Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2//
   3// regmap based irq_chip
   4//
   5// Copyright 2011 Wolfson Microelectronics plc
   6//
   7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
 
 
 
 
   8
   9#include <linux/device.h>
  10#include <linux/export.h>
  11#include <linux/interrupt.h>
  12#include <linux/irq.h>
  13#include <linux/irqdomain.h>
  14#include <linux/pm_runtime.h>
  15#include <linux/regmap.h>
  16#include <linux/slab.h>
  17
  18#include "internal.h"
  19
  20struct regmap_irq_chip_data {
  21	struct mutex lock;
  22	struct irq_chip irq_chip;
  23
  24	struct regmap *map;
  25	const struct regmap_irq_chip *chip;
  26
  27	int irq_base;
  28	struct irq_domain *domain;
  29
  30	int irq;
  31	int wake_count;
  32
  33	unsigned int mask_base;
  34	unsigned int unmask_base;
  35
  36	void *status_reg_buf;
  37	unsigned int *main_status_buf;
  38	unsigned int *status_buf;
  39	unsigned int *mask_buf;
  40	unsigned int *mask_buf_def;
  41	unsigned int *wake_buf;
  42	unsigned int *type_buf;
  43	unsigned int *type_buf_def;
  44	unsigned int **virt_buf;
  45	unsigned int **config_buf;
  46
  47	unsigned int irq_reg_stride;
  48
  49	unsigned int (*get_irq_reg)(struct regmap_irq_chip_data *data,
  50				    unsigned int base, int index);
  51
  52	unsigned int clear_status:1;
  53};
  54
  55static inline const
  56struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
  57				     int irq)
  58{
  59	return &data->chip->irqs[irq];
  60}
  61
  62static bool regmap_irq_can_bulk_read_status(struct regmap_irq_chip_data *data)
  63{
  64	struct regmap *map = data->map;
  65
  66	/*
  67	 * While possible that a user-defined ->get_irq_reg() callback might
  68	 * be linear enough to support bulk reads, most of the time it won't.
  69	 * Therefore only allow them if the default callback is being used.
  70	 */
  71	return data->irq_reg_stride == 1 && map->reg_stride == 1 &&
  72	       data->get_irq_reg == regmap_irq_get_irq_reg_linear &&
  73	       !map->use_single_read;
  74}
  75
  76static void regmap_irq_lock(struct irq_data *data)
  77{
  78	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
  79
  80	mutex_lock(&d->lock);
  81}
  82
 
 
 
 
 
 
 
 
 
 
  83static void regmap_irq_sync_unlock(struct irq_data *data)
  84{
  85	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
  86	struct regmap *map = d->map;
  87	int i, j, ret;
  88	u32 reg;
  89	u32 val;
  90
  91	if (d->chip->runtime_pm) {
  92		ret = pm_runtime_get_sync(map->dev);
  93		if (ret < 0)
  94			dev_err(map->dev, "IRQ sync failed to resume: %d\n",
  95				ret);
  96	}
  97
  98	if (d->clear_status) {
  99		for (i = 0; i < d->chip->num_regs; i++) {
 100			reg = d->get_irq_reg(d, d->chip->status_base, i);
 101
 102			ret = regmap_read(map, reg, &val);
 103			if (ret)
 104				dev_err(d->map->dev,
 105					"Failed to clear the interrupt status bits\n");
 106		}
 107
 108		d->clear_status = false;
 109	}
 110
 111	/*
 112	 * If there's been a change in the mask write it back to the
 113	 * hardware.  We rely on the use of the regmap core cache to
 114	 * suppress pointless writes.
 115	 */
 116	for (i = 0; i < d->chip->num_regs; i++) {
 117		if (d->mask_base) {
 118			if (d->chip->handle_mask_sync)
 119				d->chip->handle_mask_sync(d->map, i,
 120							  d->mask_buf_def[i],
 121							  d->mask_buf[i],
 122							  d->chip->irq_drv_data);
 123			else {
 124				reg = d->get_irq_reg(d, d->mask_base, i);
 125				ret = regmap_update_bits(d->map, reg,
 126						d->mask_buf_def[i],
 127						d->mask_buf[i]);
 128				if (ret)
 129					dev_err(d->map->dev, "Failed to sync masks in %x\n",
 130						reg);
 131			}
 132		}
 133
 134		if (d->unmask_base) {
 135			reg = d->get_irq_reg(d, d->unmask_base, i);
 136			ret = regmap_update_bits(d->map, reg,
 137					d->mask_buf_def[i], ~d->mask_buf[i]);
 138			if (ret)
 139				dev_err(d->map->dev, "Failed to sync masks in %x\n",
 
 140					reg);
 141		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 142
 143		reg = d->get_irq_reg(d, d->chip->wake_base, i);
 
 144		if (d->wake_buf) {
 145			if (d->chip->wake_invert)
 146				ret = regmap_update_bits(d->map, reg,
 147							 d->mask_buf_def[i],
 148							 ~d->wake_buf[i]);
 149			else
 150				ret = regmap_update_bits(d->map, reg,
 151							 d->mask_buf_def[i],
 152							 d->wake_buf[i]);
 153			if (ret != 0)
 154				dev_err(d->map->dev,
 155					"Failed to sync wakes in %x: %d\n",
 156					reg, ret);
 157		}
 158
 159		if (!d->chip->init_ack_masked)
 160			continue;
 161		/*
 162		 * Ack all the masked interrupts unconditionally,
 163		 * OR if there is masked interrupt which hasn't been Acked,
 164		 * it'll be ignored in irq handler, then may introduce irq storm
 165		 */
 166		if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
 167			reg = d->get_irq_reg(d, d->chip->ack_base, i);
 168
 169			/* some chips ack by write 0 */
 170			if (d->chip->ack_invert)
 171				ret = regmap_write(map, reg, ~d->mask_buf[i]);
 172			else
 173				ret = regmap_write(map, reg, d->mask_buf[i]);
 174			if (d->chip->clear_ack) {
 175				if (d->chip->ack_invert && !ret)
 176					ret = regmap_write(map, reg, UINT_MAX);
 177				else if (!ret)
 178					ret = regmap_write(map, reg, 0);
 179			}
 180			if (ret != 0)
 181				dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
 182					reg, ret);
 183		}
 184	}
 185
 186	/* Don't update the type bits if we're using mask bits for irq type. */
 187	if (!d->chip->type_in_mask) {
 188		for (i = 0; i < d->chip->num_type_reg; i++) {
 189			if (!d->type_buf_def[i])
 190				continue;
 191			reg = d->get_irq_reg(d, d->chip->type_base, i);
 192			if (d->chip->type_invert)
 193				ret = regmap_update_bits(d->map, reg,
 194					d->type_buf_def[i], ~d->type_buf[i]);
 195			else
 196				ret = regmap_update_bits(d->map, reg,
 197					d->type_buf_def[i], d->type_buf[i]);
 198			if (ret != 0)
 199				dev_err(d->map->dev, "Failed to sync type in %x\n",
 200					reg);
 201		}
 202	}
 203
 204	if (d->chip->num_virt_regs) {
 205		for (i = 0; i < d->chip->num_virt_regs; i++) {
 206			for (j = 0; j < d->chip->num_regs; j++) {
 207				reg = d->get_irq_reg(d, d->chip->virt_reg_base[i],
 208						     j);
 209				ret = regmap_write(map, reg, d->virt_buf[i][j]);
 210				if (ret != 0)
 211					dev_err(d->map->dev,
 212						"Failed to write virt 0x%x: %d\n",
 213						reg, ret);
 214			}
 215		}
 216	}
 217
 218	for (i = 0; i < d->chip->num_config_bases; i++) {
 219		for (j = 0; j < d->chip->num_config_regs; j++) {
 220			reg = d->get_irq_reg(d, d->chip->config_base[i], j);
 221			ret = regmap_write(map, reg, d->config_buf[i][j]);
 222			if (ret)
 223				dev_err(d->map->dev,
 224					"Failed to write config %x: %d\n",
 225					reg, ret);
 226		}
 227	}
 228
 229	if (d->chip->runtime_pm)
 230		pm_runtime_put(map->dev);
 231
 232	/* If we've changed our wakeup count propagate it to the parent */
 233	if (d->wake_count < 0)
 234		for (i = d->wake_count; i < 0; i++)
 235			irq_set_irq_wake(d->irq, 0);
 236	else if (d->wake_count > 0)
 237		for (i = 0; i < d->wake_count; i++)
 238			irq_set_irq_wake(d->irq, 1);
 239
 240	d->wake_count = 0;
 241
 242	mutex_unlock(&d->lock);
 243}
 244
 245static void regmap_irq_enable(struct irq_data *data)
 246{
 247	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 248	struct regmap *map = d->map;
 249	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
 250	unsigned int reg = irq_data->reg_offset / map->reg_stride;
 251	unsigned int mask;
 252
 253	/*
 254	 * The type_in_mask flag means that the underlying hardware uses
 255	 * separate mask bits for each interrupt trigger type, but we want
 256	 * to have a single logical interrupt with a configurable type.
 257	 *
 258	 * If the interrupt we're enabling defines any supported types
 259	 * then instead of using the regular mask bits for this interrupt,
 260	 * use the value previously written to the type buffer at the
 261	 * corresponding offset in regmap_irq_set_type().
 262	 */
 263	if (d->chip->type_in_mask && irq_data->type.types_supported)
 264		mask = d->type_buf[reg] & irq_data->mask;
 265	else
 266		mask = irq_data->mask;
 267
 268	if (d->chip->clear_on_unmask)
 269		d->clear_status = true;
 270
 271	d->mask_buf[reg] &= ~mask;
 272}
 273
 274static void regmap_irq_disable(struct irq_data *data)
 275{
 276	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 277	struct regmap *map = d->map;
 278	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
 279
 280	d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
 281}
 282
 283static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
 284{
 285	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 286	struct regmap *map = d->map;
 287	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
 288	int reg, ret;
 289	const struct regmap_irq_type *t = &irq_data->type;
 290
 291	if ((t->types_supported & type) != type)
 292		return 0;
 293
 294	reg = t->type_reg_offset / map->reg_stride;
 295
 296	if (t->type_reg_mask)
 297		d->type_buf[reg] &= ~t->type_reg_mask;
 298	else
 299		d->type_buf[reg] &= ~(t->type_falling_val |
 300				      t->type_rising_val |
 301				      t->type_level_low_val |
 302				      t->type_level_high_val);
 303	switch (type) {
 304	case IRQ_TYPE_EDGE_FALLING:
 305		d->type_buf[reg] |= t->type_falling_val;
 306		break;
 307
 308	case IRQ_TYPE_EDGE_RISING:
 309		d->type_buf[reg] |= t->type_rising_val;
 310		break;
 311
 312	case IRQ_TYPE_EDGE_BOTH:
 313		d->type_buf[reg] |= (t->type_falling_val |
 314					t->type_rising_val);
 315		break;
 316
 317	case IRQ_TYPE_LEVEL_HIGH:
 318		d->type_buf[reg] |= t->type_level_high_val;
 319		break;
 320
 321	case IRQ_TYPE_LEVEL_LOW:
 322		d->type_buf[reg] |= t->type_level_low_val;
 323		break;
 324	default:
 325		return -EINVAL;
 326	}
 327
 328	if (d->chip->set_type_virt) {
 329		ret = d->chip->set_type_virt(d->virt_buf, type, data->hwirq,
 330					     reg);
 331		if (ret)
 332			return ret;
 333	}
 334
 335	if (d->chip->set_type_config) {
 336		ret = d->chip->set_type_config(d->config_buf, type,
 337					       irq_data, reg);
 338		if (ret)
 339			return ret;
 340	}
 341
 342	return 0;
 343}
 344
 345static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
 346{
 347	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 348	struct regmap *map = d->map;
 349	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
 350
 351	if (on) {
 352		if (d->wake_buf)
 353			d->wake_buf[irq_data->reg_offset / map->reg_stride]
 354				&= ~irq_data->mask;
 355		d->wake_count++;
 356	} else {
 357		if (d->wake_buf)
 358			d->wake_buf[irq_data->reg_offset / map->reg_stride]
 359				|= irq_data->mask;
 360		d->wake_count--;
 361	}
 362
 363	return 0;
 364}
 365
 366static const struct irq_chip regmap_irq_chip = {
 367	.irq_bus_lock		= regmap_irq_lock,
 368	.irq_bus_sync_unlock	= regmap_irq_sync_unlock,
 369	.irq_disable		= regmap_irq_disable,
 370	.irq_enable		= regmap_irq_enable,
 371	.irq_set_type		= regmap_irq_set_type,
 372	.irq_set_wake		= regmap_irq_set_wake,
 373};
 374
 375static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
 376					   unsigned int b)
 377{
 378	const struct regmap_irq_chip *chip = data->chip;
 379	struct regmap *map = data->map;
 380	struct regmap_irq_sub_irq_map *subreg;
 381	unsigned int reg;
 382	int i, ret = 0;
 383
 384	if (!chip->sub_reg_offsets) {
 385		reg = data->get_irq_reg(data, chip->status_base, b);
 386		ret = regmap_read(map, reg, &data->status_buf[b]);
 387	} else {
 388		/*
 389		 * Note we can't use ->get_irq_reg() here because the offsets
 390		 * in 'subreg' are *not* interchangeable with indices.
 391		 */
 392		subreg = &chip->sub_reg_offsets[b];
 393		for (i = 0; i < subreg->num_regs; i++) {
 394			unsigned int offset = subreg->offset[i];
 395			unsigned int index = offset / map->reg_stride;
 396
 397			if (chip->not_fixed_stride)
 398				ret = regmap_read(map,
 399						chip->status_base + offset,
 400						&data->status_buf[b]);
 401			else
 402				ret = regmap_read(map,
 403						chip->status_base + offset,
 404						&data->status_buf[index]);
 405
 406			if (ret)
 407				break;
 408		}
 409	}
 410	return ret;
 411}
 412
 413static irqreturn_t regmap_irq_thread(int irq, void *d)
 414{
 415	struct regmap_irq_chip_data *data = d;
 416	const struct regmap_irq_chip *chip = data->chip;
 417	struct regmap *map = data->map;
 418	int ret, i;
 419	bool handled = false;
 420	u32 reg;
 421
 422	if (chip->handle_pre_irq)
 423		chip->handle_pre_irq(chip->irq_drv_data);
 424
 425	if (chip->runtime_pm) {
 426		ret = pm_runtime_get_sync(map->dev);
 427		if (ret < 0) {
 428			dev_err(map->dev, "IRQ thread failed to resume: %d\n",
 429				ret);
 
 430			goto exit;
 431		}
 432	}
 433
 434	/*
 435	 * Read only registers with active IRQs if the chip has 'main status
 436	 * register'. Else read in the statuses, using a single bulk read if
 437	 * possible in order to reduce the I/O overheads.
 438	 */
 439
 440	if (chip->num_main_regs) {
 441		unsigned int max_main_bits;
 442		unsigned long size;
 443
 444		size = chip->num_regs * sizeof(unsigned int);
 445
 446		max_main_bits = (chip->num_main_status_bits) ?
 447				 chip->num_main_status_bits : chip->num_regs;
 448		/* Clear the status buf as we don't read all status regs */
 449		memset(data->status_buf, 0, size);
 450
 451		/* We could support bulk read for main status registers
 452		 * but I don't expect to see devices with really many main
 453		 * status registers so let's only support single reads for the
 454		 * sake of simplicity. and add bulk reads only if needed
 455		 */
 456		for (i = 0; i < chip->num_main_regs; i++) {
 457			/*
 458			 * For not_fixed_stride, don't use ->get_irq_reg().
 459			 * It would produce an incorrect result.
 460			 */
 461			if (data->chip->not_fixed_stride)
 462				reg = chip->main_status +
 463					i * map->reg_stride * data->irq_reg_stride;
 464			else
 465				reg = data->get_irq_reg(data,
 466							chip->main_status, i);
 467
 468			ret = regmap_read(map, reg, &data->main_status_buf[i]);
 469			if (ret) {
 470				dev_err(map->dev,
 471					"Failed to read IRQ status %d\n",
 472					ret);
 473				goto exit;
 474			}
 475		}
 476
 477		/* Read sub registers with active IRQs */
 478		for (i = 0; i < chip->num_main_regs; i++) {
 479			unsigned int b;
 480			const unsigned long mreg = data->main_status_buf[i];
 481
 482			for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
 483				if (i * map->format.val_bytes * 8 + b >
 484				    max_main_bits)
 485					break;
 486				ret = read_sub_irq_data(data, b);
 487
 488				if (ret != 0) {
 489					dev_err(map->dev,
 490						"Failed to read IRQ status %d\n",
 491						ret);
 492					goto exit;
 493				}
 494			}
 495
 496		}
 497	} else if (regmap_irq_can_bulk_read_status(data)) {
 498
 499		u8 *buf8 = data->status_reg_buf;
 500		u16 *buf16 = data->status_reg_buf;
 501		u32 *buf32 = data->status_reg_buf;
 502
 503		BUG_ON(!data->status_reg_buf);
 504
 505		ret = regmap_bulk_read(map, chip->status_base,
 506				       data->status_reg_buf,
 507				       chip->num_regs);
 508		if (ret != 0) {
 509			dev_err(map->dev, "Failed to read IRQ status: %d\n",
 510				ret);
 511			goto exit;
 512		}
 513
 514		for (i = 0; i < data->chip->num_regs; i++) {
 515			switch (map->format.val_bytes) {
 516			case 1:
 517				data->status_buf[i] = buf8[i];
 518				break;
 519			case 2:
 520				data->status_buf[i] = buf16[i];
 521				break;
 522			case 4:
 523				data->status_buf[i] = buf32[i];
 524				break;
 525			default:
 526				BUG();
 527				goto exit;
 528			}
 529		}
 530
 531	} else {
 532		for (i = 0; i < data->chip->num_regs; i++) {
 533			unsigned int reg = data->get_irq_reg(data,
 534					data->chip->status_base, i);
 535			ret = regmap_read(map, reg, &data->status_buf[i]);
 
 536
 537			if (ret != 0) {
 538				dev_err(map->dev,
 539					"Failed to read IRQ status: %d\n",
 540					ret);
 
 
 541				goto exit;
 542			}
 543		}
 544	}
 545
 546	if (chip->status_invert)
 547		for (i = 0; i < data->chip->num_regs; i++)
 548			data->status_buf[i] = ~data->status_buf[i];
 549
 550	/*
 551	 * Ignore masked IRQs and ack if we need to; we ack early so
 552	 * there is no race between handling and acknowledging the
 553	 * interrupt.  We assume that typically few of the interrupts
 554	 * will fire simultaneously so don't worry about overhead from
 555	 * doing a write per register.
 556	 */
 557	for (i = 0; i < data->chip->num_regs; i++) {
 558		data->status_buf[i] &= ~data->mask_buf[i];
 559
 560		if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
 561			reg = data->get_irq_reg(data, data->chip->ack_base, i);
 562
 563			if (chip->ack_invert)
 564				ret = regmap_write(map, reg,
 565						~data->status_buf[i]);
 566			else
 567				ret = regmap_write(map, reg,
 568						data->status_buf[i]);
 569			if (chip->clear_ack) {
 570				if (chip->ack_invert && !ret)
 571					ret = regmap_write(map, reg, UINT_MAX);
 572				else if (!ret)
 573					ret = regmap_write(map, reg, 0);
 574			}
 575			if (ret != 0)
 576				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
 577					reg, ret);
 578		}
 579	}
 580
 581	for (i = 0; i < chip->num_irqs; i++) {
 582		if (data->status_buf[chip->irqs[i].reg_offset /
 583				     map->reg_stride] & chip->irqs[i].mask) {
 584			handle_nested_irq(irq_find_mapping(data->domain, i));
 585			handled = true;
 586		}
 587	}
 588
 589exit:
 590	if (chip->runtime_pm)
 591		pm_runtime_put(map->dev);
 592
 
 593	if (chip->handle_post_irq)
 594		chip->handle_post_irq(chip->irq_drv_data);
 595
 596	if (handled)
 597		return IRQ_HANDLED;
 598	else
 599		return IRQ_NONE;
 600}
 601
 602static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
 603			  irq_hw_number_t hw)
 604{
 605	struct regmap_irq_chip_data *data = h->host_data;
 606
 607	irq_set_chip_data(virq, data);
 608	irq_set_chip(virq, &data->irq_chip);
 609	irq_set_nested_thread(virq, 1);
 610	irq_set_parent(virq, data->irq);
 611	irq_set_noprobe(virq);
 612
 613	return 0;
 614}
 615
 616static const struct irq_domain_ops regmap_domain_ops = {
 617	.map	= regmap_irq_map,
 618	.xlate	= irq_domain_xlate_onetwocell,
 619};
 620
 621/**
 622 * regmap_irq_get_irq_reg_linear() - Linear IRQ register mapping callback.
 623 * @data: Data for the &struct regmap_irq_chip
 624 * @base: Base register
 625 * @index: Register index
 626 *
 627 * Returns the register address corresponding to the given @base and @index
 628 * by the formula ``base + index * regmap_stride * irq_reg_stride``.
 629 */
 630unsigned int regmap_irq_get_irq_reg_linear(struct regmap_irq_chip_data *data,
 631					   unsigned int base, int index)
 632{
 633	const struct regmap_irq_chip *chip = data->chip;
 634	struct regmap *map = data->map;
 635
 636	/*
 637	 * FIXME: This is for backward compatibility and should be removed
 638	 * when not_fixed_stride is dropped (it's only used by qcom-pm8008).
 639	 */
 640	if (chip->not_fixed_stride && chip->sub_reg_offsets) {
 641		struct regmap_irq_sub_irq_map *subreg;
 642
 643		subreg = &chip->sub_reg_offsets[0];
 644		return base + subreg->offset[0];
 645	}
 646
 647	return base + index * map->reg_stride * data->irq_reg_stride;
 648}
 649EXPORT_SYMBOL_GPL(regmap_irq_get_irq_reg_linear);
 650
 651/**
 652 * regmap_irq_set_type_config_simple() - Simple IRQ type configuration callback.
 653 * @buf: Buffer containing configuration register values, this is a 2D array of
 654 *       `num_config_bases` rows, each of `num_config_regs` elements.
 655 * @type: The requested IRQ type.
 656 * @irq_data: The IRQ being configured.
 657 * @idx: Index of the irq's config registers within each array `buf[i]`
 658 *
 659 * This is a &struct regmap_irq_chip->set_type_config callback suitable for
 660 * chips with one config register. Register values are updated according to
 661 * the &struct regmap_irq_type data associated with an IRQ.
 662 */
 663int regmap_irq_set_type_config_simple(unsigned int **buf, unsigned int type,
 664				      const struct regmap_irq *irq_data, int idx)
 665{
 666	const struct regmap_irq_type *t = &irq_data->type;
 667
 668	if (t->type_reg_mask)
 669		buf[0][idx] &= ~t->type_reg_mask;
 670	else
 671		buf[0][idx] &= ~(t->type_falling_val |
 672				 t->type_rising_val |
 673				 t->type_level_low_val |
 674				 t->type_level_high_val);
 675
 676	switch (type) {
 677	case IRQ_TYPE_EDGE_FALLING:
 678		buf[0][idx] |= t->type_falling_val;
 679		break;
 680
 681	case IRQ_TYPE_EDGE_RISING:
 682		buf[0][idx] |= t->type_rising_val;
 683		break;
 684
 685	case IRQ_TYPE_EDGE_BOTH:
 686		buf[0][idx] |= (t->type_falling_val |
 687				t->type_rising_val);
 688		break;
 689
 690	case IRQ_TYPE_LEVEL_HIGH:
 691		buf[0][idx] |= t->type_level_high_val;
 692		break;
 693
 694	case IRQ_TYPE_LEVEL_LOW:
 695		buf[0][idx] |= t->type_level_low_val;
 696		break;
 697
 698	default:
 699		return -EINVAL;
 700	}
 701
 702	return 0;
 703}
 704EXPORT_SYMBOL_GPL(regmap_irq_set_type_config_simple);
 705
 706/**
 707 * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling
 708 *
 709 * @fwnode: The firmware node where the IRQ domain should be added to.
 710 * @map: The regmap for the device.
 711 * @irq: The IRQ the device uses to signal interrupts.
 712 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
 713 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
 714 * @chip: Configuration for the interrupt controller.
 715 * @data: Runtime data structure for the controller, allocated on success.
 716 *
 717 * Returns 0 on success or an errno on failure.
 718 *
 719 * In order for this to be efficient the chip really should use a
 720 * register cache.  The chip driver is responsible for restoring the
 721 * register values used by the IRQ controller over suspend and resume.
 722 */
 723int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode,
 724			       struct regmap *map, int irq,
 725			       int irq_flags, int irq_base,
 726			       const struct regmap_irq_chip *chip,
 727			       struct regmap_irq_chip_data **data)
 728{
 729	struct regmap_irq_chip_data *d;
 730	int i;
 731	int ret = -ENOMEM;
 732	int num_type_reg;
 733	int num_regs;
 734	u32 reg;
 
 735
 736	if (chip->num_regs <= 0)
 737		return -EINVAL;
 738
 739	if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
 740		return -EINVAL;
 741
 742	for (i = 0; i < chip->num_irqs; i++) {
 743		if (chip->irqs[i].reg_offset % map->reg_stride)
 744			return -EINVAL;
 745		if (chip->irqs[i].reg_offset / map->reg_stride >=
 746		    chip->num_regs)
 747			return -EINVAL;
 748	}
 749
 750	if (chip->not_fixed_stride) {
 751		dev_warn(map->dev, "not_fixed_stride is deprecated; use ->get_irq_reg() instead");
 752
 753		for (i = 0; i < chip->num_regs; i++)
 754			if (chip->sub_reg_offsets[i].num_regs != 1)
 755				return -EINVAL;
 756	}
 757
 758	if (chip->num_type_reg)
 759		dev_warn(map->dev, "type registers are deprecated; use config registers instead");
 760
 761	if (chip->num_virt_regs || chip->virt_reg_base || chip->set_type_virt)
 762		dev_warn(map->dev, "virtual registers are deprecated; use config registers instead");
 763
 764	if (irq_base) {
 765		irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
 766		if (irq_base < 0) {
 767			dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
 768				 irq_base);
 769			return irq_base;
 770		}
 771	}
 772
 773	d = kzalloc(sizeof(*d), GFP_KERNEL);
 774	if (!d)
 775		return -ENOMEM;
 776
 777	if (chip->num_main_regs) {
 778		d->main_status_buf = kcalloc(chip->num_main_regs,
 779					     sizeof(*d->main_status_buf),
 780					     GFP_KERNEL);
 781
 782		if (!d->main_status_buf)
 783			goto err_alloc;
 784	}
 785
 786	d->status_buf = kcalloc(chip->num_regs, sizeof(*d->status_buf),
 787				GFP_KERNEL);
 788	if (!d->status_buf)
 789		goto err_alloc;
 790
 791	d->mask_buf = kcalloc(chip->num_regs, sizeof(*d->mask_buf),
 792			      GFP_KERNEL);
 793	if (!d->mask_buf)
 794		goto err_alloc;
 795
 796	d->mask_buf_def = kcalloc(chip->num_regs, sizeof(*d->mask_buf_def),
 797				  GFP_KERNEL);
 798	if (!d->mask_buf_def)
 799		goto err_alloc;
 800
 801	if (chip->wake_base) {
 802		d->wake_buf = kcalloc(chip->num_regs, sizeof(*d->wake_buf),
 803				      GFP_KERNEL);
 804		if (!d->wake_buf)
 805			goto err_alloc;
 806	}
 807
 808	/*
 809	 * Use num_config_regs if defined, otherwise fall back to num_type_reg
 810	 * to maintain backward compatibility.
 811	 */
 812	num_type_reg = chip->num_config_regs ? chip->num_config_regs
 813			: chip->num_type_reg;
 814	num_regs = chip->type_in_mask ? chip->num_regs : num_type_reg;
 815	if (num_regs) {
 816		d->type_buf_def = kcalloc(num_regs,
 817					  sizeof(*d->type_buf_def), GFP_KERNEL);
 818		if (!d->type_buf_def)
 819			goto err_alloc;
 820
 821		d->type_buf = kcalloc(num_regs, sizeof(*d->type_buf),
 822				      GFP_KERNEL);
 823		if (!d->type_buf)
 824			goto err_alloc;
 825	}
 826
 827	if (chip->num_virt_regs) {
 828		/*
 829		 * Create virt_buf[chip->num_extra_config_regs][chip->num_regs]
 830		 */
 831		d->virt_buf = kcalloc(chip->num_virt_regs, sizeof(*d->virt_buf),
 832				      GFP_KERNEL);
 833		if (!d->virt_buf)
 834			goto err_alloc;
 835
 836		for (i = 0; i < chip->num_virt_regs; i++) {
 837			d->virt_buf[i] = kcalloc(chip->num_regs,
 838						 sizeof(**d->virt_buf),
 839						 GFP_KERNEL);
 840			if (!d->virt_buf[i])
 841				goto err_alloc;
 842		}
 843	}
 844
 845	if (chip->num_config_bases && chip->num_config_regs) {
 846		/*
 847		 * Create config_buf[num_config_bases][num_config_regs]
 848		 */
 849		d->config_buf = kcalloc(chip->num_config_bases,
 850					sizeof(*d->config_buf), GFP_KERNEL);
 851		if (!d->config_buf)
 852			goto err_alloc;
 853
 854		for (i = 0; i < chip->num_config_regs; i++) {
 855			d->config_buf[i] = kcalloc(chip->num_config_regs,
 856						   sizeof(**d->config_buf),
 857						   GFP_KERNEL);
 858			if (!d->config_buf[i])
 859				goto err_alloc;
 860		}
 861	}
 862
 863	d->irq_chip = regmap_irq_chip;
 864	d->irq_chip.name = chip->name;
 865	d->irq = irq;
 866	d->map = map;
 867	d->chip = chip;
 868	d->irq_base = irq_base;
 869
 870	if (chip->mask_base && chip->unmask_base &&
 871	    !chip->mask_unmask_non_inverted) {
 872		/*
 873		 * Chips that specify both mask_base and unmask_base used to
 874		 * get inverted mask behavior by default, with no way to ask
 875		 * for the normal, non-inverted behavior. This "inverted by
 876		 * default" behavior is deprecated, but we have to support it
 877		 * until existing drivers have been fixed.
 878		 *
 879		 * Existing drivers should be updated by swapping mask_base
 880		 * and unmask_base and setting mask_unmask_non_inverted=true.
 881		 * New drivers should always set the flag.
 882		 */
 883		dev_warn(map->dev, "mask_base and unmask_base are inverted, please fix it");
 884
 885		/* Might as well warn about mask_invert while we're at it... */
 886		if (chip->mask_invert)
 887			dev_warn(map->dev, "mask_invert=true ignored");
 888
 889		d->mask_base = chip->unmask_base;
 890		d->unmask_base = chip->mask_base;
 891	} else if (chip->mask_invert) {
 892		/*
 893		 * Swap the roles of mask_base and unmask_base if the bits are
 894		 * inverted. This is deprecated, drivers should use unmask_base
 895		 * directly.
 896		 */
 897		dev_warn(map->dev, "mask_invert=true is deprecated; please switch to unmask_base");
 898
 899		d->mask_base = chip->unmask_base;
 900		d->unmask_base = chip->mask_base;
 901	} else {
 902		d->mask_base = chip->mask_base;
 903		d->unmask_base = chip->unmask_base;
 904	}
 905
 906	if (chip->irq_reg_stride)
 907		d->irq_reg_stride = chip->irq_reg_stride;
 908	else
 909		d->irq_reg_stride = 1;
 910
 911	if (chip->get_irq_reg)
 912		d->get_irq_reg = chip->get_irq_reg;
 913	else
 914		d->get_irq_reg = regmap_irq_get_irq_reg_linear;
 915
 916	if (regmap_irq_can_bulk_read_status(d)) {
 
 917		d->status_reg_buf = kmalloc_array(chip->num_regs,
 918						  map->format.val_bytes,
 919						  GFP_KERNEL);
 920		if (!d->status_reg_buf)
 921			goto err_alloc;
 922	}
 923
 924	mutex_init(&d->lock);
 925
 926	for (i = 0; i < chip->num_irqs; i++)
 927		d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
 928			|= chip->irqs[i].mask;
 929
 930	/* Mask all the interrupts by default */
 931	for (i = 0; i < chip->num_regs; i++) {
 932		d->mask_buf[i] = d->mask_buf_def[i];
 933
 934		if (d->mask_base) {
 935			if (chip->handle_mask_sync) {
 936				ret = chip->handle_mask_sync(d->map, i,
 937							     d->mask_buf_def[i],
 938							     d->mask_buf[i],
 939							     chip->irq_drv_data);
 940				if (ret)
 941					goto err_alloc;
 942			} else {
 943				reg = d->get_irq_reg(d, d->mask_base, i);
 944				ret = regmap_update_bits(d->map, reg,
 945						d->mask_buf_def[i],
 946						d->mask_buf[i]);
 947				if (ret) {
 948					dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
 949						reg, ret);
 950					goto err_alloc;
 951				}
 952			}
 953		}
 954
 955		if (d->unmask_base) {
 956			reg = d->get_irq_reg(d, d->unmask_base, i);
 957			ret = regmap_update_bits(d->map, reg,
 958					d->mask_buf_def[i], ~d->mask_buf[i]);
 959			if (ret) {
 960				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
 961					reg, ret);
 962				goto err_alloc;
 963			}
 964		}
 965
 966		if (!chip->init_ack_masked)
 967			continue;
 968
 969		/* Ack masked but set interrupts */
 970		reg = d->get_irq_reg(d, d->chip->status_base, i);
 
 971		ret = regmap_read(map, reg, &d->status_buf[i]);
 972		if (ret != 0) {
 973			dev_err(map->dev, "Failed to read IRQ status: %d\n",
 974				ret);
 975			goto err_alloc;
 976		}
 977
 978		if (chip->status_invert)
 979			d->status_buf[i] = ~d->status_buf[i];
 980
 981		if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
 982			reg = d->get_irq_reg(d, d->chip->ack_base, i);
 
 983			if (chip->ack_invert)
 984				ret = regmap_write(map, reg,
 985					~(d->status_buf[i] & d->mask_buf[i]));
 986			else
 987				ret = regmap_write(map, reg,
 988					d->status_buf[i] & d->mask_buf[i]);
 989			if (chip->clear_ack) {
 990				if (chip->ack_invert && !ret)
 991					ret = regmap_write(map, reg, UINT_MAX);
 992				else if (!ret)
 993					ret = regmap_write(map, reg, 0);
 994			}
 995			if (ret != 0) {
 996				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
 997					reg, ret);
 998				goto err_alloc;
 999			}
1000		}
1001	}
1002
1003	/* Wake is disabled by default */
1004	if (d->wake_buf) {
1005		for (i = 0; i < chip->num_regs; i++) {
1006			d->wake_buf[i] = d->mask_buf_def[i];
1007			reg = d->get_irq_reg(d, d->chip->wake_base, i);
 
1008
1009			if (chip->wake_invert)
1010				ret = regmap_update_bits(d->map, reg,
1011							 d->mask_buf_def[i],
1012							 0);
1013			else
1014				ret = regmap_update_bits(d->map, reg,
1015							 d->mask_buf_def[i],
1016							 d->wake_buf[i]);
1017			if (ret != 0) {
1018				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
1019					reg, ret);
1020				goto err_alloc;
1021			}
1022		}
1023	}
1024
1025	if (chip->num_type_reg && !chip->type_in_mask) {
 
 
 
 
 
1026		for (i = 0; i < chip->num_type_reg; ++i) {
1027			reg = d->get_irq_reg(d, d->chip->type_base, i);
1028
1029			ret = regmap_read(map, reg, &d->type_buf_def[i]);
1030
1031			if (d->chip->type_invert)
1032				d->type_buf_def[i] = ~d->type_buf_def[i];
1033
1034			if (ret) {
1035				dev_err(map->dev, "Failed to get type defaults at 0x%x: %d\n",
 
 
 
 
 
 
 
 
 
1036					reg, ret);
1037				goto err_alloc;
1038			}
1039		}
1040	}
1041
1042	if (irq_base)
1043		d->domain = irq_domain_create_legacy(fwnode, chip->num_irqs,
1044						     irq_base, 0,
1045						     &regmap_domain_ops, d);
1046	else
1047		d->domain = irq_domain_create_linear(fwnode, chip->num_irqs,
1048						     &regmap_domain_ops, d);
 
1049	if (!d->domain) {
1050		dev_err(map->dev, "Failed to create IRQ domain\n");
1051		ret = -ENOMEM;
1052		goto err_alloc;
1053	}
1054
1055	ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
1056				   irq_flags | IRQF_ONESHOT,
1057				   chip->name, d);
1058	if (ret != 0) {
1059		dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
1060			irq, chip->name, ret);
1061		goto err_domain;
1062	}
1063
1064	*data = d;
1065
1066	return 0;
1067
1068err_domain:
1069	/* Should really dispose of the domain but... */
1070err_alloc:
1071	kfree(d->type_buf);
1072	kfree(d->type_buf_def);
1073	kfree(d->wake_buf);
1074	kfree(d->mask_buf_def);
1075	kfree(d->mask_buf);
1076	kfree(d->status_buf);
1077	kfree(d->status_reg_buf);
1078	if (d->virt_buf) {
1079		for (i = 0; i < chip->num_virt_regs; i++)
1080			kfree(d->virt_buf[i]);
1081		kfree(d->virt_buf);
1082	}
1083	if (d->config_buf) {
1084		for (i = 0; i < chip->num_config_bases; i++)
1085			kfree(d->config_buf[i]);
1086		kfree(d->config_buf);
1087	}
1088	kfree(d);
1089	return ret;
1090}
1091EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode);
1092
1093/**
1094 * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
1095 *
1096 * @map: The regmap for the device.
1097 * @irq: The IRQ the device uses to signal interrupts.
1098 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1099 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1100 * @chip: Configuration for the interrupt controller.
1101 * @data: Runtime data structure for the controller, allocated on success.
1102 *
1103 * Returns 0 on success or an errno on failure.
1104 *
1105 * This is the same as regmap_add_irq_chip_fwnode, except that the firmware
1106 * node of the regmap is used.
1107 */
1108int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
1109			int irq_base, const struct regmap_irq_chip *chip,
1110			struct regmap_irq_chip_data **data)
1111{
1112	return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq,
1113					  irq_flags, irq_base, chip, data);
1114}
1115EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
1116
1117/**
1118 * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
1119 *
1120 * @irq: Primary IRQ for the device
1121 * @d: &regmap_irq_chip_data allocated by regmap_add_irq_chip()
1122 *
1123 * This function also disposes of all mapped IRQs on the chip.
1124 */
1125void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
1126{
1127	unsigned int virq;
1128	int i, hwirq;
1129
1130	if (!d)
1131		return;
1132
1133	free_irq(irq, d);
1134
1135	/* Dispose all virtual irq from irq domain before removing it */
1136	for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
1137		/* Ignore hwirq if holes in the IRQ list */
1138		if (!d->chip->irqs[hwirq].mask)
1139			continue;
1140
1141		/*
1142		 * Find the virtual irq of hwirq on chip and if it is
1143		 * there then dispose it
1144		 */
1145		virq = irq_find_mapping(d->domain, hwirq);
1146		if (virq)
1147			irq_dispose_mapping(virq);
1148	}
1149
1150	irq_domain_remove(d->domain);
1151	kfree(d->type_buf);
1152	kfree(d->type_buf_def);
1153	kfree(d->wake_buf);
1154	kfree(d->mask_buf_def);
1155	kfree(d->mask_buf);
1156	kfree(d->status_reg_buf);
1157	kfree(d->status_buf);
1158	if (d->config_buf) {
1159		for (i = 0; i < d->chip->num_config_bases; i++)
1160			kfree(d->config_buf[i]);
1161		kfree(d->config_buf);
1162	}
1163	kfree(d);
1164}
1165EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
1166
1167static void devm_regmap_irq_chip_release(struct device *dev, void *res)
1168{
1169	struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
1170
1171	regmap_del_irq_chip(d->irq, d);
1172}
1173
1174static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
1175
1176{
1177	struct regmap_irq_chip_data **r = res;
1178
1179	if (!r || !*r) {
1180		WARN_ON(!r || !*r);
1181		return 0;
1182	}
1183	return *r == data;
1184}
1185
1186/**
1187 * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode()
1188 *
1189 * @dev: The device pointer on which irq_chip belongs to.
1190 * @fwnode: The firmware node where the IRQ domain should be added to.
1191 * @map: The regmap for the device.
1192 * @irq: The IRQ the device uses to signal interrupts
1193 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1194 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1195 * @chip: Configuration for the interrupt controller.
1196 * @data: Runtime data structure for the controller, allocated on success
1197 *
1198 * Returns 0 on success or an errno on failure.
1199 *
1200 * The &regmap_irq_chip_data will be automatically released when the device is
1201 * unbound.
1202 */
1203int devm_regmap_add_irq_chip_fwnode(struct device *dev,
1204				    struct fwnode_handle *fwnode,
1205				    struct regmap *map, int irq,
1206				    int irq_flags, int irq_base,
1207				    const struct regmap_irq_chip *chip,
1208				    struct regmap_irq_chip_data **data)
1209{
1210	struct regmap_irq_chip_data **ptr, *d;
1211	int ret;
1212
1213	ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
1214			   GFP_KERNEL);
1215	if (!ptr)
1216		return -ENOMEM;
1217
1218	ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base,
1219					 chip, &d);
1220	if (ret < 0) {
1221		devres_free(ptr);
1222		return ret;
1223	}
1224
1225	*ptr = d;
1226	devres_add(dev, ptr);
1227	*data = d;
1228	return 0;
1229}
1230EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode);
1231
1232/**
1233 * devm_regmap_add_irq_chip() - Resource managed regmap_add_irq_chip()
1234 *
1235 * @dev: The device pointer on which irq_chip belongs to.
1236 * @map: The regmap for the device.
1237 * @irq: The IRQ the device uses to signal interrupts
1238 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1239 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1240 * @chip: Configuration for the interrupt controller.
1241 * @data: Runtime data structure for the controller, allocated on success
1242 *
1243 * Returns 0 on success or an errno on failure.
1244 *
1245 * The &regmap_irq_chip_data will be automatically released when the device is
1246 * unbound.
1247 */
1248int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
1249			     int irq_flags, int irq_base,
1250			     const struct regmap_irq_chip *chip,
1251			     struct regmap_irq_chip_data **data)
1252{
1253	return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map,
1254					       irq, irq_flags, irq_base, chip,
1255					       data);
1256}
1257EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
1258
1259/**
1260 * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
1261 *
1262 * @dev: Device for which the resource was allocated.
1263 * @irq: Primary IRQ for the device.
1264 * @data: &regmap_irq_chip_data allocated by regmap_add_irq_chip().
1265 *
1266 * A resource managed version of regmap_del_irq_chip().
1267 */
1268void devm_regmap_del_irq_chip(struct device *dev, int irq,
1269			      struct regmap_irq_chip_data *data)
1270{
1271	int rc;
1272
1273	WARN_ON(irq != data->irq);
1274	rc = devres_release(dev, devm_regmap_irq_chip_release,
1275			    devm_regmap_irq_chip_match, data);
1276
1277	if (rc != 0)
1278		WARN_ON(rc);
1279}
1280EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
1281
1282/**
1283 * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
1284 *
1285 * @data: regmap irq controller to operate on.
1286 *
1287 * Useful for drivers to request their own IRQs.
1288 */
1289int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
1290{
1291	WARN_ON(!data->irq_base);
1292	return data->irq_base;
1293}
1294EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
1295
1296/**
1297 * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
1298 *
1299 * @data: regmap irq controller to operate on.
1300 * @irq: index of the interrupt requested in the chip IRQs.
1301 *
1302 * Useful for drivers to request their own IRQs.
1303 */
1304int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
1305{
1306	/* Handle holes in the IRQ list */
1307	if (!data->chip->irqs[irq].mask)
1308		return -EINVAL;
1309
1310	return irq_create_mapping(data->domain, irq);
1311}
1312EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
1313
1314/**
1315 * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
1316 *
1317 * @data: regmap_irq controller to operate on.
1318 *
1319 * Useful for drivers to request their own IRQs and for integration
1320 * with subsystems.  For ease of integration NULL is accepted as a
1321 * domain, allowing devices to just call this even if no domain is
1322 * allocated.
1323 */
1324struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
1325{
1326	if (data)
1327		return data->domain;
1328	else
1329		return NULL;
1330}
1331EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
v4.17
  1/*
  2 * regmap based irq_chip
  3 *
  4 * Copyright 2011 Wolfson Microelectronics plc
  5 *
  6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License version 2 as
 10 * published by the Free Software Foundation.
 11 */
 12
 13#include <linux/device.h>
 14#include <linux/export.h>
 15#include <linux/interrupt.h>
 16#include <linux/irq.h>
 17#include <linux/irqdomain.h>
 18#include <linux/pm_runtime.h>
 19#include <linux/regmap.h>
 20#include <linux/slab.h>
 21
 22#include "internal.h"
 23
 24struct regmap_irq_chip_data {
 25	struct mutex lock;
 26	struct irq_chip irq_chip;
 27
 28	struct regmap *map;
 29	const struct regmap_irq_chip *chip;
 30
 31	int irq_base;
 32	struct irq_domain *domain;
 33
 34	int irq;
 35	int wake_count;
 36
 
 
 
 37	void *status_reg_buf;
 
 38	unsigned int *status_buf;
 39	unsigned int *mask_buf;
 40	unsigned int *mask_buf_def;
 41	unsigned int *wake_buf;
 42	unsigned int *type_buf;
 43	unsigned int *type_buf_def;
 
 
 44
 45	unsigned int irq_reg_stride;
 46	unsigned int type_reg_stride;
 
 
 
 
 47};
 48
 49static inline const
 50struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
 51				     int irq)
 52{
 53	return &data->chip->irqs[irq];
 54}
 55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 56static void regmap_irq_lock(struct irq_data *data)
 57{
 58	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 59
 60	mutex_lock(&d->lock);
 61}
 62
 63static int regmap_irq_update_bits(struct regmap_irq_chip_data *d,
 64				  unsigned int reg, unsigned int mask,
 65				  unsigned int val)
 66{
 67	if (d->chip->mask_writeonly)
 68		return regmap_write_bits(d->map, reg, mask, val);
 69	else
 70		return regmap_update_bits(d->map, reg, mask, val);
 71}
 72
 73static void regmap_irq_sync_unlock(struct irq_data *data)
 74{
 75	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 76	struct regmap *map = d->map;
 77	int i, ret;
 78	u32 reg;
 79	u32 unmask_offset;
 80
 81	if (d->chip->runtime_pm) {
 82		ret = pm_runtime_get_sync(map->dev);
 83		if (ret < 0)
 84			dev_err(map->dev, "IRQ sync failed to resume: %d\n",
 85				ret);
 86	}
 87
 
 
 
 
 
 
 
 
 
 
 
 
 
 88	/*
 89	 * If there's been a change in the mask write it back to the
 90	 * hardware.  We rely on the use of the regmap core cache to
 91	 * suppress pointless writes.
 92	 */
 93	for (i = 0; i < d->chip->num_regs; i++) {
 94		reg = d->chip->mask_base +
 95			(i * map->reg_stride * d->irq_reg_stride);
 96		if (d->chip->mask_invert) {
 97			ret = regmap_irq_update_bits(d, reg,
 98					 d->mask_buf_def[i], ~d->mask_buf[i]);
 99		} else if (d->chip->unmask_base) {
100			/* set mask with mask_base register */
101			ret = regmap_irq_update_bits(d, reg,
 
 
 
 
 
 
 
 
 
 
 
 
102					d->mask_buf_def[i], ~d->mask_buf[i]);
103			if (ret < 0)
104				dev_err(d->map->dev,
105					"Failed to sync unmasks in %x\n",
106					reg);
107			unmask_offset = d->chip->unmask_base -
108							d->chip->mask_base;
109			/* clear mask with unmask_base register */
110			ret = regmap_irq_update_bits(d,
111					reg + unmask_offset,
112					d->mask_buf_def[i],
113					d->mask_buf[i]);
114		} else {
115			ret = regmap_irq_update_bits(d, reg,
116					 d->mask_buf_def[i], d->mask_buf[i]);
117		}
118		if (ret != 0)
119			dev_err(d->map->dev, "Failed to sync masks in %x\n",
120				reg);
121
122		reg = d->chip->wake_base +
123			(i * map->reg_stride * d->irq_reg_stride);
124		if (d->wake_buf) {
125			if (d->chip->wake_invert)
126				ret = regmap_irq_update_bits(d, reg,
127							 d->mask_buf_def[i],
128							 ~d->wake_buf[i]);
129			else
130				ret = regmap_irq_update_bits(d, reg,
131							 d->mask_buf_def[i],
132							 d->wake_buf[i]);
133			if (ret != 0)
134				dev_err(d->map->dev,
135					"Failed to sync wakes in %x: %d\n",
136					reg, ret);
137		}
138
139		if (!d->chip->init_ack_masked)
140			continue;
141		/*
142		 * Ack all the masked interrupts unconditionally,
143		 * OR if there is masked interrupt which hasn't been Acked,
144		 * it'll be ignored in irq handler, then may introduce irq storm
145		 */
146		if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
147			reg = d->chip->ack_base +
148				(i * map->reg_stride * d->irq_reg_stride);
149			/* some chips ack by write 0 */
150			if (d->chip->ack_invert)
151				ret = regmap_write(map, reg, ~d->mask_buf[i]);
152			else
153				ret = regmap_write(map, reg, d->mask_buf[i]);
 
 
 
 
 
 
154			if (ret != 0)
155				dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
156					reg, ret);
157		}
158	}
159
160	for (i = 0; i < d->chip->num_type_reg; i++) {
161		if (!d->type_buf_def[i])
162			continue;
163		reg = d->chip->type_base +
164			(i * map->reg_stride * d->type_reg_stride);
165		if (d->chip->type_invert)
166			ret = regmap_irq_update_bits(d, reg,
167				d->type_buf_def[i], ~d->type_buf[i]);
168		else
169			ret = regmap_irq_update_bits(d, reg,
170				d->type_buf_def[i], d->type_buf[i]);
171		if (ret != 0)
172			dev_err(d->map->dev, "Failed to sync type in %x\n",
173				reg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
174	}
175
176	if (d->chip->runtime_pm)
177		pm_runtime_put(map->dev);
178
179	/* If we've changed our wakeup count propagate it to the parent */
180	if (d->wake_count < 0)
181		for (i = d->wake_count; i < 0; i++)
182			irq_set_irq_wake(d->irq, 0);
183	else if (d->wake_count > 0)
184		for (i = 0; i < d->wake_count; i++)
185			irq_set_irq_wake(d->irq, 1);
186
187	d->wake_count = 0;
188
189	mutex_unlock(&d->lock);
190}
191
192static void regmap_irq_enable(struct irq_data *data)
193{
194	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
195	struct regmap *map = d->map;
196	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
197
198	d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~irq_data->mask;
199}
200
201static void regmap_irq_disable(struct irq_data *data)
202{
203	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
204	struct regmap *map = d->map;
205	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
206
207	d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
208}
209
210static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
211{
212	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
213	struct regmap *map = d->map;
214	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
215	int reg = irq_data->type_reg_offset / map->reg_stride;
 
216
217	if (!(irq_data->type_rising_mask | irq_data->type_falling_mask))
218		return 0;
219
220	d->type_buf[reg] &= ~(irq_data->type_falling_mask |
221					irq_data->type_rising_mask);
 
 
 
 
 
 
 
222	switch (type) {
223	case IRQ_TYPE_EDGE_FALLING:
224		d->type_buf[reg] |= irq_data->type_falling_mask;
225		break;
226
227	case IRQ_TYPE_EDGE_RISING:
228		d->type_buf[reg] |= irq_data->type_rising_mask;
229		break;
230
231	case IRQ_TYPE_EDGE_BOTH:
232		d->type_buf[reg] |= (irq_data->type_falling_mask |
233					irq_data->type_rising_mask);
 
 
 
 
234		break;
235
 
 
 
236	default:
237		return -EINVAL;
238	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
239	return 0;
240}
241
242static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
243{
244	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
245	struct regmap *map = d->map;
246	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
247
248	if (on) {
249		if (d->wake_buf)
250			d->wake_buf[irq_data->reg_offset / map->reg_stride]
251				&= ~irq_data->mask;
252		d->wake_count++;
253	} else {
254		if (d->wake_buf)
255			d->wake_buf[irq_data->reg_offset / map->reg_stride]
256				|= irq_data->mask;
257		d->wake_count--;
258	}
259
260	return 0;
261}
262
263static const struct irq_chip regmap_irq_chip = {
264	.irq_bus_lock		= regmap_irq_lock,
265	.irq_bus_sync_unlock	= regmap_irq_sync_unlock,
266	.irq_disable		= regmap_irq_disable,
267	.irq_enable		= regmap_irq_enable,
268	.irq_set_type		= regmap_irq_set_type,
269	.irq_set_wake		= regmap_irq_set_wake,
270};
271
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
272static irqreturn_t regmap_irq_thread(int irq, void *d)
273{
274	struct regmap_irq_chip_data *data = d;
275	const struct regmap_irq_chip *chip = data->chip;
276	struct regmap *map = data->map;
277	int ret, i;
278	bool handled = false;
279	u32 reg;
280
281	if (chip->handle_pre_irq)
282		chip->handle_pre_irq(chip->irq_drv_data);
283
284	if (chip->runtime_pm) {
285		ret = pm_runtime_get_sync(map->dev);
286		if (ret < 0) {
287			dev_err(map->dev, "IRQ thread failed to resume: %d\n",
288				ret);
289			pm_runtime_put(map->dev);
290			goto exit;
291		}
292	}
293
294	/*
295	 * Read in the statuses, using a single bulk read if possible
296	 * in order to reduce the I/O overheads.
 
297	 */
298	if (!map->use_single_read && map->reg_stride == 1 &&
299	    data->irq_reg_stride == 1) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
300		u8 *buf8 = data->status_reg_buf;
301		u16 *buf16 = data->status_reg_buf;
302		u32 *buf32 = data->status_reg_buf;
303
304		BUG_ON(!data->status_reg_buf);
305
306		ret = regmap_bulk_read(map, chip->status_base,
307				       data->status_reg_buf,
308				       chip->num_regs);
309		if (ret != 0) {
310			dev_err(map->dev, "Failed to read IRQ status: %d\n",
311				ret);
312			goto exit;
313		}
314
315		for (i = 0; i < data->chip->num_regs; i++) {
316			switch (map->format.val_bytes) {
317			case 1:
318				data->status_buf[i] = buf8[i];
319				break;
320			case 2:
321				data->status_buf[i] = buf16[i];
322				break;
323			case 4:
324				data->status_buf[i] = buf32[i];
325				break;
326			default:
327				BUG();
328				goto exit;
329			}
330		}
331
332	} else {
333		for (i = 0; i < data->chip->num_regs; i++) {
334			ret = regmap_read(map, chip->status_base +
335					  (i * map->reg_stride
336					   * data->irq_reg_stride),
337					  &data->status_buf[i]);
338
339			if (ret != 0) {
340				dev_err(map->dev,
341					"Failed to read IRQ status: %d\n",
342					ret);
343				if (chip->runtime_pm)
344					pm_runtime_put(map->dev);
345				goto exit;
346			}
347		}
348	}
349
 
 
 
 
350	/*
351	 * Ignore masked IRQs and ack if we need to; we ack early so
352	 * there is no race between handling and acknowleding the
353	 * interrupt.  We assume that typically few of the interrupts
354	 * will fire simultaneously so don't worry about overhead from
355	 * doing a write per register.
356	 */
357	for (i = 0; i < data->chip->num_regs; i++) {
358		data->status_buf[i] &= ~data->mask_buf[i];
359
360		if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
361			reg = chip->ack_base +
362				(i * map->reg_stride * data->irq_reg_stride);
363			ret = regmap_write(map, reg, data->status_buf[i]);
 
 
 
 
 
 
 
 
 
 
 
364			if (ret != 0)
365				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
366					reg, ret);
367		}
368	}
369
370	for (i = 0; i < chip->num_irqs; i++) {
371		if (data->status_buf[chip->irqs[i].reg_offset /
372				     map->reg_stride] & chip->irqs[i].mask) {
373			handle_nested_irq(irq_find_mapping(data->domain, i));
374			handled = true;
375		}
376	}
377
 
378	if (chip->runtime_pm)
379		pm_runtime_put(map->dev);
380
381exit:
382	if (chip->handle_post_irq)
383		chip->handle_post_irq(chip->irq_drv_data);
384
385	if (handled)
386		return IRQ_HANDLED;
387	else
388		return IRQ_NONE;
389}
390
391static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
392			  irq_hw_number_t hw)
393{
394	struct regmap_irq_chip_data *data = h->host_data;
395
396	irq_set_chip_data(virq, data);
397	irq_set_chip(virq, &data->irq_chip);
398	irq_set_nested_thread(virq, 1);
399	irq_set_parent(virq, data->irq);
400	irq_set_noprobe(virq);
401
402	return 0;
403}
404
405static const struct irq_domain_ops regmap_domain_ops = {
406	.map	= regmap_irq_map,
407	.xlate	= irq_domain_xlate_onetwocell,
408};
409
410/**
411 * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
412 *
 
413 * @map: The regmap for the device.
414 * @irq: The IRQ the device uses to signal interrupts.
415 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
416 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
417 * @chip: Configuration for the interrupt controller.
418 * @data: Runtime data structure for the controller, allocated on success.
419 *
420 * Returns 0 on success or an errno on failure.
421 *
422 * In order for this to be efficient the chip really should use a
423 * register cache.  The chip driver is responsible for restoring the
424 * register values used by the IRQ controller over suspend and resume.
425 */
426int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
427			int irq_base, const struct regmap_irq_chip *chip,
428			struct regmap_irq_chip_data **data)
 
 
429{
430	struct regmap_irq_chip_data *d;
431	int i;
432	int ret = -ENOMEM;
 
 
433	u32 reg;
434	u32 unmask_offset;
435
436	if (chip->num_regs <= 0)
437		return -EINVAL;
438
 
 
 
439	for (i = 0; i < chip->num_irqs; i++) {
440		if (chip->irqs[i].reg_offset % map->reg_stride)
441			return -EINVAL;
442		if (chip->irqs[i].reg_offset / map->reg_stride >=
443		    chip->num_regs)
444			return -EINVAL;
445	}
446
 
 
 
 
 
 
 
 
 
 
 
 
 
 
447	if (irq_base) {
448		irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
449		if (irq_base < 0) {
450			dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
451				 irq_base);
452			return irq_base;
453		}
454	}
455
456	d = kzalloc(sizeof(*d), GFP_KERNEL);
457	if (!d)
458		return -ENOMEM;
459
460	d->status_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
 
 
 
 
 
 
 
 
 
461				GFP_KERNEL);
462	if (!d->status_buf)
463		goto err_alloc;
464
465	d->mask_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
466			      GFP_KERNEL);
467	if (!d->mask_buf)
468		goto err_alloc;
469
470	d->mask_buf_def = kcalloc(chip->num_regs, sizeof(unsigned int),
471				  GFP_KERNEL);
472	if (!d->mask_buf_def)
473		goto err_alloc;
474
475	if (chip->wake_base) {
476		d->wake_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
477				      GFP_KERNEL);
478		if (!d->wake_buf)
479			goto err_alloc;
480	}
481
482	if (chip->num_type_reg) {
483		d->type_buf_def = kcalloc(chip->num_type_reg,
484					sizeof(unsigned int), GFP_KERNEL);
 
 
 
 
 
 
 
485		if (!d->type_buf_def)
486			goto err_alloc;
487
488		d->type_buf = kcalloc(chip->num_type_reg, sizeof(unsigned int),
489				      GFP_KERNEL);
490		if (!d->type_buf)
491			goto err_alloc;
492	}
493
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
494	d->irq_chip = regmap_irq_chip;
495	d->irq_chip.name = chip->name;
496	d->irq = irq;
497	d->map = map;
498	d->chip = chip;
499	d->irq_base = irq_base;
500
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
501	if (chip->irq_reg_stride)
502		d->irq_reg_stride = chip->irq_reg_stride;
503	else
504		d->irq_reg_stride = 1;
505
506	if (chip->type_reg_stride)
507		d->type_reg_stride = chip->type_reg_stride;
508	else
509		d->type_reg_stride = 1;
510
511	if (!map->use_single_read && map->reg_stride == 1 &&
512	    d->irq_reg_stride == 1) {
513		d->status_reg_buf = kmalloc_array(chip->num_regs,
514						  map->format.val_bytes,
515						  GFP_KERNEL);
516		if (!d->status_reg_buf)
517			goto err_alloc;
518	}
519
520	mutex_init(&d->lock);
521
522	for (i = 0; i < chip->num_irqs; i++)
523		d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
524			|= chip->irqs[i].mask;
525
526	/* Mask all the interrupts by default */
527	for (i = 0; i < chip->num_regs; i++) {
528		d->mask_buf[i] = d->mask_buf_def[i];
529		reg = chip->mask_base +
530			(i * map->reg_stride * d->irq_reg_stride);
531		if (chip->mask_invert)
532			ret = regmap_irq_update_bits(d, reg,
533					 d->mask_buf[i], ~d->mask_buf[i]);
534		else if (d->chip->unmask_base) {
535			unmask_offset = d->chip->unmask_base -
536					d->chip->mask_base;
537			ret = regmap_irq_update_bits(d,
538					reg + unmask_offset,
539					d->mask_buf[i],
540					d->mask_buf[i]);
541		} else
542			ret = regmap_irq_update_bits(d, reg,
543					 d->mask_buf[i], d->mask_buf[i]);
544		if (ret != 0) {
545			dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
546				reg, ret);
547			goto err_alloc;
 
 
 
 
 
 
 
 
 
 
 
 
548		}
549
550		if (!chip->init_ack_masked)
551			continue;
552
553		/* Ack masked but set interrupts */
554		reg = chip->status_base +
555			(i * map->reg_stride * d->irq_reg_stride);
556		ret = regmap_read(map, reg, &d->status_buf[i]);
557		if (ret != 0) {
558			dev_err(map->dev, "Failed to read IRQ status: %d\n",
559				ret);
560			goto err_alloc;
561		}
562
 
 
 
563		if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
564			reg = chip->ack_base +
565				(i * map->reg_stride * d->irq_reg_stride);
566			if (chip->ack_invert)
567				ret = regmap_write(map, reg,
568					~(d->status_buf[i] & d->mask_buf[i]));
569			else
570				ret = regmap_write(map, reg,
571					d->status_buf[i] & d->mask_buf[i]);
 
 
 
 
 
 
572			if (ret != 0) {
573				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
574					reg, ret);
575				goto err_alloc;
576			}
577		}
578	}
579
580	/* Wake is disabled by default */
581	if (d->wake_buf) {
582		for (i = 0; i < chip->num_regs; i++) {
583			d->wake_buf[i] = d->mask_buf_def[i];
584			reg = chip->wake_base +
585				(i * map->reg_stride * d->irq_reg_stride);
586
587			if (chip->wake_invert)
588				ret = regmap_irq_update_bits(d, reg,
589							 d->mask_buf_def[i],
590							 0);
591			else
592				ret = regmap_irq_update_bits(d, reg,
593							 d->mask_buf_def[i],
594							 d->wake_buf[i]);
595			if (ret != 0) {
596				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
597					reg, ret);
598				goto err_alloc;
599			}
600		}
601	}
602
603	if (chip->num_type_reg) {
604		for (i = 0; i < chip->num_irqs; i++) {
605			reg = chip->irqs[i].type_reg_offset / map->reg_stride;
606			d->type_buf_def[reg] |= chip->irqs[i].type_rising_mask |
607					chip->irqs[i].type_falling_mask;
608		}
609		for (i = 0; i < chip->num_type_reg; ++i) {
610			if (!d->type_buf_def[i])
611				continue;
 
 
 
 
612
613			reg = chip->type_base +
614				(i * map->reg_stride * d->type_reg_stride);
615			if (chip->type_invert)
616				ret = regmap_irq_update_bits(d, reg,
617					d->type_buf_def[i], 0xFF);
618			else
619				ret = regmap_irq_update_bits(d, reg,
620					d->type_buf_def[i], 0x0);
621			if (ret != 0) {
622				dev_err(map->dev,
623					"Failed to set type in 0x%x: %x\n",
624					reg, ret);
625				goto err_alloc;
626			}
627		}
628	}
629
630	if (irq_base)
631		d->domain = irq_domain_add_legacy(map->dev->of_node,
632						  chip->num_irqs, irq_base, 0,
633						  &regmap_domain_ops, d);
634	else
635		d->domain = irq_domain_add_linear(map->dev->of_node,
636						  chip->num_irqs,
637						  &regmap_domain_ops, d);
638	if (!d->domain) {
639		dev_err(map->dev, "Failed to create IRQ domain\n");
640		ret = -ENOMEM;
641		goto err_alloc;
642	}
643
644	ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
645				   irq_flags | IRQF_ONESHOT,
646				   chip->name, d);
647	if (ret != 0) {
648		dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
649			irq, chip->name, ret);
650		goto err_domain;
651	}
652
653	*data = d;
654
655	return 0;
656
657err_domain:
658	/* Should really dispose of the domain but... */
659err_alloc:
660	kfree(d->type_buf);
661	kfree(d->type_buf_def);
662	kfree(d->wake_buf);
663	kfree(d->mask_buf_def);
664	kfree(d->mask_buf);
665	kfree(d->status_buf);
666	kfree(d->status_reg_buf);
 
 
 
 
 
 
 
 
 
 
667	kfree(d);
668	return ret;
669}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
670EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
671
672/**
673 * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
674 *
675 * @irq: Primary IRQ for the device
676 * @d: &regmap_irq_chip_data allocated by regmap_add_irq_chip()
677 *
678 * This function also disposes of all mapped IRQs on the chip.
679 */
680void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
681{
682	unsigned int virq;
683	int hwirq;
684
685	if (!d)
686		return;
687
688	free_irq(irq, d);
689
690	/* Dispose all virtual irq from irq domain before removing it */
691	for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
692		/* Ignore hwirq if holes in the IRQ list */
693		if (!d->chip->irqs[hwirq].mask)
694			continue;
695
696		/*
697		 * Find the virtual irq of hwirq on chip and if it is
698		 * there then dispose it
699		 */
700		virq = irq_find_mapping(d->domain, hwirq);
701		if (virq)
702			irq_dispose_mapping(virq);
703	}
704
705	irq_domain_remove(d->domain);
706	kfree(d->type_buf);
707	kfree(d->type_buf_def);
708	kfree(d->wake_buf);
709	kfree(d->mask_buf_def);
710	kfree(d->mask_buf);
711	kfree(d->status_reg_buf);
712	kfree(d->status_buf);
 
 
 
 
 
713	kfree(d);
714}
715EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
716
717static void devm_regmap_irq_chip_release(struct device *dev, void *res)
718{
719	struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
720
721	regmap_del_irq_chip(d->irq, d);
722}
723
724static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
725
726{
727	struct regmap_irq_chip_data **r = res;
728
729	if (!r || !*r) {
730		WARN_ON(!r || !*r);
731		return 0;
732	}
733	return *r == data;
734}
735
736/**
737 * devm_regmap_add_irq_chip() - Resource manager regmap_add_irq_chip()
738 *
739 * @dev: The device pointer on which irq_chip belongs to.
 
740 * @map: The regmap for the device.
741 * @irq: The IRQ the device uses to signal interrupts
742 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
743 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
744 * @chip: Configuration for the interrupt controller.
745 * @data: Runtime data structure for the controller, allocated on success
746 *
747 * Returns 0 on success or an errno on failure.
748 *
749 * The &regmap_irq_chip_data will be automatically released when the device is
750 * unbound.
751 */
752int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
753			     int irq_flags, int irq_base,
754			     const struct regmap_irq_chip *chip,
755			     struct regmap_irq_chip_data **data)
 
 
756{
757	struct regmap_irq_chip_data **ptr, *d;
758	int ret;
759
760	ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
761			   GFP_KERNEL);
762	if (!ptr)
763		return -ENOMEM;
764
765	ret = regmap_add_irq_chip(map, irq, irq_flags, irq_base,
766				  chip, &d);
767	if (ret < 0) {
768		devres_free(ptr);
769		return ret;
770	}
771
772	*ptr = d;
773	devres_add(dev, ptr);
774	*data = d;
775	return 0;
776}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
777EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
778
779/**
780 * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
781 *
782 * @dev: Device for which which resource was allocated.
783 * @irq: Primary IRQ for the device.
784 * @data: &regmap_irq_chip_data allocated by regmap_add_irq_chip().
785 *
786 * A resource managed version of regmap_del_irq_chip().
787 */
788void devm_regmap_del_irq_chip(struct device *dev, int irq,
789			      struct regmap_irq_chip_data *data)
790{
791	int rc;
792
793	WARN_ON(irq != data->irq);
794	rc = devres_release(dev, devm_regmap_irq_chip_release,
795			    devm_regmap_irq_chip_match, data);
796
797	if (rc != 0)
798		WARN_ON(rc);
799}
800EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
801
802/**
803 * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
804 *
805 * @data: regmap irq controller to operate on.
806 *
807 * Useful for drivers to request their own IRQs.
808 */
809int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
810{
811	WARN_ON(!data->irq_base);
812	return data->irq_base;
813}
814EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
815
816/**
817 * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
818 *
819 * @data: regmap irq controller to operate on.
820 * @irq: index of the interrupt requested in the chip IRQs.
821 *
822 * Useful for drivers to request their own IRQs.
823 */
824int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
825{
826	/* Handle holes in the IRQ list */
827	if (!data->chip->irqs[irq].mask)
828		return -EINVAL;
829
830	return irq_create_mapping(data->domain, irq);
831}
832EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
833
834/**
835 * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
836 *
837 * @data: regmap_irq controller to operate on.
838 *
839 * Useful for drivers to request their own IRQs and for integration
840 * with subsystems.  For ease of integration NULL is accepted as a
841 * domain, allowing devices to just call this even if no domain is
842 * allocated.
843 */
844struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
845{
846	if (data)
847		return data->domain;
848	else
849		return NULL;
850}
851EXPORT_SYMBOL_GPL(regmap_irq_get_domain);