Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  KVM guest address space mapping code
   4 *
   5 *    Copyright IBM Corp. 2007, 2020
   6 *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
   7 *		 David Hildenbrand <david@redhat.com>
   8 *		 Janosch Frank <frankja@linux.vnet.ibm.com>
   9 */
  10
  11#include <linux/kernel.h>
  12#include <linux/pagewalk.h>
  13#include <linux/swap.h>
  14#include <linux/smp.h>
  15#include <linux/spinlock.h>
  16#include <linux/slab.h>
  17#include <linux/swapops.h>
  18#include <linux/ksm.h>
  19#include <linux/mman.h>
  20#include <linux/pgtable.h>
  21
 
  22#include <asm/pgalloc.h>
  23#include <asm/gmap.h>
  24#include <asm/tlb.h>
  25
  26#define GMAP_SHADOW_FAKE_TABLE 1ULL
  27
  28/**
  29 * gmap_alloc - allocate and initialize a guest address space
 
  30 * @limit: maximum address of the gmap address space
  31 *
  32 * Returns a guest address space structure.
  33 */
  34static struct gmap *gmap_alloc(unsigned long limit)
  35{
  36	struct gmap *gmap;
  37	struct page *page;
  38	unsigned long *table;
  39	unsigned long etype, atype;
  40
  41	if (limit < _REGION3_SIZE) {
  42		limit = _REGION3_SIZE - 1;
  43		atype = _ASCE_TYPE_SEGMENT;
  44		etype = _SEGMENT_ENTRY_EMPTY;
  45	} else if (limit < _REGION2_SIZE) {
  46		limit = _REGION2_SIZE - 1;
  47		atype = _ASCE_TYPE_REGION3;
  48		etype = _REGION3_ENTRY_EMPTY;
  49	} else if (limit < _REGION1_SIZE) {
  50		limit = _REGION1_SIZE - 1;
  51		atype = _ASCE_TYPE_REGION2;
  52		etype = _REGION2_ENTRY_EMPTY;
  53	} else {
  54		limit = -1UL;
  55		atype = _ASCE_TYPE_REGION1;
  56		etype = _REGION1_ENTRY_EMPTY;
  57	}
  58	gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL_ACCOUNT);
  59	if (!gmap)
  60		goto out;
  61	INIT_LIST_HEAD(&gmap->crst_list);
  62	INIT_LIST_HEAD(&gmap->children);
  63	INIT_LIST_HEAD(&gmap->pt_list);
  64	INIT_RADIX_TREE(&gmap->guest_to_host, GFP_KERNEL_ACCOUNT);
  65	INIT_RADIX_TREE(&gmap->host_to_guest, GFP_ATOMIC | __GFP_ACCOUNT);
  66	INIT_RADIX_TREE(&gmap->host_to_rmap, GFP_ATOMIC | __GFP_ACCOUNT);
  67	spin_lock_init(&gmap->guest_table_lock);
  68	spin_lock_init(&gmap->shadow_lock);
  69	refcount_set(&gmap->ref_count, 1);
  70	page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
  71	if (!page)
  72		goto out_free;
  73	page->index = 0;
  74	list_add(&page->lru, &gmap->crst_list);
  75	table = page_to_virt(page);
  76	crst_table_init(table, etype);
  77	gmap->table = table;
  78	gmap->asce = atype | _ASCE_TABLE_LENGTH |
  79		_ASCE_USER_BITS | __pa(table);
  80	gmap->asce_end = limit;
  81	return gmap;
  82
  83out_free:
  84	kfree(gmap);
  85out:
  86	return NULL;
  87}
  88
  89/**
  90 * gmap_create - create a guest address space
  91 * @mm: pointer to the parent mm_struct
  92 * @limit: maximum size of the gmap address space
  93 *
  94 * Returns a guest address space structure.
  95 */
  96struct gmap *gmap_create(struct mm_struct *mm, unsigned long limit)
  97{
  98	struct gmap *gmap;
  99	unsigned long gmap_asce;
 100
 101	gmap = gmap_alloc(limit);
 102	if (!gmap)
 103		return NULL;
 104	gmap->mm = mm;
 105	spin_lock(&mm->context.lock);
 106	list_add_rcu(&gmap->list, &mm->context.gmap_list);
 107	if (list_is_singular(&mm->context.gmap_list))
 108		gmap_asce = gmap->asce;
 109	else
 110		gmap_asce = -1UL;
 111	WRITE_ONCE(mm->context.gmap_asce, gmap_asce);
 112	spin_unlock(&mm->context.lock);
 113	return gmap;
 114}
 115EXPORT_SYMBOL_GPL(gmap_create);
 116
 117static void gmap_flush_tlb(struct gmap *gmap)
 118{
 119	if (MACHINE_HAS_IDTE)
 120		__tlb_flush_idte(gmap->asce);
 121	else
 122		__tlb_flush_global();
 123}
 124
 125static void gmap_radix_tree_free(struct radix_tree_root *root)
 126{
 127	struct radix_tree_iter iter;
 128	unsigned long indices[16];
 129	unsigned long index;
 130	void __rcu **slot;
 131	int i, nr;
 132
 133	/* A radix tree is freed by deleting all of its entries */
 134	index = 0;
 135	do {
 136		nr = 0;
 137		radix_tree_for_each_slot(slot, root, &iter, index) {
 138			indices[nr] = iter.index;
 139			if (++nr == 16)
 140				break;
 141		}
 142		for (i = 0; i < nr; i++) {
 143			index = indices[i];
 144			radix_tree_delete(root, index);
 145		}
 146	} while (nr > 0);
 147}
 148
 149static void gmap_rmap_radix_tree_free(struct radix_tree_root *root)
 150{
 151	struct gmap_rmap *rmap, *rnext, *head;
 152	struct radix_tree_iter iter;
 153	unsigned long indices[16];
 154	unsigned long index;
 155	void __rcu **slot;
 156	int i, nr;
 157
 158	/* A radix tree is freed by deleting all of its entries */
 159	index = 0;
 160	do {
 161		nr = 0;
 162		radix_tree_for_each_slot(slot, root, &iter, index) {
 163			indices[nr] = iter.index;
 164			if (++nr == 16)
 165				break;
 166		}
 167		for (i = 0; i < nr; i++) {
 168			index = indices[i];
 169			head = radix_tree_delete(root, index);
 170			gmap_for_each_rmap_safe(rmap, rnext, head)
 171				kfree(rmap);
 172		}
 173	} while (nr > 0);
 174}
 175
 176/**
 177 * gmap_free - free a guest address space
 178 * @gmap: pointer to the guest address space structure
 179 *
 180 * No locks required. There are no references to this gmap anymore.
 181 */
 182static void gmap_free(struct gmap *gmap)
 183{
 184	struct page *page, *next;
 185
 186	/* Flush tlb of all gmaps (if not already done for shadows) */
 187	if (!(gmap_is_shadow(gmap) && gmap->removed))
 188		gmap_flush_tlb(gmap);
 189	/* Free all segment & region tables. */
 190	list_for_each_entry_safe(page, next, &gmap->crst_list, lru)
 191		__free_pages(page, CRST_ALLOC_ORDER);
 192	gmap_radix_tree_free(&gmap->guest_to_host);
 193	gmap_radix_tree_free(&gmap->host_to_guest);
 194
 195	/* Free additional data for a shadow gmap */
 196	if (gmap_is_shadow(gmap)) {
 197		/* Free all page tables. */
 198		list_for_each_entry_safe(page, next, &gmap->pt_list, lru)
 199			page_table_free_pgste(page);
 200		gmap_rmap_radix_tree_free(&gmap->host_to_rmap);
 201		/* Release reference to the parent */
 202		gmap_put(gmap->parent);
 203	}
 204
 205	kfree(gmap);
 206}
 207
 208/**
 209 * gmap_get - increase reference counter for guest address space
 210 * @gmap: pointer to the guest address space structure
 211 *
 212 * Returns the gmap pointer
 213 */
 214struct gmap *gmap_get(struct gmap *gmap)
 215{
 216	refcount_inc(&gmap->ref_count);
 217	return gmap;
 218}
 219EXPORT_SYMBOL_GPL(gmap_get);
 220
 221/**
 222 * gmap_put - decrease reference counter for guest address space
 223 * @gmap: pointer to the guest address space structure
 224 *
 225 * If the reference counter reaches zero the guest address space is freed.
 226 */
 227void gmap_put(struct gmap *gmap)
 228{
 229	if (refcount_dec_and_test(&gmap->ref_count))
 230		gmap_free(gmap);
 231}
 232EXPORT_SYMBOL_GPL(gmap_put);
 233
 234/**
 235 * gmap_remove - remove a guest address space but do not free it yet
 236 * @gmap: pointer to the guest address space structure
 237 */
 238void gmap_remove(struct gmap *gmap)
 239{
 240	struct gmap *sg, *next;
 241	unsigned long gmap_asce;
 242
 243	/* Remove all shadow gmaps linked to this gmap */
 244	if (!list_empty(&gmap->children)) {
 245		spin_lock(&gmap->shadow_lock);
 246		list_for_each_entry_safe(sg, next, &gmap->children, list) {
 247			list_del(&sg->list);
 248			gmap_put(sg);
 249		}
 250		spin_unlock(&gmap->shadow_lock);
 251	}
 252	/* Remove gmap from the pre-mm list */
 253	spin_lock(&gmap->mm->context.lock);
 254	list_del_rcu(&gmap->list);
 255	if (list_empty(&gmap->mm->context.gmap_list))
 256		gmap_asce = 0;
 257	else if (list_is_singular(&gmap->mm->context.gmap_list))
 258		gmap_asce = list_first_entry(&gmap->mm->context.gmap_list,
 259					     struct gmap, list)->asce;
 260	else
 261		gmap_asce = -1UL;
 262	WRITE_ONCE(gmap->mm->context.gmap_asce, gmap_asce);
 263	spin_unlock(&gmap->mm->context.lock);
 264	synchronize_rcu();
 265	/* Put reference */
 266	gmap_put(gmap);
 267}
 268EXPORT_SYMBOL_GPL(gmap_remove);
 269
 270/**
 271 * gmap_enable - switch primary space to the guest address space
 272 * @gmap: pointer to the guest address space structure
 273 */
 274void gmap_enable(struct gmap *gmap)
 275{
 276	S390_lowcore.gmap = (unsigned long) gmap;
 277}
 278EXPORT_SYMBOL_GPL(gmap_enable);
 279
 280/**
 281 * gmap_disable - switch back to the standard primary address space
 282 * @gmap: pointer to the guest address space structure
 283 */
 284void gmap_disable(struct gmap *gmap)
 285{
 286	S390_lowcore.gmap = 0UL;
 287}
 288EXPORT_SYMBOL_GPL(gmap_disable);
 289
 290/**
 291 * gmap_get_enabled - get a pointer to the currently enabled gmap
 292 *
 293 * Returns a pointer to the currently enabled gmap. 0 if none is enabled.
 294 */
 295struct gmap *gmap_get_enabled(void)
 296{
 297	return (struct gmap *) S390_lowcore.gmap;
 298}
 299EXPORT_SYMBOL_GPL(gmap_get_enabled);
 300
 301/*
 302 * gmap_alloc_table is assumed to be called with mmap_lock held
 303 */
 304static int gmap_alloc_table(struct gmap *gmap, unsigned long *table,
 305			    unsigned long init, unsigned long gaddr)
 306{
 307	struct page *page;
 308	unsigned long *new;
 309
 310	/* since we dont free the gmap table until gmap_free we can unlock */
 311	page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
 312	if (!page)
 313		return -ENOMEM;
 314	new = page_to_virt(page);
 315	crst_table_init(new, init);
 316	spin_lock(&gmap->guest_table_lock);
 317	if (*table & _REGION_ENTRY_INVALID) {
 318		list_add(&page->lru, &gmap->crst_list);
 319		*table = __pa(new) | _REGION_ENTRY_LENGTH |
 320			(*table & _REGION_ENTRY_TYPE_MASK);
 321		page->index = gaddr;
 322		page = NULL;
 323	}
 324	spin_unlock(&gmap->guest_table_lock);
 325	if (page)
 326		__free_pages(page, CRST_ALLOC_ORDER);
 327	return 0;
 328}
 329
 330/**
 331 * __gmap_segment_gaddr - find virtual address from segment pointer
 332 * @entry: pointer to a segment table entry in the guest address space
 333 *
 334 * Returns the virtual address in the guest address space for the segment
 335 */
 336static unsigned long __gmap_segment_gaddr(unsigned long *entry)
 337{
 338	struct page *page;
 339	unsigned long offset;
 340
 341	offset = (unsigned long) entry / sizeof(unsigned long);
 342	offset = (offset & (PTRS_PER_PMD - 1)) * PMD_SIZE;
 343	page = pmd_pgtable_page((pmd_t *) entry);
 
 344	return page->index + offset;
 345}
 346
 347/**
 348 * __gmap_unlink_by_vmaddr - unlink a single segment via a host address
 349 * @gmap: pointer to the guest address space structure
 350 * @vmaddr: address in the host process address space
 351 *
 352 * Returns 1 if a TLB flush is required
 353 */
 354static int __gmap_unlink_by_vmaddr(struct gmap *gmap, unsigned long vmaddr)
 355{
 356	unsigned long *entry;
 357	int flush = 0;
 358
 359	BUG_ON(gmap_is_shadow(gmap));
 360	spin_lock(&gmap->guest_table_lock);
 361	entry = radix_tree_delete(&gmap->host_to_guest, vmaddr >> PMD_SHIFT);
 362	if (entry) {
 363		flush = (*entry != _SEGMENT_ENTRY_EMPTY);
 364		*entry = _SEGMENT_ENTRY_EMPTY;
 365	}
 366	spin_unlock(&gmap->guest_table_lock);
 367	return flush;
 368}
 369
 370/**
 371 * __gmap_unmap_by_gaddr - unmap a single segment via a guest address
 372 * @gmap: pointer to the guest address space structure
 373 * @gaddr: address in the guest address space
 374 *
 375 * Returns 1 if a TLB flush is required
 376 */
 377static int __gmap_unmap_by_gaddr(struct gmap *gmap, unsigned long gaddr)
 378{
 379	unsigned long vmaddr;
 380
 381	vmaddr = (unsigned long) radix_tree_delete(&gmap->guest_to_host,
 382						   gaddr >> PMD_SHIFT);
 383	return vmaddr ? __gmap_unlink_by_vmaddr(gmap, vmaddr) : 0;
 384}
 385
 386/**
 387 * gmap_unmap_segment - unmap segment from the guest address space
 388 * @gmap: pointer to the guest address space structure
 389 * @to: address in the guest address space
 390 * @len: length of the memory area to unmap
 391 *
 392 * Returns 0 if the unmap succeeded, -EINVAL if not.
 393 */
 394int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len)
 395{
 396	unsigned long off;
 397	int flush;
 398
 399	BUG_ON(gmap_is_shadow(gmap));
 400	if ((to | len) & (PMD_SIZE - 1))
 401		return -EINVAL;
 402	if (len == 0 || to + len < to)
 403		return -EINVAL;
 404
 405	flush = 0;
 406	mmap_write_lock(gmap->mm);
 407	for (off = 0; off < len; off += PMD_SIZE)
 408		flush |= __gmap_unmap_by_gaddr(gmap, to + off);
 409	mmap_write_unlock(gmap->mm);
 410	if (flush)
 411		gmap_flush_tlb(gmap);
 412	return 0;
 413}
 414EXPORT_SYMBOL_GPL(gmap_unmap_segment);
 415
 416/**
 417 * gmap_map_segment - map a segment to the guest address space
 418 * @gmap: pointer to the guest address space structure
 419 * @from: source address in the parent address space
 420 * @to: target address in the guest address space
 421 * @len: length of the memory area to map
 422 *
 423 * Returns 0 if the mmap succeeded, -EINVAL or -ENOMEM if not.
 424 */
 425int gmap_map_segment(struct gmap *gmap, unsigned long from,
 426		     unsigned long to, unsigned long len)
 427{
 428	unsigned long off;
 429	int flush;
 430
 431	BUG_ON(gmap_is_shadow(gmap));
 432	if ((from | to | len) & (PMD_SIZE - 1))
 433		return -EINVAL;
 434	if (len == 0 || from + len < from || to + len < to ||
 435	    from + len - 1 > TASK_SIZE_MAX || to + len - 1 > gmap->asce_end)
 436		return -EINVAL;
 437
 438	flush = 0;
 439	mmap_write_lock(gmap->mm);
 440	for (off = 0; off < len; off += PMD_SIZE) {
 441		/* Remove old translation */
 442		flush |= __gmap_unmap_by_gaddr(gmap, to + off);
 443		/* Store new translation */
 444		if (radix_tree_insert(&gmap->guest_to_host,
 445				      (to + off) >> PMD_SHIFT,
 446				      (void *) from + off))
 447			break;
 448	}
 449	mmap_write_unlock(gmap->mm);
 450	if (flush)
 451		gmap_flush_tlb(gmap);
 452	if (off >= len)
 453		return 0;
 454	gmap_unmap_segment(gmap, to, len);
 455	return -ENOMEM;
 456}
 457EXPORT_SYMBOL_GPL(gmap_map_segment);
 458
 459/**
 460 * __gmap_translate - translate a guest address to a user space address
 461 * @gmap: pointer to guest mapping meta data structure
 462 * @gaddr: guest address
 463 *
 464 * Returns user space address which corresponds to the guest address or
 465 * -EFAULT if no such mapping exists.
 466 * This function does not establish potentially missing page table entries.
 467 * The mmap_lock of the mm that belongs to the address space must be held
 468 * when this function gets called.
 469 *
 470 * Note: Can also be called for shadow gmaps.
 471 */
 472unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr)
 473{
 474	unsigned long vmaddr;
 475
 476	vmaddr = (unsigned long)
 477		radix_tree_lookup(&gmap->guest_to_host, gaddr >> PMD_SHIFT);
 478	/* Note: guest_to_host is empty for a shadow gmap */
 479	return vmaddr ? (vmaddr | (gaddr & ~PMD_MASK)) : -EFAULT;
 480}
 481EXPORT_SYMBOL_GPL(__gmap_translate);
 482
 483/**
 484 * gmap_translate - translate a guest address to a user space address
 485 * @gmap: pointer to guest mapping meta data structure
 486 * @gaddr: guest address
 487 *
 488 * Returns user space address which corresponds to the guest address or
 489 * -EFAULT if no such mapping exists.
 490 * This function does not establish potentially missing page table entries.
 491 */
 492unsigned long gmap_translate(struct gmap *gmap, unsigned long gaddr)
 493{
 494	unsigned long rc;
 495
 496	mmap_read_lock(gmap->mm);
 497	rc = __gmap_translate(gmap, gaddr);
 498	mmap_read_unlock(gmap->mm);
 499	return rc;
 500}
 501EXPORT_SYMBOL_GPL(gmap_translate);
 502
 503/**
 504 * gmap_unlink - disconnect a page table from the gmap shadow tables
 505 * @mm: pointer to the parent mm_struct
 506 * @table: pointer to the host page table
 507 * @vmaddr: vm address associated with the host page table
 508 */
 509void gmap_unlink(struct mm_struct *mm, unsigned long *table,
 510		 unsigned long vmaddr)
 511{
 512	struct gmap *gmap;
 513	int flush;
 514
 515	rcu_read_lock();
 516	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
 517		flush = __gmap_unlink_by_vmaddr(gmap, vmaddr);
 518		if (flush)
 519			gmap_flush_tlb(gmap);
 520	}
 521	rcu_read_unlock();
 522}
 523
 524static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *old, pmd_t new,
 525			   unsigned long gaddr);
 526
 527/**
 528 * __gmap_link - set up shadow page tables to connect a host to a guest address
 529 * @gmap: pointer to guest mapping meta data structure
 530 * @gaddr: guest address
 531 * @vmaddr: vm address
 532 *
 533 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
 534 * if the vm address is already mapped to a different guest segment.
 535 * The mmap_lock of the mm that belongs to the address space must be held
 536 * when this function gets called.
 537 */
 538int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr)
 539{
 540	struct mm_struct *mm;
 541	unsigned long *table;
 542	spinlock_t *ptl;
 543	pgd_t *pgd;
 544	p4d_t *p4d;
 545	pud_t *pud;
 546	pmd_t *pmd;
 547	u64 unprot;
 548	int rc;
 549
 550	BUG_ON(gmap_is_shadow(gmap));
 551	/* Create higher level tables in the gmap page table */
 552	table = gmap->table;
 553	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION1) {
 554		table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT;
 555		if ((*table & _REGION_ENTRY_INVALID) &&
 556		    gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY,
 557				     gaddr & _REGION1_MASK))
 558			return -ENOMEM;
 559		table = __va(*table & _REGION_ENTRY_ORIGIN);
 560	}
 561	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION2) {
 562		table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
 563		if ((*table & _REGION_ENTRY_INVALID) &&
 564		    gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY,
 565				     gaddr & _REGION2_MASK))
 566			return -ENOMEM;
 567		table = __va(*table & _REGION_ENTRY_ORIGIN);
 568	}
 569	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION3) {
 570		table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
 571		if ((*table & _REGION_ENTRY_INVALID) &&
 572		    gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY,
 573				     gaddr & _REGION3_MASK))
 574			return -ENOMEM;
 575		table = __va(*table & _REGION_ENTRY_ORIGIN);
 576	}
 577	table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
 578	/* Walk the parent mm page table */
 579	mm = gmap->mm;
 580	pgd = pgd_offset(mm, vmaddr);
 581	VM_BUG_ON(pgd_none(*pgd));
 582	p4d = p4d_offset(pgd, vmaddr);
 583	VM_BUG_ON(p4d_none(*p4d));
 584	pud = pud_offset(p4d, vmaddr);
 585	VM_BUG_ON(pud_none(*pud));
 586	/* large puds cannot yet be handled */
 587	if (pud_large(*pud))
 588		return -EFAULT;
 589	pmd = pmd_offset(pud, vmaddr);
 590	VM_BUG_ON(pmd_none(*pmd));
 591	/* Are we allowed to use huge pages? */
 592	if (pmd_large(*pmd) && !gmap->mm->context.allow_gmap_hpage_1m)
 593		return -EFAULT;
 594	/* Link gmap segment table entry location to page table. */
 595	rc = radix_tree_preload(GFP_KERNEL_ACCOUNT);
 596	if (rc)
 597		return rc;
 598	ptl = pmd_lock(mm, pmd);
 599	spin_lock(&gmap->guest_table_lock);
 600	if (*table == _SEGMENT_ENTRY_EMPTY) {
 601		rc = radix_tree_insert(&gmap->host_to_guest,
 602				       vmaddr >> PMD_SHIFT, table);
 603		if (!rc) {
 604			if (pmd_large(*pmd)) {
 605				*table = (pmd_val(*pmd) &
 606					  _SEGMENT_ENTRY_HARDWARE_BITS_LARGE)
 607					| _SEGMENT_ENTRY_GMAP_UC;
 608			} else
 609				*table = pmd_val(*pmd) &
 610					_SEGMENT_ENTRY_HARDWARE_BITS;
 611		}
 612	} else if (*table & _SEGMENT_ENTRY_PROTECT &&
 613		   !(pmd_val(*pmd) & _SEGMENT_ENTRY_PROTECT)) {
 614		unprot = (u64)*table;
 615		unprot &= ~_SEGMENT_ENTRY_PROTECT;
 616		unprot |= _SEGMENT_ENTRY_GMAP_UC;
 617		gmap_pmdp_xchg(gmap, (pmd_t *)table, __pmd(unprot), gaddr);
 618	}
 619	spin_unlock(&gmap->guest_table_lock);
 620	spin_unlock(ptl);
 621	radix_tree_preload_end();
 622	return rc;
 623}
 624
 625/**
 626 * gmap_fault - resolve a fault on a guest address
 627 * @gmap: pointer to guest mapping meta data structure
 628 * @gaddr: guest address
 629 * @fault_flags: flags to pass down to handle_mm_fault()
 630 *
 631 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
 632 * if the vm address is already mapped to a different guest segment.
 633 */
 634int gmap_fault(struct gmap *gmap, unsigned long gaddr,
 635	       unsigned int fault_flags)
 636{
 637	unsigned long vmaddr;
 638	int rc;
 639	bool unlocked;
 640
 641	mmap_read_lock(gmap->mm);
 642
 643retry:
 644	unlocked = false;
 645	vmaddr = __gmap_translate(gmap, gaddr);
 646	if (IS_ERR_VALUE(vmaddr)) {
 647		rc = vmaddr;
 648		goto out_up;
 649	}
 650	if (fixup_user_fault(gmap->mm, vmaddr, fault_flags,
 651			     &unlocked)) {
 652		rc = -EFAULT;
 653		goto out_up;
 654	}
 655	/*
 656	 * In the case that fixup_user_fault unlocked the mmap_lock during
 657	 * faultin redo __gmap_translate to not race with a map/unmap_segment.
 658	 */
 659	if (unlocked)
 660		goto retry;
 661
 662	rc = __gmap_link(gmap, gaddr, vmaddr);
 663out_up:
 664	mmap_read_unlock(gmap->mm);
 665	return rc;
 666}
 667EXPORT_SYMBOL_GPL(gmap_fault);
 668
 669/*
 670 * this function is assumed to be called with mmap_lock held
 671 */
 672void __gmap_zap(struct gmap *gmap, unsigned long gaddr)
 673{
 674	struct vm_area_struct *vma;
 675	unsigned long vmaddr;
 676	spinlock_t *ptl;
 677	pte_t *ptep;
 678
 679	/* Find the vm address for the guest address */
 680	vmaddr = (unsigned long) radix_tree_lookup(&gmap->guest_to_host,
 681						   gaddr >> PMD_SHIFT);
 682	if (vmaddr) {
 683		vmaddr |= gaddr & ~PMD_MASK;
 684
 685		vma = vma_lookup(gmap->mm, vmaddr);
 686		if (!vma || is_vm_hugetlb_page(vma))
 687			return;
 688
 689		/* Get pointer to the page table entry */
 690		ptep = get_locked_pte(gmap->mm, vmaddr, &ptl);
 691		if (likely(ptep)) {
 692			ptep_zap_unused(gmap->mm, vmaddr, ptep, 0);
 693			pte_unmap_unlock(ptep, ptl);
 694		}
 695	}
 696}
 697EXPORT_SYMBOL_GPL(__gmap_zap);
 698
 699void gmap_discard(struct gmap *gmap, unsigned long from, unsigned long to)
 700{
 701	unsigned long gaddr, vmaddr, size;
 702	struct vm_area_struct *vma;
 703
 704	mmap_read_lock(gmap->mm);
 705	for (gaddr = from; gaddr < to;
 706	     gaddr = (gaddr + PMD_SIZE) & PMD_MASK) {
 707		/* Find the vm address for the guest address */
 708		vmaddr = (unsigned long)
 709			radix_tree_lookup(&gmap->guest_to_host,
 710					  gaddr >> PMD_SHIFT);
 711		if (!vmaddr)
 712			continue;
 713		vmaddr |= gaddr & ~PMD_MASK;
 714		/* Find vma in the parent mm */
 715		vma = find_vma(gmap->mm, vmaddr);
 716		if (!vma)
 717			continue;
 718		/*
 719		 * We do not discard pages that are backed by
 720		 * hugetlbfs, so we don't have to refault them.
 721		 */
 722		if (is_vm_hugetlb_page(vma))
 723			continue;
 724		size = min(to - gaddr, PMD_SIZE - (gaddr & ~PMD_MASK));
 725		zap_page_range(vma, vmaddr, size);
 726	}
 727	mmap_read_unlock(gmap->mm);
 728}
 729EXPORT_SYMBOL_GPL(gmap_discard);
 730
 731static LIST_HEAD(gmap_notifier_list);
 732static DEFINE_SPINLOCK(gmap_notifier_lock);
 733
 734/**
 735 * gmap_register_pte_notifier - register a pte invalidation callback
 736 * @nb: pointer to the gmap notifier block
 737 */
 738void gmap_register_pte_notifier(struct gmap_notifier *nb)
 739{
 740	spin_lock(&gmap_notifier_lock);
 741	list_add_rcu(&nb->list, &gmap_notifier_list);
 742	spin_unlock(&gmap_notifier_lock);
 743}
 744EXPORT_SYMBOL_GPL(gmap_register_pte_notifier);
 745
 746/**
 747 * gmap_unregister_pte_notifier - remove a pte invalidation callback
 748 * @nb: pointer to the gmap notifier block
 749 */
 750void gmap_unregister_pte_notifier(struct gmap_notifier *nb)
 751{
 752	spin_lock(&gmap_notifier_lock);
 753	list_del_rcu(&nb->list);
 754	spin_unlock(&gmap_notifier_lock);
 755	synchronize_rcu();
 756}
 757EXPORT_SYMBOL_GPL(gmap_unregister_pte_notifier);
 758
 759/**
 760 * gmap_call_notifier - call all registered invalidation callbacks
 761 * @gmap: pointer to guest mapping meta data structure
 762 * @start: start virtual address in the guest address space
 763 * @end: end virtual address in the guest address space
 764 */
 765static void gmap_call_notifier(struct gmap *gmap, unsigned long start,
 766			       unsigned long end)
 767{
 768	struct gmap_notifier *nb;
 769
 770	list_for_each_entry(nb, &gmap_notifier_list, list)
 771		nb->notifier_call(gmap, start, end);
 772}
 773
 774/**
 775 * gmap_table_walk - walk the gmap page tables
 776 * @gmap: pointer to guest mapping meta data structure
 777 * @gaddr: virtual address in the guest address space
 778 * @level: page table level to stop at
 779 *
 780 * Returns a table entry pointer for the given guest address and @level
 781 * @level=0 : returns a pointer to a page table table entry (or NULL)
 782 * @level=1 : returns a pointer to a segment table entry (or NULL)
 783 * @level=2 : returns a pointer to a region-3 table entry (or NULL)
 784 * @level=3 : returns a pointer to a region-2 table entry (or NULL)
 785 * @level=4 : returns a pointer to a region-1 table entry (or NULL)
 786 *
 787 * Returns NULL if the gmap page tables could not be walked to the
 788 * requested level.
 789 *
 790 * Note: Can also be called for shadow gmaps.
 791 */
 792static inline unsigned long *gmap_table_walk(struct gmap *gmap,
 793					     unsigned long gaddr, int level)
 794{
 795	const int asce_type = gmap->asce & _ASCE_TYPE_MASK;
 796	unsigned long *table = gmap->table;
 797
 798	if (gmap_is_shadow(gmap) && gmap->removed)
 799		return NULL;
 800
 801	if (WARN_ON_ONCE(level > (asce_type >> 2) + 1))
 802		return NULL;
 803
 804	if (asce_type != _ASCE_TYPE_REGION1 &&
 805	    gaddr & (-1UL << (31 + (asce_type >> 2) * 11)))
 806		return NULL;
 807
 808	switch (asce_type) {
 809	case _ASCE_TYPE_REGION1:
 810		table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT;
 811		if (level == 4)
 812			break;
 813		if (*table & _REGION_ENTRY_INVALID)
 814			return NULL;
 815		table = __va(*table & _REGION_ENTRY_ORIGIN);
 816		fallthrough;
 817	case _ASCE_TYPE_REGION2:
 818		table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
 819		if (level == 3)
 820			break;
 821		if (*table & _REGION_ENTRY_INVALID)
 822			return NULL;
 823		table = __va(*table & _REGION_ENTRY_ORIGIN);
 824		fallthrough;
 825	case _ASCE_TYPE_REGION3:
 826		table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
 827		if (level == 2)
 828			break;
 829		if (*table & _REGION_ENTRY_INVALID)
 830			return NULL;
 831		table = __va(*table & _REGION_ENTRY_ORIGIN);
 832		fallthrough;
 833	case _ASCE_TYPE_SEGMENT:
 834		table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
 835		if (level == 1)
 836			break;
 837		if (*table & _REGION_ENTRY_INVALID)
 838			return NULL;
 839		table = __va(*table & _SEGMENT_ENTRY_ORIGIN);
 840		table += (gaddr & _PAGE_INDEX) >> _PAGE_SHIFT;
 841	}
 842	return table;
 843}
 844
 845/**
 846 * gmap_pte_op_walk - walk the gmap page table, get the page table lock
 847 *		      and return the pte pointer
 848 * @gmap: pointer to guest mapping meta data structure
 849 * @gaddr: virtual address in the guest address space
 850 * @ptl: pointer to the spinlock pointer
 851 *
 852 * Returns a pointer to the locked pte for a guest address, or NULL
 853 */
 854static pte_t *gmap_pte_op_walk(struct gmap *gmap, unsigned long gaddr,
 855			       spinlock_t **ptl)
 856{
 857	unsigned long *table;
 858
 859	BUG_ON(gmap_is_shadow(gmap));
 860	/* Walk the gmap page table, lock and get pte pointer */
 861	table = gmap_table_walk(gmap, gaddr, 1); /* get segment pointer */
 862	if (!table || *table & _SEGMENT_ENTRY_INVALID)
 863		return NULL;
 864	return pte_alloc_map_lock(gmap->mm, (pmd_t *) table, gaddr, ptl);
 865}
 866
 867/**
 868 * gmap_pte_op_fixup - force a page in and connect the gmap page table
 869 * @gmap: pointer to guest mapping meta data structure
 870 * @gaddr: virtual address in the guest address space
 871 * @vmaddr: address in the host process address space
 872 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
 873 *
 874 * Returns 0 if the caller can retry __gmap_translate (might fail again),
 875 * -ENOMEM if out of memory and -EFAULT if anything goes wrong while fixing
 876 * up or connecting the gmap page table.
 877 */
 878static int gmap_pte_op_fixup(struct gmap *gmap, unsigned long gaddr,
 879			     unsigned long vmaddr, int prot)
 880{
 881	struct mm_struct *mm = gmap->mm;
 882	unsigned int fault_flags;
 883	bool unlocked = false;
 884
 885	BUG_ON(gmap_is_shadow(gmap));
 886	fault_flags = (prot == PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
 887	if (fixup_user_fault(mm, vmaddr, fault_flags, &unlocked))
 888		return -EFAULT;
 889	if (unlocked)
 890		/* lost mmap_lock, caller has to retry __gmap_translate */
 891		return 0;
 892	/* Connect the page tables */
 893	return __gmap_link(gmap, gaddr, vmaddr);
 894}
 895
 896/**
 897 * gmap_pte_op_end - release the page table lock
 898 * @ptl: pointer to the spinlock pointer
 899 */
 900static void gmap_pte_op_end(spinlock_t *ptl)
 901{
 902	if (ptl)
 903		spin_unlock(ptl);
 904}
 905
 906/**
 907 * gmap_pmd_op_walk - walk the gmap tables, get the guest table lock
 908 *		      and return the pmd pointer
 909 * @gmap: pointer to guest mapping meta data structure
 910 * @gaddr: virtual address in the guest address space
 911 *
 912 * Returns a pointer to the pmd for a guest address, or NULL
 913 */
 914static inline pmd_t *gmap_pmd_op_walk(struct gmap *gmap, unsigned long gaddr)
 915{
 916	pmd_t *pmdp;
 917
 918	BUG_ON(gmap_is_shadow(gmap));
 919	pmdp = (pmd_t *) gmap_table_walk(gmap, gaddr, 1);
 920	if (!pmdp)
 921		return NULL;
 922
 923	/* without huge pages, there is no need to take the table lock */
 924	if (!gmap->mm->context.allow_gmap_hpage_1m)
 925		return pmd_none(*pmdp) ? NULL : pmdp;
 926
 927	spin_lock(&gmap->guest_table_lock);
 928	if (pmd_none(*pmdp)) {
 929		spin_unlock(&gmap->guest_table_lock);
 930		return NULL;
 931	}
 932
 933	/* 4k page table entries are locked via the pte (pte_alloc_map_lock). */
 934	if (!pmd_large(*pmdp))
 935		spin_unlock(&gmap->guest_table_lock);
 936	return pmdp;
 937}
 938
 939/**
 940 * gmap_pmd_op_end - release the guest_table_lock if needed
 941 * @gmap: pointer to the guest mapping meta data structure
 942 * @pmdp: pointer to the pmd
 943 */
 944static inline void gmap_pmd_op_end(struct gmap *gmap, pmd_t *pmdp)
 945{
 946	if (pmd_large(*pmdp))
 947		spin_unlock(&gmap->guest_table_lock);
 948}
 949
 950/*
 951 * gmap_protect_pmd - remove access rights to memory and set pmd notification bits
 952 * @pmdp: pointer to the pmd to be protected
 953 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
 954 * @bits: notification bits to set
 955 *
 956 * Returns:
 957 * 0 if successfully protected
 958 * -EAGAIN if a fixup is needed
 959 * -EINVAL if unsupported notifier bits have been specified
 960 *
 961 * Expected to be called with sg->mm->mmap_lock in read and
 962 * guest_table_lock held.
 963 */
 964static int gmap_protect_pmd(struct gmap *gmap, unsigned long gaddr,
 965			    pmd_t *pmdp, int prot, unsigned long bits)
 966{
 967	int pmd_i = pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID;
 968	int pmd_p = pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT;
 969	pmd_t new = *pmdp;
 970
 971	/* Fixup needed */
 972	if ((pmd_i && (prot != PROT_NONE)) || (pmd_p && (prot == PROT_WRITE)))
 973		return -EAGAIN;
 974
 975	if (prot == PROT_NONE && !pmd_i) {
 976		new = set_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_INVALID));
 977		gmap_pmdp_xchg(gmap, pmdp, new, gaddr);
 978	}
 979
 980	if (prot == PROT_READ && !pmd_p) {
 981		new = clear_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_INVALID));
 982		new = set_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_PROTECT));
 983		gmap_pmdp_xchg(gmap, pmdp, new, gaddr);
 984	}
 985
 986	if (bits & GMAP_NOTIFY_MPROT)
 987		set_pmd(pmdp, set_pmd_bit(*pmdp, __pgprot(_SEGMENT_ENTRY_GMAP_IN)));
 988
 989	/* Shadow GMAP protection needs split PMDs */
 990	if (bits & GMAP_NOTIFY_SHADOW)
 991		return -EINVAL;
 992
 993	return 0;
 994}
 995
 996/*
 997 * gmap_protect_pte - remove access rights to memory and set pgste bits
 998 * @gmap: pointer to guest mapping meta data structure
 999 * @gaddr: virtual address in the guest address space
1000 * @pmdp: pointer to the pmd associated with the pte
1001 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1002 * @bits: notification bits to set
1003 *
1004 * Returns 0 if successfully protected, -ENOMEM if out of memory and
1005 * -EAGAIN if a fixup is needed.
1006 *
1007 * Expected to be called with sg->mm->mmap_lock in read
1008 */
1009static int gmap_protect_pte(struct gmap *gmap, unsigned long gaddr,
1010			    pmd_t *pmdp, int prot, unsigned long bits)
1011{
1012	int rc;
1013	pte_t *ptep;
1014	spinlock_t *ptl = NULL;
1015	unsigned long pbits = 0;
1016
1017	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1018		return -EAGAIN;
1019
1020	ptep = pte_alloc_map_lock(gmap->mm, pmdp, gaddr, &ptl);
1021	if (!ptep)
1022		return -ENOMEM;
1023
1024	pbits |= (bits & GMAP_NOTIFY_MPROT) ? PGSTE_IN_BIT : 0;
1025	pbits |= (bits & GMAP_NOTIFY_SHADOW) ? PGSTE_VSIE_BIT : 0;
1026	/* Protect and unlock. */
1027	rc = ptep_force_prot(gmap->mm, gaddr, ptep, prot, pbits);
1028	gmap_pte_op_end(ptl);
1029	return rc;
1030}
1031
1032/*
1033 * gmap_protect_range - remove access rights to memory and set pgste bits
1034 * @gmap: pointer to guest mapping meta data structure
1035 * @gaddr: virtual address in the guest address space
1036 * @len: size of area
1037 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1038 * @bits: pgste notification bits to set
1039 *
1040 * Returns 0 if successfully protected, -ENOMEM if out of memory and
1041 * -EFAULT if gaddr is invalid (or mapping for shadows is missing).
1042 *
1043 * Called with sg->mm->mmap_lock in read.
1044 */
1045static int gmap_protect_range(struct gmap *gmap, unsigned long gaddr,
1046			      unsigned long len, int prot, unsigned long bits)
1047{
1048	unsigned long vmaddr, dist;
1049	pmd_t *pmdp;
 
1050	int rc;
1051
1052	BUG_ON(gmap_is_shadow(gmap));
1053	while (len) {
1054		rc = -EAGAIN;
1055		pmdp = gmap_pmd_op_walk(gmap, gaddr);
1056		if (pmdp) {
1057			if (!pmd_large(*pmdp)) {
1058				rc = gmap_protect_pte(gmap, gaddr, pmdp, prot,
1059						      bits);
1060				if (!rc) {
1061					len -= PAGE_SIZE;
1062					gaddr += PAGE_SIZE;
1063				}
1064			} else {
1065				rc = gmap_protect_pmd(gmap, gaddr, pmdp, prot,
1066						      bits);
1067				if (!rc) {
1068					dist = HPAGE_SIZE - (gaddr & ~HPAGE_MASK);
1069					len = len < dist ? 0 : len - dist;
1070					gaddr = (gaddr & HPAGE_MASK) + HPAGE_SIZE;
1071				}
1072			}
1073			gmap_pmd_op_end(gmap, pmdp);
1074		}
1075		if (rc) {
1076			if (rc == -EINVAL)
1077				return rc;
1078
1079			/* -EAGAIN, fixup of userspace mm and gmap */
1080			vmaddr = __gmap_translate(gmap, gaddr);
1081			if (IS_ERR_VALUE(vmaddr))
1082				return vmaddr;
1083			rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, prot);
1084			if (rc)
1085				return rc;
 
1086		}
 
 
1087	}
1088	return 0;
1089}
1090
1091/**
1092 * gmap_mprotect_notify - change access rights for a range of ptes and
1093 *                        call the notifier if any pte changes again
1094 * @gmap: pointer to guest mapping meta data structure
1095 * @gaddr: virtual address in the guest address space
1096 * @len: size of area
1097 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1098 *
1099 * Returns 0 if for each page in the given range a gmap mapping exists,
1100 * the new access rights could be set and the notifier could be armed.
1101 * If the gmap mapping is missing for one or more pages -EFAULT is
1102 * returned. If no memory could be allocated -ENOMEM is returned.
1103 * This function establishes missing page table entries.
1104 */
1105int gmap_mprotect_notify(struct gmap *gmap, unsigned long gaddr,
1106			 unsigned long len, int prot)
1107{
1108	int rc;
1109
1110	if ((gaddr & ~PAGE_MASK) || (len & ~PAGE_MASK) || gmap_is_shadow(gmap))
1111		return -EINVAL;
1112	if (!MACHINE_HAS_ESOP && prot == PROT_READ)
1113		return -EINVAL;
1114	mmap_read_lock(gmap->mm);
1115	rc = gmap_protect_range(gmap, gaddr, len, prot, GMAP_NOTIFY_MPROT);
1116	mmap_read_unlock(gmap->mm);
1117	return rc;
1118}
1119EXPORT_SYMBOL_GPL(gmap_mprotect_notify);
1120
1121/**
1122 * gmap_read_table - get an unsigned long value from a guest page table using
1123 *                   absolute addressing, without marking the page referenced.
1124 * @gmap: pointer to guest mapping meta data structure
1125 * @gaddr: virtual address in the guest address space
1126 * @val: pointer to the unsigned long value to return
1127 *
1128 * Returns 0 if the value was read, -ENOMEM if out of memory and -EFAULT
1129 * if reading using the virtual address failed. -EINVAL if called on a gmap
1130 * shadow.
1131 *
1132 * Called with gmap->mm->mmap_lock in read.
1133 */
1134int gmap_read_table(struct gmap *gmap, unsigned long gaddr, unsigned long *val)
1135{
1136	unsigned long address, vmaddr;
1137	spinlock_t *ptl;
1138	pte_t *ptep, pte;
1139	int rc;
1140
1141	if (gmap_is_shadow(gmap))
1142		return -EINVAL;
1143
1144	while (1) {
1145		rc = -EAGAIN;
1146		ptep = gmap_pte_op_walk(gmap, gaddr, &ptl);
1147		if (ptep) {
1148			pte = *ptep;
1149			if (pte_present(pte) && (pte_val(pte) & _PAGE_READ)) {
1150				address = pte_val(pte) & PAGE_MASK;
1151				address += gaddr & ~PAGE_MASK;
1152				*val = *(unsigned long *)__va(address);
1153				set_pte(ptep, set_pte_bit(*ptep, __pgprot(_PAGE_YOUNG)));
1154				/* Do *NOT* clear the _PAGE_INVALID bit! */
1155				rc = 0;
1156			}
1157			gmap_pte_op_end(ptl);
1158		}
1159		if (!rc)
1160			break;
1161		vmaddr = __gmap_translate(gmap, gaddr);
1162		if (IS_ERR_VALUE(vmaddr)) {
1163			rc = vmaddr;
1164			break;
1165		}
1166		rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, PROT_READ);
1167		if (rc)
1168			break;
1169	}
1170	return rc;
1171}
1172EXPORT_SYMBOL_GPL(gmap_read_table);
1173
1174/**
1175 * gmap_insert_rmap - add a rmap to the host_to_rmap radix tree
1176 * @sg: pointer to the shadow guest address space structure
1177 * @vmaddr: vm address associated with the rmap
1178 * @rmap: pointer to the rmap structure
1179 *
1180 * Called with the sg->guest_table_lock
1181 */
1182static inline void gmap_insert_rmap(struct gmap *sg, unsigned long vmaddr,
1183				    struct gmap_rmap *rmap)
1184{
1185	struct gmap_rmap *temp;
1186	void __rcu **slot;
1187
1188	BUG_ON(!gmap_is_shadow(sg));
1189	slot = radix_tree_lookup_slot(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
1190	if (slot) {
1191		rmap->next = radix_tree_deref_slot_protected(slot,
1192							&sg->guest_table_lock);
1193		for (temp = rmap->next; temp; temp = temp->next) {
1194			if (temp->raddr == rmap->raddr) {
1195				kfree(rmap);
1196				return;
1197			}
1198		}
1199		radix_tree_replace_slot(&sg->host_to_rmap, slot, rmap);
1200	} else {
1201		rmap->next = NULL;
1202		radix_tree_insert(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT,
1203				  rmap);
1204	}
1205}
1206
1207/**
1208 * gmap_protect_rmap - restrict access rights to memory (RO) and create an rmap
1209 * @sg: pointer to the shadow guest address space structure
1210 * @raddr: rmap address in the shadow gmap
1211 * @paddr: address in the parent guest address space
1212 * @len: length of the memory area to protect
1213 *
1214 * Returns 0 if successfully protected and the rmap was created, -ENOMEM
1215 * if out of memory and -EFAULT if paddr is invalid.
1216 */
1217static int gmap_protect_rmap(struct gmap *sg, unsigned long raddr,
1218			     unsigned long paddr, unsigned long len)
1219{
1220	struct gmap *parent;
1221	struct gmap_rmap *rmap;
1222	unsigned long vmaddr;
1223	spinlock_t *ptl;
1224	pte_t *ptep;
1225	int rc;
1226
1227	BUG_ON(!gmap_is_shadow(sg));
1228	parent = sg->parent;
1229	while (len) {
1230		vmaddr = __gmap_translate(parent, paddr);
1231		if (IS_ERR_VALUE(vmaddr))
1232			return vmaddr;
1233		rmap = kzalloc(sizeof(*rmap), GFP_KERNEL_ACCOUNT);
1234		if (!rmap)
1235			return -ENOMEM;
1236		rmap->raddr = raddr;
1237		rc = radix_tree_preload(GFP_KERNEL_ACCOUNT);
1238		if (rc) {
1239			kfree(rmap);
1240			return rc;
1241		}
1242		rc = -EAGAIN;
1243		ptep = gmap_pte_op_walk(parent, paddr, &ptl);
1244		if (ptep) {
1245			spin_lock(&sg->guest_table_lock);
1246			rc = ptep_force_prot(parent->mm, paddr, ptep, PROT_READ,
1247					     PGSTE_VSIE_BIT);
1248			if (!rc)
1249				gmap_insert_rmap(sg, vmaddr, rmap);
1250			spin_unlock(&sg->guest_table_lock);
1251			gmap_pte_op_end(ptl);
1252		}
1253		radix_tree_preload_end();
1254		if (rc) {
1255			kfree(rmap);
1256			rc = gmap_pte_op_fixup(parent, paddr, vmaddr, PROT_READ);
1257			if (rc)
1258				return rc;
1259			continue;
1260		}
1261		paddr += PAGE_SIZE;
1262		len -= PAGE_SIZE;
1263	}
1264	return 0;
1265}
1266
1267#define _SHADOW_RMAP_MASK	0x7
1268#define _SHADOW_RMAP_REGION1	0x5
1269#define _SHADOW_RMAP_REGION2	0x4
1270#define _SHADOW_RMAP_REGION3	0x3
1271#define _SHADOW_RMAP_SEGMENT	0x2
1272#define _SHADOW_RMAP_PGTABLE	0x1
1273
1274/**
1275 * gmap_idte_one - invalidate a single region or segment table entry
1276 * @asce: region or segment table *origin* + table-type bits
1277 * @vaddr: virtual address to identify the table entry to flush
1278 *
1279 * The invalid bit of a single region or segment table entry is set
1280 * and the associated TLB entries depending on the entry are flushed.
1281 * The table-type of the @asce identifies the portion of the @vaddr
1282 * that is used as the invalidation index.
1283 */
1284static inline void gmap_idte_one(unsigned long asce, unsigned long vaddr)
1285{
1286	asm volatile(
1287		"	idte	%0,0,%1"
1288		: : "a" (asce), "a" (vaddr) : "cc", "memory");
1289}
1290
1291/**
1292 * gmap_unshadow_page - remove a page from a shadow page table
1293 * @sg: pointer to the shadow guest address space structure
1294 * @raddr: rmap address in the shadow guest address space
1295 *
1296 * Called with the sg->guest_table_lock
1297 */
1298static void gmap_unshadow_page(struct gmap *sg, unsigned long raddr)
1299{
1300	unsigned long *table;
1301
1302	BUG_ON(!gmap_is_shadow(sg));
1303	table = gmap_table_walk(sg, raddr, 0); /* get page table pointer */
1304	if (!table || *table & _PAGE_INVALID)
1305		return;
1306	gmap_call_notifier(sg, raddr, raddr + _PAGE_SIZE - 1);
1307	ptep_unshadow_pte(sg->mm, raddr, (pte_t *) table);
1308}
1309
1310/**
1311 * __gmap_unshadow_pgt - remove all entries from a shadow page table
1312 * @sg: pointer to the shadow guest address space structure
1313 * @raddr: rmap address in the shadow guest address space
1314 * @pgt: pointer to the start of a shadow page table
1315 *
1316 * Called with the sg->guest_table_lock
1317 */
1318static void __gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr,
1319				unsigned long *pgt)
1320{
1321	int i;
1322
1323	BUG_ON(!gmap_is_shadow(sg));
1324	for (i = 0; i < _PAGE_ENTRIES; i++, raddr += _PAGE_SIZE)
1325		pgt[i] = _PAGE_INVALID;
1326}
1327
1328/**
1329 * gmap_unshadow_pgt - remove a shadow page table from a segment entry
1330 * @sg: pointer to the shadow guest address space structure
1331 * @raddr: address in the shadow guest address space
1332 *
1333 * Called with the sg->guest_table_lock
1334 */
1335static void gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr)
1336{
1337	unsigned long *ste;
1338	phys_addr_t sto, pgt;
1339	struct page *page;
1340
1341	BUG_ON(!gmap_is_shadow(sg));
1342	ste = gmap_table_walk(sg, raddr, 1); /* get segment pointer */
1343	if (!ste || !(*ste & _SEGMENT_ENTRY_ORIGIN))
1344		return;
1345	gmap_call_notifier(sg, raddr, raddr + _SEGMENT_SIZE - 1);
1346	sto = __pa(ste - ((raddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT));
1347	gmap_idte_one(sto | _ASCE_TYPE_SEGMENT, raddr);
1348	pgt = *ste & _SEGMENT_ENTRY_ORIGIN;
1349	*ste = _SEGMENT_ENTRY_EMPTY;
1350	__gmap_unshadow_pgt(sg, raddr, __va(pgt));
1351	/* Free page table */
1352	page = phys_to_page(pgt);
1353	list_del(&page->lru);
1354	page_table_free_pgste(page);
1355}
1356
1357/**
1358 * __gmap_unshadow_sgt - remove all entries from a shadow segment table
1359 * @sg: pointer to the shadow guest address space structure
1360 * @raddr: rmap address in the shadow guest address space
1361 * @sgt: pointer to the start of a shadow segment table
1362 *
1363 * Called with the sg->guest_table_lock
1364 */
1365static void __gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr,
1366				unsigned long *sgt)
1367{
 
1368	struct page *page;
1369	phys_addr_t pgt;
1370	int i;
1371
1372	BUG_ON(!gmap_is_shadow(sg));
1373	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _SEGMENT_SIZE) {
1374		if (!(sgt[i] & _SEGMENT_ENTRY_ORIGIN))
1375			continue;
1376		pgt = sgt[i] & _REGION_ENTRY_ORIGIN;
1377		sgt[i] = _SEGMENT_ENTRY_EMPTY;
1378		__gmap_unshadow_pgt(sg, raddr, __va(pgt));
1379		/* Free page table */
1380		page = phys_to_page(pgt);
1381		list_del(&page->lru);
1382		page_table_free_pgste(page);
1383	}
1384}
1385
1386/**
1387 * gmap_unshadow_sgt - remove a shadow segment table from a region-3 entry
1388 * @sg: pointer to the shadow guest address space structure
1389 * @raddr: rmap address in the shadow guest address space
1390 *
1391 * Called with the shadow->guest_table_lock
1392 */
1393static void gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr)
1394{
1395	unsigned long r3o, *r3e;
1396	phys_addr_t sgt;
1397	struct page *page;
1398
1399	BUG_ON(!gmap_is_shadow(sg));
1400	r3e = gmap_table_walk(sg, raddr, 2); /* get region-3 pointer */
1401	if (!r3e || !(*r3e & _REGION_ENTRY_ORIGIN))
1402		return;
1403	gmap_call_notifier(sg, raddr, raddr + _REGION3_SIZE - 1);
1404	r3o = (unsigned long) (r3e - ((raddr & _REGION3_INDEX) >> _REGION3_SHIFT));
1405	gmap_idte_one(__pa(r3o) | _ASCE_TYPE_REGION3, raddr);
1406	sgt = *r3e & _REGION_ENTRY_ORIGIN;
1407	*r3e = _REGION3_ENTRY_EMPTY;
1408	__gmap_unshadow_sgt(sg, raddr, __va(sgt));
1409	/* Free segment table */
1410	page = phys_to_page(sgt);
1411	list_del(&page->lru);
1412	__free_pages(page, CRST_ALLOC_ORDER);
1413}
1414
1415/**
1416 * __gmap_unshadow_r3t - remove all entries from a shadow region-3 table
1417 * @sg: pointer to the shadow guest address space structure
1418 * @raddr: address in the shadow guest address space
1419 * @r3t: pointer to the start of a shadow region-3 table
1420 *
1421 * Called with the sg->guest_table_lock
1422 */
1423static void __gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr,
1424				unsigned long *r3t)
1425{
 
1426	struct page *page;
1427	phys_addr_t sgt;
1428	int i;
1429
1430	BUG_ON(!gmap_is_shadow(sg));
1431	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION3_SIZE) {
1432		if (!(r3t[i] & _REGION_ENTRY_ORIGIN))
1433			continue;
1434		sgt = r3t[i] & _REGION_ENTRY_ORIGIN;
1435		r3t[i] = _REGION3_ENTRY_EMPTY;
1436		__gmap_unshadow_sgt(sg, raddr, __va(sgt));
1437		/* Free segment table */
1438		page = phys_to_page(sgt);
1439		list_del(&page->lru);
1440		__free_pages(page, CRST_ALLOC_ORDER);
1441	}
1442}
1443
1444/**
1445 * gmap_unshadow_r3t - remove a shadow region-3 table from a region-2 entry
1446 * @sg: pointer to the shadow guest address space structure
1447 * @raddr: rmap address in the shadow guest address space
1448 *
1449 * Called with the sg->guest_table_lock
1450 */
1451static void gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr)
1452{
1453	unsigned long r2o, *r2e;
1454	phys_addr_t r3t;
1455	struct page *page;
1456
1457	BUG_ON(!gmap_is_shadow(sg));
1458	r2e = gmap_table_walk(sg, raddr, 3); /* get region-2 pointer */
1459	if (!r2e || !(*r2e & _REGION_ENTRY_ORIGIN))
1460		return;
1461	gmap_call_notifier(sg, raddr, raddr + _REGION2_SIZE - 1);
1462	r2o = (unsigned long) (r2e - ((raddr & _REGION2_INDEX) >> _REGION2_SHIFT));
1463	gmap_idte_one(__pa(r2o) | _ASCE_TYPE_REGION2, raddr);
1464	r3t = *r2e & _REGION_ENTRY_ORIGIN;
1465	*r2e = _REGION2_ENTRY_EMPTY;
1466	__gmap_unshadow_r3t(sg, raddr, __va(r3t));
1467	/* Free region 3 table */
1468	page = phys_to_page(r3t);
1469	list_del(&page->lru);
1470	__free_pages(page, CRST_ALLOC_ORDER);
1471}
1472
1473/**
1474 * __gmap_unshadow_r2t - remove all entries from a shadow region-2 table
1475 * @sg: pointer to the shadow guest address space structure
1476 * @raddr: rmap address in the shadow guest address space
1477 * @r2t: pointer to the start of a shadow region-2 table
1478 *
1479 * Called with the sg->guest_table_lock
1480 */
1481static void __gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr,
1482				unsigned long *r2t)
1483{
1484	phys_addr_t r3t;
1485	struct page *page;
1486	int i;
1487
1488	BUG_ON(!gmap_is_shadow(sg));
1489	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION2_SIZE) {
1490		if (!(r2t[i] & _REGION_ENTRY_ORIGIN))
1491			continue;
1492		r3t = r2t[i] & _REGION_ENTRY_ORIGIN;
1493		r2t[i] = _REGION2_ENTRY_EMPTY;
1494		__gmap_unshadow_r3t(sg, raddr, __va(r3t));
1495		/* Free region 3 table */
1496		page = phys_to_page(r3t);
1497		list_del(&page->lru);
1498		__free_pages(page, CRST_ALLOC_ORDER);
1499	}
1500}
1501
1502/**
1503 * gmap_unshadow_r2t - remove a shadow region-2 table from a region-1 entry
1504 * @sg: pointer to the shadow guest address space structure
1505 * @raddr: rmap address in the shadow guest address space
1506 *
1507 * Called with the sg->guest_table_lock
1508 */
1509static void gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr)
1510{
1511	unsigned long r1o, *r1e;
1512	struct page *page;
1513	phys_addr_t r2t;
1514
1515	BUG_ON(!gmap_is_shadow(sg));
1516	r1e = gmap_table_walk(sg, raddr, 4); /* get region-1 pointer */
1517	if (!r1e || !(*r1e & _REGION_ENTRY_ORIGIN))
1518		return;
1519	gmap_call_notifier(sg, raddr, raddr + _REGION1_SIZE - 1);
1520	r1o = (unsigned long) (r1e - ((raddr & _REGION1_INDEX) >> _REGION1_SHIFT));
1521	gmap_idte_one(__pa(r1o) | _ASCE_TYPE_REGION1, raddr);
1522	r2t = *r1e & _REGION_ENTRY_ORIGIN;
1523	*r1e = _REGION1_ENTRY_EMPTY;
1524	__gmap_unshadow_r2t(sg, raddr, __va(r2t));
1525	/* Free region 2 table */
1526	page = phys_to_page(r2t);
1527	list_del(&page->lru);
1528	__free_pages(page, CRST_ALLOC_ORDER);
1529}
1530
1531/**
1532 * __gmap_unshadow_r1t - remove all entries from a shadow region-1 table
1533 * @sg: pointer to the shadow guest address space structure
1534 * @raddr: rmap address in the shadow guest address space
1535 * @r1t: pointer to the start of a shadow region-1 table
1536 *
1537 * Called with the shadow->guest_table_lock
1538 */
1539static void __gmap_unshadow_r1t(struct gmap *sg, unsigned long raddr,
1540				unsigned long *r1t)
1541{
1542	unsigned long asce;
1543	struct page *page;
1544	phys_addr_t r2t;
1545	int i;
1546
1547	BUG_ON(!gmap_is_shadow(sg));
1548	asce = __pa(r1t) | _ASCE_TYPE_REGION1;
1549	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION1_SIZE) {
1550		if (!(r1t[i] & _REGION_ENTRY_ORIGIN))
1551			continue;
1552		r2t = r1t[i] & _REGION_ENTRY_ORIGIN;
1553		__gmap_unshadow_r2t(sg, raddr, __va(r2t));
1554		/* Clear entry and flush translation r1t -> r2t */
1555		gmap_idte_one(asce, raddr);
1556		r1t[i] = _REGION1_ENTRY_EMPTY;
1557		/* Free region 2 table */
1558		page = phys_to_page(r2t);
1559		list_del(&page->lru);
1560		__free_pages(page, CRST_ALLOC_ORDER);
1561	}
1562}
1563
1564/**
1565 * gmap_unshadow - remove a shadow page table completely
1566 * @sg: pointer to the shadow guest address space structure
1567 *
1568 * Called with sg->guest_table_lock
1569 */
1570static void gmap_unshadow(struct gmap *sg)
1571{
1572	unsigned long *table;
1573
1574	BUG_ON(!gmap_is_shadow(sg));
1575	if (sg->removed)
1576		return;
1577	sg->removed = 1;
1578	gmap_call_notifier(sg, 0, -1UL);
1579	gmap_flush_tlb(sg);
1580	table = __va(sg->asce & _ASCE_ORIGIN);
1581	switch (sg->asce & _ASCE_TYPE_MASK) {
1582	case _ASCE_TYPE_REGION1:
1583		__gmap_unshadow_r1t(sg, 0, table);
1584		break;
1585	case _ASCE_TYPE_REGION2:
1586		__gmap_unshadow_r2t(sg, 0, table);
1587		break;
1588	case _ASCE_TYPE_REGION3:
1589		__gmap_unshadow_r3t(sg, 0, table);
1590		break;
1591	case _ASCE_TYPE_SEGMENT:
1592		__gmap_unshadow_sgt(sg, 0, table);
1593		break;
1594	}
1595}
1596
1597/**
1598 * gmap_find_shadow - find a specific asce in the list of shadow tables
1599 * @parent: pointer to the parent gmap
1600 * @asce: ASCE for which the shadow table is created
1601 * @edat_level: edat level to be used for the shadow translation
1602 *
1603 * Returns the pointer to a gmap if a shadow table with the given asce is
1604 * already available, ERR_PTR(-EAGAIN) if another one is just being created,
1605 * otherwise NULL
1606 */
1607static struct gmap *gmap_find_shadow(struct gmap *parent, unsigned long asce,
1608				     int edat_level)
1609{
1610	struct gmap *sg;
1611
1612	list_for_each_entry(sg, &parent->children, list) {
1613		if (sg->orig_asce != asce || sg->edat_level != edat_level ||
1614		    sg->removed)
1615			continue;
1616		if (!sg->initialized)
1617			return ERR_PTR(-EAGAIN);
1618		refcount_inc(&sg->ref_count);
1619		return sg;
1620	}
1621	return NULL;
1622}
1623
1624/**
1625 * gmap_shadow_valid - check if a shadow guest address space matches the
1626 *                     given properties and is still valid
1627 * @sg: pointer to the shadow guest address space structure
1628 * @asce: ASCE for which the shadow table is requested
1629 * @edat_level: edat level to be used for the shadow translation
1630 *
1631 * Returns 1 if the gmap shadow is still valid and matches the given
1632 * properties, the caller can continue using it. Returns 0 otherwise, the
1633 * caller has to request a new shadow gmap in this case.
1634 *
1635 */
1636int gmap_shadow_valid(struct gmap *sg, unsigned long asce, int edat_level)
1637{
1638	if (sg->removed)
1639		return 0;
1640	return sg->orig_asce == asce && sg->edat_level == edat_level;
1641}
1642EXPORT_SYMBOL_GPL(gmap_shadow_valid);
1643
1644/**
1645 * gmap_shadow - create/find a shadow guest address space
1646 * @parent: pointer to the parent gmap
1647 * @asce: ASCE for which the shadow table is created
1648 * @edat_level: edat level to be used for the shadow translation
1649 *
1650 * The pages of the top level page table referred by the asce parameter
1651 * will be set to read-only and marked in the PGSTEs of the kvm process.
1652 * The shadow table will be removed automatically on any change to the
1653 * PTE mapping for the source table.
1654 *
1655 * Returns a guest address space structure, ERR_PTR(-ENOMEM) if out of memory,
1656 * ERR_PTR(-EAGAIN) if the caller has to retry and ERR_PTR(-EFAULT) if the
1657 * parent gmap table could not be protected.
1658 */
1659struct gmap *gmap_shadow(struct gmap *parent, unsigned long asce,
1660			 int edat_level)
1661{
1662	struct gmap *sg, *new;
1663	unsigned long limit;
1664	int rc;
1665
1666	BUG_ON(parent->mm->context.allow_gmap_hpage_1m);
1667	BUG_ON(gmap_is_shadow(parent));
1668	spin_lock(&parent->shadow_lock);
1669	sg = gmap_find_shadow(parent, asce, edat_level);
1670	spin_unlock(&parent->shadow_lock);
1671	if (sg)
1672		return sg;
1673	/* Create a new shadow gmap */
1674	limit = -1UL >> (33 - (((asce & _ASCE_TYPE_MASK) >> 2) * 11));
1675	if (asce & _ASCE_REAL_SPACE)
1676		limit = -1UL;
1677	new = gmap_alloc(limit);
1678	if (!new)
1679		return ERR_PTR(-ENOMEM);
1680	new->mm = parent->mm;
1681	new->parent = gmap_get(parent);
1682	new->orig_asce = asce;
1683	new->edat_level = edat_level;
1684	new->initialized = false;
1685	spin_lock(&parent->shadow_lock);
1686	/* Recheck if another CPU created the same shadow */
1687	sg = gmap_find_shadow(parent, asce, edat_level);
1688	if (sg) {
1689		spin_unlock(&parent->shadow_lock);
1690		gmap_free(new);
1691		return sg;
1692	}
1693	if (asce & _ASCE_REAL_SPACE) {
1694		/* only allow one real-space gmap shadow */
1695		list_for_each_entry(sg, &parent->children, list) {
1696			if (sg->orig_asce & _ASCE_REAL_SPACE) {
1697				spin_lock(&sg->guest_table_lock);
1698				gmap_unshadow(sg);
1699				spin_unlock(&sg->guest_table_lock);
1700				list_del(&sg->list);
1701				gmap_put(sg);
1702				break;
1703			}
1704		}
1705	}
1706	refcount_set(&new->ref_count, 2);
1707	list_add(&new->list, &parent->children);
1708	if (asce & _ASCE_REAL_SPACE) {
1709		/* nothing to protect, return right away */
1710		new->initialized = true;
1711		spin_unlock(&parent->shadow_lock);
1712		return new;
1713	}
1714	spin_unlock(&parent->shadow_lock);
1715	/* protect after insertion, so it will get properly invalidated */
1716	mmap_read_lock(parent->mm);
1717	rc = gmap_protect_range(parent, asce & _ASCE_ORIGIN,
1718				((asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE,
1719				PROT_READ, GMAP_NOTIFY_SHADOW);
1720	mmap_read_unlock(parent->mm);
1721	spin_lock(&parent->shadow_lock);
1722	new->initialized = true;
1723	if (rc) {
1724		list_del(&new->list);
1725		gmap_free(new);
1726		new = ERR_PTR(rc);
1727	}
1728	spin_unlock(&parent->shadow_lock);
1729	return new;
1730}
1731EXPORT_SYMBOL_GPL(gmap_shadow);
1732
1733/**
1734 * gmap_shadow_r2t - create an empty shadow region 2 table
1735 * @sg: pointer to the shadow guest address space structure
1736 * @saddr: faulting address in the shadow gmap
1737 * @r2t: parent gmap address of the region 2 table to get shadowed
1738 * @fake: r2t references contiguous guest memory block, not a r2t
1739 *
1740 * The r2t parameter specifies the address of the source table. The
1741 * four pages of the source table are made read-only in the parent gmap
1742 * address space. A write to the source table area @r2t will automatically
1743 * remove the shadow r2 table and all of its decendents.
1744 *
1745 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1746 * shadow table structure is incomplete, -ENOMEM if out of memory and
1747 * -EFAULT if an address in the parent gmap could not be resolved.
1748 *
1749 * Called with sg->mm->mmap_lock in read.
1750 */
1751int gmap_shadow_r2t(struct gmap *sg, unsigned long saddr, unsigned long r2t,
1752		    int fake)
1753{
1754	unsigned long raddr, origin, offset, len;
1755	unsigned long *table;
1756	phys_addr_t s_r2t;
1757	struct page *page;
1758	int rc;
1759
1760	BUG_ON(!gmap_is_shadow(sg));
1761	/* Allocate a shadow region second table */
1762	page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
1763	if (!page)
1764		return -ENOMEM;
1765	page->index = r2t & _REGION_ENTRY_ORIGIN;
1766	if (fake)
1767		page->index |= GMAP_SHADOW_FAKE_TABLE;
1768	s_r2t = page_to_phys(page);
1769	/* Install shadow region second table */
1770	spin_lock(&sg->guest_table_lock);
1771	table = gmap_table_walk(sg, saddr, 4); /* get region-1 pointer */
1772	if (!table) {
1773		rc = -EAGAIN;		/* Race with unshadow */
1774		goto out_free;
1775	}
1776	if (!(*table & _REGION_ENTRY_INVALID)) {
1777		rc = 0;			/* Already established */
1778		goto out_free;
1779	} else if (*table & _REGION_ENTRY_ORIGIN) {
1780		rc = -EAGAIN;		/* Race with shadow */
1781		goto out_free;
1782	}
1783	crst_table_init(__va(s_r2t), _REGION2_ENTRY_EMPTY);
1784	/* mark as invalid as long as the parent table is not protected */
1785	*table = s_r2t | _REGION_ENTRY_LENGTH |
1786		 _REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID;
1787	if (sg->edat_level >= 1)
1788		*table |= (r2t & _REGION_ENTRY_PROTECT);
1789	list_add(&page->lru, &sg->crst_list);
1790	if (fake) {
1791		/* nothing to protect for fake tables */
1792		*table &= ~_REGION_ENTRY_INVALID;
1793		spin_unlock(&sg->guest_table_lock);
1794		return 0;
1795	}
1796	spin_unlock(&sg->guest_table_lock);
1797	/* Make r2t read-only in parent gmap page table */
1798	raddr = (saddr & _REGION1_MASK) | _SHADOW_RMAP_REGION1;
1799	origin = r2t & _REGION_ENTRY_ORIGIN;
1800	offset = ((r2t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1801	len = ((r2t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1802	rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1803	spin_lock(&sg->guest_table_lock);
1804	if (!rc) {
1805		table = gmap_table_walk(sg, saddr, 4);
1806		if (!table || (*table & _REGION_ENTRY_ORIGIN) != s_r2t)
 
1807			rc = -EAGAIN;		/* Race with unshadow */
1808		else
1809			*table &= ~_REGION_ENTRY_INVALID;
1810	} else {
1811		gmap_unshadow_r2t(sg, raddr);
1812	}
1813	spin_unlock(&sg->guest_table_lock);
1814	return rc;
1815out_free:
1816	spin_unlock(&sg->guest_table_lock);
1817	__free_pages(page, CRST_ALLOC_ORDER);
1818	return rc;
1819}
1820EXPORT_SYMBOL_GPL(gmap_shadow_r2t);
1821
1822/**
1823 * gmap_shadow_r3t - create a shadow region 3 table
1824 * @sg: pointer to the shadow guest address space structure
1825 * @saddr: faulting address in the shadow gmap
1826 * @r3t: parent gmap address of the region 3 table to get shadowed
1827 * @fake: r3t references contiguous guest memory block, not a r3t
1828 *
1829 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1830 * shadow table structure is incomplete, -ENOMEM if out of memory and
1831 * -EFAULT if an address in the parent gmap could not be resolved.
1832 *
1833 * Called with sg->mm->mmap_lock in read.
1834 */
1835int gmap_shadow_r3t(struct gmap *sg, unsigned long saddr, unsigned long r3t,
1836		    int fake)
1837{
1838	unsigned long raddr, origin, offset, len;
1839	unsigned long *table;
1840	phys_addr_t s_r3t;
1841	struct page *page;
1842	int rc;
1843
1844	BUG_ON(!gmap_is_shadow(sg));
1845	/* Allocate a shadow region second table */
1846	page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
1847	if (!page)
1848		return -ENOMEM;
1849	page->index = r3t & _REGION_ENTRY_ORIGIN;
1850	if (fake)
1851		page->index |= GMAP_SHADOW_FAKE_TABLE;
1852	s_r3t = page_to_phys(page);
1853	/* Install shadow region second table */
1854	spin_lock(&sg->guest_table_lock);
1855	table = gmap_table_walk(sg, saddr, 3); /* get region-2 pointer */
1856	if (!table) {
1857		rc = -EAGAIN;		/* Race with unshadow */
1858		goto out_free;
1859	}
1860	if (!(*table & _REGION_ENTRY_INVALID)) {
1861		rc = 0;			/* Already established */
1862		goto out_free;
1863	} else if (*table & _REGION_ENTRY_ORIGIN) {
1864		rc = -EAGAIN;		/* Race with shadow */
1865		goto out_free;
1866	}
1867	crst_table_init(__va(s_r3t), _REGION3_ENTRY_EMPTY);
1868	/* mark as invalid as long as the parent table is not protected */
1869	*table = s_r3t | _REGION_ENTRY_LENGTH |
1870		 _REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID;
1871	if (sg->edat_level >= 1)
1872		*table |= (r3t & _REGION_ENTRY_PROTECT);
1873	list_add(&page->lru, &sg->crst_list);
1874	if (fake) {
1875		/* nothing to protect for fake tables */
1876		*table &= ~_REGION_ENTRY_INVALID;
1877		spin_unlock(&sg->guest_table_lock);
1878		return 0;
1879	}
1880	spin_unlock(&sg->guest_table_lock);
1881	/* Make r3t read-only in parent gmap page table */
1882	raddr = (saddr & _REGION2_MASK) | _SHADOW_RMAP_REGION2;
1883	origin = r3t & _REGION_ENTRY_ORIGIN;
1884	offset = ((r3t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1885	len = ((r3t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1886	rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1887	spin_lock(&sg->guest_table_lock);
1888	if (!rc) {
1889		table = gmap_table_walk(sg, saddr, 3);
1890		if (!table || (*table & _REGION_ENTRY_ORIGIN) != s_r3t)
 
1891			rc = -EAGAIN;		/* Race with unshadow */
1892		else
1893			*table &= ~_REGION_ENTRY_INVALID;
1894	} else {
1895		gmap_unshadow_r3t(sg, raddr);
1896	}
1897	spin_unlock(&sg->guest_table_lock);
1898	return rc;
1899out_free:
1900	spin_unlock(&sg->guest_table_lock);
1901	__free_pages(page, CRST_ALLOC_ORDER);
1902	return rc;
1903}
1904EXPORT_SYMBOL_GPL(gmap_shadow_r3t);
1905
1906/**
1907 * gmap_shadow_sgt - create a shadow segment table
1908 * @sg: pointer to the shadow guest address space structure
1909 * @saddr: faulting address in the shadow gmap
1910 * @sgt: parent gmap address of the segment table to get shadowed
1911 * @fake: sgt references contiguous guest memory block, not a sgt
1912 *
1913 * Returns: 0 if successfully shadowed or already shadowed, -EAGAIN if the
1914 * shadow table structure is incomplete, -ENOMEM if out of memory and
1915 * -EFAULT if an address in the parent gmap could not be resolved.
1916 *
1917 * Called with sg->mm->mmap_lock in read.
1918 */
1919int gmap_shadow_sgt(struct gmap *sg, unsigned long saddr, unsigned long sgt,
1920		    int fake)
1921{
1922	unsigned long raddr, origin, offset, len;
1923	unsigned long *table;
1924	phys_addr_t s_sgt;
1925	struct page *page;
1926	int rc;
1927
1928	BUG_ON(!gmap_is_shadow(sg) || (sgt & _REGION3_ENTRY_LARGE));
1929	/* Allocate a shadow segment table */
1930	page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
1931	if (!page)
1932		return -ENOMEM;
1933	page->index = sgt & _REGION_ENTRY_ORIGIN;
1934	if (fake)
1935		page->index |= GMAP_SHADOW_FAKE_TABLE;
1936	s_sgt = page_to_phys(page);
1937	/* Install shadow region second table */
1938	spin_lock(&sg->guest_table_lock);
1939	table = gmap_table_walk(sg, saddr, 2); /* get region-3 pointer */
1940	if (!table) {
1941		rc = -EAGAIN;		/* Race with unshadow */
1942		goto out_free;
1943	}
1944	if (!(*table & _REGION_ENTRY_INVALID)) {
1945		rc = 0;			/* Already established */
1946		goto out_free;
1947	} else if (*table & _REGION_ENTRY_ORIGIN) {
1948		rc = -EAGAIN;		/* Race with shadow */
1949		goto out_free;
1950	}
1951	crst_table_init(__va(s_sgt), _SEGMENT_ENTRY_EMPTY);
1952	/* mark as invalid as long as the parent table is not protected */
1953	*table = s_sgt | _REGION_ENTRY_LENGTH |
1954		 _REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID;
1955	if (sg->edat_level >= 1)
1956		*table |= sgt & _REGION_ENTRY_PROTECT;
1957	list_add(&page->lru, &sg->crst_list);
1958	if (fake) {
1959		/* nothing to protect for fake tables */
1960		*table &= ~_REGION_ENTRY_INVALID;
1961		spin_unlock(&sg->guest_table_lock);
1962		return 0;
1963	}
1964	spin_unlock(&sg->guest_table_lock);
1965	/* Make sgt read-only in parent gmap page table */
1966	raddr = (saddr & _REGION3_MASK) | _SHADOW_RMAP_REGION3;
1967	origin = sgt & _REGION_ENTRY_ORIGIN;
1968	offset = ((sgt & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1969	len = ((sgt & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1970	rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1971	spin_lock(&sg->guest_table_lock);
1972	if (!rc) {
1973		table = gmap_table_walk(sg, saddr, 2);
1974		if (!table || (*table & _REGION_ENTRY_ORIGIN) != s_sgt)
 
1975			rc = -EAGAIN;		/* Race with unshadow */
1976		else
1977			*table &= ~_REGION_ENTRY_INVALID;
1978	} else {
1979		gmap_unshadow_sgt(sg, raddr);
1980	}
1981	spin_unlock(&sg->guest_table_lock);
1982	return rc;
1983out_free:
1984	spin_unlock(&sg->guest_table_lock);
1985	__free_pages(page, CRST_ALLOC_ORDER);
1986	return rc;
1987}
1988EXPORT_SYMBOL_GPL(gmap_shadow_sgt);
1989
1990/**
1991 * gmap_shadow_pgt_lookup - find a shadow page table
1992 * @sg: pointer to the shadow guest address space structure
1993 * @saddr: the address in the shadow aguest address space
1994 * @pgt: parent gmap address of the page table to get shadowed
1995 * @dat_protection: if the pgtable is marked as protected by dat
1996 * @fake: pgt references contiguous guest memory block, not a pgtable
1997 *
1998 * Returns 0 if the shadow page table was found and -EAGAIN if the page
1999 * table was not found.
2000 *
2001 * Called with sg->mm->mmap_lock in read.
2002 */
2003int gmap_shadow_pgt_lookup(struct gmap *sg, unsigned long saddr,
2004			   unsigned long *pgt, int *dat_protection,
2005			   int *fake)
2006{
2007	unsigned long *table;
2008	struct page *page;
2009	int rc;
2010
2011	BUG_ON(!gmap_is_shadow(sg));
2012	spin_lock(&sg->guest_table_lock);
2013	table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
2014	if (table && !(*table & _SEGMENT_ENTRY_INVALID)) {
2015		/* Shadow page tables are full pages (pte+pgste) */
2016		page = pfn_to_page(*table >> PAGE_SHIFT);
2017		*pgt = page->index & ~GMAP_SHADOW_FAKE_TABLE;
2018		*dat_protection = !!(*table & _SEGMENT_ENTRY_PROTECT);
2019		*fake = !!(page->index & GMAP_SHADOW_FAKE_TABLE);
2020		rc = 0;
2021	} else  {
2022		rc = -EAGAIN;
2023	}
2024	spin_unlock(&sg->guest_table_lock);
2025	return rc;
2026
2027}
2028EXPORT_SYMBOL_GPL(gmap_shadow_pgt_lookup);
2029
2030/**
2031 * gmap_shadow_pgt - instantiate a shadow page table
2032 * @sg: pointer to the shadow guest address space structure
2033 * @saddr: faulting address in the shadow gmap
2034 * @pgt: parent gmap address of the page table to get shadowed
2035 * @fake: pgt references contiguous guest memory block, not a pgtable
2036 *
2037 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
2038 * shadow table structure is incomplete, -ENOMEM if out of memory,
2039 * -EFAULT if an address in the parent gmap could not be resolved and
2040 *
2041 * Called with gmap->mm->mmap_lock in read
2042 */
2043int gmap_shadow_pgt(struct gmap *sg, unsigned long saddr, unsigned long pgt,
2044		    int fake)
2045{
2046	unsigned long raddr, origin;
2047	unsigned long *table;
2048	struct page *page;
2049	phys_addr_t s_pgt;
2050	int rc;
2051
2052	BUG_ON(!gmap_is_shadow(sg) || (pgt & _SEGMENT_ENTRY_LARGE));
2053	/* Allocate a shadow page table */
2054	page = page_table_alloc_pgste(sg->mm);
2055	if (!page)
2056		return -ENOMEM;
2057	page->index = pgt & _SEGMENT_ENTRY_ORIGIN;
2058	if (fake)
2059		page->index |= GMAP_SHADOW_FAKE_TABLE;
2060	s_pgt = page_to_phys(page);
2061	/* Install shadow page table */
2062	spin_lock(&sg->guest_table_lock);
2063	table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
2064	if (!table) {
2065		rc = -EAGAIN;		/* Race with unshadow */
2066		goto out_free;
2067	}
2068	if (!(*table & _SEGMENT_ENTRY_INVALID)) {
2069		rc = 0;			/* Already established */
2070		goto out_free;
2071	} else if (*table & _SEGMENT_ENTRY_ORIGIN) {
2072		rc = -EAGAIN;		/* Race with shadow */
2073		goto out_free;
2074	}
2075	/* mark as invalid as long as the parent table is not protected */
2076	*table = (unsigned long) s_pgt | _SEGMENT_ENTRY |
2077		 (pgt & _SEGMENT_ENTRY_PROTECT) | _SEGMENT_ENTRY_INVALID;
2078	list_add(&page->lru, &sg->pt_list);
2079	if (fake) {
2080		/* nothing to protect for fake tables */
2081		*table &= ~_SEGMENT_ENTRY_INVALID;
2082		spin_unlock(&sg->guest_table_lock);
2083		return 0;
2084	}
2085	spin_unlock(&sg->guest_table_lock);
2086	/* Make pgt read-only in parent gmap page table (not the pgste) */
2087	raddr = (saddr & _SEGMENT_MASK) | _SHADOW_RMAP_SEGMENT;
2088	origin = pgt & _SEGMENT_ENTRY_ORIGIN & PAGE_MASK;
2089	rc = gmap_protect_rmap(sg, raddr, origin, PAGE_SIZE);
2090	spin_lock(&sg->guest_table_lock);
2091	if (!rc) {
2092		table = gmap_table_walk(sg, saddr, 1);
2093		if (!table || (*table & _SEGMENT_ENTRY_ORIGIN) != s_pgt)
 
2094			rc = -EAGAIN;		/* Race with unshadow */
2095		else
2096			*table &= ~_SEGMENT_ENTRY_INVALID;
2097	} else {
2098		gmap_unshadow_pgt(sg, raddr);
2099	}
2100	spin_unlock(&sg->guest_table_lock);
2101	return rc;
2102out_free:
2103	spin_unlock(&sg->guest_table_lock);
2104	page_table_free_pgste(page);
2105	return rc;
2106
2107}
2108EXPORT_SYMBOL_GPL(gmap_shadow_pgt);
2109
2110/**
2111 * gmap_shadow_page - create a shadow page mapping
2112 * @sg: pointer to the shadow guest address space structure
2113 * @saddr: faulting address in the shadow gmap
2114 * @pte: pte in parent gmap address space to get shadowed
2115 *
2116 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
2117 * shadow table structure is incomplete, -ENOMEM if out of memory and
2118 * -EFAULT if an address in the parent gmap could not be resolved.
2119 *
2120 * Called with sg->mm->mmap_lock in read.
2121 */
2122int gmap_shadow_page(struct gmap *sg, unsigned long saddr, pte_t pte)
2123{
2124	struct gmap *parent;
2125	struct gmap_rmap *rmap;
2126	unsigned long vmaddr, paddr;
2127	spinlock_t *ptl;
2128	pte_t *sptep, *tptep;
2129	int prot;
2130	int rc;
2131
2132	BUG_ON(!gmap_is_shadow(sg));
2133	parent = sg->parent;
2134	prot = (pte_val(pte) & _PAGE_PROTECT) ? PROT_READ : PROT_WRITE;
2135
2136	rmap = kzalloc(sizeof(*rmap), GFP_KERNEL_ACCOUNT);
2137	if (!rmap)
2138		return -ENOMEM;
2139	rmap->raddr = (saddr & PAGE_MASK) | _SHADOW_RMAP_PGTABLE;
2140
2141	while (1) {
2142		paddr = pte_val(pte) & PAGE_MASK;
2143		vmaddr = __gmap_translate(parent, paddr);
2144		if (IS_ERR_VALUE(vmaddr)) {
2145			rc = vmaddr;
2146			break;
2147		}
2148		rc = radix_tree_preload(GFP_KERNEL_ACCOUNT);
2149		if (rc)
2150			break;
2151		rc = -EAGAIN;
2152		sptep = gmap_pte_op_walk(parent, paddr, &ptl);
2153		if (sptep) {
2154			spin_lock(&sg->guest_table_lock);
2155			/* Get page table pointer */
2156			tptep = (pte_t *) gmap_table_walk(sg, saddr, 0);
2157			if (!tptep) {
2158				spin_unlock(&sg->guest_table_lock);
2159				gmap_pte_op_end(ptl);
2160				radix_tree_preload_end();
2161				break;
2162			}
2163			rc = ptep_shadow_pte(sg->mm, saddr, sptep, tptep, pte);
2164			if (rc > 0) {
2165				/* Success and a new mapping */
2166				gmap_insert_rmap(sg, vmaddr, rmap);
2167				rmap = NULL;
2168				rc = 0;
2169			}
2170			gmap_pte_op_end(ptl);
2171			spin_unlock(&sg->guest_table_lock);
2172		}
2173		radix_tree_preload_end();
2174		if (!rc)
2175			break;
2176		rc = gmap_pte_op_fixup(parent, paddr, vmaddr, prot);
2177		if (rc)
2178			break;
2179	}
2180	kfree(rmap);
2181	return rc;
2182}
2183EXPORT_SYMBOL_GPL(gmap_shadow_page);
2184
2185/*
2186 * gmap_shadow_notify - handle notifications for shadow gmap
2187 *
2188 * Called with sg->parent->shadow_lock.
2189 */
2190static void gmap_shadow_notify(struct gmap *sg, unsigned long vmaddr,
2191			       unsigned long gaddr)
2192{
2193	struct gmap_rmap *rmap, *rnext, *head;
2194	unsigned long start, end, bits, raddr;
2195
2196	BUG_ON(!gmap_is_shadow(sg));
2197
2198	spin_lock(&sg->guest_table_lock);
2199	if (sg->removed) {
2200		spin_unlock(&sg->guest_table_lock);
2201		return;
2202	}
2203	/* Check for top level table */
2204	start = sg->orig_asce & _ASCE_ORIGIN;
2205	end = start + ((sg->orig_asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE;
2206	if (!(sg->orig_asce & _ASCE_REAL_SPACE) && gaddr >= start &&
2207	    gaddr < end) {
2208		/* The complete shadow table has to go */
2209		gmap_unshadow(sg);
2210		spin_unlock(&sg->guest_table_lock);
2211		list_del(&sg->list);
2212		gmap_put(sg);
2213		return;
2214	}
2215	/* Remove the page table tree from on specific entry */
2216	head = radix_tree_delete(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
2217	gmap_for_each_rmap_safe(rmap, rnext, head) {
2218		bits = rmap->raddr & _SHADOW_RMAP_MASK;
2219		raddr = rmap->raddr ^ bits;
2220		switch (bits) {
2221		case _SHADOW_RMAP_REGION1:
2222			gmap_unshadow_r2t(sg, raddr);
2223			break;
2224		case _SHADOW_RMAP_REGION2:
2225			gmap_unshadow_r3t(sg, raddr);
2226			break;
2227		case _SHADOW_RMAP_REGION3:
2228			gmap_unshadow_sgt(sg, raddr);
2229			break;
2230		case _SHADOW_RMAP_SEGMENT:
2231			gmap_unshadow_pgt(sg, raddr);
2232			break;
2233		case _SHADOW_RMAP_PGTABLE:
2234			gmap_unshadow_page(sg, raddr);
2235			break;
2236		}
2237		kfree(rmap);
2238	}
2239	spin_unlock(&sg->guest_table_lock);
2240}
2241
2242/**
2243 * ptep_notify - call all invalidation callbacks for a specific pte.
2244 * @mm: pointer to the process mm_struct
2245 * @vmaddr: virtual address in the process address space
2246 * @pte: pointer to the page table entry
2247 * @bits: bits from the pgste that caused the notify call
2248 *
2249 * This function is assumed to be called with the page table lock held
2250 * for the pte to notify.
2251 */
2252void ptep_notify(struct mm_struct *mm, unsigned long vmaddr,
2253		 pte_t *pte, unsigned long bits)
2254{
2255	unsigned long offset, gaddr = 0;
2256	unsigned long *table;
2257	struct gmap *gmap, *sg, *next;
2258
2259	offset = ((unsigned long) pte) & (255 * sizeof(pte_t));
2260	offset = offset * (PAGE_SIZE / sizeof(pte_t));
2261	rcu_read_lock();
2262	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2263		spin_lock(&gmap->guest_table_lock);
2264		table = radix_tree_lookup(&gmap->host_to_guest,
2265					  vmaddr >> PMD_SHIFT);
2266		if (table)
2267			gaddr = __gmap_segment_gaddr(table) + offset;
2268		spin_unlock(&gmap->guest_table_lock);
2269		if (!table)
2270			continue;
2271
2272		if (!list_empty(&gmap->children) && (bits & PGSTE_VSIE_BIT)) {
2273			spin_lock(&gmap->shadow_lock);
2274			list_for_each_entry_safe(sg, next,
2275						 &gmap->children, list)
2276				gmap_shadow_notify(sg, vmaddr, gaddr);
2277			spin_unlock(&gmap->shadow_lock);
2278		}
2279		if (bits & PGSTE_IN_BIT)
2280			gmap_call_notifier(gmap, gaddr, gaddr + PAGE_SIZE - 1);
2281	}
2282	rcu_read_unlock();
2283}
2284EXPORT_SYMBOL_GPL(ptep_notify);
2285
2286static void pmdp_notify_gmap(struct gmap *gmap, pmd_t *pmdp,
2287			     unsigned long gaddr)
2288{
2289	set_pmd(pmdp, clear_pmd_bit(*pmdp, __pgprot(_SEGMENT_ENTRY_GMAP_IN)));
2290	gmap_call_notifier(gmap, gaddr, gaddr + HPAGE_SIZE - 1);
2291}
2292
2293/**
2294 * gmap_pmdp_xchg - exchange a gmap pmd with another
2295 * @gmap: pointer to the guest address space structure
2296 * @pmdp: pointer to the pmd entry
2297 * @new: replacement entry
2298 * @gaddr: the affected guest address
2299 *
2300 * This function is assumed to be called with the guest_table_lock
2301 * held.
2302 */
2303static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *pmdp, pmd_t new,
2304			   unsigned long gaddr)
2305{
2306	gaddr &= HPAGE_MASK;
2307	pmdp_notify_gmap(gmap, pmdp, gaddr);
2308	new = clear_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_GMAP_IN));
2309	if (MACHINE_HAS_TLB_GUEST)
2310		__pmdp_idte(gaddr, (pmd_t *)pmdp, IDTE_GUEST_ASCE, gmap->asce,
2311			    IDTE_GLOBAL);
2312	else if (MACHINE_HAS_IDTE)
2313		__pmdp_idte(gaddr, (pmd_t *)pmdp, 0, 0, IDTE_GLOBAL);
2314	else
2315		__pmdp_csp(pmdp);
2316	set_pmd(pmdp, new);
2317}
2318
2319static void gmap_pmdp_clear(struct mm_struct *mm, unsigned long vmaddr,
2320			    int purge)
2321{
2322	pmd_t *pmdp;
2323	struct gmap *gmap;
2324	unsigned long gaddr;
2325
2326	rcu_read_lock();
2327	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2328		spin_lock(&gmap->guest_table_lock);
2329		pmdp = (pmd_t *)radix_tree_delete(&gmap->host_to_guest,
2330						  vmaddr >> PMD_SHIFT);
2331		if (pmdp) {
2332			gaddr = __gmap_segment_gaddr((unsigned long *)pmdp);
2333			pmdp_notify_gmap(gmap, pmdp, gaddr);
2334			WARN_ON(pmd_val(*pmdp) & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2335						   _SEGMENT_ENTRY_GMAP_UC));
2336			if (purge)
2337				__pmdp_csp(pmdp);
2338			set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
2339		}
2340		spin_unlock(&gmap->guest_table_lock);
2341	}
2342	rcu_read_unlock();
2343}
2344
2345/**
2346 * gmap_pmdp_invalidate - invalidate all affected guest pmd entries without
2347 *                        flushing
2348 * @mm: pointer to the process mm_struct
2349 * @vmaddr: virtual address in the process address space
2350 */
2351void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr)
2352{
2353	gmap_pmdp_clear(mm, vmaddr, 0);
2354}
2355EXPORT_SYMBOL_GPL(gmap_pmdp_invalidate);
2356
2357/**
2358 * gmap_pmdp_csp - csp all affected guest pmd entries
2359 * @mm: pointer to the process mm_struct
2360 * @vmaddr: virtual address in the process address space
2361 */
2362void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr)
2363{
2364	gmap_pmdp_clear(mm, vmaddr, 1);
2365}
2366EXPORT_SYMBOL_GPL(gmap_pmdp_csp);
2367
2368/**
2369 * gmap_pmdp_idte_local - invalidate and clear a guest pmd entry
2370 * @mm: pointer to the process mm_struct
2371 * @vmaddr: virtual address in the process address space
2372 */
2373void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr)
2374{
2375	unsigned long *entry, gaddr;
2376	struct gmap *gmap;
2377	pmd_t *pmdp;
2378
2379	rcu_read_lock();
2380	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2381		spin_lock(&gmap->guest_table_lock);
2382		entry = radix_tree_delete(&gmap->host_to_guest,
2383					  vmaddr >> PMD_SHIFT);
2384		if (entry) {
2385			pmdp = (pmd_t *)entry;
2386			gaddr = __gmap_segment_gaddr(entry);
2387			pmdp_notify_gmap(gmap, pmdp, gaddr);
2388			WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2389					   _SEGMENT_ENTRY_GMAP_UC));
2390			if (MACHINE_HAS_TLB_GUEST)
2391				__pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE,
2392					    gmap->asce, IDTE_LOCAL);
2393			else if (MACHINE_HAS_IDTE)
2394				__pmdp_idte(gaddr, pmdp, 0, 0, IDTE_LOCAL);
2395			*entry = _SEGMENT_ENTRY_EMPTY;
2396		}
2397		spin_unlock(&gmap->guest_table_lock);
2398	}
2399	rcu_read_unlock();
2400}
2401EXPORT_SYMBOL_GPL(gmap_pmdp_idte_local);
2402
2403/**
2404 * gmap_pmdp_idte_global - invalidate and clear a guest pmd entry
2405 * @mm: pointer to the process mm_struct
2406 * @vmaddr: virtual address in the process address space
2407 */
2408void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr)
2409{
2410	unsigned long *entry, gaddr;
2411	struct gmap *gmap;
2412	pmd_t *pmdp;
2413
2414	rcu_read_lock();
2415	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2416		spin_lock(&gmap->guest_table_lock);
2417		entry = radix_tree_delete(&gmap->host_to_guest,
2418					  vmaddr >> PMD_SHIFT);
2419		if (entry) {
2420			pmdp = (pmd_t *)entry;
2421			gaddr = __gmap_segment_gaddr(entry);
2422			pmdp_notify_gmap(gmap, pmdp, gaddr);
2423			WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2424					   _SEGMENT_ENTRY_GMAP_UC));
2425			if (MACHINE_HAS_TLB_GUEST)
2426				__pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE,
2427					    gmap->asce, IDTE_GLOBAL);
2428			else if (MACHINE_HAS_IDTE)
2429				__pmdp_idte(gaddr, pmdp, 0, 0, IDTE_GLOBAL);
2430			else
2431				__pmdp_csp(pmdp);
2432			*entry = _SEGMENT_ENTRY_EMPTY;
2433		}
2434		spin_unlock(&gmap->guest_table_lock);
2435	}
2436	rcu_read_unlock();
2437}
2438EXPORT_SYMBOL_GPL(gmap_pmdp_idte_global);
2439
2440/**
2441 * gmap_test_and_clear_dirty_pmd - test and reset segment dirty status
2442 * @gmap: pointer to guest address space
2443 * @pmdp: pointer to the pmd to be tested
2444 * @gaddr: virtual address in the guest address space
2445 *
2446 * This function is assumed to be called with the guest_table_lock
2447 * held.
2448 */
2449static bool gmap_test_and_clear_dirty_pmd(struct gmap *gmap, pmd_t *pmdp,
2450					  unsigned long gaddr)
2451{
2452	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
2453		return false;
2454
2455	/* Already protected memory, which did not change is clean */
2456	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT &&
2457	    !(pmd_val(*pmdp) & _SEGMENT_ENTRY_GMAP_UC))
2458		return false;
2459
2460	/* Clear UC indication and reset protection */
2461	set_pmd(pmdp, clear_pmd_bit(*pmdp, __pgprot(_SEGMENT_ENTRY_GMAP_UC)));
2462	gmap_protect_pmd(gmap, gaddr, pmdp, PROT_READ, 0);
2463	return true;
2464}
2465
2466/**
2467 * gmap_sync_dirty_log_pmd - set bitmap based on dirty status of segment
2468 * @gmap: pointer to guest address space
2469 * @bitmap: dirty bitmap for this pmd
2470 * @gaddr: virtual address in the guest address space
2471 * @vmaddr: virtual address in the host address space
2472 *
2473 * This function is assumed to be called with the guest_table_lock
2474 * held.
2475 */
2476void gmap_sync_dirty_log_pmd(struct gmap *gmap, unsigned long bitmap[4],
2477			     unsigned long gaddr, unsigned long vmaddr)
2478{
2479	int i;
2480	pmd_t *pmdp;
2481	pte_t *ptep;
2482	spinlock_t *ptl;
2483
2484	pmdp = gmap_pmd_op_walk(gmap, gaddr);
2485	if (!pmdp)
2486		return;
2487
2488	if (pmd_large(*pmdp)) {
2489		if (gmap_test_and_clear_dirty_pmd(gmap, pmdp, gaddr))
2490			bitmap_fill(bitmap, _PAGE_ENTRIES);
2491	} else {
2492		for (i = 0; i < _PAGE_ENTRIES; i++, vmaddr += PAGE_SIZE) {
2493			ptep = pte_alloc_map_lock(gmap->mm, pmdp, vmaddr, &ptl);
2494			if (!ptep)
2495				continue;
2496			if (ptep_test_and_clear_uc(gmap->mm, vmaddr, ptep))
2497				set_bit(i, bitmap);
2498			spin_unlock(ptl);
2499		}
2500	}
2501	gmap_pmd_op_end(gmap, pmdp);
2502}
2503EXPORT_SYMBOL_GPL(gmap_sync_dirty_log_pmd);
2504
2505#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2506static int thp_split_walk_pmd_entry(pmd_t *pmd, unsigned long addr,
2507				    unsigned long end, struct mm_walk *walk)
2508{
2509	struct vm_area_struct *vma = walk->vma;
2510
2511	split_huge_pmd(vma, pmd, addr);
2512	return 0;
2513}
2514
2515static const struct mm_walk_ops thp_split_walk_ops = {
2516	.pmd_entry	= thp_split_walk_pmd_entry,
2517};
2518
2519static inline void thp_split_mm(struct mm_struct *mm)
2520{
 
2521	struct vm_area_struct *vma;
2522	VMA_ITERATOR(vmi, mm, 0);
2523
2524	for_each_vma(vmi, vma) {
 
 
 
 
2525		vma->vm_flags &= ~VM_HUGEPAGE;
2526		vma->vm_flags |= VM_NOHUGEPAGE;
2527		walk_page_vma(vma, &thp_split_walk_ops, NULL);
2528	}
2529	mm->def_flags |= VM_NOHUGEPAGE;
 
2530}
2531#else
2532static inline void thp_split_mm(struct mm_struct *mm)
2533{
2534}
2535#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2536
2537/*
2538 * Remove all empty zero pages from the mapping for lazy refaulting
2539 * - This must be called after mm->context.has_pgste is set, to avoid
2540 *   future creation of zero pages
2541 * - This must be called after THP was enabled
2542 */
2543static int __zap_zero_pages(pmd_t *pmd, unsigned long start,
2544			   unsigned long end, struct mm_walk *walk)
2545{
2546	unsigned long addr;
2547
2548	for (addr = start; addr != end; addr += PAGE_SIZE) {
2549		pte_t *ptep;
2550		spinlock_t *ptl;
2551
2552		ptep = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
2553		if (is_zero_pfn(pte_pfn(*ptep)))
2554			ptep_xchg_direct(walk->mm, addr, ptep, __pte(_PAGE_INVALID));
2555		pte_unmap_unlock(ptep, ptl);
2556	}
2557	return 0;
2558}
2559
2560static const struct mm_walk_ops zap_zero_walk_ops = {
2561	.pmd_entry	= __zap_zero_pages,
2562};
 
 
 
 
2563
2564/*
2565 * switch on pgstes for its userspace process (for kvm)
2566 */
2567int s390_enable_sie(void)
2568{
2569	struct mm_struct *mm = current->mm;
2570
2571	/* Do we have pgstes? if yes, we are done */
2572	if (mm_has_pgste(mm))
2573		return 0;
2574	/* Fail if the page tables are 2K */
2575	if (!mm_alloc_pgste(mm))
2576		return -EINVAL;
2577	mmap_write_lock(mm);
2578	mm->context.has_pgste = 1;
2579	/* split thp mappings and disable thp for future mappings */
2580	thp_split_mm(mm);
2581	walk_page_range(mm, 0, TASK_SIZE, &zap_zero_walk_ops, NULL);
2582	mmap_write_unlock(mm);
2583	return 0;
2584}
2585EXPORT_SYMBOL_GPL(s390_enable_sie);
2586
2587int gmap_mark_unmergeable(void)
2588{
2589	struct mm_struct *mm = current->mm;
2590	struct vm_area_struct *vma;
2591	int ret;
2592	VMA_ITERATOR(vmi, mm, 0);
2593
2594	for_each_vma(vmi, vma) {
2595		ret = ksm_madvise(vma, vma->vm_start, vma->vm_end,
2596				  MADV_UNMERGEABLE, &vma->vm_flags);
2597		if (ret)
2598			return ret;
2599	}
2600	mm->def_flags &= ~VM_MERGEABLE;
2601	return 0;
2602}
2603EXPORT_SYMBOL_GPL(gmap_mark_unmergeable);
2604
2605/*
2606 * Enable storage key handling from now on and initialize the storage
2607 * keys with the default key.
2608 */
2609static int __s390_enable_skey_pte(pte_t *pte, unsigned long addr,
2610				  unsigned long next, struct mm_walk *walk)
2611{
2612	/* Clear storage key */
2613	ptep_zap_key(walk->mm, addr, pte);
2614	return 0;
2615}
2616
2617/*
2618 * Give a chance to schedule after setting a key to 256 pages.
2619 * We only hold the mm lock, which is a rwsem and the kvm srcu.
2620 * Both can sleep.
2621 */
2622static int __s390_enable_skey_pmd(pmd_t *pmd, unsigned long addr,
2623				  unsigned long next, struct mm_walk *walk)
2624{
2625	cond_resched();
2626	return 0;
2627}
2628
2629static int __s390_enable_skey_hugetlb(pte_t *pte, unsigned long addr,
2630				      unsigned long hmask, unsigned long next,
2631				      struct mm_walk *walk)
2632{
2633	pmd_t *pmd = (pmd_t *)pte;
2634	unsigned long start, end;
2635	struct page *page = pmd_page(*pmd);
2636
2637	/*
2638	 * The write check makes sure we do not set a key on shared
2639	 * memory. This is needed as the walker does not differentiate
2640	 * between actual guest memory and the process executable or
2641	 * shared libraries.
2642	 */
2643	if (pmd_val(*pmd) & _SEGMENT_ENTRY_INVALID ||
2644	    !(pmd_val(*pmd) & _SEGMENT_ENTRY_WRITE))
2645		return 0;
2646
2647	start = pmd_val(*pmd) & HPAGE_MASK;
2648	end = start + HPAGE_SIZE - 1;
2649	__storage_key_init_range(start, end);
2650	set_bit(PG_arch_1, &page->flags);
2651	cond_resched();
2652	return 0;
2653}
2654
2655static const struct mm_walk_ops enable_skey_walk_ops = {
2656	.hugetlb_entry		= __s390_enable_skey_hugetlb,
2657	.pte_entry		= __s390_enable_skey_pte,
2658	.pmd_entry		= __s390_enable_skey_pmd,
2659};
2660
2661int s390_enable_skey(void)
2662{
 
2663	struct mm_struct *mm = current->mm;
 
2664	int rc = 0;
2665
2666	mmap_write_lock(mm);
2667	if (mm_uses_skeys(mm))
2668		goto out_up;
2669
2670	mm->context.uses_skeys = 1;
2671	rc = gmap_mark_unmergeable();
2672	if (rc) {
2673		mm->context.uses_skeys = 0;
2674		goto out_up;
 
 
 
2675	}
2676	walk_page_range(mm, 0, TASK_SIZE, &enable_skey_walk_ops, NULL);
 
 
 
2677
2678out_up:
2679	mmap_write_unlock(mm);
2680	return rc;
2681}
2682EXPORT_SYMBOL_GPL(s390_enable_skey);
2683
2684/*
2685 * Reset CMMA state, make all pages stable again.
2686 */
2687static int __s390_reset_cmma(pte_t *pte, unsigned long addr,
2688			     unsigned long next, struct mm_walk *walk)
2689{
2690	ptep_zap_unused(walk->mm, addr, pte, 1);
2691	return 0;
2692}
2693
2694static const struct mm_walk_ops reset_cmma_walk_ops = {
2695	.pte_entry		= __s390_reset_cmma,
2696};
2697
2698void s390_reset_cmma(struct mm_struct *mm)
2699{
2700	mmap_write_lock(mm);
2701	walk_page_range(mm, 0, TASK_SIZE, &reset_cmma_walk_ops, NULL);
2702	mmap_write_unlock(mm);
2703}
2704EXPORT_SYMBOL_GPL(s390_reset_cmma);
2705
2706#define GATHER_GET_PAGES 32
2707
2708struct reset_walk_state {
2709	unsigned long next;
2710	unsigned long count;
2711	unsigned long pfns[GATHER_GET_PAGES];
2712};
2713
2714static int s390_gather_pages(pte_t *ptep, unsigned long addr,
2715			     unsigned long next, struct mm_walk *walk)
2716{
2717	struct reset_walk_state *p = walk->private;
2718	pte_t pte = READ_ONCE(*ptep);
2719
2720	if (pte_present(pte)) {
2721		/* we have a reference from the mapping, take an extra one */
2722		get_page(phys_to_page(pte_val(pte)));
2723		p->pfns[p->count] = phys_to_pfn(pte_val(pte));
2724		p->next = next;
2725		p->count++;
2726	}
2727	return p->count >= GATHER_GET_PAGES;
2728}
2729
2730static const struct mm_walk_ops gather_pages_ops = {
2731	.pte_entry = s390_gather_pages,
2732};
2733
2734/*
2735 * Call the Destroy secure page UVC on each page in the given array of PFNs.
2736 * Each page needs to have an extra reference, which will be released here.
2737 */
2738void s390_uv_destroy_pfns(unsigned long count, unsigned long *pfns)
2739{
2740	unsigned long i;
2741
2742	for (i = 0; i < count; i++) {
2743		/* we always have an extra reference */
2744		uv_destroy_owned_page(pfn_to_phys(pfns[i]));
2745		/* get rid of the extra reference */
2746		put_page(pfn_to_page(pfns[i]));
2747		cond_resched();
2748	}
2749}
2750EXPORT_SYMBOL_GPL(s390_uv_destroy_pfns);
2751
2752/**
2753 * __s390_uv_destroy_range - Call the destroy secure page UVC on each page
2754 * in the given range of the given address space.
2755 * @mm: the mm to operate on
2756 * @start: the start of the range
2757 * @end: the end of the range
2758 * @interruptible: if not 0, stop when a fatal signal is received
2759 *
2760 * Walk the given range of the given address space and call the destroy
2761 * secure page UVC on each page. Optionally exit early if a fatal signal is
2762 * pending.
2763 *
2764 * Return: 0 on success, -EINTR if the function stopped before completing
2765 */
2766int __s390_uv_destroy_range(struct mm_struct *mm, unsigned long start,
2767			    unsigned long end, bool interruptible)
2768{
2769	struct reset_walk_state state = { .next = start };
2770	int r = 1;
2771
2772	while (r > 0) {
2773		state.count = 0;
2774		mmap_read_lock(mm);
2775		r = walk_page_range(mm, state.next, end, &gather_pages_ops, &state);
2776		mmap_read_unlock(mm);
2777		cond_resched();
2778		s390_uv_destroy_pfns(state.count, state.pfns);
2779		if (interruptible && fatal_signal_pending(current))
2780			return -EINTR;
2781	}
2782	return 0;
2783}
2784EXPORT_SYMBOL_GPL(__s390_uv_destroy_range);
2785
2786/**
2787 * s390_unlist_old_asce - Remove the topmost level of page tables from the
2788 * list of page tables of the gmap.
2789 * @gmap: the gmap whose table is to be removed
2790 *
2791 * On s390x, KVM keeps a list of all pages containing the page tables of the
2792 * gmap (the CRST list). This list is used at tear down time to free all
2793 * pages that are now not needed anymore.
2794 *
2795 * This function removes the topmost page of the tree (the one pointed to by
2796 * the ASCE) from the CRST list.
2797 *
2798 * This means that it will not be freed when the VM is torn down, and needs
2799 * to be handled separately by the caller, unless a leak is actually
2800 * intended. Notice that this function will only remove the page from the
2801 * list, the page will still be used as a top level page table (and ASCE).
2802 */
2803void s390_unlist_old_asce(struct gmap *gmap)
2804{
2805	struct page *old;
2806
2807	old = virt_to_page(gmap->table);
2808	spin_lock(&gmap->guest_table_lock);
2809	list_del(&old->lru);
2810	/*
2811	 * Sometimes the topmost page might need to be "removed" multiple
2812	 * times, for example if the VM is rebooted into secure mode several
2813	 * times concurrently, or if s390_replace_asce fails after calling
2814	 * s390_remove_old_asce and is attempted again later. In that case
2815	 * the old asce has been removed from the list, and therefore it
2816	 * will not be freed when the VM terminates, but the ASCE is still
2817	 * in use and still pointed to.
2818	 * A subsequent call to replace_asce will follow the pointer and try
2819	 * to remove the same page from the list again.
2820	 * Therefore it's necessary that the page of the ASCE has valid
2821	 * pointers, so list_del can work (and do nothing) without
2822	 * dereferencing stale or invalid pointers.
2823	 */
2824	INIT_LIST_HEAD(&old->lru);
2825	spin_unlock(&gmap->guest_table_lock);
2826}
2827EXPORT_SYMBOL_GPL(s390_unlist_old_asce);
2828
2829/**
2830 * s390_replace_asce - Try to replace the current ASCE of a gmap with a copy
2831 * @gmap: the gmap whose ASCE needs to be replaced
2832 *
2833 * If the allocation of the new top level page table fails, the ASCE is not
2834 * replaced.
2835 * In any case, the old ASCE is always removed from the gmap CRST list.
2836 * Therefore the caller has to make sure to save a pointer to it
2837 * beforehand, unless a leak is actually intended.
2838 */
2839int s390_replace_asce(struct gmap *gmap)
2840{
2841	unsigned long asce;
2842	struct page *page;
2843	void *table;
2844
2845	s390_unlist_old_asce(gmap);
2846
2847	page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
2848	if (!page)
2849		return -ENOMEM;
2850	table = page_to_virt(page);
2851	memcpy(table, gmap->table, 1UL << (CRST_ALLOC_ORDER + PAGE_SHIFT));
2852
2853	/*
2854	 * The caller has to deal with the old ASCE, but here we make sure
2855	 * the new one is properly added to the CRST list, so that
2856	 * it will be freed when the VM is torn down.
2857	 */
2858	spin_lock(&gmap->guest_table_lock);
2859	list_add(&page->lru, &gmap->crst_list);
2860	spin_unlock(&gmap->guest_table_lock);
2861
2862	/* Set new table origin while preserving existing ASCE control bits */
2863	asce = (gmap->asce & ~_ASCE_ORIGIN) | __pa(table);
2864	WRITE_ONCE(gmap->asce, asce);
2865	WRITE_ONCE(gmap->mm->context.gmap_asce, asce);
2866	WRITE_ONCE(gmap->table, table);
2867
2868	return 0;
2869}
2870EXPORT_SYMBOL_GPL(s390_replace_asce);
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  KVM guest address space mapping code
   4 *
   5 *    Copyright IBM Corp. 2007, 2016
   6 *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
 
 
   7 */
   8
   9#include <linux/kernel.h>
  10#include <linux/mm.h>
  11#include <linux/swap.h>
  12#include <linux/smp.h>
  13#include <linux/spinlock.h>
  14#include <linux/slab.h>
  15#include <linux/swapops.h>
  16#include <linux/ksm.h>
  17#include <linux/mman.h>
 
  18
  19#include <asm/pgtable.h>
  20#include <asm/pgalloc.h>
  21#include <asm/gmap.h>
  22#include <asm/tlb.h>
  23
  24#define GMAP_SHADOW_FAKE_TABLE 1ULL
  25
  26/**
  27 * gmap_alloc - allocate and initialize a guest address space
  28 * @mm: pointer to the parent mm_struct
  29 * @limit: maximum address of the gmap address space
  30 *
  31 * Returns a guest address space structure.
  32 */
  33static struct gmap *gmap_alloc(unsigned long limit)
  34{
  35	struct gmap *gmap;
  36	struct page *page;
  37	unsigned long *table;
  38	unsigned long etype, atype;
  39
  40	if (limit < _REGION3_SIZE) {
  41		limit = _REGION3_SIZE - 1;
  42		atype = _ASCE_TYPE_SEGMENT;
  43		etype = _SEGMENT_ENTRY_EMPTY;
  44	} else if (limit < _REGION2_SIZE) {
  45		limit = _REGION2_SIZE - 1;
  46		atype = _ASCE_TYPE_REGION3;
  47		etype = _REGION3_ENTRY_EMPTY;
  48	} else if (limit < _REGION1_SIZE) {
  49		limit = _REGION1_SIZE - 1;
  50		atype = _ASCE_TYPE_REGION2;
  51		etype = _REGION2_ENTRY_EMPTY;
  52	} else {
  53		limit = -1UL;
  54		atype = _ASCE_TYPE_REGION1;
  55		etype = _REGION1_ENTRY_EMPTY;
  56	}
  57	gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL);
  58	if (!gmap)
  59		goto out;
  60	INIT_LIST_HEAD(&gmap->crst_list);
  61	INIT_LIST_HEAD(&gmap->children);
  62	INIT_LIST_HEAD(&gmap->pt_list);
  63	INIT_RADIX_TREE(&gmap->guest_to_host, GFP_KERNEL);
  64	INIT_RADIX_TREE(&gmap->host_to_guest, GFP_ATOMIC);
  65	INIT_RADIX_TREE(&gmap->host_to_rmap, GFP_ATOMIC);
  66	spin_lock_init(&gmap->guest_table_lock);
  67	spin_lock_init(&gmap->shadow_lock);
  68	atomic_set(&gmap->ref_count, 1);
  69	page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
  70	if (!page)
  71		goto out_free;
  72	page->index = 0;
  73	list_add(&page->lru, &gmap->crst_list);
  74	table = (unsigned long *) page_to_phys(page);
  75	crst_table_init(table, etype);
  76	gmap->table = table;
  77	gmap->asce = atype | _ASCE_TABLE_LENGTH |
  78		_ASCE_USER_BITS | __pa(table);
  79	gmap->asce_end = limit;
  80	return gmap;
  81
  82out_free:
  83	kfree(gmap);
  84out:
  85	return NULL;
  86}
  87
  88/**
  89 * gmap_create - create a guest address space
  90 * @mm: pointer to the parent mm_struct
  91 * @limit: maximum size of the gmap address space
  92 *
  93 * Returns a guest address space structure.
  94 */
  95struct gmap *gmap_create(struct mm_struct *mm, unsigned long limit)
  96{
  97	struct gmap *gmap;
  98	unsigned long gmap_asce;
  99
 100	gmap = gmap_alloc(limit);
 101	if (!gmap)
 102		return NULL;
 103	gmap->mm = mm;
 104	spin_lock(&mm->context.lock);
 105	list_add_rcu(&gmap->list, &mm->context.gmap_list);
 106	if (list_is_singular(&mm->context.gmap_list))
 107		gmap_asce = gmap->asce;
 108	else
 109		gmap_asce = -1UL;
 110	WRITE_ONCE(mm->context.gmap_asce, gmap_asce);
 111	spin_unlock(&mm->context.lock);
 112	return gmap;
 113}
 114EXPORT_SYMBOL_GPL(gmap_create);
 115
 116static void gmap_flush_tlb(struct gmap *gmap)
 117{
 118	if (MACHINE_HAS_IDTE)
 119		__tlb_flush_idte(gmap->asce);
 120	else
 121		__tlb_flush_global();
 122}
 123
 124static void gmap_radix_tree_free(struct radix_tree_root *root)
 125{
 126	struct radix_tree_iter iter;
 127	unsigned long indices[16];
 128	unsigned long index;
 129	void __rcu **slot;
 130	int i, nr;
 131
 132	/* A radix tree is freed by deleting all of its entries */
 133	index = 0;
 134	do {
 135		nr = 0;
 136		radix_tree_for_each_slot(slot, root, &iter, index) {
 137			indices[nr] = iter.index;
 138			if (++nr == 16)
 139				break;
 140		}
 141		for (i = 0; i < nr; i++) {
 142			index = indices[i];
 143			radix_tree_delete(root, index);
 144		}
 145	} while (nr > 0);
 146}
 147
 148static void gmap_rmap_radix_tree_free(struct radix_tree_root *root)
 149{
 150	struct gmap_rmap *rmap, *rnext, *head;
 151	struct radix_tree_iter iter;
 152	unsigned long indices[16];
 153	unsigned long index;
 154	void __rcu **slot;
 155	int i, nr;
 156
 157	/* A radix tree is freed by deleting all of its entries */
 158	index = 0;
 159	do {
 160		nr = 0;
 161		radix_tree_for_each_slot(slot, root, &iter, index) {
 162			indices[nr] = iter.index;
 163			if (++nr == 16)
 164				break;
 165		}
 166		for (i = 0; i < nr; i++) {
 167			index = indices[i];
 168			head = radix_tree_delete(root, index);
 169			gmap_for_each_rmap_safe(rmap, rnext, head)
 170				kfree(rmap);
 171		}
 172	} while (nr > 0);
 173}
 174
 175/**
 176 * gmap_free - free a guest address space
 177 * @gmap: pointer to the guest address space structure
 178 *
 179 * No locks required. There are no references to this gmap anymore.
 180 */
 181static void gmap_free(struct gmap *gmap)
 182{
 183	struct page *page, *next;
 184
 185	/* Flush tlb of all gmaps (if not already done for shadows) */
 186	if (!(gmap_is_shadow(gmap) && gmap->removed))
 187		gmap_flush_tlb(gmap);
 188	/* Free all segment & region tables. */
 189	list_for_each_entry_safe(page, next, &gmap->crst_list, lru)
 190		__free_pages(page, CRST_ALLOC_ORDER);
 191	gmap_radix_tree_free(&gmap->guest_to_host);
 192	gmap_radix_tree_free(&gmap->host_to_guest);
 193
 194	/* Free additional data for a shadow gmap */
 195	if (gmap_is_shadow(gmap)) {
 196		/* Free all page tables. */
 197		list_for_each_entry_safe(page, next, &gmap->pt_list, lru)
 198			page_table_free_pgste(page);
 199		gmap_rmap_radix_tree_free(&gmap->host_to_rmap);
 200		/* Release reference to the parent */
 201		gmap_put(gmap->parent);
 202	}
 203
 204	kfree(gmap);
 205}
 206
 207/**
 208 * gmap_get - increase reference counter for guest address space
 209 * @gmap: pointer to the guest address space structure
 210 *
 211 * Returns the gmap pointer
 212 */
 213struct gmap *gmap_get(struct gmap *gmap)
 214{
 215	atomic_inc(&gmap->ref_count);
 216	return gmap;
 217}
 218EXPORT_SYMBOL_GPL(gmap_get);
 219
 220/**
 221 * gmap_put - decrease reference counter for guest address space
 222 * @gmap: pointer to the guest address space structure
 223 *
 224 * If the reference counter reaches zero the guest address space is freed.
 225 */
 226void gmap_put(struct gmap *gmap)
 227{
 228	if (atomic_dec_return(&gmap->ref_count) == 0)
 229		gmap_free(gmap);
 230}
 231EXPORT_SYMBOL_GPL(gmap_put);
 232
 233/**
 234 * gmap_remove - remove a guest address space but do not free it yet
 235 * @gmap: pointer to the guest address space structure
 236 */
 237void gmap_remove(struct gmap *gmap)
 238{
 239	struct gmap *sg, *next;
 240	unsigned long gmap_asce;
 241
 242	/* Remove all shadow gmaps linked to this gmap */
 243	if (!list_empty(&gmap->children)) {
 244		spin_lock(&gmap->shadow_lock);
 245		list_for_each_entry_safe(sg, next, &gmap->children, list) {
 246			list_del(&sg->list);
 247			gmap_put(sg);
 248		}
 249		spin_unlock(&gmap->shadow_lock);
 250	}
 251	/* Remove gmap from the pre-mm list */
 252	spin_lock(&gmap->mm->context.lock);
 253	list_del_rcu(&gmap->list);
 254	if (list_empty(&gmap->mm->context.gmap_list))
 255		gmap_asce = 0;
 256	else if (list_is_singular(&gmap->mm->context.gmap_list))
 257		gmap_asce = list_first_entry(&gmap->mm->context.gmap_list,
 258					     struct gmap, list)->asce;
 259	else
 260		gmap_asce = -1UL;
 261	WRITE_ONCE(gmap->mm->context.gmap_asce, gmap_asce);
 262	spin_unlock(&gmap->mm->context.lock);
 263	synchronize_rcu();
 264	/* Put reference */
 265	gmap_put(gmap);
 266}
 267EXPORT_SYMBOL_GPL(gmap_remove);
 268
 269/**
 270 * gmap_enable - switch primary space to the guest address space
 271 * @gmap: pointer to the guest address space structure
 272 */
 273void gmap_enable(struct gmap *gmap)
 274{
 275	S390_lowcore.gmap = (unsigned long) gmap;
 276}
 277EXPORT_SYMBOL_GPL(gmap_enable);
 278
 279/**
 280 * gmap_disable - switch back to the standard primary address space
 281 * @gmap: pointer to the guest address space structure
 282 */
 283void gmap_disable(struct gmap *gmap)
 284{
 285	S390_lowcore.gmap = 0UL;
 286}
 287EXPORT_SYMBOL_GPL(gmap_disable);
 288
 289/**
 290 * gmap_get_enabled - get a pointer to the currently enabled gmap
 291 *
 292 * Returns a pointer to the currently enabled gmap. 0 if none is enabled.
 293 */
 294struct gmap *gmap_get_enabled(void)
 295{
 296	return (struct gmap *) S390_lowcore.gmap;
 297}
 298EXPORT_SYMBOL_GPL(gmap_get_enabled);
 299
 300/*
 301 * gmap_alloc_table is assumed to be called with mmap_sem held
 302 */
 303static int gmap_alloc_table(struct gmap *gmap, unsigned long *table,
 304			    unsigned long init, unsigned long gaddr)
 305{
 306	struct page *page;
 307	unsigned long *new;
 308
 309	/* since we dont free the gmap table until gmap_free we can unlock */
 310	page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
 311	if (!page)
 312		return -ENOMEM;
 313	new = (unsigned long *) page_to_phys(page);
 314	crst_table_init(new, init);
 315	spin_lock(&gmap->guest_table_lock);
 316	if (*table & _REGION_ENTRY_INVALID) {
 317		list_add(&page->lru, &gmap->crst_list);
 318		*table = (unsigned long) new | _REGION_ENTRY_LENGTH |
 319			(*table & _REGION_ENTRY_TYPE_MASK);
 320		page->index = gaddr;
 321		page = NULL;
 322	}
 323	spin_unlock(&gmap->guest_table_lock);
 324	if (page)
 325		__free_pages(page, CRST_ALLOC_ORDER);
 326	return 0;
 327}
 328
 329/**
 330 * __gmap_segment_gaddr - find virtual address from segment pointer
 331 * @entry: pointer to a segment table entry in the guest address space
 332 *
 333 * Returns the virtual address in the guest address space for the segment
 334 */
 335static unsigned long __gmap_segment_gaddr(unsigned long *entry)
 336{
 337	struct page *page;
 338	unsigned long offset, mask;
 339
 340	offset = (unsigned long) entry / sizeof(unsigned long);
 341	offset = (offset & (PTRS_PER_PMD - 1)) * PMD_SIZE;
 342	mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
 343	page = virt_to_page((void *)((unsigned long) entry & mask));
 344	return page->index + offset;
 345}
 346
 347/**
 348 * __gmap_unlink_by_vmaddr - unlink a single segment via a host address
 349 * @gmap: pointer to the guest address space structure
 350 * @vmaddr: address in the host process address space
 351 *
 352 * Returns 1 if a TLB flush is required
 353 */
 354static int __gmap_unlink_by_vmaddr(struct gmap *gmap, unsigned long vmaddr)
 355{
 356	unsigned long *entry;
 357	int flush = 0;
 358
 359	BUG_ON(gmap_is_shadow(gmap));
 360	spin_lock(&gmap->guest_table_lock);
 361	entry = radix_tree_delete(&gmap->host_to_guest, vmaddr >> PMD_SHIFT);
 362	if (entry) {
 363		flush = (*entry != _SEGMENT_ENTRY_EMPTY);
 364		*entry = _SEGMENT_ENTRY_EMPTY;
 365	}
 366	spin_unlock(&gmap->guest_table_lock);
 367	return flush;
 368}
 369
 370/**
 371 * __gmap_unmap_by_gaddr - unmap a single segment via a guest address
 372 * @gmap: pointer to the guest address space structure
 373 * @gaddr: address in the guest address space
 374 *
 375 * Returns 1 if a TLB flush is required
 376 */
 377static int __gmap_unmap_by_gaddr(struct gmap *gmap, unsigned long gaddr)
 378{
 379	unsigned long vmaddr;
 380
 381	vmaddr = (unsigned long) radix_tree_delete(&gmap->guest_to_host,
 382						   gaddr >> PMD_SHIFT);
 383	return vmaddr ? __gmap_unlink_by_vmaddr(gmap, vmaddr) : 0;
 384}
 385
 386/**
 387 * gmap_unmap_segment - unmap segment from the guest address space
 388 * @gmap: pointer to the guest address space structure
 389 * @to: address in the guest address space
 390 * @len: length of the memory area to unmap
 391 *
 392 * Returns 0 if the unmap succeeded, -EINVAL if not.
 393 */
 394int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len)
 395{
 396	unsigned long off;
 397	int flush;
 398
 399	BUG_ON(gmap_is_shadow(gmap));
 400	if ((to | len) & (PMD_SIZE - 1))
 401		return -EINVAL;
 402	if (len == 0 || to + len < to)
 403		return -EINVAL;
 404
 405	flush = 0;
 406	down_write(&gmap->mm->mmap_sem);
 407	for (off = 0; off < len; off += PMD_SIZE)
 408		flush |= __gmap_unmap_by_gaddr(gmap, to + off);
 409	up_write(&gmap->mm->mmap_sem);
 410	if (flush)
 411		gmap_flush_tlb(gmap);
 412	return 0;
 413}
 414EXPORT_SYMBOL_GPL(gmap_unmap_segment);
 415
 416/**
 417 * gmap_map_segment - map a segment to the guest address space
 418 * @gmap: pointer to the guest address space structure
 419 * @from: source address in the parent address space
 420 * @to: target address in the guest address space
 421 * @len: length of the memory area to map
 422 *
 423 * Returns 0 if the mmap succeeded, -EINVAL or -ENOMEM if not.
 424 */
 425int gmap_map_segment(struct gmap *gmap, unsigned long from,
 426		     unsigned long to, unsigned long len)
 427{
 428	unsigned long off;
 429	int flush;
 430
 431	BUG_ON(gmap_is_shadow(gmap));
 432	if ((from | to | len) & (PMD_SIZE - 1))
 433		return -EINVAL;
 434	if (len == 0 || from + len < from || to + len < to ||
 435	    from + len - 1 > TASK_SIZE_MAX || to + len - 1 > gmap->asce_end)
 436		return -EINVAL;
 437
 438	flush = 0;
 439	down_write(&gmap->mm->mmap_sem);
 440	for (off = 0; off < len; off += PMD_SIZE) {
 441		/* Remove old translation */
 442		flush |= __gmap_unmap_by_gaddr(gmap, to + off);
 443		/* Store new translation */
 444		if (radix_tree_insert(&gmap->guest_to_host,
 445				      (to + off) >> PMD_SHIFT,
 446				      (void *) from + off))
 447			break;
 448	}
 449	up_write(&gmap->mm->mmap_sem);
 450	if (flush)
 451		gmap_flush_tlb(gmap);
 452	if (off >= len)
 453		return 0;
 454	gmap_unmap_segment(gmap, to, len);
 455	return -ENOMEM;
 456}
 457EXPORT_SYMBOL_GPL(gmap_map_segment);
 458
 459/**
 460 * __gmap_translate - translate a guest address to a user space address
 461 * @gmap: pointer to guest mapping meta data structure
 462 * @gaddr: guest address
 463 *
 464 * Returns user space address which corresponds to the guest address or
 465 * -EFAULT if no such mapping exists.
 466 * This function does not establish potentially missing page table entries.
 467 * The mmap_sem of the mm that belongs to the address space must be held
 468 * when this function gets called.
 469 *
 470 * Note: Can also be called for shadow gmaps.
 471 */
 472unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr)
 473{
 474	unsigned long vmaddr;
 475
 476	vmaddr = (unsigned long)
 477		radix_tree_lookup(&gmap->guest_to_host, gaddr >> PMD_SHIFT);
 478	/* Note: guest_to_host is empty for a shadow gmap */
 479	return vmaddr ? (vmaddr | (gaddr & ~PMD_MASK)) : -EFAULT;
 480}
 481EXPORT_SYMBOL_GPL(__gmap_translate);
 482
 483/**
 484 * gmap_translate - translate a guest address to a user space address
 485 * @gmap: pointer to guest mapping meta data structure
 486 * @gaddr: guest address
 487 *
 488 * Returns user space address which corresponds to the guest address or
 489 * -EFAULT if no such mapping exists.
 490 * This function does not establish potentially missing page table entries.
 491 */
 492unsigned long gmap_translate(struct gmap *gmap, unsigned long gaddr)
 493{
 494	unsigned long rc;
 495
 496	down_read(&gmap->mm->mmap_sem);
 497	rc = __gmap_translate(gmap, gaddr);
 498	up_read(&gmap->mm->mmap_sem);
 499	return rc;
 500}
 501EXPORT_SYMBOL_GPL(gmap_translate);
 502
 503/**
 504 * gmap_unlink - disconnect a page table from the gmap shadow tables
 505 * @gmap: pointer to guest mapping meta data structure
 506 * @table: pointer to the host page table
 507 * @vmaddr: vm address associated with the host page table
 508 */
 509void gmap_unlink(struct mm_struct *mm, unsigned long *table,
 510		 unsigned long vmaddr)
 511{
 512	struct gmap *gmap;
 513	int flush;
 514
 515	rcu_read_lock();
 516	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
 517		flush = __gmap_unlink_by_vmaddr(gmap, vmaddr);
 518		if (flush)
 519			gmap_flush_tlb(gmap);
 520	}
 521	rcu_read_unlock();
 522}
 523
 
 
 
 524/**
 525 * gmap_link - set up shadow page tables to connect a host to a guest address
 526 * @gmap: pointer to guest mapping meta data structure
 527 * @gaddr: guest address
 528 * @vmaddr: vm address
 529 *
 530 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
 531 * if the vm address is already mapped to a different guest segment.
 532 * The mmap_sem of the mm that belongs to the address space must be held
 533 * when this function gets called.
 534 */
 535int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr)
 536{
 537	struct mm_struct *mm;
 538	unsigned long *table;
 539	spinlock_t *ptl;
 540	pgd_t *pgd;
 541	p4d_t *p4d;
 542	pud_t *pud;
 543	pmd_t *pmd;
 
 544	int rc;
 545
 546	BUG_ON(gmap_is_shadow(gmap));
 547	/* Create higher level tables in the gmap page table */
 548	table = gmap->table;
 549	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION1) {
 550		table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT;
 551		if ((*table & _REGION_ENTRY_INVALID) &&
 552		    gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY,
 553				     gaddr & _REGION1_MASK))
 554			return -ENOMEM;
 555		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
 556	}
 557	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION2) {
 558		table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
 559		if ((*table & _REGION_ENTRY_INVALID) &&
 560		    gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY,
 561				     gaddr & _REGION2_MASK))
 562			return -ENOMEM;
 563		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
 564	}
 565	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION3) {
 566		table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
 567		if ((*table & _REGION_ENTRY_INVALID) &&
 568		    gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY,
 569				     gaddr & _REGION3_MASK))
 570			return -ENOMEM;
 571		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
 572	}
 573	table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
 574	/* Walk the parent mm page table */
 575	mm = gmap->mm;
 576	pgd = pgd_offset(mm, vmaddr);
 577	VM_BUG_ON(pgd_none(*pgd));
 578	p4d = p4d_offset(pgd, vmaddr);
 579	VM_BUG_ON(p4d_none(*p4d));
 580	pud = pud_offset(p4d, vmaddr);
 581	VM_BUG_ON(pud_none(*pud));
 582	/* large puds cannot yet be handled */
 583	if (pud_large(*pud))
 584		return -EFAULT;
 585	pmd = pmd_offset(pud, vmaddr);
 586	VM_BUG_ON(pmd_none(*pmd));
 587	/* large pmds cannot yet be handled */
 588	if (pmd_large(*pmd))
 589		return -EFAULT;
 590	/* Link gmap segment table entry location to page table. */
 591	rc = radix_tree_preload(GFP_KERNEL);
 592	if (rc)
 593		return rc;
 594	ptl = pmd_lock(mm, pmd);
 595	spin_lock(&gmap->guest_table_lock);
 596	if (*table == _SEGMENT_ENTRY_EMPTY) {
 597		rc = radix_tree_insert(&gmap->host_to_guest,
 598				       vmaddr >> PMD_SHIFT, table);
 599		if (!rc)
 600			*table = pmd_val(*pmd);
 601	} else
 602		rc = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 603	spin_unlock(&gmap->guest_table_lock);
 604	spin_unlock(ptl);
 605	radix_tree_preload_end();
 606	return rc;
 607}
 608
 609/**
 610 * gmap_fault - resolve a fault on a guest address
 611 * @gmap: pointer to guest mapping meta data structure
 612 * @gaddr: guest address
 613 * @fault_flags: flags to pass down to handle_mm_fault()
 614 *
 615 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
 616 * if the vm address is already mapped to a different guest segment.
 617 */
 618int gmap_fault(struct gmap *gmap, unsigned long gaddr,
 619	       unsigned int fault_flags)
 620{
 621	unsigned long vmaddr;
 622	int rc;
 623	bool unlocked;
 624
 625	down_read(&gmap->mm->mmap_sem);
 626
 627retry:
 628	unlocked = false;
 629	vmaddr = __gmap_translate(gmap, gaddr);
 630	if (IS_ERR_VALUE(vmaddr)) {
 631		rc = vmaddr;
 632		goto out_up;
 633	}
 634	if (fixup_user_fault(current, gmap->mm, vmaddr, fault_flags,
 635			     &unlocked)) {
 636		rc = -EFAULT;
 637		goto out_up;
 638	}
 639	/*
 640	 * In the case that fixup_user_fault unlocked the mmap_sem during
 641	 * faultin redo __gmap_translate to not race with a map/unmap_segment.
 642	 */
 643	if (unlocked)
 644		goto retry;
 645
 646	rc = __gmap_link(gmap, gaddr, vmaddr);
 647out_up:
 648	up_read(&gmap->mm->mmap_sem);
 649	return rc;
 650}
 651EXPORT_SYMBOL_GPL(gmap_fault);
 652
 653/*
 654 * this function is assumed to be called with mmap_sem held
 655 */
 656void __gmap_zap(struct gmap *gmap, unsigned long gaddr)
 657{
 
 658	unsigned long vmaddr;
 659	spinlock_t *ptl;
 660	pte_t *ptep;
 661
 662	/* Find the vm address for the guest address */
 663	vmaddr = (unsigned long) radix_tree_lookup(&gmap->guest_to_host,
 664						   gaddr >> PMD_SHIFT);
 665	if (vmaddr) {
 666		vmaddr |= gaddr & ~PMD_MASK;
 
 
 
 
 
 667		/* Get pointer to the page table entry */
 668		ptep = get_locked_pte(gmap->mm, vmaddr, &ptl);
 669		if (likely(ptep))
 670			ptep_zap_unused(gmap->mm, vmaddr, ptep, 0);
 671		pte_unmap_unlock(ptep, ptl);
 
 672	}
 673}
 674EXPORT_SYMBOL_GPL(__gmap_zap);
 675
 676void gmap_discard(struct gmap *gmap, unsigned long from, unsigned long to)
 677{
 678	unsigned long gaddr, vmaddr, size;
 679	struct vm_area_struct *vma;
 680
 681	down_read(&gmap->mm->mmap_sem);
 682	for (gaddr = from; gaddr < to;
 683	     gaddr = (gaddr + PMD_SIZE) & PMD_MASK) {
 684		/* Find the vm address for the guest address */
 685		vmaddr = (unsigned long)
 686			radix_tree_lookup(&gmap->guest_to_host,
 687					  gaddr >> PMD_SHIFT);
 688		if (!vmaddr)
 689			continue;
 690		vmaddr |= gaddr & ~PMD_MASK;
 691		/* Find vma in the parent mm */
 692		vma = find_vma(gmap->mm, vmaddr);
 
 
 
 
 
 
 
 
 693		size = min(to - gaddr, PMD_SIZE - (gaddr & ~PMD_MASK));
 694		zap_page_range(vma, vmaddr, size);
 695	}
 696	up_read(&gmap->mm->mmap_sem);
 697}
 698EXPORT_SYMBOL_GPL(gmap_discard);
 699
 700static LIST_HEAD(gmap_notifier_list);
 701static DEFINE_SPINLOCK(gmap_notifier_lock);
 702
 703/**
 704 * gmap_register_pte_notifier - register a pte invalidation callback
 705 * @nb: pointer to the gmap notifier block
 706 */
 707void gmap_register_pte_notifier(struct gmap_notifier *nb)
 708{
 709	spin_lock(&gmap_notifier_lock);
 710	list_add_rcu(&nb->list, &gmap_notifier_list);
 711	spin_unlock(&gmap_notifier_lock);
 712}
 713EXPORT_SYMBOL_GPL(gmap_register_pte_notifier);
 714
 715/**
 716 * gmap_unregister_pte_notifier - remove a pte invalidation callback
 717 * @nb: pointer to the gmap notifier block
 718 */
 719void gmap_unregister_pte_notifier(struct gmap_notifier *nb)
 720{
 721	spin_lock(&gmap_notifier_lock);
 722	list_del_rcu(&nb->list);
 723	spin_unlock(&gmap_notifier_lock);
 724	synchronize_rcu();
 725}
 726EXPORT_SYMBOL_GPL(gmap_unregister_pte_notifier);
 727
 728/**
 729 * gmap_call_notifier - call all registered invalidation callbacks
 730 * @gmap: pointer to guest mapping meta data structure
 731 * @start: start virtual address in the guest address space
 732 * @end: end virtual address in the guest address space
 733 */
 734static void gmap_call_notifier(struct gmap *gmap, unsigned long start,
 735			       unsigned long end)
 736{
 737	struct gmap_notifier *nb;
 738
 739	list_for_each_entry(nb, &gmap_notifier_list, list)
 740		nb->notifier_call(gmap, start, end);
 741}
 742
 743/**
 744 * gmap_table_walk - walk the gmap page tables
 745 * @gmap: pointer to guest mapping meta data structure
 746 * @gaddr: virtual address in the guest address space
 747 * @level: page table level to stop at
 748 *
 749 * Returns a table entry pointer for the given guest address and @level
 750 * @level=0 : returns a pointer to a page table table entry (or NULL)
 751 * @level=1 : returns a pointer to a segment table entry (or NULL)
 752 * @level=2 : returns a pointer to a region-3 table entry (or NULL)
 753 * @level=3 : returns a pointer to a region-2 table entry (or NULL)
 754 * @level=4 : returns a pointer to a region-1 table entry (or NULL)
 755 *
 756 * Returns NULL if the gmap page tables could not be walked to the
 757 * requested level.
 758 *
 759 * Note: Can also be called for shadow gmaps.
 760 */
 761static inline unsigned long *gmap_table_walk(struct gmap *gmap,
 762					     unsigned long gaddr, int level)
 763{
 764	unsigned long *table;
 
 765
 766	if ((gmap->asce & _ASCE_TYPE_MASK) + 4 < (level * 4))
 767		return NULL;
 768	if (gmap_is_shadow(gmap) && gmap->removed)
 
 769		return NULL;
 770	if (gaddr & (-1UL << (31 + ((gmap->asce & _ASCE_TYPE_MASK) >> 2)*11)))
 
 
 771		return NULL;
 772	table = gmap->table;
 773	switch (gmap->asce & _ASCE_TYPE_MASK) {
 774	case _ASCE_TYPE_REGION1:
 775		table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT;
 776		if (level == 4)
 777			break;
 778		if (*table & _REGION_ENTRY_INVALID)
 779			return NULL;
 780		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
 781		/* Fallthrough */
 782	case _ASCE_TYPE_REGION2:
 783		table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
 784		if (level == 3)
 785			break;
 786		if (*table & _REGION_ENTRY_INVALID)
 787			return NULL;
 788		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
 789		/* Fallthrough */
 790	case _ASCE_TYPE_REGION3:
 791		table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
 792		if (level == 2)
 793			break;
 794		if (*table & _REGION_ENTRY_INVALID)
 795			return NULL;
 796		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
 797		/* Fallthrough */
 798	case _ASCE_TYPE_SEGMENT:
 799		table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
 800		if (level == 1)
 801			break;
 802		if (*table & _REGION_ENTRY_INVALID)
 803			return NULL;
 804		table = (unsigned long *)(*table & _SEGMENT_ENTRY_ORIGIN);
 805		table += (gaddr & _PAGE_INDEX) >> _PAGE_SHIFT;
 806	}
 807	return table;
 808}
 809
 810/**
 811 * gmap_pte_op_walk - walk the gmap page table, get the page table lock
 812 *		      and return the pte pointer
 813 * @gmap: pointer to guest mapping meta data structure
 814 * @gaddr: virtual address in the guest address space
 815 * @ptl: pointer to the spinlock pointer
 816 *
 817 * Returns a pointer to the locked pte for a guest address, or NULL
 818 */
 819static pte_t *gmap_pte_op_walk(struct gmap *gmap, unsigned long gaddr,
 820			       spinlock_t **ptl)
 821{
 822	unsigned long *table;
 823
 824	BUG_ON(gmap_is_shadow(gmap));
 825	/* Walk the gmap page table, lock and get pte pointer */
 826	table = gmap_table_walk(gmap, gaddr, 1); /* get segment pointer */
 827	if (!table || *table & _SEGMENT_ENTRY_INVALID)
 828		return NULL;
 829	return pte_alloc_map_lock(gmap->mm, (pmd_t *) table, gaddr, ptl);
 830}
 831
 832/**
 833 * gmap_pte_op_fixup - force a page in and connect the gmap page table
 834 * @gmap: pointer to guest mapping meta data structure
 835 * @gaddr: virtual address in the guest address space
 836 * @vmaddr: address in the host process address space
 837 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
 838 *
 839 * Returns 0 if the caller can retry __gmap_translate (might fail again),
 840 * -ENOMEM if out of memory and -EFAULT if anything goes wrong while fixing
 841 * up or connecting the gmap page table.
 842 */
 843static int gmap_pte_op_fixup(struct gmap *gmap, unsigned long gaddr,
 844			     unsigned long vmaddr, int prot)
 845{
 846	struct mm_struct *mm = gmap->mm;
 847	unsigned int fault_flags;
 848	bool unlocked = false;
 849
 850	BUG_ON(gmap_is_shadow(gmap));
 851	fault_flags = (prot == PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
 852	if (fixup_user_fault(current, mm, vmaddr, fault_flags, &unlocked))
 853		return -EFAULT;
 854	if (unlocked)
 855		/* lost mmap_sem, caller has to retry __gmap_translate */
 856		return 0;
 857	/* Connect the page tables */
 858	return __gmap_link(gmap, gaddr, vmaddr);
 859}
 860
 861/**
 862 * gmap_pte_op_end - release the page table lock
 863 * @ptl: pointer to the spinlock pointer
 864 */
 865static void gmap_pte_op_end(spinlock_t *ptl)
 866{
 867	spin_unlock(ptl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 868}
 869
 870/*
 871 * gmap_protect_range - remove access rights to memory and set pgste bits
 872 * @gmap: pointer to guest mapping meta data structure
 873 * @gaddr: virtual address in the guest address space
 874 * @len: size of area
 875 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
 876 * @bits: pgste notification bits to set
 877 *
 878 * Returns 0 if successfully protected, -ENOMEM if out of memory and
 879 * -EFAULT if gaddr is invalid (or mapping for shadows is missing).
 880 *
 881 * Called with sg->mm->mmap_sem in read.
 882 */
 883static int gmap_protect_range(struct gmap *gmap, unsigned long gaddr,
 884			      unsigned long len, int prot, unsigned long bits)
 885{
 886	unsigned long vmaddr;
 887	spinlock_t *ptl;
 888	pte_t *ptep;
 889	int rc;
 890
 891	BUG_ON(gmap_is_shadow(gmap));
 892	while (len) {
 893		rc = -EAGAIN;
 894		ptep = gmap_pte_op_walk(gmap, gaddr, &ptl);
 895		if (ptep) {
 896			rc = ptep_force_prot(gmap->mm, gaddr, ptep, prot, bits);
 897			gmap_pte_op_end(ptl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 898		}
 899		if (rc) {
 
 
 
 
 900			vmaddr = __gmap_translate(gmap, gaddr);
 901			if (IS_ERR_VALUE(vmaddr))
 902				return vmaddr;
 903			rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, prot);
 904			if (rc)
 905				return rc;
 906			continue;
 907		}
 908		gaddr += PAGE_SIZE;
 909		len -= PAGE_SIZE;
 910	}
 911	return 0;
 912}
 913
 914/**
 915 * gmap_mprotect_notify - change access rights for a range of ptes and
 916 *                        call the notifier if any pte changes again
 917 * @gmap: pointer to guest mapping meta data structure
 918 * @gaddr: virtual address in the guest address space
 919 * @len: size of area
 920 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
 921 *
 922 * Returns 0 if for each page in the given range a gmap mapping exists,
 923 * the new access rights could be set and the notifier could be armed.
 924 * If the gmap mapping is missing for one or more pages -EFAULT is
 925 * returned. If no memory could be allocated -ENOMEM is returned.
 926 * This function establishes missing page table entries.
 927 */
 928int gmap_mprotect_notify(struct gmap *gmap, unsigned long gaddr,
 929			 unsigned long len, int prot)
 930{
 931	int rc;
 932
 933	if ((gaddr & ~PAGE_MASK) || (len & ~PAGE_MASK) || gmap_is_shadow(gmap))
 934		return -EINVAL;
 935	if (!MACHINE_HAS_ESOP && prot == PROT_READ)
 936		return -EINVAL;
 937	down_read(&gmap->mm->mmap_sem);
 938	rc = gmap_protect_range(gmap, gaddr, len, prot, PGSTE_IN_BIT);
 939	up_read(&gmap->mm->mmap_sem);
 940	return rc;
 941}
 942EXPORT_SYMBOL_GPL(gmap_mprotect_notify);
 943
 944/**
 945 * gmap_read_table - get an unsigned long value from a guest page table using
 946 *                   absolute addressing, without marking the page referenced.
 947 * @gmap: pointer to guest mapping meta data structure
 948 * @gaddr: virtual address in the guest address space
 949 * @val: pointer to the unsigned long value to return
 950 *
 951 * Returns 0 if the value was read, -ENOMEM if out of memory and -EFAULT
 952 * if reading using the virtual address failed. -EINVAL if called on a gmap
 953 * shadow.
 954 *
 955 * Called with gmap->mm->mmap_sem in read.
 956 */
 957int gmap_read_table(struct gmap *gmap, unsigned long gaddr, unsigned long *val)
 958{
 959	unsigned long address, vmaddr;
 960	spinlock_t *ptl;
 961	pte_t *ptep, pte;
 962	int rc;
 963
 964	if (gmap_is_shadow(gmap))
 965		return -EINVAL;
 966
 967	while (1) {
 968		rc = -EAGAIN;
 969		ptep = gmap_pte_op_walk(gmap, gaddr, &ptl);
 970		if (ptep) {
 971			pte = *ptep;
 972			if (pte_present(pte) && (pte_val(pte) & _PAGE_READ)) {
 973				address = pte_val(pte) & PAGE_MASK;
 974				address += gaddr & ~PAGE_MASK;
 975				*val = *(unsigned long *) address;
 976				pte_val(*ptep) |= _PAGE_YOUNG;
 977				/* Do *NOT* clear the _PAGE_INVALID bit! */
 978				rc = 0;
 979			}
 980			gmap_pte_op_end(ptl);
 981		}
 982		if (!rc)
 983			break;
 984		vmaddr = __gmap_translate(gmap, gaddr);
 985		if (IS_ERR_VALUE(vmaddr)) {
 986			rc = vmaddr;
 987			break;
 988		}
 989		rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, PROT_READ);
 990		if (rc)
 991			break;
 992	}
 993	return rc;
 994}
 995EXPORT_SYMBOL_GPL(gmap_read_table);
 996
 997/**
 998 * gmap_insert_rmap - add a rmap to the host_to_rmap radix tree
 999 * @sg: pointer to the shadow guest address space structure
1000 * @vmaddr: vm address associated with the rmap
1001 * @rmap: pointer to the rmap structure
1002 *
1003 * Called with the sg->guest_table_lock
1004 */
1005static inline void gmap_insert_rmap(struct gmap *sg, unsigned long vmaddr,
1006				    struct gmap_rmap *rmap)
1007{
 
1008	void __rcu **slot;
1009
1010	BUG_ON(!gmap_is_shadow(sg));
1011	slot = radix_tree_lookup_slot(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
1012	if (slot) {
1013		rmap->next = radix_tree_deref_slot_protected(slot,
1014							&sg->guest_table_lock);
 
 
 
 
 
 
1015		radix_tree_replace_slot(&sg->host_to_rmap, slot, rmap);
1016	} else {
1017		rmap->next = NULL;
1018		radix_tree_insert(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT,
1019				  rmap);
1020	}
1021}
1022
1023/**
1024 * gmap_protect_rmap - restrict access rights to memory (RO) and create an rmap
1025 * @sg: pointer to the shadow guest address space structure
1026 * @raddr: rmap address in the shadow gmap
1027 * @paddr: address in the parent guest address space
1028 * @len: length of the memory area to protect
1029 *
1030 * Returns 0 if successfully protected and the rmap was created, -ENOMEM
1031 * if out of memory and -EFAULT if paddr is invalid.
1032 */
1033static int gmap_protect_rmap(struct gmap *sg, unsigned long raddr,
1034			     unsigned long paddr, unsigned long len)
1035{
1036	struct gmap *parent;
1037	struct gmap_rmap *rmap;
1038	unsigned long vmaddr;
1039	spinlock_t *ptl;
1040	pte_t *ptep;
1041	int rc;
1042
1043	BUG_ON(!gmap_is_shadow(sg));
1044	parent = sg->parent;
1045	while (len) {
1046		vmaddr = __gmap_translate(parent, paddr);
1047		if (IS_ERR_VALUE(vmaddr))
1048			return vmaddr;
1049		rmap = kzalloc(sizeof(*rmap), GFP_KERNEL);
1050		if (!rmap)
1051			return -ENOMEM;
1052		rmap->raddr = raddr;
1053		rc = radix_tree_preload(GFP_KERNEL);
1054		if (rc) {
1055			kfree(rmap);
1056			return rc;
1057		}
1058		rc = -EAGAIN;
1059		ptep = gmap_pte_op_walk(parent, paddr, &ptl);
1060		if (ptep) {
1061			spin_lock(&sg->guest_table_lock);
1062			rc = ptep_force_prot(parent->mm, paddr, ptep, PROT_READ,
1063					     PGSTE_VSIE_BIT);
1064			if (!rc)
1065				gmap_insert_rmap(sg, vmaddr, rmap);
1066			spin_unlock(&sg->guest_table_lock);
1067			gmap_pte_op_end(ptl);
1068		}
1069		radix_tree_preload_end();
1070		if (rc) {
1071			kfree(rmap);
1072			rc = gmap_pte_op_fixup(parent, paddr, vmaddr, PROT_READ);
1073			if (rc)
1074				return rc;
1075			continue;
1076		}
1077		paddr += PAGE_SIZE;
1078		len -= PAGE_SIZE;
1079	}
1080	return 0;
1081}
1082
1083#define _SHADOW_RMAP_MASK	0x7
1084#define _SHADOW_RMAP_REGION1	0x5
1085#define _SHADOW_RMAP_REGION2	0x4
1086#define _SHADOW_RMAP_REGION3	0x3
1087#define _SHADOW_RMAP_SEGMENT	0x2
1088#define _SHADOW_RMAP_PGTABLE	0x1
1089
1090/**
1091 * gmap_idte_one - invalidate a single region or segment table entry
1092 * @asce: region or segment table *origin* + table-type bits
1093 * @vaddr: virtual address to identify the table entry to flush
1094 *
1095 * The invalid bit of a single region or segment table entry is set
1096 * and the associated TLB entries depending on the entry are flushed.
1097 * The table-type of the @asce identifies the portion of the @vaddr
1098 * that is used as the invalidation index.
1099 */
1100static inline void gmap_idte_one(unsigned long asce, unsigned long vaddr)
1101{
1102	asm volatile(
1103		"	.insn	rrf,0xb98e0000,%0,%1,0,0"
1104		: : "a" (asce), "a" (vaddr) : "cc", "memory");
1105}
1106
1107/**
1108 * gmap_unshadow_page - remove a page from a shadow page table
1109 * @sg: pointer to the shadow guest address space structure
1110 * @raddr: rmap address in the shadow guest address space
1111 *
1112 * Called with the sg->guest_table_lock
1113 */
1114static void gmap_unshadow_page(struct gmap *sg, unsigned long raddr)
1115{
1116	unsigned long *table;
1117
1118	BUG_ON(!gmap_is_shadow(sg));
1119	table = gmap_table_walk(sg, raddr, 0); /* get page table pointer */
1120	if (!table || *table & _PAGE_INVALID)
1121		return;
1122	gmap_call_notifier(sg, raddr, raddr + _PAGE_SIZE - 1);
1123	ptep_unshadow_pte(sg->mm, raddr, (pte_t *) table);
1124}
1125
1126/**
1127 * __gmap_unshadow_pgt - remove all entries from a shadow page table
1128 * @sg: pointer to the shadow guest address space structure
1129 * @raddr: rmap address in the shadow guest address space
1130 * @pgt: pointer to the start of a shadow page table
1131 *
1132 * Called with the sg->guest_table_lock
1133 */
1134static void __gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr,
1135				unsigned long *pgt)
1136{
1137	int i;
1138
1139	BUG_ON(!gmap_is_shadow(sg));
1140	for (i = 0; i < _PAGE_ENTRIES; i++, raddr += _PAGE_SIZE)
1141		pgt[i] = _PAGE_INVALID;
1142}
1143
1144/**
1145 * gmap_unshadow_pgt - remove a shadow page table from a segment entry
1146 * @sg: pointer to the shadow guest address space structure
1147 * @raddr: address in the shadow guest address space
1148 *
1149 * Called with the sg->guest_table_lock
1150 */
1151static void gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr)
1152{
1153	unsigned long sto, *ste, *pgt;
 
1154	struct page *page;
1155
1156	BUG_ON(!gmap_is_shadow(sg));
1157	ste = gmap_table_walk(sg, raddr, 1); /* get segment pointer */
1158	if (!ste || !(*ste & _SEGMENT_ENTRY_ORIGIN))
1159		return;
1160	gmap_call_notifier(sg, raddr, raddr + _SEGMENT_SIZE - 1);
1161	sto = (unsigned long) (ste - ((raddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT));
1162	gmap_idte_one(sto | _ASCE_TYPE_SEGMENT, raddr);
1163	pgt = (unsigned long *)(*ste & _SEGMENT_ENTRY_ORIGIN);
1164	*ste = _SEGMENT_ENTRY_EMPTY;
1165	__gmap_unshadow_pgt(sg, raddr, pgt);
1166	/* Free page table */
1167	page = pfn_to_page(__pa(pgt) >> PAGE_SHIFT);
1168	list_del(&page->lru);
1169	page_table_free_pgste(page);
1170}
1171
1172/**
1173 * __gmap_unshadow_sgt - remove all entries from a shadow segment table
1174 * @sg: pointer to the shadow guest address space structure
1175 * @raddr: rmap address in the shadow guest address space
1176 * @sgt: pointer to the start of a shadow segment table
1177 *
1178 * Called with the sg->guest_table_lock
1179 */
1180static void __gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr,
1181				unsigned long *sgt)
1182{
1183	unsigned long *pgt;
1184	struct page *page;
 
1185	int i;
1186
1187	BUG_ON(!gmap_is_shadow(sg));
1188	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _SEGMENT_SIZE) {
1189		if (!(sgt[i] & _SEGMENT_ENTRY_ORIGIN))
1190			continue;
1191		pgt = (unsigned long *)(sgt[i] & _REGION_ENTRY_ORIGIN);
1192		sgt[i] = _SEGMENT_ENTRY_EMPTY;
1193		__gmap_unshadow_pgt(sg, raddr, pgt);
1194		/* Free page table */
1195		page = pfn_to_page(__pa(pgt) >> PAGE_SHIFT);
1196		list_del(&page->lru);
1197		page_table_free_pgste(page);
1198	}
1199}
1200
1201/**
1202 * gmap_unshadow_sgt - remove a shadow segment table from a region-3 entry
1203 * @sg: pointer to the shadow guest address space structure
1204 * @raddr: rmap address in the shadow guest address space
1205 *
1206 * Called with the shadow->guest_table_lock
1207 */
1208static void gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr)
1209{
1210	unsigned long r3o, *r3e, *sgt;
 
1211	struct page *page;
1212
1213	BUG_ON(!gmap_is_shadow(sg));
1214	r3e = gmap_table_walk(sg, raddr, 2); /* get region-3 pointer */
1215	if (!r3e || !(*r3e & _REGION_ENTRY_ORIGIN))
1216		return;
1217	gmap_call_notifier(sg, raddr, raddr + _REGION3_SIZE - 1);
1218	r3o = (unsigned long) (r3e - ((raddr & _REGION3_INDEX) >> _REGION3_SHIFT));
1219	gmap_idte_one(r3o | _ASCE_TYPE_REGION3, raddr);
1220	sgt = (unsigned long *)(*r3e & _REGION_ENTRY_ORIGIN);
1221	*r3e = _REGION3_ENTRY_EMPTY;
1222	__gmap_unshadow_sgt(sg, raddr, sgt);
1223	/* Free segment table */
1224	page = pfn_to_page(__pa(sgt) >> PAGE_SHIFT);
1225	list_del(&page->lru);
1226	__free_pages(page, CRST_ALLOC_ORDER);
1227}
1228
1229/**
1230 * __gmap_unshadow_r3t - remove all entries from a shadow region-3 table
1231 * @sg: pointer to the shadow guest address space structure
1232 * @raddr: address in the shadow guest address space
1233 * @r3t: pointer to the start of a shadow region-3 table
1234 *
1235 * Called with the sg->guest_table_lock
1236 */
1237static void __gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr,
1238				unsigned long *r3t)
1239{
1240	unsigned long *sgt;
1241	struct page *page;
 
1242	int i;
1243
1244	BUG_ON(!gmap_is_shadow(sg));
1245	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION3_SIZE) {
1246		if (!(r3t[i] & _REGION_ENTRY_ORIGIN))
1247			continue;
1248		sgt = (unsigned long *)(r3t[i] & _REGION_ENTRY_ORIGIN);
1249		r3t[i] = _REGION3_ENTRY_EMPTY;
1250		__gmap_unshadow_sgt(sg, raddr, sgt);
1251		/* Free segment table */
1252		page = pfn_to_page(__pa(sgt) >> PAGE_SHIFT);
1253		list_del(&page->lru);
1254		__free_pages(page, CRST_ALLOC_ORDER);
1255	}
1256}
1257
1258/**
1259 * gmap_unshadow_r3t - remove a shadow region-3 table from a region-2 entry
1260 * @sg: pointer to the shadow guest address space structure
1261 * @raddr: rmap address in the shadow guest address space
1262 *
1263 * Called with the sg->guest_table_lock
1264 */
1265static void gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr)
1266{
1267	unsigned long r2o, *r2e, *r3t;
 
1268	struct page *page;
1269
1270	BUG_ON(!gmap_is_shadow(sg));
1271	r2e = gmap_table_walk(sg, raddr, 3); /* get region-2 pointer */
1272	if (!r2e || !(*r2e & _REGION_ENTRY_ORIGIN))
1273		return;
1274	gmap_call_notifier(sg, raddr, raddr + _REGION2_SIZE - 1);
1275	r2o = (unsigned long) (r2e - ((raddr & _REGION2_INDEX) >> _REGION2_SHIFT));
1276	gmap_idte_one(r2o | _ASCE_TYPE_REGION2, raddr);
1277	r3t = (unsigned long *)(*r2e & _REGION_ENTRY_ORIGIN);
1278	*r2e = _REGION2_ENTRY_EMPTY;
1279	__gmap_unshadow_r3t(sg, raddr, r3t);
1280	/* Free region 3 table */
1281	page = pfn_to_page(__pa(r3t) >> PAGE_SHIFT);
1282	list_del(&page->lru);
1283	__free_pages(page, CRST_ALLOC_ORDER);
1284}
1285
1286/**
1287 * __gmap_unshadow_r2t - remove all entries from a shadow region-2 table
1288 * @sg: pointer to the shadow guest address space structure
1289 * @raddr: rmap address in the shadow guest address space
1290 * @r2t: pointer to the start of a shadow region-2 table
1291 *
1292 * Called with the sg->guest_table_lock
1293 */
1294static void __gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr,
1295				unsigned long *r2t)
1296{
1297	unsigned long *r3t;
1298	struct page *page;
1299	int i;
1300
1301	BUG_ON(!gmap_is_shadow(sg));
1302	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION2_SIZE) {
1303		if (!(r2t[i] & _REGION_ENTRY_ORIGIN))
1304			continue;
1305		r3t = (unsigned long *)(r2t[i] & _REGION_ENTRY_ORIGIN);
1306		r2t[i] = _REGION2_ENTRY_EMPTY;
1307		__gmap_unshadow_r3t(sg, raddr, r3t);
1308		/* Free region 3 table */
1309		page = pfn_to_page(__pa(r3t) >> PAGE_SHIFT);
1310		list_del(&page->lru);
1311		__free_pages(page, CRST_ALLOC_ORDER);
1312	}
1313}
1314
1315/**
1316 * gmap_unshadow_r2t - remove a shadow region-2 table from a region-1 entry
1317 * @sg: pointer to the shadow guest address space structure
1318 * @raddr: rmap address in the shadow guest address space
1319 *
1320 * Called with the sg->guest_table_lock
1321 */
1322static void gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr)
1323{
1324	unsigned long r1o, *r1e, *r2t;
1325	struct page *page;
 
1326
1327	BUG_ON(!gmap_is_shadow(sg));
1328	r1e = gmap_table_walk(sg, raddr, 4); /* get region-1 pointer */
1329	if (!r1e || !(*r1e & _REGION_ENTRY_ORIGIN))
1330		return;
1331	gmap_call_notifier(sg, raddr, raddr + _REGION1_SIZE - 1);
1332	r1o = (unsigned long) (r1e - ((raddr & _REGION1_INDEX) >> _REGION1_SHIFT));
1333	gmap_idte_one(r1o | _ASCE_TYPE_REGION1, raddr);
1334	r2t = (unsigned long *)(*r1e & _REGION_ENTRY_ORIGIN);
1335	*r1e = _REGION1_ENTRY_EMPTY;
1336	__gmap_unshadow_r2t(sg, raddr, r2t);
1337	/* Free region 2 table */
1338	page = pfn_to_page(__pa(r2t) >> PAGE_SHIFT);
1339	list_del(&page->lru);
1340	__free_pages(page, CRST_ALLOC_ORDER);
1341}
1342
1343/**
1344 * __gmap_unshadow_r1t - remove all entries from a shadow region-1 table
1345 * @sg: pointer to the shadow guest address space structure
1346 * @raddr: rmap address in the shadow guest address space
1347 * @r1t: pointer to the start of a shadow region-1 table
1348 *
1349 * Called with the shadow->guest_table_lock
1350 */
1351static void __gmap_unshadow_r1t(struct gmap *sg, unsigned long raddr,
1352				unsigned long *r1t)
1353{
1354	unsigned long asce, *r2t;
1355	struct page *page;
 
1356	int i;
1357
1358	BUG_ON(!gmap_is_shadow(sg));
1359	asce = (unsigned long) r1t | _ASCE_TYPE_REGION1;
1360	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION1_SIZE) {
1361		if (!(r1t[i] & _REGION_ENTRY_ORIGIN))
1362			continue;
1363		r2t = (unsigned long *)(r1t[i] & _REGION_ENTRY_ORIGIN);
1364		__gmap_unshadow_r2t(sg, raddr, r2t);
1365		/* Clear entry and flush translation r1t -> r2t */
1366		gmap_idte_one(asce, raddr);
1367		r1t[i] = _REGION1_ENTRY_EMPTY;
1368		/* Free region 2 table */
1369		page = pfn_to_page(__pa(r2t) >> PAGE_SHIFT);
1370		list_del(&page->lru);
1371		__free_pages(page, CRST_ALLOC_ORDER);
1372	}
1373}
1374
1375/**
1376 * gmap_unshadow - remove a shadow page table completely
1377 * @sg: pointer to the shadow guest address space structure
1378 *
1379 * Called with sg->guest_table_lock
1380 */
1381static void gmap_unshadow(struct gmap *sg)
1382{
1383	unsigned long *table;
1384
1385	BUG_ON(!gmap_is_shadow(sg));
1386	if (sg->removed)
1387		return;
1388	sg->removed = 1;
1389	gmap_call_notifier(sg, 0, -1UL);
1390	gmap_flush_tlb(sg);
1391	table = (unsigned long *)(sg->asce & _ASCE_ORIGIN);
1392	switch (sg->asce & _ASCE_TYPE_MASK) {
1393	case _ASCE_TYPE_REGION1:
1394		__gmap_unshadow_r1t(sg, 0, table);
1395		break;
1396	case _ASCE_TYPE_REGION2:
1397		__gmap_unshadow_r2t(sg, 0, table);
1398		break;
1399	case _ASCE_TYPE_REGION3:
1400		__gmap_unshadow_r3t(sg, 0, table);
1401		break;
1402	case _ASCE_TYPE_SEGMENT:
1403		__gmap_unshadow_sgt(sg, 0, table);
1404		break;
1405	}
1406}
1407
1408/**
1409 * gmap_find_shadow - find a specific asce in the list of shadow tables
1410 * @parent: pointer to the parent gmap
1411 * @asce: ASCE for which the shadow table is created
1412 * @edat_level: edat level to be used for the shadow translation
1413 *
1414 * Returns the pointer to a gmap if a shadow table with the given asce is
1415 * already available, ERR_PTR(-EAGAIN) if another one is just being created,
1416 * otherwise NULL
1417 */
1418static struct gmap *gmap_find_shadow(struct gmap *parent, unsigned long asce,
1419				     int edat_level)
1420{
1421	struct gmap *sg;
1422
1423	list_for_each_entry(sg, &parent->children, list) {
1424		if (sg->orig_asce != asce || sg->edat_level != edat_level ||
1425		    sg->removed)
1426			continue;
1427		if (!sg->initialized)
1428			return ERR_PTR(-EAGAIN);
1429		atomic_inc(&sg->ref_count);
1430		return sg;
1431	}
1432	return NULL;
1433}
1434
1435/**
1436 * gmap_shadow_valid - check if a shadow guest address space matches the
1437 *                     given properties and is still valid
1438 * @sg: pointer to the shadow guest address space structure
1439 * @asce: ASCE for which the shadow table is requested
1440 * @edat_level: edat level to be used for the shadow translation
1441 *
1442 * Returns 1 if the gmap shadow is still valid and matches the given
1443 * properties, the caller can continue using it. Returns 0 otherwise, the
1444 * caller has to request a new shadow gmap in this case.
1445 *
1446 */
1447int gmap_shadow_valid(struct gmap *sg, unsigned long asce, int edat_level)
1448{
1449	if (sg->removed)
1450		return 0;
1451	return sg->orig_asce == asce && sg->edat_level == edat_level;
1452}
1453EXPORT_SYMBOL_GPL(gmap_shadow_valid);
1454
1455/**
1456 * gmap_shadow - create/find a shadow guest address space
1457 * @parent: pointer to the parent gmap
1458 * @asce: ASCE for which the shadow table is created
1459 * @edat_level: edat level to be used for the shadow translation
1460 *
1461 * The pages of the top level page table referred by the asce parameter
1462 * will be set to read-only and marked in the PGSTEs of the kvm process.
1463 * The shadow table will be removed automatically on any change to the
1464 * PTE mapping for the source table.
1465 *
1466 * Returns a guest address space structure, ERR_PTR(-ENOMEM) if out of memory,
1467 * ERR_PTR(-EAGAIN) if the caller has to retry and ERR_PTR(-EFAULT) if the
1468 * parent gmap table could not be protected.
1469 */
1470struct gmap *gmap_shadow(struct gmap *parent, unsigned long asce,
1471			 int edat_level)
1472{
1473	struct gmap *sg, *new;
1474	unsigned long limit;
1475	int rc;
1476
 
1477	BUG_ON(gmap_is_shadow(parent));
1478	spin_lock(&parent->shadow_lock);
1479	sg = gmap_find_shadow(parent, asce, edat_level);
1480	spin_unlock(&parent->shadow_lock);
1481	if (sg)
1482		return sg;
1483	/* Create a new shadow gmap */
1484	limit = -1UL >> (33 - (((asce & _ASCE_TYPE_MASK) >> 2) * 11));
1485	if (asce & _ASCE_REAL_SPACE)
1486		limit = -1UL;
1487	new = gmap_alloc(limit);
1488	if (!new)
1489		return ERR_PTR(-ENOMEM);
1490	new->mm = parent->mm;
1491	new->parent = gmap_get(parent);
1492	new->orig_asce = asce;
1493	new->edat_level = edat_level;
1494	new->initialized = false;
1495	spin_lock(&parent->shadow_lock);
1496	/* Recheck if another CPU created the same shadow */
1497	sg = gmap_find_shadow(parent, asce, edat_level);
1498	if (sg) {
1499		spin_unlock(&parent->shadow_lock);
1500		gmap_free(new);
1501		return sg;
1502	}
1503	if (asce & _ASCE_REAL_SPACE) {
1504		/* only allow one real-space gmap shadow */
1505		list_for_each_entry(sg, &parent->children, list) {
1506			if (sg->orig_asce & _ASCE_REAL_SPACE) {
1507				spin_lock(&sg->guest_table_lock);
1508				gmap_unshadow(sg);
1509				spin_unlock(&sg->guest_table_lock);
1510				list_del(&sg->list);
1511				gmap_put(sg);
1512				break;
1513			}
1514		}
1515	}
1516	atomic_set(&new->ref_count, 2);
1517	list_add(&new->list, &parent->children);
1518	if (asce & _ASCE_REAL_SPACE) {
1519		/* nothing to protect, return right away */
1520		new->initialized = true;
1521		spin_unlock(&parent->shadow_lock);
1522		return new;
1523	}
1524	spin_unlock(&parent->shadow_lock);
1525	/* protect after insertion, so it will get properly invalidated */
1526	down_read(&parent->mm->mmap_sem);
1527	rc = gmap_protect_range(parent, asce & _ASCE_ORIGIN,
1528				((asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE,
1529				PROT_READ, PGSTE_VSIE_BIT);
1530	up_read(&parent->mm->mmap_sem);
1531	spin_lock(&parent->shadow_lock);
1532	new->initialized = true;
1533	if (rc) {
1534		list_del(&new->list);
1535		gmap_free(new);
1536		new = ERR_PTR(rc);
1537	}
1538	spin_unlock(&parent->shadow_lock);
1539	return new;
1540}
1541EXPORT_SYMBOL_GPL(gmap_shadow);
1542
1543/**
1544 * gmap_shadow_r2t - create an empty shadow region 2 table
1545 * @sg: pointer to the shadow guest address space structure
1546 * @saddr: faulting address in the shadow gmap
1547 * @r2t: parent gmap address of the region 2 table to get shadowed
1548 * @fake: r2t references contiguous guest memory block, not a r2t
1549 *
1550 * The r2t parameter specifies the address of the source table. The
1551 * four pages of the source table are made read-only in the parent gmap
1552 * address space. A write to the source table area @r2t will automatically
1553 * remove the shadow r2 table and all of its decendents.
1554 *
1555 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1556 * shadow table structure is incomplete, -ENOMEM if out of memory and
1557 * -EFAULT if an address in the parent gmap could not be resolved.
1558 *
1559 * Called with sg->mm->mmap_sem in read.
1560 */
1561int gmap_shadow_r2t(struct gmap *sg, unsigned long saddr, unsigned long r2t,
1562		    int fake)
1563{
1564	unsigned long raddr, origin, offset, len;
1565	unsigned long *s_r2t, *table;
 
1566	struct page *page;
1567	int rc;
1568
1569	BUG_ON(!gmap_is_shadow(sg));
1570	/* Allocate a shadow region second table */
1571	page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
1572	if (!page)
1573		return -ENOMEM;
1574	page->index = r2t & _REGION_ENTRY_ORIGIN;
1575	if (fake)
1576		page->index |= GMAP_SHADOW_FAKE_TABLE;
1577	s_r2t = (unsigned long *) page_to_phys(page);
1578	/* Install shadow region second table */
1579	spin_lock(&sg->guest_table_lock);
1580	table = gmap_table_walk(sg, saddr, 4); /* get region-1 pointer */
1581	if (!table) {
1582		rc = -EAGAIN;		/* Race with unshadow */
1583		goto out_free;
1584	}
1585	if (!(*table & _REGION_ENTRY_INVALID)) {
1586		rc = 0;			/* Already established */
1587		goto out_free;
1588	} else if (*table & _REGION_ENTRY_ORIGIN) {
1589		rc = -EAGAIN;		/* Race with shadow */
1590		goto out_free;
1591	}
1592	crst_table_init(s_r2t, _REGION2_ENTRY_EMPTY);
1593	/* mark as invalid as long as the parent table is not protected */
1594	*table = (unsigned long) s_r2t | _REGION_ENTRY_LENGTH |
1595		 _REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID;
1596	if (sg->edat_level >= 1)
1597		*table |= (r2t & _REGION_ENTRY_PROTECT);
1598	list_add(&page->lru, &sg->crst_list);
1599	if (fake) {
1600		/* nothing to protect for fake tables */
1601		*table &= ~_REGION_ENTRY_INVALID;
1602		spin_unlock(&sg->guest_table_lock);
1603		return 0;
1604	}
1605	spin_unlock(&sg->guest_table_lock);
1606	/* Make r2t read-only in parent gmap page table */
1607	raddr = (saddr & _REGION1_MASK) | _SHADOW_RMAP_REGION1;
1608	origin = r2t & _REGION_ENTRY_ORIGIN;
1609	offset = ((r2t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1610	len = ((r2t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1611	rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1612	spin_lock(&sg->guest_table_lock);
1613	if (!rc) {
1614		table = gmap_table_walk(sg, saddr, 4);
1615		if (!table || (*table & _REGION_ENTRY_ORIGIN) !=
1616			      (unsigned long) s_r2t)
1617			rc = -EAGAIN;		/* Race with unshadow */
1618		else
1619			*table &= ~_REGION_ENTRY_INVALID;
1620	} else {
1621		gmap_unshadow_r2t(sg, raddr);
1622	}
1623	spin_unlock(&sg->guest_table_lock);
1624	return rc;
1625out_free:
1626	spin_unlock(&sg->guest_table_lock);
1627	__free_pages(page, CRST_ALLOC_ORDER);
1628	return rc;
1629}
1630EXPORT_SYMBOL_GPL(gmap_shadow_r2t);
1631
1632/**
1633 * gmap_shadow_r3t - create a shadow region 3 table
1634 * @sg: pointer to the shadow guest address space structure
1635 * @saddr: faulting address in the shadow gmap
1636 * @r3t: parent gmap address of the region 3 table to get shadowed
1637 * @fake: r3t references contiguous guest memory block, not a r3t
1638 *
1639 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1640 * shadow table structure is incomplete, -ENOMEM if out of memory and
1641 * -EFAULT if an address in the parent gmap could not be resolved.
1642 *
1643 * Called with sg->mm->mmap_sem in read.
1644 */
1645int gmap_shadow_r3t(struct gmap *sg, unsigned long saddr, unsigned long r3t,
1646		    int fake)
1647{
1648	unsigned long raddr, origin, offset, len;
1649	unsigned long *s_r3t, *table;
 
1650	struct page *page;
1651	int rc;
1652
1653	BUG_ON(!gmap_is_shadow(sg));
1654	/* Allocate a shadow region second table */
1655	page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
1656	if (!page)
1657		return -ENOMEM;
1658	page->index = r3t & _REGION_ENTRY_ORIGIN;
1659	if (fake)
1660		page->index |= GMAP_SHADOW_FAKE_TABLE;
1661	s_r3t = (unsigned long *) page_to_phys(page);
1662	/* Install shadow region second table */
1663	spin_lock(&sg->guest_table_lock);
1664	table = gmap_table_walk(sg, saddr, 3); /* get region-2 pointer */
1665	if (!table) {
1666		rc = -EAGAIN;		/* Race with unshadow */
1667		goto out_free;
1668	}
1669	if (!(*table & _REGION_ENTRY_INVALID)) {
1670		rc = 0;			/* Already established */
1671		goto out_free;
1672	} else if (*table & _REGION_ENTRY_ORIGIN) {
1673		rc = -EAGAIN;		/* Race with shadow */
 
1674	}
1675	crst_table_init(s_r3t, _REGION3_ENTRY_EMPTY);
1676	/* mark as invalid as long as the parent table is not protected */
1677	*table = (unsigned long) s_r3t | _REGION_ENTRY_LENGTH |
1678		 _REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID;
1679	if (sg->edat_level >= 1)
1680		*table |= (r3t & _REGION_ENTRY_PROTECT);
1681	list_add(&page->lru, &sg->crst_list);
1682	if (fake) {
1683		/* nothing to protect for fake tables */
1684		*table &= ~_REGION_ENTRY_INVALID;
1685		spin_unlock(&sg->guest_table_lock);
1686		return 0;
1687	}
1688	spin_unlock(&sg->guest_table_lock);
1689	/* Make r3t read-only in parent gmap page table */
1690	raddr = (saddr & _REGION2_MASK) | _SHADOW_RMAP_REGION2;
1691	origin = r3t & _REGION_ENTRY_ORIGIN;
1692	offset = ((r3t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1693	len = ((r3t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1694	rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1695	spin_lock(&sg->guest_table_lock);
1696	if (!rc) {
1697		table = gmap_table_walk(sg, saddr, 3);
1698		if (!table || (*table & _REGION_ENTRY_ORIGIN) !=
1699			      (unsigned long) s_r3t)
1700			rc = -EAGAIN;		/* Race with unshadow */
1701		else
1702			*table &= ~_REGION_ENTRY_INVALID;
1703	} else {
1704		gmap_unshadow_r3t(sg, raddr);
1705	}
1706	spin_unlock(&sg->guest_table_lock);
1707	return rc;
1708out_free:
1709	spin_unlock(&sg->guest_table_lock);
1710	__free_pages(page, CRST_ALLOC_ORDER);
1711	return rc;
1712}
1713EXPORT_SYMBOL_GPL(gmap_shadow_r3t);
1714
1715/**
1716 * gmap_shadow_sgt - create a shadow segment table
1717 * @sg: pointer to the shadow guest address space structure
1718 * @saddr: faulting address in the shadow gmap
1719 * @sgt: parent gmap address of the segment table to get shadowed
1720 * @fake: sgt references contiguous guest memory block, not a sgt
1721 *
1722 * Returns: 0 if successfully shadowed or already shadowed, -EAGAIN if the
1723 * shadow table structure is incomplete, -ENOMEM if out of memory and
1724 * -EFAULT if an address in the parent gmap could not be resolved.
1725 *
1726 * Called with sg->mm->mmap_sem in read.
1727 */
1728int gmap_shadow_sgt(struct gmap *sg, unsigned long saddr, unsigned long sgt,
1729		    int fake)
1730{
1731	unsigned long raddr, origin, offset, len;
1732	unsigned long *s_sgt, *table;
 
1733	struct page *page;
1734	int rc;
1735
1736	BUG_ON(!gmap_is_shadow(sg) || (sgt & _REGION3_ENTRY_LARGE));
1737	/* Allocate a shadow segment table */
1738	page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
1739	if (!page)
1740		return -ENOMEM;
1741	page->index = sgt & _REGION_ENTRY_ORIGIN;
1742	if (fake)
1743		page->index |= GMAP_SHADOW_FAKE_TABLE;
1744	s_sgt = (unsigned long *) page_to_phys(page);
1745	/* Install shadow region second table */
1746	spin_lock(&sg->guest_table_lock);
1747	table = gmap_table_walk(sg, saddr, 2); /* get region-3 pointer */
1748	if (!table) {
1749		rc = -EAGAIN;		/* Race with unshadow */
1750		goto out_free;
1751	}
1752	if (!(*table & _REGION_ENTRY_INVALID)) {
1753		rc = 0;			/* Already established */
1754		goto out_free;
1755	} else if (*table & _REGION_ENTRY_ORIGIN) {
1756		rc = -EAGAIN;		/* Race with shadow */
1757		goto out_free;
1758	}
1759	crst_table_init(s_sgt, _SEGMENT_ENTRY_EMPTY);
1760	/* mark as invalid as long as the parent table is not protected */
1761	*table = (unsigned long) s_sgt | _REGION_ENTRY_LENGTH |
1762		 _REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID;
1763	if (sg->edat_level >= 1)
1764		*table |= sgt & _REGION_ENTRY_PROTECT;
1765	list_add(&page->lru, &sg->crst_list);
1766	if (fake) {
1767		/* nothing to protect for fake tables */
1768		*table &= ~_REGION_ENTRY_INVALID;
1769		spin_unlock(&sg->guest_table_lock);
1770		return 0;
1771	}
1772	spin_unlock(&sg->guest_table_lock);
1773	/* Make sgt read-only in parent gmap page table */
1774	raddr = (saddr & _REGION3_MASK) | _SHADOW_RMAP_REGION3;
1775	origin = sgt & _REGION_ENTRY_ORIGIN;
1776	offset = ((sgt & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1777	len = ((sgt & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1778	rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1779	spin_lock(&sg->guest_table_lock);
1780	if (!rc) {
1781		table = gmap_table_walk(sg, saddr, 2);
1782		if (!table || (*table & _REGION_ENTRY_ORIGIN) !=
1783			      (unsigned long) s_sgt)
1784			rc = -EAGAIN;		/* Race with unshadow */
1785		else
1786			*table &= ~_REGION_ENTRY_INVALID;
1787	} else {
1788		gmap_unshadow_sgt(sg, raddr);
1789	}
1790	spin_unlock(&sg->guest_table_lock);
1791	return rc;
1792out_free:
1793	spin_unlock(&sg->guest_table_lock);
1794	__free_pages(page, CRST_ALLOC_ORDER);
1795	return rc;
1796}
1797EXPORT_SYMBOL_GPL(gmap_shadow_sgt);
1798
1799/**
1800 * gmap_shadow_lookup_pgtable - find a shadow page table
1801 * @sg: pointer to the shadow guest address space structure
1802 * @saddr: the address in the shadow aguest address space
1803 * @pgt: parent gmap address of the page table to get shadowed
1804 * @dat_protection: if the pgtable is marked as protected by dat
1805 * @fake: pgt references contiguous guest memory block, not a pgtable
1806 *
1807 * Returns 0 if the shadow page table was found and -EAGAIN if the page
1808 * table was not found.
1809 *
1810 * Called with sg->mm->mmap_sem in read.
1811 */
1812int gmap_shadow_pgt_lookup(struct gmap *sg, unsigned long saddr,
1813			   unsigned long *pgt, int *dat_protection,
1814			   int *fake)
1815{
1816	unsigned long *table;
1817	struct page *page;
1818	int rc;
1819
1820	BUG_ON(!gmap_is_shadow(sg));
1821	spin_lock(&sg->guest_table_lock);
1822	table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
1823	if (table && !(*table & _SEGMENT_ENTRY_INVALID)) {
1824		/* Shadow page tables are full pages (pte+pgste) */
1825		page = pfn_to_page(*table >> PAGE_SHIFT);
1826		*pgt = page->index & ~GMAP_SHADOW_FAKE_TABLE;
1827		*dat_protection = !!(*table & _SEGMENT_ENTRY_PROTECT);
1828		*fake = !!(page->index & GMAP_SHADOW_FAKE_TABLE);
1829		rc = 0;
1830	} else  {
1831		rc = -EAGAIN;
1832	}
1833	spin_unlock(&sg->guest_table_lock);
1834	return rc;
1835
1836}
1837EXPORT_SYMBOL_GPL(gmap_shadow_pgt_lookup);
1838
1839/**
1840 * gmap_shadow_pgt - instantiate a shadow page table
1841 * @sg: pointer to the shadow guest address space structure
1842 * @saddr: faulting address in the shadow gmap
1843 * @pgt: parent gmap address of the page table to get shadowed
1844 * @fake: pgt references contiguous guest memory block, not a pgtable
1845 *
1846 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1847 * shadow table structure is incomplete, -ENOMEM if out of memory,
1848 * -EFAULT if an address in the parent gmap could not be resolved and
1849 *
1850 * Called with gmap->mm->mmap_sem in read
1851 */
1852int gmap_shadow_pgt(struct gmap *sg, unsigned long saddr, unsigned long pgt,
1853		    int fake)
1854{
1855	unsigned long raddr, origin;
1856	unsigned long *s_pgt, *table;
1857	struct page *page;
 
1858	int rc;
1859
1860	BUG_ON(!gmap_is_shadow(sg) || (pgt & _SEGMENT_ENTRY_LARGE));
1861	/* Allocate a shadow page table */
1862	page = page_table_alloc_pgste(sg->mm);
1863	if (!page)
1864		return -ENOMEM;
1865	page->index = pgt & _SEGMENT_ENTRY_ORIGIN;
1866	if (fake)
1867		page->index |= GMAP_SHADOW_FAKE_TABLE;
1868	s_pgt = (unsigned long *) page_to_phys(page);
1869	/* Install shadow page table */
1870	spin_lock(&sg->guest_table_lock);
1871	table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
1872	if (!table) {
1873		rc = -EAGAIN;		/* Race with unshadow */
1874		goto out_free;
1875	}
1876	if (!(*table & _SEGMENT_ENTRY_INVALID)) {
1877		rc = 0;			/* Already established */
1878		goto out_free;
1879	} else if (*table & _SEGMENT_ENTRY_ORIGIN) {
1880		rc = -EAGAIN;		/* Race with shadow */
1881		goto out_free;
1882	}
1883	/* mark as invalid as long as the parent table is not protected */
1884	*table = (unsigned long) s_pgt | _SEGMENT_ENTRY |
1885		 (pgt & _SEGMENT_ENTRY_PROTECT) | _SEGMENT_ENTRY_INVALID;
1886	list_add(&page->lru, &sg->pt_list);
1887	if (fake) {
1888		/* nothing to protect for fake tables */
1889		*table &= ~_SEGMENT_ENTRY_INVALID;
1890		spin_unlock(&sg->guest_table_lock);
1891		return 0;
1892	}
1893	spin_unlock(&sg->guest_table_lock);
1894	/* Make pgt read-only in parent gmap page table (not the pgste) */
1895	raddr = (saddr & _SEGMENT_MASK) | _SHADOW_RMAP_SEGMENT;
1896	origin = pgt & _SEGMENT_ENTRY_ORIGIN & PAGE_MASK;
1897	rc = gmap_protect_rmap(sg, raddr, origin, PAGE_SIZE);
1898	spin_lock(&sg->guest_table_lock);
1899	if (!rc) {
1900		table = gmap_table_walk(sg, saddr, 1);
1901		if (!table || (*table & _SEGMENT_ENTRY_ORIGIN) !=
1902			      (unsigned long) s_pgt)
1903			rc = -EAGAIN;		/* Race with unshadow */
1904		else
1905			*table &= ~_SEGMENT_ENTRY_INVALID;
1906	} else {
1907		gmap_unshadow_pgt(sg, raddr);
1908	}
1909	spin_unlock(&sg->guest_table_lock);
1910	return rc;
1911out_free:
1912	spin_unlock(&sg->guest_table_lock);
1913	page_table_free_pgste(page);
1914	return rc;
1915
1916}
1917EXPORT_SYMBOL_GPL(gmap_shadow_pgt);
1918
1919/**
1920 * gmap_shadow_page - create a shadow page mapping
1921 * @sg: pointer to the shadow guest address space structure
1922 * @saddr: faulting address in the shadow gmap
1923 * @pte: pte in parent gmap address space to get shadowed
1924 *
1925 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1926 * shadow table structure is incomplete, -ENOMEM if out of memory and
1927 * -EFAULT if an address in the parent gmap could not be resolved.
1928 *
1929 * Called with sg->mm->mmap_sem in read.
1930 */
1931int gmap_shadow_page(struct gmap *sg, unsigned long saddr, pte_t pte)
1932{
1933	struct gmap *parent;
1934	struct gmap_rmap *rmap;
1935	unsigned long vmaddr, paddr;
1936	spinlock_t *ptl;
1937	pte_t *sptep, *tptep;
1938	int prot;
1939	int rc;
1940
1941	BUG_ON(!gmap_is_shadow(sg));
1942	parent = sg->parent;
1943	prot = (pte_val(pte) & _PAGE_PROTECT) ? PROT_READ : PROT_WRITE;
1944
1945	rmap = kzalloc(sizeof(*rmap), GFP_KERNEL);
1946	if (!rmap)
1947		return -ENOMEM;
1948	rmap->raddr = (saddr & PAGE_MASK) | _SHADOW_RMAP_PGTABLE;
1949
1950	while (1) {
1951		paddr = pte_val(pte) & PAGE_MASK;
1952		vmaddr = __gmap_translate(parent, paddr);
1953		if (IS_ERR_VALUE(vmaddr)) {
1954			rc = vmaddr;
1955			break;
1956		}
1957		rc = radix_tree_preload(GFP_KERNEL);
1958		if (rc)
1959			break;
1960		rc = -EAGAIN;
1961		sptep = gmap_pte_op_walk(parent, paddr, &ptl);
1962		if (sptep) {
1963			spin_lock(&sg->guest_table_lock);
1964			/* Get page table pointer */
1965			tptep = (pte_t *) gmap_table_walk(sg, saddr, 0);
1966			if (!tptep) {
1967				spin_unlock(&sg->guest_table_lock);
1968				gmap_pte_op_end(ptl);
1969				radix_tree_preload_end();
1970				break;
1971			}
1972			rc = ptep_shadow_pte(sg->mm, saddr, sptep, tptep, pte);
1973			if (rc > 0) {
1974				/* Success and a new mapping */
1975				gmap_insert_rmap(sg, vmaddr, rmap);
1976				rmap = NULL;
1977				rc = 0;
1978			}
1979			gmap_pte_op_end(ptl);
1980			spin_unlock(&sg->guest_table_lock);
1981		}
1982		radix_tree_preload_end();
1983		if (!rc)
1984			break;
1985		rc = gmap_pte_op_fixup(parent, paddr, vmaddr, prot);
1986		if (rc)
1987			break;
1988	}
1989	kfree(rmap);
1990	return rc;
1991}
1992EXPORT_SYMBOL_GPL(gmap_shadow_page);
1993
1994/**
1995 * gmap_shadow_notify - handle notifications for shadow gmap
1996 *
1997 * Called with sg->parent->shadow_lock.
1998 */
1999static void gmap_shadow_notify(struct gmap *sg, unsigned long vmaddr,
2000			       unsigned long gaddr)
2001{
2002	struct gmap_rmap *rmap, *rnext, *head;
2003	unsigned long start, end, bits, raddr;
2004
2005	BUG_ON(!gmap_is_shadow(sg));
2006
2007	spin_lock(&sg->guest_table_lock);
2008	if (sg->removed) {
2009		spin_unlock(&sg->guest_table_lock);
2010		return;
2011	}
2012	/* Check for top level table */
2013	start = sg->orig_asce & _ASCE_ORIGIN;
2014	end = start + ((sg->orig_asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE;
2015	if (!(sg->orig_asce & _ASCE_REAL_SPACE) && gaddr >= start &&
2016	    gaddr < end) {
2017		/* The complete shadow table has to go */
2018		gmap_unshadow(sg);
2019		spin_unlock(&sg->guest_table_lock);
2020		list_del(&sg->list);
2021		gmap_put(sg);
2022		return;
2023	}
2024	/* Remove the page table tree from on specific entry */
2025	head = radix_tree_delete(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
2026	gmap_for_each_rmap_safe(rmap, rnext, head) {
2027		bits = rmap->raddr & _SHADOW_RMAP_MASK;
2028		raddr = rmap->raddr ^ bits;
2029		switch (bits) {
2030		case _SHADOW_RMAP_REGION1:
2031			gmap_unshadow_r2t(sg, raddr);
2032			break;
2033		case _SHADOW_RMAP_REGION2:
2034			gmap_unshadow_r3t(sg, raddr);
2035			break;
2036		case _SHADOW_RMAP_REGION3:
2037			gmap_unshadow_sgt(sg, raddr);
2038			break;
2039		case _SHADOW_RMAP_SEGMENT:
2040			gmap_unshadow_pgt(sg, raddr);
2041			break;
2042		case _SHADOW_RMAP_PGTABLE:
2043			gmap_unshadow_page(sg, raddr);
2044			break;
2045		}
2046		kfree(rmap);
2047	}
2048	spin_unlock(&sg->guest_table_lock);
2049}
2050
2051/**
2052 * ptep_notify - call all invalidation callbacks for a specific pte.
2053 * @mm: pointer to the process mm_struct
2054 * @addr: virtual address in the process address space
2055 * @pte: pointer to the page table entry
2056 * @bits: bits from the pgste that caused the notify call
2057 *
2058 * This function is assumed to be called with the page table lock held
2059 * for the pte to notify.
2060 */
2061void ptep_notify(struct mm_struct *mm, unsigned long vmaddr,
2062		 pte_t *pte, unsigned long bits)
2063{
2064	unsigned long offset, gaddr = 0;
2065	unsigned long *table;
2066	struct gmap *gmap, *sg, *next;
2067
2068	offset = ((unsigned long) pte) & (255 * sizeof(pte_t));
2069	offset = offset * (PAGE_SIZE / sizeof(pte_t));
2070	rcu_read_lock();
2071	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2072		spin_lock(&gmap->guest_table_lock);
2073		table = radix_tree_lookup(&gmap->host_to_guest,
2074					  vmaddr >> PMD_SHIFT);
2075		if (table)
2076			gaddr = __gmap_segment_gaddr(table) + offset;
2077		spin_unlock(&gmap->guest_table_lock);
2078		if (!table)
2079			continue;
2080
2081		if (!list_empty(&gmap->children) && (bits & PGSTE_VSIE_BIT)) {
2082			spin_lock(&gmap->shadow_lock);
2083			list_for_each_entry_safe(sg, next,
2084						 &gmap->children, list)
2085				gmap_shadow_notify(sg, vmaddr, gaddr);
2086			spin_unlock(&gmap->shadow_lock);
2087		}
2088		if (bits & PGSTE_IN_BIT)
2089			gmap_call_notifier(gmap, gaddr, gaddr + PAGE_SIZE - 1);
2090	}
2091	rcu_read_unlock();
2092}
2093EXPORT_SYMBOL_GPL(ptep_notify);
2094
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2095static inline void thp_split_mm(struct mm_struct *mm)
2096{
2097#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2098	struct vm_area_struct *vma;
2099	unsigned long addr;
2100
2101	for (vma = mm->mmap; vma != NULL; vma = vma->vm_next) {
2102		for (addr = vma->vm_start;
2103		     addr < vma->vm_end;
2104		     addr += PAGE_SIZE)
2105			follow_page(vma, addr, FOLL_SPLIT);
2106		vma->vm_flags &= ~VM_HUGEPAGE;
2107		vma->vm_flags |= VM_NOHUGEPAGE;
 
2108	}
2109	mm->def_flags |= VM_NOHUGEPAGE;
2110#endif
2111}
 
 
 
 
 
2112
2113/*
2114 * Remove all empty zero pages from the mapping for lazy refaulting
2115 * - This must be called after mm->context.has_pgste is set, to avoid
2116 *   future creation of zero pages
2117 * - This must be called after THP was enabled
2118 */
2119static int __zap_zero_pages(pmd_t *pmd, unsigned long start,
2120			   unsigned long end, struct mm_walk *walk)
2121{
2122	unsigned long addr;
2123
2124	for (addr = start; addr != end; addr += PAGE_SIZE) {
2125		pte_t *ptep;
2126		spinlock_t *ptl;
2127
2128		ptep = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
2129		if (is_zero_pfn(pte_pfn(*ptep)))
2130			ptep_xchg_direct(walk->mm, addr, ptep, __pte(_PAGE_INVALID));
2131		pte_unmap_unlock(ptep, ptl);
2132	}
2133	return 0;
2134}
2135
2136static inline void zap_zero_pages(struct mm_struct *mm)
2137{
2138	struct mm_walk walk = { .pmd_entry = __zap_zero_pages };
2139
2140	walk.mm = mm;
2141	walk_page_range(0, TASK_SIZE, &walk);
2142}
2143
2144/*
2145 * switch on pgstes for its userspace process (for kvm)
2146 */
2147int s390_enable_sie(void)
2148{
2149	struct mm_struct *mm = current->mm;
2150
2151	/* Do we have pgstes? if yes, we are done */
2152	if (mm_has_pgste(mm))
2153		return 0;
2154	/* Fail if the page tables are 2K */
2155	if (!mm_alloc_pgste(mm))
2156		return -EINVAL;
2157	down_write(&mm->mmap_sem);
2158	mm->context.has_pgste = 1;
2159	/* split thp mappings and disable thp for future mappings */
2160	thp_split_mm(mm);
2161	zap_zero_pages(mm);
2162	up_write(&mm->mmap_sem);
2163	return 0;
2164}
2165EXPORT_SYMBOL_GPL(s390_enable_sie);
2166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2167/*
2168 * Enable storage key handling from now on and initialize the storage
2169 * keys with the default key.
2170 */
2171static int __s390_enable_skey(pte_t *pte, unsigned long addr,
2172			      unsigned long next, struct mm_walk *walk)
2173{
2174	/* Clear storage key */
2175	ptep_zap_key(walk->mm, addr, pte);
2176	return 0;
2177}
2178
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2179int s390_enable_skey(void)
2180{
2181	struct mm_walk walk = { .pte_entry = __s390_enable_skey };
2182	struct mm_struct *mm = current->mm;
2183	struct vm_area_struct *vma;
2184	int rc = 0;
2185
2186	down_write(&mm->mmap_sem);
2187	if (mm_use_skey(mm))
2188		goto out_up;
2189
2190	mm->context.use_skey = 1;
2191	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2192		if (ksm_madvise(vma, vma->vm_start, vma->vm_end,
2193				MADV_UNMERGEABLE, &vma->vm_flags)) {
2194			mm->context.use_skey = 0;
2195			rc = -ENOMEM;
2196			goto out_up;
2197		}
2198	}
2199	mm->def_flags &= ~VM_MERGEABLE;
2200
2201	walk.mm = mm;
2202	walk_page_range(0, TASK_SIZE, &walk);
2203
2204out_up:
2205	up_write(&mm->mmap_sem);
2206	return rc;
2207}
2208EXPORT_SYMBOL_GPL(s390_enable_skey);
2209
2210/*
2211 * Reset CMMA state, make all pages stable again.
2212 */
2213static int __s390_reset_cmma(pte_t *pte, unsigned long addr,
2214			     unsigned long next, struct mm_walk *walk)
2215{
2216	ptep_zap_unused(walk->mm, addr, pte, 1);
2217	return 0;
2218}
2219
 
 
 
 
2220void s390_reset_cmma(struct mm_struct *mm)
2221{
2222	struct mm_walk walk = { .pte_entry = __s390_reset_cmma };
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2223
2224	down_write(&mm->mmap_sem);
2225	walk.mm = mm;
2226	walk_page_range(0, TASK_SIZE, &walk);
2227	up_write(&mm->mmap_sem);
 
 
 
 
 
 
 
2228}
2229EXPORT_SYMBOL_GPL(s390_reset_cmma);