Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Functions related to segment and merge handling
   4 */
   5#include <linux/kernel.h>
   6#include <linux/module.h>
   7#include <linux/bio.h>
   8#include <linux/blkdev.h>
   9#include <linux/blk-integrity.h>
  10#include <linux/scatterlist.h>
  11#include <linux/part_stat.h>
  12#include <linux/blk-cgroup.h>
  13
  14#include <trace/events/block.h>
  15
  16#include "blk.h"
  17#include "blk-mq-sched.h"
  18#include "blk-rq-qos.h"
  19#include "blk-throttle.h"
  20
  21static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv)
  22{
  23	*bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
  24}
  25
  26static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv)
  27{
  28	struct bvec_iter iter = bio->bi_iter;
  29	int idx;
  30
  31	bio_get_first_bvec(bio, bv);
  32	if (bv->bv_len == bio->bi_iter.bi_size)
  33		return;		/* this bio only has a single bvec */
  34
  35	bio_advance_iter(bio, &iter, iter.bi_size);
  36
  37	if (!iter.bi_bvec_done)
  38		idx = iter.bi_idx - 1;
  39	else	/* in the middle of bvec */
  40		idx = iter.bi_idx;
  41
  42	*bv = bio->bi_io_vec[idx];
  43
  44	/*
  45	 * iter.bi_bvec_done records actual length of the last bvec
  46	 * if this bio ends in the middle of one io vector
  47	 */
  48	if (iter.bi_bvec_done)
  49		bv->bv_len = iter.bi_bvec_done;
  50}
  51
  52static inline bool bio_will_gap(struct request_queue *q,
  53		struct request *prev_rq, struct bio *prev, struct bio *next)
  54{
  55	struct bio_vec pb, nb;
  56
  57	if (!bio_has_data(prev) || !queue_virt_boundary(q))
  58		return false;
  59
  60	/*
  61	 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
  62	 * is quite difficult to respect the sg gap limit.  We work hard to
  63	 * merge a huge number of small single bios in case of mkfs.
  64	 */
  65	if (prev_rq)
  66		bio_get_first_bvec(prev_rq->bio, &pb);
  67	else
  68		bio_get_first_bvec(prev, &pb);
  69	if (pb.bv_offset & queue_virt_boundary(q))
  70		return true;
  71
  72	/*
  73	 * We don't need to worry about the situation that the merged segment
  74	 * ends in unaligned virt boundary:
  75	 *
  76	 * - if 'pb' ends aligned, the merged segment ends aligned
  77	 * - if 'pb' ends unaligned, the next bio must include
  78	 *   one single bvec of 'nb', otherwise the 'nb' can't
  79	 *   merge with 'pb'
  80	 */
  81	bio_get_last_bvec(prev, &pb);
  82	bio_get_first_bvec(next, &nb);
  83	if (biovec_phys_mergeable(q, &pb, &nb))
  84		return false;
  85	return __bvec_gap_to_prev(&q->limits, &pb, nb.bv_offset);
  86}
  87
  88static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
  89{
  90	return bio_will_gap(req->q, req, req->biotail, bio);
  91}
  92
  93static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
  94{
  95	return bio_will_gap(req->q, NULL, bio, req->bio);
  96}
  97
  98/*
  99 * The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size
 100 * is defined as 'unsigned int', meantime it has to be aligned to with the
 101 * logical block size, which is the minimum accepted unit by hardware.
 102 */
 103static unsigned int bio_allowed_max_sectors(const struct queue_limits *lim)
 104{
 105	return round_down(UINT_MAX, lim->logical_block_size) >> SECTOR_SHIFT;
 106}
 107
 108static struct bio *bio_split_discard(struct bio *bio,
 109				     const struct queue_limits *lim,
 110				     unsigned *nsegs, struct bio_set *bs)
 111{
 112	unsigned int max_discard_sectors, granularity;
 
 113	sector_t tmp;
 114	unsigned split_sectors;
 115
 116	*nsegs = 1;
 117
 118	/* Zero-sector (unknown) and one-sector granularities are the same.  */
 119	granularity = max(lim->discard_granularity >> 9, 1U);
 120
 121	max_discard_sectors =
 122		min(lim->max_discard_sectors, bio_allowed_max_sectors(lim));
 123	max_discard_sectors -= max_discard_sectors % granularity;
 124
 125	if (unlikely(!max_discard_sectors)) {
 126		/* XXX: warn */
 127		return NULL;
 128	}
 129
 130	if (bio_sectors(bio) <= max_discard_sectors)
 131		return NULL;
 132
 133	split_sectors = max_discard_sectors;
 134
 135	/*
 136	 * If the next starting sector would be misaligned, stop the discard at
 137	 * the previous aligned sector.
 138	 */
 139	tmp = bio->bi_iter.bi_sector + split_sectors -
 140		((lim->discard_alignment >> 9) % granularity);
 
 141	tmp = sector_div(tmp, granularity);
 142
 143	if (split_sectors > tmp)
 144		split_sectors -= tmp;
 145
 146	return bio_split(bio, split_sectors, GFP_NOIO, bs);
 147}
 148
 149static struct bio *bio_split_write_zeroes(struct bio *bio,
 150					  const struct queue_limits *lim,
 151					  unsigned *nsegs, struct bio_set *bs)
 152{
 153	*nsegs = 0;
 154	if (!lim->max_write_zeroes_sectors)
 155		return NULL;
 156	if (bio_sectors(bio) <= lim->max_write_zeroes_sectors)
 157		return NULL;
 158	return bio_split(bio, lim->max_write_zeroes_sectors, GFP_NOIO, bs);
 159}
 160
 161/*
 162 * Return the maximum number of sectors from the start of a bio that may be
 163 * submitted as a single request to a block device. If enough sectors remain,
 164 * align the end to the physical block size. Otherwise align the end to the
 165 * logical block size. This approach minimizes the number of non-aligned
 166 * requests that are submitted to a block device if the start of a bio is not
 167 * aligned to a physical block boundary.
 168 */
 169static inline unsigned get_max_io_size(struct bio *bio,
 170				       const struct queue_limits *lim)
 171{
 172	unsigned pbs = lim->physical_block_size >> SECTOR_SHIFT;
 173	unsigned lbs = lim->logical_block_size >> SECTOR_SHIFT;
 174	unsigned max_sectors = lim->max_sectors, start, end;
 175
 176	if (lim->chunk_sectors) {
 177		max_sectors = min(max_sectors,
 178			blk_chunk_sectors_left(bio->bi_iter.bi_sector,
 179					       lim->chunk_sectors));
 180	}
 181
 182	start = bio->bi_iter.bi_sector & (pbs - 1);
 183	end = (start + max_sectors) & ~(pbs - 1);
 184	if (end > start)
 185		return end - start;
 186	return max_sectors & ~(lbs - 1);
 187}
 188
 189/**
 190 * get_max_segment_size() - maximum number of bytes to add as a single segment
 191 * @lim: Request queue limits.
 192 * @start_page: See below.
 193 * @offset: Offset from @start_page where to add a segment.
 194 *
 195 * Returns the maximum number of bytes that can be added as a single segment.
 196 */
 197static inline unsigned get_max_segment_size(const struct queue_limits *lim,
 198		struct page *start_page, unsigned long offset)
 199{
 200	unsigned long mask = lim->seg_boundary_mask;
 201
 202	offset = mask & (page_to_phys(start_page) + offset);
 203
 204	/*
 205	 * Prevent an overflow if mask = ULONG_MAX and offset = 0 by adding 1
 206	 * after having calculated the minimum.
 207	 */
 208	return min(mask - offset, (unsigned long)lim->max_segment_size - 1) + 1;
 209}
 210
 211/**
 212 * bvec_split_segs - verify whether or not a bvec should be split in the middle
 213 * @lim:      [in] queue limits to split based on
 214 * @bv:       [in] bvec to examine
 215 * @nsegs:    [in,out] Number of segments in the bio being built. Incremented
 216 *            by the number of segments from @bv that may be appended to that
 217 *            bio without exceeding @max_segs
 218 * @bytes:    [in,out] Number of bytes in the bio being built. Incremented
 219 *            by the number of bytes from @bv that may be appended to that
 220 *            bio without exceeding @max_bytes
 221 * @max_segs: [in] upper bound for *@nsegs
 222 * @max_bytes: [in] upper bound for *@bytes
 223 *
 224 * When splitting a bio, it can happen that a bvec is encountered that is too
 225 * big to fit in a single segment and hence that it has to be split in the
 226 * middle. This function verifies whether or not that should happen. The value
 227 * %true is returned if and only if appending the entire @bv to a bio with
 228 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
 229 * the block driver.
 230 */
 231static bool bvec_split_segs(const struct queue_limits *lim,
 232		const struct bio_vec *bv, unsigned *nsegs, unsigned *bytes,
 233		unsigned max_segs, unsigned max_bytes)
 234{
 235	unsigned max_len = min(max_bytes, UINT_MAX) - *bytes;
 236	unsigned len = min(bv->bv_len, max_len);
 237	unsigned total_len = 0;
 238	unsigned seg_size = 0;
 239
 240	while (len && *nsegs < max_segs) {
 241		seg_size = get_max_segment_size(lim, bv->bv_page,
 242						bv->bv_offset + total_len);
 243		seg_size = min(seg_size, len);
 244
 245		(*nsegs)++;
 246		total_len += seg_size;
 247		len -= seg_size;
 248
 249		if ((bv->bv_offset + total_len) & lim->virt_boundary_mask)
 250			break;
 251	}
 
 
 252
 253	*bytes += total_len;
 
 254
 255	/* tell the caller to split the bvec if it is too big to fit */
 256	return len > 0 || bv->bv_len > max_len;
 257}
 258
 259/**
 260 * bio_split_rw - split a bio in two bios
 261 * @bio:  [in] bio to be split
 262 * @lim:  [in] queue limits to split based on
 263 * @segs: [out] number of segments in the bio with the first half of the sectors
 264 * @bs:	  [in] bio set to allocate the clone from
 265 * @max_bytes: [in] maximum number of bytes per bio
 266 *
 267 * Clone @bio, update the bi_iter of the clone to represent the first sectors
 268 * of @bio and update @bio->bi_iter to represent the remaining sectors. The
 269 * following is guaranteed for the cloned bio:
 270 * - That it has at most @max_bytes worth of data
 271 * - That it has at most queue_max_segments(@q) segments.
 272 *
 273 * Except for discard requests the cloned bio will point at the bi_io_vec of
 274 * the original bio. It is the responsibility of the caller to ensure that the
 275 * original bio is not freed before the cloned bio. The caller is also
 276 * responsible for ensuring that @bs is only destroyed after processing of the
 277 * split bio has finished.
 278 */
 279static struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim,
 280		unsigned *segs, struct bio_set *bs, unsigned max_bytes)
 281{
 282	struct bio_vec bv, bvprv, *bvprvp = NULL;
 283	struct bvec_iter iter;
 284	unsigned nsegs = 0, bytes = 0;
 
 
 
 
 285
 286	bio_for_each_bvec(bv, bio, iter) {
 287		/*
 288		 * If the queue doesn't support SG gaps and adding this
 289		 * offset would create a gap, disallow it.
 290		 */
 291		if (bvprvp && bvec_gap_to_prev(lim, bvprvp, bv.bv_offset))
 
 
 
 
 
 
 
 
 
 
 
 
 292			goto split;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 293
 294		if (nsegs < lim->max_segments &&
 295		    bytes + bv.bv_len <= max_bytes &&
 296		    bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
 297			nsegs++;
 298			bytes += bv.bv_len;
 299		} else {
 300			if (bvec_split_segs(lim, &bv, &nsegs, &bytes,
 301					lim->max_segments, max_bytes))
 302				goto split;
 303		}
 
 
 
 
 
 
 304
 
 305		bvprv = bv;
 306		bvprvp = &bvprv;
 307	}
 
 308
 309	*segs = nsegs;
 310	return NULL;
 311split:
 312	/*
 313	 * We can't sanely support splitting for a REQ_NOWAIT bio. End it
 314	 * with EAGAIN if splitting is required and return an error pointer.
 315	 */
 316	if (bio->bi_opf & REQ_NOWAIT) {
 317		bio->bi_status = BLK_STS_AGAIN;
 318		bio_endio(bio);
 319		return ERR_PTR(-EAGAIN);
 320	}
 321
 
 
 322	*segs = nsegs;
 323
 324	/*
 325	 * Individual bvecs might not be logical block aligned. Round down the
 326	 * split size so that each bio is properly block size aligned, even if
 327	 * we do not use the full hardware limits.
 328	 */
 329	bytes = ALIGN_DOWN(bytes, lim->logical_block_size);
 330
 331	/*
 332	 * Bio splitting may cause subtle trouble such as hang when doing sync
 333	 * iopoll in direct IO routine. Given performance gain of iopoll for
 334	 * big IO can be trival, disable iopoll when split needed.
 335	 */
 336	bio_clear_polled(bio);
 337	return bio_split(bio, bytes >> SECTOR_SHIFT, GFP_NOIO, bs);
 338}
 339
 340/**
 341 * __bio_split_to_limits - split a bio to fit the queue limits
 342 * @bio:     bio to be split
 343 * @lim:     queue limits to split based on
 344 * @nr_segs: returns the number of segments in the returned bio
 345 *
 346 * Check if @bio needs splitting based on the queue limits, and if so split off
 347 * a bio fitting the limits from the beginning of @bio and return it.  @bio is
 348 * shortened to the remainder and re-submitted.
 349 *
 350 * The split bio is allocated from @q->bio_split, which is provided by the
 351 * block layer.
 352 */
 353struct bio *__bio_split_to_limits(struct bio *bio,
 354				  const struct queue_limits *lim,
 355				  unsigned int *nr_segs)
 356{
 357	struct bio_set *bs = &bio->bi_bdev->bd_disk->bio_split;
 358	struct bio *split;
 359
 360	switch (bio_op(bio)) {
 361	case REQ_OP_DISCARD:
 362	case REQ_OP_SECURE_ERASE:
 363		split = bio_split_discard(bio, lim, nr_segs, bs);
 364		break;
 365	case REQ_OP_WRITE_ZEROES:
 366		split = bio_split_write_zeroes(bio, lim, nr_segs, bs);
 
 
 
 367		break;
 368	default:
 369		split = bio_split_rw(bio, lim, nr_segs, bs,
 370				get_max_io_size(bio, lim) << SECTOR_SHIFT);
 371		if (IS_ERR(split))
 372			return NULL;
 373		break;
 374	}
 375
 
 
 
 
 
 376	if (split) {
 377		/* there isn't chance to merge the split bio */
 378		split->bi_opf |= REQ_NOMERGE;
 379
 380		blkcg_bio_issue_init(split);
 381		bio_chain(split, bio);
 382		trace_block_split(split, bio->bi_iter.bi_sector);
 383		submit_bio_noacct(bio);
 384		return split;
 385	}
 386	return bio;
 387}
 388
 389/**
 390 * bio_split_to_limits - split a bio to fit the queue limits
 391 * @bio:     bio to be split
 392 *
 393 * Check if @bio needs splitting based on the queue limits of @bio->bi_bdev, and
 394 * if so split off a bio fitting the limits from the beginning of @bio and
 395 * return it.  @bio is shortened to the remainder and re-submitted.
 396 *
 397 * The split bio is allocated from @q->bio_split, which is provided by the
 398 * block layer.
 399 */
 400struct bio *bio_split_to_limits(struct bio *bio)
 401{
 402	const struct queue_limits *lim = &bdev_get_queue(bio->bi_bdev)->limits;
 403	unsigned int nr_segs;
 404
 405	if (bio_may_exceed_limits(bio, lim))
 406		return __bio_split_to_limits(bio, lim, &nr_segs);
 407	return bio;
 408}
 409EXPORT_SYMBOL(bio_split_to_limits);
 410
 411unsigned int blk_recalc_rq_segments(struct request *rq)
 412{
 413	unsigned int nr_phys_segs = 0;
 414	unsigned int bytes = 0;
 415	struct req_iterator iter;
 416	struct bio_vec bv;
 417
 418	if (!rq->bio)
 419		return 0;
 420
 421	switch (bio_op(rq->bio)) {
 422	case REQ_OP_DISCARD:
 423	case REQ_OP_SECURE_ERASE:
 424		if (queue_max_discard_segments(rq->q) > 1) {
 425			struct bio *bio = rq->bio;
 426
 427			for_each_bio(bio)
 428				nr_phys_segs++;
 429			return nr_phys_segs;
 430		}
 431		return 1;
 432	case REQ_OP_WRITE_ZEROES:
 433		return 0;
 434	default:
 435		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 436	}
 437
 438	rq_for_each_bvec(bv, rq, iter)
 439		bvec_split_segs(&rq->q->limits, &bv, &nr_phys_segs, &bytes,
 440				UINT_MAX, UINT_MAX);
 
 
 441	return nr_phys_segs;
 442}
 443
 444static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
 445		struct scatterlist *sglist)
 446{
 447	if (!*sg)
 448		return sglist;
 449
 450	/*
 451	 * If the driver previously mapped a shorter list, we could see a
 452	 * termination bit prematurely unless it fully inits the sg table
 453	 * on each mapping. We KNOW that there must be more entries here
 454	 * or the driver would be buggy, so force clear the termination bit
 455	 * to avoid doing a full sg_init_table() in drivers for each command.
 456	 */
 457	sg_unmark_end(*sg);
 458	return sg_next(*sg);
 459}
 460
 461static unsigned blk_bvec_map_sg(struct request_queue *q,
 462		struct bio_vec *bvec, struct scatterlist *sglist,
 463		struct scatterlist **sg)
 464{
 465	unsigned nbytes = bvec->bv_len;
 466	unsigned nsegs = 0, total = 0;
 467
 468	while (nbytes > 0) {
 469		unsigned offset = bvec->bv_offset + total;
 470		unsigned len = min(get_max_segment_size(&q->limits,
 471				   bvec->bv_page, offset), nbytes);
 472		struct page *page = bvec->bv_page;
 473
 474		/*
 475		 * Unfortunately a fair number of drivers barf on scatterlists
 476		 * that have an offset larger than PAGE_SIZE, despite other
 477		 * subsystems dealing with that invariant just fine.  For now
 478		 * stick to the legacy format where we never present those from
 479		 * the block layer, but the code below should be removed once
 480		 * these offenders (mostly MMC/SD drivers) are fixed.
 481		 */
 482		page += (offset >> PAGE_SHIFT);
 483		offset &= ~PAGE_MASK;
 484
 485		*sg = blk_next_sg(sg, sglist);
 486		sg_set_page(*sg, page, len, offset);
 
 
 
 487
 488		total += len;
 489		nbytes -= len;
 490		nsegs++;
 491	}
 492
 493	return nsegs;
 494}
 
 495
 496static inline int __blk_bvec_map_sg(struct bio_vec bv,
 497		struct scatterlist *sglist, struct scatterlist **sg)
 498{
 499	*sg = blk_next_sg(sg, sglist);
 500	sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
 501	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 502}
 503
 504/* only try to merge bvecs into one sg if they are from two bios */
 505static inline bool
 506__blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
 507			   struct bio_vec *bvprv, struct scatterlist **sg)
 508{
 509
 510	int nbytes = bvec->bv_len;
 511
 512	if (!*sg)
 513		return false;
 514
 515	if ((*sg)->length + nbytes > queue_max_segment_size(q))
 516		return false;
 517
 518	if (!biovec_phys_mergeable(q, bvprv, bvec))
 519		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 520
 521	(*sg)->length += nbytes;
 
 
 
 
 522
 523	return true;
 
 
 
 
 
 524}
 525
 526static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
 527			     struct scatterlist *sglist,
 528			     struct scatterlist **sg)
 529{
 530	struct bio_vec bvec, bvprv = { NULL };
 531	struct bvec_iter iter;
 532	int nsegs = 0;
 533	bool new_bio = false;
 534
 535	for_each_bio(bio) {
 536		bio_for_each_bvec(bvec, bio, iter) {
 537			/*
 538			 * Only try to merge bvecs from two bios given we
 539			 * have done bio internal merge when adding pages
 540			 * to bio
 541			 */
 542			if (new_bio &&
 543			    __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
 544				goto next_bvec;
 545
 546			if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
 547				nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
 548			else
 549				nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
 550 next_bvec:
 551			new_bio = false;
 552		}
 553		if (likely(bio->bi_iter.bi_size)) {
 554			bvprv = bvec;
 555			new_bio = true;
 556		}
 557	}
 558
 559	return nsegs;
 560}
 561
 562/*
 563 * map a request to scatterlist, return number of sg entries setup. Caller
 564 * must make sure sg can hold rq->nr_phys_segments entries
 565 */
 566int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
 567		struct scatterlist *sglist, struct scatterlist **last_sg)
 568{
 
 569	int nsegs = 0;
 570
 571	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
 572		nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg);
 
 
 573	else if (rq->bio)
 574		nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg);
 575
 576	if (*last_sg)
 577		sg_mark_end(*last_sg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 578
 579	/*
 580	 * Something must have been wrong if the figured number of
 581	 * segment is bigger than number of req's physical segments
 582	 */
 583	WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
 584
 585	return nsegs;
 586}
 587EXPORT_SYMBOL(__blk_rq_map_sg);
 588
 589static inline unsigned int blk_rq_get_max_segments(struct request *rq)
 590{
 591	if (req_op(rq) == REQ_OP_DISCARD)
 592		return queue_max_discard_segments(rq->q);
 593	return queue_max_segments(rq->q);
 594}
 595
 596static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
 597						  sector_t offset)
 
 598{
 599	struct request_queue *q = rq->q;
 600	unsigned int max_sectors;
 601
 602	if (blk_rq_is_passthrough(rq))
 603		return q->limits.max_hw_sectors;
 604
 605	max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
 606	if (!q->limits.chunk_sectors ||
 607	    req_op(rq) == REQ_OP_DISCARD ||
 608	    req_op(rq) == REQ_OP_SECURE_ERASE)
 609		return max_sectors;
 610	return min(max_sectors,
 611		   blk_chunk_sectors_left(offset, q->limits.chunk_sectors));
 612}
 613
 614static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
 615		unsigned int nr_phys_segs)
 616{
 617	if (!blk_cgroup_mergeable(req, bio))
 618		goto no_merge;
 619
 620	if (blk_integrity_merge_bio(req->q, req, bio) == false)
 621		goto no_merge;
 622
 623	/* discard request merge won't add new segment */
 624	if (req_op(req) == REQ_OP_DISCARD)
 625		return 1;
 626
 627	if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
 628		goto no_merge;
 629
 630	/*
 631	 * This will form the start of a new hw segment.  Bump both
 632	 * counters.
 633	 */
 634	req->nr_phys_segments += nr_phys_segs;
 635	return 1;
 636
 637no_merge:
 638	req_set_nomerge(req->q, req);
 639	return 0;
 640}
 641
 642int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
 
 643{
 644	if (req_gap_back_merge(req, bio))
 645		return 0;
 646	if (blk_integrity_rq(req) &&
 647	    integrity_req_gap_back_merge(req, bio))
 648		return 0;
 649	if (!bio_crypt_ctx_back_mergeable(req, bio))
 650		return 0;
 651	if (blk_rq_sectors(req) + bio_sectors(bio) >
 652	    blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
 653		req_set_nomerge(req->q, req);
 654		return 0;
 655	}
 
 
 
 
 656
 657	return ll_new_hw_segment(req, bio, nr_segs);
 658}
 659
 660static int ll_front_merge_fn(struct request *req, struct bio *bio,
 661		unsigned int nr_segs)
 662{
 
 663	if (req_gap_front_merge(req, bio))
 664		return 0;
 665	if (blk_integrity_rq(req) &&
 666	    integrity_req_gap_front_merge(req, bio))
 667		return 0;
 668	if (!bio_crypt_ctx_front_mergeable(req, bio))
 669		return 0;
 670	if (blk_rq_sectors(req) + bio_sectors(bio) >
 671	    blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
 672		req_set_nomerge(req->q, req);
 673		return 0;
 674	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 675
 676	return ll_new_hw_segment(req, bio, nr_segs);
 677}
 678
 679static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
 680		struct request *next)
 681{
 682	unsigned short segments = blk_rq_nr_discard_segments(req);
 683
 684	if (segments >= queue_max_discard_segments(q))
 685		goto no_merge;
 686	if (blk_rq_sectors(req) + bio_sectors(next->bio) >
 687	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
 688		goto no_merge;
 689
 690	req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
 691	return true;
 692no_merge:
 693	req_set_nomerge(q, req);
 694	return false;
 695}
 696
 697static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
 698				struct request *next)
 699{
 700	int total_phys_segments;
 
 
 
 
 
 
 
 
 
 701
 702	if (req_gap_back_merge(req, next->bio))
 703		return 0;
 704
 705	/*
 706	 * Will it become too large?
 707	 */
 708	if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
 709	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
 710		return 0;
 711
 712	total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
 713	if (total_phys_segments > blk_rq_get_max_segments(req))
 714		return 0;
 
 
 
 
 
 715
 716	if (!blk_cgroup_mergeable(req, next->bio))
 717		return 0;
 718
 719	if (blk_integrity_merge_rq(q, req, next) == false)
 720		return 0;
 721
 722	if (!bio_crypt_ctx_merge_rq(req, next))
 723		return 0;
 724
 725	/* Merge is OK... */
 726	req->nr_phys_segments = total_phys_segments;
 727	return 1;
 728}
 729
 730/**
 731 * blk_rq_set_mixed_merge - mark a request as mixed merge
 732 * @rq: request to mark as mixed merge
 733 *
 734 * Description:
 735 *     @rq is about to be mixed merged.  Make sure the attributes
 736 *     which can be mixed are set in each bio and mark @rq as mixed
 737 *     merged.
 738 */
 739void blk_rq_set_mixed_merge(struct request *rq)
 740{
 741	blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
 742	struct bio *bio;
 743
 744	if (rq->rq_flags & RQF_MIXED_MERGE)
 745		return;
 746
 747	/*
 748	 * @rq will no longer represent mixable attributes for all the
 749	 * contained bios.  It will just track those of the first one.
 750	 * Distributes the attributs to each bio.
 751	 */
 752	for (bio = rq->bio; bio; bio = bio->bi_next) {
 753		WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
 754			     (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
 755		bio->bi_opf |= ff;
 756	}
 757	rq->rq_flags |= RQF_MIXED_MERGE;
 758}
 759
 760static void blk_account_io_merge_request(struct request *req)
 761{
 762	if (blk_do_io_stat(req)) {
 763		part_stat_lock();
 764		part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
 765		part_stat_unlock();
 766	}
 767}
 768
 769static enum elv_merge blk_try_req_merge(struct request *req,
 770					struct request *next)
 771{
 772	if (blk_discard_mergable(req))
 773		return ELEVATOR_DISCARD_MERGE;
 774	else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
 775		return ELEVATOR_BACK_MERGE;
 776
 777	return ELEVATOR_NO_MERGE;
 
 
 
 
 
 778}
 779
 780/*
 781 * For non-mq, this has to be called with the request spinlock acquired.
 782 * For mq with scheduling, the appropriate queue wide lock should be held.
 783 */
 784static struct request *attempt_merge(struct request_queue *q,
 785				     struct request *req, struct request *next)
 786{
 
 
 
 787	if (!rq_mergeable(req) || !rq_mergeable(next))
 788		return NULL;
 789
 790	if (req_op(req) != req_op(next))
 791		return NULL;
 792
 793	if (rq_data_dir(req) != rq_data_dir(next))
 
 
 
 
 
 
 
 
 794		return NULL;
 795
 796	if (req->ioprio != next->ioprio)
 
 
 
 
 
 
 
 
 797		return NULL;
 798
 799	/*
 800	 * If we are allowed to merge, then append bio list
 801	 * from next to rq and release next. merge_requests_fn
 802	 * will have updated segment counts, update sector
 803	 * counts here. Handle DISCARDs separately, as they
 804	 * have separate settings.
 805	 */
 806
 807	switch (blk_try_req_merge(req, next)) {
 808	case ELEVATOR_DISCARD_MERGE:
 809		if (!req_attempt_discard_merge(q, req, next))
 810			return NULL;
 811		break;
 812	case ELEVATOR_BACK_MERGE:
 813		if (!ll_merge_requests_fn(q, req, next))
 814			return NULL;
 815		break;
 816	default:
 817		return NULL;
 818	}
 819
 820	/*
 821	 * If failfast settings disagree or any of the two is already
 822	 * a mixed merge, mark both as mixed before proceeding.  This
 823	 * makes sure that all involved bios have mixable attributes
 824	 * set properly.
 825	 */
 826	if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
 827	    (req->cmd_flags & REQ_FAILFAST_MASK) !=
 828	    (next->cmd_flags & REQ_FAILFAST_MASK)) {
 829		blk_rq_set_mixed_merge(req);
 830		blk_rq_set_mixed_merge(next);
 831	}
 832
 833	/*
 834	 * At this point we have either done a back merge or front merge. We
 835	 * need the smaller start_time_ns of the merged requests to be the
 836	 * current request for accounting purposes.
 
 837	 */
 838	if (next->start_time_ns < req->start_time_ns)
 839		req->start_time_ns = next->start_time_ns;
 840
 841	req->biotail->bi_next = next->bio;
 842	req->biotail = next->biotail;
 843
 844	req->__data_len += blk_rq_bytes(next);
 845
 846	if (!blk_discard_mergable(req))
 847		elv_merge_requests(q, req, next);
 848
 849	/*
 850	 * 'next' is going away, so update stats accordingly
 851	 */
 852	blk_account_io_merge_request(next);
 853
 854	trace_block_rq_merge(next);
 
 
 855
 856	/*
 857	 * ownership of bio passed from next to req, return 'next' for
 858	 * the caller to free
 859	 */
 860	next->bio = NULL;
 861	return next;
 862}
 863
 864static struct request *attempt_back_merge(struct request_queue *q,
 865		struct request *rq)
 866{
 867	struct request *next = elv_latter_request(q, rq);
 868
 869	if (next)
 870		return attempt_merge(q, rq, next);
 871
 872	return NULL;
 873}
 874
 875static struct request *attempt_front_merge(struct request_queue *q,
 876		struct request *rq)
 877{
 878	struct request *prev = elv_former_request(q, rq);
 879
 880	if (prev)
 881		return attempt_merge(q, prev, rq);
 882
 883	return NULL;
 884}
 885
 886/*
 887 * Try to merge 'next' into 'rq'. Return true if the merge happened, false
 888 * otherwise. The caller is responsible for freeing 'next' if the merge
 889 * happened.
 890 */
 891bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
 892			   struct request *next)
 893{
 894	return attempt_merge(q, rq, next);
 
 
 
 
 
 
 
 
 
 
 
 
 
 895}
 896
 897bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
 898{
 899	if (!rq_mergeable(rq) || !bio_mergeable(bio))
 900		return false;
 901
 902	if (req_op(rq) != bio_op(bio))
 903		return false;
 904
 905	/* different data direction or already started, don't merge */
 906	if (bio_data_dir(bio) != rq_data_dir(rq))
 907		return false;
 908
 909	/* don't merge across cgroup boundaries */
 910	if (!blk_cgroup_mergeable(rq, bio))
 911		return false;
 912
 913	/* only merge integrity protected bio into ditto rq */
 914	if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
 915		return false;
 916
 917	/* Only merge if the crypt contexts are compatible */
 918	if (!bio_crypt_rq_ctx_compatible(rq, bio))
 
 919		return false;
 920
 921	if (rq->ioprio != bio_prio(bio))
 
 
 
 
 922		return false;
 923
 924	return true;
 925}
 926
 927enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
 928{
 929	if (blk_discard_mergable(rq))
 
 930		return ELEVATOR_DISCARD_MERGE;
 931	else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
 932		return ELEVATOR_BACK_MERGE;
 933	else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
 934		return ELEVATOR_FRONT_MERGE;
 935	return ELEVATOR_NO_MERGE;
 936}
 937
 938static void blk_account_io_merge_bio(struct request *req)
 939{
 940	if (!blk_do_io_stat(req))
 941		return;
 942
 943	part_stat_lock();
 944	part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
 945	part_stat_unlock();
 946}
 947
 948enum bio_merge_status {
 949	BIO_MERGE_OK,
 950	BIO_MERGE_NONE,
 951	BIO_MERGE_FAILED,
 952};
 953
 954static enum bio_merge_status bio_attempt_back_merge(struct request *req,
 955		struct bio *bio, unsigned int nr_segs)
 956{
 957	const blk_opf_t ff = bio->bi_opf & REQ_FAILFAST_MASK;
 958
 959	if (!ll_back_merge_fn(req, bio, nr_segs))
 960		return BIO_MERGE_FAILED;
 961
 962	trace_block_bio_backmerge(bio);
 963	rq_qos_merge(req->q, req, bio);
 964
 965	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
 966		blk_rq_set_mixed_merge(req);
 967
 968	req->biotail->bi_next = bio;
 969	req->biotail = bio;
 970	req->__data_len += bio->bi_iter.bi_size;
 971
 972	bio_crypt_free_ctx(bio);
 973
 974	blk_account_io_merge_bio(req);
 975	return BIO_MERGE_OK;
 976}
 977
 978static enum bio_merge_status bio_attempt_front_merge(struct request *req,
 979		struct bio *bio, unsigned int nr_segs)
 980{
 981	const blk_opf_t ff = bio->bi_opf & REQ_FAILFAST_MASK;
 982
 983	if (!ll_front_merge_fn(req, bio, nr_segs))
 984		return BIO_MERGE_FAILED;
 985
 986	trace_block_bio_frontmerge(bio);
 987	rq_qos_merge(req->q, req, bio);
 988
 989	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
 990		blk_rq_set_mixed_merge(req);
 991
 992	bio->bi_next = req->bio;
 993	req->bio = bio;
 994
 995	req->__sector = bio->bi_iter.bi_sector;
 996	req->__data_len += bio->bi_iter.bi_size;
 997
 998	bio_crypt_do_front_merge(req, bio);
 999
1000	blk_account_io_merge_bio(req);
1001	return BIO_MERGE_OK;
1002}
1003
1004static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q,
1005		struct request *req, struct bio *bio)
1006{
1007	unsigned short segments = blk_rq_nr_discard_segments(req);
1008
1009	if (segments >= queue_max_discard_segments(q))
1010		goto no_merge;
1011	if (blk_rq_sectors(req) + bio_sectors(bio) >
1012	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1013		goto no_merge;
1014
1015	rq_qos_merge(q, req, bio);
1016
1017	req->biotail->bi_next = bio;
1018	req->biotail = bio;
1019	req->__data_len += bio->bi_iter.bi_size;
1020	req->nr_phys_segments = segments + 1;
1021
1022	blk_account_io_merge_bio(req);
1023	return BIO_MERGE_OK;
1024no_merge:
1025	req_set_nomerge(q, req);
1026	return BIO_MERGE_FAILED;
1027}
1028
1029static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q,
1030						   struct request *rq,
1031						   struct bio *bio,
1032						   unsigned int nr_segs,
1033						   bool sched_allow_merge)
1034{
1035	if (!blk_rq_merge_ok(rq, bio))
1036		return BIO_MERGE_NONE;
1037
1038	switch (blk_try_merge(rq, bio)) {
1039	case ELEVATOR_BACK_MERGE:
1040		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1041			return bio_attempt_back_merge(rq, bio, nr_segs);
1042		break;
1043	case ELEVATOR_FRONT_MERGE:
1044		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1045			return bio_attempt_front_merge(rq, bio, nr_segs);
1046		break;
1047	case ELEVATOR_DISCARD_MERGE:
1048		return bio_attempt_discard_merge(q, rq, bio);
1049	default:
1050		return BIO_MERGE_NONE;
1051	}
1052
1053	return BIO_MERGE_FAILED;
1054}
1055
1056/**
1057 * blk_attempt_plug_merge - try to merge with %current's plugged list
1058 * @q: request_queue new bio is being queued at
1059 * @bio: new bio being queued
1060 * @nr_segs: number of segments in @bio
1061 * from the passed in @q already in the plug list
1062 *
1063 * Determine whether @bio being queued on @q can be merged with the previous
1064 * request on %current's plugged list.  Returns %true if merge was successful,
1065 * otherwise %false.
1066 *
1067 * Plugging coalesces IOs from the same issuer for the same purpose without
1068 * going through @q->queue_lock.  As such it's more of an issuing mechanism
1069 * than scheduling, and the request, while may have elvpriv data, is not
1070 * added on the elevator at this point.  In addition, we don't have
1071 * reliable access to the elevator outside queue lock.  Only check basic
1072 * merging parameters without querying the elevator.
1073 *
1074 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1075 */
1076bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1077		unsigned int nr_segs)
1078{
1079	struct blk_plug *plug;
1080	struct request *rq;
1081
1082	plug = blk_mq_plug(bio);
1083	if (!plug || rq_list_empty(plug->mq_list))
1084		return false;
1085
1086	rq_list_for_each(&plug->mq_list, rq) {
1087		if (rq->q == q) {
1088			if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
1089			    BIO_MERGE_OK)
1090				return true;
1091			break;
1092		}
1093
1094		/*
1095		 * Only keep iterating plug list for merges if we have multiple
1096		 * queues
1097		 */
1098		if (!plug->multiple_queues)
1099			break;
1100	}
1101	return false;
1102}
1103
1104/*
1105 * Iterate list of requests and see if we can merge this bio with any
1106 * of them.
1107 */
1108bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
1109			struct bio *bio, unsigned int nr_segs)
1110{
1111	struct request *rq;
1112	int checked = 8;
1113
1114	list_for_each_entry_reverse(rq, list, queuelist) {
1115		if (!checked--)
1116			break;
1117
1118		switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) {
1119		case BIO_MERGE_NONE:
1120			continue;
1121		case BIO_MERGE_OK:
1122			return true;
1123		case BIO_MERGE_FAILED:
1124			return false;
1125		}
1126
1127	}
1128
1129	return false;
1130}
1131EXPORT_SYMBOL_GPL(blk_bio_list_merge);
1132
1133bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
1134		unsigned int nr_segs, struct request **merged_request)
1135{
1136	struct request *rq;
1137
1138	switch (elv_merge(q, &rq, bio)) {
1139	case ELEVATOR_BACK_MERGE:
1140		if (!blk_mq_sched_allow_merge(q, rq, bio))
1141			return false;
1142		if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1143			return false;
1144		*merged_request = attempt_back_merge(q, rq);
1145		if (!*merged_request)
1146			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
1147		return true;
1148	case ELEVATOR_FRONT_MERGE:
1149		if (!blk_mq_sched_allow_merge(q, rq, bio))
1150			return false;
1151		if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1152			return false;
1153		*merged_request = attempt_front_merge(q, rq);
1154		if (!*merged_request)
1155			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
1156		return true;
1157	case ELEVATOR_DISCARD_MERGE:
1158		return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK;
1159	default:
1160		return false;
1161	}
1162}
1163EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Functions related to segment and merge handling
  4 */
  5#include <linux/kernel.h>
  6#include <linux/module.h>
  7#include <linux/bio.h>
  8#include <linux/blkdev.h>
 
  9#include <linux/scatterlist.h>
 
 
 10
 11#include <trace/events/block.h>
 12
 13#include "blk.h"
 
 
 
 14
 15static struct bio *blk_bio_discard_split(struct request_queue *q,
 16					 struct bio *bio,
 17					 struct bio_set *bs,
 18					 unsigned *nsegs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 19{
 20	unsigned int max_discard_sectors, granularity;
 21	int alignment;
 22	sector_t tmp;
 23	unsigned split_sectors;
 24
 25	*nsegs = 1;
 26
 27	/* Zero-sector (unknown) and one-sector granularities are the same.  */
 28	granularity = max(q->limits.discard_granularity >> 9, 1U);
 29
 30	max_discard_sectors = min(q->limits.max_discard_sectors, UINT_MAX >> 9);
 
 31	max_discard_sectors -= max_discard_sectors % granularity;
 32
 33	if (unlikely(!max_discard_sectors)) {
 34		/* XXX: warn */
 35		return NULL;
 36	}
 37
 38	if (bio_sectors(bio) <= max_discard_sectors)
 39		return NULL;
 40
 41	split_sectors = max_discard_sectors;
 42
 43	/*
 44	 * If the next starting sector would be misaligned, stop the discard at
 45	 * the previous aligned sector.
 46	 */
 47	alignment = (q->limits.discard_alignment >> 9) % granularity;
 48
 49	tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
 50	tmp = sector_div(tmp, granularity);
 51
 52	if (split_sectors > tmp)
 53		split_sectors -= tmp;
 54
 55	return bio_split(bio, split_sectors, GFP_NOIO, bs);
 56}
 57
 58static struct bio *blk_bio_write_zeroes_split(struct request_queue *q,
 59		struct bio *bio, struct bio_set *bs, unsigned *nsegs)
 
 60{
 61	*nsegs = 1;
 62
 63	if (!q->limits.max_write_zeroes_sectors)
 
 64		return NULL;
 
 
 65
 66	if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors)
 67		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 68
 69	return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs);
 
 
 
 
 70}
 71
 72static struct bio *blk_bio_write_same_split(struct request_queue *q,
 73					    struct bio *bio,
 74					    struct bio_set *bs,
 75					    unsigned *nsegs)
 
 
 
 
 
 
 76{
 77	*nsegs = 1;
 
 
 78
 79	if (!q->limits.max_write_same_sectors)
 80		return NULL;
 
 
 
 
 81
 82	if (bio_sectors(bio) <= q->limits.max_write_same_sectors)
 83		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 84
 85	return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs);
 86}
 
 87
 88static inline unsigned get_max_io_size(struct request_queue *q,
 89				       struct bio *bio)
 90{
 91	unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector);
 92	unsigned mask = queue_logical_block_size(q) - 1;
 93
 94	/* aligned to logical block size */
 95	sectors &= ~(mask >> 9);
 96
 97	return sectors;
 
 98}
 99
100static struct bio *blk_bio_segment_split(struct request_queue *q,
101					 struct bio *bio,
102					 struct bio_set *bs,
103					 unsigned *segs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104{
105	struct bio_vec bv, bvprv, *bvprvp = NULL;
106	struct bvec_iter iter;
107	unsigned seg_size = 0, nsegs = 0, sectors = 0;
108	unsigned front_seg_size = bio->bi_seg_front_size;
109	bool do_split = true;
110	struct bio *new = NULL;
111	const unsigned max_sectors = get_max_io_size(q, bio);
112
113	bio_for_each_segment(bv, bio, iter) {
114		/*
115		 * If the queue doesn't support SG gaps and adding this
116		 * offset would create a gap, disallow it.
117		 */
118		if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
119			goto split;
120
121		if (sectors + (bv.bv_len >> 9) > max_sectors) {
122			/*
123			 * Consider this a new segment if we're splitting in
124			 * the middle of this vector.
125			 */
126			if (nsegs < queue_max_segments(q) &&
127			    sectors < max_sectors) {
128				nsegs++;
129				sectors = max_sectors;
130			}
131			goto split;
132		}
133
134		if (bvprvp && blk_queue_cluster(q)) {
135			if (seg_size + bv.bv_len > queue_max_segment_size(q))
136				goto new_segment;
137			if (!BIOVEC_PHYS_MERGEABLE(bvprvp, &bv))
138				goto new_segment;
139			if (!BIOVEC_SEG_BOUNDARY(q, bvprvp, &bv))
140				goto new_segment;
141
142			seg_size += bv.bv_len;
143			bvprv = bv;
144			bvprvp = &bvprv;
145			sectors += bv.bv_len >> 9;
146
147			continue;
 
 
 
 
 
 
 
 
148		}
149new_segment:
150		if (nsegs == queue_max_segments(q))
151			goto split;
152
153		if (nsegs == 1 && seg_size > front_seg_size)
154			front_seg_size = seg_size;
155
156		nsegs++;
157		bvprv = bv;
158		bvprvp = &bvprv;
159		seg_size = bv.bv_len;
160		sectors += bv.bv_len >> 9;
161
 
 
 
 
 
 
 
 
 
 
 
162	}
163
164	do_split = false;
165split:
166	*segs = nsegs;
167
168	if (do_split) {
169		new = bio_split(bio, sectors, GFP_NOIO, bs);
170		if (new)
171			bio = new;
172	}
 
173
174	if (nsegs == 1 && seg_size > front_seg_size)
175		front_seg_size = seg_size;
176	bio->bi_seg_front_size = front_seg_size;
177	if (seg_size > bio->bi_seg_back_size)
178		bio->bi_seg_back_size = seg_size;
179
180	return do_split ? new : NULL;
181}
182
183void blk_queue_split(struct request_queue *q, struct bio **bio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
184{
185	struct bio *split, *res;
186	unsigned nsegs;
187
188	switch (bio_op(*bio)) {
189	case REQ_OP_DISCARD:
190	case REQ_OP_SECURE_ERASE:
191		split = blk_bio_discard_split(q, *bio, q->bio_split, &nsegs);
192		break;
193	case REQ_OP_WRITE_ZEROES:
194		split = blk_bio_write_zeroes_split(q, *bio, q->bio_split, &nsegs);
195		break;
196	case REQ_OP_WRITE_SAME:
197		split = blk_bio_write_same_split(q, *bio, q->bio_split, &nsegs);
198		break;
199	default:
200		split = blk_bio_segment_split(q, *bio, q->bio_split, &nsegs);
 
 
 
201		break;
202	}
203
204	/* physical segments can be figured out during splitting */
205	res = split ? split : *bio;
206	res->bi_phys_segments = nsegs;
207	bio_set_flag(res, BIO_SEG_VALID);
208
209	if (split) {
210		/* there isn't chance to merge the splitted bio */
211		split->bi_opf |= REQ_NOMERGE;
212
213		bio_chain(split, *bio);
214		trace_block_split(q, split, (*bio)->bi_iter.bi_sector);
215		generic_make_request(*bio);
216		*bio = split;
217	}
218}
219EXPORT_SYMBOL(blk_queue_split);
220
221static unsigned int __blk_recalc_rq_segments(struct request_queue *q,
222					     struct bio *bio,
223					     bool no_sg_merge)
224{
225	struct bio_vec bv, bvprv = { NULL };
226	int cluster, prev = 0;
227	unsigned int seg_size, nr_phys_segs;
228	struct bio *fbio, *bbio;
229	struct bvec_iter iter;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
230
231	if (!bio)
232		return 0;
233
234	switch (bio_op(bio)) {
235	case REQ_OP_DISCARD:
236	case REQ_OP_SECURE_ERASE:
 
 
 
 
 
 
 
 
237	case REQ_OP_WRITE_ZEROES:
238		return 0;
239	case REQ_OP_WRITE_SAME:
240		return 1;
241	}
242
243	fbio = bio;
244	cluster = blk_queue_cluster(q);
245	seg_size = 0;
246	nr_phys_segs = 0;
247	for_each_bio(bio) {
248		bio_for_each_segment(bv, bio, iter) {
249			/*
250			 * If SG merging is disabled, each bio vector is
251			 * a segment
252			 */
253			if (no_sg_merge)
254				goto new_segment;
255
256			if (prev && cluster) {
257				if (seg_size + bv.bv_len
258				    > queue_max_segment_size(q))
259					goto new_segment;
260				if (!BIOVEC_PHYS_MERGEABLE(&bvprv, &bv))
261					goto new_segment;
262				if (!BIOVEC_SEG_BOUNDARY(q, &bvprv, &bv))
263					goto new_segment;
264
265				seg_size += bv.bv_len;
266				bvprv = bv;
267				continue;
268			}
269new_segment:
270			if (nr_phys_segs == 1 && seg_size >
271			    fbio->bi_seg_front_size)
272				fbio->bi_seg_front_size = seg_size;
273
274			nr_phys_segs++;
275			bvprv = bv;
276			prev = 1;
277			seg_size = bv.bv_len;
278		}
279		bbio = bio;
280	}
281
282	if (nr_phys_segs == 1 && seg_size > fbio->bi_seg_front_size)
283		fbio->bi_seg_front_size = seg_size;
284	if (seg_size > bbio->bi_seg_back_size)
285		bbio->bi_seg_back_size = seg_size;
286
287	return nr_phys_segs;
288}
289
290void blk_recalc_rq_segments(struct request *rq)
 
291{
292	bool no_sg_merge = !!test_bit(QUEUE_FLAG_NO_SG_MERGE,
293			&rq->q->queue_flags);
294
295	rq->nr_phys_segments = __blk_recalc_rq_segments(rq->q, rq->bio,
296			no_sg_merge);
 
 
 
 
 
 
 
297}
298
299void blk_recount_segments(struct request_queue *q, struct bio *bio)
300{
301	unsigned short seg_cnt;
 
 
 
 
 
 
 
 
 
302
303	/* estimate segment number by bi_vcnt for non-cloned bio */
304	if (bio_flagged(bio, BIO_CLONED))
305		seg_cnt = bio_segments(bio);
306	else
307		seg_cnt = bio->bi_vcnt;
 
 
 
 
 
308
309	if (test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags) &&
310			(seg_cnt < queue_max_segments(q)))
311		bio->bi_phys_segments = seg_cnt;
312	else {
313		struct bio *nxt = bio->bi_next;
314
315		bio->bi_next = NULL;
316		bio->bi_phys_segments = __blk_recalc_rq_segments(q, bio, false);
317		bio->bi_next = nxt;
318	}
319
320	bio_set_flag(bio, BIO_SEG_VALID);
321}
322EXPORT_SYMBOL(blk_recount_segments);
323
324static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio,
325				   struct bio *nxt)
326{
327	struct bio_vec end_bv = { NULL }, nxt_bv;
328
329	if (!blk_queue_cluster(q))
330		return 0;
331
332	if (bio->bi_seg_back_size + nxt->bi_seg_front_size >
333	    queue_max_segment_size(q))
334		return 0;
335
336	if (!bio_has_data(bio))
337		return 1;
338
339	bio_get_last_bvec(bio, &end_bv);
340	bio_get_first_bvec(nxt, &nxt_bv);
341
342	if (!BIOVEC_PHYS_MERGEABLE(&end_bv, &nxt_bv))
343		return 0;
344
345	/*
346	 * bio and nxt are contiguous in memory; check if the queue allows
347	 * these two to be merged into one
348	 */
349	if (BIOVEC_SEG_BOUNDARY(q, &end_bv, &nxt_bv))
350		return 1;
351
352	return 0;
353}
354
355static inline void
356__blk_segment_map_sg(struct request_queue *q, struct bio_vec *bvec,
357		     struct scatterlist *sglist, struct bio_vec *bvprv,
358		     struct scatterlist **sg, int *nsegs, int *cluster)
359{
360
361	int nbytes = bvec->bv_len;
362
363	if (*sg && *cluster) {
364		if ((*sg)->length + nbytes > queue_max_segment_size(q))
365			goto new_segment;
366
367		if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
368			goto new_segment;
369		if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
370			goto new_segment;
371
372		(*sg)->length += nbytes;
373	} else {
374new_segment:
375		if (!*sg)
376			*sg = sglist;
377		else {
378			/*
379			 * If the driver previously mapped a shorter
380			 * list, we could see a termination bit
381			 * prematurely unless it fully inits the sg
382			 * table on each mapping. We KNOW that there
383			 * must be more entries here or the driver
384			 * would be buggy, so force clear the
385			 * termination bit to avoid doing a full
386			 * sg_init_table() in drivers for each command.
387			 */
388			sg_unmark_end(*sg);
389			*sg = sg_next(*sg);
390		}
391
392		sg_set_page(*sg, bvec->bv_page, nbytes, bvec->bv_offset);
393		(*nsegs)++;
394	}
395	*bvprv = *bvec;
396}
397
398static inline int __blk_bvec_map_sg(struct request_queue *q, struct bio_vec bv,
399		struct scatterlist *sglist, struct scatterlist **sg)
400{
401	*sg = sglist;
402	sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
403	return 1;
404}
405
406static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
407			     struct scatterlist *sglist,
408			     struct scatterlist **sg)
409{
410	struct bio_vec bvec, bvprv = { NULL };
411	struct bvec_iter iter;
412	int cluster = blk_queue_cluster(q), nsegs = 0;
 
413
414	for_each_bio(bio)
415		bio_for_each_segment(bvec, bio, iter)
416			__blk_segment_map_sg(q, &bvec, sglist, &bvprv, sg,
417					     &nsegs, &cluster);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
418
419	return nsegs;
420}
421
422/*
423 * map a request to scatterlist, return number of sg entries setup. Caller
424 * must make sure sg can hold rq->nr_phys_segments entries
425 */
426int blk_rq_map_sg(struct request_queue *q, struct request *rq,
427		  struct scatterlist *sglist)
428{
429	struct scatterlist *sg = NULL;
430	int nsegs = 0;
431
432	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
433		nsegs = __blk_bvec_map_sg(q, rq->special_vec, sglist, &sg);
434	else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME)
435		nsegs = __blk_bvec_map_sg(q, bio_iovec(rq->bio), sglist, &sg);
436	else if (rq->bio)
437		nsegs = __blk_bios_map_sg(q, rq->bio, sglist, &sg);
438
439	if (unlikely(rq->rq_flags & RQF_COPY_USER) &&
440	    (blk_rq_bytes(rq) & q->dma_pad_mask)) {
441		unsigned int pad_len =
442			(q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
443
444		sg->length += pad_len;
445		rq->extra_len += pad_len;
446	}
447
448	if (q->dma_drain_size && q->dma_drain_needed(rq)) {
449		if (op_is_write(req_op(rq)))
450			memset(q->dma_drain_buffer, 0, q->dma_drain_size);
451
452		sg_unmark_end(sg);
453		sg = sg_next(sg);
454		sg_set_page(sg, virt_to_page(q->dma_drain_buffer),
455			    q->dma_drain_size,
456			    ((unsigned long)q->dma_drain_buffer) &
457			    (PAGE_SIZE - 1));
458		nsegs++;
459		rq->extra_len += q->dma_drain_size;
460	}
461
462	if (sg)
463		sg_mark_end(sg);
464
465	/*
466	 * Something must have been wrong if the figured number of
467	 * segment is bigger than number of req's physical segments
468	 */
469	WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
470
471	return nsegs;
472}
473EXPORT_SYMBOL(blk_rq_map_sg);
 
 
 
 
 
 
 
474
475static inline int ll_new_hw_segment(struct request_queue *q,
476				    struct request *req,
477				    struct bio *bio)
478{
479	int nr_phys_segs = bio_phys_segments(q, bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
480
481	if (req->nr_phys_segments + nr_phys_segs > queue_max_segments(q))
 
 
 
 
 
 
482		goto no_merge;
483
484	if (blk_integrity_merge_bio(q, req, bio) == false)
 
 
 
 
485		goto no_merge;
486
487	/*
488	 * This will form the start of a new hw segment.  Bump both
489	 * counters.
490	 */
491	req->nr_phys_segments += nr_phys_segs;
492	return 1;
493
494no_merge:
495	req_set_nomerge(q, req);
496	return 0;
497}
498
499int ll_back_merge_fn(struct request_queue *q, struct request *req,
500		     struct bio *bio)
501{
502	if (req_gap_back_merge(req, bio))
503		return 0;
504	if (blk_integrity_rq(req) &&
505	    integrity_req_gap_back_merge(req, bio))
506		return 0;
 
 
507	if (blk_rq_sectors(req) + bio_sectors(bio) >
508	    blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
509		req_set_nomerge(q, req);
510		return 0;
511	}
512	if (!bio_flagged(req->biotail, BIO_SEG_VALID))
513		blk_recount_segments(q, req->biotail);
514	if (!bio_flagged(bio, BIO_SEG_VALID))
515		blk_recount_segments(q, bio);
516
517	return ll_new_hw_segment(q, req, bio);
518}
519
520int ll_front_merge_fn(struct request_queue *q, struct request *req,
521		      struct bio *bio)
522{
523
524	if (req_gap_front_merge(req, bio))
525		return 0;
526	if (blk_integrity_rq(req) &&
527	    integrity_req_gap_front_merge(req, bio))
528		return 0;
 
 
529	if (blk_rq_sectors(req) + bio_sectors(bio) >
530	    blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
531		req_set_nomerge(q, req);
532		return 0;
533	}
534	if (!bio_flagged(bio, BIO_SEG_VALID))
535		blk_recount_segments(q, bio);
536	if (!bio_flagged(req->bio, BIO_SEG_VALID))
537		blk_recount_segments(q, req->bio);
538
539	return ll_new_hw_segment(q, req, bio);
540}
541
542/*
543 * blk-mq uses req->special to carry normal driver per-request payload, it
544 * does not indicate a prepared command that we cannot merge with.
545 */
546static bool req_no_special_merge(struct request *req)
547{
548	struct request_queue *q = req->q;
549
550	return !q->mq_ops && req->special;
551}
552
553static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
554		struct request *next)
555{
556	unsigned short segments = blk_rq_nr_discard_segments(req);
557
558	if (segments >= queue_max_discard_segments(q))
559		goto no_merge;
560	if (blk_rq_sectors(req) + bio_sectors(next->bio) >
561	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
562		goto no_merge;
563
564	req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
565	return true;
566no_merge:
567	req_set_nomerge(q, req);
568	return false;
569}
570
571static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
572				struct request *next)
573{
574	int total_phys_segments;
575	unsigned int seg_size =
576		req->biotail->bi_seg_back_size + next->bio->bi_seg_front_size;
577
578	/*
579	 * First check if the either of the requests are re-queued
580	 * requests.  Can't merge them if they are.
581	 */
582	if (req_no_special_merge(req) || req_no_special_merge(next))
583		return 0;
584
585	if (req_gap_back_merge(req, next->bio))
586		return 0;
587
588	/*
589	 * Will it become too large?
590	 */
591	if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
592	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
593		return 0;
594
595	total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
596	if (blk_phys_contig_segment(q, req->biotail, next->bio)) {
597		if (req->nr_phys_segments == 1)
598			req->bio->bi_seg_front_size = seg_size;
599		if (next->nr_phys_segments == 1)
600			next->biotail->bi_seg_back_size = seg_size;
601		total_phys_segments--;
602	}
603
604	if (total_phys_segments > queue_max_segments(q))
605		return 0;
606
607	if (blk_integrity_merge_rq(q, req, next) == false)
608		return 0;
609
 
 
 
610	/* Merge is OK... */
611	req->nr_phys_segments = total_phys_segments;
612	return 1;
613}
614
615/**
616 * blk_rq_set_mixed_merge - mark a request as mixed merge
617 * @rq: request to mark as mixed merge
618 *
619 * Description:
620 *     @rq is about to be mixed merged.  Make sure the attributes
621 *     which can be mixed are set in each bio and mark @rq as mixed
622 *     merged.
623 */
624void blk_rq_set_mixed_merge(struct request *rq)
625{
626	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
627	struct bio *bio;
628
629	if (rq->rq_flags & RQF_MIXED_MERGE)
630		return;
631
632	/*
633	 * @rq will no longer represent mixable attributes for all the
634	 * contained bios.  It will just track those of the first one.
635	 * Distributes the attributs to each bio.
636	 */
637	for (bio = rq->bio; bio; bio = bio->bi_next) {
638		WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
639			     (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
640		bio->bi_opf |= ff;
641	}
642	rq->rq_flags |= RQF_MIXED_MERGE;
643}
644
645static void blk_account_io_merge(struct request *req)
646{
647	if (blk_do_io_stat(req)) {
648		struct hd_struct *part;
649		int cpu;
 
 
 
650
651		cpu = part_stat_lock();
652		part = req->part;
 
 
 
 
 
653
654		part_round_stats(req->q, cpu, part);
655		part_dec_in_flight(req->q, part, rq_data_dir(req));
656
657		hd_struct_put(part);
658		part_stat_unlock();
659	}
660}
661
662/*
663 * For non-mq, this has to be called with the request spinlock acquired.
664 * For mq with scheduling, the appropriate queue wide lock should be held.
665 */
666static struct request *attempt_merge(struct request_queue *q,
667				     struct request *req, struct request *next)
668{
669	if (!q->mq_ops)
670		lockdep_assert_held(q->queue_lock);
671
672	if (!rq_mergeable(req) || !rq_mergeable(next))
673		return NULL;
674
675	if (req_op(req) != req_op(next))
676		return NULL;
677
678	/*
679	 * not contiguous
680	 */
681	if (blk_rq_pos(req) + blk_rq_sectors(req) != blk_rq_pos(next))
682		return NULL;
683
684	if (rq_data_dir(req) != rq_data_dir(next)
685	    || req->rq_disk != next->rq_disk
686	    || req_no_special_merge(next))
687		return NULL;
688
689	if (req_op(req) == REQ_OP_WRITE_SAME &&
690	    !blk_write_same_mergeable(req->bio, next->bio))
691		return NULL;
692
693	/*
694	 * Don't allow merge of different write hints, or for a hint with
695	 * non-hint IO.
696	 */
697	if (req->write_hint != next->write_hint)
698		return NULL;
699
700	/*
701	 * If we are allowed to merge, then append bio list
702	 * from next to rq and release next. merge_requests_fn
703	 * will have updated segment counts, update sector
704	 * counts here. Handle DISCARDs separately, as they
705	 * have separate settings.
706	 */
707	if (req_op(req) == REQ_OP_DISCARD) {
 
 
708		if (!req_attempt_discard_merge(q, req, next))
709			return NULL;
710	} else if (!ll_merge_requests_fn(q, req, next))
 
 
 
 
 
711		return NULL;
 
712
713	/*
714	 * If failfast settings disagree or any of the two is already
715	 * a mixed merge, mark both as mixed before proceeding.  This
716	 * makes sure that all involved bios have mixable attributes
717	 * set properly.
718	 */
719	if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
720	    (req->cmd_flags & REQ_FAILFAST_MASK) !=
721	    (next->cmd_flags & REQ_FAILFAST_MASK)) {
722		blk_rq_set_mixed_merge(req);
723		blk_rq_set_mixed_merge(next);
724	}
725
726	/*
727	 * At this point we have either done a back merge
728	 * or front merge. We need the smaller start_time of
729	 * the merged requests to be the current request
730	 * for accounting purposes.
731	 */
732	if (time_after(req->start_time, next->start_time))
733		req->start_time = next->start_time;
734
735	req->biotail->bi_next = next->bio;
736	req->biotail = next->biotail;
737
738	req->__data_len += blk_rq_bytes(next);
739
740	if (req_op(req) != REQ_OP_DISCARD)
741		elv_merge_requests(q, req, next);
742
743	/*
744	 * 'next' is going away, so update stats accordingly
745	 */
746	blk_account_io_merge(next);
747
748	req->ioprio = ioprio_best(req->ioprio, next->ioprio);
749	if (blk_rq_cpu_valid(next))
750		req->cpu = next->cpu;
751
752	/*
753	 * ownership of bio passed from next to req, return 'next' for
754	 * the caller to free
755	 */
756	next->bio = NULL;
757	return next;
758}
759
760struct request *attempt_back_merge(struct request_queue *q, struct request *rq)
 
761{
762	struct request *next = elv_latter_request(q, rq);
763
764	if (next)
765		return attempt_merge(q, rq, next);
766
767	return NULL;
768}
769
770struct request *attempt_front_merge(struct request_queue *q, struct request *rq)
 
771{
772	struct request *prev = elv_former_request(q, rq);
773
774	if (prev)
775		return attempt_merge(q, prev, rq);
776
777	return NULL;
778}
779
780int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
781			  struct request *next)
 
 
 
 
 
782{
783	struct elevator_queue *e = q->elevator;
784	struct request *free;
785
786	if (!e->uses_mq && e->type->ops.sq.elevator_allow_rq_merge_fn)
787		if (!e->type->ops.sq.elevator_allow_rq_merge_fn(q, rq, next))
788			return 0;
789
790	free = attempt_merge(q, rq, next);
791	if (free) {
792		__blk_put_request(q, free);
793		return 1;
794	}
795
796	return 0;
797}
798
799bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
800{
801	if (!rq_mergeable(rq) || !bio_mergeable(bio))
802		return false;
803
804	if (req_op(rq) != bio_op(bio))
805		return false;
806
807	/* different data direction or already started, don't merge */
808	if (bio_data_dir(bio) != rq_data_dir(rq))
809		return false;
810
811	/* must be same device and not a special request */
812	if (rq->rq_disk != bio->bi_disk || req_no_special_merge(rq))
813		return false;
814
815	/* only merge integrity protected bio into ditto rq */
816	if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
817		return false;
818
819	/* must be using the same buffer */
820	if (req_op(rq) == REQ_OP_WRITE_SAME &&
821	    !blk_write_same_mergeable(rq->bio, bio))
822		return false;
823
824	/*
825	 * Don't allow merge of different write hints, or for a hint with
826	 * non-hint IO.
827	 */
828	if (rq->write_hint != bio->bi_write_hint)
829		return false;
830
831	return true;
832}
833
834enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
835{
836	if (req_op(rq) == REQ_OP_DISCARD &&
837	    queue_max_discard_segments(rq->q) > 1)
838		return ELEVATOR_DISCARD_MERGE;
839	else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
840		return ELEVATOR_BACK_MERGE;
841	else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
842		return ELEVATOR_FRONT_MERGE;
843	return ELEVATOR_NO_MERGE;
844}