Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Activity LED trigger
  4 *
  5 * Copyright (C) 2017 Willy Tarreau <w@1wt.eu>
  6 * Partially based on Atsushi Nemoto's ledtrig-heartbeat.c.
 
 
 
 
 
  7 */
  8
  9#include <linux/init.h>
 10#include <linux/kernel.h>
 11#include <linux/kernel_stat.h>
 12#include <linux/leds.h>
 13#include <linux/module.h>
 14#include <linux/panic_notifier.h>
 15#include <linux/reboot.h>
 16#include <linux/sched.h>
 17#include <linux/slab.h>
 18#include <linux/timer.h>
 19#include "../leds.h"
 20
 21static int panic_detected;
 22
 23struct activity_data {
 24	struct timer_list timer;
 25	struct led_classdev *led_cdev;
 26	u64 last_used;
 27	u64 last_boot;
 28	int time_left;
 29	int state;
 30	int invert;
 31};
 32
 33static void led_activity_function(struct timer_list *t)
 34{
 35	struct activity_data *activity_data = from_timer(activity_data, t,
 36							 timer);
 37	struct led_classdev *led_cdev = activity_data->led_cdev;
 
 38	unsigned int target;
 39	unsigned int usage;
 40	int delay;
 41	u64 curr_used;
 42	u64 curr_boot;
 43	s32 diff_used;
 44	s32 diff_boot;
 45	int cpus;
 46	int i;
 47
 48	if (test_and_clear_bit(LED_BLINK_BRIGHTNESS_CHANGE, &led_cdev->work_flags))
 49		led_cdev->blink_brightness = led_cdev->new_blink_brightness;
 50
 51	if (unlikely(panic_detected)) {
 52		/* full brightness in case of panic */
 53		led_set_brightness_nosleep(led_cdev, led_cdev->blink_brightness);
 54		return;
 55	}
 56
 
 
 57	cpus = 0;
 58	curr_used = 0;
 59
 60	for_each_possible_cpu(i) {
 61		struct kernel_cpustat kcpustat;
 62
 63		kcpustat_cpu_fetch(&kcpustat, i);
 64
 65		curr_used += kcpustat.cpustat[CPUTIME_USER]
 66			  +  kcpustat.cpustat[CPUTIME_NICE]
 67			  +  kcpustat.cpustat[CPUTIME_SYSTEM]
 68			  +  kcpustat.cpustat[CPUTIME_SOFTIRQ]
 69			  +  kcpustat.cpustat[CPUTIME_IRQ];
 70		cpus++;
 71	}
 72
 73	/* We come here every 100ms in the worst case, so that's 100M ns of
 74	 * cumulated time. By dividing by 2^16, we get the time resolution
 75	 * down to 16us, ensuring we won't overflow 32-bit computations below
 76	 * even up to 3k CPUs, while keeping divides cheap on smaller systems.
 77	 */
 78	curr_boot = ktime_get_boottime_ns() * cpus;
 79	diff_boot = (curr_boot - activity_data->last_boot) >> 16;
 80	diff_used = (curr_used - activity_data->last_used) >> 16;
 81	activity_data->last_boot = curr_boot;
 82	activity_data->last_used = curr_used;
 83
 84	if (diff_boot <= 0 || diff_used < 0)
 85		usage = 0;
 86	else if (diff_used >= diff_boot)
 87		usage = 100;
 88	else
 89		usage = 100 * diff_used / diff_boot;
 90
 91	/*
 92	 * Now we know the total boot_time multiplied by the number of CPUs, and
 93	 * the total idle+wait time for all CPUs. We'll compare how they evolved
 94	 * since last call. The % of overall CPU usage is :
 95	 *
 96	 *      1 - delta_idle / delta_boot
 97	 *
 98	 * What we want is that when the CPU usage is zero, the LED must blink
 99	 * slowly with very faint flashes that are detectable but not disturbing
100	 * (typically 10ms every second, or 10ms ON, 990ms OFF). Then we want
101	 * blinking frequency to increase up to the point where the load is
102	 * enough to saturate one core in multi-core systems or 50% in single
103	 * core systems. At this point it should reach 10 Hz with a 10/90 duty
104	 * cycle (10ms ON, 90ms OFF). After this point, the blinking frequency
105	 * remains stable (10 Hz) and only the duty cycle increases to report
106	 * the activity, up to the point where we have 90ms ON, 10ms OFF when
107	 * all cores are saturated. It's important that the LED never stays in
108	 * a steady state so that it's easy to distinguish an idle or saturated
109	 * machine from a hung one.
110	 *
111	 * This gives us :
112	 *   - a target CPU usage of min(50%, 100%/#CPU) for a 10% duty cycle
113	 *     (10ms ON, 90ms OFF)
114	 *   - below target :
115	 *      ON_ms  = 10
116	 *      OFF_ms = 90 + (1 - usage/target) * 900
117	 *   - above target :
118	 *      ON_ms  = 10 + (usage-target)/(100%-target) * 80
119	 *      OFF_ms = 90 - (usage-target)/(100%-target) * 80
120	 *
121	 * In order to keep a good responsiveness, we cap the sleep time to
122	 * 100 ms and keep track of the sleep time left. This allows us to
123	 * quickly change it if needed.
124	 */
125
126	activity_data->time_left -= 100;
127	if (activity_data->time_left <= 0) {
128		activity_data->time_left = 0;
129		activity_data->state = !activity_data->state;
130		led_set_brightness_nosleep(led_cdev,
131			(activity_data->state ^ activity_data->invert) ?
132			led_cdev->blink_brightness : LED_OFF);
133	}
134
135	target = (cpus > 1) ? (100 / cpus) : 50;
136
137	if (usage < target)
138		delay = activity_data->state ?
139			10 :                        /* ON  */
140			990 - 900 * usage / target; /* OFF */
141	else
142		delay = activity_data->state ?
143			10 + 80 * (usage - target) / (100 - target) : /* ON  */
144			90 - 80 * (usage - target) / (100 - target);  /* OFF */
145
146
147	if (!activity_data->time_left || delay <= activity_data->time_left)
148		activity_data->time_left = delay;
149
150	delay = min_t(int, activity_data->time_left, 100);
151	mod_timer(&activity_data->timer, jiffies + msecs_to_jiffies(delay));
152}
153
154static ssize_t led_invert_show(struct device *dev,
155                               struct device_attribute *attr, char *buf)
156{
157	struct activity_data *activity_data = led_trigger_get_drvdata(dev);
 
158
159	return sprintf(buf, "%u\n", activity_data->invert);
160}
161
162static ssize_t led_invert_store(struct device *dev,
163                                struct device_attribute *attr,
164                                const char *buf, size_t size)
165{
166	struct activity_data *activity_data = led_trigger_get_drvdata(dev);
 
167	unsigned long state;
168	int ret;
169
170	ret = kstrtoul(buf, 0, &state);
171	if (ret)
172		return ret;
173
174	activity_data->invert = !!state;
175
176	return size;
177}
178
179static DEVICE_ATTR(invert, 0644, led_invert_show, led_invert_store);
180
181static struct attribute *activity_led_attrs[] = {
182	&dev_attr_invert.attr,
183	NULL
184};
185ATTRIBUTE_GROUPS(activity_led);
186
187static int activity_activate(struct led_classdev *led_cdev)
188{
189	struct activity_data *activity_data;
 
190
191	activity_data = kzalloc(sizeof(*activity_data), GFP_KERNEL);
192	if (!activity_data)
193		return -ENOMEM;
194
195	led_set_trigger_data(led_cdev, activity_data);
 
 
 
 
 
196
197	activity_data->led_cdev = led_cdev;
198	timer_setup(&activity_data->timer, led_activity_function, 0);
199	if (!led_cdev->blink_brightness)
200		led_cdev->blink_brightness = led_cdev->max_brightness;
201	led_activity_function(&activity_data->timer);
202	set_bit(LED_BLINK_SW, &led_cdev->work_flags);
203
204	return 0;
205}
206
207static void activity_deactivate(struct led_classdev *led_cdev)
208{
209	struct activity_data *activity_data = led_get_trigger_data(led_cdev);
210
211	timer_shutdown_sync(&activity_data->timer);
212	kfree(activity_data);
213	clear_bit(LED_BLINK_SW, &led_cdev->work_flags);
 
 
 
 
214}
215
216static struct led_trigger activity_led_trigger = {
217	.name       = "activity",
218	.activate   = activity_activate,
219	.deactivate = activity_deactivate,
220	.groups     = activity_led_groups,
221};
222
223static int activity_reboot_notifier(struct notifier_block *nb,
224                                    unsigned long code, void *unused)
225{
226	led_trigger_unregister(&activity_led_trigger);
227	return NOTIFY_DONE;
228}
229
230static int activity_panic_notifier(struct notifier_block *nb,
231                                   unsigned long code, void *unused)
232{
233	panic_detected = 1;
234	return NOTIFY_DONE;
235}
236
237static struct notifier_block activity_reboot_nb = {
238	.notifier_call = activity_reboot_notifier,
239};
240
241static struct notifier_block activity_panic_nb = {
242	.notifier_call = activity_panic_notifier,
243};
244
245static int __init activity_init(void)
246{
247	int rc = led_trigger_register(&activity_led_trigger);
248
249	if (!rc) {
250		atomic_notifier_chain_register(&panic_notifier_list,
251					       &activity_panic_nb);
252		register_reboot_notifier(&activity_reboot_nb);
253	}
254	return rc;
255}
256
257static void __exit activity_exit(void)
258{
259	unregister_reboot_notifier(&activity_reboot_nb);
260	atomic_notifier_chain_unregister(&panic_notifier_list,
261					 &activity_panic_nb);
262	led_trigger_unregister(&activity_led_trigger);
263}
264
265module_init(activity_init);
266module_exit(activity_exit);
267
268MODULE_AUTHOR("Willy Tarreau <w@1wt.eu>");
269MODULE_DESCRIPTION("Activity LED trigger");
270MODULE_LICENSE("GPL v2");
v4.17
 
  1/*
  2 * Activity LED trigger
  3 *
  4 * Copyright (C) 2017 Willy Tarreau <w@1wt.eu>
  5 * Partially based on Atsushi Nemoto's ledtrig-heartbeat.c.
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License version 2 as
  9 * published by the Free Software Foundation.
 10 *
 11 */
 
 12#include <linux/init.h>
 13#include <linux/kernel.h>
 14#include <linux/kernel_stat.h>
 15#include <linux/leds.h>
 16#include <linux/module.h>
 
 17#include <linux/reboot.h>
 18#include <linux/sched.h>
 19#include <linux/slab.h>
 20#include <linux/timer.h>
 21#include "../leds.h"
 22
 23static int panic_detected;
 24
 25struct activity_data {
 26	struct timer_list timer;
 27	struct led_classdev *led_cdev;
 28	u64 last_used;
 29	u64 last_boot;
 30	int time_left;
 31	int state;
 32	int invert;
 33};
 34
 35static void led_activity_function(struct timer_list *t)
 36{
 37	struct activity_data *activity_data = from_timer(activity_data, t,
 38							 timer);
 39	struct led_classdev *led_cdev = activity_data->led_cdev;
 40	struct timespec boot_time;
 41	unsigned int target;
 42	unsigned int usage;
 43	int delay;
 44	u64 curr_used;
 45	u64 curr_boot;
 46	s32 diff_used;
 47	s32 diff_boot;
 48	int cpus;
 49	int i;
 50
 51	if (test_and_clear_bit(LED_BLINK_BRIGHTNESS_CHANGE, &led_cdev->work_flags))
 52		led_cdev->blink_brightness = led_cdev->new_blink_brightness;
 53
 54	if (unlikely(panic_detected)) {
 55		/* full brightness in case of panic */
 56		led_set_brightness_nosleep(led_cdev, led_cdev->blink_brightness);
 57		return;
 58	}
 59
 60	get_monotonic_boottime(&boot_time);
 61
 62	cpus = 0;
 63	curr_used = 0;
 64
 65	for_each_possible_cpu(i) {
 66		curr_used += kcpustat_cpu(i).cpustat[CPUTIME_USER]
 67			  +  kcpustat_cpu(i).cpustat[CPUTIME_NICE]
 68			  +  kcpustat_cpu(i).cpustat[CPUTIME_SYSTEM]
 69			  +  kcpustat_cpu(i).cpustat[CPUTIME_SOFTIRQ]
 70			  +  kcpustat_cpu(i).cpustat[CPUTIME_IRQ];
 
 
 
 
 71		cpus++;
 72	}
 73
 74	/* We come here every 100ms in the worst case, so that's 100M ns of
 75	 * cumulated time. By dividing by 2^16, we get the time resolution
 76	 * down to 16us, ensuring we won't overflow 32-bit computations below
 77	 * even up to 3k CPUs, while keeping divides cheap on smaller systems.
 78	 */
 79	curr_boot = timespec_to_ns(&boot_time) * cpus;
 80	diff_boot = (curr_boot - activity_data->last_boot) >> 16;
 81	diff_used = (curr_used - activity_data->last_used) >> 16;
 82	activity_data->last_boot = curr_boot;
 83	activity_data->last_used = curr_used;
 84
 85	if (diff_boot <= 0 || diff_used < 0)
 86		usage = 0;
 87	else if (diff_used >= diff_boot)
 88		usage = 100;
 89	else
 90		usage = 100 * diff_used / diff_boot;
 91
 92	/*
 93	 * Now we know the total boot_time multiplied by the number of CPUs, and
 94	 * the total idle+wait time for all CPUs. We'll compare how they evolved
 95	 * since last call. The % of overall CPU usage is :
 96	 *
 97	 *      1 - delta_idle / delta_boot
 98	 *
 99	 * What we want is that when the CPU usage is zero, the LED must blink
100	 * slowly with very faint flashes that are detectable but not disturbing
101	 * (typically 10ms every second, or 10ms ON, 990ms OFF). Then we want
102	 * blinking frequency to increase up to the point where the load is
103	 * enough to saturate one core in multi-core systems or 50% in single
104	 * core systems. At this point it should reach 10 Hz with a 10/90 duty
105	 * cycle (10ms ON, 90ms OFF). After this point, the blinking frequency
106	 * remains stable (10 Hz) and only the duty cycle increases to report
107	 * the activity, up to the point where we have 90ms ON, 10ms OFF when
108	 * all cores are saturated. It's important that the LED never stays in
109	 * a steady state so that it's easy to distinguish an idle or saturated
110	 * machine from a hung one.
111	 *
112	 * This gives us :
113	 *   - a target CPU usage of min(50%, 100%/#CPU) for a 10% duty cycle
114	 *     (10ms ON, 90ms OFF)
115	 *   - below target :
116	 *      ON_ms  = 10
117	 *      OFF_ms = 90 + (1 - usage/target) * 900
118	 *   - above target :
119	 *      ON_ms  = 10 + (usage-target)/(100%-target) * 80
120	 *      OFF_ms = 90 - (usage-target)/(100%-target) * 80
121	 *
122	 * In order to keep a good responsiveness, we cap the sleep time to
123	 * 100 ms and keep track of the sleep time left. This allows us to
124	 * quickly change it if needed.
125	 */
126
127	activity_data->time_left -= 100;
128	if (activity_data->time_left <= 0) {
129		activity_data->time_left = 0;
130		activity_data->state = !activity_data->state;
131		led_set_brightness_nosleep(led_cdev,
132			(activity_data->state ^ activity_data->invert) ?
133			led_cdev->blink_brightness : LED_OFF);
134	}
135
136	target = (cpus > 1) ? (100 / cpus) : 50;
137
138	if (usage < target)
139		delay = activity_data->state ?
140			10 :                        /* ON  */
141			990 - 900 * usage / target; /* OFF */
142	else
143		delay = activity_data->state ?
144			10 + 80 * (usage - target) / (100 - target) : /* ON  */
145			90 - 80 * (usage - target) / (100 - target);  /* OFF */
146
147
148	if (!activity_data->time_left || delay <= activity_data->time_left)
149		activity_data->time_left = delay;
150
151	delay = min_t(int, activity_data->time_left, 100);
152	mod_timer(&activity_data->timer, jiffies + msecs_to_jiffies(delay));
153}
154
155static ssize_t led_invert_show(struct device *dev,
156                               struct device_attribute *attr, char *buf)
157{
158	struct led_classdev *led_cdev = dev_get_drvdata(dev);
159	struct activity_data *activity_data = led_cdev->trigger_data;
160
161	return sprintf(buf, "%u\n", activity_data->invert);
162}
163
164static ssize_t led_invert_store(struct device *dev,
165                                struct device_attribute *attr,
166                                const char *buf, size_t size)
167{
168	struct led_classdev *led_cdev = dev_get_drvdata(dev);
169	struct activity_data *activity_data = led_cdev->trigger_data;
170	unsigned long state;
171	int ret;
172
173	ret = kstrtoul(buf, 0, &state);
174	if (ret)
175		return ret;
176
177	activity_data->invert = !!state;
178
179	return size;
180}
181
182static DEVICE_ATTR(invert, 0644, led_invert_show, led_invert_store);
183
184static void activity_activate(struct led_classdev *led_cdev)
 
 
 
 
 
 
185{
186	struct activity_data *activity_data;
187	int rc;
188
189	activity_data = kzalloc(sizeof(*activity_data), GFP_KERNEL);
190	if (!activity_data)
191		return;
192
193	led_cdev->trigger_data = activity_data;
194	rc = device_create_file(led_cdev->dev, &dev_attr_invert);
195	if (rc) {
196		kfree(led_cdev->trigger_data);
197		return;
198	}
199
200	activity_data->led_cdev = led_cdev;
201	timer_setup(&activity_data->timer, led_activity_function, 0);
202	if (!led_cdev->blink_brightness)
203		led_cdev->blink_brightness = led_cdev->max_brightness;
204	led_activity_function(&activity_data->timer);
205	set_bit(LED_BLINK_SW, &led_cdev->work_flags);
206	led_cdev->activated = true;
 
207}
208
209static void activity_deactivate(struct led_classdev *led_cdev)
210{
211	struct activity_data *activity_data = led_cdev->trigger_data;
212
213	if (led_cdev->activated) {
214		del_timer_sync(&activity_data->timer);
215		device_remove_file(led_cdev->dev, &dev_attr_invert);
216		kfree(activity_data);
217		clear_bit(LED_BLINK_SW, &led_cdev->work_flags);
218		led_cdev->activated = false;
219	}
220}
221
222static struct led_trigger activity_led_trigger = {
223	.name       = "activity",
224	.activate   = activity_activate,
225	.deactivate = activity_deactivate,
 
226};
227
228static int activity_reboot_notifier(struct notifier_block *nb,
229                                    unsigned long code, void *unused)
230{
231	led_trigger_unregister(&activity_led_trigger);
232	return NOTIFY_DONE;
233}
234
235static int activity_panic_notifier(struct notifier_block *nb,
236                                   unsigned long code, void *unused)
237{
238	panic_detected = 1;
239	return NOTIFY_DONE;
240}
241
242static struct notifier_block activity_reboot_nb = {
243	.notifier_call = activity_reboot_notifier,
244};
245
246static struct notifier_block activity_panic_nb = {
247	.notifier_call = activity_panic_notifier,
248};
249
250static int __init activity_init(void)
251{
252	int rc = led_trigger_register(&activity_led_trigger);
253
254	if (!rc) {
255		atomic_notifier_chain_register(&panic_notifier_list,
256					       &activity_panic_nb);
257		register_reboot_notifier(&activity_reboot_nb);
258	}
259	return rc;
260}
261
262static void __exit activity_exit(void)
263{
264	unregister_reboot_notifier(&activity_reboot_nb);
265	atomic_notifier_chain_unregister(&panic_notifier_list,
266					 &activity_panic_nb);
267	led_trigger_unregister(&activity_led_trigger);
268}
269
270module_init(activity_init);
271module_exit(activity_exit);
272
273MODULE_AUTHOR("Willy Tarreau <w@1wt.eu>");
274MODULE_DESCRIPTION("Activity LED trigger");
275MODULE_LICENSE("GPL");