Loading...
1// SPDX-License-Identifier: GPL-2.0
2//
3// regmap based irq_chip
4//
5// Copyright 2011 Wolfson Microelectronics plc
6//
7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8
9#include <linux/device.h>
10#include <linux/export.h>
11#include <linux/interrupt.h>
12#include <linux/irq.h>
13#include <linux/irqdomain.h>
14#include <linux/pm_runtime.h>
15#include <linux/regmap.h>
16#include <linux/slab.h>
17
18#include "internal.h"
19
20struct regmap_irq_chip_data {
21 struct mutex lock;
22 struct irq_chip irq_chip;
23
24 struct regmap *map;
25 const struct regmap_irq_chip *chip;
26
27 int irq_base;
28 struct irq_domain *domain;
29
30 int irq;
31 int wake_count;
32
33 unsigned int mask_base;
34 unsigned int unmask_base;
35
36 void *status_reg_buf;
37 unsigned int *main_status_buf;
38 unsigned int *status_buf;
39 unsigned int *mask_buf;
40 unsigned int *mask_buf_def;
41 unsigned int *wake_buf;
42 unsigned int *type_buf;
43 unsigned int *type_buf_def;
44 unsigned int **virt_buf;
45 unsigned int **config_buf;
46
47 unsigned int irq_reg_stride;
48
49 unsigned int (*get_irq_reg)(struct regmap_irq_chip_data *data,
50 unsigned int base, int index);
51
52 unsigned int clear_status:1;
53};
54
55static inline const
56struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
57 int irq)
58{
59 return &data->chip->irqs[irq];
60}
61
62static bool regmap_irq_can_bulk_read_status(struct regmap_irq_chip_data *data)
63{
64 struct regmap *map = data->map;
65
66 /*
67 * While possible that a user-defined ->get_irq_reg() callback might
68 * be linear enough to support bulk reads, most of the time it won't.
69 * Therefore only allow them if the default callback is being used.
70 */
71 return data->irq_reg_stride == 1 && map->reg_stride == 1 &&
72 data->get_irq_reg == regmap_irq_get_irq_reg_linear &&
73 !map->use_single_read;
74}
75
76static void regmap_irq_lock(struct irq_data *data)
77{
78 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
79
80 mutex_lock(&d->lock);
81}
82
83static void regmap_irq_sync_unlock(struct irq_data *data)
84{
85 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
86 struct regmap *map = d->map;
87 int i, j, ret;
88 u32 reg;
89 u32 val;
90
91 if (d->chip->runtime_pm) {
92 ret = pm_runtime_get_sync(map->dev);
93 if (ret < 0)
94 dev_err(map->dev, "IRQ sync failed to resume: %d\n",
95 ret);
96 }
97
98 if (d->clear_status) {
99 for (i = 0; i < d->chip->num_regs; i++) {
100 reg = d->get_irq_reg(d, d->chip->status_base, i);
101
102 ret = regmap_read(map, reg, &val);
103 if (ret)
104 dev_err(d->map->dev,
105 "Failed to clear the interrupt status bits\n");
106 }
107
108 d->clear_status = false;
109 }
110
111 /*
112 * If there's been a change in the mask write it back to the
113 * hardware. We rely on the use of the regmap core cache to
114 * suppress pointless writes.
115 */
116 for (i = 0; i < d->chip->num_regs; i++) {
117 if (d->mask_base) {
118 if (d->chip->handle_mask_sync)
119 d->chip->handle_mask_sync(d->map, i,
120 d->mask_buf_def[i],
121 d->mask_buf[i],
122 d->chip->irq_drv_data);
123 else {
124 reg = d->get_irq_reg(d, d->mask_base, i);
125 ret = regmap_update_bits(d->map, reg,
126 d->mask_buf_def[i],
127 d->mask_buf[i]);
128 if (ret)
129 dev_err(d->map->dev, "Failed to sync masks in %x\n",
130 reg);
131 }
132 }
133
134 if (d->unmask_base) {
135 reg = d->get_irq_reg(d, d->unmask_base, i);
136 ret = regmap_update_bits(d->map, reg,
137 d->mask_buf_def[i], ~d->mask_buf[i]);
138 if (ret)
139 dev_err(d->map->dev, "Failed to sync masks in %x\n",
140 reg);
141 }
142
143 reg = d->get_irq_reg(d, d->chip->wake_base, i);
144 if (d->wake_buf) {
145 if (d->chip->wake_invert)
146 ret = regmap_update_bits(d->map, reg,
147 d->mask_buf_def[i],
148 ~d->wake_buf[i]);
149 else
150 ret = regmap_update_bits(d->map, reg,
151 d->mask_buf_def[i],
152 d->wake_buf[i]);
153 if (ret != 0)
154 dev_err(d->map->dev,
155 "Failed to sync wakes in %x: %d\n",
156 reg, ret);
157 }
158
159 if (!d->chip->init_ack_masked)
160 continue;
161 /*
162 * Ack all the masked interrupts unconditionally,
163 * OR if there is masked interrupt which hasn't been Acked,
164 * it'll be ignored in irq handler, then may introduce irq storm
165 */
166 if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
167 reg = d->get_irq_reg(d, d->chip->ack_base, i);
168
169 /* some chips ack by write 0 */
170 if (d->chip->ack_invert)
171 ret = regmap_write(map, reg, ~d->mask_buf[i]);
172 else
173 ret = regmap_write(map, reg, d->mask_buf[i]);
174 if (d->chip->clear_ack) {
175 if (d->chip->ack_invert && !ret)
176 ret = regmap_write(map, reg, UINT_MAX);
177 else if (!ret)
178 ret = regmap_write(map, reg, 0);
179 }
180 if (ret != 0)
181 dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
182 reg, ret);
183 }
184 }
185
186 /* Don't update the type bits if we're using mask bits for irq type. */
187 if (!d->chip->type_in_mask) {
188 for (i = 0; i < d->chip->num_type_reg; i++) {
189 if (!d->type_buf_def[i])
190 continue;
191 reg = d->get_irq_reg(d, d->chip->type_base, i);
192 if (d->chip->type_invert)
193 ret = regmap_update_bits(d->map, reg,
194 d->type_buf_def[i], ~d->type_buf[i]);
195 else
196 ret = regmap_update_bits(d->map, reg,
197 d->type_buf_def[i], d->type_buf[i]);
198 if (ret != 0)
199 dev_err(d->map->dev, "Failed to sync type in %x\n",
200 reg);
201 }
202 }
203
204 if (d->chip->num_virt_regs) {
205 for (i = 0; i < d->chip->num_virt_regs; i++) {
206 for (j = 0; j < d->chip->num_regs; j++) {
207 reg = d->get_irq_reg(d, d->chip->virt_reg_base[i],
208 j);
209 ret = regmap_write(map, reg, d->virt_buf[i][j]);
210 if (ret != 0)
211 dev_err(d->map->dev,
212 "Failed to write virt 0x%x: %d\n",
213 reg, ret);
214 }
215 }
216 }
217
218 for (i = 0; i < d->chip->num_config_bases; i++) {
219 for (j = 0; j < d->chip->num_config_regs; j++) {
220 reg = d->get_irq_reg(d, d->chip->config_base[i], j);
221 ret = regmap_write(map, reg, d->config_buf[i][j]);
222 if (ret)
223 dev_err(d->map->dev,
224 "Failed to write config %x: %d\n",
225 reg, ret);
226 }
227 }
228
229 if (d->chip->runtime_pm)
230 pm_runtime_put(map->dev);
231
232 /* If we've changed our wakeup count propagate it to the parent */
233 if (d->wake_count < 0)
234 for (i = d->wake_count; i < 0; i++)
235 irq_set_irq_wake(d->irq, 0);
236 else if (d->wake_count > 0)
237 for (i = 0; i < d->wake_count; i++)
238 irq_set_irq_wake(d->irq, 1);
239
240 d->wake_count = 0;
241
242 mutex_unlock(&d->lock);
243}
244
245static void regmap_irq_enable(struct irq_data *data)
246{
247 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
248 struct regmap *map = d->map;
249 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
250 unsigned int reg = irq_data->reg_offset / map->reg_stride;
251 unsigned int mask;
252
253 /*
254 * The type_in_mask flag means that the underlying hardware uses
255 * separate mask bits for each interrupt trigger type, but we want
256 * to have a single logical interrupt with a configurable type.
257 *
258 * If the interrupt we're enabling defines any supported types
259 * then instead of using the regular mask bits for this interrupt,
260 * use the value previously written to the type buffer at the
261 * corresponding offset in regmap_irq_set_type().
262 */
263 if (d->chip->type_in_mask && irq_data->type.types_supported)
264 mask = d->type_buf[reg] & irq_data->mask;
265 else
266 mask = irq_data->mask;
267
268 if (d->chip->clear_on_unmask)
269 d->clear_status = true;
270
271 d->mask_buf[reg] &= ~mask;
272}
273
274static void regmap_irq_disable(struct irq_data *data)
275{
276 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
277 struct regmap *map = d->map;
278 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
279
280 d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
281}
282
283static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
284{
285 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
286 struct regmap *map = d->map;
287 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
288 int reg, ret;
289 const struct regmap_irq_type *t = &irq_data->type;
290
291 if ((t->types_supported & type) != type)
292 return 0;
293
294 reg = t->type_reg_offset / map->reg_stride;
295
296 if (t->type_reg_mask)
297 d->type_buf[reg] &= ~t->type_reg_mask;
298 else
299 d->type_buf[reg] &= ~(t->type_falling_val |
300 t->type_rising_val |
301 t->type_level_low_val |
302 t->type_level_high_val);
303 switch (type) {
304 case IRQ_TYPE_EDGE_FALLING:
305 d->type_buf[reg] |= t->type_falling_val;
306 break;
307
308 case IRQ_TYPE_EDGE_RISING:
309 d->type_buf[reg] |= t->type_rising_val;
310 break;
311
312 case IRQ_TYPE_EDGE_BOTH:
313 d->type_buf[reg] |= (t->type_falling_val |
314 t->type_rising_val);
315 break;
316
317 case IRQ_TYPE_LEVEL_HIGH:
318 d->type_buf[reg] |= t->type_level_high_val;
319 break;
320
321 case IRQ_TYPE_LEVEL_LOW:
322 d->type_buf[reg] |= t->type_level_low_val;
323 break;
324 default:
325 return -EINVAL;
326 }
327
328 if (d->chip->set_type_virt) {
329 ret = d->chip->set_type_virt(d->virt_buf, type, data->hwirq,
330 reg);
331 if (ret)
332 return ret;
333 }
334
335 if (d->chip->set_type_config) {
336 ret = d->chip->set_type_config(d->config_buf, type,
337 irq_data, reg);
338 if (ret)
339 return ret;
340 }
341
342 return 0;
343}
344
345static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
346{
347 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
348 struct regmap *map = d->map;
349 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
350
351 if (on) {
352 if (d->wake_buf)
353 d->wake_buf[irq_data->reg_offset / map->reg_stride]
354 &= ~irq_data->mask;
355 d->wake_count++;
356 } else {
357 if (d->wake_buf)
358 d->wake_buf[irq_data->reg_offset / map->reg_stride]
359 |= irq_data->mask;
360 d->wake_count--;
361 }
362
363 return 0;
364}
365
366static const struct irq_chip regmap_irq_chip = {
367 .irq_bus_lock = regmap_irq_lock,
368 .irq_bus_sync_unlock = regmap_irq_sync_unlock,
369 .irq_disable = regmap_irq_disable,
370 .irq_enable = regmap_irq_enable,
371 .irq_set_type = regmap_irq_set_type,
372 .irq_set_wake = regmap_irq_set_wake,
373};
374
375static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
376 unsigned int b)
377{
378 const struct regmap_irq_chip *chip = data->chip;
379 struct regmap *map = data->map;
380 struct regmap_irq_sub_irq_map *subreg;
381 unsigned int reg;
382 int i, ret = 0;
383
384 if (!chip->sub_reg_offsets) {
385 reg = data->get_irq_reg(data, chip->status_base, b);
386 ret = regmap_read(map, reg, &data->status_buf[b]);
387 } else {
388 /*
389 * Note we can't use ->get_irq_reg() here because the offsets
390 * in 'subreg' are *not* interchangeable with indices.
391 */
392 subreg = &chip->sub_reg_offsets[b];
393 for (i = 0; i < subreg->num_regs; i++) {
394 unsigned int offset = subreg->offset[i];
395 unsigned int index = offset / map->reg_stride;
396
397 if (chip->not_fixed_stride)
398 ret = regmap_read(map,
399 chip->status_base + offset,
400 &data->status_buf[b]);
401 else
402 ret = regmap_read(map,
403 chip->status_base + offset,
404 &data->status_buf[index]);
405
406 if (ret)
407 break;
408 }
409 }
410 return ret;
411}
412
413static irqreturn_t regmap_irq_thread(int irq, void *d)
414{
415 struct regmap_irq_chip_data *data = d;
416 const struct regmap_irq_chip *chip = data->chip;
417 struct regmap *map = data->map;
418 int ret, i;
419 bool handled = false;
420 u32 reg;
421
422 if (chip->handle_pre_irq)
423 chip->handle_pre_irq(chip->irq_drv_data);
424
425 if (chip->runtime_pm) {
426 ret = pm_runtime_get_sync(map->dev);
427 if (ret < 0) {
428 dev_err(map->dev, "IRQ thread failed to resume: %d\n",
429 ret);
430 goto exit;
431 }
432 }
433
434 /*
435 * Read only registers with active IRQs if the chip has 'main status
436 * register'. Else read in the statuses, using a single bulk read if
437 * possible in order to reduce the I/O overheads.
438 */
439
440 if (chip->num_main_regs) {
441 unsigned int max_main_bits;
442 unsigned long size;
443
444 size = chip->num_regs * sizeof(unsigned int);
445
446 max_main_bits = (chip->num_main_status_bits) ?
447 chip->num_main_status_bits : chip->num_regs;
448 /* Clear the status buf as we don't read all status regs */
449 memset(data->status_buf, 0, size);
450
451 /* We could support bulk read for main status registers
452 * but I don't expect to see devices with really many main
453 * status registers so let's only support single reads for the
454 * sake of simplicity. and add bulk reads only if needed
455 */
456 for (i = 0; i < chip->num_main_regs; i++) {
457 /*
458 * For not_fixed_stride, don't use ->get_irq_reg().
459 * It would produce an incorrect result.
460 */
461 if (data->chip->not_fixed_stride)
462 reg = chip->main_status +
463 i * map->reg_stride * data->irq_reg_stride;
464 else
465 reg = data->get_irq_reg(data,
466 chip->main_status, i);
467
468 ret = regmap_read(map, reg, &data->main_status_buf[i]);
469 if (ret) {
470 dev_err(map->dev,
471 "Failed to read IRQ status %d\n",
472 ret);
473 goto exit;
474 }
475 }
476
477 /* Read sub registers with active IRQs */
478 for (i = 0; i < chip->num_main_regs; i++) {
479 unsigned int b;
480 const unsigned long mreg = data->main_status_buf[i];
481
482 for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
483 if (i * map->format.val_bytes * 8 + b >
484 max_main_bits)
485 break;
486 ret = read_sub_irq_data(data, b);
487
488 if (ret != 0) {
489 dev_err(map->dev,
490 "Failed to read IRQ status %d\n",
491 ret);
492 goto exit;
493 }
494 }
495
496 }
497 } else if (regmap_irq_can_bulk_read_status(data)) {
498
499 u8 *buf8 = data->status_reg_buf;
500 u16 *buf16 = data->status_reg_buf;
501 u32 *buf32 = data->status_reg_buf;
502
503 BUG_ON(!data->status_reg_buf);
504
505 ret = regmap_bulk_read(map, chip->status_base,
506 data->status_reg_buf,
507 chip->num_regs);
508 if (ret != 0) {
509 dev_err(map->dev, "Failed to read IRQ status: %d\n",
510 ret);
511 goto exit;
512 }
513
514 for (i = 0; i < data->chip->num_regs; i++) {
515 switch (map->format.val_bytes) {
516 case 1:
517 data->status_buf[i] = buf8[i];
518 break;
519 case 2:
520 data->status_buf[i] = buf16[i];
521 break;
522 case 4:
523 data->status_buf[i] = buf32[i];
524 break;
525 default:
526 BUG();
527 goto exit;
528 }
529 }
530
531 } else {
532 for (i = 0; i < data->chip->num_regs; i++) {
533 unsigned int reg = data->get_irq_reg(data,
534 data->chip->status_base, i);
535 ret = regmap_read(map, reg, &data->status_buf[i]);
536
537 if (ret != 0) {
538 dev_err(map->dev,
539 "Failed to read IRQ status: %d\n",
540 ret);
541 goto exit;
542 }
543 }
544 }
545
546 if (chip->status_invert)
547 for (i = 0; i < data->chip->num_regs; i++)
548 data->status_buf[i] = ~data->status_buf[i];
549
550 /*
551 * Ignore masked IRQs and ack if we need to; we ack early so
552 * there is no race between handling and acknowledging the
553 * interrupt. We assume that typically few of the interrupts
554 * will fire simultaneously so don't worry about overhead from
555 * doing a write per register.
556 */
557 for (i = 0; i < data->chip->num_regs; i++) {
558 data->status_buf[i] &= ~data->mask_buf[i];
559
560 if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
561 reg = data->get_irq_reg(data, data->chip->ack_base, i);
562
563 if (chip->ack_invert)
564 ret = regmap_write(map, reg,
565 ~data->status_buf[i]);
566 else
567 ret = regmap_write(map, reg,
568 data->status_buf[i]);
569 if (chip->clear_ack) {
570 if (chip->ack_invert && !ret)
571 ret = regmap_write(map, reg, UINT_MAX);
572 else if (!ret)
573 ret = regmap_write(map, reg, 0);
574 }
575 if (ret != 0)
576 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
577 reg, ret);
578 }
579 }
580
581 for (i = 0; i < chip->num_irqs; i++) {
582 if (data->status_buf[chip->irqs[i].reg_offset /
583 map->reg_stride] & chip->irqs[i].mask) {
584 handle_nested_irq(irq_find_mapping(data->domain, i));
585 handled = true;
586 }
587 }
588
589exit:
590 if (chip->runtime_pm)
591 pm_runtime_put(map->dev);
592
593 if (chip->handle_post_irq)
594 chip->handle_post_irq(chip->irq_drv_data);
595
596 if (handled)
597 return IRQ_HANDLED;
598 else
599 return IRQ_NONE;
600}
601
602static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
603 irq_hw_number_t hw)
604{
605 struct regmap_irq_chip_data *data = h->host_data;
606
607 irq_set_chip_data(virq, data);
608 irq_set_chip(virq, &data->irq_chip);
609 irq_set_nested_thread(virq, 1);
610 irq_set_parent(virq, data->irq);
611 irq_set_noprobe(virq);
612
613 return 0;
614}
615
616static const struct irq_domain_ops regmap_domain_ops = {
617 .map = regmap_irq_map,
618 .xlate = irq_domain_xlate_onetwocell,
619};
620
621/**
622 * regmap_irq_get_irq_reg_linear() - Linear IRQ register mapping callback.
623 * @data: Data for the &struct regmap_irq_chip
624 * @base: Base register
625 * @index: Register index
626 *
627 * Returns the register address corresponding to the given @base and @index
628 * by the formula ``base + index * regmap_stride * irq_reg_stride``.
629 */
630unsigned int regmap_irq_get_irq_reg_linear(struct regmap_irq_chip_data *data,
631 unsigned int base, int index)
632{
633 const struct regmap_irq_chip *chip = data->chip;
634 struct regmap *map = data->map;
635
636 /*
637 * FIXME: This is for backward compatibility and should be removed
638 * when not_fixed_stride is dropped (it's only used by qcom-pm8008).
639 */
640 if (chip->not_fixed_stride && chip->sub_reg_offsets) {
641 struct regmap_irq_sub_irq_map *subreg;
642
643 subreg = &chip->sub_reg_offsets[0];
644 return base + subreg->offset[0];
645 }
646
647 return base + index * map->reg_stride * data->irq_reg_stride;
648}
649EXPORT_SYMBOL_GPL(regmap_irq_get_irq_reg_linear);
650
651/**
652 * regmap_irq_set_type_config_simple() - Simple IRQ type configuration callback.
653 * @buf: Buffer containing configuration register values, this is a 2D array of
654 * `num_config_bases` rows, each of `num_config_regs` elements.
655 * @type: The requested IRQ type.
656 * @irq_data: The IRQ being configured.
657 * @idx: Index of the irq's config registers within each array `buf[i]`
658 *
659 * This is a &struct regmap_irq_chip->set_type_config callback suitable for
660 * chips with one config register. Register values are updated according to
661 * the &struct regmap_irq_type data associated with an IRQ.
662 */
663int regmap_irq_set_type_config_simple(unsigned int **buf, unsigned int type,
664 const struct regmap_irq *irq_data, int idx)
665{
666 const struct regmap_irq_type *t = &irq_data->type;
667
668 if (t->type_reg_mask)
669 buf[0][idx] &= ~t->type_reg_mask;
670 else
671 buf[0][idx] &= ~(t->type_falling_val |
672 t->type_rising_val |
673 t->type_level_low_val |
674 t->type_level_high_val);
675
676 switch (type) {
677 case IRQ_TYPE_EDGE_FALLING:
678 buf[0][idx] |= t->type_falling_val;
679 break;
680
681 case IRQ_TYPE_EDGE_RISING:
682 buf[0][idx] |= t->type_rising_val;
683 break;
684
685 case IRQ_TYPE_EDGE_BOTH:
686 buf[0][idx] |= (t->type_falling_val |
687 t->type_rising_val);
688 break;
689
690 case IRQ_TYPE_LEVEL_HIGH:
691 buf[0][idx] |= t->type_level_high_val;
692 break;
693
694 case IRQ_TYPE_LEVEL_LOW:
695 buf[0][idx] |= t->type_level_low_val;
696 break;
697
698 default:
699 return -EINVAL;
700 }
701
702 return 0;
703}
704EXPORT_SYMBOL_GPL(regmap_irq_set_type_config_simple);
705
706/**
707 * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling
708 *
709 * @fwnode: The firmware node where the IRQ domain should be added to.
710 * @map: The regmap for the device.
711 * @irq: The IRQ the device uses to signal interrupts.
712 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
713 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
714 * @chip: Configuration for the interrupt controller.
715 * @data: Runtime data structure for the controller, allocated on success.
716 *
717 * Returns 0 on success or an errno on failure.
718 *
719 * In order for this to be efficient the chip really should use a
720 * register cache. The chip driver is responsible for restoring the
721 * register values used by the IRQ controller over suspend and resume.
722 */
723int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode,
724 struct regmap *map, int irq,
725 int irq_flags, int irq_base,
726 const struct regmap_irq_chip *chip,
727 struct regmap_irq_chip_data **data)
728{
729 struct regmap_irq_chip_data *d;
730 int i;
731 int ret = -ENOMEM;
732 int num_type_reg;
733 int num_regs;
734 u32 reg;
735
736 if (chip->num_regs <= 0)
737 return -EINVAL;
738
739 if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
740 return -EINVAL;
741
742 for (i = 0; i < chip->num_irqs; i++) {
743 if (chip->irqs[i].reg_offset % map->reg_stride)
744 return -EINVAL;
745 if (chip->irqs[i].reg_offset / map->reg_stride >=
746 chip->num_regs)
747 return -EINVAL;
748 }
749
750 if (chip->not_fixed_stride) {
751 dev_warn(map->dev, "not_fixed_stride is deprecated; use ->get_irq_reg() instead");
752
753 for (i = 0; i < chip->num_regs; i++)
754 if (chip->sub_reg_offsets[i].num_regs != 1)
755 return -EINVAL;
756 }
757
758 if (chip->num_type_reg)
759 dev_warn(map->dev, "type registers are deprecated; use config registers instead");
760
761 if (chip->num_virt_regs || chip->virt_reg_base || chip->set_type_virt)
762 dev_warn(map->dev, "virtual registers are deprecated; use config registers instead");
763
764 if (irq_base) {
765 irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
766 if (irq_base < 0) {
767 dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
768 irq_base);
769 return irq_base;
770 }
771 }
772
773 d = kzalloc(sizeof(*d), GFP_KERNEL);
774 if (!d)
775 return -ENOMEM;
776
777 if (chip->num_main_regs) {
778 d->main_status_buf = kcalloc(chip->num_main_regs,
779 sizeof(*d->main_status_buf),
780 GFP_KERNEL);
781
782 if (!d->main_status_buf)
783 goto err_alloc;
784 }
785
786 d->status_buf = kcalloc(chip->num_regs, sizeof(*d->status_buf),
787 GFP_KERNEL);
788 if (!d->status_buf)
789 goto err_alloc;
790
791 d->mask_buf = kcalloc(chip->num_regs, sizeof(*d->mask_buf),
792 GFP_KERNEL);
793 if (!d->mask_buf)
794 goto err_alloc;
795
796 d->mask_buf_def = kcalloc(chip->num_regs, sizeof(*d->mask_buf_def),
797 GFP_KERNEL);
798 if (!d->mask_buf_def)
799 goto err_alloc;
800
801 if (chip->wake_base) {
802 d->wake_buf = kcalloc(chip->num_regs, sizeof(*d->wake_buf),
803 GFP_KERNEL);
804 if (!d->wake_buf)
805 goto err_alloc;
806 }
807
808 /*
809 * Use num_config_regs if defined, otherwise fall back to num_type_reg
810 * to maintain backward compatibility.
811 */
812 num_type_reg = chip->num_config_regs ? chip->num_config_regs
813 : chip->num_type_reg;
814 num_regs = chip->type_in_mask ? chip->num_regs : num_type_reg;
815 if (num_regs) {
816 d->type_buf_def = kcalloc(num_regs,
817 sizeof(*d->type_buf_def), GFP_KERNEL);
818 if (!d->type_buf_def)
819 goto err_alloc;
820
821 d->type_buf = kcalloc(num_regs, sizeof(*d->type_buf),
822 GFP_KERNEL);
823 if (!d->type_buf)
824 goto err_alloc;
825 }
826
827 if (chip->num_virt_regs) {
828 /*
829 * Create virt_buf[chip->num_extra_config_regs][chip->num_regs]
830 */
831 d->virt_buf = kcalloc(chip->num_virt_regs, sizeof(*d->virt_buf),
832 GFP_KERNEL);
833 if (!d->virt_buf)
834 goto err_alloc;
835
836 for (i = 0; i < chip->num_virt_regs; i++) {
837 d->virt_buf[i] = kcalloc(chip->num_regs,
838 sizeof(**d->virt_buf),
839 GFP_KERNEL);
840 if (!d->virt_buf[i])
841 goto err_alloc;
842 }
843 }
844
845 if (chip->num_config_bases && chip->num_config_regs) {
846 /*
847 * Create config_buf[num_config_bases][num_config_regs]
848 */
849 d->config_buf = kcalloc(chip->num_config_bases,
850 sizeof(*d->config_buf), GFP_KERNEL);
851 if (!d->config_buf)
852 goto err_alloc;
853
854 for (i = 0; i < chip->num_config_regs; i++) {
855 d->config_buf[i] = kcalloc(chip->num_config_regs,
856 sizeof(**d->config_buf),
857 GFP_KERNEL);
858 if (!d->config_buf[i])
859 goto err_alloc;
860 }
861 }
862
863 d->irq_chip = regmap_irq_chip;
864 d->irq_chip.name = chip->name;
865 d->irq = irq;
866 d->map = map;
867 d->chip = chip;
868 d->irq_base = irq_base;
869
870 if (chip->mask_base && chip->unmask_base &&
871 !chip->mask_unmask_non_inverted) {
872 /*
873 * Chips that specify both mask_base and unmask_base used to
874 * get inverted mask behavior by default, with no way to ask
875 * for the normal, non-inverted behavior. This "inverted by
876 * default" behavior is deprecated, but we have to support it
877 * until existing drivers have been fixed.
878 *
879 * Existing drivers should be updated by swapping mask_base
880 * and unmask_base and setting mask_unmask_non_inverted=true.
881 * New drivers should always set the flag.
882 */
883 dev_warn(map->dev, "mask_base and unmask_base are inverted, please fix it");
884
885 /* Might as well warn about mask_invert while we're at it... */
886 if (chip->mask_invert)
887 dev_warn(map->dev, "mask_invert=true ignored");
888
889 d->mask_base = chip->unmask_base;
890 d->unmask_base = chip->mask_base;
891 } else if (chip->mask_invert) {
892 /*
893 * Swap the roles of mask_base and unmask_base if the bits are
894 * inverted. This is deprecated, drivers should use unmask_base
895 * directly.
896 */
897 dev_warn(map->dev, "mask_invert=true is deprecated; please switch to unmask_base");
898
899 d->mask_base = chip->unmask_base;
900 d->unmask_base = chip->mask_base;
901 } else {
902 d->mask_base = chip->mask_base;
903 d->unmask_base = chip->unmask_base;
904 }
905
906 if (chip->irq_reg_stride)
907 d->irq_reg_stride = chip->irq_reg_stride;
908 else
909 d->irq_reg_stride = 1;
910
911 if (chip->get_irq_reg)
912 d->get_irq_reg = chip->get_irq_reg;
913 else
914 d->get_irq_reg = regmap_irq_get_irq_reg_linear;
915
916 if (regmap_irq_can_bulk_read_status(d)) {
917 d->status_reg_buf = kmalloc_array(chip->num_regs,
918 map->format.val_bytes,
919 GFP_KERNEL);
920 if (!d->status_reg_buf)
921 goto err_alloc;
922 }
923
924 mutex_init(&d->lock);
925
926 for (i = 0; i < chip->num_irqs; i++)
927 d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
928 |= chip->irqs[i].mask;
929
930 /* Mask all the interrupts by default */
931 for (i = 0; i < chip->num_regs; i++) {
932 d->mask_buf[i] = d->mask_buf_def[i];
933
934 if (d->mask_base) {
935 if (chip->handle_mask_sync) {
936 ret = chip->handle_mask_sync(d->map, i,
937 d->mask_buf_def[i],
938 d->mask_buf[i],
939 chip->irq_drv_data);
940 if (ret)
941 goto err_alloc;
942 } else {
943 reg = d->get_irq_reg(d, d->mask_base, i);
944 ret = regmap_update_bits(d->map, reg,
945 d->mask_buf_def[i],
946 d->mask_buf[i]);
947 if (ret) {
948 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
949 reg, ret);
950 goto err_alloc;
951 }
952 }
953 }
954
955 if (d->unmask_base) {
956 reg = d->get_irq_reg(d, d->unmask_base, i);
957 ret = regmap_update_bits(d->map, reg,
958 d->mask_buf_def[i], ~d->mask_buf[i]);
959 if (ret) {
960 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
961 reg, ret);
962 goto err_alloc;
963 }
964 }
965
966 if (!chip->init_ack_masked)
967 continue;
968
969 /* Ack masked but set interrupts */
970 reg = d->get_irq_reg(d, d->chip->status_base, i);
971 ret = regmap_read(map, reg, &d->status_buf[i]);
972 if (ret != 0) {
973 dev_err(map->dev, "Failed to read IRQ status: %d\n",
974 ret);
975 goto err_alloc;
976 }
977
978 if (chip->status_invert)
979 d->status_buf[i] = ~d->status_buf[i];
980
981 if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
982 reg = d->get_irq_reg(d, d->chip->ack_base, i);
983 if (chip->ack_invert)
984 ret = regmap_write(map, reg,
985 ~(d->status_buf[i] & d->mask_buf[i]));
986 else
987 ret = regmap_write(map, reg,
988 d->status_buf[i] & d->mask_buf[i]);
989 if (chip->clear_ack) {
990 if (chip->ack_invert && !ret)
991 ret = regmap_write(map, reg, UINT_MAX);
992 else if (!ret)
993 ret = regmap_write(map, reg, 0);
994 }
995 if (ret != 0) {
996 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
997 reg, ret);
998 goto err_alloc;
999 }
1000 }
1001 }
1002
1003 /* Wake is disabled by default */
1004 if (d->wake_buf) {
1005 for (i = 0; i < chip->num_regs; i++) {
1006 d->wake_buf[i] = d->mask_buf_def[i];
1007 reg = d->get_irq_reg(d, d->chip->wake_base, i);
1008
1009 if (chip->wake_invert)
1010 ret = regmap_update_bits(d->map, reg,
1011 d->mask_buf_def[i],
1012 0);
1013 else
1014 ret = regmap_update_bits(d->map, reg,
1015 d->mask_buf_def[i],
1016 d->wake_buf[i]);
1017 if (ret != 0) {
1018 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
1019 reg, ret);
1020 goto err_alloc;
1021 }
1022 }
1023 }
1024
1025 if (chip->num_type_reg && !chip->type_in_mask) {
1026 for (i = 0; i < chip->num_type_reg; ++i) {
1027 reg = d->get_irq_reg(d, d->chip->type_base, i);
1028
1029 ret = regmap_read(map, reg, &d->type_buf_def[i]);
1030
1031 if (d->chip->type_invert)
1032 d->type_buf_def[i] = ~d->type_buf_def[i];
1033
1034 if (ret) {
1035 dev_err(map->dev, "Failed to get type defaults at 0x%x: %d\n",
1036 reg, ret);
1037 goto err_alloc;
1038 }
1039 }
1040 }
1041
1042 if (irq_base)
1043 d->domain = irq_domain_create_legacy(fwnode, chip->num_irqs,
1044 irq_base, 0,
1045 ®map_domain_ops, d);
1046 else
1047 d->domain = irq_domain_create_linear(fwnode, chip->num_irqs,
1048 ®map_domain_ops, d);
1049 if (!d->domain) {
1050 dev_err(map->dev, "Failed to create IRQ domain\n");
1051 ret = -ENOMEM;
1052 goto err_alloc;
1053 }
1054
1055 ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
1056 irq_flags | IRQF_ONESHOT,
1057 chip->name, d);
1058 if (ret != 0) {
1059 dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
1060 irq, chip->name, ret);
1061 goto err_domain;
1062 }
1063
1064 *data = d;
1065
1066 return 0;
1067
1068err_domain:
1069 /* Should really dispose of the domain but... */
1070err_alloc:
1071 kfree(d->type_buf);
1072 kfree(d->type_buf_def);
1073 kfree(d->wake_buf);
1074 kfree(d->mask_buf_def);
1075 kfree(d->mask_buf);
1076 kfree(d->status_buf);
1077 kfree(d->status_reg_buf);
1078 if (d->virt_buf) {
1079 for (i = 0; i < chip->num_virt_regs; i++)
1080 kfree(d->virt_buf[i]);
1081 kfree(d->virt_buf);
1082 }
1083 if (d->config_buf) {
1084 for (i = 0; i < chip->num_config_bases; i++)
1085 kfree(d->config_buf[i]);
1086 kfree(d->config_buf);
1087 }
1088 kfree(d);
1089 return ret;
1090}
1091EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode);
1092
1093/**
1094 * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
1095 *
1096 * @map: The regmap for the device.
1097 * @irq: The IRQ the device uses to signal interrupts.
1098 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1099 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1100 * @chip: Configuration for the interrupt controller.
1101 * @data: Runtime data structure for the controller, allocated on success.
1102 *
1103 * Returns 0 on success or an errno on failure.
1104 *
1105 * This is the same as regmap_add_irq_chip_fwnode, except that the firmware
1106 * node of the regmap is used.
1107 */
1108int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
1109 int irq_base, const struct regmap_irq_chip *chip,
1110 struct regmap_irq_chip_data **data)
1111{
1112 return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq,
1113 irq_flags, irq_base, chip, data);
1114}
1115EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
1116
1117/**
1118 * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
1119 *
1120 * @irq: Primary IRQ for the device
1121 * @d: ®map_irq_chip_data allocated by regmap_add_irq_chip()
1122 *
1123 * This function also disposes of all mapped IRQs on the chip.
1124 */
1125void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
1126{
1127 unsigned int virq;
1128 int i, hwirq;
1129
1130 if (!d)
1131 return;
1132
1133 free_irq(irq, d);
1134
1135 /* Dispose all virtual irq from irq domain before removing it */
1136 for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
1137 /* Ignore hwirq if holes in the IRQ list */
1138 if (!d->chip->irqs[hwirq].mask)
1139 continue;
1140
1141 /*
1142 * Find the virtual irq of hwirq on chip and if it is
1143 * there then dispose it
1144 */
1145 virq = irq_find_mapping(d->domain, hwirq);
1146 if (virq)
1147 irq_dispose_mapping(virq);
1148 }
1149
1150 irq_domain_remove(d->domain);
1151 kfree(d->type_buf);
1152 kfree(d->type_buf_def);
1153 kfree(d->wake_buf);
1154 kfree(d->mask_buf_def);
1155 kfree(d->mask_buf);
1156 kfree(d->status_reg_buf);
1157 kfree(d->status_buf);
1158 if (d->config_buf) {
1159 for (i = 0; i < d->chip->num_config_bases; i++)
1160 kfree(d->config_buf[i]);
1161 kfree(d->config_buf);
1162 }
1163 kfree(d);
1164}
1165EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
1166
1167static void devm_regmap_irq_chip_release(struct device *dev, void *res)
1168{
1169 struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
1170
1171 regmap_del_irq_chip(d->irq, d);
1172}
1173
1174static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
1175
1176{
1177 struct regmap_irq_chip_data **r = res;
1178
1179 if (!r || !*r) {
1180 WARN_ON(!r || !*r);
1181 return 0;
1182 }
1183 return *r == data;
1184}
1185
1186/**
1187 * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode()
1188 *
1189 * @dev: The device pointer on which irq_chip belongs to.
1190 * @fwnode: The firmware node where the IRQ domain should be added to.
1191 * @map: The regmap for the device.
1192 * @irq: The IRQ the device uses to signal interrupts
1193 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1194 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1195 * @chip: Configuration for the interrupt controller.
1196 * @data: Runtime data structure for the controller, allocated on success
1197 *
1198 * Returns 0 on success or an errno on failure.
1199 *
1200 * The ®map_irq_chip_data will be automatically released when the device is
1201 * unbound.
1202 */
1203int devm_regmap_add_irq_chip_fwnode(struct device *dev,
1204 struct fwnode_handle *fwnode,
1205 struct regmap *map, int irq,
1206 int irq_flags, int irq_base,
1207 const struct regmap_irq_chip *chip,
1208 struct regmap_irq_chip_data **data)
1209{
1210 struct regmap_irq_chip_data **ptr, *d;
1211 int ret;
1212
1213 ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
1214 GFP_KERNEL);
1215 if (!ptr)
1216 return -ENOMEM;
1217
1218 ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base,
1219 chip, &d);
1220 if (ret < 0) {
1221 devres_free(ptr);
1222 return ret;
1223 }
1224
1225 *ptr = d;
1226 devres_add(dev, ptr);
1227 *data = d;
1228 return 0;
1229}
1230EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode);
1231
1232/**
1233 * devm_regmap_add_irq_chip() - Resource managed regmap_add_irq_chip()
1234 *
1235 * @dev: The device pointer on which irq_chip belongs to.
1236 * @map: The regmap for the device.
1237 * @irq: The IRQ the device uses to signal interrupts
1238 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1239 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1240 * @chip: Configuration for the interrupt controller.
1241 * @data: Runtime data structure for the controller, allocated on success
1242 *
1243 * Returns 0 on success or an errno on failure.
1244 *
1245 * The ®map_irq_chip_data will be automatically released when the device is
1246 * unbound.
1247 */
1248int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
1249 int irq_flags, int irq_base,
1250 const struct regmap_irq_chip *chip,
1251 struct regmap_irq_chip_data **data)
1252{
1253 return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map,
1254 irq, irq_flags, irq_base, chip,
1255 data);
1256}
1257EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
1258
1259/**
1260 * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
1261 *
1262 * @dev: Device for which the resource was allocated.
1263 * @irq: Primary IRQ for the device.
1264 * @data: ®map_irq_chip_data allocated by regmap_add_irq_chip().
1265 *
1266 * A resource managed version of regmap_del_irq_chip().
1267 */
1268void devm_regmap_del_irq_chip(struct device *dev, int irq,
1269 struct regmap_irq_chip_data *data)
1270{
1271 int rc;
1272
1273 WARN_ON(irq != data->irq);
1274 rc = devres_release(dev, devm_regmap_irq_chip_release,
1275 devm_regmap_irq_chip_match, data);
1276
1277 if (rc != 0)
1278 WARN_ON(rc);
1279}
1280EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
1281
1282/**
1283 * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
1284 *
1285 * @data: regmap irq controller to operate on.
1286 *
1287 * Useful for drivers to request their own IRQs.
1288 */
1289int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
1290{
1291 WARN_ON(!data->irq_base);
1292 return data->irq_base;
1293}
1294EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
1295
1296/**
1297 * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
1298 *
1299 * @data: regmap irq controller to operate on.
1300 * @irq: index of the interrupt requested in the chip IRQs.
1301 *
1302 * Useful for drivers to request their own IRQs.
1303 */
1304int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
1305{
1306 /* Handle holes in the IRQ list */
1307 if (!data->chip->irqs[irq].mask)
1308 return -EINVAL;
1309
1310 return irq_create_mapping(data->domain, irq);
1311}
1312EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
1313
1314/**
1315 * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
1316 *
1317 * @data: regmap_irq controller to operate on.
1318 *
1319 * Useful for drivers to request their own IRQs and for integration
1320 * with subsystems. For ease of integration NULL is accepted as a
1321 * domain, allowing devices to just call this even if no domain is
1322 * allocated.
1323 */
1324struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
1325{
1326 if (data)
1327 return data->domain;
1328 else
1329 return NULL;
1330}
1331EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
1/*
2 * regmap based irq_chip
3 *
4 * Copyright 2011 Wolfson Microelectronics plc
5 *
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/device.h>
14#include <linux/export.h>
15#include <linux/interrupt.h>
16#include <linux/irq.h>
17#include <linux/irqdomain.h>
18#include <linux/pm_runtime.h>
19#include <linux/regmap.h>
20#include <linux/slab.h>
21
22#include "internal.h"
23
24struct regmap_irq_chip_data {
25 struct mutex lock;
26 struct irq_chip irq_chip;
27
28 struct regmap *map;
29 const struct regmap_irq_chip *chip;
30
31 int irq_base;
32 struct irq_domain *domain;
33
34 int irq;
35 int wake_count;
36
37 void *status_reg_buf;
38 unsigned int *status_buf;
39 unsigned int *mask_buf;
40 unsigned int *mask_buf_def;
41 unsigned int *wake_buf;
42 unsigned int *type_buf;
43 unsigned int *type_buf_def;
44
45 unsigned int irq_reg_stride;
46 unsigned int type_reg_stride;
47};
48
49static inline const
50struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
51 int irq)
52{
53 return &data->chip->irqs[irq];
54}
55
56static void regmap_irq_lock(struct irq_data *data)
57{
58 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
59
60 mutex_lock(&d->lock);
61}
62
63static int regmap_irq_update_bits(struct regmap_irq_chip_data *d,
64 unsigned int reg, unsigned int mask,
65 unsigned int val)
66{
67 if (d->chip->mask_writeonly)
68 return regmap_write_bits(d->map, reg, mask, val);
69 else
70 return regmap_update_bits(d->map, reg, mask, val);
71}
72
73static void regmap_irq_sync_unlock(struct irq_data *data)
74{
75 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
76 struct regmap *map = d->map;
77 int i, ret;
78 u32 reg;
79 u32 unmask_offset;
80
81 if (d->chip->runtime_pm) {
82 ret = pm_runtime_get_sync(map->dev);
83 if (ret < 0)
84 dev_err(map->dev, "IRQ sync failed to resume: %d\n",
85 ret);
86 }
87
88 /*
89 * If there's been a change in the mask write it back to the
90 * hardware. We rely on the use of the regmap core cache to
91 * suppress pointless writes.
92 */
93 for (i = 0; i < d->chip->num_regs; i++) {
94 reg = d->chip->mask_base +
95 (i * map->reg_stride * d->irq_reg_stride);
96 if (d->chip->mask_invert) {
97 ret = regmap_irq_update_bits(d, reg,
98 d->mask_buf_def[i], ~d->mask_buf[i]);
99 } else if (d->chip->unmask_base) {
100 /* set mask with mask_base register */
101 ret = regmap_irq_update_bits(d, reg,
102 d->mask_buf_def[i], ~d->mask_buf[i]);
103 if (ret < 0)
104 dev_err(d->map->dev,
105 "Failed to sync unmasks in %x\n",
106 reg);
107 unmask_offset = d->chip->unmask_base -
108 d->chip->mask_base;
109 /* clear mask with unmask_base register */
110 ret = regmap_irq_update_bits(d,
111 reg + unmask_offset,
112 d->mask_buf_def[i],
113 d->mask_buf[i]);
114 } else {
115 ret = regmap_irq_update_bits(d, reg,
116 d->mask_buf_def[i], d->mask_buf[i]);
117 }
118 if (ret != 0)
119 dev_err(d->map->dev, "Failed to sync masks in %x\n",
120 reg);
121
122 reg = d->chip->wake_base +
123 (i * map->reg_stride * d->irq_reg_stride);
124 if (d->wake_buf) {
125 if (d->chip->wake_invert)
126 ret = regmap_irq_update_bits(d, reg,
127 d->mask_buf_def[i],
128 ~d->wake_buf[i]);
129 else
130 ret = regmap_irq_update_bits(d, reg,
131 d->mask_buf_def[i],
132 d->wake_buf[i]);
133 if (ret != 0)
134 dev_err(d->map->dev,
135 "Failed to sync wakes in %x: %d\n",
136 reg, ret);
137 }
138
139 if (!d->chip->init_ack_masked)
140 continue;
141 /*
142 * Ack all the masked interrupts unconditionally,
143 * OR if there is masked interrupt which hasn't been Acked,
144 * it'll be ignored in irq handler, then may introduce irq storm
145 */
146 if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
147 reg = d->chip->ack_base +
148 (i * map->reg_stride * d->irq_reg_stride);
149 /* some chips ack by write 0 */
150 if (d->chip->ack_invert)
151 ret = regmap_write(map, reg, ~d->mask_buf[i]);
152 else
153 ret = regmap_write(map, reg, d->mask_buf[i]);
154 if (ret != 0)
155 dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
156 reg, ret);
157 }
158 }
159
160 for (i = 0; i < d->chip->num_type_reg; i++) {
161 if (!d->type_buf_def[i])
162 continue;
163 reg = d->chip->type_base +
164 (i * map->reg_stride * d->type_reg_stride);
165 if (d->chip->type_invert)
166 ret = regmap_irq_update_bits(d, reg,
167 d->type_buf_def[i], ~d->type_buf[i]);
168 else
169 ret = regmap_irq_update_bits(d, reg,
170 d->type_buf_def[i], d->type_buf[i]);
171 if (ret != 0)
172 dev_err(d->map->dev, "Failed to sync type in %x\n",
173 reg);
174 }
175
176 if (d->chip->runtime_pm)
177 pm_runtime_put(map->dev);
178
179 /* If we've changed our wakeup count propagate it to the parent */
180 if (d->wake_count < 0)
181 for (i = d->wake_count; i < 0; i++)
182 irq_set_irq_wake(d->irq, 0);
183 else if (d->wake_count > 0)
184 for (i = 0; i < d->wake_count; i++)
185 irq_set_irq_wake(d->irq, 1);
186
187 d->wake_count = 0;
188
189 mutex_unlock(&d->lock);
190}
191
192static void regmap_irq_enable(struct irq_data *data)
193{
194 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
195 struct regmap *map = d->map;
196 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
197
198 d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~irq_data->mask;
199}
200
201static void regmap_irq_disable(struct irq_data *data)
202{
203 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
204 struct regmap *map = d->map;
205 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
206
207 d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
208}
209
210static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
211{
212 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
213 struct regmap *map = d->map;
214 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
215 int reg = irq_data->type_reg_offset / map->reg_stride;
216
217 if (!(irq_data->type_rising_mask | irq_data->type_falling_mask))
218 return 0;
219
220 d->type_buf[reg] &= ~(irq_data->type_falling_mask |
221 irq_data->type_rising_mask);
222 switch (type) {
223 case IRQ_TYPE_EDGE_FALLING:
224 d->type_buf[reg] |= irq_data->type_falling_mask;
225 break;
226
227 case IRQ_TYPE_EDGE_RISING:
228 d->type_buf[reg] |= irq_data->type_rising_mask;
229 break;
230
231 case IRQ_TYPE_EDGE_BOTH:
232 d->type_buf[reg] |= (irq_data->type_falling_mask |
233 irq_data->type_rising_mask);
234 break;
235
236 default:
237 return -EINVAL;
238 }
239 return 0;
240}
241
242static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
243{
244 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
245 struct regmap *map = d->map;
246 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
247
248 if (on) {
249 if (d->wake_buf)
250 d->wake_buf[irq_data->reg_offset / map->reg_stride]
251 &= ~irq_data->mask;
252 d->wake_count++;
253 } else {
254 if (d->wake_buf)
255 d->wake_buf[irq_data->reg_offset / map->reg_stride]
256 |= irq_data->mask;
257 d->wake_count--;
258 }
259
260 return 0;
261}
262
263static const struct irq_chip regmap_irq_chip = {
264 .irq_bus_lock = regmap_irq_lock,
265 .irq_bus_sync_unlock = regmap_irq_sync_unlock,
266 .irq_disable = regmap_irq_disable,
267 .irq_enable = regmap_irq_enable,
268 .irq_set_type = regmap_irq_set_type,
269 .irq_set_wake = regmap_irq_set_wake,
270};
271
272static irqreturn_t regmap_irq_thread(int irq, void *d)
273{
274 struct regmap_irq_chip_data *data = d;
275 const struct regmap_irq_chip *chip = data->chip;
276 struct regmap *map = data->map;
277 int ret, i;
278 bool handled = false;
279 u32 reg;
280
281 if (chip->handle_pre_irq)
282 chip->handle_pre_irq(chip->irq_drv_data);
283
284 if (chip->runtime_pm) {
285 ret = pm_runtime_get_sync(map->dev);
286 if (ret < 0) {
287 dev_err(map->dev, "IRQ thread failed to resume: %d\n",
288 ret);
289 pm_runtime_put(map->dev);
290 goto exit;
291 }
292 }
293
294 /*
295 * Read in the statuses, using a single bulk read if possible
296 * in order to reduce the I/O overheads.
297 */
298 if (!map->use_single_read && map->reg_stride == 1 &&
299 data->irq_reg_stride == 1) {
300 u8 *buf8 = data->status_reg_buf;
301 u16 *buf16 = data->status_reg_buf;
302 u32 *buf32 = data->status_reg_buf;
303
304 BUG_ON(!data->status_reg_buf);
305
306 ret = regmap_bulk_read(map, chip->status_base,
307 data->status_reg_buf,
308 chip->num_regs);
309 if (ret != 0) {
310 dev_err(map->dev, "Failed to read IRQ status: %d\n",
311 ret);
312 goto exit;
313 }
314
315 for (i = 0; i < data->chip->num_regs; i++) {
316 switch (map->format.val_bytes) {
317 case 1:
318 data->status_buf[i] = buf8[i];
319 break;
320 case 2:
321 data->status_buf[i] = buf16[i];
322 break;
323 case 4:
324 data->status_buf[i] = buf32[i];
325 break;
326 default:
327 BUG();
328 goto exit;
329 }
330 }
331
332 } else {
333 for (i = 0; i < data->chip->num_regs; i++) {
334 ret = regmap_read(map, chip->status_base +
335 (i * map->reg_stride
336 * data->irq_reg_stride),
337 &data->status_buf[i]);
338
339 if (ret != 0) {
340 dev_err(map->dev,
341 "Failed to read IRQ status: %d\n",
342 ret);
343 if (chip->runtime_pm)
344 pm_runtime_put(map->dev);
345 goto exit;
346 }
347 }
348 }
349
350 /*
351 * Ignore masked IRQs and ack if we need to; we ack early so
352 * there is no race between handling and acknowleding the
353 * interrupt. We assume that typically few of the interrupts
354 * will fire simultaneously so don't worry about overhead from
355 * doing a write per register.
356 */
357 for (i = 0; i < data->chip->num_regs; i++) {
358 data->status_buf[i] &= ~data->mask_buf[i];
359
360 if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
361 reg = chip->ack_base +
362 (i * map->reg_stride * data->irq_reg_stride);
363 ret = regmap_write(map, reg, data->status_buf[i]);
364 if (ret != 0)
365 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
366 reg, ret);
367 }
368 }
369
370 for (i = 0; i < chip->num_irqs; i++) {
371 if (data->status_buf[chip->irqs[i].reg_offset /
372 map->reg_stride] & chip->irqs[i].mask) {
373 handle_nested_irq(irq_find_mapping(data->domain, i));
374 handled = true;
375 }
376 }
377
378 if (chip->runtime_pm)
379 pm_runtime_put(map->dev);
380
381exit:
382 if (chip->handle_post_irq)
383 chip->handle_post_irq(chip->irq_drv_data);
384
385 if (handled)
386 return IRQ_HANDLED;
387 else
388 return IRQ_NONE;
389}
390
391static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
392 irq_hw_number_t hw)
393{
394 struct regmap_irq_chip_data *data = h->host_data;
395
396 irq_set_chip_data(virq, data);
397 irq_set_chip(virq, &data->irq_chip);
398 irq_set_nested_thread(virq, 1);
399 irq_set_parent(virq, data->irq);
400 irq_set_noprobe(virq);
401
402 return 0;
403}
404
405static const struct irq_domain_ops regmap_domain_ops = {
406 .map = regmap_irq_map,
407 .xlate = irq_domain_xlate_onetwocell,
408};
409
410/**
411 * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
412 *
413 * @map: The regmap for the device.
414 * @irq: The IRQ the device uses to signal interrupts.
415 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
416 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
417 * @chip: Configuration for the interrupt controller.
418 * @data: Runtime data structure for the controller, allocated on success.
419 *
420 * Returns 0 on success or an errno on failure.
421 *
422 * In order for this to be efficient the chip really should use a
423 * register cache. The chip driver is responsible for restoring the
424 * register values used by the IRQ controller over suspend and resume.
425 */
426int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
427 int irq_base, const struct regmap_irq_chip *chip,
428 struct regmap_irq_chip_data **data)
429{
430 struct regmap_irq_chip_data *d;
431 int i;
432 int ret = -ENOMEM;
433 u32 reg;
434 u32 unmask_offset;
435
436 if (chip->num_regs <= 0)
437 return -EINVAL;
438
439 for (i = 0; i < chip->num_irqs; i++) {
440 if (chip->irqs[i].reg_offset % map->reg_stride)
441 return -EINVAL;
442 if (chip->irqs[i].reg_offset / map->reg_stride >=
443 chip->num_regs)
444 return -EINVAL;
445 }
446
447 if (irq_base) {
448 irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
449 if (irq_base < 0) {
450 dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
451 irq_base);
452 return irq_base;
453 }
454 }
455
456 d = kzalloc(sizeof(*d), GFP_KERNEL);
457 if (!d)
458 return -ENOMEM;
459
460 d->status_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
461 GFP_KERNEL);
462 if (!d->status_buf)
463 goto err_alloc;
464
465 d->mask_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
466 GFP_KERNEL);
467 if (!d->mask_buf)
468 goto err_alloc;
469
470 d->mask_buf_def = kcalloc(chip->num_regs, sizeof(unsigned int),
471 GFP_KERNEL);
472 if (!d->mask_buf_def)
473 goto err_alloc;
474
475 if (chip->wake_base) {
476 d->wake_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
477 GFP_KERNEL);
478 if (!d->wake_buf)
479 goto err_alloc;
480 }
481
482 if (chip->num_type_reg) {
483 d->type_buf_def = kcalloc(chip->num_type_reg,
484 sizeof(unsigned int), GFP_KERNEL);
485 if (!d->type_buf_def)
486 goto err_alloc;
487
488 d->type_buf = kcalloc(chip->num_type_reg, sizeof(unsigned int),
489 GFP_KERNEL);
490 if (!d->type_buf)
491 goto err_alloc;
492 }
493
494 d->irq_chip = regmap_irq_chip;
495 d->irq_chip.name = chip->name;
496 d->irq = irq;
497 d->map = map;
498 d->chip = chip;
499 d->irq_base = irq_base;
500
501 if (chip->irq_reg_stride)
502 d->irq_reg_stride = chip->irq_reg_stride;
503 else
504 d->irq_reg_stride = 1;
505
506 if (chip->type_reg_stride)
507 d->type_reg_stride = chip->type_reg_stride;
508 else
509 d->type_reg_stride = 1;
510
511 if (!map->use_single_read && map->reg_stride == 1 &&
512 d->irq_reg_stride == 1) {
513 d->status_reg_buf = kmalloc_array(chip->num_regs,
514 map->format.val_bytes,
515 GFP_KERNEL);
516 if (!d->status_reg_buf)
517 goto err_alloc;
518 }
519
520 mutex_init(&d->lock);
521
522 for (i = 0; i < chip->num_irqs; i++)
523 d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
524 |= chip->irqs[i].mask;
525
526 /* Mask all the interrupts by default */
527 for (i = 0; i < chip->num_regs; i++) {
528 d->mask_buf[i] = d->mask_buf_def[i];
529 reg = chip->mask_base +
530 (i * map->reg_stride * d->irq_reg_stride);
531 if (chip->mask_invert)
532 ret = regmap_irq_update_bits(d, reg,
533 d->mask_buf[i], ~d->mask_buf[i]);
534 else if (d->chip->unmask_base) {
535 unmask_offset = d->chip->unmask_base -
536 d->chip->mask_base;
537 ret = regmap_irq_update_bits(d,
538 reg + unmask_offset,
539 d->mask_buf[i],
540 d->mask_buf[i]);
541 } else
542 ret = regmap_irq_update_bits(d, reg,
543 d->mask_buf[i], d->mask_buf[i]);
544 if (ret != 0) {
545 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
546 reg, ret);
547 goto err_alloc;
548 }
549
550 if (!chip->init_ack_masked)
551 continue;
552
553 /* Ack masked but set interrupts */
554 reg = chip->status_base +
555 (i * map->reg_stride * d->irq_reg_stride);
556 ret = regmap_read(map, reg, &d->status_buf[i]);
557 if (ret != 0) {
558 dev_err(map->dev, "Failed to read IRQ status: %d\n",
559 ret);
560 goto err_alloc;
561 }
562
563 if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
564 reg = chip->ack_base +
565 (i * map->reg_stride * d->irq_reg_stride);
566 if (chip->ack_invert)
567 ret = regmap_write(map, reg,
568 ~(d->status_buf[i] & d->mask_buf[i]));
569 else
570 ret = regmap_write(map, reg,
571 d->status_buf[i] & d->mask_buf[i]);
572 if (ret != 0) {
573 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
574 reg, ret);
575 goto err_alloc;
576 }
577 }
578 }
579
580 /* Wake is disabled by default */
581 if (d->wake_buf) {
582 for (i = 0; i < chip->num_regs; i++) {
583 d->wake_buf[i] = d->mask_buf_def[i];
584 reg = chip->wake_base +
585 (i * map->reg_stride * d->irq_reg_stride);
586
587 if (chip->wake_invert)
588 ret = regmap_irq_update_bits(d, reg,
589 d->mask_buf_def[i],
590 0);
591 else
592 ret = regmap_irq_update_bits(d, reg,
593 d->mask_buf_def[i],
594 d->wake_buf[i]);
595 if (ret != 0) {
596 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
597 reg, ret);
598 goto err_alloc;
599 }
600 }
601 }
602
603 if (chip->num_type_reg) {
604 for (i = 0; i < chip->num_irqs; i++) {
605 reg = chip->irqs[i].type_reg_offset / map->reg_stride;
606 d->type_buf_def[reg] |= chip->irqs[i].type_rising_mask |
607 chip->irqs[i].type_falling_mask;
608 }
609 for (i = 0; i < chip->num_type_reg; ++i) {
610 if (!d->type_buf_def[i])
611 continue;
612
613 reg = chip->type_base +
614 (i * map->reg_stride * d->type_reg_stride);
615 if (chip->type_invert)
616 ret = regmap_irq_update_bits(d, reg,
617 d->type_buf_def[i], 0xFF);
618 else
619 ret = regmap_irq_update_bits(d, reg,
620 d->type_buf_def[i], 0x0);
621 if (ret != 0) {
622 dev_err(map->dev,
623 "Failed to set type in 0x%x: %x\n",
624 reg, ret);
625 goto err_alloc;
626 }
627 }
628 }
629
630 if (irq_base)
631 d->domain = irq_domain_add_legacy(map->dev->of_node,
632 chip->num_irqs, irq_base, 0,
633 ®map_domain_ops, d);
634 else
635 d->domain = irq_domain_add_linear(map->dev->of_node,
636 chip->num_irqs,
637 ®map_domain_ops, d);
638 if (!d->domain) {
639 dev_err(map->dev, "Failed to create IRQ domain\n");
640 ret = -ENOMEM;
641 goto err_alloc;
642 }
643
644 ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
645 irq_flags | IRQF_ONESHOT,
646 chip->name, d);
647 if (ret != 0) {
648 dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
649 irq, chip->name, ret);
650 goto err_domain;
651 }
652
653 *data = d;
654
655 return 0;
656
657err_domain:
658 /* Should really dispose of the domain but... */
659err_alloc:
660 kfree(d->type_buf);
661 kfree(d->type_buf_def);
662 kfree(d->wake_buf);
663 kfree(d->mask_buf_def);
664 kfree(d->mask_buf);
665 kfree(d->status_buf);
666 kfree(d->status_reg_buf);
667 kfree(d);
668 return ret;
669}
670EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
671
672/**
673 * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
674 *
675 * @irq: Primary IRQ for the device
676 * @d: ®map_irq_chip_data allocated by regmap_add_irq_chip()
677 *
678 * This function also disposes of all mapped IRQs on the chip.
679 */
680void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
681{
682 unsigned int virq;
683 int hwirq;
684
685 if (!d)
686 return;
687
688 free_irq(irq, d);
689
690 /* Dispose all virtual irq from irq domain before removing it */
691 for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
692 /* Ignore hwirq if holes in the IRQ list */
693 if (!d->chip->irqs[hwirq].mask)
694 continue;
695
696 /*
697 * Find the virtual irq of hwirq on chip and if it is
698 * there then dispose it
699 */
700 virq = irq_find_mapping(d->domain, hwirq);
701 if (virq)
702 irq_dispose_mapping(virq);
703 }
704
705 irq_domain_remove(d->domain);
706 kfree(d->type_buf);
707 kfree(d->type_buf_def);
708 kfree(d->wake_buf);
709 kfree(d->mask_buf_def);
710 kfree(d->mask_buf);
711 kfree(d->status_reg_buf);
712 kfree(d->status_buf);
713 kfree(d);
714}
715EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
716
717static void devm_regmap_irq_chip_release(struct device *dev, void *res)
718{
719 struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
720
721 regmap_del_irq_chip(d->irq, d);
722}
723
724static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
725
726{
727 struct regmap_irq_chip_data **r = res;
728
729 if (!r || !*r) {
730 WARN_ON(!r || !*r);
731 return 0;
732 }
733 return *r == data;
734}
735
736/**
737 * devm_regmap_add_irq_chip() - Resource manager regmap_add_irq_chip()
738 *
739 * @dev: The device pointer on which irq_chip belongs to.
740 * @map: The regmap for the device.
741 * @irq: The IRQ the device uses to signal interrupts
742 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
743 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
744 * @chip: Configuration for the interrupt controller.
745 * @data: Runtime data structure for the controller, allocated on success
746 *
747 * Returns 0 on success or an errno on failure.
748 *
749 * The ®map_irq_chip_data will be automatically released when the device is
750 * unbound.
751 */
752int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
753 int irq_flags, int irq_base,
754 const struct regmap_irq_chip *chip,
755 struct regmap_irq_chip_data **data)
756{
757 struct regmap_irq_chip_data **ptr, *d;
758 int ret;
759
760 ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
761 GFP_KERNEL);
762 if (!ptr)
763 return -ENOMEM;
764
765 ret = regmap_add_irq_chip(map, irq, irq_flags, irq_base,
766 chip, &d);
767 if (ret < 0) {
768 devres_free(ptr);
769 return ret;
770 }
771
772 *ptr = d;
773 devres_add(dev, ptr);
774 *data = d;
775 return 0;
776}
777EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
778
779/**
780 * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
781 *
782 * @dev: Device for which which resource was allocated.
783 * @irq: Primary IRQ for the device.
784 * @data: ®map_irq_chip_data allocated by regmap_add_irq_chip().
785 *
786 * A resource managed version of regmap_del_irq_chip().
787 */
788void devm_regmap_del_irq_chip(struct device *dev, int irq,
789 struct regmap_irq_chip_data *data)
790{
791 int rc;
792
793 WARN_ON(irq != data->irq);
794 rc = devres_release(dev, devm_regmap_irq_chip_release,
795 devm_regmap_irq_chip_match, data);
796
797 if (rc != 0)
798 WARN_ON(rc);
799}
800EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
801
802/**
803 * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
804 *
805 * @data: regmap irq controller to operate on.
806 *
807 * Useful for drivers to request their own IRQs.
808 */
809int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
810{
811 WARN_ON(!data->irq_base);
812 return data->irq_base;
813}
814EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
815
816/**
817 * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
818 *
819 * @data: regmap irq controller to operate on.
820 * @irq: index of the interrupt requested in the chip IRQs.
821 *
822 * Useful for drivers to request their own IRQs.
823 */
824int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
825{
826 /* Handle holes in the IRQ list */
827 if (!data->chip->irqs[irq].mask)
828 return -EINVAL;
829
830 return irq_create_mapping(data->domain, irq);
831}
832EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
833
834/**
835 * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
836 *
837 * @data: regmap_irq controller to operate on.
838 *
839 * Useful for drivers to request their own IRQs and for integration
840 * with subsystems. For ease of integration NULL is accepted as a
841 * domain, allowing devices to just call this even if no domain is
842 * allocated.
843 */
844struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
845{
846 if (data)
847 return data->domain;
848 else
849 return NULL;
850}
851EXPORT_SYMBOL_GPL(regmap_irq_get_domain);