Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * eBPF JIT compiler
  4 *
  5 * Copyright 2016 Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
  6 *		  IBM Corporation
  7 *
  8 * Based on the powerpc classic BPF JIT compiler by Matt Evans
 
 
 
 
 
 
  9 */
 10#include <linux/moduleloader.h>
 11#include <asm/cacheflush.h>
 12#include <asm/asm-compat.h>
 13#include <linux/netdevice.h>
 14#include <linux/filter.h>
 15#include <linux/if_vlan.h>
 16#include <asm/kprobes.h>
 17#include <linux/bpf.h>
 18
 19#include "bpf_jit.h"
 20
 21static void bpf_jit_fill_ill_insns(void *area, unsigned int size)
 22{
 23	memset32(area, BREAKPOINT_INSTRUCTION, size / 4);
 
 24}
 25
 26/* Fix updated addresses (for subprog calls, ldimm64, et al) during extra pass */
 27static int bpf_jit_fixup_addresses(struct bpf_prog *fp, u32 *image,
 28				   struct codegen_context *ctx, u32 *addrs)
 29{
 30	const struct bpf_insn *insn = fp->insnsi;
 31	bool func_addr_fixed;
 32	u64 func_addr;
 33	u32 tmp_idx;
 34	int i, j, ret;
 35
 36	for (i = 0; i < fp->len; i++) {
 37		/*
 38		 * During the extra pass, only the branch target addresses for
 39		 * the subprog calls need to be fixed. All other instructions
 40		 * can left untouched.
 41		 *
 42		 * The JITed image length does not change because we already
 43		 * ensure that the JITed instruction sequence for these calls
 44		 * are of fixed length by padding them with NOPs.
 45		 */
 46		if (insn[i].code == (BPF_JMP | BPF_CALL) &&
 47		    insn[i].src_reg == BPF_PSEUDO_CALL) {
 48			ret = bpf_jit_get_func_addr(fp, &insn[i], true,
 49						    &func_addr,
 50						    &func_addr_fixed);
 51			if (ret < 0)
 52				return ret;
 53
 54			/*
 55			 * Save ctx->idx as this would currently point to the
 56			 * end of the JITed image and set it to the offset of
 57			 * the instruction sequence corresponding to the
 58			 * subprog call temporarily.
 59			 */
 60			tmp_idx = ctx->idx;
 61			ctx->idx = addrs[i] / 4;
 62			ret = bpf_jit_emit_func_call_rel(image, ctx, func_addr);
 63			if (ret)
 64				return ret;
 65
 
 
 
 
 
 
 
 
 
 
 
 
 66			/*
 67			 * Restore ctx->idx here. This is safe as the length
 68			 * of the JITed sequence remains unchanged.
 69			 */
 70			ctx->idx = tmp_idx;
 71		} else if (insn[i].code == (BPF_LD | BPF_IMM | BPF_DW)) {
 72			tmp_idx = ctx->idx;
 73			ctx->idx = addrs[i] / 4;
 74#ifdef CONFIG_PPC32
 75			PPC_LI32(bpf_to_ppc(insn[i].dst_reg) - 1, (u32)insn[i + 1].imm);
 76			PPC_LI32(bpf_to_ppc(insn[i].dst_reg), (u32)insn[i].imm);
 77			for (j = ctx->idx - addrs[i] / 4; j < 4; j++)
 78				EMIT(PPC_RAW_NOP());
 79#else
 80			func_addr = ((u64)(u32)insn[i].imm) | (((u64)(u32)insn[i + 1].imm) << 32);
 81			PPC_LI64(bpf_to_ppc(insn[i].dst_reg), func_addr);
 82			/* overwrite rest with nops */
 83			for (j = ctx->idx - addrs[i] / 4; j < 5; j++)
 84				EMIT(PPC_RAW_NOP());
 85#endif
 86			ctx->idx = tmp_idx;
 87			i++;
 88		}
 
 89	}
 90
 91	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 92}
 93
 94int bpf_jit_emit_exit_insn(u32 *image, struct codegen_context *ctx, int tmp_reg, long exit_addr)
 95{
 96	if (!exit_addr || is_offset_in_branch_range(exit_addr - (ctx->idx * 4))) {
 97		PPC_JMP(exit_addr);
 98	} else if (ctx->alt_exit_addr) {
 99		if (WARN_ON(!is_offset_in_branch_range((long)ctx->alt_exit_addr - (ctx->idx * 4))))
100			return -1;
101		PPC_JMP(ctx->alt_exit_addr);
102	} else {
103		ctx->alt_exit_addr = ctx->idx * 4;
104		bpf_jit_build_epilogue(image, ctx);
 
 
 
 
 
 
 
 
105	}
 
106
107	return 0;
108}
109
110struct powerpc64_jit_data {
111	struct bpf_binary_header *header;
112	u32 *addrs;
113	u8 *image;
114	u32 proglen;
115	struct codegen_context ctx;
116};
117
118bool bpf_jit_needs_zext(void)
 
 
 
119{
120	return true;
121}
 
 
 
 
 
 
 
 
 
 
122
123struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
124{
125	u32 proglen;
126	u32 alloclen;
127	u8 *image = NULL;
128	u32 *code_base;
129	u32 *addrs;
130	struct powerpc64_jit_data *jit_data;
131	struct codegen_context cgctx;
132	int pass;
133	int flen;
134	struct bpf_binary_header *bpf_hdr;
135	struct bpf_prog *org_fp = fp;
136	struct bpf_prog *tmp_fp;
137	bool bpf_blinded = false;
138	bool extra_pass = false;
139	u32 extable_len;
140	u32 fixup_len;
141
142	if (!fp->jit_requested)
143		return org_fp;
144
145	tmp_fp = bpf_jit_blind_constants(org_fp);
146	if (IS_ERR(tmp_fp))
147		return org_fp;
148
149	if (tmp_fp != org_fp) {
150		bpf_blinded = true;
151		fp = tmp_fp;
152	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
153
154	jit_data = fp->aux->jit_data;
155	if (!jit_data) {
156		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
157		if (!jit_data) {
158			fp = org_fp;
159			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
160		}
161		fp->aux->jit_data = jit_data;
162	}
163
164	flen = fp->len;
165	addrs = jit_data->addrs;
166	if (addrs) {
167		cgctx = jit_data->ctx;
168		image = jit_data->image;
169		bpf_hdr = jit_data->header;
170		proglen = jit_data->proglen;
171		extra_pass = true;
172		goto skip_init_ctx;
173	}
 
 
174
175	addrs = kcalloc(flen + 1, sizeof(*addrs), GFP_KERNEL);
176	if (addrs == NULL) {
177		fp = org_fp;
178		goto out_addrs;
179	}
180
181	memset(&cgctx, 0, sizeof(struct codegen_context));
182	bpf_jit_init_reg_mapping(&cgctx);
 
 
 
 
 
 
 
 
183
184	/* Make sure that the stack is quadword aligned. */
185	cgctx.stack_size = round_up(fp->aux->stack_depth, 16);
186
187	/* Scouting faux-generate pass 0 */
188	if (bpf_jit_build_body(fp, 0, &cgctx, addrs, 0)) {
189		/* We hit something illegal or unsupported. */
190		fp = org_fp;
191		goto out_addrs;
192	}
193
194	/*
195	 * If we have seen a tail call, we need a second pass.
196	 * This is because bpf_jit_emit_common_epilogue() is called
197	 * from bpf_jit_emit_tail_call() with a not yet stable ctx->seen.
198	 * We also need a second pass if we ended up with too large
199	 * a program so as to ensure BPF_EXIT branches are in range.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
200	 */
201	if (cgctx.seen & SEEN_TAILCALL || !is_offset_in_branch_range((long)cgctx.idx * 4)) {
202		cgctx.idx = 0;
203		if (bpf_jit_build_body(fp, 0, &cgctx, addrs, 0)) {
204			fp = org_fp;
205			goto out_addrs;
206		}
207	}
208
209	bpf_jit_realloc_regs(&cgctx);
 
 
 
 
 
 
 
210	/*
211	 * Pretend to build prologue, given the features we've seen.  This will
212	 * update ctgtx.idx as it pretends to output instructions, then we can
213	 * calculate total size from idx.
214	 */
215	bpf_jit_build_prologue(0, &cgctx);
216	addrs[fp->len] = cgctx.idx * 4;
217	bpf_jit_build_epilogue(0, &cgctx);
218
219	fixup_len = fp->aux->num_exentries * BPF_FIXUP_LEN * 4;
220	extable_len = fp->aux->num_exentries * sizeof(struct exception_table_entry);
221
222	proglen = cgctx.idx * 4;
223	alloclen = proglen + FUNCTION_DESCR_SIZE + fixup_len + extable_len;
 
 
 
224
225	bpf_hdr = bpf_jit_binary_alloc(alloclen, &image, 4, bpf_jit_fill_ill_insns);
226	if (!bpf_hdr) {
227		fp = org_fp;
228		goto out_addrs;
229	}
230
231	if (extable_len)
232		fp->aux->extable = (void *)image + FUNCTION_DESCR_SIZE + proglen + fixup_len;
233
234skip_init_ctx:
235	code_base = (u32 *)(image + FUNCTION_DESCR_SIZE);
236
237	if (extra_pass) {
238		/*
239		 * Do not touch the prologue and epilogue as they will remain
240		 * unchanged. Only fix the branch target address for subprog
241		 * calls in the body, and ldimm64 instructions.
242		 *
243		 * This does not change the offsets and lengths of the subprog
244		 * call instruction sequences and hence, the size of the JITed
245		 * image as well.
246		 */
247		bpf_jit_fixup_addresses(fp, code_base, &cgctx, addrs);
248
249		/* There is no need to perform the usual passes. */
250		goto skip_codegen_passes;
251	}
252
253	/* Code generation passes 1-2 */
254	for (pass = 1; pass < 3; pass++) {
255		/* Now build the prologue, body code & epilogue for real. */
256		cgctx.idx = 0;
257		cgctx.alt_exit_addr = 0;
258		bpf_jit_build_prologue(code_base, &cgctx);
259		if (bpf_jit_build_body(fp, code_base, &cgctx, addrs, pass)) {
260			bpf_jit_binary_free(bpf_hdr);
261			fp = org_fp;
262			goto out_addrs;
263		}
264		bpf_jit_build_epilogue(code_base, &cgctx);
265
266		if (bpf_jit_enable > 1)
267			pr_info("Pass %d: shrink = %d, seen = 0x%x\n", pass,
268				proglen - (cgctx.idx * 4), cgctx.seen);
269	}
270
271skip_codegen_passes:
272	if (bpf_jit_enable > 1)
273		/*
274		 * Note that we output the base address of the code_base
275		 * rather than image, since opcodes are in code_base.
276		 */
277		bpf_jit_dump(flen, proglen, pass, code_base);
278
279#ifdef CONFIG_PPC64_ELF_ABI_V1
 
 
280	/* Function descriptor nastiness: Address + TOC */
281	((u64 *)image)[0] = (u64)code_base;
282	((u64 *)image)[1] = local_paca->kernel_toc;
283#endif
284
285	fp->bpf_func = (void *)image;
286	fp->jited = 1;
287	fp->jited_len = proglen + FUNCTION_DESCR_SIZE;
288
289	bpf_flush_icache(bpf_hdr, (u8 *)bpf_hdr + bpf_hdr->size);
290	if (!fp->is_func || extra_pass) {
291		bpf_jit_binary_lock_ro(bpf_hdr);
292		bpf_prog_fill_jited_linfo(fp, addrs);
293out_addrs:
294		kfree(addrs);
295		kfree(jit_data);
296		fp->aux->jit_data = NULL;
297	} else {
298		jit_data->addrs = addrs;
299		jit_data->ctx = cgctx;
300		jit_data->proglen = proglen;
301		jit_data->image = image;
302		jit_data->header = bpf_hdr;
303	}
304
305out:
306	if (bpf_blinded)
307		bpf_jit_prog_release_other(fp, fp == org_fp ? tmp_fp : org_fp);
308
309	return fp;
310}
311
312/*
313 * The caller should check for (BPF_MODE(code) == BPF_PROBE_MEM) before calling
314 * this function, as this only applies to BPF_PROBE_MEM, for now.
315 */
316int bpf_add_extable_entry(struct bpf_prog *fp, u32 *image, int pass, struct codegen_context *ctx,
317			  int insn_idx, int jmp_off, int dst_reg)
318{
319	off_t offset;
320	unsigned long pc;
321	struct exception_table_entry *ex;
322	u32 *fixup;
323
324	/* Populate extable entries only in the last pass */
325	if (pass != 2)
326		return 0;
327
328	if (!fp->aux->extable ||
329	    WARN_ON_ONCE(ctx->exentry_idx >= fp->aux->num_exentries))
330		return -EINVAL;
331
332	pc = (unsigned long)&image[insn_idx];
333
334	fixup = (void *)fp->aux->extable -
335		(fp->aux->num_exentries * BPF_FIXUP_LEN * 4) +
336		(ctx->exentry_idx * BPF_FIXUP_LEN * 4);
337
338	fixup[0] = PPC_RAW_LI(dst_reg, 0);
339	if (IS_ENABLED(CONFIG_PPC32))
340		fixup[1] = PPC_RAW_LI(dst_reg - 1, 0); /* clear higher 32-bit register too */
341
342	fixup[BPF_FIXUP_LEN - 1] =
343		PPC_RAW_BRANCH((long)(pc + jmp_off) - (long)&fixup[BPF_FIXUP_LEN - 1]);
344
345	ex = &fp->aux->extable[ctx->exentry_idx];
346
347	offset = pc - (long)&ex->insn;
348	if (WARN_ON_ONCE(offset >= 0 || offset < INT_MIN))
349		return -ERANGE;
350	ex->insn = offset;
351
352	offset = (long)fixup - (long)&ex->fixup;
353	if (WARN_ON_ONCE(offset >= 0 || offset < INT_MIN))
354		return -ERANGE;
355	ex->fixup = offset;
356
357	ctx->exentry_idx++;
358	return 0;
359}
v4.17
  1/* bpf_jit_comp.c: BPF JIT compiler
 
 
  2 *
  3 * Copyright 2011 Matt Evans <matt@ozlabs.org>, IBM Corporation
 
  4 *
  5 * Based on the x86 BPF compiler, by Eric Dumazet (eric.dumazet@gmail.com)
  6 * Ported to ppc32 by Denis Kirjanov <kda@linux-powerpc.org>
  7 *
  8 * This program is free software; you can redistribute it and/or
  9 * modify it under the terms of the GNU General Public License
 10 * as published by the Free Software Foundation; version 2
 11 * of the License.
 12 */
 13#include <linux/moduleloader.h>
 14#include <asm/cacheflush.h>
 
 15#include <linux/netdevice.h>
 16#include <linux/filter.h>
 17#include <linux/if_vlan.h>
 
 
 18
 19#include "bpf_jit32.h"
 20
 21static inline void bpf_flush_icache(void *start, void *end)
 22{
 23	smp_wmb();
 24	flush_icache_range((unsigned long)start, (unsigned long)end);
 25}
 26
 27static void bpf_jit_build_prologue(struct bpf_prog *fp, u32 *image,
 28				   struct codegen_context *ctx)
 
 29{
 30	int i;
 31	const struct sock_filter *filter = fp->insns;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 32
 33	if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
 34		/* Make stackframe */
 35		if (ctx->seen & SEEN_DATAREF) {
 36			/* If we call any helpers (for loads), save LR */
 37			EMIT(PPC_INST_MFLR | __PPC_RT(R0));
 38			PPC_BPF_STL(0, 1, PPC_LR_STKOFF);
 39
 40			/* Back up non-volatile regs. */
 41			PPC_BPF_STL(r_D, 1, -(REG_SZ*(32-r_D)));
 42			PPC_BPF_STL(r_HL, 1, -(REG_SZ*(32-r_HL)));
 43		}
 44		if (ctx->seen & SEEN_MEM) {
 45			/*
 46			 * Conditionally save regs r15-r31 as some will be used
 47			 * for M[] data.
 48			 */
 49			for (i = r_M; i < (r_M+16); i++) {
 50				if (ctx->seen & (1 << (i-r_M)))
 51					PPC_BPF_STL(i, 1, -(REG_SZ*(32-i)));
 52			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 53		}
 54		PPC_BPF_STLU(1, 1, -BPF_PPC_STACKFRAME);
 55	}
 56
 57	if (ctx->seen & SEEN_DATAREF) {
 58		/*
 59		 * If this filter needs to access skb data,
 60		 * prepare r_D and r_HL:
 61		 *  r_HL = skb->len - skb->data_len
 62		 *  r_D	 = skb->data
 63		 */
 64		PPC_LWZ_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
 65							 data_len));
 66		PPC_LWZ_OFFS(r_HL, r_skb, offsetof(struct sk_buff, len));
 67		PPC_SUB(r_HL, r_HL, r_scratch1);
 68		PPC_LL_OFFS(r_D, r_skb, offsetof(struct sk_buff, data));
 69	}
 70
 71	if (ctx->seen & SEEN_XREG) {
 72		/*
 73		 * TODO: Could also detect whether first instr. sets X and
 74		 * avoid this (as below, with A).
 75		 */
 76		PPC_LI(r_X, 0);
 77	}
 78
 79	/* make sure we dont leak kernel information to user */
 80	if (bpf_needs_clear_a(&filter[0]))
 81		PPC_LI(r_A, 0);
 82}
 83
 84static void bpf_jit_build_epilogue(u32 *image, struct codegen_context *ctx)
 85{
 86	int i;
 87
 88	if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
 89		PPC_ADDI(1, 1, BPF_PPC_STACKFRAME);
 90		if (ctx->seen & SEEN_DATAREF) {
 91			PPC_BPF_LL(0, 1, PPC_LR_STKOFF);
 92			PPC_MTLR(0);
 93			PPC_BPF_LL(r_D, 1, -(REG_SZ*(32-r_D)));
 94			PPC_BPF_LL(r_HL, 1, -(REG_SZ*(32-r_HL)));
 95		}
 96		if (ctx->seen & SEEN_MEM) {
 97			/* Restore any saved non-vol registers */
 98			for (i = r_M; i < (r_M+16); i++) {
 99				if (ctx->seen & (1 << (i-r_M)))
100					PPC_BPF_LL(i, 1, -(REG_SZ*(32-i)));
101			}
102		}
103	}
104	/* The RETs have left a return value in R3. */
105
106	PPC_BLR();
107}
108
109#define CHOOSE_LOAD_FUNC(K, func) \
110	((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
 
 
 
 
 
111
112/* Assemble the body code between the prologue & epilogue. */
113static int bpf_jit_build_body(struct bpf_prog *fp, u32 *image,
114			      struct codegen_context *ctx,
115			      unsigned int *addrs)
116{
117	const struct sock_filter *filter = fp->insns;
118	int flen = fp->len;
119	u8 *func;
120	unsigned int true_cond;
121	int i;
122
123	/* Start of epilogue code */
124	unsigned int exit_addr = addrs[flen];
125
126	for (i = 0; i < flen; i++) {
127		unsigned int K = filter[i].k;
128		u16 code = bpf_anc_helper(&filter[i]);
129
130		/*
131		 * addrs[] maps a BPF bytecode address into a real offset from
132		 * the start of the body code.
133		 */
134		addrs[i] = ctx->idx * 4;
135
136		switch (code) {
137			/*** ALU ops ***/
138		case BPF_ALU | BPF_ADD | BPF_X: /* A += X; */
139			ctx->seen |= SEEN_XREG;
140			PPC_ADD(r_A, r_A, r_X);
141			break;
142		case BPF_ALU | BPF_ADD | BPF_K: /* A += K; */
143			if (!K)
144				break;
145			PPC_ADDI(r_A, r_A, IMM_L(K));
146			if (K >= 32768)
147				PPC_ADDIS(r_A, r_A, IMM_HA(K));
148			break;
149		case BPF_ALU | BPF_SUB | BPF_X: /* A -= X; */
150			ctx->seen |= SEEN_XREG;
151			PPC_SUB(r_A, r_A, r_X);
152			break;
153		case BPF_ALU | BPF_SUB | BPF_K: /* A -= K */
154			if (!K)
155				break;
156			PPC_ADDI(r_A, r_A, IMM_L(-K));
157			if (K >= 32768)
158				PPC_ADDIS(r_A, r_A, IMM_HA(-K));
159			break;
160		case BPF_ALU | BPF_MUL | BPF_X: /* A *= X; */
161			ctx->seen |= SEEN_XREG;
162			PPC_MULW(r_A, r_A, r_X);
163			break;
164		case BPF_ALU | BPF_MUL | BPF_K: /* A *= K */
165			if (K < 32768)
166				PPC_MULI(r_A, r_A, K);
167			else {
168				PPC_LI32(r_scratch1, K);
169				PPC_MULW(r_A, r_A, r_scratch1);
170			}
171			break;
172		case BPF_ALU | BPF_MOD | BPF_X: /* A %= X; */
173		case BPF_ALU | BPF_DIV | BPF_X: /* A /= X; */
174			ctx->seen |= SEEN_XREG;
175			PPC_CMPWI(r_X, 0);
176			if (ctx->pc_ret0 != -1) {
177				PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
178			} else {
179				PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12);
180				PPC_LI(r_ret, 0);
181				PPC_JMP(exit_addr);
182			}
183			if (code == (BPF_ALU | BPF_MOD | BPF_X)) {
184				PPC_DIVWU(r_scratch1, r_A, r_X);
185				PPC_MULW(r_scratch1, r_X, r_scratch1);
186				PPC_SUB(r_A, r_A, r_scratch1);
187			} else {
188				PPC_DIVWU(r_A, r_A, r_X);
189			}
190			break;
191		case BPF_ALU | BPF_MOD | BPF_K: /* A %= K; */
192			PPC_LI32(r_scratch2, K);
193			PPC_DIVWU(r_scratch1, r_A, r_scratch2);
194			PPC_MULW(r_scratch1, r_scratch2, r_scratch1);
195			PPC_SUB(r_A, r_A, r_scratch1);
196			break;
197		case BPF_ALU | BPF_DIV | BPF_K: /* A /= K */
198			if (K == 1)
199				break;
200			PPC_LI32(r_scratch1, K);
201			PPC_DIVWU(r_A, r_A, r_scratch1);
202			break;
203		case BPF_ALU | BPF_AND | BPF_X:
204			ctx->seen |= SEEN_XREG;
205			PPC_AND(r_A, r_A, r_X);
206			break;
207		case BPF_ALU | BPF_AND | BPF_K:
208			if (!IMM_H(K))
209				PPC_ANDI(r_A, r_A, K);
210			else {
211				PPC_LI32(r_scratch1, K);
212				PPC_AND(r_A, r_A, r_scratch1);
213			}
214			break;
215		case BPF_ALU | BPF_OR | BPF_X:
216			ctx->seen |= SEEN_XREG;
217			PPC_OR(r_A, r_A, r_X);
218			break;
219		case BPF_ALU | BPF_OR | BPF_K:
220			if (IMM_L(K))
221				PPC_ORI(r_A, r_A, IMM_L(K));
222			if (K >= 65536)
223				PPC_ORIS(r_A, r_A, IMM_H(K));
224			break;
225		case BPF_ANC | SKF_AD_ALU_XOR_X:
226		case BPF_ALU | BPF_XOR | BPF_X: /* A ^= X */
227			ctx->seen |= SEEN_XREG;
228			PPC_XOR(r_A, r_A, r_X);
229			break;
230		case BPF_ALU | BPF_XOR | BPF_K: /* A ^= K */
231			if (IMM_L(K))
232				PPC_XORI(r_A, r_A, IMM_L(K));
233			if (K >= 65536)
234				PPC_XORIS(r_A, r_A, IMM_H(K));
235			break;
236		case BPF_ALU | BPF_LSH | BPF_X: /* A <<= X; */
237			ctx->seen |= SEEN_XREG;
238			PPC_SLW(r_A, r_A, r_X);
239			break;
240		case BPF_ALU | BPF_LSH | BPF_K:
241			if (K == 0)
242				break;
243			else
244				PPC_SLWI(r_A, r_A, K);
245			break;
246		case BPF_ALU | BPF_RSH | BPF_X: /* A >>= X; */
247			ctx->seen |= SEEN_XREG;
248			PPC_SRW(r_A, r_A, r_X);
249			break;
250		case BPF_ALU | BPF_RSH | BPF_K: /* A >>= K; */
251			if (K == 0)
252				break;
253			else
254				PPC_SRWI(r_A, r_A, K);
255			break;
256		case BPF_ALU | BPF_NEG:
257			PPC_NEG(r_A, r_A);
258			break;
259		case BPF_RET | BPF_K:
260			PPC_LI32(r_ret, K);
261			if (!K) {
262				if (ctx->pc_ret0 == -1)
263					ctx->pc_ret0 = i;
264			}
265			/*
266			 * If this isn't the very last instruction, branch to
267			 * the epilogue if we've stuff to clean up.  Otherwise,
268			 * if there's nothing to tidy, just return.  If we /are/
269			 * the last instruction, we're about to fall through to
270			 * the epilogue to return.
271			 */
272			if (i != flen - 1) {
273				/*
274				 * Note: 'seen' is properly valid only on pass
275				 * #2.	Both parts of this conditional are the
276				 * same instruction size though, meaning the
277				 * first pass will still correctly determine the
278				 * code size/addresses.
279				 */
280				if (ctx->seen)
281					PPC_JMP(exit_addr);
282				else
283					PPC_BLR();
284			}
285			break;
286		case BPF_RET | BPF_A:
287			PPC_MR(r_ret, r_A);
288			if (i != flen - 1) {
289				if (ctx->seen)
290					PPC_JMP(exit_addr);
291				else
292					PPC_BLR();
293			}
294			break;
295		case BPF_MISC | BPF_TAX: /* X = A */
296			PPC_MR(r_X, r_A);
297			break;
298		case BPF_MISC | BPF_TXA: /* A = X */
299			ctx->seen |= SEEN_XREG;
300			PPC_MR(r_A, r_X);
301			break;
302
303			/*** Constant loads/M[] access ***/
304		case BPF_LD | BPF_IMM: /* A = K */
305			PPC_LI32(r_A, K);
306			break;
307		case BPF_LDX | BPF_IMM: /* X = K */
308			PPC_LI32(r_X, K);
309			break;
310		case BPF_LD | BPF_MEM: /* A = mem[K] */
311			PPC_MR(r_A, r_M + (K & 0xf));
312			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
313			break;
314		case BPF_LDX | BPF_MEM: /* X = mem[K] */
315			PPC_MR(r_X, r_M + (K & 0xf));
316			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
317			break;
318		case BPF_ST: /* mem[K] = A */
319			PPC_MR(r_M + (K & 0xf), r_A);
320			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
321			break;
322		case BPF_STX: /* mem[K] = X */
323			PPC_MR(r_M + (K & 0xf), r_X);
324			ctx->seen |= SEEN_XREG | SEEN_MEM | (1<<(K & 0xf));
325			break;
326		case BPF_LD | BPF_W | BPF_LEN: /*	A = skb->len; */
327			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
328			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, len));
329			break;
330		case BPF_LDX | BPF_W | BPF_ABS: /* A = *((u32 *)(seccomp_data + K)); */
331			PPC_LWZ_OFFS(r_A, r_skb, K);
332			break;
333		case BPF_LDX | BPF_W | BPF_LEN: /* X = skb->len; */
334			PPC_LWZ_OFFS(r_X, r_skb, offsetof(struct sk_buff, len));
335			break;
336
337			/*** Ancillary info loads ***/
338		case BPF_ANC | SKF_AD_PROTOCOL: /* A = ntohs(skb->protocol); */
339			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
340						  protocol) != 2);
341			PPC_NTOHS_OFFS(r_A, r_skb, offsetof(struct sk_buff,
342							    protocol));
343			break;
344		case BPF_ANC | SKF_AD_IFINDEX:
345		case BPF_ANC | SKF_AD_HATYPE:
346			BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
347						ifindex) != 4);
348			BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
349						type) != 2);
350			PPC_LL_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
351								dev));
352			PPC_CMPDI(r_scratch1, 0);
353			if (ctx->pc_ret0 != -1) {
354				PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
355			} else {
356				/* Exit, returning 0; first pass hits here. */
357				PPC_BCC_SHORT(COND_NE, ctx->idx * 4 + 12);
358				PPC_LI(r_ret, 0);
359				PPC_JMP(exit_addr);
360			}
361			if (code == (BPF_ANC | SKF_AD_IFINDEX)) {
362				PPC_LWZ_OFFS(r_A, r_scratch1,
363				     offsetof(struct net_device, ifindex));
364			} else {
365				PPC_LHZ_OFFS(r_A, r_scratch1,
366				     offsetof(struct net_device, type));
367			}
368
369			break;
370		case BPF_ANC | SKF_AD_MARK:
371			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
372			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
373							  mark));
374			break;
375		case BPF_ANC | SKF_AD_RXHASH:
376			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
377			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
378							  hash));
379			break;
380		case BPF_ANC | SKF_AD_VLAN_TAG:
381		case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT:
382			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
383			BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
384
385			PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
386							  vlan_tci));
387			if (code == (BPF_ANC | SKF_AD_VLAN_TAG)) {
388				PPC_ANDI(r_A, r_A, ~VLAN_TAG_PRESENT);
389			} else {
390				PPC_ANDI(r_A, r_A, VLAN_TAG_PRESENT);
391				PPC_SRWI(r_A, r_A, 12);
392			}
393			break;
394		case BPF_ANC | SKF_AD_QUEUE:
395			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
396						  queue_mapping) != 2);
397			PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
398							  queue_mapping));
399			break;
400		case BPF_ANC | SKF_AD_PKTTYPE:
401			PPC_LBZ_OFFS(r_A, r_skb, PKT_TYPE_OFFSET());
402			PPC_ANDI(r_A, r_A, PKT_TYPE_MAX);
403			PPC_SRWI(r_A, r_A, 5);
404			break;
405		case BPF_ANC | SKF_AD_CPU:
406			PPC_BPF_LOAD_CPU(r_A);
407			break;
408			/*** Absolute loads from packet header/data ***/
409		case BPF_LD | BPF_W | BPF_ABS:
410			func = CHOOSE_LOAD_FUNC(K, sk_load_word);
411			goto common_load;
412		case BPF_LD | BPF_H | BPF_ABS:
413			func = CHOOSE_LOAD_FUNC(K, sk_load_half);
414			goto common_load;
415		case BPF_LD | BPF_B | BPF_ABS:
416			func = CHOOSE_LOAD_FUNC(K, sk_load_byte);
417		common_load:
418			/* Load from [K]. */
419			ctx->seen |= SEEN_DATAREF;
420			PPC_FUNC_ADDR(r_scratch1, func);
421			PPC_MTLR(r_scratch1);
422			PPC_LI32(r_addr, K);
423			PPC_BLRL();
424			/*
425			 * Helper returns 'lt' condition on error, and an
426			 * appropriate return value in r3
427			 */
428			PPC_BCC(COND_LT, exit_addr);
429			break;
430
431			/*** Indirect loads from packet header/data ***/
432		case BPF_LD | BPF_W | BPF_IND:
433			func = sk_load_word;
434			goto common_load_ind;
435		case BPF_LD | BPF_H | BPF_IND:
436			func = sk_load_half;
437			goto common_load_ind;
438		case BPF_LD | BPF_B | BPF_IND:
439			func = sk_load_byte;
440		common_load_ind:
441			/*
442			 * Load from [X + K].  Negative offsets are tested for
443			 * in the helper functions.
444			 */
445			ctx->seen |= SEEN_DATAREF | SEEN_XREG;
446			PPC_FUNC_ADDR(r_scratch1, func);
447			PPC_MTLR(r_scratch1);
448			PPC_ADDI(r_addr, r_X, IMM_L(K));
449			if (K >= 32768)
450				PPC_ADDIS(r_addr, r_addr, IMM_HA(K));
451			PPC_BLRL();
452			/* If error, cr0.LT set */
453			PPC_BCC(COND_LT, exit_addr);
454			break;
455
456		case BPF_LDX | BPF_B | BPF_MSH:
457			func = CHOOSE_LOAD_FUNC(K, sk_load_byte_msh);
458			goto common_load;
459			break;
460
461			/*** Jump and branches ***/
462		case BPF_JMP | BPF_JA:
463			if (K != 0)
464				PPC_JMP(addrs[i + 1 + K]);
465			break;
466
467		case BPF_JMP | BPF_JGT | BPF_K:
468		case BPF_JMP | BPF_JGT | BPF_X:
469			true_cond = COND_GT;
470			goto cond_branch;
471		case BPF_JMP | BPF_JGE | BPF_K:
472		case BPF_JMP | BPF_JGE | BPF_X:
473			true_cond = COND_GE;
474			goto cond_branch;
475		case BPF_JMP | BPF_JEQ | BPF_K:
476		case BPF_JMP | BPF_JEQ | BPF_X:
477			true_cond = COND_EQ;
478			goto cond_branch;
479		case BPF_JMP | BPF_JSET | BPF_K:
480		case BPF_JMP | BPF_JSET | BPF_X:
481			true_cond = COND_NE;
482			/* Fall through */
483		cond_branch:
484			/* same targets, can avoid doing the test :) */
485			if (filter[i].jt == filter[i].jf) {
486				if (filter[i].jt > 0)
487					PPC_JMP(addrs[i + 1 + filter[i].jt]);
488				break;
489			}
490
491			switch (code) {
492			case BPF_JMP | BPF_JGT | BPF_X:
493			case BPF_JMP | BPF_JGE | BPF_X:
494			case BPF_JMP | BPF_JEQ | BPF_X:
495				ctx->seen |= SEEN_XREG;
496				PPC_CMPLW(r_A, r_X);
497				break;
498			case BPF_JMP | BPF_JSET | BPF_X:
499				ctx->seen |= SEEN_XREG;
500				PPC_AND_DOT(r_scratch1, r_A, r_X);
501				break;
502			case BPF_JMP | BPF_JEQ | BPF_K:
503			case BPF_JMP | BPF_JGT | BPF_K:
504			case BPF_JMP | BPF_JGE | BPF_K:
505				if (K < 32768)
506					PPC_CMPLWI(r_A, K);
507				else {
508					PPC_LI32(r_scratch1, K);
509					PPC_CMPLW(r_A, r_scratch1);
510				}
511				break;
512			case BPF_JMP | BPF_JSET | BPF_K:
513				if (K < 32768)
514					/* PPC_ANDI is /only/ dot-form */
515					PPC_ANDI(r_scratch1, r_A, K);
516				else {
517					PPC_LI32(r_scratch1, K);
518					PPC_AND_DOT(r_scratch1, r_A,
519						    r_scratch1);
520				}
521				break;
522			}
523			/* Sometimes branches are constructed "backward", with
524			 * the false path being the branch and true path being
525			 * a fallthrough to the next instruction.
526			 */
527			if (filter[i].jt == 0)
528				/* Swap the sense of the branch */
529				PPC_BCC(true_cond ^ COND_CMP_TRUE,
530					addrs[i + 1 + filter[i].jf]);
531			else {
532				PPC_BCC(true_cond, addrs[i + 1 + filter[i].jt]);
533				if (filter[i].jf != 0)
534					PPC_JMP(addrs[i + 1 + filter[i].jf]);
535			}
536			break;
537		default:
538			/* The filter contains something cruel & unusual.
539			 * We don't handle it, but also there shouldn't be
540			 * anything missing from our list.
541			 */
542			if (printk_ratelimit())
543				pr_err("BPF filter opcode %04x (@%d) unsupported\n",
544				       filter[i].code, i);
545			return -ENOTSUPP;
546		}
 
 
547
 
 
 
 
 
 
 
 
 
548	}
549	/* Set end-of-body-code address for exit. */
550	addrs[i] = ctx->idx * 4;
551
552	return 0;
553}
 
 
 
554
555void bpf_jit_compile(struct bpf_prog *fp)
556{
557	unsigned int proglen;
558	unsigned int alloclen;
559	u32 *image = NULL;
560	u32 *code_base;
561	unsigned int *addrs;
562	struct codegen_context cgctx;
563	int pass;
564	int flen = fp->len;
565
566	if (!bpf_jit_enable)
567		return;
568
569	addrs = kzalloc((flen+1) * sizeof(*addrs), GFP_KERNEL);
570	if (addrs == NULL)
571		return;
 
 
 
572
573	/*
574	 * There are multiple assembly passes as the generated code will change
575	 * size as it settles down, figuring out the max branch offsets/exit
576	 * paths required.
577	 *
578	 * The range of standard conditional branches is +/- 32Kbytes.	Since
579	 * BPF_MAXINSNS = 4096, we can only jump from (worst case) start to
580	 * finish with 8 bytes/instruction.  Not feasible, so long jumps are
581	 * used, distinct from short branches.
582	 *
583	 * Current:
584	 *
585	 * For now, both branch types assemble to 2 words (short branches padded
586	 * with a NOP); this is less efficient, but assembly will always complete
587	 * after exactly 3 passes:
588	 *
589	 * First pass: No code buffer; Program is "faux-generated" -- no code
590	 * emitted but maximum size of output determined (and addrs[] filled
591	 * in).	 Also, we note whether we use M[], whether we use skb data, etc.
592	 * All generation choices assumed to be 'worst-case', e.g. branches all
593	 * far (2 instructions), return path code reduction not available, etc.
594	 *
595	 * Second pass: Code buffer allocated with size determined previously.
596	 * Prologue generated to support features we have seen used.  Exit paths
597	 * determined and addrs[] is filled in again, as code may be slightly
598	 * smaller as a result.
599	 *
600	 * Third pass: Code generated 'for real', and branch destinations
601	 * determined from now-accurate addrs[] map.
602	 *
603	 * Ideal:
604	 *
605	 * If we optimise this, near branches will be shorter.	On the
606	 * first assembly pass, we should err on the side of caution and
607	 * generate the biggest code.  On subsequent passes, branches will be
608	 * generated short or long and code size will reduce.  With smaller
609	 * code, more branches may fall into the short category, and code will
610	 * reduce more.
611	 *
612	 * Finally, if we see one pass generate code the same size as the
613	 * previous pass we have converged and should now generate code for
614	 * real.  Allocating at the end will also save the memory that would
615	 * otherwise be wasted by the (small) current code shrinkage.
616	 * Preferably, we should do a small number of passes (e.g. 5) and if we
617	 * haven't converged by then, get impatient and force code to generate
618	 * as-is, even if the odd branch would be left long.  The chances of a
619	 * long jump are tiny with all but the most enormous of BPF filter
620	 * inputs, so we should usually converge on the third pass.
621	 */
 
 
 
 
 
 
 
622
623	cgctx.idx = 0;
624	cgctx.seen = 0;
625	cgctx.pc_ret0 = -1;
626	/* Scouting faux-generate pass 0 */
627	if (bpf_jit_build_body(fp, 0, &cgctx, addrs))
628		/* We hit something illegal or unsupported. */
629		goto out;
630
631	/*
632	 * Pretend to build prologue, given the features we've seen.  This will
633	 * update ctgtx.idx as it pretends to output instructions, then we can
634	 * calculate total size from idx.
635	 */
636	bpf_jit_build_prologue(fp, 0, &cgctx);
 
637	bpf_jit_build_epilogue(0, &cgctx);
638
 
 
 
639	proglen = cgctx.idx * 4;
640	alloclen = proglen + FUNCTION_DESCR_SIZE;
641	image = module_alloc(alloclen);
642	if (!image)
643		goto out;
644
645	code_base = image + (FUNCTION_DESCR_SIZE/4);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
646
647	/* Code generation passes 1-2 */
648	for (pass = 1; pass < 3; pass++) {
649		/* Now build the prologue, body code & epilogue for real. */
650		cgctx.idx = 0;
651		bpf_jit_build_prologue(fp, code_base, &cgctx);
652		bpf_jit_build_body(fp, code_base, &cgctx, addrs);
 
 
 
 
 
653		bpf_jit_build_epilogue(code_base, &cgctx);
654
655		if (bpf_jit_enable > 1)
656			pr_info("Pass %d: shrink = %d, seen = 0x%x\n", pass,
657				proglen - (cgctx.idx * 4), cgctx.seen);
658	}
659
 
660	if (bpf_jit_enable > 1)
661		/* Note that we output the base address of the code_base
 
662		 * rather than image, since opcodes are in code_base.
663		 */
664		bpf_jit_dump(flen, proglen, pass, code_base);
665
666	bpf_flush_icache(code_base, code_base + (proglen/4));
667
668#ifdef CONFIG_PPC64
669	/* Function descriptor nastiness: Address + TOC */
670	((u64 *)image)[0] = (u64)code_base;
671	((u64 *)image)[1] = local_paca->kernel_toc;
672#endif
673
674	fp->bpf_func = (void *)image;
675	fp->jited = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
676
677out:
678	kfree(addrs);
679	return;
 
 
680}
681
682void bpf_jit_free(struct bpf_prog *fp)
 
 
 
 
 
683{
684	if (fp->jited)
685		module_memfree(fp->bpf_func);
 
 
686
687	bpf_prog_unlock_free(fp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
688}