	/* Set host controller to HS400 timing and frequency */
1433	mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1434
1435	/* Controller enable enhanced strobe function */
1436	host->ios.enhanced_strobe = true;
1437	if (host->ops->hs400_enhanced_strobe)
1438		host->ops->hs400_enhanced_strobe(host, &host->ios);
1439
1440	err = mmc_switch_status(card, true);
1441	if (err)
1442		goto out_err;
1443
1444	return 0;
1445
1446out_err:
1447	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1448	       __func__, err);
1449	return err;
1450}
1451
1452/*
1453 * For device supporting HS200 mode, the following sequence
1454 * should be done before executing the tuning process.
1455 * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1456 * 2. switch to HS200 mode
1457 * 3. set the clock to > 52Mhz and <=200MHz
1458 */
1459static int mmc_select_hs200(struct mmc_card *card)
1460{
1461	struct mmc_host *host = card->host;
1462	unsigned int old_timing, old_signal_voltage, old_clock;
1463	int err = -EINVAL;
1464	u8 val;
1465
1466	old_signal_voltage = host->ios.signal_voltage;
1467	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V)
1468		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1469
1470	if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
1471		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1472
1473	/* If fails try again during next card power cycle */
1474	if (err)
1475		return err;
1476
1477	mmc_select_driver_type(card);
1478
1479	/*
1480	 * Set the bus width(4 or 8) with host's support and
1481	 * switch to HS200 mode if bus width is set successfully.
1482	 */
1483	err = mmc_select_bus_width(card);
1484	if (err > 0) {
1485		val = EXT_CSD_TIMING_HS200 |
1486		      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1487		err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1488				   EXT_CSD_HS_TIMING, val,
1489				   card->ext_csd.generic_cmd6_time, 0,
1490				   false, true, MMC_CMD_RETRIES);
1491		if (err)
1492			goto err;
1493
1494		/*
1495		 * Bump to HS timing and frequency. Some cards don't handle
1496		 * SEND_STATUS reliably at the initial frequency.
1497		 * NB: We can't move to full (HS200) speeds until after we've
1498		 * successfully switched over.
1499		 */
1500		old_timing = host->ios.timing;
1501		old_clock = host->ios.clock;
1502		mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1503		mmc_set_clock(card->host, card->ext_csd.hs_max_dtr);
1504
1505		/*
1506		 * For HS200, CRC errors are not a reliable way to know the
1507		 * switch failed. If there really is a problem, we would expect
1508		 * tuning will fail and the result ends up the same.
1509		 */
1510		err = mmc_switch_status(card, false);
1511
1512		/*
1513		 * mmc_select_timing() assumes timing has not changed if
1514		 * it is a switch error.
1515		 */
1516		if (err == -EBADMSG) {
1517			mmc_set_clock(host, old_clock);
1518			mmc_set_timing(host, old_timing);
1519		}
1520	}
1521err:
1522	if (err) {
1523		/* fall back to the old signal voltage, if fails report error */
1524		if (mmc_set_signal_voltage(host, old_signal_voltage))
1525			err = -EIO;
1526
1527		pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1528		       __func__, err);
1529	}
1530	return err;
1531}
1532
1533/*
1534 * Activate High Speed, HS200 or HS400ES mode if supported.
1535 */
1536static int mmc_select_timing(struct mmc_card *card)
1537{
1538	int err = 0;
1539
1540	if (!mmc_can_ext_csd(card))
1541		goto bus_speed;
1542
1543	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES) {
1544		err = mmc_select_hs400es(card);
1545		goto out;
1546	}
1547
1548	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200) {
1549		err = mmc_select_hs200(card);
1550		if (err == -EBADMSG)
1551			card->mmc_avail_type &= ~EXT_CSD_CARD_TYPE_HS200;
1552		else
1553			goto out;
1554	}
1555
1556	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS)
1557		err = mmc_select_hs(card);
1558
1559out:
1560	if (err && err != -EBADMSG)
1561		return err;
1562
1563bus_speed:
1564	/*
1565	 * Set the bus speed to the selected bus timing.
1566	 * If timing is not selected, backward compatible is the default.
1567	 */
1568	mmc_set_bus_speed(card);
1569	return 0;
1570}
1571
1572/*
1573 * Execute tuning sequence to seek the proper bus operating
1574 * conditions for HS200 and HS400, which sends CMD21 to the device.
1575 */
1576static int mmc_hs200_tuning(struct mmc_card *card)
1577{
1578	struct mmc_host *host = card->host;
1579
1580	/*
1581	 * Timing should be adjusted to the HS400 target
1582	 * operation frequency for tuning process
1583	 */
1584	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1585	    host->ios.bus_width == MMC_BUS_WIDTH_8)
1586		if (host->ops->prepare_hs400_tuning)
1587			host->ops->prepare_hs400_tuning(host, &host->ios);
1588
1589	return mmc_execute_tuning(card);
1590}
1591
1592/*
1593 * Handle the detection and initialisation of a card.
1594 *
1595 * In the case of a resume, "oldcard" will contain the card
1596 * we're trying to reinitialise.
1597 */
1598static int mmc_init_card(struct mmc_host *host, u32 ocr,
1599	struct mmc_card *oldcard)
1600{
1601	struct mmc_card *card;
1602	int err;
1603	u32 cid[4];
1604	u32 rocr;
1605
1606	WARN_ON(!host->claimed);
1607
1608	/* Set correct bus mode for MMC before attempting init */
1609	if (!mmc_host_is_spi(host))
1610		mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
1611
1612	/*
1613	 * Since we're changing the OCR value, we seem to
1614	 * need to tell some cards to go back to the idle
1615	 * state.  We wait 1ms to give cards time to
1616	 * respond.
1617	 * mmc_go_idle is needed for eMMC that are asleep
1618	 */
1619	mmc_go_idle(host);
1620
1621	/* The extra bit indicates that we support high capacity */
1622	err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
1623	if (err)
1624		goto err;
1625
1626	/*
1627	 * For SPI, enable CRC as appropriate.
1628	 */
1629	if (mmc_host_is_spi(host)) {
1630		err = mmc_spi_set_crc(host, use_spi_crc);
1631		if (err)
1632			goto err;
1633	}
1634
1635	/*
1636	 * Fetch CID from card.
1637	 */
1638	err = mmc_send_cid(host, cid);
1639	if (err)
1640		goto err;
1641
1642	if (oldcard) {
1643		if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1644			pr_debug("%s: Perhaps the card was replaced\n",
1645				mmc_hostname(host));
1646			err = -ENOENT;
1647			goto err;
1648		}
1649
1650		card = oldcard;
1651	} else {
1652		/*
1653		 * Allocate card structure.
1654		 */
1655		card = mmc_alloc_card(host, &mmc_type);
1656		if (IS_ERR(card)) {
1657			err = PTR_ERR(card);
1658			goto err;
1659		}
1660
1661		card->ocr = ocr;
1662		card->type = MMC_TYPE_MMC;
1663		card->rca = 1;
1664		memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1665	}
1666
1667	/*
1668	 * Call the optional HC's init_card function to handle quirks.
1669	 */
1670	if (host->ops->init_card)
1671		host->ops->init_card(host, card);
1672
1673	/*
1674	 * For native busses:  set card RCA and quit open drain mode.
1675	 */
1676	if (!mmc_host_is_spi(host)) {
1677		err = mmc_set_relative_addr(card);
1678		if (err)
1679			goto free_card;
1680
1681		mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
1682	}
1683
1684	if (!oldcard) {
1685		/*
1686		 * Fetch CSD from card.
1687		 */
1688		err = mmc_send_csd(card, card->raw_csd);
1689		if (err)
1690			goto free_card;
1691
1692		err = mmc_decode_csd(card);
1693		if (err)
1694			goto free_card;
1695		err = mmc_decode_cid(card);
1696		if (err)
1697			goto free_card;
1698	}
1699
1700	/*
1701	 * handling only for cards supporting DSR and hosts requesting
1702	 * DSR configuration
1703	 */
1704	if (card->csd.dsr_imp && host->dsr_req)
1705		mmc_set_dsr(host);
1706
1707	/*
1708	 * Select card, as all following commands rely on that.
1709	 */
1710	if (!mmc_host_is_spi(host)) {
1711		err = mmc_select_card(card);
1712		if (err)
1713			goto free_card;
1714	}
1715
1716	if (!oldcard) {
1717		/* Read extended CSD. */
1718		err = mmc_read_ext_csd(card);
1719		if (err)
1720			goto free_card;
1721
1722		/*
1723		 * If doing byte addressing, check if required to do sector
1724		 * addressing.  Handle the case of <2GB cards needing sector
1725		 * addressing.  See section 8.1 JEDEC Standard JED84-A441;
1726		 * ocr register has bit 30 set for sector addressing.
1727		 */
1728		if (rocr & BIT(30))
1729			mmc_card_set_blockaddr(card);
1730
1731		/* Erase size depends on CSD and Extended CSD */
1732		mmc_set_erase_size(card);
1733	}
1734
1735	/* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */
1736	if (card->ext_csd.rev >= 3) {
1737		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1738				 EXT_CSD_ERASE_GROUP_DEF, 1,
1739				 card->ext_csd.generic_cmd6_time);
1740
1741		if (err && err != -EBADMSG)
1742			goto free_card;
1743
1744		if (err) {
 
1745			/*
1746			 * Just disable enhanced area off & sz
1747			 * will try to enable ERASE_GROUP_DEF
1748			 * during next time reinit
1749			 */
1750			card->ext_csd.enhanced_area_offset = -EINVAL;
1751			card->ext_csd.enhanced_area_size = -EINVAL;
1752		} else {
1753			card->ext_csd.erase_group_def = 1;
1754			/*
1755			 * enable ERASE_GRP_DEF successfully.
1756			 * This will affect the erase size, so
1757			 * here need to reset erase size
1758			 */
1759			mmc_set_erase_size(card);
1760		}
1761	}
1762
1763	/*
1764	 * Ensure eMMC user default partition is enabled
1765	 */
1766	if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
1767		card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
1768		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
1769				 card->ext_csd.part_config,
1770				 card->ext_csd.part_time);
1771		if (err && err != -EBADMSG)
1772			goto free_card;
1773	}
1774
1775	/*
1776	 * Enable power_off_notification byte in the ext_csd register
1777	 */
1778	if (card->ext_csd.rev >= 6) {
1779		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1780				 EXT_CSD_POWER_OFF_NOTIFICATION,
1781				 EXT_CSD_POWER_ON,
1782				 card->ext_csd.generic_cmd6_time);
1783		if (err && err != -EBADMSG)
1784			goto free_card;
1785
1786		/*
1787		 * The err can be -EBADMSG or 0,
1788		 * so check for success and update the flag
1789		 */
1790		if (!err)
1791			card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
1792	}
1793
1794	/* set erase_arg */
1795	if (mmc_can_discard(card))
1796		card->erase_arg = MMC_DISCARD_ARG;
1797	else if (mmc_can_trim(card))
1798		card->erase_arg = MMC_TRIM_ARG;
1799	else
1800		card->erase_arg = MMC_ERASE_ARG;
1801
1802	/*
1803	 * Select timing interface
1804	 */
1805	err = mmc_select_timing(card);
1806	if (err)
1807		goto free_card;
1808
1809	if (mmc_card_hs200(card)) {
1810		host->doing_init_tune = 1;
1811
1812		err = mmc_hs200_tuning(card);
1813		if (!err)
1814			err = mmc_select_hs400(card);
1815
1816		host->doing_init_tune = 0;
1817
1818		if (err)
1819			goto free_card;
1820
 
 
 
1821	} else if (!mmc_card_hs400es(card)) {
1822		/* Select the desired bus width optionally */
1823		err = mmc_select_bus_width(card);
1824		if (err > 0 && mmc_card_hs(card)) {
1825			err = mmc_select_hs_ddr(card);
1826			if (err)
1827				goto free_card;
1828		}
1829	}
1830
1831	/*
1832	 * Choose the power class with selected bus interface
1833	 */
1834	mmc_select_powerclass(card);
1835
1836	/*
1837	 * Enable HPI feature (if supported)
1838	 */
1839	if (card->ext_csd.hpi) {
1840		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1841				EXT_CSD_HPI_MGMT, 1,
1842				card->ext_csd.generic_cmd6_time);
1843		if (err && err != -EBADMSG)
1844			goto free_card;
1845		if (err) {
1846			pr_warn("%s: Enabling HPI failed\n",
1847				mmc_hostname(card->host));
1848			card->ext_csd.hpi_en = 0;
1849		} else {
1850			card->ext_csd.hpi_en = 1;
1851		}
1852	}
1853
1854	/*
1855	 * If cache size is higher than 0, this indicates the existence of cache
1856	 * and it can be turned on. Note that some eMMCs from Micron has been
1857	 * reported to need ~800 ms timeout, while enabling the cache after
1858	 * sudden power failure tests. Let's extend the timeout to a minimum of
1859	 * DEFAULT_CACHE_EN_TIMEOUT_MS and do it for all cards.
1860	 */
1861	if (card->ext_csd.cache_size > 0) {
1862		unsigned int timeout_ms = MIN_CACHE_EN_TIMEOUT_MS;
1863
1864		timeout_ms = max(card->ext_csd.generic_cmd6_time, timeout_ms);
1865		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1866				EXT_CSD_CACHE_CTRL, 1, timeout_ms);
 
1867		if (err && err != -EBADMSG)
1868			goto free_card;
1869
1870		/*
1871		 * Only if no error, cache is turned on successfully.
1872		 */
1873		if (err) {
1874			pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1875				mmc_hostname(card->host), err);
1876			card->ext_csd.cache_ctrl = 0;
 
1877		} else {
1878			card->ext_csd.cache_ctrl = 1;
1879		}
1880	}
1881
1882	/*
1883	 * Enable Command Queue if supported. Note that Packed Commands cannot
1884	 * be used with Command Queue.
1885	 */
1886	card->ext_csd.cmdq_en = false;
1887	if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) {
1888		err = mmc_cmdq_enable(card);
1889		if (err && err != -EBADMSG)
1890			goto free_card;
1891		if (err) {
1892			pr_warn("%s: Enabling CMDQ failed\n",
1893				mmc_hostname(card->host));
1894			card->ext_csd.cmdq_support = false;
1895			card->ext_csd.cmdq_depth = 0;
 
1896		}
1897	}
1898	/*
1899	 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be
1900	 * disabled for a time, so a flag is needed to indicate to re-enable the
1901	 * Command Queue.
1902	 */
1903	card->reenable_cmdq = card->ext_csd.cmdq_en;
1904
1905	if (host->cqe_ops && !host->cqe_enabled) {
1906		err = host->cqe_ops->cqe_enable(host, card);
1907		if (!err) {
 
 
 
1908			host->cqe_enabled = true;
1909
1910			if (card->ext_csd.cmdq_en) {
1911				pr_info("%s: Command Queue Engine enabled\n",
1912					mmc_hostname(host));
1913			} else {
1914				host->hsq_enabled = true;
1915				pr_info("%s: Host Software Queue enabled\n",
1916					mmc_hostname(host));
1917			}
1918		}
1919	}
1920
1921	if (host->caps2 & MMC_CAP2_AVOID_3_3V &&
1922	    host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
1923		pr_err("%s: Host failed to negotiate down from 3.3V\n",
1924			mmc_hostname(host));
1925		err = -EINVAL;
1926		goto free_card;
1927	}
1928
1929	if (!oldcard)
1930		host->card = card;
1931
1932	return 0;
1933
1934free_card:
1935	if (!oldcard)
1936		mmc_remove_card(card);
1937err:
1938	return err;
1939}
1940
1941static int mmc_can_sleep(struct mmc_card *card)
1942{
1943	return card->ext_csd.rev >= 3;
1944}
1945
1946static int mmc_sleep_busy_cb(void *cb_data, bool *busy)
1947{
1948	struct mmc_host *host = cb_data;
1949
1950	*busy = host->ops->card_busy(host);
1951	return 0;
1952}
1953
1954static int mmc_sleep(struct mmc_host *host)
1955{
1956	struct mmc_command cmd = {};
1957	struct mmc_card *card = host->card;
1958	unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
1959	bool use_r1b_resp;
1960	int err;
1961
1962	/* Re-tuning can't be done once the card is deselected */
1963	mmc_retune_hold(host);
1964
1965	err = mmc_deselect_cards(host);
1966	if (err)
1967		goto out_release;
1968
1969	cmd.opcode = MMC_SLEEP_AWAKE;
1970	cmd.arg = card->rca << 16;
1971	cmd.arg |= 1 << 15;
1972	use_r1b_resp = mmc_prepare_busy_cmd(host, &cmd, timeout_ms);
 
 
 
 
 
 
 
 
 
 
 
 
1973
1974	err = mmc_wait_for_cmd(host, &cmd, 0);
1975	if (err)
1976		goto out_release;
1977
1978	/*
1979	 * If the host does not wait while the card signals busy, then we can
1980	 * try to poll, but only if the host supports HW polling, as the
1981	 * SEND_STATUS cmd is not allowed. If we can't poll, then we simply need
1982	 * to wait the sleep/awake timeout.
1983	 */
1984	if (host->caps & MMC_CAP_WAIT_WHILE_BUSY && use_r1b_resp)
1985		goto out_release;
1986
1987	if (!host->ops->card_busy) {
1988		mmc_delay(timeout_ms);
1989		goto out_release;
1990	}
1991
1992	err = __mmc_poll_for_busy(host, 0, timeout_ms, &mmc_sleep_busy_cb, host);
1993
1994out_release:
1995	mmc_retune_release(host);
1996	return err;
1997}
1998
1999static int mmc_can_poweroff_notify(const struct mmc_card *card)
2000{
2001	return card &&
2002		mmc_card_mmc(card) &&
2003		(card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
2004}
2005
2006static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
2007{
2008	unsigned int timeout = card->ext_csd.generic_cmd6_time;
2009	int err;
2010
2011	/* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
2012	if (notify_type == EXT_CSD_POWER_OFF_LONG)
2013		timeout = card->ext_csd.power_off_longtime;
2014
2015	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2016			EXT_CSD_POWER_OFF_NOTIFICATION,
2017			notify_type, timeout, 0, false, false, MMC_CMD_RETRIES);
2018	if (err)
2019		pr_err("%s: Power Off Notification timed out, %u\n",
2020		       mmc_hostname(card->host), timeout);
2021
2022	/* Disable the power off notification after the switch operation. */
2023	card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
2024
2025	return err;
2026}
2027
2028/*
2029 * Host is being removed. Free up the current card.
2030 */
2031static void mmc_remove(struct mmc_host *host)
2032{
2033	mmc_remove_card(host->card);
2034	host->card = NULL;
2035}
2036
2037/*
2038 * Card detection - card is alive.
2039 */
2040static int mmc_alive(struct mmc_host *host)
2041{
2042	return mmc_send_status(host->card, NULL);
2043}
2044
2045/*
2046 * Card detection callback from host.
2047 */
2048static void mmc_detect(struct mmc_host *host)
2049{
2050	int err;
2051
2052	mmc_get_card(host->card, NULL);
2053
2054	/*
2055	 * Just check if our card has been removed.
2056	 */
2057	err = _mmc_detect_card_removed(host);
2058
2059	mmc_put_card(host->card, NULL);
2060
2061	if (err) {
2062		mmc_remove(host);
2063
2064		mmc_claim_host(host);
2065		mmc_detach_bus(host);
2066		mmc_power_off(host);
2067		mmc_release_host(host);
2068	}
2069}
2070
2071static bool _mmc_cache_enabled(struct mmc_host *host)
2072{
2073	return host->card->ext_csd.cache_size > 0 &&
2074	       host->card->ext_csd.cache_ctrl & 1;
2075}
2076
2077/*
2078 * Flush the internal cache of the eMMC to non-volatile storage.
2079 */
2080static int _mmc_flush_cache(struct mmc_host *host)
2081{
2082	int err = 0;
2083
2084	if (_mmc_cache_enabled(host)) {
2085		err = mmc_switch(host->card, EXT_CSD_CMD_SET_NORMAL,
2086				 EXT_CSD_FLUSH_CACHE, 1,
2087				 CACHE_FLUSH_TIMEOUT_MS);
2088		if (err)
2089			pr_err("%s: cache flush error %d\n",
2090			       mmc_hostname(host), err);
2091	}
2092
2093	return err;
2094}
2095
2096static int _mmc_suspend(struct mmc_host *host, bool is_suspend)
2097{
2098	int err = 0;
2099	unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT :
2100					EXT_CSD_POWER_OFF_LONG;
2101
2102	mmc_claim_host(host);
2103
2104	if (mmc_card_suspended(host->card))
2105		goto out;
2106
2107	err = _mmc_flush_cache(host);
 
 
 
 
 
 
2108	if (err)
2109		goto out;
2110
2111	if (mmc_can_poweroff_notify(host->card) &&
2112	    ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend ||
2113	     (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE_IN_SUSPEND)))
2114		err = mmc_poweroff_notify(host->card, notify_type);
2115	else if (mmc_can_sleep(host->card))
2116		err = mmc_sleep(host);
2117	else if (!mmc_host_is_spi(host))
2118		err = mmc_deselect_cards(host);
2119
2120	if (!err) {
2121		mmc_power_off(host);
2122		mmc_card_set_suspended(host->card);
2123	}
2124out:
2125	mmc_release_host(host);
2126	return err;
2127}
2128
2129/*
2130 * Suspend callback
2131 */
2132static int mmc_suspend(struct mmc_host *host)
2133{
2134	int err;
2135
2136	err = _mmc_suspend(host, true);
2137	if (!err) {
2138		pm_runtime_disable(&host->card->dev);
2139		pm_runtime_set_suspended(&host->card->dev);
2140	}
2141
2142	return err;
2143}
2144
2145/*
2146 * This function tries to determine if the same card is still present
2147 * and, if so, restore all state to it.
2148 */
2149static int _mmc_resume(struct mmc_host *host)
2150{
2151	int err = 0;
2152
2153	mmc_claim_host(host);
2154
2155	if (!mmc_card_suspended(host->card))
2156		goto out;
2157
2158	mmc_power_up(host, host->card->ocr);
2159	err = mmc_init_card(host, host->card->ocr, host->card);
2160	mmc_card_clr_suspended(host->card);
2161
2162out:
2163	mmc_release_host(host);
2164	return err;
2165}
2166
2167/*
2168 * Shutdown callback
2169 */
2170static int mmc_shutdown(struct mmc_host *host)
2171{
2172	int err = 0;
2173
2174	/*
2175	 * In a specific case for poweroff notify, we need to resume the card
2176	 * before we can shutdown it properly.
2177	 */
2178	if (mmc_can_poweroff_notify(host->card) &&
2179		!(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE))
2180		err = _mmc_resume(host);
2181
2182	if (!err)
2183		err = _mmc_suspend(host, false);
2184
2185	return err;
2186}
2187
2188/*
2189 * Callback for resume.
2190 */
2191static int mmc_resume(struct mmc_host *host)
2192{
2193	pm_runtime_enable(&host->card->dev);
2194	return 0;
2195}
2196
2197/*
2198 * Callback for runtime_suspend.
2199 */
2200static int mmc_runtime_suspend(struct mmc_host *host)
2201{
2202	int err;
2203
2204	if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
2205		return 0;
2206
2207	err = _mmc_suspend(host, true);
2208	if (err)
2209		pr_err("%s: error %d doing aggressive suspend\n",
2210			mmc_hostname(host), err);
2211
2212	return err;
2213}
2214
2215/*
2216 * Callback for runtime_resume.
2217 */
2218static int mmc_runtime_resume(struct mmc_host *host)
2219{
2220	int err;
2221
2222	err = _mmc_resume(host);
2223	if (err && err != -ENOMEDIUM)
2224		pr_err("%s: error %d doing runtime resume\n",
2225			mmc_hostname(host), err);
2226
2227	return 0;
2228}
2229
2230static int mmc_can_reset(struct mmc_card *card)
2231{
2232	u8 rst_n_function;
2233
2234	rst_n_function = card->ext_csd.rst_n_function;
2235	if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2236		return 0;
2237	return 1;
2238}
2239
2240static int _mmc_hw_reset(struct mmc_host *host)
2241{
2242	struct mmc_card *card = host->card;
2243
2244	/*
2245	 * In the case of recovery, we can't expect flushing the cache to work
2246	 * always, but we have a go and ignore errors.
2247	 */
2248	_mmc_flush_cache(host);
2249
2250	if ((host->caps & MMC_CAP_HW_RESET) && host->ops->card_hw_reset &&
2251	     mmc_can_reset(card)) {
2252		/* If the card accept RST_n signal, send it. */
2253		mmc_set_clock(host, host->f_init);
2254		host->ops->card_hw_reset(host);
2255		/* Set initial state and call mmc_set_ios */
2256		mmc_set_initial_state(host);
2257	} else {
2258		/* Do a brute force power cycle */
2259		mmc_power_cycle(host, card->ocr);
2260		mmc_pwrseq_reset(host);
2261	}
2262	return mmc_init_card(host, card->ocr, card);
2263}
2264
2265static const struct mmc_bus_ops mmc_ops = {
2266	.remove = mmc_remove,
2267	.detect = mmc_detect,
2268	.suspend = mmc_suspend,
2269	.resume = mmc_resume,
2270	.runtime_suspend = mmc_runtime_suspend,
2271	.runtime_resume = mmc_runtime_resume,
2272	.alive = mmc_alive,
2273	.shutdown = mmc_shutdown,
2274	.hw_reset = _mmc_hw_reset,
2275	.cache_enabled = _mmc_cache_enabled,
2276	.flush_cache = _mmc_flush_cache,
2277};
2278
2279/*
2280 * Starting point for MMC card init.
2281 */
2282int mmc_attach_mmc(struct mmc_host *host)
2283{
2284	int err;
2285	u32 ocr, rocr;
2286
2287	WARN_ON(!host->claimed);
2288
2289	/* Set correct bus mode for MMC before attempting attach */
2290	if (!mmc_host_is_spi(host))
2291		mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
2292
2293	err = mmc_send_op_cond(host, 0, &ocr);
2294	if (err)
2295		return err;
2296
2297	mmc_attach_bus(host, &mmc_ops);
2298	if (host->ocr_avail_mmc)
2299		host->ocr_avail = host->ocr_avail_mmc;
2300
2301	/*
2302	 * We need to get OCR a different way for SPI.
2303	 */
2304	if (mmc_host_is_spi(host)) {
2305		err = mmc_spi_read_ocr(host, 1, &ocr);
2306		if (err)
2307			goto err;
2308	}
2309
2310	rocr = mmc_select_voltage(host, ocr);
2311
2312	/*
2313	 * Can we support the voltage of the card?
2314	 */
2315	if (!rocr) {
2316		err = -EINVAL;
2317		goto err;
2318	}
2319
2320	/*
2321	 * Detect and init the card.
2322	 */
2323	err = mmc_init_card(host, rocr, NULL);
2324	if (err)
2325		goto err;
2326
2327	mmc_release_host(host);
2328	err = mmc_add_card(host->card);
2329	if (err)
2330		goto remove_card;
2331
2332	mmc_claim_host(host);
2333	return 0;
2334
2335remove_card:
2336	mmc_remove_card(host->card);
2337	mmc_claim_host(host);
2338	host->card = NULL;
2339err:
2340	mmc_detach_bus(host);
2341
2342	pr_err("%s: error %d whilst initialising MMC card\n",
2343		mmc_hostname(host), err);
2344
2345	return err;
2346}
v4.17
 
   1/*
   2 *  linux/drivers/mmc/core/mmc.c
   3 *
   4 *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
   5 *  Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
   6 *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License version 2 as
  10 * published by the Free Software Foundation.
  11 */
  12
  13#include <linux/err.h>
  14#include <linux/of.h>
  15#include <linux/slab.h>
  16#include <linux/stat.h>
  17#include <linux/pm_runtime.h>
 
 
  18
  19#include <linux/mmc/host.h>
  20#include <linux/mmc/card.h>
  21#include <linux/mmc/mmc.h>
  22
  23#include "core.h"
  24#include "card.h"
  25#include "host.h"
  26#include "bus.h"
  27#include "mmc_ops.h"
  28#include "quirks.h"
  29#include "sd_ops.h"
  30#include "pwrseq.h"
  31
  32#define DEFAULT_CMD6_TIMEOUT_MS	500
 
 
  33
  34static const unsigned int tran_exp[] = {
  35	10000,		100000,		1000000,	10000000,
  36	0,		0,		0,		0
  37};
  38
  39static const unsigned char tran_mant[] = {
  40	0,	10,	12,	13,	15,	20,	25,	30,
  41	35,	40,	45,	50,	55,	60,	70,	80,
  42};
  43
  44static const unsigned int taac_exp[] = {
  45	1,	10,	100,	1000,	10000,	100000,	1000000, 10000000,
  46};
  47
  48static const unsigned int taac_mant[] = {
  49	0,	10,	12,	13,	15,	20,	25,	30,
  50	35,	40,	45,	50,	55,	60,	70,	80,
  51};
  52
  53#define UNSTUFF_BITS(resp,start,size)					\
  54	({								\
  55		const int __size = size;				\
  56		const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1;	\
  57		const int __off = 3 - ((start) / 32);			\
  58		const int __shft = (start) & 31;			\
  59		u32 __res;						\
  60									\
  61		__res = resp[__off] >> __shft;				\
  62		if (__size + __shft > 32)				\
  63			__res |= resp[__off-1] << ((32 - __shft) % 32);	\
  64		__res & __mask;						\
  65	})
  66
  67/*
  68 * Given the decoded CSD structure, decode the raw CID to our CID structure.
  69 */
  70static int mmc_decode_cid(struct mmc_card *card)
  71{
  72	u32 *resp = card->raw_cid;
  73
  74	/*
 
 
 
 
 
 
  75	 * The selection of the format here is based upon published
  76	 * specs from sandisk and from what people have reported.
  77	 */
  78	switch (card->csd.mmca_vsn) {
  79	case 0: /* MMC v1.0 - v1.2 */
  80	case 1: /* MMC v1.4 */
  81		card->cid.manfid	= UNSTUFF_BITS(resp, 104, 24);
  82		card->cid.prod_name[0]	= UNSTUFF_BITS(resp, 96, 8);
  83		card->cid.prod_name[1]	= UNSTUFF_BITS(resp, 88, 8);
  84		card->cid.prod_name[2]	= UNSTUFF_BITS(resp, 80, 8);
  85		card->cid.prod_name[3]	= UNSTUFF_BITS(resp, 72, 8);
  86		card->cid.prod_name[4]	= UNSTUFF_BITS(resp, 64, 8);
  87		card->cid.prod_name[5]	= UNSTUFF_BITS(resp, 56, 8);
  88		card->cid.prod_name[6]	= UNSTUFF_BITS(resp, 48, 8);
  89		card->cid.hwrev		= UNSTUFF_BITS(resp, 44, 4);
  90		card->cid.fwrev		= UNSTUFF_BITS(resp, 40, 4);
  91		card->cid.serial	= UNSTUFF_BITS(resp, 16, 24);
  92		card->cid.month		= UNSTUFF_BITS(resp, 12, 4);
  93		card->cid.year		= UNSTUFF_BITS(resp, 8, 4) + 1997;
  94		break;
  95
  96	case 2: /* MMC v2.0 - v2.2 */
  97	case 3: /* MMC v3.1 - v3.3 */
  98	case 4: /* MMC v4 */
  99		card->cid.manfid	= UNSTUFF_BITS(resp, 120, 8);
 100		card->cid.oemid		= UNSTUFF_BITS(resp, 104, 16);
 101		card->cid.prod_name[0]	= UNSTUFF_BITS(resp, 96, 8);
 102		card->cid.prod_name[1]	= UNSTUFF_BITS(resp, 88, 8);
 103		card->cid.prod_name[2]	= UNSTUFF_BITS(resp, 80, 8);
 104		card->cid.prod_name[3]	= UNSTUFF_BITS(resp, 72, 8);
 105		card->cid.prod_name[4]	= UNSTUFF_BITS(resp, 64, 8);
 106		card->cid.prod_name[5]	= UNSTUFF_BITS(resp, 56, 8);
 107		card->cid.prv		= UNSTUFF_BITS(resp, 48, 8);
 108		card->cid.serial	= UNSTUFF_BITS(resp, 16, 32);
 109		card->cid.month		= UNSTUFF_BITS(resp, 12, 4);
 110		card->cid.year		= UNSTUFF_BITS(resp, 8, 4) + 1997;
 111		break;
 112
 113	default:
 114		pr_err("%s: card has unknown MMCA version %d\n",
 115			mmc_hostname(card->host), card->csd.mmca_vsn);
 116		return -EINVAL;
 117	}
 118
 119	return 0;
 120}
 121
 122static void mmc_set_erase_size(struct mmc_card *card)
 123{
 124	if (card->ext_csd.erase_group_def & 1)
 125		card->erase_size = card->ext_csd.hc_erase_size;
 126	else
 127		card->erase_size = card->csd.erase_size;
 128
 129	mmc_init_erase(card);
 130}
 131
 132/*
 133 * Given a 128-bit response, decode to our card CSD structure.
 134 */
 135static int mmc_decode_csd(struct mmc_card *card)
 136{
 137	struct mmc_csd *csd = &card->csd;
 138	unsigned int e, m, a, b;
 139	u32 *resp = card->raw_csd;
 140
 141	/*
 142	 * We only understand CSD structure v1.1 and v1.2.
 143	 * v1.2 has extra information in bits 15, 11 and 10.
 144	 * We also support eMMC v4.4 & v4.41.
 145	 */
 146	csd->structure = UNSTUFF_BITS(resp, 126, 2);
 147	if (csd->structure == 0) {
 148		pr_err("%s: unrecognised CSD structure version %d\n",
 149			mmc_hostname(card->host), csd->structure);
 150		return -EINVAL;
 151	}
 152
 153	csd->mmca_vsn	 = UNSTUFF_BITS(resp, 122, 4);
 154	m = UNSTUFF_BITS(resp, 115, 4);
 155	e = UNSTUFF_BITS(resp, 112, 3);
 156	csd->taac_ns	 = (taac_exp[e] * taac_mant[m] + 9) / 10;
 157	csd->taac_clks	 = UNSTUFF_BITS(resp, 104, 8) * 100;
 158
 159	m = UNSTUFF_BITS(resp, 99, 4);
 160	e = UNSTUFF_BITS(resp, 96, 3);
 161	csd->max_dtr	  = tran_exp[e] * tran_mant[m];
 162	csd->cmdclass	  = UNSTUFF_BITS(resp, 84, 12);
 163
 164	e = UNSTUFF_BITS(resp, 47, 3);
 165	m = UNSTUFF_BITS(resp, 62, 12);
 166	csd->capacity	  = (1 + m) << (e + 2);
 167
 168	csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
 169	csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
 170	csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
 171	csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
 172	csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
 173	csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
 174	csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
 175	csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
 176
 177	if (csd->write_blkbits >= 9) {
 178		a = UNSTUFF_BITS(resp, 42, 5);
 179		b = UNSTUFF_BITS(resp, 37, 5);
 180		csd->erase_size = (a + 1) * (b + 1);
 181		csd->erase_size <<= csd->write_blkbits - 9;
 182	}
 183
 184	return 0;
 185}
 186
 187static void mmc_select_card_type(struct mmc_card *card)
 188{
 189	struct mmc_host *host = card->host;
 190	u8 card_type = card->ext_csd.raw_card_type;
 191	u32 caps = host->caps, caps2 = host->caps2;
 192	unsigned int hs_max_dtr = 0, hs200_max_dtr = 0;
 193	unsigned int avail_type = 0;
 194
 195	if (caps & MMC_CAP_MMC_HIGHSPEED &&
 196	    card_type & EXT_CSD_CARD_TYPE_HS_26) {
 197		hs_max_dtr = MMC_HIGH_26_MAX_DTR;
 198		avail_type |= EXT_CSD_CARD_TYPE_HS_26;
 199	}
 200
 201	if (caps & MMC_CAP_MMC_HIGHSPEED &&
 202	    card_type & EXT_CSD_CARD_TYPE_HS_52) {
 203		hs_max_dtr = MMC_HIGH_52_MAX_DTR;
 204		avail_type |= EXT_CSD_CARD_TYPE_HS_52;
 205	}
 206
 207	if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) &&
 208	    card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) {
 209		hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
 210		avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V;
 211	}
 212
 213	if (caps & MMC_CAP_1_2V_DDR &&
 214	    card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
 215		hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
 216		avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V;
 217	}
 218
 219	if (caps2 & MMC_CAP2_HS200_1_8V_SDR &&
 220	    card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) {
 221		hs200_max_dtr = MMC_HS200_MAX_DTR;
 222		avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V;
 223	}
 224
 225	if (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
 226	    card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) {
 227		hs200_max_dtr = MMC_HS200_MAX_DTR;
 228		avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V;
 229	}
 230
 231	if (caps2 & MMC_CAP2_HS400_1_8V &&
 232	    card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) {
 233		hs200_max_dtr = MMC_HS200_MAX_DTR;
 234		avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V;
 235	}
 236
 237	if (caps2 & MMC_CAP2_HS400_1_2V &&
 238	    card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) {
 239		hs200_max_dtr = MMC_HS200_MAX_DTR;
 240		avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V;
 241	}
 242
 243	if ((caps2 & MMC_CAP2_HS400_ES) &&
 244	    card->ext_csd.strobe_support &&
 245	    (avail_type & EXT_CSD_CARD_TYPE_HS400))
 246		avail_type |= EXT_CSD_CARD_TYPE_HS400ES;
 247
 248	card->ext_csd.hs_max_dtr = hs_max_dtr;
 249	card->ext_csd.hs200_max_dtr = hs200_max_dtr;
 250	card->mmc_avail_type = avail_type;
 251}
 252
 253static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd)
 254{
 255	u8 hc_erase_grp_sz, hc_wp_grp_sz;
 256
 257	/*
 258	 * Disable these attributes by default
 259	 */
 260	card->ext_csd.enhanced_area_offset = -EINVAL;
 261	card->ext_csd.enhanced_area_size = -EINVAL;
 262
 263	/*
 264	 * Enhanced area feature support -- check whether the eMMC
 265	 * card has the Enhanced area enabled.  If so, export enhanced
 266	 * area offset and size to user by adding sysfs interface.
 267	 */
 268	if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
 269	    (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
 270		if (card->ext_csd.partition_setting_completed) {
 271			hc_erase_grp_sz =
 272				ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
 273			hc_wp_grp_sz =
 274				ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
 275
 276			/*
 277			 * calculate the enhanced data area offset, in bytes
 278			 */
 279			card->ext_csd.enhanced_area_offset =
 280				(((unsigned long long)ext_csd[139]) << 24) +
 281				(((unsigned long long)ext_csd[138]) << 16) +
 282				(((unsigned long long)ext_csd[137]) << 8) +
 283				(((unsigned long long)ext_csd[136]));
 284			if (mmc_card_blockaddr(card))
 285				card->ext_csd.enhanced_area_offset <<= 9;
 286			/*
 287			 * calculate the enhanced data area size, in kilobytes
 288			 */
 289			card->ext_csd.enhanced_area_size =
 290				(ext_csd[142] << 16) + (ext_csd[141] << 8) +
 291				ext_csd[140];
 292			card->ext_csd.enhanced_area_size *=
 293				(size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
 294			card->ext_csd.enhanced_area_size <<= 9;
 295		} else {
 296			pr_warn("%s: defines enhanced area without partition setting complete\n",
 297				mmc_hostname(card->host));
 298		}
 299	}
 300}
 301
 302static void mmc_part_add(struct mmc_card *card, unsigned int size,
 303			 unsigned int part_cfg, char *name, int idx, bool ro,
 304			 int area_type)
 305{
 306	card->part[card->nr_parts].size = size;
 307	card->part[card->nr_parts].part_cfg = part_cfg;
 308	sprintf(card->part[card->nr_parts].name, name, idx);
 309	card->part[card->nr_parts].force_ro = ro;
 310	card->part[card->nr_parts].area_type = area_type;
 311	card->nr_parts++;
 312}
 313
 314static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd)
 315{
 316	int idx;
 317	u8 hc_erase_grp_sz, hc_wp_grp_sz;
 318	unsigned int part_size;
 319
 320	/*
 321	 * General purpose partition feature support --
 322	 * If ext_csd has the size of general purpose partitions,
 323	 * set size, part_cfg, partition name in mmc_part.
 324	 */
 325	if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
 326	    EXT_CSD_PART_SUPPORT_PART_EN) {
 327		hc_erase_grp_sz =
 328			ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
 329		hc_wp_grp_sz =
 330			ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
 331
 332		for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
 333			if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
 334			    !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
 335			    !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
 336				continue;
 337			if (card->ext_csd.partition_setting_completed == 0) {
 338				pr_warn("%s: has partition size defined without partition complete\n",
 339					mmc_hostname(card->host));
 340				break;
 341			}
 342			part_size =
 343				(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
 344				<< 16) +
 345				(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
 346				<< 8) +
 347				ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
 348			part_size *= (size_t)(hc_erase_grp_sz *
 349				hc_wp_grp_sz);
 350			mmc_part_add(card, part_size << 19,
 351				EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
 352				"gp%d", idx, false,
 353				MMC_BLK_DATA_AREA_GP);
 354		}
 355	}
 356}
 357
 358/* Minimum partition switch timeout in milliseconds */
 359#define MMC_MIN_PART_SWITCH_TIME	300
 360
 361/*
 362 * Decode extended CSD.
 363 */
 364static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd)
 365{
 366	int err = 0, idx;
 367	unsigned int part_size;
 368	struct device_node *np;
 369	bool broken_hpi = false;
 370
 371	/* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
 372	card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
 373	if (card->csd.structure == 3) {
 374		if (card->ext_csd.raw_ext_csd_structure > 2) {
 375			pr_err("%s: unrecognised EXT_CSD structure "
 376				"version %d\n", mmc_hostname(card->host),
 377					card->ext_csd.raw_ext_csd_structure);
 378			err = -EINVAL;
 379			goto out;
 380		}
 381	}
 382
 383	np = mmc_of_find_child_device(card->host, 0);
 384	if (np && of_device_is_compatible(np, "mmc-card"))
 385		broken_hpi = of_property_read_bool(np, "broken-hpi");
 386	of_node_put(np);
 387
 388	/*
 389	 * The EXT_CSD format is meant to be forward compatible. As long
 390	 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
 391	 * are authorized, see JEDEC JESD84-B50 section B.8.
 392	 */
 393	card->ext_csd.rev = ext_csd[EXT_CSD_REV];
 394
 395	/* fixup device after ext_csd revision field is updated */
 396	mmc_fixup_device(card, mmc_ext_csd_fixups);
 397
 398	card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
 399	card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
 400	card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
 401	card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
 402	if (card->ext_csd.rev >= 2) {
 403		card->ext_csd.sectors =
 404			ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
 405			ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
 406			ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
 407			ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
 408
 409		/* Cards with density > 2GiB are sector addressed */
 410		if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
 411			mmc_card_set_blockaddr(card);
 412	}
 413
 414	card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT];
 415	card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
 416	mmc_select_card_type(card);
 417
 418	card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
 419	card->ext_csd.raw_erase_timeout_mult =
 420		ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
 421	card->ext_csd.raw_hc_erase_grp_size =
 422		ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
 
 
 423	if (card->ext_csd.rev >= 3) {
 424		u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
 425		card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
 426
 427		/* EXT_CSD value is in units of 10ms, but we store in ms */
 428		card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
 429		/* Some eMMC set the value too low so set a minimum */
 430		if (card->ext_csd.part_time &&
 431		    card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME)
 432			card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME;
 433
 434		/* Sleep / awake timeout in 100ns units */
 435		if (sa_shift > 0 && sa_shift <= 0x17)
 436			card->ext_csd.sa_timeout =
 437					1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
 438		card->ext_csd.erase_group_def =
 439			ext_csd[EXT_CSD_ERASE_GROUP_DEF];
 440		card->ext_csd.hc_erase_timeout = 300 *
 441			ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
 442		card->ext_csd.hc_erase_size =
 443			ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
 444
 445		card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
 446
 447		/*
 448		 * There are two boot regions of equal size, defined in
 449		 * multiples of 128K.
 450		 */
 451		if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) {
 452			for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
 453				part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
 454				mmc_part_add(card, part_size,
 455					EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
 456					"boot%d", idx, true,
 457					MMC_BLK_DATA_AREA_BOOT);
 458			}
 459		}
 460	}
 461
 462	card->ext_csd.raw_hc_erase_gap_size =
 463		ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
 464	card->ext_csd.raw_sec_trim_mult =
 465		ext_csd[EXT_CSD_SEC_TRIM_MULT];
 466	card->ext_csd.raw_sec_erase_mult =
 467		ext_csd[EXT_CSD_SEC_ERASE_MULT];
 468	card->ext_csd.raw_sec_feature_support =
 469		ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
 470	card->ext_csd.raw_trim_mult =
 471		ext_csd[EXT_CSD_TRIM_MULT];
 472	card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
 473	card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH];
 474	if (card->ext_csd.rev >= 4) {
 475		if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] &
 476		    EXT_CSD_PART_SETTING_COMPLETED)
 477			card->ext_csd.partition_setting_completed = 1;
 478		else
 479			card->ext_csd.partition_setting_completed = 0;
 480
 481		mmc_manage_enhanced_area(card, ext_csd);
 482
 483		mmc_manage_gp_partitions(card, ext_csd);
 484
 485		card->ext_csd.sec_trim_mult =
 486			ext_csd[EXT_CSD_SEC_TRIM_MULT];
 487		card->ext_csd.sec_erase_mult =
 488			ext_csd[EXT_CSD_SEC_ERASE_MULT];
 489		card->ext_csd.sec_feature_support =
 490			ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
 491		card->ext_csd.trim_timeout = 300 *
 492			ext_csd[EXT_CSD_TRIM_MULT];
 493
 494		/*
 495		 * Note that the call to mmc_part_add above defaults to read
 496		 * only. If this default assumption is changed, the call must
 497		 * take into account the value of boot_locked below.
 498		 */
 499		card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
 500		card->ext_csd.boot_ro_lockable = true;
 501
 502		/* Save power class values */
 503		card->ext_csd.raw_pwr_cl_52_195 =
 504			ext_csd[EXT_CSD_PWR_CL_52_195];
 505		card->ext_csd.raw_pwr_cl_26_195 =
 506			ext_csd[EXT_CSD_PWR_CL_26_195];
 507		card->ext_csd.raw_pwr_cl_52_360 =
 508			ext_csd[EXT_CSD_PWR_CL_52_360];
 509		card->ext_csd.raw_pwr_cl_26_360 =
 510			ext_csd[EXT_CSD_PWR_CL_26_360];
 511		card->ext_csd.raw_pwr_cl_200_195 =
 512			ext_csd[EXT_CSD_PWR_CL_200_195];
 513		card->ext_csd.raw_pwr_cl_200_360 =
 514			ext_csd[EXT_CSD_PWR_CL_200_360];
 515		card->ext_csd.raw_pwr_cl_ddr_52_195 =
 516			ext_csd[EXT_CSD_PWR_CL_DDR_52_195];
 517		card->ext_csd.raw_pwr_cl_ddr_52_360 =
 518			ext_csd[EXT_CSD_PWR_CL_DDR_52_360];
 519		card->ext_csd.raw_pwr_cl_ddr_200_360 =
 520			ext_csd[EXT_CSD_PWR_CL_DDR_200_360];
 521	}
 522
 523	if (card->ext_csd.rev >= 5) {
 524		/* Adjust production date as per JEDEC JESD84-B451 */
 525		if (card->cid.year < 2010)
 526			card->cid.year += 16;
 527
 528		/* check whether the eMMC card supports BKOPS */
 529		if (!mmc_card_broken_hpi(card) &&
 530		    ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) {
 531			card->ext_csd.bkops = 1;
 532			card->ext_csd.man_bkops_en =
 533					(ext_csd[EXT_CSD_BKOPS_EN] &
 534						EXT_CSD_MANUAL_BKOPS_MASK);
 535			card->ext_csd.raw_bkops_status =
 536				ext_csd[EXT_CSD_BKOPS_STATUS];
 537			if (card->ext_csd.man_bkops_en)
 538				pr_debug("%s: MAN_BKOPS_EN bit is set\n",
 539					mmc_hostname(card->host));
 540			card->ext_csd.auto_bkops_en =
 541					(ext_csd[EXT_CSD_BKOPS_EN] &
 542						EXT_CSD_AUTO_BKOPS_MASK);
 543			if (card->ext_csd.auto_bkops_en)
 544				pr_debug("%s: AUTO_BKOPS_EN bit is set\n",
 545					mmc_hostname(card->host));
 546		}
 547
 548		/* check whether the eMMC card supports HPI */
 549		if (!mmc_card_broken_hpi(card) &&
 550		    !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) {
 551			card->ext_csd.hpi = 1;
 552			if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
 553				card->ext_csd.hpi_cmd =	MMC_STOP_TRANSMISSION;
 554			else
 555				card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
 556			/*
 557			 * Indicate the maximum timeout to close
 558			 * a command interrupted by HPI
 559			 */
 560			card->ext_csd.out_of_int_time =
 561				ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
 562		}
 563
 564		card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
 565		card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
 566
 567		/*
 568		 * RPMB regions are defined in multiples of 128K.
 569		 */
 570		card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
 571		if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) {
 572			mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
 573				EXT_CSD_PART_CONFIG_ACC_RPMB,
 574				"rpmb", 0, false,
 575				MMC_BLK_DATA_AREA_RPMB);
 576		}
 577	}
 578
 579	card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
 580	if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
 581		card->erased_byte = 0xFF;
 582	else
 583		card->erased_byte = 0x0;
 584
 585	/* eMMC v4.5 or later */
 586	card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS;
 587	if (card->ext_csd.rev >= 6) {
 588		card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
 589
 590		card->ext_csd.generic_cmd6_time = 10 *
 591			ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
 592		card->ext_csd.power_off_longtime = 10 *
 593			ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
 594
 595		card->ext_csd.cache_size =
 596			ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
 597			ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
 598			ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
 599			ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
 600
 601		if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
 602			card->ext_csd.data_sector_size = 4096;
 603		else
 604			card->ext_csd.data_sector_size = 512;
 605
 606		if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
 607		    (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
 608			card->ext_csd.data_tag_unit_size =
 609			((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
 610			(card->ext_csd.data_sector_size);
 611		} else {
 612			card->ext_csd.data_tag_unit_size = 0;
 613		}
 614
 615		card->ext_csd.max_packed_writes =
 616			ext_csd[EXT_CSD_MAX_PACKED_WRITES];
 617		card->ext_csd.max_packed_reads =
 618			ext_csd[EXT_CSD_MAX_PACKED_READS];
 619	} else {
 620		card->ext_csd.data_sector_size = 512;
 621	}
 622
 
 
 
 
 
 
 
 
 
 
 
 623	/* eMMC v5 or later */
 624	if (card->ext_csd.rev >= 7) {
 625		memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION],
 626		       MMC_FIRMWARE_LEN);
 627		card->ext_csd.ffu_capable =
 628			(ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) &&
 629			!(ext_csd[EXT_CSD_FW_CONFIG] & 0x1);
 630
 631		card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO];
 632		card->ext_csd.device_life_time_est_typ_a =
 633			ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A];
 634		card->ext_csd.device_life_time_est_typ_b =
 635			ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B];
 636	}
 637
 638	/* eMMC v5.1 or later */
 639	if (card->ext_csd.rev >= 8) {
 640		card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] &
 641					     EXT_CSD_CMDQ_SUPPORTED;
 642		card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] &
 643					    EXT_CSD_CMDQ_DEPTH_MASK) + 1;
 644		/* Exclude inefficiently small queue depths */
 645		if (card->ext_csd.cmdq_depth <= 2) {
 646			card->ext_csd.cmdq_support = false;
 647			card->ext_csd.cmdq_depth = 0;
 648		}
 649		if (card->ext_csd.cmdq_support) {
 650			pr_debug("%s: Command Queue supported depth %u\n",
 651				 mmc_hostname(card->host),
 652				 card->ext_csd.cmdq_depth);
 653		}
 
 
 
 654	}
 655out:
 656	return err;
 657}
 658
 659static int mmc_read_ext_csd(struct mmc_card *card)
 660{
 661	u8 *ext_csd;
 662	int err;
 663
 664	if (!mmc_can_ext_csd(card))
 665		return 0;
 666
 667	err = mmc_get_ext_csd(card, &ext_csd);
 668	if (err) {
 669		/* If the host or the card can't do the switch,
 670		 * fail more gracefully. */
 671		if ((err != -EINVAL)
 672		 && (err != -ENOSYS)
 673		 && (err != -EFAULT))
 674			return err;
 675
 676		/*
 677		 * High capacity cards should have this "magic" size
 678		 * stored in their CSD.
 679		 */
 680		if (card->csd.capacity == (4096 * 512)) {
 681			pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
 682				mmc_hostname(card->host));
 683		} else {
 684			pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
 685				mmc_hostname(card->host));
 686			err = 0;
 687		}
 688
 689		return err;
 690	}
 691
 692	err = mmc_decode_ext_csd(card, ext_csd);
 693	kfree(ext_csd);
 694	return err;
 695}
 696
 697static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
 698{
 699	u8 *bw_ext_csd;
 700	int err;
 701
 702	if (bus_width == MMC_BUS_WIDTH_1)
 703		return 0;
 704
 705	err = mmc_get_ext_csd(card, &bw_ext_csd);
 706	if (err)
 707		return err;
 708
 709	/* only compare read only fields */
 710	err = !((card->ext_csd.raw_partition_support ==
 711			bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
 712		(card->ext_csd.raw_erased_mem_count ==
 713			bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
 714		(card->ext_csd.rev ==
 715			bw_ext_csd[EXT_CSD_REV]) &&
 716		(card->ext_csd.raw_ext_csd_structure ==
 717			bw_ext_csd[EXT_CSD_STRUCTURE]) &&
 718		(card->ext_csd.raw_card_type ==
 719			bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
 720		(card->ext_csd.raw_s_a_timeout ==
 721			bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
 722		(card->ext_csd.raw_hc_erase_gap_size ==
 723			bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
 724		(card->ext_csd.raw_erase_timeout_mult ==
 725			bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
 726		(card->ext_csd.raw_hc_erase_grp_size ==
 727			bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
 728		(card->ext_csd.raw_sec_trim_mult ==
 729			bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
 730		(card->ext_csd.raw_sec_erase_mult ==
 731			bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
 732		(card->ext_csd.raw_sec_feature_support ==
 733			bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
 734		(card->ext_csd.raw_trim_mult ==
 735			bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
 736		(card->ext_csd.raw_sectors[0] ==
 737			bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
 738		(card->ext_csd.raw_sectors[1] ==
 739			bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
 740		(card->ext_csd.raw_sectors[2] ==
 741			bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
 742		(card->ext_csd.raw_sectors[3] ==
 743			bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
 744		(card->ext_csd.raw_pwr_cl_52_195 ==
 745			bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
 746		(card->ext_csd.raw_pwr_cl_26_195 ==
 747			bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
 748		(card->ext_csd.raw_pwr_cl_52_360 ==
 749			bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
 750		(card->ext_csd.raw_pwr_cl_26_360 ==
 751			bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
 752		(card->ext_csd.raw_pwr_cl_200_195 ==
 753			bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
 754		(card->ext_csd.raw_pwr_cl_200_360 ==
 755			bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
 756		(card->ext_csd.raw_pwr_cl_ddr_52_195 ==
 757			bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
 758		(card->ext_csd.raw_pwr_cl_ddr_52_360 ==
 759			bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
 760		(card->ext_csd.raw_pwr_cl_ddr_200_360 ==
 761			bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
 762
 763	if (err)
 764		err = -EINVAL;
 765
 766	kfree(bw_ext_csd);
 767	return err;
 768}
 769
 770MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
 771	card->raw_cid[2], card->raw_cid[3]);
 772MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
 773	card->raw_csd[2], card->raw_csd[3]);
 774MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
 775MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
 776MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
 777MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable);
 778MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
 779MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
 780MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
 781MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
 782MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
 783MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev);
 784MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info);
 785MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n",
 786	card->ext_csd.device_life_time_est_typ_a,
 787	card->ext_csd.device_life_time_est_typ_b);
 788MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
 789MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
 790		card->ext_csd.enhanced_area_offset);
 791MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
 792MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
 
 
 793MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
 794MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
 795MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
 796MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en);
 797
 798static ssize_t mmc_fwrev_show(struct device *dev,
 799			      struct device_attribute *attr,
 800			      char *buf)
 801{
 802	struct mmc_card *card = mmc_dev_to_card(dev);
 803
 804	if (card->ext_csd.rev < 7) {
 805		return sprintf(buf, "0x%x\n", card->cid.fwrev);
 806	} else {
 807		return sprintf(buf, "0x%*phN\n", MMC_FIRMWARE_LEN,
 808			       card->ext_csd.fwrev);
 809	}
 810}
 811
 812static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL);
 813
 814static ssize_t mmc_dsr_show(struct device *dev,
 815			    struct device_attribute *attr,
 816			    char *buf)
 817{
 818	struct mmc_card *card = mmc_dev_to_card(dev);
 819	struct mmc_host *host = card->host;
 820
 821	if (card->csd.dsr_imp && host->dsr_req)
 822		return sprintf(buf, "0x%x\n", host->dsr);
 823	else
 824		/* return default DSR value */
 825		return sprintf(buf, "0x%x\n", 0x404);
 826}
 827
 828static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
 829
 830static struct attribute *mmc_std_attrs[] = {
 831	&dev_attr_cid.attr,
 832	&dev_attr_csd.attr,
 833	&dev_attr_date.attr,
 834	&dev_attr_erase_size.attr,
 835	&dev_attr_preferred_erase_size.attr,
 836	&dev_attr_fwrev.attr,
 837	&dev_attr_ffu_capable.attr,
 838	&dev_attr_hwrev.attr,
 839	&dev_attr_manfid.attr,
 840	&dev_attr_name.attr,
 841	&dev_attr_oemid.attr,
 842	&dev_attr_prv.attr,
 843	&dev_attr_rev.attr,
 844	&dev_attr_pre_eol_info.attr,
 845	&dev_attr_life_time.attr,
 846	&dev_attr_serial.attr,
 847	&dev_attr_enhanced_area_offset.attr,
 848	&dev_attr_enhanced_area_size.attr,
 849	&dev_attr_raw_rpmb_size_mult.attr,
 
 850	&dev_attr_rel_sectors.attr,
 851	&dev_attr_ocr.attr,
 852	&dev_attr_rca.attr,
 853	&dev_attr_dsr.attr,
 854	&dev_attr_cmdq_en.attr,
 855	NULL,
 856};
 857ATTRIBUTE_GROUPS(mmc_std);
 858
 859static struct device_type mmc_type = {
 860	.groups = mmc_std_groups,
 861};
 862
 863/*
 864 * Select the PowerClass for the current bus width
 865 * If power class is defined for 4/8 bit bus in the
 866 * extended CSD register, select it by executing the
 867 * mmc_switch command.
 868 */
 869static int __mmc_select_powerclass(struct mmc_card *card,
 870				   unsigned int bus_width)
 871{
 872	struct mmc_host *host = card->host;
 873	struct mmc_ext_csd *ext_csd = &card->ext_csd;
 874	unsigned int pwrclass_val = 0;
 875	int err = 0;
 876
 877	switch (1 << host->ios.vdd) {
 878	case MMC_VDD_165_195:
 879		if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
 880			pwrclass_val = ext_csd->raw_pwr_cl_26_195;
 881		else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
 882			pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
 883				ext_csd->raw_pwr_cl_52_195 :
 884				ext_csd->raw_pwr_cl_ddr_52_195;
 885		else if (host->ios.clock <= MMC_HS200_MAX_DTR)
 886			pwrclass_val = ext_csd->raw_pwr_cl_200_195;
 887		break;
 888	case MMC_VDD_27_28:
 889	case MMC_VDD_28_29:
 890	case MMC_VDD_29_30:
 891	case MMC_VDD_30_31:
 892	case MMC_VDD_31_32:
 893	case MMC_VDD_32_33:
 894	case MMC_VDD_33_34:
 895	case MMC_VDD_34_35:
 896	case MMC_VDD_35_36:
 897		if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
 898			pwrclass_val = ext_csd->raw_pwr_cl_26_360;
 899		else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
 900			pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
 901				ext_csd->raw_pwr_cl_52_360 :
 902				ext_csd->raw_pwr_cl_ddr_52_360;
 903		else if (host->ios.clock <= MMC_HS200_MAX_DTR)
 904			pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
 905				ext_csd->raw_pwr_cl_ddr_200_360 :
 906				ext_csd->raw_pwr_cl_200_360;
 907		break;
 908	default:
 909		pr_warn("%s: Voltage range not supported for power class\n",
 910			mmc_hostname(host));
 911		return -EINVAL;
 912	}
 913
 914	if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
 915		pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
 916				EXT_CSD_PWR_CL_8BIT_SHIFT;
 917	else
 918		pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
 919				EXT_CSD_PWR_CL_4BIT_SHIFT;
 920
 921	/* If the power class is different from the default value */
 922	if (pwrclass_val > 0) {
 923		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
 924				 EXT_CSD_POWER_CLASS,
 925				 pwrclass_val,
 926				 card->ext_csd.generic_cmd6_time);
 927	}
 928
 929	return err;
 930}
 931
 932static int mmc_select_powerclass(struct mmc_card *card)
 933{
 934	struct mmc_host *host = card->host;
 935	u32 bus_width, ext_csd_bits;
 936	int err, ddr;
 937
 938	/* Power class selection is supported for versions >= 4.0 */
 939	if (!mmc_can_ext_csd(card))
 940		return 0;
 941
 942	bus_width = host->ios.bus_width;
 943	/* Power class values are defined only for 4/8 bit bus */
 944	if (bus_width == MMC_BUS_WIDTH_1)
 945		return 0;
 946
 947	ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52;
 948	if (ddr)
 949		ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
 950			EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
 951	else
 952		ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
 953			EXT_CSD_BUS_WIDTH_8 :  EXT_CSD_BUS_WIDTH_4;
 954
 955	err = __mmc_select_powerclass(card, ext_csd_bits);
 956	if (err)
 957		pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
 958			mmc_hostname(host), 1 << bus_width, ddr);
 959
 960	return err;
 961}
 962
 963/*
 964 * Set the bus speed for the selected speed mode.
 965 */
 966static void mmc_set_bus_speed(struct mmc_card *card)
 967{
 968	unsigned int max_dtr = (unsigned int)-1;
 969
 970	if ((mmc_card_hs200(card) || mmc_card_hs400(card)) &&
 971	     max_dtr > card->ext_csd.hs200_max_dtr)
 972		max_dtr = card->ext_csd.hs200_max_dtr;
 973	else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr)
 974		max_dtr = card->ext_csd.hs_max_dtr;
 975	else if (max_dtr > card->csd.max_dtr)
 976		max_dtr = card->csd.max_dtr;
 977
 978	mmc_set_clock(card->host, max_dtr);
 979}
 980
 981/*
 982 * Select the bus width amoung 4-bit and 8-bit(SDR).
 983 * If the bus width is changed successfully, return the selected width value.
 984 * Zero is returned instead of error value if the wide width is not supported.
 985 */
 986static int mmc_select_bus_width(struct mmc_card *card)
 987{
 988	static unsigned ext_csd_bits[] = {
 989		EXT_CSD_BUS_WIDTH_8,
 990		EXT_CSD_BUS_WIDTH_4,
 991	};
 992	static unsigned bus_widths[] = {
 993		MMC_BUS_WIDTH_8,
 994		MMC_BUS_WIDTH_4,
 995	};
 996	struct mmc_host *host = card->host;
 997	unsigned idx, bus_width = 0;
 998	int err = 0;
 999
1000	if (!mmc_can_ext_csd(card) ||
1001	    !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
1002		return 0;
1003
1004	idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1;
1005
1006	/*
1007	 * Unlike SD, MMC cards dont have a configuration register to notify
1008	 * supported bus width. So bus test command should be run to identify
1009	 * the supported bus width or compare the ext csd values of current
1010	 * bus width and ext csd values of 1 bit mode read earlier.
1011	 */
1012	for (; idx < ARRAY_SIZE(bus_widths); idx++) {
1013		/*
1014		 * Host is capable of 8bit transfer, then switch
1015		 * the device to work in 8bit transfer mode. If the
1016		 * mmc switch command returns error then switch to
1017		 * 4bit transfer mode. On success set the corresponding
1018		 * bus width on the host.
1019		 */
1020		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1021				 EXT_CSD_BUS_WIDTH,
1022				 ext_csd_bits[idx],
1023				 card->ext_csd.generic_cmd6_time);
1024		if (err)
1025			continue;
1026
1027		bus_width = bus_widths[idx];
1028		mmc_set_bus_width(host, bus_width);
1029
1030		/*
1031		 * If controller can't handle bus width test,
1032		 * compare ext_csd previously read in 1 bit mode
1033		 * against ext_csd at new bus width
1034		 */
1035		if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
1036			err = mmc_compare_ext_csds(card, bus_width);
1037		else
1038			err = mmc_bus_test(card, bus_width);
1039
1040		if (!err) {
1041			err = bus_width;
1042			break;
1043		} else {
1044			pr_warn("%s: switch to bus width %d failed\n",
1045				mmc_hostname(host), 1 << bus_width);
1046		}
1047	}
1048
1049	return err;
1050}
1051
1052/*
1053 * Switch to the high-speed mode
1054 */
1055static int mmc_select_hs(struct mmc_card *card)
1056{
1057	int err;
1058
1059	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1060			   EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1061			   card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS,
1062			   true, true, true);
1063	if (err)
1064		pr_warn("%s: switch to high-speed failed, err:%d\n",
1065			mmc_hostname(card->host), err);
1066
1067	return err;
1068}
1069
1070/*
1071 * Activate wide bus and DDR if supported.
1072 */
1073static int mmc_select_hs_ddr(struct mmc_card *card)
1074{
1075	struct mmc_host *host = card->host;
1076	u32 bus_width, ext_csd_bits;
1077	int err = 0;
1078
1079	if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52))
1080		return 0;
1081
1082	bus_width = host->ios.bus_width;
1083	if (bus_width == MMC_BUS_WIDTH_1)
1084		return 0;
1085
1086	ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
1087		EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
1088
1089	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1090			   EXT_CSD_BUS_WIDTH,
1091			   ext_csd_bits,
1092			   card->ext_csd.generic_cmd6_time,
1093			   MMC_TIMING_MMC_DDR52,
1094			   true, true, true);
1095	if (err) {
1096		pr_err("%s: switch to bus width %d ddr failed\n",
1097			mmc_hostname(host), 1 << bus_width);
1098		return err;
1099	}
1100
1101	/*
1102	 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1103	 * signaling.
1104	 *
1105	 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1106	 *
1107	 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1108	 * in the JEDEC spec for DDR.
1109	 *
1110	 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1111	 * host controller can support this, like some of the SDHCI
1112	 * controller which connect to an eMMC device. Some of these
1113	 * host controller still needs to use 1.8v vccq for supporting
1114	 * DDR mode.
1115	 *
1116	 * So the sequence will be:
1117	 * if (host and device can both support 1.2v IO)
1118	 *	use 1.2v IO;
1119	 * else if (host and device can both support 1.8v IO)
1120	 *	use 1.8v IO;
1121	 * so if host and device can only support 3.3v IO, this is the
1122	 * last choice.
1123	 *
1124	 * WARNING: eMMC rules are NOT the same as SD DDR
1125	 */
1126	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
1127		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1128		if (!err)
1129			return 0;
1130	}
1131
1132	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V &&
1133	    host->caps & MMC_CAP_1_8V_DDR)
1134		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1135
1136	/* make sure vccq is 3.3v after switching disaster */
1137	if (err)
1138		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1139
1140	return err;
1141}
1142
1143static int mmc_select_hs400(struct mmc_card *card)
1144{
1145	struct mmc_host *host = card->host;
1146	unsigned int max_dtr;
1147	int err = 0;
1148	u8 val;
1149
1150	/*
1151	 * HS400 mode requires 8-bit bus width
1152	 */
1153	if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1154	      host->ios.bus_width == MMC_BUS_WIDTH_8))
1155		return 0;
1156
1157	/* Switch card to HS mode */
1158	val = EXT_CSD_TIMING_HS;
1159	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1160			   EXT_CSD_HS_TIMING, val,
1161			   card->ext_csd.generic_cmd6_time, 0,
1162			   true, false, true);
1163	if (err) {
1164		pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1165			mmc_hostname(host), err);
1166		return err;
1167	}
1168
 
 
 
 
1169	/* Set host controller to HS timing */
1170	mmc_set_timing(card->host, MMC_TIMING_MMC_HS);
1171
1172	/* Reduce frequency to HS frequency */
1173	max_dtr = card->ext_csd.hs_max_dtr;
1174	mmc_set_clock(host, max_dtr);
1175
1176	err = mmc_switch_status(card);
1177	if (err)
1178		goto out_err;
1179
 
 
 
1180	/* Switch card to DDR */
1181	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1182			 EXT_CSD_BUS_WIDTH,
1183			 EXT_CSD_DDR_BUS_WIDTH_8,
1184			 card->ext_csd.generic_cmd6_time);
1185	if (err) {
1186		pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1187			mmc_hostname(host), err);
1188		return err;
1189	}
1190
1191	/* Switch card to HS400 */
1192	val = EXT_CSD_TIMING_HS400 |
1193	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1194	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1195			   EXT_CSD_HS_TIMING, val,
1196			   card->ext_csd.generic_cmd6_time, 0,
1197			   true, false, true);
1198	if (err) {
1199		pr_err("%s: switch to hs400 failed, err:%d\n",
1200			 mmc_hostname(host), err);
1201		return err;
1202	}
1203
1204	/* Set host controller to HS400 timing and frequency */
1205	mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1206	mmc_set_bus_speed(card);
1207
1208	err = mmc_switch_status(card);
 
 
 
 
 
 
 
 
 
 
 
1209	if (err)
1210		goto out_err;
1211
1212	return 0;
1213
1214out_err:
1215	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1216	       __func__, err);
1217	return err;
1218}
1219
1220int mmc_hs200_to_hs400(struct mmc_card *card)
1221{
1222	return mmc_select_hs400(card);
1223}
1224
1225int mmc_hs400_to_hs200(struct mmc_card *card)
1226{
1227	struct mmc_host *host = card->host;
1228	unsigned int max_dtr;
1229	int err;
1230	u8 val;
1231
1232	/* Reduce frequency to HS */
1233	max_dtr = card->ext_csd.hs_max_dtr;
1234	mmc_set_clock(host, max_dtr);
1235
1236	/* Switch HS400 to HS DDR */
1237	val = EXT_CSD_TIMING_HS;
1238	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1239			   val, card->ext_csd.generic_cmd6_time, 0,
1240			   true, false, true);
1241	if (err)
1242		goto out_err;
1243
 
 
 
1244	mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1245
1246	err = mmc_switch_status(card);
1247	if (err)
1248		goto out_err;
1249
1250	/* Switch HS DDR to HS */
1251	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
1252			   EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time,
1253			   0, true, false, true);
1254	if (err)
1255		goto out_err;
1256
1257	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1258
1259	err = mmc_switch_status(card);
1260	if (err)
1261		goto out_err;
1262
1263	/* Switch HS to HS200 */
1264	val = EXT_CSD_TIMING_HS200 |
1265	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1266	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1267			   val, card->ext_csd.generic_cmd6_time, 0,
1268			   true, false, true);
1269	if (err)
1270		goto out_err;
1271
1272	mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1273
1274	/*
1275	 * For HS200, CRC errors are not a reliable way to know the switch
1276	 * failed. If there really is a problem, we would expect tuning will
1277	 * fail and the result ends up the same.
1278	 */
1279	err = __mmc_switch_status(card, false);
1280	if (err)
1281		goto out_err;
1282
1283	mmc_set_bus_speed(card);
1284
 
 
 
 
1285	return 0;
1286
1287out_err:
1288	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1289	       __func__, err);
1290	return err;
1291}
1292
1293static void mmc_select_driver_type(struct mmc_card *card)
1294{
1295	int card_drv_type, drive_strength, drv_type = 0;
1296	int fixed_drv_type = card->host->fixed_drv_type;
1297
1298	card_drv_type = card->ext_csd.raw_driver_strength |
1299			mmc_driver_type_mask(0);
1300
1301	if (fixed_drv_type >= 0)
1302		drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type)
1303				 ? fixed_drv_type : 0;
1304	else
1305		drive_strength = mmc_select_drive_strength(card,
1306							   card->ext_csd.hs200_max_dtr,
1307							   card_drv_type, &drv_type);
1308
1309	card->drive_strength = drive_strength;
1310
1311	if (drv_type)
1312		mmc_set_driver_type(card->host, drv_type);
1313}
1314
1315static int mmc_select_hs400es(struct mmc_card *card)
1316{
1317	struct mmc_host *host = card->host;
1318	int err = -EINVAL;
1319	u8 val;
1320
1321	if (!(host->caps & MMC_CAP_8_BIT_DATA)) {
1322		err = -ENOTSUPP;
1323		goto out_err;
1324	}
1325
1326	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V)
1327		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1328
1329	if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V)
1330		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1331
1332	/* If fails try again during next card power cycle */
1333	if (err)
1334		goto out_err;
1335
1336	err = mmc_select_bus_width(card);
1337	if (err < 0)
 
 
 
1338		goto out_err;
 
1339
1340	/* Switch card to HS mode */
1341	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1342			   EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1343			   card->ext_csd.generic_cmd6_time, 0,
1344			   true, false, true);
1345	if (err) {
1346		pr_err("%s: switch to hs for hs400es failed, err:%d\n",
1347			mmc_hostname(host), err);
1348		goto out_err;
1349	}
1350
 
 
 
 
1351	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1352	err = mmc_switch_status(card);
 
 
1353	if (err)
1354		goto out_err;
1355
1356	mmc_set_clock(host, card->ext_csd.hs_max_dtr);
1357
1358	/* Switch card to DDR with strobe bit */
1359	val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE;
1360	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1361			 EXT_CSD_BUS_WIDTH,
1362			 val,
1363			 card->ext_csd.generic_cmd6_time);
1364	if (err) {
1365		pr_err("%s: switch to bus width for hs400es failed, err:%d\n",
1366			mmc_hostname(host), err);
1367		goto out_err;
1368	}
1369
1370	mmc_select_driver_type(card);
1371
1372	/* Switch card to HS400 */
1373	val = EXT_CSD_TIMING_HS400 |
1374	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1375	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1376			   EXT_CSD_HS_TIMING, val,
1377			   card->ext_csd.generic_cmd6_time, 0,
1378			   true, false, true);
1379	if (err) {
1380		pr_err("%s: switch to hs400es failed, err:%d\n",
1381			mmc_hostname(host), err);
1382		goto out_err;
1383	}
1384
1385	/* Set host controller to HS400 timing and frequency */
1386	mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1387
1388	/* Controller enable enhanced strobe function */
1389	host->ios.enhanced_strobe = true;
1390	if (host->ops->hs400_enhanced_strobe)
1391		host->ops->hs400_enhanced_strobe(host, &host->ios);
1392
1393	err = mmc_switch_status(card);
1394	if (err)
1395		goto out_err;
1396
1397	return 0;
1398
1399out_err:
1400	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1401	       __func__, err);
1402	return err;
1403}
1404
1405/*
1406 * For device supporting HS200 mode, the following sequence
1407 * should be done before executing the tuning process.
1408 * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1409 * 2. switch to HS200 mode
1410 * 3. set the clock to > 52Mhz and <=200MHz
1411 */
1412static int mmc_select_hs200(struct mmc_card *card)
1413{
1414	struct mmc_host *host = card->host;
1415	unsigned int old_timing, old_signal_voltage;
1416	int err = -EINVAL;
1417	u8 val;
1418
1419	old_signal_voltage = host->ios.signal_voltage;
1420	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V)
1421		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1422
1423	if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
1424		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1425
1426	/* If fails try again during next card power cycle */
1427	if (err)
1428		return err;
1429
1430	mmc_select_driver_type(card);
1431
1432	/*
1433	 * Set the bus width(4 or 8) with host's support and
1434	 * switch to HS200 mode if bus width is set successfully.
1435	 */
1436	err = mmc_select_bus_width(card);
1437	if (err > 0) {
1438		val = EXT_CSD_TIMING_HS200 |
1439		      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1440		err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1441				   EXT_CSD_HS_TIMING, val,
1442				   card->ext_csd.generic_cmd6_time, 0,
1443				   true, false, true);
1444		if (err)
1445			goto err;
 
 
 
 
 
 
 
1446		old_timing = host->ios.timing;
 
1447		mmc_set_timing(host, MMC_TIMING_MMC_HS200);
 
1448
1449		/*
1450		 * For HS200, CRC errors are not a reliable way to know the
1451		 * switch failed. If there really is a problem, we would expect
1452		 * tuning will fail and the result ends up the same.
1453		 */
1454		err = __mmc_switch_status(card, false);
1455
1456		/*
1457		 * mmc_select_timing() assumes timing has not changed if
1458		 * it is a switch error.
1459		 */
1460		if (err == -EBADMSG)
 
1461			mmc_set_timing(host, old_timing);
 
1462	}
1463err:
1464	if (err) {
1465		/* fall back to the old signal voltage, if fails report error */
1466		if (mmc_set_signal_voltage(host, old_signal_voltage))
1467			err = -EIO;
1468
1469		pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1470		       __func__, err);
1471	}
1472	return err;
1473}
1474
1475/*
1476 * Activate High Speed, HS200 or HS400ES mode if supported.
1477 */
1478static int mmc_select_timing(struct mmc_card *card)
1479{
1480	int err = 0;
1481
1482	if (!mmc_can_ext_csd(card))
1483		goto bus_speed;
1484
1485	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES)
1486		err = mmc_select_hs400es(card);
1487	else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200)
 
 
 
1488		err = mmc_select_hs200(card);
1489	else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS)
 
 
 
 
 
 
1490		err = mmc_select_hs(card);
1491
 
1492	if (err && err != -EBADMSG)
1493		return err;
1494
1495bus_speed:
1496	/*
1497	 * Set the bus speed to the selected bus timing.
1498	 * If timing is not selected, backward compatible is the default.
1499	 */
1500	mmc_set_bus_speed(card);
1501	return 0;
1502}
1503
1504/*
1505 * Execute tuning sequence to seek the proper bus operating
1506 * conditions for HS200 and HS400, which sends CMD21 to the device.
1507 */
1508static int mmc_hs200_tuning(struct mmc_card *card)
1509{
1510	struct mmc_host *host = card->host;
1511
1512	/*
1513	 * Timing should be adjusted to the HS400 target
1514	 * operation frequency for tuning process
1515	 */
1516	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1517	    host->ios.bus_width == MMC_BUS_WIDTH_8)
1518		if (host->ops->prepare_hs400_tuning)
1519			host->ops->prepare_hs400_tuning(host, &host->ios);
1520
1521	return mmc_execute_tuning(card);
1522}
1523
1524/*
1525 * Handle the detection and initialisation of a card.
1526 *
1527 * In the case of a resume, "oldcard" will contain the card
1528 * we're trying to reinitialise.
1529 */
1530static int mmc_init_card(struct mmc_host *host, u32 ocr,
1531	struct mmc_card *oldcard)
1532{
1533	struct mmc_card *card;
1534	int err;
1535	u32 cid[4];
1536	u32 rocr;
1537
1538	WARN_ON(!host->claimed);
1539
1540	/* Set correct bus mode for MMC before attempting init */
1541	if (!mmc_host_is_spi(host))
1542		mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
1543
1544	/*
1545	 * Since we're changing the OCR value, we seem to
1546	 * need to tell some cards to go back to the idle
1547	 * state.  We wait 1ms to give cards time to
1548	 * respond.
1549	 * mmc_go_idle is needed for eMMC that are asleep
1550	 */
1551	mmc_go_idle(host);
1552
1553	/* The extra bit indicates that we support high capacity */
1554	err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
1555	if (err)
1556		goto err;
1557
1558	/*
1559	 * For SPI, enable CRC as appropriate.
1560	 */
1561	if (mmc_host_is_spi(host)) {
1562		err = mmc_spi_set_crc(host, use_spi_crc);
1563		if (err)
1564			goto err;
1565	}
1566
1567	/*
1568	 * Fetch CID from card.
1569	 */
1570	err = mmc_send_cid(host, cid);
1571	if (err)
1572		goto err;
1573
1574	if (oldcard) {
1575		if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
 
 
1576			err = -ENOENT;
1577			goto err;
1578		}
1579
1580		card = oldcard;
1581	} else {
1582		/*
1583		 * Allocate card structure.
1584		 */
1585		card = mmc_alloc_card(host, &mmc_type);
1586		if (IS_ERR(card)) {
1587			err = PTR_ERR(card);
1588			goto err;
1589		}
1590
1591		card->ocr = ocr;
1592		card->type = MMC_TYPE_MMC;
1593		card->rca = 1;
1594		memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1595	}
1596
1597	/*
1598	 * Call the optional HC's init_card function to handle quirks.
1599	 */
1600	if (host->ops->init_card)
1601		host->ops->init_card(host, card);
1602
1603	/*
1604	 * For native busses:  set card RCA and quit open drain mode.
1605	 */
1606	if (!mmc_host_is_spi(host)) {
1607		err = mmc_set_relative_addr(card);
1608		if (err)
1609			goto free_card;
1610
1611		mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
1612	}
1613
1614	if (!oldcard) {
1615		/*
1616		 * Fetch CSD from card.
1617		 */
1618		err = mmc_send_csd(card, card->raw_csd);
1619		if (err)
1620			goto free_card;
1621
1622		err = mmc_decode_csd(card);
1623		if (err)
1624			goto free_card;
1625		err = mmc_decode_cid(card);
1626		if (err)
1627			goto free_card;
1628	}
1629
1630	/*
1631	 * handling only for cards supporting DSR and hosts requesting
1632	 * DSR configuration
1633	 */
1634	if (card->csd.dsr_imp && host->dsr_req)
1635		mmc_set_dsr(host);
1636
1637	/*
1638	 * Select card, as all following commands rely on that.
1639	 */
1640	if (!mmc_host_is_spi(host)) {
1641		err = mmc_select_card(card);
1642		if (err)
1643			goto free_card;
1644	}
1645
1646	if (!oldcard) {
1647		/* Read extended CSD. */
1648		err = mmc_read_ext_csd(card);
1649		if (err)
1650			goto free_card;
1651
1652		/*
1653		 * If doing byte addressing, check if required to do sector
1654		 * addressing.  Handle the case of <2GB cards needing sector
1655		 * addressing.  See section 8.1 JEDEC Standard JED84-A441;
1656		 * ocr register has bit 30 set for sector addressing.
1657		 */
1658		if (rocr & BIT(30))
1659			mmc_card_set_blockaddr(card);
1660
1661		/* Erase size depends on CSD and Extended CSD */
1662		mmc_set_erase_size(card);
1663	}
1664
1665	/* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */
1666	if (card->ext_csd.rev >= 3) {
1667		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1668				 EXT_CSD_ERASE_GROUP_DEF, 1,
1669				 card->ext_csd.generic_cmd6_time);
1670
1671		if (err && err != -EBADMSG)
1672			goto free_card;
1673
1674		if (err) {
1675			err = 0;
1676			/*
1677			 * Just disable enhanced area off & sz
1678			 * will try to enable ERASE_GROUP_DEF
1679			 * during next time reinit
1680			 */
1681			card->ext_csd.enhanced_area_offset = -EINVAL;
1682			card->ext_csd.enhanced_area_size = -EINVAL;
1683		} else {
1684			card->ext_csd.erase_group_def = 1;
1685			/*
1686			 * enable ERASE_GRP_DEF successfully.
1687			 * This will affect the erase size, so
1688			 * here need to reset erase size
1689			 */
1690			mmc_set_erase_size(card);
1691		}
1692	}
1693
1694	/*
1695	 * Ensure eMMC user default partition is enabled
1696	 */
1697	if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
1698		card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
1699		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
1700				 card->ext_csd.part_config,
1701				 card->ext_csd.part_time);
1702		if (err && err != -EBADMSG)
1703			goto free_card;
1704	}
1705
1706	/*
1707	 * Enable power_off_notification byte in the ext_csd register
1708	 */
1709	if (card->ext_csd.rev >= 6) {
1710		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1711				 EXT_CSD_POWER_OFF_NOTIFICATION,
1712				 EXT_CSD_POWER_ON,
1713				 card->ext_csd.generic_cmd6_time);
1714		if (err && err != -EBADMSG)
1715			goto free_card;
1716
1717		/*
1718		 * The err can be -EBADMSG or 0,
1719		 * so check for success and update the flag
1720		 */
1721		if (!err)
1722			card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
1723	}
1724
 
 
 
 
 
 
 
 
1725	/*
1726	 * Select timing interface
1727	 */
1728	err = mmc_select_timing(card);
1729	if (err)
1730		goto free_card;
1731
1732	if (mmc_card_hs200(card)) {
 
 
1733		err = mmc_hs200_tuning(card);
 
 
 
 
 
1734		if (err)
1735			goto free_card;
1736
1737		err = mmc_select_hs400(card);
1738		if (err)
1739			goto free_card;
1740	} else if (!mmc_card_hs400es(card)) {
1741		/* Select the desired bus width optionally */
1742		err = mmc_select_bus_width(card);
1743		if (err > 0 && mmc_card_hs(card)) {
1744			err = mmc_select_hs_ddr(card);
1745			if (err)
1746				goto free_card;
1747		}
1748	}
1749
1750	/*
1751	 * Choose the power class with selected bus interface
1752	 */
1753	mmc_select_powerclass(card);
1754
1755	/*
1756	 * Enable HPI feature (if supported)
1757	 */
1758	if (card->ext_csd.hpi) {
1759		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1760				EXT_CSD_HPI_MGMT, 1,
1761				card->ext_csd.generic_cmd6_time);
1762		if (err && err != -EBADMSG)
1763			goto free_card;
1764		if (err) {
1765			pr_warn("%s: Enabling HPI failed\n",
1766				mmc_hostname(card->host));
1767			err = 0;
1768		} else
1769			card->ext_csd.hpi_en = 1;
 
1770	}
1771
1772	/*
1773	 * If cache size is higher than 0, this indicates
1774	 * the existence of cache and it can be turned on.
 
 
 
1775	 */
1776	if (!mmc_card_broken_hpi(card) &&
1777	    card->ext_csd.cache_size > 0) {
 
 
1778		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1779				EXT_CSD_CACHE_CTRL, 1,
1780				card->ext_csd.generic_cmd6_time);
1781		if (err && err != -EBADMSG)
1782			goto free_card;
1783
1784		/*
1785		 * Only if no error, cache is turned on successfully.
1786		 */
1787		if (err) {
1788			pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1789				mmc_hostname(card->host), err);
1790			card->ext_csd.cache_ctrl = 0;
1791			err = 0;
1792		} else {
1793			card->ext_csd.cache_ctrl = 1;
1794		}
1795	}
1796
1797	/*
1798	 * Enable Command Queue if supported. Note that Packed Commands cannot
1799	 * be used with Command Queue.
1800	 */
1801	card->ext_csd.cmdq_en = false;
1802	if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) {
1803		err = mmc_cmdq_enable(card);
1804		if (err && err != -EBADMSG)
1805			goto free_card;
1806		if (err) {
1807			pr_warn("%s: Enabling CMDQ failed\n",
1808				mmc_hostname(card->host));
1809			card->ext_csd.cmdq_support = false;
1810			card->ext_csd.cmdq_depth = 0;
1811			err = 0;
1812		}
1813	}
1814	/*
1815	 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be
1816	 * disabled for a time, so a flag is needed to indicate to re-enable the
1817	 * Command Queue.
1818	 */
1819	card->reenable_cmdq = card->ext_csd.cmdq_en;
1820
1821	if (card->ext_csd.cmdq_en && !host->cqe_enabled) {
1822		err = host->cqe_ops->cqe_enable(host, card);
1823		if (err) {
1824			pr_err("%s: Failed to enable CQE, error %d\n",
1825				mmc_hostname(host), err);
1826		} else {
1827			host->cqe_enabled = true;
1828			pr_info("%s: Command Queue Engine enabled\n",
1829				mmc_hostname(host));
 
 
 
 
 
 
 
1830		}
1831	}
1832
 
 
 
 
 
 
 
 
1833	if (!oldcard)
1834		host->card = card;
1835
1836	return 0;
1837
1838free_card:
1839	if (!oldcard)
1840		mmc_remove_card(card);
1841err:
1842	return err;
1843}
1844
1845static int mmc_can_sleep(struct mmc_card *card)
1846{
1847	return (card && card->ext_csd.rev >= 3);
 
 
 
 
 
 
 
 
1848}
1849
1850static int mmc_sleep(struct mmc_host *host)
1851{
1852	struct mmc_command cmd = {};
1853	struct mmc_card *card = host->card;
1854	unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
 
1855	int err;
1856
1857	/* Re-tuning can't be done once the card is deselected */
1858	mmc_retune_hold(host);
1859
1860	err = mmc_deselect_cards(host);
1861	if (err)
1862		goto out_release;
1863
1864	cmd.opcode = MMC_SLEEP_AWAKE;
1865	cmd.arg = card->rca << 16;
1866	cmd.arg |= 1 << 15;
1867
1868	/*
1869	 * If the max_busy_timeout of the host is specified, validate it against
1870	 * the sleep cmd timeout. A failure means we need to prevent the host
1871	 * from doing hw busy detection, which is done by converting to a R1
1872	 * response instead of a R1B.
1873	 */
1874	if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout)) {
1875		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1876	} else {
1877		cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
1878		cmd.busy_timeout = timeout_ms;
1879	}
1880
1881	err = mmc_wait_for_cmd(host, &cmd, 0);
1882	if (err)
1883		goto out_release;
1884
1885	/*
1886	 * If the host does not wait while the card signals busy, then we will
1887	 * will have to wait the sleep/awake timeout.  Note, we cannot use the
1888	 * SEND_STATUS command to poll the status because that command (and most
1889	 * others) is invalid while the card sleeps.
1890	 */
1891	if (!cmd.busy_timeout || !(host->caps & MMC_CAP_WAIT_WHILE_BUSY))
 
 
 
1892		mmc_delay(timeout_ms);
 
 
 
 
1893
1894out_release:
1895	mmc_retune_release(host);
1896	return err;
1897}
1898
1899static int mmc_can_poweroff_notify(const struct mmc_card *card)
1900{
1901	return card &&
1902		mmc_card_mmc(card) &&
1903		(card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
1904}
1905
1906static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
1907{
1908	unsigned int timeout = card->ext_csd.generic_cmd6_time;
1909	int err;
1910
1911	/* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
1912	if (notify_type == EXT_CSD_POWER_OFF_LONG)
1913		timeout = card->ext_csd.power_off_longtime;
1914
1915	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1916			EXT_CSD_POWER_OFF_NOTIFICATION,
1917			notify_type, timeout, 0, true, false, false);
1918	if (err)
1919		pr_err("%s: Power Off Notification timed out, %u\n",
1920		       mmc_hostname(card->host), timeout);
1921
1922	/* Disable the power off notification after the switch operation. */
1923	card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
1924
1925	return err;
1926}
1927
1928/*
1929 * Host is being removed. Free up the current card.
1930 */
1931static void mmc_remove(struct mmc_host *host)
1932{
1933	mmc_remove_card(host->card);
1934	host->card = NULL;
1935}
1936
1937/*
1938 * Card detection - card is alive.
1939 */
1940static int mmc_alive(struct mmc_host *host)
1941{
1942	return mmc_send_status(host->card, NULL);
1943}
1944
1945/*
1946 * Card detection callback from host.
1947 */
1948static void mmc_detect(struct mmc_host *host)
1949{
1950	int err;
1951
1952	mmc_get_card(host->card, NULL);
1953
1954	/*
1955	 * Just check if our card has been removed.
1956	 */
1957	err = _mmc_detect_card_removed(host);
1958
1959	mmc_put_card(host->card, NULL);
1960
1961	if (err) {
1962		mmc_remove(host);
1963
1964		mmc_claim_host(host);
1965		mmc_detach_bus(host);
1966		mmc_power_off(host);
1967		mmc_release_host(host);
1968	}
1969}
1970
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1971static int _mmc_suspend(struct mmc_host *host, bool is_suspend)
1972{
1973	int err = 0;
1974	unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT :
1975					EXT_CSD_POWER_OFF_LONG;
1976
1977	mmc_claim_host(host);
1978
1979	if (mmc_card_suspended(host->card))
1980		goto out;
1981
1982	if (mmc_card_doing_bkops(host->card)) {
1983		err = mmc_stop_bkops(host->card);
1984		if (err)
1985			goto out;
1986	}
1987
1988	err = mmc_flush_cache(host->card);
1989	if (err)
1990		goto out;
1991
1992	if (mmc_can_poweroff_notify(host->card) &&
1993		((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend))
 
1994		err = mmc_poweroff_notify(host->card, notify_type);
1995	else if (mmc_can_sleep(host->card))
1996		err = mmc_sleep(host);
1997	else if (!mmc_host_is_spi(host))
1998		err = mmc_deselect_cards(host);
1999
2000	if (!err) {
2001		mmc_power_off(host);
2002		mmc_card_set_suspended(host->card);
2003	}
2004out:
2005	mmc_release_host(host);
2006	return err;
2007}
2008
2009/*
2010 * Suspend callback
2011 */
2012static int mmc_suspend(struct mmc_host *host)
2013{
2014	int err;
2015
2016	err = _mmc_suspend(host, true);
2017	if (!err) {
2018		pm_runtime_disable(&host->card->dev);
2019		pm_runtime_set_suspended(&host->card->dev);
2020	}
2021
2022	return err;
2023}
2024
2025/*
2026 * This function tries to determine if the same card is still present
2027 * and, if so, restore all state to it.
2028 */
2029static int _mmc_resume(struct mmc_host *host)
2030{
2031	int err = 0;
2032
2033	mmc_claim_host(host);
2034
2035	if (!mmc_card_suspended(host->card))
2036		goto out;
2037
2038	mmc_power_up(host, host->card->ocr);
2039	err = mmc_init_card(host, host->card->ocr, host->card);
2040	mmc_card_clr_suspended(host->card);
2041
2042out:
2043	mmc_release_host(host);
2044	return err;
2045}
2046
2047/*
2048 * Shutdown callback
2049 */
2050static int mmc_shutdown(struct mmc_host *host)
2051{
2052	int err = 0;
2053
2054	/*
2055	 * In a specific case for poweroff notify, we need to resume the card
2056	 * before we can shutdown it properly.
2057	 */
2058	if (mmc_can_poweroff_notify(host->card) &&
2059		!(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE))
2060		err = _mmc_resume(host);
2061
2062	if (!err)
2063		err = _mmc_suspend(host, false);
2064
2065	return err;
2066}
2067
2068/*
2069 * Callback for resume.
2070 */
2071static int mmc_resume(struct mmc_host *host)
2072{
2073	pm_runtime_enable(&host->card->dev);
2074	return 0;
2075}
2076
2077/*
2078 * Callback for runtime_suspend.
2079 */
2080static int mmc_runtime_suspend(struct mmc_host *host)
2081{
2082	int err;
2083
2084	if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
2085		return 0;
2086
2087	err = _mmc_suspend(host, true);
2088	if (err)
2089		pr_err("%s: error %d doing aggressive suspend\n",
2090			mmc_hostname(host), err);
2091
2092	return err;
2093}
2094
2095/*
2096 * Callback for runtime_resume.
2097 */
2098static int mmc_runtime_resume(struct mmc_host *host)
2099{
2100	int err;
2101
2102	err = _mmc_resume(host);
2103	if (err && err != -ENOMEDIUM)
2104		pr_err("%s: error %d doing runtime resume\n",
2105			mmc_hostname(host), err);
2106
2107	return 0;
2108}
2109
2110static int mmc_can_reset(struct mmc_card *card)
2111{
2112	u8 rst_n_function;
2113
2114	rst_n_function = card->ext_csd.rst_n_function;
2115	if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2116		return 0;
2117	return 1;
2118}
2119
2120static int mmc_reset(struct mmc_host *host)
2121{
2122	struct mmc_card *card = host->card;
2123
2124	/*
2125	 * In the case of recovery, we can't expect flushing the cache to work
2126	 * always, but we have a go and ignore errors.
2127	 */
2128	mmc_flush_cache(host->card);
2129
2130	if ((host->caps & MMC_CAP_HW_RESET) && host->ops->hw_reset &&
2131	     mmc_can_reset(card)) {
2132		/* If the card accept RST_n signal, send it. */
2133		mmc_set_clock(host, host->f_init);
2134		host->ops->hw_reset(host);
2135		/* Set initial state and call mmc_set_ios */
2136		mmc_set_initial_state(host);
2137	} else {
2138		/* Do a brute force power cycle */
2139		mmc_power_cycle(host, card->ocr);
2140		mmc_pwrseq_reset(host);
2141	}
2142	return mmc_init_card(host, card->ocr, card);
2143}
2144
2145static const struct mmc_bus_ops mmc_ops = {
2146	.remove = mmc_remove,
2147	.detect = mmc_detect,
2148	.suspend = mmc_suspend,
2149	.resume = mmc_resume,
2150	.runtime_suspend = mmc_runtime_suspend,
2151	.runtime_resume = mmc_runtime_resume,
2152	.alive = mmc_alive,
2153	.shutdown = mmc_shutdown,
2154	.reset = mmc_reset,
 
 
2155};
2156
2157/*
2158 * Starting point for MMC card init.
2159 */
2160int mmc_attach_mmc(struct mmc_host *host)
2161{
2162	int err;
2163	u32 ocr, rocr;
2164
2165	WARN_ON(!host->claimed);
2166
2167	/* Set correct bus mode for MMC before attempting attach */
2168	if (!mmc_host_is_spi(host))
2169		mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
2170
2171	err = mmc_send_op_cond(host, 0, &ocr);
2172	if (err)
2173		return err;
2174
2175	mmc_attach_bus(host, &mmc_ops);
2176	if (host->ocr_avail_mmc)
2177		host->ocr_avail = host->ocr_avail_mmc;
2178
2179	/*
2180	 * We need to get OCR a different way for SPI.
2181	 */
2182	if (mmc_host_is_spi(host)) {
2183		err = mmc_spi_read_ocr(host, 1, &ocr);
2184		if (err)
2185			goto err;
2186	}
2187
2188	rocr = mmc_select_voltage(host, ocr);
2189
2190	/*
2191	 * Can we support the voltage of the card?
2192	 */
2193	if (!rocr) {
2194		err = -EINVAL;
2195		goto err;
2196	}
2197
2198	/*
2199	 * Detect and init the card.
2200	 */
2201	err = mmc_init_card(host, rocr, NULL);
2202	if (err)
2203		goto err;
2204
2205	mmc_release_host(host);
2206	err = mmc_add_card(host->card);
2207	if (err)
2208		goto remove_card;
2209
2210	mmc_claim_host(host);
2211	return 0;
2212
2213remove_card:
2214	mmc_remove_card(host->card);
2215	mmc_claim_host(host);
2216	host->card = NULL;
2217err:
2218	mmc_detach_bus(host);
2219
2220	pr_err("%s: error %d whilst initialising MMC card\n",
2221		mmc_hostname(host), err);
2222
2223	return err;
2224}