Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * The input core
   4 *
   5 * Copyright (c) 1999-2002 Vojtech Pavlik
   6 */
   7
 
 
 
 
 
   8
   9#define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
  10
  11#include <linux/init.h>
  12#include <linux/types.h>
  13#include <linux/idr.h>
  14#include <linux/input/mt.h>
  15#include <linux/module.h>
  16#include <linux/slab.h>
  17#include <linux/random.h>
  18#include <linux/major.h>
  19#include <linux/proc_fs.h>
  20#include <linux/sched.h>
  21#include <linux/seq_file.h>
  22#include <linux/poll.h>
  23#include <linux/device.h>
  24#include <linux/kstrtox.h>
  25#include <linux/mutex.h>
  26#include <linux/rcupdate.h>
  27#include "input-compat.h"
  28#include "input-core-private.h"
  29#include "input-poller.h"
  30
  31MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
  32MODULE_DESCRIPTION("Input core");
  33MODULE_LICENSE("GPL");
  34
  35#define INPUT_MAX_CHAR_DEVICES		1024
  36#define INPUT_FIRST_DYNAMIC_DEV		256
  37static DEFINE_IDA(input_ida);
  38
  39static LIST_HEAD(input_dev_list);
  40static LIST_HEAD(input_handler_list);
  41
  42/*
  43 * input_mutex protects access to both input_dev_list and input_handler_list.
  44 * This also causes input_[un]register_device and input_[un]register_handler
  45 * be mutually exclusive which simplifies locking in drivers implementing
  46 * input handlers.
  47 */
  48static DEFINE_MUTEX(input_mutex);
  49
  50static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
  51
  52static const unsigned int input_max_code[EV_CNT] = {
  53	[EV_KEY] = KEY_MAX,
  54	[EV_REL] = REL_MAX,
  55	[EV_ABS] = ABS_MAX,
  56	[EV_MSC] = MSC_MAX,
  57	[EV_SW] = SW_MAX,
  58	[EV_LED] = LED_MAX,
  59	[EV_SND] = SND_MAX,
  60	[EV_FF] = FF_MAX,
  61};
  62
  63static inline int is_event_supported(unsigned int code,
  64				     unsigned long *bm, unsigned int max)
  65{
  66	return code <= max && test_bit(code, bm);
  67}
  68
  69static int input_defuzz_abs_event(int value, int old_val, int fuzz)
  70{
  71	if (fuzz) {
  72		if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
  73			return old_val;
  74
  75		if (value > old_val - fuzz && value < old_val + fuzz)
  76			return (old_val * 3 + value) / 4;
  77
  78		if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
  79			return (old_val + value) / 2;
  80	}
  81
  82	return value;
  83}
  84
  85static void input_start_autorepeat(struct input_dev *dev, int code)
  86{
  87	if (test_bit(EV_REP, dev->evbit) &&
  88	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
  89	    dev->timer.function) {
  90		dev->repeat_key = code;
  91		mod_timer(&dev->timer,
  92			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
  93	}
  94}
  95
  96static void input_stop_autorepeat(struct input_dev *dev)
  97{
  98	del_timer(&dev->timer);
  99}
 100
 101/*
 102 * Pass event first through all filters and then, if event has not been
 103 * filtered out, through all open handles. This function is called with
 104 * dev->event_lock held and interrupts disabled.
 105 */
 106static unsigned int input_to_handler(struct input_handle *handle,
 107			struct input_value *vals, unsigned int count)
 108{
 109	struct input_handler *handler = handle->handler;
 110	struct input_value *end = vals;
 111	struct input_value *v;
 112
 113	if (handler->filter) {
 114		for (v = vals; v != vals + count; v++) {
 115			if (handler->filter(handle, v->type, v->code, v->value))
 116				continue;
 117			if (end != v)
 118				*end = *v;
 119			end++;
 120		}
 121		count = end - vals;
 122	}
 123
 124	if (!count)
 125		return 0;
 126
 127	if (handler->events)
 128		handler->events(handle, vals, count);
 129	else if (handler->event)
 130		for (v = vals; v != vals + count; v++)
 131			handler->event(handle, v->type, v->code, v->value);
 132
 133	return count;
 134}
 135
 136/*
 137 * Pass values first through all filters and then, if event has not been
 138 * filtered out, through all open handles. This function is called with
 139 * dev->event_lock held and interrupts disabled.
 140 */
 141static void input_pass_values(struct input_dev *dev,
 142			      struct input_value *vals, unsigned int count)
 143{
 144	struct input_handle *handle;
 145	struct input_value *v;
 146
 147	lockdep_assert_held(&dev->event_lock);
 148
 149	if (!count)
 150		return;
 151
 152	rcu_read_lock();
 153
 154	handle = rcu_dereference(dev->grab);
 155	if (handle) {
 156		count = input_to_handler(handle, vals, count);
 157	} else {
 158		list_for_each_entry_rcu(handle, &dev->h_list, d_node)
 159			if (handle->open) {
 160				count = input_to_handler(handle, vals, count);
 161				if (!count)
 162					break;
 163			}
 164	}
 165
 166	rcu_read_unlock();
 167
 168	/* trigger auto repeat for key events */
 169	if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
 170		for (v = vals; v != vals + count; v++) {
 171			if (v->type == EV_KEY && v->value != 2) {
 172				if (v->value)
 173					input_start_autorepeat(dev, v->code);
 174				else
 175					input_stop_autorepeat(dev);
 176			}
 177		}
 178	}
 179}
 180
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 181#define INPUT_IGNORE_EVENT	0
 182#define INPUT_PASS_TO_HANDLERS	1
 183#define INPUT_PASS_TO_DEVICE	2
 184#define INPUT_SLOT		4
 185#define INPUT_FLUSH		8
 186#define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
 187
 188static int input_handle_abs_event(struct input_dev *dev,
 189				  unsigned int code, int *pval)
 190{
 191	struct input_mt *mt = dev->mt;
 192	bool is_mt_event;
 193	int *pold;
 194
 195	if (code == ABS_MT_SLOT) {
 196		/*
 197		 * "Stage" the event; we'll flush it later, when we
 198		 * get actual touch data.
 199		 */
 200		if (mt && *pval >= 0 && *pval < mt->num_slots)
 201			mt->slot = *pval;
 202
 203		return INPUT_IGNORE_EVENT;
 204	}
 205
 206	is_mt_event = input_is_mt_value(code);
 207
 208	if (!is_mt_event) {
 209		pold = &dev->absinfo[code].value;
 210	} else if (mt) {
 211		pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
 212	} else {
 213		/*
 214		 * Bypass filtering for multi-touch events when
 215		 * not employing slots.
 216		 */
 217		pold = NULL;
 218	}
 219
 220	if (pold) {
 221		*pval = input_defuzz_abs_event(*pval, *pold,
 222						dev->absinfo[code].fuzz);
 223		if (*pold == *pval)
 224			return INPUT_IGNORE_EVENT;
 225
 226		*pold = *pval;
 227	}
 228
 229	/* Flush pending "slot" event */
 230	if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
 231		input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
 232		return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
 233	}
 234
 235	return INPUT_PASS_TO_HANDLERS;
 236}
 237
 238static int input_get_disposition(struct input_dev *dev,
 239			  unsigned int type, unsigned int code, int *pval)
 240{
 241	int disposition = INPUT_IGNORE_EVENT;
 242	int value = *pval;
 243
 244	/* filter-out events from inhibited devices */
 245	if (dev->inhibited)
 246		return INPUT_IGNORE_EVENT;
 247
 248	switch (type) {
 249
 250	case EV_SYN:
 251		switch (code) {
 252		case SYN_CONFIG:
 253			disposition = INPUT_PASS_TO_ALL;
 254			break;
 255
 256		case SYN_REPORT:
 257			disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
 258			break;
 259		case SYN_MT_REPORT:
 260			disposition = INPUT_PASS_TO_HANDLERS;
 261			break;
 262		}
 263		break;
 264
 265	case EV_KEY:
 266		if (is_event_supported(code, dev->keybit, KEY_MAX)) {
 267
 268			/* auto-repeat bypasses state updates */
 269			if (value == 2) {
 270				disposition = INPUT_PASS_TO_HANDLERS;
 271				break;
 272			}
 273
 274			if (!!test_bit(code, dev->key) != !!value) {
 275
 276				__change_bit(code, dev->key);
 277				disposition = INPUT_PASS_TO_HANDLERS;
 278			}
 279		}
 280		break;
 281
 282	case EV_SW:
 283		if (is_event_supported(code, dev->swbit, SW_MAX) &&
 284		    !!test_bit(code, dev->sw) != !!value) {
 285
 286			__change_bit(code, dev->sw);
 287			disposition = INPUT_PASS_TO_HANDLERS;
 288		}
 289		break;
 290
 291	case EV_ABS:
 292		if (is_event_supported(code, dev->absbit, ABS_MAX))
 293			disposition = input_handle_abs_event(dev, code, &value);
 294
 295		break;
 296
 297	case EV_REL:
 298		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
 299			disposition = INPUT_PASS_TO_HANDLERS;
 300
 301		break;
 302
 303	case EV_MSC:
 304		if (is_event_supported(code, dev->mscbit, MSC_MAX))
 305			disposition = INPUT_PASS_TO_ALL;
 306
 307		break;
 308
 309	case EV_LED:
 310		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
 311		    !!test_bit(code, dev->led) != !!value) {
 312
 313			__change_bit(code, dev->led);
 314			disposition = INPUT_PASS_TO_ALL;
 315		}
 316		break;
 317
 318	case EV_SND:
 319		if (is_event_supported(code, dev->sndbit, SND_MAX)) {
 320
 321			if (!!test_bit(code, dev->snd) != !!value)
 322				__change_bit(code, dev->snd);
 323			disposition = INPUT_PASS_TO_ALL;
 324		}
 325		break;
 326
 327	case EV_REP:
 328		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
 329			dev->rep[code] = value;
 330			disposition = INPUT_PASS_TO_ALL;
 331		}
 332		break;
 333
 334	case EV_FF:
 335		if (value >= 0)
 336			disposition = INPUT_PASS_TO_ALL;
 337		break;
 338
 339	case EV_PWR:
 340		disposition = INPUT_PASS_TO_ALL;
 341		break;
 342	}
 343
 344	*pval = value;
 345	return disposition;
 346}
 347
 348static void input_event_dispose(struct input_dev *dev, int disposition,
 349				unsigned int type, unsigned int code, int value)
 350{
 
 
 
 
 
 351	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
 352		dev->event(dev, type, code, value);
 353
 354	if (!dev->vals)
 355		return;
 356
 357	if (disposition & INPUT_PASS_TO_HANDLERS) {
 358		struct input_value *v;
 359
 360		if (disposition & INPUT_SLOT) {
 361			v = &dev->vals[dev->num_vals++];
 362			v->type = EV_ABS;
 363			v->code = ABS_MT_SLOT;
 364			v->value = dev->mt->slot;
 365		}
 366
 367		v = &dev->vals[dev->num_vals++];
 368		v->type = type;
 369		v->code = code;
 370		v->value = value;
 371	}
 372
 373	if (disposition & INPUT_FLUSH) {
 374		if (dev->num_vals >= 2)
 375			input_pass_values(dev, dev->vals, dev->num_vals);
 376		dev->num_vals = 0;
 377		/*
 378		 * Reset the timestamp on flush so we won't end up
 379		 * with a stale one. Note we only need to reset the
 380		 * monolithic one as we use its presence when deciding
 381		 * whether to generate a synthetic timestamp.
 382		 */
 383		dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
 384	} else if (dev->num_vals >= dev->max_vals - 2) {
 385		dev->vals[dev->num_vals++] = input_value_sync;
 386		input_pass_values(dev, dev->vals, dev->num_vals);
 387		dev->num_vals = 0;
 388	}
 389}
 390
 391void input_handle_event(struct input_dev *dev,
 392			unsigned int type, unsigned int code, int value)
 393{
 394	int disposition;
 395
 396	lockdep_assert_held(&dev->event_lock);
 397
 398	disposition = input_get_disposition(dev, type, code, &value);
 399	if (disposition != INPUT_IGNORE_EVENT) {
 400		if (type != EV_SYN)
 401			add_input_randomness(type, code, value);
 402
 403		input_event_dispose(dev, disposition, type, code, value);
 404	}
 405}
 406
 407/**
 408 * input_event() - report new input event
 409 * @dev: device that generated the event
 410 * @type: type of the event
 411 * @code: event code
 412 * @value: value of the event
 413 *
 414 * This function should be used by drivers implementing various input
 415 * devices to report input events. See also input_inject_event().
 416 *
 417 * NOTE: input_event() may be safely used right after input device was
 418 * allocated with input_allocate_device(), even before it is registered
 419 * with input_register_device(), but the event will not reach any of the
 420 * input handlers. Such early invocation of input_event() may be used
 421 * to 'seed' initial state of a switch or initial position of absolute
 422 * axis, etc.
 423 */
 424void input_event(struct input_dev *dev,
 425		 unsigned int type, unsigned int code, int value)
 426{
 427	unsigned long flags;
 428
 429	if (is_event_supported(type, dev->evbit, EV_MAX)) {
 430
 431		spin_lock_irqsave(&dev->event_lock, flags);
 432		input_handle_event(dev, type, code, value);
 433		spin_unlock_irqrestore(&dev->event_lock, flags);
 434	}
 435}
 436EXPORT_SYMBOL(input_event);
 437
 438/**
 439 * input_inject_event() - send input event from input handler
 440 * @handle: input handle to send event through
 441 * @type: type of the event
 442 * @code: event code
 443 * @value: value of the event
 444 *
 445 * Similar to input_event() but will ignore event if device is
 446 * "grabbed" and handle injecting event is not the one that owns
 447 * the device.
 448 */
 449void input_inject_event(struct input_handle *handle,
 450			unsigned int type, unsigned int code, int value)
 451{
 452	struct input_dev *dev = handle->dev;
 453	struct input_handle *grab;
 454	unsigned long flags;
 455
 456	if (is_event_supported(type, dev->evbit, EV_MAX)) {
 457		spin_lock_irqsave(&dev->event_lock, flags);
 458
 459		rcu_read_lock();
 460		grab = rcu_dereference(dev->grab);
 461		if (!grab || grab == handle)
 462			input_handle_event(dev, type, code, value);
 463		rcu_read_unlock();
 464
 465		spin_unlock_irqrestore(&dev->event_lock, flags);
 466	}
 467}
 468EXPORT_SYMBOL(input_inject_event);
 469
 470/**
 471 * input_alloc_absinfo - allocates array of input_absinfo structs
 472 * @dev: the input device emitting absolute events
 473 *
 474 * If the absinfo struct the caller asked for is already allocated, this
 475 * functions will not do anything.
 476 */
 477void input_alloc_absinfo(struct input_dev *dev)
 478{
 479	if (dev->absinfo)
 480		return;
 
 481
 482	dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
 483	if (!dev->absinfo) {
 484		dev_err(dev->dev.parent ?: &dev->dev,
 485			"%s: unable to allocate memory\n", __func__);
 486		/*
 487		 * We will handle this allocation failure in
 488		 * input_register_device() when we refuse to register input
 489		 * device with ABS bits but without absinfo.
 490		 */
 491	}
 492}
 493EXPORT_SYMBOL(input_alloc_absinfo);
 494
 495void input_set_abs_params(struct input_dev *dev, unsigned int axis,
 496			  int min, int max, int fuzz, int flat)
 497{
 498	struct input_absinfo *absinfo;
 499
 500	__set_bit(EV_ABS, dev->evbit);
 501	__set_bit(axis, dev->absbit);
 502
 503	input_alloc_absinfo(dev);
 504	if (!dev->absinfo)
 505		return;
 506
 507	absinfo = &dev->absinfo[axis];
 508	absinfo->minimum = min;
 509	absinfo->maximum = max;
 510	absinfo->fuzz = fuzz;
 511	absinfo->flat = flat;
 
 
 
 512}
 513EXPORT_SYMBOL(input_set_abs_params);
 514
 515/**
 516 * input_copy_abs - Copy absinfo from one input_dev to another
 517 * @dst: Destination input device to copy the abs settings to
 518 * @dst_axis: ABS_* value selecting the destination axis
 519 * @src: Source input device to copy the abs settings from
 520 * @src_axis: ABS_* value selecting the source axis
 521 *
 522 * Set absinfo for the selected destination axis by copying it from
 523 * the specified source input device's source axis.
 524 * This is useful to e.g. setup a pen/stylus input-device for combined
 525 * touchscreen/pen hardware where the pen uses the same coordinates as
 526 * the touchscreen.
 527 */
 528void input_copy_abs(struct input_dev *dst, unsigned int dst_axis,
 529		    const struct input_dev *src, unsigned int src_axis)
 530{
 531	/* src must have EV_ABS and src_axis set */
 532	if (WARN_ON(!(test_bit(EV_ABS, src->evbit) &&
 533		      test_bit(src_axis, src->absbit))))
 534		return;
 535
 536	/*
 537	 * input_alloc_absinfo() may have failed for the source. Our caller is
 538	 * expected to catch this when registering the input devices, which may
 539	 * happen after the input_copy_abs() call.
 540	 */
 541	if (!src->absinfo)
 542		return;
 543
 544	input_set_capability(dst, EV_ABS, dst_axis);
 545	if (!dst->absinfo)
 546		return;
 547
 548	dst->absinfo[dst_axis] = src->absinfo[src_axis];
 549}
 550EXPORT_SYMBOL(input_copy_abs);
 551
 552/**
 553 * input_grab_device - grabs device for exclusive use
 554 * @handle: input handle that wants to own the device
 555 *
 556 * When a device is grabbed by an input handle all events generated by
 557 * the device are delivered only to this handle. Also events injected
 558 * by other input handles are ignored while device is grabbed.
 559 */
 560int input_grab_device(struct input_handle *handle)
 561{
 562	struct input_dev *dev = handle->dev;
 563	int retval;
 564
 565	retval = mutex_lock_interruptible(&dev->mutex);
 566	if (retval)
 567		return retval;
 568
 569	if (dev->grab) {
 570		retval = -EBUSY;
 571		goto out;
 572	}
 573
 574	rcu_assign_pointer(dev->grab, handle);
 575
 576 out:
 577	mutex_unlock(&dev->mutex);
 578	return retval;
 579}
 580EXPORT_SYMBOL(input_grab_device);
 581
 582static void __input_release_device(struct input_handle *handle)
 583{
 584	struct input_dev *dev = handle->dev;
 585	struct input_handle *grabber;
 586
 587	grabber = rcu_dereference_protected(dev->grab,
 588					    lockdep_is_held(&dev->mutex));
 589	if (grabber == handle) {
 590		rcu_assign_pointer(dev->grab, NULL);
 591		/* Make sure input_pass_values() notices that grab is gone */
 592		synchronize_rcu();
 593
 594		list_for_each_entry(handle, &dev->h_list, d_node)
 595			if (handle->open && handle->handler->start)
 596				handle->handler->start(handle);
 597	}
 598}
 599
 600/**
 601 * input_release_device - release previously grabbed device
 602 * @handle: input handle that owns the device
 603 *
 604 * Releases previously grabbed device so that other input handles can
 605 * start receiving input events. Upon release all handlers attached
 606 * to the device have their start() method called so they have a change
 607 * to synchronize device state with the rest of the system.
 608 */
 609void input_release_device(struct input_handle *handle)
 610{
 611	struct input_dev *dev = handle->dev;
 612
 613	mutex_lock(&dev->mutex);
 614	__input_release_device(handle);
 615	mutex_unlock(&dev->mutex);
 616}
 617EXPORT_SYMBOL(input_release_device);
 618
 619/**
 620 * input_open_device - open input device
 621 * @handle: handle through which device is being accessed
 622 *
 623 * This function should be called by input handlers when they
 624 * want to start receive events from given input device.
 625 */
 626int input_open_device(struct input_handle *handle)
 627{
 628	struct input_dev *dev = handle->dev;
 629	int retval;
 630
 631	retval = mutex_lock_interruptible(&dev->mutex);
 632	if (retval)
 633		return retval;
 634
 635	if (dev->going_away) {
 636		retval = -ENODEV;
 637		goto out;
 638	}
 639
 640	handle->open++;
 641
 642	if (dev->users++ || dev->inhibited) {
 643		/*
 644		 * Device is already opened and/or inhibited,
 645		 * so we can exit immediately and report success.
 646		 */
 647		goto out;
 648	}
 649
 650	if (dev->open) {
 651		retval = dev->open(dev);
 652		if (retval) {
 653			dev->users--;
 654			handle->open--;
 
 655			/*
 656			 * Make sure we are not delivering any more events
 657			 * through this handle
 658			 */
 659			synchronize_rcu();
 660			goto out;
 661		}
 662	}
 663
 664	if (dev->poller)
 665		input_dev_poller_start(dev->poller);
 666
 667 out:
 668	mutex_unlock(&dev->mutex);
 669	return retval;
 670}
 671EXPORT_SYMBOL(input_open_device);
 672
 673int input_flush_device(struct input_handle *handle, struct file *file)
 674{
 675	struct input_dev *dev = handle->dev;
 676	int retval;
 677
 678	retval = mutex_lock_interruptible(&dev->mutex);
 679	if (retval)
 680		return retval;
 681
 682	if (dev->flush)
 683		retval = dev->flush(dev, file);
 684
 685	mutex_unlock(&dev->mutex);
 686	return retval;
 687}
 688EXPORT_SYMBOL(input_flush_device);
 689
 690/**
 691 * input_close_device - close input device
 692 * @handle: handle through which device is being accessed
 693 *
 694 * This function should be called by input handlers when they
 695 * want to stop receive events from given input device.
 696 */
 697void input_close_device(struct input_handle *handle)
 698{
 699	struct input_dev *dev = handle->dev;
 700
 701	mutex_lock(&dev->mutex);
 702
 703	__input_release_device(handle);
 704
 705	if (!dev->inhibited && !--dev->users) {
 706		if (dev->poller)
 707			input_dev_poller_stop(dev->poller);
 708		if (dev->close)
 709			dev->close(dev);
 710	}
 711
 712	if (!--handle->open) {
 713		/*
 714		 * synchronize_rcu() makes sure that input_pass_values()
 715		 * completed and that no more input events are delivered
 716		 * through this handle
 717		 */
 718		synchronize_rcu();
 719	}
 720
 721	mutex_unlock(&dev->mutex);
 722}
 723EXPORT_SYMBOL(input_close_device);
 724
 725/*
 726 * Simulate keyup events for all keys that are marked as pressed.
 727 * The function must be called with dev->event_lock held.
 728 */
 729static bool input_dev_release_keys(struct input_dev *dev)
 730{
 731	bool need_sync = false;
 732	int code;
 733
 734	lockdep_assert_held(&dev->event_lock);
 735
 736	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
 737		for_each_set_bit(code, dev->key, KEY_CNT) {
 738			input_handle_event(dev, EV_KEY, code, 0);
 739			need_sync = true;
 740		}
 741	}
 742
 743	return need_sync;
 
 
 
 
 744}
 745
 746/*
 747 * Prepare device for unregistering
 748 */
 749static void input_disconnect_device(struct input_dev *dev)
 750{
 751	struct input_handle *handle;
 752
 753	/*
 754	 * Mark device as going away. Note that we take dev->mutex here
 755	 * not to protect access to dev->going_away but rather to ensure
 756	 * that there are no threads in the middle of input_open_device()
 757	 */
 758	mutex_lock(&dev->mutex);
 759	dev->going_away = true;
 760	mutex_unlock(&dev->mutex);
 761
 762	spin_lock_irq(&dev->event_lock);
 763
 764	/*
 765	 * Simulate keyup events for all pressed keys so that handlers
 766	 * are not left with "stuck" keys. The driver may continue
 767	 * generate events even after we done here but they will not
 768	 * reach any handlers.
 769	 */
 770	if (input_dev_release_keys(dev))
 771		input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
 772
 773	list_for_each_entry(handle, &dev->h_list, d_node)
 774		handle->open = 0;
 775
 776	spin_unlock_irq(&dev->event_lock);
 777}
 778
 779/**
 780 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
 781 * @ke: keymap entry containing scancode to be converted.
 782 * @scancode: pointer to the location where converted scancode should
 783 *	be stored.
 784 *
 785 * This function is used to convert scancode stored in &struct keymap_entry
 786 * into scalar form understood by legacy keymap handling methods. These
 787 * methods expect scancodes to be represented as 'unsigned int'.
 788 */
 789int input_scancode_to_scalar(const struct input_keymap_entry *ke,
 790			     unsigned int *scancode)
 791{
 792	switch (ke->len) {
 793	case 1:
 794		*scancode = *((u8 *)ke->scancode);
 795		break;
 796
 797	case 2:
 798		*scancode = *((u16 *)ke->scancode);
 799		break;
 800
 801	case 4:
 802		*scancode = *((u32 *)ke->scancode);
 803		break;
 804
 805	default:
 806		return -EINVAL;
 807	}
 808
 809	return 0;
 810}
 811EXPORT_SYMBOL(input_scancode_to_scalar);
 812
 813/*
 814 * Those routines handle the default case where no [gs]etkeycode() is
 815 * defined. In this case, an array indexed by the scancode is used.
 816 */
 817
 818static unsigned int input_fetch_keycode(struct input_dev *dev,
 819					unsigned int index)
 820{
 821	switch (dev->keycodesize) {
 822	case 1:
 823		return ((u8 *)dev->keycode)[index];
 824
 825	case 2:
 826		return ((u16 *)dev->keycode)[index];
 827
 828	default:
 829		return ((u32 *)dev->keycode)[index];
 830	}
 831}
 832
 833static int input_default_getkeycode(struct input_dev *dev,
 834				    struct input_keymap_entry *ke)
 835{
 836	unsigned int index;
 837	int error;
 838
 839	if (!dev->keycodesize)
 840		return -EINVAL;
 841
 842	if (ke->flags & INPUT_KEYMAP_BY_INDEX)
 843		index = ke->index;
 844	else {
 845		error = input_scancode_to_scalar(ke, &index);
 846		if (error)
 847			return error;
 848	}
 849
 850	if (index >= dev->keycodemax)
 851		return -EINVAL;
 852
 853	ke->keycode = input_fetch_keycode(dev, index);
 854	ke->index = index;
 855	ke->len = sizeof(index);
 856	memcpy(ke->scancode, &index, sizeof(index));
 857
 858	return 0;
 859}
 860
 861static int input_default_setkeycode(struct input_dev *dev,
 862				    const struct input_keymap_entry *ke,
 863				    unsigned int *old_keycode)
 864{
 865	unsigned int index;
 866	int error;
 867	int i;
 868
 869	if (!dev->keycodesize)
 870		return -EINVAL;
 871
 872	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
 873		index = ke->index;
 874	} else {
 875		error = input_scancode_to_scalar(ke, &index);
 876		if (error)
 877			return error;
 878	}
 879
 880	if (index >= dev->keycodemax)
 881		return -EINVAL;
 882
 883	if (dev->keycodesize < sizeof(ke->keycode) &&
 884			(ke->keycode >> (dev->keycodesize * 8)))
 885		return -EINVAL;
 886
 887	switch (dev->keycodesize) {
 888		case 1: {
 889			u8 *k = (u8 *)dev->keycode;
 890			*old_keycode = k[index];
 891			k[index] = ke->keycode;
 892			break;
 893		}
 894		case 2: {
 895			u16 *k = (u16 *)dev->keycode;
 896			*old_keycode = k[index];
 897			k[index] = ke->keycode;
 898			break;
 899		}
 900		default: {
 901			u32 *k = (u32 *)dev->keycode;
 902			*old_keycode = k[index];
 903			k[index] = ke->keycode;
 904			break;
 905		}
 906	}
 907
 908	if (*old_keycode <= KEY_MAX) {
 909		__clear_bit(*old_keycode, dev->keybit);
 910		for (i = 0; i < dev->keycodemax; i++) {
 911			if (input_fetch_keycode(dev, i) == *old_keycode) {
 912				__set_bit(*old_keycode, dev->keybit);
 913				/* Setting the bit twice is useless, so break */
 914				break;
 915			}
 916		}
 917	}
 918
 919	__set_bit(ke->keycode, dev->keybit);
 920	return 0;
 921}
 922
 923/**
 924 * input_get_keycode - retrieve keycode currently mapped to a given scancode
 925 * @dev: input device which keymap is being queried
 926 * @ke: keymap entry
 927 *
 928 * This function should be called by anyone interested in retrieving current
 929 * keymap. Presently evdev handlers use it.
 930 */
 931int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
 932{
 933	unsigned long flags;
 934	int retval;
 935
 936	spin_lock_irqsave(&dev->event_lock, flags);
 937	retval = dev->getkeycode(dev, ke);
 938	spin_unlock_irqrestore(&dev->event_lock, flags);
 939
 940	return retval;
 941}
 942EXPORT_SYMBOL(input_get_keycode);
 943
 944/**
 945 * input_set_keycode - attribute a keycode to a given scancode
 946 * @dev: input device which keymap is being updated
 947 * @ke: new keymap entry
 948 *
 949 * This function should be called by anyone needing to update current
 950 * keymap. Presently keyboard and evdev handlers use it.
 951 */
 952int input_set_keycode(struct input_dev *dev,
 953		      const struct input_keymap_entry *ke)
 954{
 955	unsigned long flags;
 956	unsigned int old_keycode;
 957	int retval;
 958
 959	if (ke->keycode > KEY_MAX)
 960		return -EINVAL;
 961
 962	spin_lock_irqsave(&dev->event_lock, flags);
 963
 964	retval = dev->setkeycode(dev, ke, &old_keycode);
 965	if (retval)
 966		goto out;
 967
 968	/* Make sure KEY_RESERVED did not get enabled. */
 969	__clear_bit(KEY_RESERVED, dev->keybit);
 970
 971	/*
 972	 * Simulate keyup event if keycode is not present
 973	 * in the keymap anymore
 974	 */
 975	if (old_keycode > KEY_MAX) {
 976		dev_warn(dev->dev.parent ?: &dev->dev,
 977			 "%s: got too big old keycode %#x\n",
 978			 __func__, old_keycode);
 979	} else if (test_bit(EV_KEY, dev->evbit) &&
 980		   !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
 981		   __test_and_clear_bit(old_keycode, dev->key)) {
 982		/*
 983		 * We have to use input_event_dispose() here directly instead
 984		 * of input_handle_event() because the key we want to release
 985		 * here is considered no longer supported by the device and
 986		 * input_handle_event() will ignore it.
 987		 */
 988		input_event_dispose(dev, INPUT_PASS_TO_HANDLERS,
 989				    EV_KEY, old_keycode, 0);
 990		input_event_dispose(dev, INPUT_PASS_TO_HANDLERS | INPUT_FLUSH,
 991				    EV_SYN, SYN_REPORT, 1);
 992	}
 993
 994 out:
 995	spin_unlock_irqrestore(&dev->event_lock, flags);
 996
 997	return retval;
 998}
 999EXPORT_SYMBOL(input_set_keycode);
1000
1001bool input_match_device_id(const struct input_dev *dev,
1002			   const struct input_device_id *id)
1003{
1004	if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
1005		if (id->bustype != dev->id.bustype)
1006			return false;
1007
1008	if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
1009		if (id->vendor != dev->id.vendor)
1010			return false;
1011
1012	if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
1013		if (id->product != dev->id.product)
1014			return false;
1015
1016	if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
1017		if (id->version != dev->id.version)
1018			return false;
1019
1020	if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
1021	    !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
1022	    !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
1023	    !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
1024	    !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
1025	    !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
1026	    !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
1027	    !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
1028	    !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
1029	    !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
1030		return false;
1031	}
1032
1033	return true;
1034}
1035EXPORT_SYMBOL(input_match_device_id);
1036
1037static const struct input_device_id *input_match_device(struct input_handler *handler,
1038							struct input_dev *dev)
1039{
1040	const struct input_device_id *id;
1041
1042	for (id = handler->id_table; id->flags || id->driver_info; id++) {
1043		if (input_match_device_id(dev, id) &&
1044		    (!handler->match || handler->match(handler, dev))) {
1045			return id;
1046		}
1047	}
1048
1049	return NULL;
1050}
1051
1052static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
1053{
1054	const struct input_device_id *id;
1055	int error;
1056
1057	id = input_match_device(handler, dev);
1058	if (!id)
1059		return -ENODEV;
1060
1061	error = handler->connect(handler, dev, id);
1062	if (error && error != -ENODEV)
1063		pr_err("failed to attach handler %s to device %s, error: %d\n",
1064		       handler->name, kobject_name(&dev->dev.kobj), error);
1065
1066	return error;
1067}
1068
1069#ifdef CONFIG_COMPAT
1070
1071static int input_bits_to_string(char *buf, int buf_size,
1072				unsigned long bits, bool skip_empty)
1073{
1074	int len = 0;
1075
1076	if (in_compat_syscall()) {
1077		u32 dword = bits >> 32;
1078		if (dword || !skip_empty)
1079			len += snprintf(buf, buf_size, "%x ", dword);
1080
1081		dword = bits & 0xffffffffUL;
1082		if (dword || !skip_empty || len)
1083			len += snprintf(buf + len, max(buf_size - len, 0),
1084					"%x", dword);
1085	} else {
1086		if (bits || !skip_empty)
1087			len += snprintf(buf, buf_size, "%lx", bits);
1088	}
1089
1090	return len;
1091}
1092
1093#else /* !CONFIG_COMPAT */
1094
1095static int input_bits_to_string(char *buf, int buf_size,
1096				unsigned long bits, bool skip_empty)
1097{
1098	return bits || !skip_empty ?
1099		snprintf(buf, buf_size, "%lx", bits) : 0;
1100}
1101
1102#endif
1103
1104#ifdef CONFIG_PROC_FS
1105
1106static struct proc_dir_entry *proc_bus_input_dir;
1107static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1108static int input_devices_state;
1109
1110static inline void input_wakeup_procfs_readers(void)
1111{
1112	input_devices_state++;
1113	wake_up(&input_devices_poll_wait);
1114}
1115
1116static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
1117{
1118	poll_wait(file, &input_devices_poll_wait, wait);
1119	if (file->f_version != input_devices_state) {
1120		file->f_version = input_devices_state;
1121		return EPOLLIN | EPOLLRDNORM;
1122	}
1123
1124	return 0;
1125}
1126
1127union input_seq_state {
1128	struct {
1129		unsigned short pos;
1130		bool mutex_acquired;
1131	};
1132	void *p;
1133};
1134
1135static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1136{
1137	union input_seq_state *state = (union input_seq_state *)&seq->private;
1138	int error;
1139
1140	/* We need to fit into seq->private pointer */
1141	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1142
1143	error = mutex_lock_interruptible(&input_mutex);
1144	if (error) {
1145		state->mutex_acquired = false;
1146		return ERR_PTR(error);
1147	}
1148
1149	state->mutex_acquired = true;
1150
1151	return seq_list_start(&input_dev_list, *pos);
1152}
1153
1154static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1155{
1156	return seq_list_next(v, &input_dev_list, pos);
1157}
1158
1159static void input_seq_stop(struct seq_file *seq, void *v)
1160{
1161	union input_seq_state *state = (union input_seq_state *)&seq->private;
1162
1163	if (state->mutex_acquired)
1164		mutex_unlock(&input_mutex);
1165}
1166
1167static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1168				   unsigned long *bitmap, int max)
1169{
1170	int i;
1171	bool skip_empty = true;
1172	char buf[18];
1173
1174	seq_printf(seq, "B: %s=", name);
1175
1176	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1177		if (input_bits_to_string(buf, sizeof(buf),
1178					 bitmap[i], skip_empty)) {
1179			skip_empty = false;
1180			seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1181		}
1182	}
1183
1184	/*
1185	 * If no output was produced print a single 0.
1186	 */
1187	if (skip_empty)
1188		seq_putc(seq, '0');
1189
1190	seq_putc(seq, '\n');
1191}
1192
1193static int input_devices_seq_show(struct seq_file *seq, void *v)
1194{
1195	struct input_dev *dev = container_of(v, struct input_dev, node);
1196	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1197	struct input_handle *handle;
1198
1199	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1200		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1201
1202	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1203	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1204	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1205	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1206	seq_puts(seq, "H: Handlers=");
1207
1208	list_for_each_entry(handle, &dev->h_list, d_node)
1209		seq_printf(seq, "%s ", handle->name);
1210	seq_putc(seq, '\n');
1211
1212	input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1213
1214	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1215	if (test_bit(EV_KEY, dev->evbit))
1216		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1217	if (test_bit(EV_REL, dev->evbit))
1218		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1219	if (test_bit(EV_ABS, dev->evbit))
1220		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1221	if (test_bit(EV_MSC, dev->evbit))
1222		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1223	if (test_bit(EV_LED, dev->evbit))
1224		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1225	if (test_bit(EV_SND, dev->evbit))
1226		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1227	if (test_bit(EV_FF, dev->evbit))
1228		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1229	if (test_bit(EV_SW, dev->evbit))
1230		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1231
1232	seq_putc(seq, '\n');
1233
1234	kfree(path);
1235	return 0;
1236}
1237
1238static const struct seq_operations input_devices_seq_ops = {
1239	.start	= input_devices_seq_start,
1240	.next	= input_devices_seq_next,
1241	.stop	= input_seq_stop,
1242	.show	= input_devices_seq_show,
1243};
1244
1245static int input_proc_devices_open(struct inode *inode, struct file *file)
1246{
1247	return seq_open(file, &input_devices_seq_ops);
1248}
1249
1250static const struct proc_ops input_devices_proc_ops = {
1251	.proc_open	= input_proc_devices_open,
1252	.proc_poll	= input_proc_devices_poll,
1253	.proc_read	= seq_read,
1254	.proc_lseek	= seq_lseek,
1255	.proc_release	= seq_release,
 
1256};
1257
1258static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1259{
1260	union input_seq_state *state = (union input_seq_state *)&seq->private;
1261	int error;
1262
1263	/* We need to fit into seq->private pointer */
1264	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1265
1266	error = mutex_lock_interruptible(&input_mutex);
1267	if (error) {
1268		state->mutex_acquired = false;
1269		return ERR_PTR(error);
1270	}
1271
1272	state->mutex_acquired = true;
1273	state->pos = *pos;
1274
1275	return seq_list_start(&input_handler_list, *pos);
1276}
1277
1278static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1279{
1280	union input_seq_state *state = (union input_seq_state *)&seq->private;
1281
1282	state->pos = *pos + 1;
1283	return seq_list_next(v, &input_handler_list, pos);
1284}
1285
1286static int input_handlers_seq_show(struct seq_file *seq, void *v)
1287{
1288	struct input_handler *handler = container_of(v, struct input_handler, node);
1289	union input_seq_state *state = (union input_seq_state *)&seq->private;
1290
1291	seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1292	if (handler->filter)
1293		seq_puts(seq, " (filter)");
1294	if (handler->legacy_minors)
1295		seq_printf(seq, " Minor=%d", handler->minor);
1296	seq_putc(seq, '\n');
1297
1298	return 0;
1299}
1300
1301static const struct seq_operations input_handlers_seq_ops = {
1302	.start	= input_handlers_seq_start,
1303	.next	= input_handlers_seq_next,
1304	.stop	= input_seq_stop,
1305	.show	= input_handlers_seq_show,
1306};
1307
1308static int input_proc_handlers_open(struct inode *inode, struct file *file)
1309{
1310	return seq_open(file, &input_handlers_seq_ops);
1311}
1312
1313static const struct proc_ops input_handlers_proc_ops = {
1314	.proc_open	= input_proc_handlers_open,
1315	.proc_read	= seq_read,
1316	.proc_lseek	= seq_lseek,
1317	.proc_release	= seq_release,
 
1318};
1319
1320static int __init input_proc_init(void)
1321{
1322	struct proc_dir_entry *entry;
1323
1324	proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1325	if (!proc_bus_input_dir)
1326		return -ENOMEM;
1327
1328	entry = proc_create("devices", 0, proc_bus_input_dir,
1329			    &input_devices_proc_ops);
1330	if (!entry)
1331		goto fail1;
1332
1333	entry = proc_create("handlers", 0, proc_bus_input_dir,
1334			    &input_handlers_proc_ops);
1335	if (!entry)
1336		goto fail2;
1337
1338	return 0;
1339
1340 fail2:	remove_proc_entry("devices", proc_bus_input_dir);
1341 fail1: remove_proc_entry("bus/input", NULL);
1342	return -ENOMEM;
1343}
1344
1345static void input_proc_exit(void)
1346{
1347	remove_proc_entry("devices", proc_bus_input_dir);
1348	remove_proc_entry("handlers", proc_bus_input_dir);
1349	remove_proc_entry("bus/input", NULL);
1350}
1351
1352#else /* !CONFIG_PROC_FS */
1353static inline void input_wakeup_procfs_readers(void) { }
1354static inline int input_proc_init(void) { return 0; }
1355static inline void input_proc_exit(void) { }
1356#endif
1357
1358#define INPUT_DEV_STRING_ATTR_SHOW(name)				\
1359static ssize_t input_dev_show_##name(struct device *dev,		\
1360				     struct device_attribute *attr,	\
1361				     char *buf)				\
1362{									\
1363	struct input_dev *input_dev = to_input_dev(dev);		\
1364									\
1365	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
1366			 input_dev->name ? input_dev->name : "");	\
1367}									\
1368static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1369
1370INPUT_DEV_STRING_ATTR_SHOW(name);
1371INPUT_DEV_STRING_ATTR_SHOW(phys);
1372INPUT_DEV_STRING_ATTR_SHOW(uniq);
1373
1374static int input_print_modalias_bits(char *buf, int size,
1375				     char name, unsigned long *bm,
1376				     unsigned int min_bit, unsigned int max_bit)
1377{
1378	int len = 0, i;
1379
1380	len += snprintf(buf, max(size, 0), "%c", name);
1381	for (i = min_bit; i < max_bit; i++)
1382		if (bm[BIT_WORD(i)] & BIT_MASK(i))
1383			len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1384	return len;
1385}
1386
1387static int input_print_modalias(char *buf, int size, struct input_dev *id,
1388				int add_cr)
1389{
1390	int len;
1391
1392	len = snprintf(buf, max(size, 0),
1393		       "input:b%04Xv%04Xp%04Xe%04X-",
1394		       id->id.bustype, id->id.vendor,
1395		       id->id.product, id->id.version);
1396
1397	len += input_print_modalias_bits(buf + len, size - len,
1398				'e', id->evbit, 0, EV_MAX);
1399	len += input_print_modalias_bits(buf + len, size - len,
1400				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1401	len += input_print_modalias_bits(buf + len, size - len,
1402				'r', id->relbit, 0, REL_MAX);
1403	len += input_print_modalias_bits(buf + len, size - len,
1404				'a', id->absbit, 0, ABS_MAX);
1405	len += input_print_modalias_bits(buf + len, size - len,
1406				'm', id->mscbit, 0, MSC_MAX);
1407	len += input_print_modalias_bits(buf + len, size - len,
1408				'l', id->ledbit, 0, LED_MAX);
1409	len += input_print_modalias_bits(buf + len, size - len,
1410				's', id->sndbit, 0, SND_MAX);
1411	len += input_print_modalias_bits(buf + len, size - len,
1412				'f', id->ffbit, 0, FF_MAX);
1413	len += input_print_modalias_bits(buf + len, size - len,
1414				'w', id->swbit, 0, SW_MAX);
1415
1416	if (add_cr)
1417		len += snprintf(buf + len, max(size - len, 0), "\n");
1418
1419	return len;
1420}
1421
1422static ssize_t input_dev_show_modalias(struct device *dev,
1423				       struct device_attribute *attr,
1424				       char *buf)
1425{
1426	struct input_dev *id = to_input_dev(dev);
1427	ssize_t len;
1428
1429	len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1430
1431	return min_t(int, len, PAGE_SIZE);
1432}
1433static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1434
1435static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1436			      int max, int add_cr);
1437
1438static ssize_t input_dev_show_properties(struct device *dev,
1439					 struct device_attribute *attr,
1440					 char *buf)
1441{
1442	struct input_dev *input_dev = to_input_dev(dev);
1443	int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1444				     INPUT_PROP_MAX, true);
1445	return min_t(int, len, PAGE_SIZE);
1446}
1447static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1448
1449static int input_inhibit_device(struct input_dev *dev);
1450static int input_uninhibit_device(struct input_dev *dev);
1451
1452static ssize_t inhibited_show(struct device *dev,
1453			      struct device_attribute *attr,
1454			      char *buf)
1455{
1456	struct input_dev *input_dev = to_input_dev(dev);
1457
1458	return scnprintf(buf, PAGE_SIZE, "%d\n", input_dev->inhibited);
1459}
1460
1461static ssize_t inhibited_store(struct device *dev,
1462			       struct device_attribute *attr, const char *buf,
1463			       size_t len)
1464{
1465	struct input_dev *input_dev = to_input_dev(dev);
1466	ssize_t rv;
1467	bool inhibited;
1468
1469	if (kstrtobool(buf, &inhibited))
1470		return -EINVAL;
1471
1472	if (inhibited)
1473		rv = input_inhibit_device(input_dev);
1474	else
1475		rv = input_uninhibit_device(input_dev);
1476
1477	if (rv != 0)
1478		return rv;
1479
1480	return len;
1481}
1482
1483static DEVICE_ATTR_RW(inhibited);
1484
1485static struct attribute *input_dev_attrs[] = {
1486	&dev_attr_name.attr,
1487	&dev_attr_phys.attr,
1488	&dev_attr_uniq.attr,
1489	&dev_attr_modalias.attr,
1490	&dev_attr_properties.attr,
1491	&dev_attr_inhibited.attr,
1492	NULL
1493};
1494
1495static const struct attribute_group input_dev_attr_group = {
1496	.attrs	= input_dev_attrs,
1497};
1498
1499#define INPUT_DEV_ID_ATTR(name)						\
1500static ssize_t input_dev_show_id_##name(struct device *dev,		\
1501					struct device_attribute *attr,	\
1502					char *buf)			\
1503{									\
1504	struct input_dev *input_dev = to_input_dev(dev);		\
1505	return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name);	\
1506}									\
1507static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1508
1509INPUT_DEV_ID_ATTR(bustype);
1510INPUT_DEV_ID_ATTR(vendor);
1511INPUT_DEV_ID_ATTR(product);
1512INPUT_DEV_ID_ATTR(version);
1513
1514static struct attribute *input_dev_id_attrs[] = {
1515	&dev_attr_bustype.attr,
1516	&dev_attr_vendor.attr,
1517	&dev_attr_product.attr,
1518	&dev_attr_version.attr,
1519	NULL
1520};
1521
1522static const struct attribute_group input_dev_id_attr_group = {
1523	.name	= "id",
1524	.attrs	= input_dev_id_attrs,
1525};
1526
1527static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1528			      int max, int add_cr)
1529{
1530	int i;
1531	int len = 0;
1532	bool skip_empty = true;
1533
1534	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1535		len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1536					    bitmap[i], skip_empty);
1537		if (len) {
1538			skip_empty = false;
1539			if (i > 0)
1540				len += snprintf(buf + len, max(buf_size - len, 0), " ");
1541		}
1542	}
1543
1544	/*
1545	 * If no output was produced print a single 0.
1546	 */
1547	if (len == 0)
1548		len = snprintf(buf, buf_size, "%d", 0);
1549
1550	if (add_cr)
1551		len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1552
1553	return len;
1554}
1555
1556#define INPUT_DEV_CAP_ATTR(ev, bm)					\
1557static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
1558				       struct device_attribute *attr,	\
1559				       char *buf)			\
1560{									\
1561	struct input_dev *input_dev = to_input_dev(dev);		\
1562	int len = input_print_bitmap(buf, PAGE_SIZE,			\
1563				     input_dev->bm##bit, ev##_MAX,	\
1564				     true);				\
1565	return min_t(int, len, PAGE_SIZE);				\
1566}									\
1567static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1568
1569INPUT_DEV_CAP_ATTR(EV, ev);
1570INPUT_DEV_CAP_ATTR(KEY, key);
1571INPUT_DEV_CAP_ATTR(REL, rel);
1572INPUT_DEV_CAP_ATTR(ABS, abs);
1573INPUT_DEV_CAP_ATTR(MSC, msc);
1574INPUT_DEV_CAP_ATTR(LED, led);
1575INPUT_DEV_CAP_ATTR(SND, snd);
1576INPUT_DEV_CAP_ATTR(FF, ff);
1577INPUT_DEV_CAP_ATTR(SW, sw);
1578
1579static struct attribute *input_dev_caps_attrs[] = {
1580	&dev_attr_ev.attr,
1581	&dev_attr_key.attr,
1582	&dev_attr_rel.attr,
1583	&dev_attr_abs.attr,
1584	&dev_attr_msc.attr,
1585	&dev_attr_led.attr,
1586	&dev_attr_snd.attr,
1587	&dev_attr_ff.attr,
1588	&dev_attr_sw.attr,
1589	NULL
1590};
1591
1592static const struct attribute_group input_dev_caps_attr_group = {
1593	.name	= "capabilities",
1594	.attrs	= input_dev_caps_attrs,
1595};
1596
1597static const struct attribute_group *input_dev_attr_groups[] = {
1598	&input_dev_attr_group,
1599	&input_dev_id_attr_group,
1600	&input_dev_caps_attr_group,
1601	&input_poller_attribute_group,
1602	NULL
1603};
1604
1605static void input_dev_release(struct device *device)
1606{
1607	struct input_dev *dev = to_input_dev(device);
1608
1609	input_ff_destroy(dev);
1610	input_mt_destroy_slots(dev);
1611	kfree(dev->poller);
1612	kfree(dev->absinfo);
1613	kfree(dev->vals);
1614	kfree(dev);
1615
1616	module_put(THIS_MODULE);
1617}
1618
1619/*
1620 * Input uevent interface - loading event handlers based on
1621 * device bitfields.
1622 */
1623static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1624				   const char *name, unsigned long *bitmap, int max)
1625{
1626	int len;
1627
1628	if (add_uevent_var(env, "%s", name))
1629		return -ENOMEM;
1630
1631	len = input_print_bitmap(&env->buf[env->buflen - 1],
1632				 sizeof(env->buf) - env->buflen,
1633				 bitmap, max, false);
1634	if (len >= (sizeof(env->buf) - env->buflen))
1635		return -ENOMEM;
1636
1637	env->buflen += len;
1638	return 0;
1639}
1640
1641static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1642					 struct input_dev *dev)
1643{
1644	int len;
1645
1646	if (add_uevent_var(env, "MODALIAS="))
1647		return -ENOMEM;
1648
1649	len = input_print_modalias(&env->buf[env->buflen - 1],
1650				   sizeof(env->buf) - env->buflen,
1651				   dev, 0);
1652	if (len >= (sizeof(env->buf) - env->buflen))
1653		return -ENOMEM;
1654
1655	env->buflen += len;
1656	return 0;
1657}
1658
1659#define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
1660	do {								\
1661		int err = add_uevent_var(env, fmt, val);		\
1662		if (err)						\
1663			return err;					\
1664	} while (0)
1665
1666#define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
1667	do {								\
1668		int err = input_add_uevent_bm_var(env, name, bm, max);	\
1669		if (err)						\
1670			return err;					\
1671	} while (0)
1672
1673#define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
1674	do {								\
1675		int err = input_add_uevent_modalias_var(env, dev);	\
1676		if (err)						\
1677			return err;					\
1678	} while (0)
1679
1680static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1681{
1682	struct input_dev *dev = to_input_dev(device);
1683
1684	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1685				dev->id.bustype, dev->id.vendor,
1686				dev->id.product, dev->id.version);
1687	if (dev->name)
1688		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1689	if (dev->phys)
1690		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1691	if (dev->uniq)
1692		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1693
1694	INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1695
1696	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1697	if (test_bit(EV_KEY, dev->evbit))
1698		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1699	if (test_bit(EV_REL, dev->evbit))
1700		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1701	if (test_bit(EV_ABS, dev->evbit))
1702		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1703	if (test_bit(EV_MSC, dev->evbit))
1704		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1705	if (test_bit(EV_LED, dev->evbit))
1706		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1707	if (test_bit(EV_SND, dev->evbit))
1708		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1709	if (test_bit(EV_FF, dev->evbit))
1710		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1711	if (test_bit(EV_SW, dev->evbit))
1712		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1713
1714	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1715
1716	return 0;
1717}
1718
1719#define INPUT_DO_TOGGLE(dev, type, bits, on)				\
1720	do {								\
1721		int i;							\
1722		bool active;						\
1723									\
1724		if (!test_bit(EV_##type, dev->evbit))			\
1725			break;						\
1726									\
1727		for_each_set_bit(i, dev->bits##bit, type##_CNT) {	\
1728			active = test_bit(i, dev->bits);		\
1729			if (!active && !on)				\
1730				continue;				\
1731									\
1732			dev->event(dev, EV_##type, i, on ? active : 0);	\
1733		}							\
1734	} while (0)
1735
1736static void input_dev_toggle(struct input_dev *dev, bool activate)
1737{
1738	if (!dev->event)
1739		return;
1740
1741	INPUT_DO_TOGGLE(dev, LED, led, activate);
1742	INPUT_DO_TOGGLE(dev, SND, snd, activate);
1743
1744	if (activate && test_bit(EV_REP, dev->evbit)) {
1745		dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1746		dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1747	}
1748}
1749
1750/**
1751 * input_reset_device() - reset/restore the state of input device
1752 * @dev: input device whose state needs to be reset
1753 *
1754 * This function tries to reset the state of an opened input device and
1755 * bring internal state and state if the hardware in sync with each other.
1756 * We mark all keys as released, restore LED state, repeat rate, etc.
1757 */
1758void input_reset_device(struct input_dev *dev)
1759{
1760	unsigned long flags;
1761
1762	mutex_lock(&dev->mutex);
1763	spin_lock_irqsave(&dev->event_lock, flags);
1764
1765	input_dev_toggle(dev, true);
1766	if (input_dev_release_keys(dev))
1767		input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
1768
1769	spin_unlock_irqrestore(&dev->event_lock, flags);
1770	mutex_unlock(&dev->mutex);
1771}
1772EXPORT_SYMBOL(input_reset_device);
1773
1774static int input_inhibit_device(struct input_dev *dev)
1775{
1776	mutex_lock(&dev->mutex);
1777
1778	if (dev->inhibited)
1779		goto out;
1780
1781	if (dev->users) {
1782		if (dev->close)
1783			dev->close(dev);
1784		if (dev->poller)
1785			input_dev_poller_stop(dev->poller);
1786	}
1787
1788	spin_lock_irq(&dev->event_lock);
1789	input_mt_release_slots(dev);
1790	input_dev_release_keys(dev);
1791	input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
1792	input_dev_toggle(dev, false);
1793	spin_unlock_irq(&dev->event_lock);
1794
1795	dev->inhibited = true;
1796
1797out:
1798	mutex_unlock(&dev->mutex);
1799	return 0;
1800}
1801
1802static int input_uninhibit_device(struct input_dev *dev)
1803{
1804	int ret = 0;
1805
1806	mutex_lock(&dev->mutex);
1807
1808	if (!dev->inhibited)
1809		goto out;
1810
1811	if (dev->users) {
1812		if (dev->open) {
1813			ret = dev->open(dev);
1814			if (ret)
1815				goto out;
1816		}
1817		if (dev->poller)
1818			input_dev_poller_start(dev->poller);
1819	}
1820
1821	dev->inhibited = false;
1822	spin_lock_irq(&dev->event_lock);
1823	input_dev_toggle(dev, true);
1824	spin_unlock_irq(&dev->event_lock);
1825
1826out:
1827	mutex_unlock(&dev->mutex);
1828	return ret;
1829}
1830
1831#ifdef CONFIG_PM_SLEEP
1832static int input_dev_suspend(struct device *dev)
1833{
1834	struct input_dev *input_dev = to_input_dev(dev);
1835
1836	spin_lock_irq(&input_dev->event_lock);
1837
1838	/*
1839	 * Keys that are pressed now are unlikely to be
1840	 * still pressed when we resume.
1841	 */
1842	if (input_dev_release_keys(input_dev))
1843		input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1);
1844
1845	/* Turn off LEDs and sounds, if any are active. */
1846	input_dev_toggle(input_dev, false);
1847
1848	spin_unlock_irq(&input_dev->event_lock);
1849
1850	return 0;
1851}
1852
1853static int input_dev_resume(struct device *dev)
1854{
1855	struct input_dev *input_dev = to_input_dev(dev);
1856
1857	spin_lock_irq(&input_dev->event_lock);
1858
1859	/* Restore state of LEDs and sounds, if any were active. */
1860	input_dev_toggle(input_dev, true);
1861
1862	spin_unlock_irq(&input_dev->event_lock);
1863
1864	return 0;
1865}
1866
1867static int input_dev_freeze(struct device *dev)
1868{
1869	struct input_dev *input_dev = to_input_dev(dev);
1870
1871	spin_lock_irq(&input_dev->event_lock);
1872
1873	/*
1874	 * Keys that are pressed now are unlikely to be
1875	 * still pressed when we resume.
1876	 */
1877	if (input_dev_release_keys(input_dev))
1878		input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1);
1879
1880	spin_unlock_irq(&input_dev->event_lock);
1881
1882	return 0;
1883}
1884
1885static int input_dev_poweroff(struct device *dev)
1886{
1887	struct input_dev *input_dev = to_input_dev(dev);
1888
1889	spin_lock_irq(&input_dev->event_lock);
1890
1891	/* Turn off LEDs and sounds, if any are active. */
1892	input_dev_toggle(input_dev, false);
1893
1894	spin_unlock_irq(&input_dev->event_lock);
1895
1896	return 0;
1897}
1898
1899static const struct dev_pm_ops input_dev_pm_ops = {
1900	.suspend	= input_dev_suspend,
1901	.resume		= input_dev_resume,
1902	.freeze		= input_dev_freeze,
1903	.poweroff	= input_dev_poweroff,
1904	.restore	= input_dev_resume,
1905};
1906#endif /* CONFIG_PM */
1907
1908static const struct device_type input_dev_type = {
1909	.groups		= input_dev_attr_groups,
1910	.release	= input_dev_release,
1911	.uevent		= input_dev_uevent,
1912#ifdef CONFIG_PM_SLEEP
1913	.pm		= &input_dev_pm_ops,
1914#endif
1915};
1916
1917static char *input_devnode(const struct device *dev, umode_t *mode)
1918{
1919	return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1920}
1921
1922struct class input_class = {
1923	.name		= "input",
1924	.devnode	= input_devnode,
1925};
1926EXPORT_SYMBOL_GPL(input_class);
1927
1928/**
1929 * input_allocate_device - allocate memory for new input device
1930 *
1931 * Returns prepared struct input_dev or %NULL.
1932 *
1933 * NOTE: Use input_free_device() to free devices that have not been
1934 * registered; input_unregister_device() should be used for already
1935 * registered devices.
1936 */
1937struct input_dev *input_allocate_device(void)
1938{
1939	static atomic_t input_no = ATOMIC_INIT(-1);
1940	struct input_dev *dev;
1941
1942	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1943	if (dev) {
1944		dev->dev.type = &input_dev_type;
1945		dev->dev.class = &input_class;
1946		device_initialize(&dev->dev);
1947		mutex_init(&dev->mutex);
1948		spin_lock_init(&dev->event_lock);
1949		timer_setup(&dev->timer, NULL, 0);
1950		INIT_LIST_HEAD(&dev->h_list);
1951		INIT_LIST_HEAD(&dev->node);
1952
1953		dev_set_name(&dev->dev, "input%lu",
1954			     (unsigned long)atomic_inc_return(&input_no));
1955
1956		__module_get(THIS_MODULE);
1957	}
1958
1959	return dev;
1960}
1961EXPORT_SYMBOL(input_allocate_device);
1962
1963struct input_devres {
1964	struct input_dev *input;
1965};
1966
1967static int devm_input_device_match(struct device *dev, void *res, void *data)
1968{
1969	struct input_devres *devres = res;
1970
1971	return devres->input == data;
1972}
1973
1974static void devm_input_device_release(struct device *dev, void *res)
1975{
1976	struct input_devres *devres = res;
1977	struct input_dev *input = devres->input;
1978
1979	dev_dbg(dev, "%s: dropping reference to %s\n",
1980		__func__, dev_name(&input->dev));
1981	input_put_device(input);
1982}
1983
1984/**
1985 * devm_input_allocate_device - allocate managed input device
1986 * @dev: device owning the input device being created
1987 *
1988 * Returns prepared struct input_dev or %NULL.
1989 *
1990 * Managed input devices do not need to be explicitly unregistered or
1991 * freed as it will be done automatically when owner device unbinds from
1992 * its driver (or binding fails). Once managed input device is allocated,
1993 * it is ready to be set up and registered in the same fashion as regular
1994 * input device. There are no special devm_input_device_[un]register()
1995 * variants, regular ones work with both managed and unmanaged devices,
1996 * should you need them. In most cases however, managed input device need
1997 * not be explicitly unregistered or freed.
1998 *
1999 * NOTE: the owner device is set up as parent of input device and users
2000 * should not override it.
2001 */
2002struct input_dev *devm_input_allocate_device(struct device *dev)
2003{
2004	struct input_dev *input;
2005	struct input_devres *devres;
2006
2007	devres = devres_alloc(devm_input_device_release,
2008			      sizeof(*devres), GFP_KERNEL);
2009	if (!devres)
2010		return NULL;
2011
2012	input = input_allocate_device();
2013	if (!input) {
2014		devres_free(devres);
2015		return NULL;
2016	}
2017
2018	input->dev.parent = dev;
2019	input->devres_managed = true;
2020
2021	devres->input = input;
2022	devres_add(dev, devres);
2023
2024	return input;
2025}
2026EXPORT_SYMBOL(devm_input_allocate_device);
2027
2028/**
2029 * input_free_device - free memory occupied by input_dev structure
2030 * @dev: input device to free
2031 *
2032 * This function should only be used if input_register_device()
2033 * was not called yet or if it failed. Once device was registered
2034 * use input_unregister_device() and memory will be freed once last
2035 * reference to the device is dropped.
2036 *
2037 * Device should be allocated by input_allocate_device().
2038 *
2039 * NOTE: If there are references to the input device then memory
2040 * will not be freed until last reference is dropped.
2041 */
2042void input_free_device(struct input_dev *dev)
2043{
2044	if (dev) {
2045		if (dev->devres_managed)
2046			WARN_ON(devres_destroy(dev->dev.parent,
2047						devm_input_device_release,
2048						devm_input_device_match,
2049						dev));
2050		input_put_device(dev);
2051	}
2052}
2053EXPORT_SYMBOL(input_free_device);
2054
2055/**
2056 * input_set_timestamp - set timestamp for input events
2057 * @dev: input device to set timestamp for
2058 * @timestamp: the time at which the event has occurred
2059 *   in CLOCK_MONOTONIC
2060 *
2061 * This function is intended to provide to the input system a more
2062 * accurate time of when an event actually occurred. The driver should
2063 * call this function as soon as a timestamp is acquired ensuring
2064 * clock conversions in input_set_timestamp are done correctly.
2065 *
2066 * The system entering suspend state between timestamp acquisition and
2067 * calling input_set_timestamp can result in inaccurate conversions.
2068 */
2069void input_set_timestamp(struct input_dev *dev, ktime_t timestamp)
2070{
2071	dev->timestamp[INPUT_CLK_MONO] = timestamp;
2072	dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
2073	dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
2074							   TK_OFFS_BOOT);
2075}
2076EXPORT_SYMBOL(input_set_timestamp);
2077
2078/**
2079 * input_get_timestamp - get timestamp for input events
2080 * @dev: input device to get timestamp from
2081 *
2082 * A valid timestamp is a timestamp of non-zero value.
2083 */
2084ktime_t *input_get_timestamp(struct input_dev *dev)
2085{
2086	const ktime_t invalid_timestamp = ktime_set(0, 0);
2087
2088	if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
2089		input_set_timestamp(dev, ktime_get());
2090
2091	return dev->timestamp;
2092}
2093EXPORT_SYMBOL(input_get_timestamp);
2094
2095/**
2096 * input_set_capability - mark device as capable of a certain event
2097 * @dev: device that is capable of emitting or accepting event
2098 * @type: type of the event (EV_KEY, EV_REL, etc...)
2099 * @code: event code
2100 *
2101 * In addition to setting up corresponding bit in appropriate capability
2102 * bitmap the function also adjusts dev->evbit.
2103 */
2104void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
2105{
2106	if (type < EV_CNT && input_max_code[type] &&
2107	    code > input_max_code[type]) {
2108		pr_err("%s: invalid code %u for type %u\n", __func__, code,
2109		       type);
2110		dump_stack();
2111		return;
2112	}
2113
2114	switch (type) {
2115	case EV_KEY:
2116		__set_bit(code, dev->keybit);
2117		break;
2118
2119	case EV_REL:
2120		__set_bit(code, dev->relbit);
2121		break;
2122
2123	case EV_ABS:
2124		input_alloc_absinfo(dev);
 
 
 
2125		__set_bit(code, dev->absbit);
2126		break;
2127
2128	case EV_MSC:
2129		__set_bit(code, dev->mscbit);
2130		break;
2131
2132	case EV_SW:
2133		__set_bit(code, dev->swbit);
2134		break;
2135
2136	case EV_LED:
2137		__set_bit(code, dev->ledbit);
2138		break;
2139
2140	case EV_SND:
2141		__set_bit(code, dev->sndbit);
2142		break;
2143
2144	case EV_FF:
2145		__set_bit(code, dev->ffbit);
2146		break;
2147
2148	case EV_PWR:
2149		/* do nothing */
2150		break;
2151
2152	default:
2153		pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
 
2154		dump_stack();
2155		return;
2156	}
2157
2158	__set_bit(type, dev->evbit);
2159}
2160EXPORT_SYMBOL(input_set_capability);
2161
2162static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
2163{
2164	int mt_slots;
2165	int i;
2166	unsigned int events;
2167
2168	if (dev->mt) {
2169		mt_slots = dev->mt->num_slots;
2170	} else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
2171		mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
2172			   dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
2173		mt_slots = clamp(mt_slots, 2, 32);
2174	} else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
2175		mt_slots = 2;
2176	} else {
2177		mt_slots = 0;
2178	}
2179
2180	events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
2181
2182	if (test_bit(EV_ABS, dev->evbit))
2183		for_each_set_bit(i, dev->absbit, ABS_CNT)
2184			events += input_is_mt_axis(i) ? mt_slots : 1;
2185
2186	if (test_bit(EV_REL, dev->evbit))
2187		events += bitmap_weight(dev->relbit, REL_CNT);
2188
2189	/* Make room for KEY and MSC events */
2190	events += 7;
2191
2192	return events;
2193}
2194
2195#define INPUT_CLEANSE_BITMASK(dev, type, bits)				\
2196	do {								\
2197		if (!test_bit(EV_##type, dev->evbit))			\
2198			memset(dev->bits##bit, 0,			\
2199				sizeof(dev->bits##bit));		\
2200	} while (0)
2201
2202static void input_cleanse_bitmasks(struct input_dev *dev)
2203{
2204	INPUT_CLEANSE_BITMASK(dev, KEY, key);
2205	INPUT_CLEANSE_BITMASK(dev, REL, rel);
2206	INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2207	INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2208	INPUT_CLEANSE_BITMASK(dev, LED, led);
2209	INPUT_CLEANSE_BITMASK(dev, SND, snd);
2210	INPUT_CLEANSE_BITMASK(dev, FF, ff);
2211	INPUT_CLEANSE_BITMASK(dev, SW, sw);
2212}
2213
2214static void __input_unregister_device(struct input_dev *dev)
2215{
2216	struct input_handle *handle, *next;
2217
2218	input_disconnect_device(dev);
2219
2220	mutex_lock(&input_mutex);
2221
2222	list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2223		handle->handler->disconnect(handle);
2224	WARN_ON(!list_empty(&dev->h_list));
2225
2226	del_timer_sync(&dev->timer);
2227	list_del_init(&dev->node);
2228
2229	input_wakeup_procfs_readers();
2230
2231	mutex_unlock(&input_mutex);
2232
2233	device_del(&dev->dev);
2234}
2235
2236static void devm_input_device_unregister(struct device *dev, void *res)
2237{
2238	struct input_devres *devres = res;
2239	struct input_dev *input = devres->input;
2240
2241	dev_dbg(dev, "%s: unregistering device %s\n",
2242		__func__, dev_name(&input->dev));
2243	__input_unregister_device(input);
2244}
2245
2246/*
2247 * Generate software autorepeat event. Note that we take
2248 * dev->event_lock here to avoid racing with input_event
2249 * which may cause keys get "stuck".
2250 */
2251static void input_repeat_key(struct timer_list *t)
2252{
2253	struct input_dev *dev = from_timer(dev, t, timer);
2254	unsigned long flags;
2255
2256	spin_lock_irqsave(&dev->event_lock, flags);
2257
2258	if (!dev->inhibited &&
2259	    test_bit(dev->repeat_key, dev->key) &&
2260	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
2261
2262		input_set_timestamp(dev, ktime_get());
2263		input_handle_event(dev, EV_KEY, dev->repeat_key, 2);
2264		input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
2265
2266		if (dev->rep[REP_PERIOD])
2267			mod_timer(&dev->timer, jiffies +
2268					msecs_to_jiffies(dev->rep[REP_PERIOD]));
2269	}
2270
2271	spin_unlock_irqrestore(&dev->event_lock, flags);
2272}
2273
2274/**
2275 * input_enable_softrepeat - enable software autorepeat
2276 * @dev: input device
2277 * @delay: repeat delay
2278 * @period: repeat period
2279 *
2280 * Enable software autorepeat on the input device.
2281 */
2282void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2283{
2284	dev->timer.function = input_repeat_key;
2285	dev->rep[REP_DELAY] = delay;
2286	dev->rep[REP_PERIOD] = period;
2287}
2288EXPORT_SYMBOL(input_enable_softrepeat);
2289
2290bool input_device_enabled(struct input_dev *dev)
2291{
2292	lockdep_assert_held(&dev->mutex);
2293
2294	return !dev->inhibited && dev->users > 0;
2295}
2296EXPORT_SYMBOL_GPL(input_device_enabled);
2297
2298/**
2299 * input_register_device - register device with input core
2300 * @dev: device to be registered
2301 *
2302 * This function registers device with input core. The device must be
2303 * allocated with input_allocate_device() and all it's capabilities
2304 * set up before registering.
2305 * If function fails the device must be freed with input_free_device().
2306 * Once device has been successfully registered it can be unregistered
2307 * with input_unregister_device(); input_free_device() should not be
2308 * called in this case.
2309 *
2310 * Note that this function is also used to register managed input devices
2311 * (ones allocated with devm_input_allocate_device()). Such managed input
2312 * devices need not be explicitly unregistered or freed, their tear down
2313 * is controlled by the devres infrastructure. It is also worth noting
2314 * that tear down of managed input devices is internally a 2-step process:
2315 * registered managed input device is first unregistered, but stays in
2316 * memory and can still handle input_event() calls (although events will
2317 * not be delivered anywhere). The freeing of managed input device will
2318 * happen later, when devres stack is unwound to the point where device
2319 * allocation was made.
2320 */
2321int input_register_device(struct input_dev *dev)
2322{
2323	struct input_devres *devres = NULL;
2324	struct input_handler *handler;
2325	unsigned int packet_size;
2326	const char *path;
2327	int error;
2328
2329	if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2330		dev_err(&dev->dev,
2331			"Absolute device without dev->absinfo, refusing to register\n");
2332		return -EINVAL;
2333	}
2334
2335	if (dev->devres_managed) {
2336		devres = devres_alloc(devm_input_device_unregister,
2337				      sizeof(*devres), GFP_KERNEL);
2338		if (!devres)
2339			return -ENOMEM;
2340
2341		devres->input = dev;
2342	}
2343
2344	/* Every input device generates EV_SYN/SYN_REPORT events. */
2345	__set_bit(EV_SYN, dev->evbit);
2346
2347	/* KEY_RESERVED is not supposed to be transmitted to userspace. */
2348	__clear_bit(KEY_RESERVED, dev->keybit);
2349
2350	/* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2351	input_cleanse_bitmasks(dev);
2352
2353	packet_size = input_estimate_events_per_packet(dev);
2354	if (dev->hint_events_per_packet < packet_size)
2355		dev->hint_events_per_packet = packet_size;
2356
2357	dev->max_vals = dev->hint_events_per_packet + 2;
2358	dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2359	if (!dev->vals) {
2360		error = -ENOMEM;
2361		goto err_devres_free;
2362	}
2363
2364	/*
2365	 * If delay and period are pre-set by the driver, then autorepeating
2366	 * is handled by the driver itself and we don't do it in input.c.
2367	 */
2368	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2369		input_enable_softrepeat(dev, 250, 33);
2370
2371	if (!dev->getkeycode)
2372		dev->getkeycode = input_default_getkeycode;
2373
2374	if (!dev->setkeycode)
2375		dev->setkeycode = input_default_setkeycode;
2376
2377	if (dev->poller)
2378		input_dev_poller_finalize(dev->poller);
2379
2380	error = device_add(&dev->dev);
2381	if (error)
2382		goto err_free_vals;
2383
2384	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2385	pr_info("%s as %s\n",
2386		dev->name ? dev->name : "Unspecified device",
2387		path ? path : "N/A");
2388	kfree(path);
2389
2390	error = mutex_lock_interruptible(&input_mutex);
2391	if (error)
2392		goto err_device_del;
2393
2394	list_add_tail(&dev->node, &input_dev_list);
2395
2396	list_for_each_entry(handler, &input_handler_list, node)
2397		input_attach_handler(dev, handler);
2398
2399	input_wakeup_procfs_readers();
2400
2401	mutex_unlock(&input_mutex);
2402
2403	if (dev->devres_managed) {
2404		dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2405			__func__, dev_name(&dev->dev));
2406		devres_add(dev->dev.parent, devres);
2407	}
2408	return 0;
2409
2410err_device_del:
2411	device_del(&dev->dev);
2412err_free_vals:
2413	kfree(dev->vals);
2414	dev->vals = NULL;
2415err_devres_free:
2416	devres_free(devres);
2417	return error;
2418}
2419EXPORT_SYMBOL(input_register_device);
2420
2421/**
2422 * input_unregister_device - unregister previously registered device
2423 * @dev: device to be unregistered
2424 *
2425 * This function unregisters an input device. Once device is unregistered
2426 * the caller should not try to access it as it may get freed at any moment.
2427 */
2428void input_unregister_device(struct input_dev *dev)
2429{
2430	if (dev->devres_managed) {
2431		WARN_ON(devres_destroy(dev->dev.parent,
2432					devm_input_device_unregister,
2433					devm_input_device_match,
2434					dev));
2435		__input_unregister_device(dev);
2436		/*
2437		 * We do not do input_put_device() here because it will be done
2438		 * when 2nd devres fires up.
2439		 */
2440	} else {
2441		__input_unregister_device(dev);
2442		input_put_device(dev);
2443	}
2444}
2445EXPORT_SYMBOL(input_unregister_device);
2446
2447/**
2448 * input_register_handler - register a new input handler
2449 * @handler: handler to be registered
2450 *
2451 * This function registers a new input handler (interface) for input
2452 * devices in the system and attaches it to all input devices that
2453 * are compatible with the handler.
2454 */
2455int input_register_handler(struct input_handler *handler)
2456{
2457	struct input_dev *dev;
2458	int error;
2459
2460	error = mutex_lock_interruptible(&input_mutex);
2461	if (error)
2462		return error;
2463
2464	INIT_LIST_HEAD(&handler->h_list);
2465
2466	list_add_tail(&handler->node, &input_handler_list);
2467
2468	list_for_each_entry(dev, &input_dev_list, node)
2469		input_attach_handler(dev, handler);
2470
2471	input_wakeup_procfs_readers();
2472
2473	mutex_unlock(&input_mutex);
2474	return 0;
2475}
2476EXPORT_SYMBOL(input_register_handler);
2477
2478/**
2479 * input_unregister_handler - unregisters an input handler
2480 * @handler: handler to be unregistered
2481 *
2482 * This function disconnects a handler from its input devices and
2483 * removes it from lists of known handlers.
2484 */
2485void input_unregister_handler(struct input_handler *handler)
2486{
2487	struct input_handle *handle, *next;
2488
2489	mutex_lock(&input_mutex);
2490
2491	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2492		handler->disconnect(handle);
2493	WARN_ON(!list_empty(&handler->h_list));
2494
2495	list_del_init(&handler->node);
2496
2497	input_wakeup_procfs_readers();
2498
2499	mutex_unlock(&input_mutex);
2500}
2501EXPORT_SYMBOL(input_unregister_handler);
2502
2503/**
2504 * input_handler_for_each_handle - handle iterator
2505 * @handler: input handler to iterate
2506 * @data: data for the callback
2507 * @fn: function to be called for each handle
2508 *
2509 * Iterate over @bus's list of devices, and call @fn for each, passing
2510 * it @data and stop when @fn returns a non-zero value. The function is
2511 * using RCU to traverse the list and therefore may be using in atomic
2512 * contexts. The @fn callback is invoked from RCU critical section and
2513 * thus must not sleep.
2514 */
2515int input_handler_for_each_handle(struct input_handler *handler, void *data,
2516				  int (*fn)(struct input_handle *, void *))
2517{
2518	struct input_handle *handle;
2519	int retval = 0;
2520
2521	rcu_read_lock();
2522
2523	list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2524		retval = fn(handle, data);
2525		if (retval)
2526			break;
2527	}
2528
2529	rcu_read_unlock();
2530
2531	return retval;
2532}
2533EXPORT_SYMBOL(input_handler_for_each_handle);
2534
2535/**
2536 * input_register_handle - register a new input handle
2537 * @handle: handle to register
2538 *
2539 * This function puts a new input handle onto device's
2540 * and handler's lists so that events can flow through
2541 * it once it is opened using input_open_device().
2542 *
2543 * This function is supposed to be called from handler's
2544 * connect() method.
2545 */
2546int input_register_handle(struct input_handle *handle)
2547{
2548	struct input_handler *handler = handle->handler;
2549	struct input_dev *dev = handle->dev;
2550	int error;
2551
2552	/*
2553	 * We take dev->mutex here to prevent race with
2554	 * input_release_device().
2555	 */
2556	error = mutex_lock_interruptible(&dev->mutex);
2557	if (error)
2558		return error;
2559
2560	/*
2561	 * Filters go to the head of the list, normal handlers
2562	 * to the tail.
2563	 */
2564	if (handler->filter)
2565		list_add_rcu(&handle->d_node, &dev->h_list);
2566	else
2567		list_add_tail_rcu(&handle->d_node, &dev->h_list);
2568
2569	mutex_unlock(&dev->mutex);
2570
2571	/*
2572	 * Since we are supposed to be called from ->connect()
2573	 * which is mutually exclusive with ->disconnect()
2574	 * we can't be racing with input_unregister_handle()
2575	 * and so separate lock is not needed here.
2576	 */
2577	list_add_tail_rcu(&handle->h_node, &handler->h_list);
2578
2579	if (handler->start)
2580		handler->start(handle);
2581
2582	return 0;
2583}
2584EXPORT_SYMBOL(input_register_handle);
2585
2586/**
2587 * input_unregister_handle - unregister an input handle
2588 * @handle: handle to unregister
2589 *
2590 * This function removes input handle from device's
2591 * and handler's lists.
2592 *
2593 * This function is supposed to be called from handler's
2594 * disconnect() method.
2595 */
2596void input_unregister_handle(struct input_handle *handle)
2597{
2598	struct input_dev *dev = handle->dev;
2599
2600	list_del_rcu(&handle->h_node);
2601
2602	/*
2603	 * Take dev->mutex to prevent race with input_release_device().
2604	 */
2605	mutex_lock(&dev->mutex);
2606	list_del_rcu(&handle->d_node);
2607	mutex_unlock(&dev->mutex);
2608
2609	synchronize_rcu();
2610}
2611EXPORT_SYMBOL(input_unregister_handle);
2612
2613/**
2614 * input_get_new_minor - allocates a new input minor number
2615 * @legacy_base: beginning or the legacy range to be searched
2616 * @legacy_num: size of legacy range
2617 * @allow_dynamic: whether we can also take ID from the dynamic range
2618 *
2619 * This function allocates a new device minor for from input major namespace.
2620 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2621 * parameters and whether ID can be allocated from dynamic range if there are
2622 * no free IDs in legacy range.
2623 */
2624int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2625			bool allow_dynamic)
2626{
2627	/*
2628	 * This function should be called from input handler's ->connect()
2629	 * methods, which are serialized with input_mutex, so no additional
2630	 * locking is needed here.
2631	 */
2632	if (legacy_base >= 0) {
2633		int minor = ida_simple_get(&input_ida,
2634					   legacy_base,
2635					   legacy_base + legacy_num,
2636					   GFP_KERNEL);
2637		if (minor >= 0 || !allow_dynamic)
2638			return minor;
2639	}
2640
2641	return ida_simple_get(&input_ida,
2642			      INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2643			      GFP_KERNEL);
2644}
2645EXPORT_SYMBOL(input_get_new_minor);
2646
2647/**
2648 * input_free_minor - release previously allocated minor
2649 * @minor: minor to be released
2650 *
2651 * This function releases previously allocated input minor so that it can be
2652 * reused later.
2653 */
2654void input_free_minor(unsigned int minor)
2655{
2656	ida_simple_remove(&input_ida, minor);
2657}
2658EXPORT_SYMBOL(input_free_minor);
2659
2660static int __init input_init(void)
2661{
2662	int err;
2663
2664	err = class_register(&input_class);
2665	if (err) {
2666		pr_err("unable to register input_dev class\n");
2667		return err;
2668	}
2669
2670	err = input_proc_init();
2671	if (err)
2672		goto fail1;
2673
2674	err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2675				     INPUT_MAX_CHAR_DEVICES, "input");
2676	if (err) {
2677		pr_err("unable to register char major %d", INPUT_MAJOR);
2678		goto fail2;
2679	}
2680
2681	return 0;
2682
2683 fail2:	input_proc_exit();
2684 fail1:	class_unregister(&input_class);
2685	return err;
2686}
2687
2688static void __exit input_exit(void)
2689{
2690	input_proc_exit();
2691	unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2692				 INPUT_MAX_CHAR_DEVICES);
2693	class_unregister(&input_class);
2694}
2695
2696subsys_initcall(input_init);
2697module_exit(input_exit);
v4.17
 
   1/*
   2 * The input core
   3 *
   4 * Copyright (c) 1999-2002 Vojtech Pavlik
   5 */
   6
   7/*
   8 * This program is free software; you can redistribute it and/or modify it
   9 * under the terms of the GNU General Public License version 2 as published by
  10 * the Free Software Foundation.
  11 */
  12
  13#define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
  14
  15#include <linux/init.h>
  16#include <linux/types.h>
  17#include <linux/idr.h>
  18#include <linux/input/mt.h>
  19#include <linux/module.h>
  20#include <linux/slab.h>
  21#include <linux/random.h>
  22#include <linux/major.h>
  23#include <linux/proc_fs.h>
  24#include <linux/sched.h>
  25#include <linux/seq_file.h>
  26#include <linux/poll.h>
  27#include <linux/device.h>
 
  28#include <linux/mutex.h>
  29#include <linux/rcupdate.h>
  30#include "input-compat.h"
 
 
  31
  32MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
  33MODULE_DESCRIPTION("Input core");
  34MODULE_LICENSE("GPL");
  35
  36#define INPUT_MAX_CHAR_DEVICES		1024
  37#define INPUT_FIRST_DYNAMIC_DEV		256
  38static DEFINE_IDA(input_ida);
  39
  40static LIST_HEAD(input_dev_list);
  41static LIST_HEAD(input_handler_list);
  42
  43/*
  44 * input_mutex protects access to both input_dev_list and input_handler_list.
  45 * This also causes input_[un]register_device and input_[un]register_handler
  46 * be mutually exclusive which simplifies locking in drivers implementing
  47 * input handlers.
  48 */
  49static DEFINE_MUTEX(input_mutex);
  50
  51static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
  52
 
 
 
 
 
 
 
 
 
 
 
  53static inline int is_event_supported(unsigned int code,
  54				     unsigned long *bm, unsigned int max)
  55{
  56	return code <= max && test_bit(code, bm);
  57}
  58
  59static int input_defuzz_abs_event(int value, int old_val, int fuzz)
  60{
  61	if (fuzz) {
  62		if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
  63			return old_val;
  64
  65		if (value > old_val - fuzz && value < old_val + fuzz)
  66			return (old_val * 3 + value) / 4;
  67
  68		if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
  69			return (old_val + value) / 2;
  70	}
  71
  72	return value;
  73}
  74
  75static void input_start_autorepeat(struct input_dev *dev, int code)
  76{
  77	if (test_bit(EV_REP, dev->evbit) &&
  78	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
  79	    dev->timer.function) {
  80		dev->repeat_key = code;
  81		mod_timer(&dev->timer,
  82			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
  83	}
  84}
  85
  86static void input_stop_autorepeat(struct input_dev *dev)
  87{
  88	del_timer(&dev->timer);
  89}
  90
  91/*
  92 * Pass event first through all filters and then, if event has not been
  93 * filtered out, through all open handles. This function is called with
  94 * dev->event_lock held and interrupts disabled.
  95 */
  96static unsigned int input_to_handler(struct input_handle *handle,
  97			struct input_value *vals, unsigned int count)
  98{
  99	struct input_handler *handler = handle->handler;
 100	struct input_value *end = vals;
 101	struct input_value *v;
 102
 103	if (handler->filter) {
 104		for (v = vals; v != vals + count; v++) {
 105			if (handler->filter(handle, v->type, v->code, v->value))
 106				continue;
 107			if (end != v)
 108				*end = *v;
 109			end++;
 110		}
 111		count = end - vals;
 112	}
 113
 114	if (!count)
 115		return 0;
 116
 117	if (handler->events)
 118		handler->events(handle, vals, count);
 119	else if (handler->event)
 120		for (v = vals; v != vals + count; v++)
 121			handler->event(handle, v->type, v->code, v->value);
 122
 123	return count;
 124}
 125
 126/*
 127 * Pass values first through all filters and then, if event has not been
 128 * filtered out, through all open handles. This function is called with
 129 * dev->event_lock held and interrupts disabled.
 130 */
 131static void input_pass_values(struct input_dev *dev,
 132			      struct input_value *vals, unsigned int count)
 133{
 134	struct input_handle *handle;
 135	struct input_value *v;
 136
 
 
 137	if (!count)
 138		return;
 139
 140	rcu_read_lock();
 141
 142	handle = rcu_dereference(dev->grab);
 143	if (handle) {
 144		count = input_to_handler(handle, vals, count);
 145	} else {
 146		list_for_each_entry_rcu(handle, &dev->h_list, d_node)
 147			if (handle->open) {
 148				count = input_to_handler(handle, vals, count);
 149				if (!count)
 150					break;
 151			}
 152	}
 153
 154	rcu_read_unlock();
 155
 156	/* trigger auto repeat for key events */
 157	if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
 158		for (v = vals; v != vals + count; v++) {
 159			if (v->type == EV_KEY && v->value != 2) {
 160				if (v->value)
 161					input_start_autorepeat(dev, v->code);
 162				else
 163					input_stop_autorepeat(dev);
 164			}
 165		}
 166	}
 167}
 168
 169static void input_pass_event(struct input_dev *dev,
 170			     unsigned int type, unsigned int code, int value)
 171{
 172	struct input_value vals[] = { { type, code, value } };
 173
 174	input_pass_values(dev, vals, ARRAY_SIZE(vals));
 175}
 176
 177/*
 178 * Generate software autorepeat event. Note that we take
 179 * dev->event_lock here to avoid racing with input_event
 180 * which may cause keys get "stuck".
 181 */
 182static void input_repeat_key(struct timer_list *t)
 183{
 184	struct input_dev *dev = from_timer(dev, t, timer);
 185	unsigned long flags;
 186
 187	spin_lock_irqsave(&dev->event_lock, flags);
 188
 189	if (test_bit(dev->repeat_key, dev->key) &&
 190	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
 191		struct input_value vals[] =  {
 192			{ EV_KEY, dev->repeat_key, 2 },
 193			input_value_sync
 194		};
 195
 196		input_pass_values(dev, vals, ARRAY_SIZE(vals));
 197
 198		if (dev->rep[REP_PERIOD])
 199			mod_timer(&dev->timer, jiffies +
 200					msecs_to_jiffies(dev->rep[REP_PERIOD]));
 201	}
 202
 203	spin_unlock_irqrestore(&dev->event_lock, flags);
 204}
 205
 206#define INPUT_IGNORE_EVENT	0
 207#define INPUT_PASS_TO_HANDLERS	1
 208#define INPUT_PASS_TO_DEVICE	2
 209#define INPUT_SLOT		4
 210#define INPUT_FLUSH		8
 211#define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
 212
 213static int input_handle_abs_event(struct input_dev *dev,
 214				  unsigned int code, int *pval)
 215{
 216	struct input_mt *mt = dev->mt;
 217	bool is_mt_event;
 218	int *pold;
 219
 220	if (code == ABS_MT_SLOT) {
 221		/*
 222		 * "Stage" the event; we'll flush it later, when we
 223		 * get actual touch data.
 224		 */
 225		if (mt && *pval >= 0 && *pval < mt->num_slots)
 226			mt->slot = *pval;
 227
 228		return INPUT_IGNORE_EVENT;
 229	}
 230
 231	is_mt_event = input_is_mt_value(code);
 232
 233	if (!is_mt_event) {
 234		pold = &dev->absinfo[code].value;
 235	} else if (mt) {
 236		pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
 237	} else {
 238		/*
 239		 * Bypass filtering for multi-touch events when
 240		 * not employing slots.
 241		 */
 242		pold = NULL;
 243	}
 244
 245	if (pold) {
 246		*pval = input_defuzz_abs_event(*pval, *pold,
 247						dev->absinfo[code].fuzz);
 248		if (*pold == *pval)
 249			return INPUT_IGNORE_EVENT;
 250
 251		*pold = *pval;
 252	}
 253
 254	/* Flush pending "slot" event */
 255	if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
 256		input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
 257		return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
 258	}
 259
 260	return INPUT_PASS_TO_HANDLERS;
 261}
 262
 263static int input_get_disposition(struct input_dev *dev,
 264			  unsigned int type, unsigned int code, int *pval)
 265{
 266	int disposition = INPUT_IGNORE_EVENT;
 267	int value = *pval;
 268
 
 
 
 
 269	switch (type) {
 270
 271	case EV_SYN:
 272		switch (code) {
 273		case SYN_CONFIG:
 274			disposition = INPUT_PASS_TO_ALL;
 275			break;
 276
 277		case SYN_REPORT:
 278			disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
 279			break;
 280		case SYN_MT_REPORT:
 281			disposition = INPUT_PASS_TO_HANDLERS;
 282			break;
 283		}
 284		break;
 285
 286	case EV_KEY:
 287		if (is_event_supported(code, dev->keybit, KEY_MAX)) {
 288
 289			/* auto-repeat bypasses state updates */
 290			if (value == 2) {
 291				disposition = INPUT_PASS_TO_HANDLERS;
 292				break;
 293			}
 294
 295			if (!!test_bit(code, dev->key) != !!value) {
 296
 297				__change_bit(code, dev->key);
 298				disposition = INPUT_PASS_TO_HANDLERS;
 299			}
 300		}
 301		break;
 302
 303	case EV_SW:
 304		if (is_event_supported(code, dev->swbit, SW_MAX) &&
 305		    !!test_bit(code, dev->sw) != !!value) {
 306
 307			__change_bit(code, dev->sw);
 308			disposition = INPUT_PASS_TO_HANDLERS;
 309		}
 310		break;
 311
 312	case EV_ABS:
 313		if (is_event_supported(code, dev->absbit, ABS_MAX))
 314			disposition = input_handle_abs_event(dev, code, &value);
 315
 316		break;
 317
 318	case EV_REL:
 319		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
 320			disposition = INPUT_PASS_TO_HANDLERS;
 321
 322		break;
 323
 324	case EV_MSC:
 325		if (is_event_supported(code, dev->mscbit, MSC_MAX))
 326			disposition = INPUT_PASS_TO_ALL;
 327
 328		break;
 329
 330	case EV_LED:
 331		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
 332		    !!test_bit(code, dev->led) != !!value) {
 333
 334			__change_bit(code, dev->led);
 335			disposition = INPUT_PASS_TO_ALL;
 336		}
 337		break;
 338
 339	case EV_SND:
 340		if (is_event_supported(code, dev->sndbit, SND_MAX)) {
 341
 342			if (!!test_bit(code, dev->snd) != !!value)
 343				__change_bit(code, dev->snd);
 344			disposition = INPUT_PASS_TO_ALL;
 345		}
 346		break;
 347
 348	case EV_REP:
 349		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
 350			dev->rep[code] = value;
 351			disposition = INPUT_PASS_TO_ALL;
 352		}
 353		break;
 354
 355	case EV_FF:
 356		if (value >= 0)
 357			disposition = INPUT_PASS_TO_ALL;
 358		break;
 359
 360	case EV_PWR:
 361		disposition = INPUT_PASS_TO_ALL;
 362		break;
 363	}
 364
 365	*pval = value;
 366	return disposition;
 367}
 368
 369static void input_handle_event(struct input_dev *dev,
 370			       unsigned int type, unsigned int code, int value)
 371{
 372	int disposition = input_get_disposition(dev, type, code, &value);
 373
 374	if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
 375		add_input_randomness(type, code, value);
 376
 377	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
 378		dev->event(dev, type, code, value);
 379
 380	if (!dev->vals)
 381		return;
 382
 383	if (disposition & INPUT_PASS_TO_HANDLERS) {
 384		struct input_value *v;
 385
 386		if (disposition & INPUT_SLOT) {
 387			v = &dev->vals[dev->num_vals++];
 388			v->type = EV_ABS;
 389			v->code = ABS_MT_SLOT;
 390			v->value = dev->mt->slot;
 391		}
 392
 393		v = &dev->vals[dev->num_vals++];
 394		v->type = type;
 395		v->code = code;
 396		v->value = value;
 397	}
 398
 399	if (disposition & INPUT_FLUSH) {
 400		if (dev->num_vals >= 2)
 401			input_pass_values(dev, dev->vals, dev->num_vals);
 402		dev->num_vals = 0;
 
 
 
 
 
 
 
 403	} else if (dev->num_vals >= dev->max_vals - 2) {
 404		dev->vals[dev->num_vals++] = input_value_sync;
 405		input_pass_values(dev, dev->vals, dev->num_vals);
 406		dev->num_vals = 0;
 407	}
 
 408
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 409}
 410
 411/**
 412 * input_event() - report new input event
 413 * @dev: device that generated the event
 414 * @type: type of the event
 415 * @code: event code
 416 * @value: value of the event
 417 *
 418 * This function should be used by drivers implementing various input
 419 * devices to report input events. See also input_inject_event().
 420 *
 421 * NOTE: input_event() may be safely used right after input device was
 422 * allocated with input_allocate_device(), even before it is registered
 423 * with input_register_device(), but the event will not reach any of the
 424 * input handlers. Such early invocation of input_event() may be used
 425 * to 'seed' initial state of a switch or initial position of absolute
 426 * axis, etc.
 427 */
 428void input_event(struct input_dev *dev,
 429		 unsigned int type, unsigned int code, int value)
 430{
 431	unsigned long flags;
 432
 433	if (is_event_supported(type, dev->evbit, EV_MAX)) {
 434
 435		spin_lock_irqsave(&dev->event_lock, flags);
 436		input_handle_event(dev, type, code, value);
 437		spin_unlock_irqrestore(&dev->event_lock, flags);
 438	}
 439}
 440EXPORT_SYMBOL(input_event);
 441
 442/**
 443 * input_inject_event() - send input event from input handler
 444 * @handle: input handle to send event through
 445 * @type: type of the event
 446 * @code: event code
 447 * @value: value of the event
 448 *
 449 * Similar to input_event() but will ignore event if device is
 450 * "grabbed" and handle injecting event is not the one that owns
 451 * the device.
 452 */
 453void input_inject_event(struct input_handle *handle,
 454			unsigned int type, unsigned int code, int value)
 455{
 456	struct input_dev *dev = handle->dev;
 457	struct input_handle *grab;
 458	unsigned long flags;
 459
 460	if (is_event_supported(type, dev->evbit, EV_MAX)) {
 461		spin_lock_irqsave(&dev->event_lock, flags);
 462
 463		rcu_read_lock();
 464		grab = rcu_dereference(dev->grab);
 465		if (!grab || grab == handle)
 466			input_handle_event(dev, type, code, value);
 467		rcu_read_unlock();
 468
 469		spin_unlock_irqrestore(&dev->event_lock, flags);
 470	}
 471}
 472EXPORT_SYMBOL(input_inject_event);
 473
 474/**
 475 * input_alloc_absinfo - allocates array of input_absinfo structs
 476 * @dev: the input device emitting absolute events
 477 *
 478 * If the absinfo struct the caller asked for is already allocated, this
 479 * functions will not do anything.
 480 */
 481void input_alloc_absinfo(struct input_dev *dev)
 482{
 483	if (!dev->absinfo)
 484		dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo),
 485					GFP_KERNEL);
 486
 487	WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__);
 
 
 
 
 
 
 
 
 
 488}
 489EXPORT_SYMBOL(input_alloc_absinfo);
 490
 491void input_set_abs_params(struct input_dev *dev, unsigned int axis,
 492			  int min, int max, int fuzz, int flat)
 493{
 494	struct input_absinfo *absinfo;
 495
 
 
 
 496	input_alloc_absinfo(dev);
 497	if (!dev->absinfo)
 498		return;
 499
 500	absinfo = &dev->absinfo[axis];
 501	absinfo->minimum = min;
 502	absinfo->maximum = max;
 503	absinfo->fuzz = fuzz;
 504	absinfo->flat = flat;
 505
 506	__set_bit(EV_ABS, dev->evbit);
 507	__set_bit(axis, dev->absbit);
 508}
 509EXPORT_SYMBOL(input_set_abs_params);
 510
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 511
 512/**
 513 * input_grab_device - grabs device for exclusive use
 514 * @handle: input handle that wants to own the device
 515 *
 516 * When a device is grabbed by an input handle all events generated by
 517 * the device are delivered only to this handle. Also events injected
 518 * by other input handles are ignored while device is grabbed.
 519 */
 520int input_grab_device(struct input_handle *handle)
 521{
 522	struct input_dev *dev = handle->dev;
 523	int retval;
 524
 525	retval = mutex_lock_interruptible(&dev->mutex);
 526	if (retval)
 527		return retval;
 528
 529	if (dev->grab) {
 530		retval = -EBUSY;
 531		goto out;
 532	}
 533
 534	rcu_assign_pointer(dev->grab, handle);
 535
 536 out:
 537	mutex_unlock(&dev->mutex);
 538	return retval;
 539}
 540EXPORT_SYMBOL(input_grab_device);
 541
 542static void __input_release_device(struct input_handle *handle)
 543{
 544	struct input_dev *dev = handle->dev;
 545	struct input_handle *grabber;
 546
 547	grabber = rcu_dereference_protected(dev->grab,
 548					    lockdep_is_held(&dev->mutex));
 549	if (grabber == handle) {
 550		rcu_assign_pointer(dev->grab, NULL);
 551		/* Make sure input_pass_event() notices that grab is gone */
 552		synchronize_rcu();
 553
 554		list_for_each_entry(handle, &dev->h_list, d_node)
 555			if (handle->open && handle->handler->start)
 556				handle->handler->start(handle);
 557	}
 558}
 559
 560/**
 561 * input_release_device - release previously grabbed device
 562 * @handle: input handle that owns the device
 563 *
 564 * Releases previously grabbed device so that other input handles can
 565 * start receiving input events. Upon release all handlers attached
 566 * to the device have their start() method called so they have a change
 567 * to synchronize device state with the rest of the system.
 568 */
 569void input_release_device(struct input_handle *handle)
 570{
 571	struct input_dev *dev = handle->dev;
 572
 573	mutex_lock(&dev->mutex);
 574	__input_release_device(handle);
 575	mutex_unlock(&dev->mutex);
 576}
 577EXPORT_SYMBOL(input_release_device);
 578
 579/**
 580 * input_open_device - open input device
 581 * @handle: handle through which device is being accessed
 582 *
 583 * This function should be called by input handlers when they
 584 * want to start receive events from given input device.
 585 */
 586int input_open_device(struct input_handle *handle)
 587{
 588	struct input_dev *dev = handle->dev;
 589	int retval;
 590
 591	retval = mutex_lock_interruptible(&dev->mutex);
 592	if (retval)
 593		return retval;
 594
 595	if (dev->going_away) {
 596		retval = -ENODEV;
 597		goto out;
 598	}
 599
 600	handle->open++;
 601
 602	if (!dev->users++ && dev->open)
 
 
 
 
 
 
 
 
 603		retval = dev->open(dev);
 604
 605	if (retval) {
 606		dev->users--;
 607		if (!--handle->open) {
 608			/*
 609			 * Make sure we are not delivering any more events
 610			 * through this handle
 611			 */
 612			synchronize_rcu();
 
 613		}
 614	}
 615
 
 
 
 616 out:
 617	mutex_unlock(&dev->mutex);
 618	return retval;
 619}
 620EXPORT_SYMBOL(input_open_device);
 621
 622int input_flush_device(struct input_handle *handle, struct file *file)
 623{
 624	struct input_dev *dev = handle->dev;
 625	int retval;
 626
 627	retval = mutex_lock_interruptible(&dev->mutex);
 628	if (retval)
 629		return retval;
 630
 631	if (dev->flush)
 632		retval = dev->flush(dev, file);
 633
 634	mutex_unlock(&dev->mutex);
 635	return retval;
 636}
 637EXPORT_SYMBOL(input_flush_device);
 638
 639/**
 640 * input_close_device - close input device
 641 * @handle: handle through which device is being accessed
 642 *
 643 * This function should be called by input handlers when they
 644 * want to stop receive events from given input device.
 645 */
 646void input_close_device(struct input_handle *handle)
 647{
 648	struct input_dev *dev = handle->dev;
 649
 650	mutex_lock(&dev->mutex);
 651
 652	__input_release_device(handle);
 653
 654	if (!--dev->users && dev->close)
 655		dev->close(dev);
 
 
 
 
 656
 657	if (!--handle->open) {
 658		/*
 659		 * synchronize_rcu() makes sure that input_pass_event()
 660		 * completed and that no more input events are delivered
 661		 * through this handle
 662		 */
 663		synchronize_rcu();
 664	}
 665
 666	mutex_unlock(&dev->mutex);
 667}
 668EXPORT_SYMBOL(input_close_device);
 669
 670/*
 671 * Simulate keyup events for all keys that are marked as pressed.
 672 * The function must be called with dev->event_lock held.
 673 */
 674static void input_dev_release_keys(struct input_dev *dev)
 675{
 676	bool need_sync = false;
 677	int code;
 678
 
 
 679	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
 680		for_each_set_bit(code, dev->key, KEY_CNT) {
 681			input_pass_event(dev, EV_KEY, code, 0);
 682			need_sync = true;
 683		}
 
 684
 685		if (need_sync)
 686			input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
 687
 688		memset(dev->key, 0, sizeof(dev->key));
 689	}
 690}
 691
 692/*
 693 * Prepare device for unregistering
 694 */
 695static void input_disconnect_device(struct input_dev *dev)
 696{
 697	struct input_handle *handle;
 698
 699	/*
 700	 * Mark device as going away. Note that we take dev->mutex here
 701	 * not to protect access to dev->going_away but rather to ensure
 702	 * that there are no threads in the middle of input_open_device()
 703	 */
 704	mutex_lock(&dev->mutex);
 705	dev->going_away = true;
 706	mutex_unlock(&dev->mutex);
 707
 708	spin_lock_irq(&dev->event_lock);
 709
 710	/*
 711	 * Simulate keyup events for all pressed keys so that handlers
 712	 * are not left with "stuck" keys. The driver may continue
 713	 * generate events even after we done here but they will not
 714	 * reach any handlers.
 715	 */
 716	input_dev_release_keys(dev);
 
 717
 718	list_for_each_entry(handle, &dev->h_list, d_node)
 719		handle->open = 0;
 720
 721	spin_unlock_irq(&dev->event_lock);
 722}
 723
 724/**
 725 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
 726 * @ke: keymap entry containing scancode to be converted.
 727 * @scancode: pointer to the location where converted scancode should
 728 *	be stored.
 729 *
 730 * This function is used to convert scancode stored in &struct keymap_entry
 731 * into scalar form understood by legacy keymap handling methods. These
 732 * methods expect scancodes to be represented as 'unsigned int'.
 733 */
 734int input_scancode_to_scalar(const struct input_keymap_entry *ke,
 735			     unsigned int *scancode)
 736{
 737	switch (ke->len) {
 738	case 1:
 739		*scancode = *((u8 *)ke->scancode);
 740		break;
 741
 742	case 2:
 743		*scancode = *((u16 *)ke->scancode);
 744		break;
 745
 746	case 4:
 747		*scancode = *((u32 *)ke->scancode);
 748		break;
 749
 750	default:
 751		return -EINVAL;
 752	}
 753
 754	return 0;
 755}
 756EXPORT_SYMBOL(input_scancode_to_scalar);
 757
 758/*
 759 * Those routines handle the default case where no [gs]etkeycode() is
 760 * defined. In this case, an array indexed by the scancode is used.
 761 */
 762
 763static unsigned int input_fetch_keycode(struct input_dev *dev,
 764					unsigned int index)
 765{
 766	switch (dev->keycodesize) {
 767	case 1:
 768		return ((u8 *)dev->keycode)[index];
 769
 770	case 2:
 771		return ((u16 *)dev->keycode)[index];
 772
 773	default:
 774		return ((u32 *)dev->keycode)[index];
 775	}
 776}
 777
 778static int input_default_getkeycode(struct input_dev *dev,
 779				    struct input_keymap_entry *ke)
 780{
 781	unsigned int index;
 782	int error;
 783
 784	if (!dev->keycodesize)
 785		return -EINVAL;
 786
 787	if (ke->flags & INPUT_KEYMAP_BY_INDEX)
 788		index = ke->index;
 789	else {
 790		error = input_scancode_to_scalar(ke, &index);
 791		if (error)
 792			return error;
 793	}
 794
 795	if (index >= dev->keycodemax)
 796		return -EINVAL;
 797
 798	ke->keycode = input_fetch_keycode(dev, index);
 799	ke->index = index;
 800	ke->len = sizeof(index);
 801	memcpy(ke->scancode, &index, sizeof(index));
 802
 803	return 0;
 804}
 805
 806static int input_default_setkeycode(struct input_dev *dev,
 807				    const struct input_keymap_entry *ke,
 808				    unsigned int *old_keycode)
 809{
 810	unsigned int index;
 811	int error;
 812	int i;
 813
 814	if (!dev->keycodesize)
 815		return -EINVAL;
 816
 817	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
 818		index = ke->index;
 819	} else {
 820		error = input_scancode_to_scalar(ke, &index);
 821		if (error)
 822			return error;
 823	}
 824
 825	if (index >= dev->keycodemax)
 826		return -EINVAL;
 827
 828	if (dev->keycodesize < sizeof(ke->keycode) &&
 829			(ke->keycode >> (dev->keycodesize * 8)))
 830		return -EINVAL;
 831
 832	switch (dev->keycodesize) {
 833		case 1: {
 834			u8 *k = (u8 *)dev->keycode;
 835			*old_keycode = k[index];
 836			k[index] = ke->keycode;
 837			break;
 838		}
 839		case 2: {
 840			u16 *k = (u16 *)dev->keycode;
 841			*old_keycode = k[index];
 842			k[index] = ke->keycode;
 843			break;
 844		}
 845		default: {
 846			u32 *k = (u32 *)dev->keycode;
 847			*old_keycode = k[index];
 848			k[index] = ke->keycode;
 849			break;
 850		}
 851	}
 852
 853	__clear_bit(*old_keycode, dev->keybit);
 854	__set_bit(ke->keycode, dev->keybit);
 855
 856	for (i = 0; i < dev->keycodemax; i++) {
 857		if (input_fetch_keycode(dev, i) == *old_keycode) {
 858			__set_bit(*old_keycode, dev->keybit);
 859			break; /* Setting the bit twice is useless, so break */
 
 860		}
 861	}
 862
 
 863	return 0;
 864}
 865
 866/**
 867 * input_get_keycode - retrieve keycode currently mapped to a given scancode
 868 * @dev: input device which keymap is being queried
 869 * @ke: keymap entry
 870 *
 871 * This function should be called by anyone interested in retrieving current
 872 * keymap. Presently evdev handlers use it.
 873 */
 874int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
 875{
 876	unsigned long flags;
 877	int retval;
 878
 879	spin_lock_irqsave(&dev->event_lock, flags);
 880	retval = dev->getkeycode(dev, ke);
 881	spin_unlock_irqrestore(&dev->event_lock, flags);
 882
 883	return retval;
 884}
 885EXPORT_SYMBOL(input_get_keycode);
 886
 887/**
 888 * input_set_keycode - attribute a keycode to a given scancode
 889 * @dev: input device which keymap is being updated
 890 * @ke: new keymap entry
 891 *
 892 * This function should be called by anyone needing to update current
 893 * keymap. Presently keyboard and evdev handlers use it.
 894 */
 895int input_set_keycode(struct input_dev *dev,
 896		      const struct input_keymap_entry *ke)
 897{
 898	unsigned long flags;
 899	unsigned int old_keycode;
 900	int retval;
 901
 902	if (ke->keycode > KEY_MAX)
 903		return -EINVAL;
 904
 905	spin_lock_irqsave(&dev->event_lock, flags);
 906
 907	retval = dev->setkeycode(dev, ke, &old_keycode);
 908	if (retval)
 909		goto out;
 910
 911	/* Make sure KEY_RESERVED did not get enabled. */
 912	__clear_bit(KEY_RESERVED, dev->keybit);
 913
 914	/*
 915	 * Simulate keyup event if keycode is not present
 916	 * in the keymap anymore
 917	 */
 918	if (test_bit(EV_KEY, dev->evbit) &&
 919	    !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
 920	    __test_and_clear_bit(old_keycode, dev->key)) {
 921		struct input_value vals[] =  {
 922			{ EV_KEY, old_keycode, 0 },
 923			input_value_sync
 924		};
 925
 926		input_pass_values(dev, vals, ARRAY_SIZE(vals));
 
 
 
 
 
 
 
 
 927	}
 928
 929 out:
 930	spin_unlock_irqrestore(&dev->event_lock, flags);
 931
 932	return retval;
 933}
 934EXPORT_SYMBOL(input_set_keycode);
 935
 936bool input_match_device_id(const struct input_dev *dev,
 937			   const struct input_device_id *id)
 938{
 939	if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
 940		if (id->bustype != dev->id.bustype)
 941			return false;
 942
 943	if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
 944		if (id->vendor != dev->id.vendor)
 945			return false;
 946
 947	if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
 948		if (id->product != dev->id.product)
 949			return false;
 950
 951	if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
 952		if (id->version != dev->id.version)
 953			return false;
 954
 955	if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
 956	    !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
 957	    !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
 958	    !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
 959	    !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
 960	    !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
 961	    !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
 962	    !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
 963	    !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
 964	    !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
 965		return false;
 966	}
 967
 968	return true;
 969}
 970EXPORT_SYMBOL(input_match_device_id);
 971
 972static const struct input_device_id *input_match_device(struct input_handler *handler,
 973							struct input_dev *dev)
 974{
 975	const struct input_device_id *id;
 976
 977	for (id = handler->id_table; id->flags || id->driver_info; id++) {
 978		if (input_match_device_id(dev, id) &&
 979		    (!handler->match || handler->match(handler, dev))) {
 980			return id;
 981		}
 982	}
 983
 984	return NULL;
 985}
 986
 987static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
 988{
 989	const struct input_device_id *id;
 990	int error;
 991
 992	id = input_match_device(handler, dev);
 993	if (!id)
 994		return -ENODEV;
 995
 996	error = handler->connect(handler, dev, id);
 997	if (error && error != -ENODEV)
 998		pr_err("failed to attach handler %s to device %s, error: %d\n",
 999		       handler->name, kobject_name(&dev->dev.kobj), error);
1000
1001	return error;
1002}
1003
1004#ifdef CONFIG_COMPAT
1005
1006static int input_bits_to_string(char *buf, int buf_size,
1007				unsigned long bits, bool skip_empty)
1008{
1009	int len = 0;
1010
1011	if (in_compat_syscall()) {
1012		u32 dword = bits >> 32;
1013		if (dword || !skip_empty)
1014			len += snprintf(buf, buf_size, "%x ", dword);
1015
1016		dword = bits & 0xffffffffUL;
1017		if (dword || !skip_empty || len)
1018			len += snprintf(buf + len, max(buf_size - len, 0),
1019					"%x", dword);
1020	} else {
1021		if (bits || !skip_empty)
1022			len += snprintf(buf, buf_size, "%lx", bits);
1023	}
1024
1025	return len;
1026}
1027
1028#else /* !CONFIG_COMPAT */
1029
1030static int input_bits_to_string(char *buf, int buf_size,
1031				unsigned long bits, bool skip_empty)
1032{
1033	return bits || !skip_empty ?
1034		snprintf(buf, buf_size, "%lx", bits) : 0;
1035}
1036
1037#endif
1038
1039#ifdef CONFIG_PROC_FS
1040
1041static struct proc_dir_entry *proc_bus_input_dir;
1042static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1043static int input_devices_state;
1044
1045static inline void input_wakeup_procfs_readers(void)
1046{
1047	input_devices_state++;
1048	wake_up(&input_devices_poll_wait);
1049}
1050
1051static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
1052{
1053	poll_wait(file, &input_devices_poll_wait, wait);
1054	if (file->f_version != input_devices_state) {
1055		file->f_version = input_devices_state;
1056		return EPOLLIN | EPOLLRDNORM;
1057	}
1058
1059	return 0;
1060}
1061
1062union input_seq_state {
1063	struct {
1064		unsigned short pos;
1065		bool mutex_acquired;
1066	};
1067	void *p;
1068};
1069
1070static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1071{
1072	union input_seq_state *state = (union input_seq_state *)&seq->private;
1073	int error;
1074
1075	/* We need to fit into seq->private pointer */
1076	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1077
1078	error = mutex_lock_interruptible(&input_mutex);
1079	if (error) {
1080		state->mutex_acquired = false;
1081		return ERR_PTR(error);
1082	}
1083
1084	state->mutex_acquired = true;
1085
1086	return seq_list_start(&input_dev_list, *pos);
1087}
1088
1089static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1090{
1091	return seq_list_next(v, &input_dev_list, pos);
1092}
1093
1094static void input_seq_stop(struct seq_file *seq, void *v)
1095{
1096	union input_seq_state *state = (union input_seq_state *)&seq->private;
1097
1098	if (state->mutex_acquired)
1099		mutex_unlock(&input_mutex);
1100}
1101
1102static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1103				   unsigned long *bitmap, int max)
1104{
1105	int i;
1106	bool skip_empty = true;
1107	char buf[18];
1108
1109	seq_printf(seq, "B: %s=", name);
1110
1111	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1112		if (input_bits_to_string(buf, sizeof(buf),
1113					 bitmap[i], skip_empty)) {
1114			skip_empty = false;
1115			seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1116		}
1117	}
1118
1119	/*
1120	 * If no output was produced print a single 0.
1121	 */
1122	if (skip_empty)
1123		seq_putc(seq, '0');
1124
1125	seq_putc(seq, '\n');
1126}
1127
1128static int input_devices_seq_show(struct seq_file *seq, void *v)
1129{
1130	struct input_dev *dev = container_of(v, struct input_dev, node);
1131	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1132	struct input_handle *handle;
1133
1134	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1135		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1136
1137	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1138	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1139	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1140	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1141	seq_puts(seq, "H: Handlers=");
1142
1143	list_for_each_entry(handle, &dev->h_list, d_node)
1144		seq_printf(seq, "%s ", handle->name);
1145	seq_putc(seq, '\n');
1146
1147	input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1148
1149	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1150	if (test_bit(EV_KEY, dev->evbit))
1151		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1152	if (test_bit(EV_REL, dev->evbit))
1153		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1154	if (test_bit(EV_ABS, dev->evbit))
1155		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1156	if (test_bit(EV_MSC, dev->evbit))
1157		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1158	if (test_bit(EV_LED, dev->evbit))
1159		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1160	if (test_bit(EV_SND, dev->evbit))
1161		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1162	if (test_bit(EV_FF, dev->evbit))
1163		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1164	if (test_bit(EV_SW, dev->evbit))
1165		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1166
1167	seq_putc(seq, '\n');
1168
1169	kfree(path);
1170	return 0;
1171}
1172
1173static const struct seq_operations input_devices_seq_ops = {
1174	.start	= input_devices_seq_start,
1175	.next	= input_devices_seq_next,
1176	.stop	= input_seq_stop,
1177	.show	= input_devices_seq_show,
1178};
1179
1180static int input_proc_devices_open(struct inode *inode, struct file *file)
1181{
1182	return seq_open(file, &input_devices_seq_ops);
1183}
1184
1185static const struct file_operations input_devices_fileops = {
1186	.owner		= THIS_MODULE,
1187	.open		= input_proc_devices_open,
1188	.poll		= input_proc_devices_poll,
1189	.read		= seq_read,
1190	.llseek		= seq_lseek,
1191	.release	= seq_release,
1192};
1193
1194static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1195{
1196	union input_seq_state *state = (union input_seq_state *)&seq->private;
1197	int error;
1198
1199	/* We need to fit into seq->private pointer */
1200	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1201
1202	error = mutex_lock_interruptible(&input_mutex);
1203	if (error) {
1204		state->mutex_acquired = false;
1205		return ERR_PTR(error);
1206	}
1207
1208	state->mutex_acquired = true;
1209	state->pos = *pos;
1210
1211	return seq_list_start(&input_handler_list, *pos);
1212}
1213
1214static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1215{
1216	union input_seq_state *state = (union input_seq_state *)&seq->private;
1217
1218	state->pos = *pos + 1;
1219	return seq_list_next(v, &input_handler_list, pos);
1220}
1221
1222static int input_handlers_seq_show(struct seq_file *seq, void *v)
1223{
1224	struct input_handler *handler = container_of(v, struct input_handler, node);
1225	union input_seq_state *state = (union input_seq_state *)&seq->private;
1226
1227	seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1228	if (handler->filter)
1229		seq_puts(seq, " (filter)");
1230	if (handler->legacy_minors)
1231		seq_printf(seq, " Minor=%d", handler->minor);
1232	seq_putc(seq, '\n');
1233
1234	return 0;
1235}
1236
1237static const struct seq_operations input_handlers_seq_ops = {
1238	.start	= input_handlers_seq_start,
1239	.next	= input_handlers_seq_next,
1240	.stop	= input_seq_stop,
1241	.show	= input_handlers_seq_show,
1242};
1243
1244static int input_proc_handlers_open(struct inode *inode, struct file *file)
1245{
1246	return seq_open(file, &input_handlers_seq_ops);
1247}
1248
1249static const struct file_operations input_handlers_fileops = {
1250	.owner		= THIS_MODULE,
1251	.open		= input_proc_handlers_open,
1252	.read		= seq_read,
1253	.llseek		= seq_lseek,
1254	.release	= seq_release,
1255};
1256
1257static int __init input_proc_init(void)
1258{
1259	struct proc_dir_entry *entry;
1260
1261	proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1262	if (!proc_bus_input_dir)
1263		return -ENOMEM;
1264
1265	entry = proc_create("devices", 0, proc_bus_input_dir,
1266			    &input_devices_fileops);
1267	if (!entry)
1268		goto fail1;
1269
1270	entry = proc_create("handlers", 0, proc_bus_input_dir,
1271			    &input_handlers_fileops);
1272	if (!entry)
1273		goto fail2;
1274
1275	return 0;
1276
1277 fail2:	remove_proc_entry("devices", proc_bus_input_dir);
1278 fail1: remove_proc_entry("bus/input", NULL);
1279	return -ENOMEM;
1280}
1281
1282static void input_proc_exit(void)
1283{
1284	remove_proc_entry("devices", proc_bus_input_dir);
1285	remove_proc_entry("handlers", proc_bus_input_dir);
1286	remove_proc_entry("bus/input", NULL);
1287}
1288
1289#else /* !CONFIG_PROC_FS */
1290static inline void input_wakeup_procfs_readers(void) { }
1291static inline int input_proc_init(void) { return 0; }
1292static inline void input_proc_exit(void) { }
1293#endif
1294
1295#define INPUT_DEV_STRING_ATTR_SHOW(name)				\
1296static ssize_t input_dev_show_##name(struct device *dev,		\
1297				     struct device_attribute *attr,	\
1298				     char *buf)				\
1299{									\
1300	struct input_dev *input_dev = to_input_dev(dev);		\
1301									\
1302	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
1303			 input_dev->name ? input_dev->name : "");	\
1304}									\
1305static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1306
1307INPUT_DEV_STRING_ATTR_SHOW(name);
1308INPUT_DEV_STRING_ATTR_SHOW(phys);
1309INPUT_DEV_STRING_ATTR_SHOW(uniq);
1310
1311static int input_print_modalias_bits(char *buf, int size,
1312				     char name, unsigned long *bm,
1313				     unsigned int min_bit, unsigned int max_bit)
1314{
1315	int len = 0, i;
1316
1317	len += snprintf(buf, max(size, 0), "%c", name);
1318	for (i = min_bit; i < max_bit; i++)
1319		if (bm[BIT_WORD(i)] & BIT_MASK(i))
1320			len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1321	return len;
1322}
1323
1324static int input_print_modalias(char *buf, int size, struct input_dev *id,
1325				int add_cr)
1326{
1327	int len;
1328
1329	len = snprintf(buf, max(size, 0),
1330		       "input:b%04Xv%04Xp%04Xe%04X-",
1331		       id->id.bustype, id->id.vendor,
1332		       id->id.product, id->id.version);
1333
1334	len += input_print_modalias_bits(buf + len, size - len,
1335				'e', id->evbit, 0, EV_MAX);
1336	len += input_print_modalias_bits(buf + len, size - len,
1337				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1338	len += input_print_modalias_bits(buf + len, size - len,
1339				'r', id->relbit, 0, REL_MAX);
1340	len += input_print_modalias_bits(buf + len, size - len,
1341				'a', id->absbit, 0, ABS_MAX);
1342	len += input_print_modalias_bits(buf + len, size - len,
1343				'm', id->mscbit, 0, MSC_MAX);
1344	len += input_print_modalias_bits(buf + len, size - len,
1345				'l', id->ledbit, 0, LED_MAX);
1346	len += input_print_modalias_bits(buf + len, size - len,
1347				's', id->sndbit, 0, SND_MAX);
1348	len += input_print_modalias_bits(buf + len, size - len,
1349				'f', id->ffbit, 0, FF_MAX);
1350	len += input_print_modalias_bits(buf + len, size - len,
1351				'w', id->swbit, 0, SW_MAX);
1352
1353	if (add_cr)
1354		len += snprintf(buf + len, max(size - len, 0), "\n");
1355
1356	return len;
1357}
1358
1359static ssize_t input_dev_show_modalias(struct device *dev,
1360				       struct device_attribute *attr,
1361				       char *buf)
1362{
1363	struct input_dev *id = to_input_dev(dev);
1364	ssize_t len;
1365
1366	len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1367
1368	return min_t(int, len, PAGE_SIZE);
1369}
1370static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1371
1372static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1373			      int max, int add_cr);
1374
1375static ssize_t input_dev_show_properties(struct device *dev,
1376					 struct device_attribute *attr,
1377					 char *buf)
1378{
1379	struct input_dev *input_dev = to_input_dev(dev);
1380	int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1381				     INPUT_PROP_MAX, true);
1382	return min_t(int, len, PAGE_SIZE);
1383}
1384static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1385
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1386static struct attribute *input_dev_attrs[] = {
1387	&dev_attr_name.attr,
1388	&dev_attr_phys.attr,
1389	&dev_attr_uniq.attr,
1390	&dev_attr_modalias.attr,
1391	&dev_attr_properties.attr,
 
1392	NULL
1393};
1394
1395static const struct attribute_group input_dev_attr_group = {
1396	.attrs	= input_dev_attrs,
1397};
1398
1399#define INPUT_DEV_ID_ATTR(name)						\
1400static ssize_t input_dev_show_id_##name(struct device *dev,		\
1401					struct device_attribute *attr,	\
1402					char *buf)			\
1403{									\
1404	struct input_dev *input_dev = to_input_dev(dev);		\
1405	return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name);	\
1406}									\
1407static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1408
1409INPUT_DEV_ID_ATTR(bustype);
1410INPUT_DEV_ID_ATTR(vendor);
1411INPUT_DEV_ID_ATTR(product);
1412INPUT_DEV_ID_ATTR(version);
1413
1414static struct attribute *input_dev_id_attrs[] = {
1415	&dev_attr_bustype.attr,
1416	&dev_attr_vendor.attr,
1417	&dev_attr_product.attr,
1418	&dev_attr_version.attr,
1419	NULL
1420};
1421
1422static const struct attribute_group input_dev_id_attr_group = {
1423	.name	= "id",
1424	.attrs	= input_dev_id_attrs,
1425};
1426
1427static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1428			      int max, int add_cr)
1429{
1430	int i;
1431	int len = 0;
1432	bool skip_empty = true;
1433
1434	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1435		len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1436					    bitmap[i], skip_empty);
1437		if (len) {
1438			skip_empty = false;
1439			if (i > 0)
1440				len += snprintf(buf + len, max(buf_size - len, 0), " ");
1441		}
1442	}
1443
1444	/*
1445	 * If no output was produced print a single 0.
1446	 */
1447	if (len == 0)
1448		len = snprintf(buf, buf_size, "%d", 0);
1449
1450	if (add_cr)
1451		len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1452
1453	return len;
1454}
1455
1456#define INPUT_DEV_CAP_ATTR(ev, bm)					\
1457static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
1458				       struct device_attribute *attr,	\
1459				       char *buf)			\
1460{									\
1461	struct input_dev *input_dev = to_input_dev(dev);		\
1462	int len = input_print_bitmap(buf, PAGE_SIZE,			\
1463				     input_dev->bm##bit, ev##_MAX,	\
1464				     true);				\
1465	return min_t(int, len, PAGE_SIZE);				\
1466}									\
1467static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1468
1469INPUT_DEV_CAP_ATTR(EV, ev);
1470INPUT_DEV_CAP_ATTR(KEY, key);
1471INPUT_DEV_CAP_ATTR(REL, rel);
1472INPUT_DEV_CAP_ATTR(ABS, abs);
1473INPUT_DEV_CAP_ATTR(MSC, msc);
1474INPUT_DEV_CAP_ATTR(LED, led);
1475INPUT_DEV_CAP_ATTR(SND, snd);
1476INPUT_DEV_CAP_ATTR(FF, ff);
1477INPUT_DEV_CAP_ATTR(SW, sw);
1478
1479static struct attribute *input_dev_caps_attrs[] = {
1480	&dev_attr_ev.attr,
1481	&dev_attr_key.attr,
1482	&dev_attr_rel.attr,
1483	&dev_attr_abs.attr,
1484	&dev_attr_msc.attr,
1485	&dev_attr_led.attr,
1486	&dev_attr_snd.attr,
1487	&dev_attr_ff.attr,
1488	&dev_attr_sw.attr,
1489	NULL
1490};
1491
1492static const struct attribute_group input_dev_caps_attr_group = {
1493	.name	= "capabilities",
1494	.attrs	= input_dev_caps_attrs,
1495};
1496
1497static const struct attribute_group *input_dev_attr_groups[] = {
1498	&input_dev_attr_group,
1499	&input_dev_id_attr_group,
1500	&input_dev_caps_attr_group,
 
1501	NULL
1502};
1503
1504static void input_dev_release(struct device *device)
1505{
1506	struct input_dev *dev = to_input_dev(device);
1507
1508	input_ff_destroy(dev);
1509	input_mt_destroy_slots(dev);
 
1510	kfree(dev->absinfo);
1511	kfree(dev->vals);
1512	kfree(dev);
1513
1514	module_put(THIS_MODULE);
1515}
1516
1517/*
1518 * Input uevent interface - loading event handlers based on
1519 * device bitfields.
1520 */
1521static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1522				   const char *name, unsigned long *bitmap, int max)
1523{
1524	int len;
1525
1526	if (add_uevent_var(env, "%s", name))
1527		return -ENOMEM;
1528
1529	len = input_print_bitmap(&env->buf[env->buflen - 1],
1530				 sizeof(env->buf) - env->buflen,
1531				 bitmap, max, false);
1532	if (len >= (sizeof(env->buf) - env->buflen))
1533		return -ENOMEM;
1534
1535	env->buflen += len;
1536	return 0;
1537}
1538
1539static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1540					 struct input_dev *dev)
1541{
1542	int len;
1543
1544	if (add_uevent_var(env, "MODALIAS="))
1545		return -ENOMEM;
1546
1547	len = input_print_modalias(&env->buf[env->buflen - 1],
1548				   sizeof(env->buf) - env->buflen,
1549				   dev, 0);
1550	if (len >= (sizeof(env->buf) - env->buflen))
1551		return -ENOMEM;
1552
1553	env->buflen += len;
1554	return 0;
1555}
1556
1557#define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
1558	do {								\
1559		int err = add_uevent_var(env, fmt, val);		\
1560		if (err)						\
1561			return err;					\
1562	} while (0)
1563
1564#define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
1565	do {								\
1566		int err = input_add_uevent_bm_var(env, name, bm, max);	\
1567		if (err)						\
1568			return err;					\
1569	} while (0)
1570
1571#define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
1572	do {								\
1573		int err = input_add_uevent_modalias_var(env, dev);	\
1574		if (err)						\
1575			return err;					\
1576	} while (0)
1577
1578static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1579{
1580	struct input_dev *dev = to_input_dev(device);
1581
1582	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1583				dev->id.bustype, dev->id.vendor,
1584				dev->id.product, dev->id.version);
1585	if (dev->name)
1586		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1587	if (dev->phys)
1588		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1589	if (dev->uniq)
1590		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1591
1592	INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1593
1594	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1595	if (test_bit(EV_KEY, dev->evbit))
1596		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1597	if (test_bit(EV_REL, dev->evbit))
1598		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1599	if (test_bit(EV_ABS, dev->evbit))
1600		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1601	if (test_bit(EV_MSC, dev->evbit))
1602		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1603	if (test_bit(EV_LED, dev->evbit))
1604		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1605	if (test_bit(EV_SND, dev->evbit))
1606		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1607	if (test_bit(EV_FF, dev->evbit))
1608		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1609	if (test_bit(EV_SW, dev->evbit))
1610		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1611
1612	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1613
1614	return 0;
1615}
1616
1617#define INPUT_DO_TOGGLE(dev, type, bits, on)				\
1618	do {								\
1619		int i;							\
1620		bool active;						\
1621									\
1622		if (!test_bit(EV_##type, dev->evbit))			\
1623			break;						\
1624									\
1625		for_each_set_bit(i, dev->bits##bit, type##_CNT) {	\
1626			active = test_bit(i, dev->bits);		\
1627			if (!active && !on)				\
1628				continue;				\
1629									\
1630			dev->event(dev, EV_##type, i, on ? active : 0);	\
1631		}							\
1632	} while (0)
1633
1634static void input_dev_toggle(struct input_dev *dev, bool activate)
1635{
1636	if (!dev->event)
1637		return;
1638
1639	INPUT_DO_TOGGLE(dev, LED, led, activate);
1640	INPUT_DO_TOGGLE(dev, SND, snd, activate);
1641
1642	if (activate && test_bit(EV_REP, dev->evbit)) {
1643		dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1644		dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1645	}
1646}
1647
1648/**
1649 * input_reset_device() - reset/restore the state of input device
1650 * @dev: input device whose state needs to be reset
1651 *
1652 * This function tries to reset the state of an opened input device and
1653 * bring internal state and state if the hardware in sync with each other.
1654 * We mark all keys as released, restore LED state, repeat rate, etc.
1655 */
1656void input_reset_device(struct input_dev *dev)
1657{
1658	unsigned long flags;
1659
1660	mutex_lock(&dev->mutex);
1661	spin_lock_irqsave(&dev->event_lock, flags);
1662
1663	input_dev_toggle(dev, true);
1664	input_dev_release_keys(dev);
 
1665
1666	spin_unlock_irqrestore(&dev->event_lock, flags);
1667	mutex_unlock(&dev->mutex);
1668}
1669EXPORT_SYMBOL(input_reset_device);
1670
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1671#ifdef CONFIG_PM_SLEEP
1672static int input_dev_suspend(struct device *dev)
1673{
1674	struct input_dev *input_dev = to_input_dev(dev);
1675
1676	spin_lock_irq(&input_dev->event_lock);
1677
1678	/*
1679	 * Keys that are pressed now are unlikely to be
1680	 * still pressed when we resume.
1681	 */
1682	input_dev_release_keys(input_dev);
 
1683
1684	/* Turn off LEDs and sounds, if any are active. */
1685	input_dev_toggle(input_dev, false);
1686
1687	spin_unlock_irq(&input_dev->event_lock);
1688
1689	return 0;
1690}
1691
1692static int input_dev_resume(struct device *dev)
1693{
1694	struct input_dev *input_dev = to_input_dev(dev);
1695
1696	spin_lock_irq(&input_dev->event_lock);
1697
1698	/* Restore state of LEDs and sounds, if any were active. */
1699	input_dev_toggle(input_dev, true);
1700
1701	spin_unlock_irq(&input_dev->event_lock);
1702
1703	return 0;
1704}
1705
1706static int input_dev_freeze(struct device *dev)
1707{
1708	struct input_dev *input_dev = to_input_dev(dev);
1709
1710	spin_lock_irq(&input_dev->event_lock);
1711
1712	/*
1713	 * Keys that are pressed now are unlikely to be
1714	 * still pressed when we resume.
1715	 */
1716	input_dev_release_keys(input_dev);
 
1717
1718	spin_unlock_irq(&input_dev->event_lock);
1719
1720	return 0;
1721}
1722
1723static int input_dev_poweroff(struct device *dev)
1724{
1725	struct input_dev *input_dev = to_input_dev(dev);
1726
1727	spin_lock_irq(&input_dev->event_lock);
1728
1729	/* Turn off LEDs and sounds, if any are active. */
1730	input_dev_toggle(input_dev, false);
1731
1732	spin_unlock_irq(&input_dev->event_lock);
1733
1734	return 0;
1735}
1736
1737static const struct dev_pm_ops input_dev_pm_ops = {
1738	.suspend	= input_dev_suspend,
1739	.resume		= input_dev_resume,
1740	.freeze		= input_dev_freeze,
1741	.poweroff	= input_dev_poweroff,
1742	.restore	= input_dev_resume,
1743};
1744#endif /* CONFIG_PM */
1745
1746static const struct device_type input_dev_type = {
1747	.groups		= input_dev_attr_groups,
1748	.release	= input_dev_release,
1749	.uevent		= input_dev_uevent,
1750#ifdef CONFIG_PM_SLEEP
1751	.pm		= &input_dev_pm_ops,
1752#endif
1753};
1754
1755static char *input_devnode(struct device *dev, umode_t *mode)
1756{
1757	return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1758}
1759
1760struct class input_class = {
1761	.name		= "input",
1762	.devnode	= input_devnode,
1763};
1764EXPORT_SYMBOL_GPL(input_class);
1765
1766/**
1767 * input_allocate_device - allocate memory for new input device
1768 *
1769 * Returns prepared struct input_dev or %NULL.
1770 *
1771 * NOTE: Use input_free_device() to free devices that have not been
1772 * registered; input_unregister_device() should be used for already
1773 * registered devices.
1774 */
1775struct input_dev *input_allocate_device(void)
1776{
1777	static atomic_t input_no = ATOMIC_INIT(-1);
1778	struct input_dev *dev;
1779
1780	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1781	if (dev) {
1782		dev->dev.type = &input_dev_type;
1783		dev->dev.class = &input_class;
1784		device_initialize(&dev->dev);
1785		mutex_init(&dev->mutex);
1786		spin_lock_init(&dev->event_lock);
1787		timer_setup(&dev->timer, NULL, 0);
1788		INIT_LIST_HEAD(&dev->h_list);
1789		INIT_LIST_HEAD(&dev->node);
1790
1791		dev_set_name(&dev->dev, "input%lu",
1792			     (unsigned long)atomic_inc_return(&input_no));
1793
1794		__module_get(THIS_MODULE);
1795	}
1796
1797	return dev;
1798}
1799EXPORT_SYMBOL(input_allocate_device);
1800
1801struct input_devres {
1802	struct input_dev *input;
1803};
1804
1805static int devm_input_device_match(struct device *dev, void *res, void *data)
1806{
1807	struct input_devres *devres = res;
1808
1809	return devres->input == data;
1810}
1811
1812static void devm_input_device_release(struct device *dev, void *res)
1813{
1814	struct input_devres *devres = res;
1815	struct input_dev *input = devres->input;
1816
1817	dev_dbg(dev, "%s: dropping reference to %s\n",
1818		__func__, dev_name(&input->dev));
1819	input_put_device(input);
1820}
1821
1822/**
1823 * devm_input_allocate_device - allocate managed input device
1824 * @dev: device owning the input device being created
1825 *
1826 * Returns prepared struct input_dev or %NULL.
1827 *
1828 * Managed input devices do not need to be explicitly unregistered or
1829 * freed as it will be done automatically when owner device unbinds from
1830 * its driver (or binding fails). Once managed input device is allocated,
1831 * it is ready to be set up and registered in the same fashion as regular
1832 * input device. There are no special devm_input_device_[un]register()
1833 * variants, regular ones work with both managed and unmanaged devices,
1834 * should you need them. In most cases however, managed input device need
1835 * not be explicitly unregistered or freed.
1836 *
1837 * NOTE: the owner device is set up as parent of input device and users
1838 * should not override it.
1839 */
1840struct input_dev *devm_input_allocate_device(struct device *dev)
1841{
1842	struct input_dev *input;
1843	struct input_devres *devres;
1844
1845	devres = devres_alloc(devm_input_device_release,
1846			      sizeof(*devres), GFP_KERNEL);
1847	if (!devres)
1848		return NULL;
1849
1850	input = input_allocate_device();
1851	if (!input) {
1852		devres_free(devres);
1853		return NULL;
1854	}
1855
1856	input->dev.parent = dev;
1857	input->devres_managed = true;
1858
1859	devres->input = input;
1860	devres_add(dev, devres);
1861
1862	return input;
1863}
1864EXPORT_SYMBOL(devm_input_allocate_device);
1865
1866/**
1867 * input_free_device - free memory occupied by input_dev structure
1868 * @dev: input device to free
1869 *
1870 * This function should only be used if input_register_device()
1871 * was not called yet or if it failed. Once device was registered
1872 * use input_unregister_device() and memory will be freed once last
1873 * reference to the device is dropped.
1874 *
1875 * Device should be allocated by input_allocate_device().
1876 *
1877 * NOTE: If there are references to the input device then memory
1878 * will not be freed until last reference is dropped.
1879 */
1880void input_free_device(struct input_dev *dev)
1881{
1882	if (dev) {
1883		if (dev->devres_managed)
1884			WARN_ON(devres_destroy(dev->dev.parent,
1885						devm_input_device_release,
1886						devm_input_device_match,
1887						dev));
1888		input_put_device(dev);
1889	}
1890}
1891EXPORT_SYMBOL(input_free_device);
1892
1893/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1894 * input_set_capability - mark device as capable of a certain event
1895 * @dev: device that is capable of emitting or accepting event
1896 * @type: type of the event (EV_KEY, EV_REL, etc...)
1897 * @code: event code
1898 *
1899 * In addition to setting up corresponding bit in appropriate capability
1900 * bitmap the function also adjusts dev->evbit.
1901 */
1902void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1903{
 
 
 
 
 
 
 
 
1904	switch (type) {
1905	case EV_KEY:
1906		__set_bit(code, dev->keybit);
1907		break;
1908
1909	case EV_REL:
1910		__set_bit(code, dev->relbit);
1911		break;
1912
1913	case EV_ABS:
1914		input_alloc_absinfo(dev);
1915		if (!dev->absinfo)
1916			return;
1917
1918		__set_bit(code, dev->absbit);
1919		break;
1920
1921	case EV_MSC:
1922		__set_bit(code, dev->mscbit);
1923		break;
1924
1925	case EV_SW:
1926		__set_bit(code, dev->swbit);
1927		break;
1928
1929	case EV_LED:
1930		__set_bit(code, dev->ledbit);
1931		break;
1932
1933	case EV_SND:
1934		__set_bit(code, dev->sndbit);
1935		break;
1936
1937	case EV_FF:
1938		__set_bit(code, dev->ffbit);
1939		break;
1940
1941	case EV_PWR:
1942		/* do nothing */
1943		break;
1944
1945	default:
1946		pr_err("input_set_capability: unknown type %u (code %u)\n",
1947		       type, code);
1948		dump_stack();
1949		return;
1950	}
1951
1952	__set_bit(type, dev->evbit);
1953}
1954EXPORT_SYMBOL(input_set_capability);
1955
1956static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
1957{
1958	int mt_slots;
1959	int i;
1960	unsigned int events;
1961
1962	if (dev->mt) {
1963		mt_slots = dev->mt->num_slots;
1964	} else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
1965		mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
1966			   dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
1967		mt_slots = clamp(mt_slots, 2, 32);
1968	} else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
1969		mt_slots = 2;
1970	} else {
1971		mt_slots = 0;
1972	}
1973
1974	events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
1975
1976	if (test_bit(EV_ABS, dev->evbit))
1977		for_each_set_bit(i, dev->absbit, ABS_CNT)
1978			events += input_is_mt_axis(i) ? mt_slots : 1;
1979
1980	if (test_bit(EV_REL, dev->evbit))
1981		events += bitmap_weight(dev->relbit, REL_CNT);
1982
1983	/* Make room for KEY and MSC events */
1984	events += 7;
1985
1986	return events;
1987}
1988
1989#define INPUT_CLEANSE_BITMASK(dev, type, bits)				\
1990	do {								\
1991		if (!test_bit(EV_##type, dev->evbit))			\
1992			memset(dev->bits##bit, 0,			\
1993				sizeof(dev->bits##bit));		\
1994	} while (0)
1995
1996static void input_cleanse_bitmasks(struct input_dev *dev)
1997{
1998	INPUT_CLEANSE_BITMASK(dev, KEY, key);
1999	INPUT_CLEANSE_BITMASK(dev, REL, rel);
2000	INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2001	INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2002	INPUT_CLEANSE_BITMASK(dev, LED, led);
2003	INPUT_CLEANSE_BITMASK(dev, SND, snd);
2004	INPUT_CLEANSE_BITMASK(dev, FF, ff);
2005	INPUT_CLEANSE_BITMASK(dev, SW, sw);
2006}
2007
2008static void __input_unregister_device(struct input_dev *dev)
2009{
2010	struct input_handle *handle, *next;
2011
2012	input_disconnect_device(dev);
2013
2014	mutex_lock(&input_mutex);
2015
2016	list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2017		handle->handler->disconnect(handle);
2018	WARN_ON(!list_empty(&dev->h_list));
2019
2020	del_timer_sync(&dev->timer);
2021	list_del_init(&dev->node);
2022
2023	input_wakeup_procfs_readers();
2024
2025	mutex_unlock(&input_mutex);
2026
2027	device_del(&dev->dev);
2028}
2029
2030static void devm_input_device_unregister(struct device *dev, void *res)
2031{
2032	struct input_devres *devres = res;
2033	struct input_dev *input = devres->input;
2034
2035	dev_dbg(dev, "%s: unregistering device %s\n",
2036		__func__, dev_name(&input->dev));
2037	__input_unregister_device(input);
2038}
2039
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2040/**
2041 * input_enable_softrepeat - enable software autorepeat
2042 * @dev: input device
2043 * @delay: repeat delay
2044 * @period: repeat period
2045 *
2046 * Enable software autorepeat on the input device.
2047 */
2048void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2049{
2050	dev->timer.function = input_repeat_key;
2051	dev->rep[REP_DELAY] = delay;
2052	dev->rep[REP_PERIOD] = period;
2053}
2054EXPORT_SYMBOL(input_enable_softrepeat);
2055
 
 
 
 
 
 
 
 
2056/**
2057 * input_register_device - register device with input core
2058 * @dev: device to be registered
2059 *
2060 * This function registers device with input core. The device must be
2061 * allocated with input_allocate_device() and all it's capabilities
2062 * set up before registering.
2063 * If function fails the device must be freed with input_free_device().
2064 * Once device has been successfully registered it can be unregistered
2065 * with input_unregister_device(); input_free_device() should not be
2066 * called in this case.
2067 *
2068 * Note that this function is also used to register managed input devices
2069 * (ones allocated with devm_input_allocate_device()). Such managed input
2070 * devices need not be explicitly unregistered or freed, their tear down
2071 * is controlled by the devres infrastructure. It is also worth noting
2072 * that tear down of managed input devices is internally a 2-step process:
2073 * registered managed input device is first unregistered, but stays in
2074 * memory and can still handle input_event() calls (although events will
2075 * not be delivered anywhere). The freeing of managed input device will
2076 * happen later, when devres stack is unwound to the point where device
2077 * allocation was made.
2078 */
2079int input_register_device(struct input_dev *dev)
2080{
2081	struct input_devres *devres = NULL;
2082	struct input_handler *handler;
2083	unsigned int packet_size;
2084	const char *path;
2085	int error;
2086
2087	if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2088		dev_err(&dev->dev,
2089			"Absolute device without dev->absinfo, refusing to register\n");
2090		return -EINVAL;
2091	}
2092
2093	if (dev->devres_managed) {
2094		devres = devres_alloc(devm_input_device_unregister,
2095				      sizeof(*devres), GFP_KERNEL);
2096		if (!devres)
2097			return -ENOMEM;
2098
2099		devres->input = dev;
2100	}
2101
2102	/* Every input device generates EV_SYN/SYN_REPORT events. */
2103	__set_bit(EV_SYN, dev->evbit);
2104
2105	/* KEY_RESERVED is not supposed to be transmitted to userspace. */
2106	__clear_bit(KEY_RESERVED, dev->keybit);
2107
2108	/* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2109	input_cleanse_bitmasks(dev);
2110
2111	packet_size = input_estimate_events_per_packet(dev);
2112	if (dev->hint_events_per_packet < packet_size)
2113		dev->hint_events_per_packet = packet_size;
2114
2115	dev->max_vals = dev->hint_events_per_packet + 2;
2116	dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2117	if (!dev->vals) {
2118		error = -ENOMEM;
2119		goto err_devres_free;
2120	}
2121
2122	/*
2123	 * If delay and period are pre-set by the driver, then autorepeating
2124	 * is handled by the driver itself and we don't do it in input.c.
2125	 */
2126	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2127		input_enable_softrepeat(dev, 250, 33);
2128
2129	if (!dev->getkeycode)
2130		dev->getkeycode = input_default_getkeycode;
2131
2132	if (!dev->setkeycode)
2133		dev->setkeycode = input_default_setkeycode;
 
 
 
2134
2135	error = device_add(&dev->dev);
2136	if (error)
2137		goto err_free_vals;
2138
2139	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2140	pr_info("%s as %s\n",
2141		dev->name ? dev->name : "Unspecified device",
2142		path ? path : "N/A");
2143	kfree(path);
2144
2145	error = mutex_lock_interruptible(&input_mutex);
2146	if (error)
2147		goto err_device_del;
2148
2149	list_add_tail(&dev->node, &input_dev_list);
2150
2151	list_for_each_entry(handler, &input_handler_list, node)
2152		input_attach_handler(dev, handler);
2153
2154	input_wakeup_procfs_readers();
2155
2156	mutex_unlock(&input_mutex);
2157
2158	if (dev->devres_managed) {
2159		dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2160			__func__, dev_name(&dev->dev));
2161		devres_add(dev->dev.parent, devres);
2162	}
2163	return 0;
2164
2165err_device_del:
2166	device_del(&dev->dev);
2167err_free_vals:
2168	kfree(dev->vals);
2169	dev->vals = NULL;
2170err_devres_free:
2171	devres_free(devres);
2172	return error;
2173}
2174EXPORT_SYMBOL(input_register_device);
2175
2176/**
2177 * input_unregister_device - unregister previously registered device
2178 * @dev: device to be unregistered
2179 *
2180 * This function unregisters an input device. Once device is unregistered
2181 * the caller should not try to access it as it may get freed at any moment.
2182 */
2183void input_unregister_device(struct input_dev *dev)
2184{
2185	if (dev->devres_managed) {
2186		WARN_ON(devres_destroy(dev->dev.parent,
2187					devm_input_device_unregister,
2188					devm_input_device_match,
2189					dev));
2190		__input_unregister_device(dev);
2191		/*
2192		 * We do not do input_put_device() here because it will be done
2193		 * when 2nd devres fires up.
2194		 */
2195	} else {
2196		__input_unregister_device(dev);
2197		input_put_device(dev);
2198	}
2199}
2200EXPORT_SYMBOL(input_unregister_device);
2201
2202/**
2203 * input_register_handler - register a new input handler
2204 * @handler: handler to be registered
2205 *
2206 * This function registers a new input handler (interface) for input
2207 * devices in the system and attaches it to all input devices that
2208 * are compatible with the handler.
2209 */
2210int input_register_handler(struct input_handler *handler)
2211{
2212	struct input_dev *dev;
2213	int error;
2214
2215	error = mutex_lock_interruptible(&input_mutex);
2216	if (error)
2217		return error;
2218
2219	INIT_LIST_HEAD(&handler->h_list);
2220
2221	list_add_tail(&handler->node, &input_handler_list);
2222
2223	list_for_each_entry(dev, &input_dev_list, node)
2224		input_attach_handler(dev, handler);
2225
2226	input_wakeup_procfs_readers();
2227
2228	mutex_unlock(&input_mutex);
2229	return 0;
2230}
2231EXPORT_SYMBOL(input_register_handler);
2232
2233/**
2234 * input_unregister_handler - unregisters an input handler
2235 * @handler: handler to be unregistered
2236 *
2237 * This function disconnects a handler from its input devices and
2238 * removes it from lists of known handlers.
2239 */
2240void input_unregister_handler(struct input_handler *handler)
2241{
2242	struct input_handle *handle, *next;
2243
2244	mutex_lock(&input_mutex);
2245
2246	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2247		handler->disconnect(handle);
2248	WARN_ON(!list_empty(&handler->h_list));
2249
2250	list_del_init(&handler->node);
2251
2252	input_wakeup_procfs_readers();
2253
2254	mutex_unlock(&input_mutex);
2255}
2256EXPORT_SYMBOL(input_unregister_handler);
2257
2258/**
2259 * input_handler_for_each_handle - handle iterator
2260 * @handler: input handler to iterate
2261 * @data: data for the callback
2262 * @fn: function to be called for each handle
2263 *
2264 * Iterate over @bus's list of devices, and call @fn for each, passing
2265 * it @data and stop when @fn returns a non-zero value. The function is
2266 * using RCU to traverse the list and therefore may be using in atomic
2267 * contexts. The @fn callback is invoked from RCU critical section and
2268 * thus must not sleep.
2269 */
2270int input_handler_for_each_handle(struct input_handler *handler, void *data,
2271				  int (*fn)(struct input_handle *, void *))
2272{
2273	struct input_handle *handle;
2274	int retval = 0;
2275
2276	rcu_read_lock();
2277
2278	list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2279		retval = fn(handle, data);
2280		if (retval)
2281			break;
2282	}
2283
2284	rcu_read_unlock();
2285
2286	return retval;
2287}
2288EXPORT_SYMBOL(input_handler_for_each_handle);
2289
2290/**
2291 * input_register_handle - register a new input handle
2292 * @handle: handle to register
2293 *
2294 * This function puts a new input handle onto device's
2295 * and handler's lists so that events can flow through
2296 * it once it is opened using input_open_device().
2297 *
2298 * This function is supposed to be called from handler's
2299 * connect() method.
2300 */
2301int input_register_handle(struct input_handle *handle)
2302{
2303	struct input_handler *handler = handle->handler;
2304	struct input_dev *dev = handle->dev;
2305	int error;
2306
2307	/*
2308	 * We take dev->mutex here to prevent race with
2309	 * input_release_device().
2310	 */
2311	error = mutex_lock_interruptible(&dev->mutex);
2312	if (error)
2313		return error;
2314
2315	/*
2316	 * Filters go to the head of the list, normal handlers
2317	 * to the tail.
2318	 */
2319	if (handler->filter)
2320		list_add_rcu(&handle->d_node, &dev->h_list);
2321	else
2322		list_add_tail_rcu(&handle->d_node, &dev->h_list);
2323
2324	mutex_unlock(&dev->mutex);
2325
2326	/*
2327	 * Since we are supposed to be called from ->connect()
2328	 * which is mutually exclusive with ->disconnect()
2329	 * we can't be racing with input_unregister_handle()
2330	 * and so separate lock is not needed here.
2331	 */
2332	list_add_tail_rcu(&handle->h_node, &handler->h_list);
2333
2334	if (handler->start)
2335		handler->start(handle);
2336
2337	return 0;
2338}
2339EXPORT_SYMBOL(input_register_handle);
2340
2341/**
2342 * input_unregister_handle - unregister an input handle
2343 * @handle: handle to unregister
2344 *
2345 * This function removes input handle from device's
2346 * and handler's lists.
2347 *
2348 * This function is supposed to be called from handler's
2349 * disconnect() method.
2350 */
2351void input_unregister_handle(struct input_handle *handle)
2352{
2353	struct input_dev *dev = handle->dev;
2354
2355	list_del_rcu(&handle->h_node);
2356
2357	/*
2358	 * Take dev->mutex to prevent race with input_release_device().
2359	 */
2360	mutex_lock(&dev->mutex);
2361	list_del_rcu(&handle->d_node);
2362	mutex_unlock(&dev->mutex);
2363
2364	synchronize_rcu();
2365}
2366EXPORT_SYMBOL(input_unregister_handle);
2367
2368/**
2369 * input_get_new_minor - allocates a new input minor number
2370 * @legacy_base: beginning or the legacy range to be searched
2371 * @legacy_num: size of legacy range
2372 * @allow_dynamic: whether we can also take ID from the dynamic range
2373 *
2374 * This function allocates a new device minor for from input major namespace.
2375 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2376 * parameters and whether ID can be allocated from dynamic range if there are
2377 * no free IDs in legacy range.
2378 */
2379int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2380			bool allow_dynamic)
2381{
2382	/*
2383	 * This function should be called from input handler's ->connect()
2384	 * methods, which are serialized with input_mutex, so no additional
2385	 * locking is needed here.
2386	 */
2387	if (legacy_base >= 0) {
2388		int minor = ida_simple_get(&input_ida,
2389					   legacy_base,
2390					   legacy_base + legacy_num,
2391					   GFP_KERNEL);
2392		if (minor >= 0 || !allow_dynamic)
2393			return minor;
2394	}
2395
2396	return ida_simple_get(&input_ida,
2397			      INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2398			      GFP_KERNEL);
2399}
2400EXPORT_SYMBOL(input_get_new_minor);
2401
2402/**
2403 * input_free_minor - release previously allocated minor
2404 * @minor: minor to be released
2405 *
2406 * This function releases previously allocated input minor so that it can be
2407 * reused later.
2408 */
2409void input_free_minor(unsigned int minor)
2410{
2411	ida_simple_remove(&input_ida, minor);
2412}
2413EXPORT_SYMBOL(input_free_minor);
2414
2415static int __init input_init(void)
2416{
2417	int err;
2418
2419	err = class_register(&input_class);
2420	if (err) {
2421		pr_err("unable to register input_dev class\n");
2422		return err;
2423	}
2424
2425	err = input_proc_init();
2426	if (err)
2427		goto fail1;
2428
2429	err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2430				     INPUT_MAX_CHAR_DEVICES, "input");
2431	if (err) {
2432		pr_err("unable to register char major %d", INPUT_MAJOR);
2433		goto fail2;
2434	}
2435
2436	return 0;
2437
2438 fail2:	input_proc_exit();
2439 fail1:	class_unregister(&input_class);
2440	return err;
2441}
2442
2443static void __exit input_exit(void)
2444{
2445	input_proc_exit();
2446	unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2447				 INPUT_MAX_CHAR_DEVICES);
2448	class_unregister(&input_class);
2449}
2450
2451subsys_initcall(input_init);
2452module_exit(input_exit);