Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * linux/mm/slab.c
   4 * Written by Mark Hemment, 1996/97.
   5 * (markhe@nextd.demon.co.uk)
   6 *
   7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
   8 *
   9 * Major cleanup, different bufctl logic, per-cpu arrays
  10 *	(c) 2000 Manfred Spraul
  11 *
  12 * Cleanup, make the head arrays unconditional, preparation for NUMA
  13 * 	(c) 2002 Manfred Spraul
  14 *
  15 * An implementation of the Slab Allocator as described in outline in;
  16 *	UNIX Internals: The New Frontiers by Uresh Vahalia
  17 *	Pub: Prentice Hall	ISBN 0-13-101908-2
  18 * or with a little more detail in;
  19 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
  20 *	Jeff Bonwick (Sun Microsystems).
  21 *	Presented at: USENIX Summer 1994 Technical Conference
  22 *
  23 * The memory is organized in caches, one cache for each object type.
  24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  25 * Each cache consists out of many slabs (they are small (usually one
  26 * page long) and always contiguous), and each slab contains multiple
  27 * initialized objects.
  28 *
  29 * This means, that your constructor is used only for newly allocated
  30 * slabs and you must pass objects with the same initializations to
  31 * kmem_cache_free.
  32 *
  33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  34 * normal). If you need a special memory type, then must create a new
  35 * cache for that memory type.
  36 *
  37 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  38 *   full slabs with 0 free objects
  39 *   partial slabs
  40 *   empty slabs with no allocated objects
  41 *
  42 * If partial slabs exist, then new allocations come from these slabs,
  43 * otherwise from empty slabs or new slabs are allocated.
  44 *
  45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  47 *
  48 * Each cache has a short per-cpu head array, most allocs
  49 * and frees go into that array, and if that array overflows, then 1/2
  50 * of the entries in the array are given back into the global cache.
  51 * The head array is strictly LIFO and should improve the cache hit rates.
  52 * On SMP, it additionally reduces the spinlock operations.
  53 *
  54 * The c_cpuarray may not be read with enabled local interrupts -
  55 * it's changed with a smp_call_function().
  56 *
  57 * SMP synchronization:
  58 *  constructors and destructors are called without any locking.
  59 *  Several members in struct kmem_cache and struct slab never change, they
  60 *	are accessed without any locking.
  61 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
  62 *  	and local interrupts are disabled so slab code is preempt-safe.
  63 *  The non-constant members are protected with a per-cache irq spinlock.
  64 *
  65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  66 * in 2000 - many ideas in the current implementation are derived from
  67 * his patch.
  68 *
  69 * Further notes from the original documentation:
  70 *
  71 * 11 April '97.  Started multi-threading - markhe
  72 *	The global cache-chain is protected by the mutex 'slab_mutex'.
  73 *	The sem is only needed when accessing/extending the cache-chain, which
  74 *	can never happen inside an interrupt (kmem_cache_create(),
  75 *	kmem_cache_shrink() and kmem_cache_reap()).
  76 *
  77 *	At present, each engine can be growing a cache.  This should be blocked.
  78 *
  79 * 15 March 2005. NUMA slab allocator.
  80 *	Shai Fultheim <shai@scalex86.org>.
  81 *	Shobhit Dayal <shobhit@calsoftinc.com>
  82 *	Alok N Kataria <alokk@calsoftinc.com>
  83 *	Christoph Lameter <christoph@lameter.com>
  84 *
  85 *	Modified the slab allocator to be node aware on NUMA systems.
  86 *	Each node has its own list of partial, free and full slabs.
  87 *	All object allocations for a node occur from node specific slab lists.
  88 */
  89
  90#include	<linux/__KEEPIDENTS__B.h>
  91#include	<linux/__KEEPIDENTS__C.h>
  92#include	<linux/__KEEPIDENTS__D.h>
  93#include	<linux/__KEEPIDENTS__E.h>
  94#include	<linux/__KEEPIDENTS__F.h>
  95#include	<linux/__KEEPIDENTS__G.h>
  96#include	<linux/__KEEPIDENTS__H.h>
  97#include	<linux/__KEEPIDENTS__I.h>
  98#include	<linux/__KEEPIDENTS__J.h>
  99#include	<linux/proc_fs.h>
 100#include	<linux/__KEEPIDENTS__BA.h>
 101#include	<linux/__KEEPIDENTS__BB.h>
 102#include	<linux/__KEEPIDENTS__BC.h>
 103#include	<linux/kfence.h>
 104#include	<linux/cpu.h>
 105#include	<linux/__KEEPIDENTS__BD.h>
 106#include	<linux/__KEEPIDENTS__BE.h>
 107#include	<linux/rcupdate.h>
 108#include	<linux/__KEEPIDENTS__BF.h>
 109#include	<linux/__KEEPIDENTS__BG.h>
 110#include	<linux/__KEEPIDENTS__BH.h>
 111#include	<linux/kmemleak.h>
 112#include	<linux/__KEEPIDENTS__BI.h>
 113#include	<linux/__KEEPIDENTS__BJ.h>
 114#include	<linux/__KEEPIDENTS__CA-__KEEPIDENTS__CB.h>
 115#include	<linux/__KEEPIDENTS__CC.h>
 116#include	<linux/reciprocal_div.h>
 117#include	<linux/debugobjects.h>
 
 118#include	<linux/__KEEPIDENTS__CD.h>
 119#include	<linux/__KEEPIDENTS__CE.h>
 120#include	<linux/__KEEPIDENTS__CF/task_stack.h>
 121
 122#include	<net/__KEEPIDENTS__CG.h>
 123
 124#include	<asm/cacheflush.h>
 125#include	<asm/tlbflush.h>
 126#include	<asm/page.h>
 127
 128#include <trace/events/kmem.h>
 129
 130#include	"internal.h"
 131
 132#include	"slab.h"
 133
 134/*
 135 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
 136 *		  0 for faster, smaller code (especially in the critical paths).
 137 *
 138 * STATS	- 1 to collect stats for /proc/slabinfo.
 139 *		  0 for faster, smaller code (especially in the critical paths).
 140 *
 141 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 142 */
 143
 144#ifdef CONFIG_DEBUG_SLAB
 145#define	DEBUG		1
 146#define	STATS		1
 147#define	FORCED_DEBUG	1
 148#else
 149#define	DEBUG		0
 150#define	STATS		0
 151#define	FORCED_DEBUG	0
 152#endif
 153
 154/* Shouldn't this be in a header file somewhere? */
 155#define	BYTES_PER_WORD		sizeof(void *)
 156#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
 157
 158#ifndef ARCH_KMALLOC_FLAGS
 159#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
 160#endif
 161
 162#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
 163				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
 164
 165#if FREELIST_BYTE_INDEX
 166typedef unsigned char freelist_idx_t;
 167#else
 168typedef unsigned short freelist_idx_t;
 169#endif
 170
 171#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
 172
 173/*
 174 * struct array_cache
 175 *
 176 * Purpose:
 177 * - LIFO ordering, to hand out cache-warm objects from _alloc
 178 * - reduce the number of linked list operations
 179 * - reduce spinlock operations
 180 *
 181 * The limit is stored in the per-cpu structure to reduce the data cache
 182 * footprint.
 183 *
 184 */
 185struct array_cache {
 186	unsigned int avail;
 187	unsigned int limit;
 188	unsigned int batchcount;
 189	unsigned int touched;
 190	void *entry[];	/*
 191			 * Must have this definition in here for the proper
 192			 * alignment of array_cache. Also simplifies accessing
 193			 * the entries.
 194			 */
 195};
 196
 197struct alien_cache {
 198	spinlock_t lock;
 199	struct array_cache ac;
 200};
 201
 202/*
 203 * Need this for bootstrapping a per node allocator.
 204 */
 205#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
 206static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
 207#define	CACHE_CACHE 0
 208#define	SIZE_NODE (MAX_NUMNODES)
 209
 210static int drain_freelist(struct kmem_cache *cache,
 211			struct kmem_cache_node *n, int tofree);
 212static void free_block(struct kmem_cache *cachep, void **objpp, int len,
 213			int node, struct list_head *list);
 214static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
 215static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
 216static void cache_reap(struct work_struct *unused);
 217
 218static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
 219						void **list);
 220static inline void fixup_slab_list(struct kmem_cache *cachep,
 221				struct kmem_cache_node *n, struct slab *slab,
 222				void **list);
 223static int slab_early_init = 1;
 224
 225#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
 226
 227static void kmem_cache_node_init(struct kmem_cache_node *parent)
 228{
 229	INIT_LIST_HEAD(&parent->slabs_full);
 230	INIT_LIST_HEAD(&parent->slabs_partial);
 231	INIT_LIST_HEAD(&parent->slabs_free);
 232	parent->total_slabs = 0;
 233	parent->free_slabs = 0;
 234	parent->shared = NULL;
 235	parent->alien = NULL;
 236	parent->colour_next = 0;
 237	raw_spin_lock_init(&parent->list_lock);
 238	parent->free_objects = 0;
 239	parent->free_touched = 0;
 240}
 241
 242#define MAKE_LIST(cachep, listp, slab, nodeid)				\
 243	do {								\
 244		INIT_LIST_HEAD(listp);					\
 245		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
 246	} while (0)
 247
 248#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
 249	do {								\
 250	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
 251	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
 252	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
 253	} while (0)
 254
 255#define CFLGS_OBJFREELIST_SLAB	((slab_flags_t __force)0x40000000U)
 256#define CFLGS_OFF_SLAB		((slab_flags_t __force)0x80000000U)
 257#define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
 258#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
 259
 260#define BATCHREFILL_LIMIT	16
 261/*
 262 * Optimization question: fewer reaps means less probability for unnecessary
 263 * cpucache drain/refill cycles.
 264 *
 265 * OTOH the cpuarrays can contain lots of objects,
 266 * which could lock up otherwise freeable slabs.
 267 */
 268#define REAPTIMEOUT_AC		(2*HZ)
 269#define REAPTIMEOUT_NODE	(4*HZ)
 270
 271#if STATS
 272#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
 273#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
 274#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
 275#define	STATS_INC_GROWN(x)	((x)->grown++)
 276#define	STATS_ADD_REAPED(x, y)	((x)->reaped += (y))
 277#define	STATS_SET_HIGH(x)						\
 278	do {								\
 279		if ((x)->num_active > (x)->high_mark)			\
 280			(x)->high_mark = (x)->num_active;		\
 281	} while (0)
 282#define	STATS_INC_ERR(x)	((x)->errors++)
 283#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
 284#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
 285#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
 286#define	STATS_SET_FREEABLE(x, i)					\
 287	do {								\
 288		if ((x)->max_freeable < i)				\
 289			(x)->max_freeable = i;				\
 290	} while (0)
 291#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
 292#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
 293#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
 294#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
 295#else
 296#define	STATS_INC_ACTIVE(x)	do { } while (0)
 297#define	STATS_DEC_ACTIVE(x)	do { } while (0)
 298#define	STATS_INC_ALLOCED(x)	do { } while (0)
 299#define	STATS_INC_GROWN(x)	do { } while (0)
 300#define	STATS_ADD_REAPED(x, y)	do { (void)(y); } while (0)
 301#define	STATS_SET_HIGH(x)	do { } while (0)
 302#define	STATS_INC_ERR(x)	do { } while (0)
 303#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
 304#define	STATS_INC_NODEFREES(x)	do { } while (0)
 305#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
 306#define	STATS_SET_FREEABLE(x, i) do { } while (0)
 307#define STATS_INC_ALLOCHIT(x)	do { } while (0)
 308#define STATS_INC_ALLOCMISS(x)	do { } while (0)
 309#define STATS_INC_FREEHIT(x)	do { } while (0)
 310#define STATS_INC_FREEMISS(x)	do { } while (0)
 311#endif
 312
 313#if DEBUG
 314
 315/*
 316 * memory layout of objects:
 317 * 0		: objp
 318 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
 319 * 		the end of an object is aligned with the end of the real
 320 * 		allocation. Catches writes behind the end of the allocation.
 321 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
 322 * 		redzone word.
 323 * cachep->obj_offset: The real object.
 324 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 325 * cachep->size - 1* BYTES_PER_WORD: last caller address
 326 *					[BYTES_PER_WORD long]
 327 */
 328static int obj_offset(struct kmem_cache *cachep)
 329{
 330	return cachep->obj_offset;
 331}
 332
 333static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
 334{
 335	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 336	return (unsigned long long *) (objp + obj_offset(cachep) -
 337				      sizeof(unsigned long long));
 338}
 339
 340static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
 341{
 342	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 343	if (cachep->flags & SLAB_STORE_USER)
 344		return (unsigned long long *)(objp + cachep->size -
 345					      sizeof(unsigned long long) -
 346					      REDZONE_ALIGN);
 347	return (unsigned long long *) (objp + cachep->size -
 348				       sizeof(unsigned long long));
 349}
 350
 351static void **dbg_userword(struct kmem_cache *cachep, void *objp)
 352{
 353	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
 354	return (void **)(objp + cachep->size - BYTES_PER_WORD);
 355}
 356
 357#else
 358
 359#define obj_offset(x)			0
 360#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
 361#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
 362#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
 363
 364#endif
 365
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 366/*
 367 * Do not go above this order unless 0 objects fit into the slab or
 368 * overridden on the command line.
 369 */
 370#define	SLAB_MAX_ORDER_HI	1
 371#define	SLAB_MAX_ORDER_LO	0
 372static int slab_max_order = SLAB_MAX_ORDER_LO;
 373static bool slab_max_order_set __initdata;
 374
 375static inline void *index_to_obj(struct kmem_cache *cache,
 376				 const struct slab *slab, unsigned int idx)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 377{
 378	return slab->s_mem + cache->size * idx;
 
 379}
 380
 381#define BOOT_CPUCACHE_ENTRIES	1
 382/* internal cache of cache description objs */
 383static struct kmem_cache kmem_cache_boot = {
 384	.batchcount = 1,
 385	.limit = BOOT_CPUCACHE_ENTRIES,
 386	.shared = 1,
 387	.size = sizeof(struct kmem_cache),
 388	.name = "kmem_cache",
 389};
 390
 391static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
 392
 393static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
 394{
 395	return this_cpu_ptr(cachep->cpu_cache);
 396}
 397
 398/*
 399 * Calculate the number of objects and left-over bytes for a given buffer size.
 400 */
 401static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
 402		slab_flags_t flags, size_t *left_over)
 403{
 404	unsigned int num;
 405	size_t slab_size = PAGE_SIZE << gfporder;
 406
 407	/*
 408	 * The slab management structure can be either off the slab or
 409	 * on it. For the latter case, the memory allocated for a
 410	 * slab is used for:
 411	 *
 412	 * - @buffer_size bytes for each object
 413	 * - One freelist_idx_t for each object
 414	 *
 415	 * We don't need to consider alignment of freelist because
 416	 * freelist will be at the end of slab page. The objects will be
 417	 * at the correct alignment.
 418	 *
 419	 * If the slab management structure is off the slab, then the
 420	 * alignment will already be calculated into the size. Because
 421	 * the slabs are all pages aligned, the objects will be at the
 422	 * correct alignment when allocated.
 423	 */
 424	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
 425		num = slab_size / buffer_size;
 426		*left_over = slab_size % buffer_size;
 427	} else {
 428		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
 429		*left_over = slab_size %
 430			(buffer_size + sizeof(freelist_idx_t));
 431	}
 432
 433	return num;
 434}
 435
 436#if DEBUG
 437#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
 438
 439static void __slab_error(const char *function, struct kmem_cache *cachep,
 440			char *msg)
 441{
 442	pr_err("slab error in %s(): cache `%s': %s\n",
 443	       function, cachep->name, msg);
 444	dump_stack();
 445	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 446}
 447#endif
 448
 449/*
 450 * By default on NUMA we use alien caches to stage the freeing of
 451 * objects allocated from other nodes. This causes massive memory
 452 * inefficiencies when using fake NUMA setup to split memory into a
 453 * large number of small nodes, so it can be disabled on the command
 454 * line
 455  */
 456
 457static int use_alien_caches __read_mostly = 1;
 458static int __init noaliencache_setup(char *s)
 459{
 460	use_alien_caches = 0;
 461	return 1;
 462}
 463__setup("noaliencache", noaliencache_setup);
 464
 465static int __init slab_max_order_setup(char *str)
 466{
 467	get_option(&str, &slab_max_order);
 468	slab_max_order = slab_max_order < 0 ? 0 :
 469				min(slab_max_order, MAX_ORDER - 1);
 470	slab_max_order_set = true;
 471
 472	return 1;
 473}
 474__setup("slab_max_order=", slab_max_order_setup);
 475
 476#ifdef CONFIG_NUMA
 477/*
 478 * Special reaping functions for NUMA systems called from cache_reap().
 479 * These take care of doing round robin flushing of alien caches (containing
 480 * objects freed on different nodes from which they were allocated) and the
 481 * flushing of remote pcps by calling drain_node_pages.
 482 */
 483static DEFINE_PER_CPU(unsigned long, slab_reap_node);
 484
 485static void init_reap_node(int cpu)
 486{
 487	per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
 488						    node_online_map);
 489}
 490
 491static void next_reap_node(void)
 492{
 493	int node = __this_cpu_read(slab_reap_node);
 494
 495	node = next_node_in(node, node_online_map);
 496	__this_cpu_write(slab_reap_node, node);
 497}
 498
 499#else
 500#define init_reap_node(cpu) do { } while (0)
 501#define next_reap_node(void) do { } while (0)
 502#endif
 503
 504/*
 505 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 506 * via the workqueue/eventd.
 507 * Add the CPU number into the expiration time to minimize the possibility of
 508 * the CPUs getting into lockstep and contending for the global cache chain
 509 * lock.
 510 */
 511static void start_cpu_timer(int cpu)
 512{
 513	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
 514
 515	if (reap_work->work.func == NULL) {
 516		init_reap_node(cpu);
 517		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
 518		schedule_delayed_work_on(cpu, reap_work,
 519					__round_jiffies_relative(HZ, cpu));
 520	}
 521}
 522
 523static void init_arraycache(struct array_cache *ac, int limit, int batch)
 524{
 
 
 
 
 
 
 
 
 525	if (ac) {
 526		ac->avail = 0;
 527		ac->limit = limit;
 528		ac->batchcount = batch;
 529		ac->touched = 0;
 530	}
 531}
 532
 533static struct array_cache *alloc_arraycache(int node, int entries,
 534					    int batchcount, gfp_t gfp)
 535{
 536	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
 537	struct array_cache *ac = NULL;
 538
 539	ac = kmalloc_node(memsize, gfp, node);
 540	/*
 541	 * The array_cache structures contain pointers to free object.
 542	 * However, when such objects are allocated or transferred to another
 543	 * cache the pointers are not cleared and they could be counted as
 544	 * valid references during a kmemleak scan. Therefore, kmemleak must
 545	 * not scan such objects.
 546	 */
 547	kmemleak_no_scan(ac);
 548	init_arraycache(ac, entries, batchcount);
 549	return ac;
 550}
 551
 552static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
 553					struct slab *slab, void *objp)
 554{
 555	struct kmem_cache_node *n;
 556	int slab_node;
 557	LIST_HEAD(list);
 558
 559	slab_node = slab_nid(slab);
 560	n = get_node(cachep, slab_node);
 561
 562	raw_spin_lock(&n->list_lock);
 563	free_block(cachep, &objp, 1, slab_node, &list);
 564	raw_spin_unlock(&n->list_lock);
 565
 566	slabs_destroy(cachep, &list);
 567}
 568
 569/*
 570 * Transfer objects in one arraycache to another.
 571 * Locking must be handled by the caller.
 572 *
 573 * Return the number of entries transferred.
 574 */
 575static int transfer_objects(struct array_cache *to,
 576		struct array_cache *from, unsigned int max)
 577{
 578	/* Figure out how many entries to transfer */
 579	int nr = min3(from->avail, max, to->limit - to->avail);
 580
 581	if (!nr)
 582		return 0;
 583
 584	memcpy(to->entry + to->avail, from->entry + from->avail - nr,
 585			sizeof(void *) *nr);
 586
 587	from->avail -= nr;
 588	to->avail += nr;
 589	return nr;
 590}
 591
 592/* &alien->lock must be held by alien callers. */
 593static __always_inline void __free_one(struct array_cache *ac, void *objp)
 594{
 595	/* Avoid trivial double-free. */
 596	if (IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
 597	    WARN_ON_ONCE(ac->avail > 0 && ac->entry[ac->avail - 1] == objp))
 598		return;
 599	ac->entry[ac->avail++] = objp;
 600}
 601
 602#ifndef CONFIG_NUMA
 603
 604#define drain_alien_cache(cachep, alien) do { } while (0)
 605#define reap_alien(cachep, n) do { } while (0)
 606
 607static inline struct alien_cache **alloc_alien_cache(int node,
 608						int limit, gfp_t gfp)
 609{
 610	return NULL;
 611}
 612
 613static inline void free_alien_cache(struct alien_cache **ac_ptr)
 614{
 615}
 616
 617static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 618{
 619	return 0;
 620}
 621
 
 
 
 
 
 
 
 
 
 
 
 
 622static inline gfp_t gfp_exact_node(gfp_t flags)
 623{
 624	return flags & ~__GFP_NOFAIL;
 625}
 626
 627#else	/* CONFIG_NUMA */
 628
 
 
 
 629static struct alien_cache *__alloc_alien_cache(int node, int entries,
 630						int batch, gfp_t gfp)
 631{
 632	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
 633	struct alien_cache *alc = NULL;
 634
 635	alc = kmalloc_node(memsize, gfp, node);
 636	if (alc) {
 637		kmemleak_no_scan(alc);
 638		init_arraycache(&alc->ac, entries, batch);
 639		spin_lock_init(&alc->lock);
 640	}
 641	return alc;
 642}
 643
 644static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
 645{
 646	struct alien_cache **alc_ptr;
 
 647	int i;
 648
 649	if (limit > 1)
 650		limit = 12;
 651	alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node);
 652	if (!alc_ptr)
 653		return NULL;
 654
 655	for_each_node(i) {
 656		if (i == node || !node_online(i))
 657			continue;
 658		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
 659		if (!alc_ptr[i]) {
 660			for (i--; i >= 0; i--)
 661				kfree(alc_ptr[i]);
 662			kfree(alc_ptr);
 663			return NULL;
 664		}
 665	}
 666	return alc_ptr;
 667}
 668
 669static void free_alien_cache(struct alien_cache **alc_ptr)
 670{
 671	int i;
 672
 673	if (!alc_ptr)
 674		return;
 675	for_each_node(i)
 676	    kfree(alc_ptr[i]);
 677	kfree(alc_ptr);
 678}
 679
 680static void __drain_alien_cache(struct kmem_cache *cachep,
 681				struct array_cache *ac, int node,
 682				struct list_head *list)
 683{
 684	struct kmem_cache_node *n = get_node(cachep, node);
 685
 686	if (ac->avail) {
 687		raw_spin_lock(&n->list_lock);
 688		/*
 689		 * Stuff objects into the remote nodes shared array first.
 690		 * That way we could avoid the overhead of putting the objects
 691		 * into the free lists and getting them back later.
 692		 */
 693		if (n->shared)
 694			transfer_objects(n->shared, ac, ac->limit);
 695
 696		free_block(cachep, ac->entry, ac->avail, node, list);
 697		ac->avail = 0;
 698		raw_spin_unlock(&n->list_lock);
 699	}
 700}
 701
 702/*
 703 * Called from cache_reap() to regularly drain alien caches round robin.
 704 */
 705static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
 706{
 707	int node = __this_cpu_read(slab_reap_node);
 708
 709	if (n->alien) {
 710		struct alien_cache *alc = n->alien[node];
 711		struct array_cache *ac;
 712
 713		if (alc) {
 714			ac = &alc->ac;
 715			if (ac->avail && spin_trylock_irq(&alc->lock)) {
 716				LIST_HEAD(list);
 717
 718				__drain_alien_cache(cachep, ac, node, &list);
 719				spin_unlock_irq(&alc->lock);
 720				slabs_destroy(cachep, &list);
 721			}
 722		}
 723	}
 724}
 725
 726static void drain_alien_cache(struct kmem_cache *cachep,
 727				struct alien_cache **alien)
 728{
 729	int i = 0;
 730	struct alien_cache *alc;
 731	struct array_cache *ac;
 732	unsigned long flags;
 733
 734	for_each_online_node(i) {
 735		alc = alien[i];
 736		if (alc) {
 737			LIST_HEAD(list);
 738
 739			ac = &alc->ac;
 740			spin_lock_irqsave(&alc->lock, flags);
 741			__drain_alien_cache(cachep, ac, i, &list);
 742			spin_unlock_irqrestore(&alc->lock, flags);
 743			slabs_destroy(cachep, &list);
 744		}
 745	}
 746}
 747
 748static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
 749				int node, int slab_node)
 750{
 751	struct kmem_cache_node *n;
 752	struct alien_cache *alien = NULL;
 753	struct array_cache *ac;
 754	LIST_HEAD(list);
 755
 756	n = get_node(cachep, node);
 757	STATS_INC_NODEFREES(cachep);
 758	if (n->alien && n->alien[slab_node]) {
 759		alien = n->alien[slab_node];
 760		ac = &alien->ac;
 761		spin_lock(&alien->lock);
 762		if (unlikely(ac->avail == ac->limit)) {
 763			STATS_INC_ACOVERFLOW(cachep);
 764			__drain_alien_cache(cachep, ac, slab_node, &list);
 765		}
 766		__free_one(ac, objp);
 767		spin_unlock(&alien->lock);
 768		slabs_destroy(cachep, &list);
 769	} else {
 770		n = get_node(cachep, slab_node);
 771		raw_spin_lock(&n->list_lock);
 772		free_block(cachep, &objp, 1, slab_node, &list);
 773		raw_spin_unlock(&n->list_lock);
 774		slabs_destroy(cachep, &list);
 775	}
 776	return 1;
 777}
 778
 779static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 780{
 781	int slab_node = slab_nid(virt_to_slab(objp));
 782	int node = numa_mem_id();
 783	/*
 784	 * Make sure we are not freeing an object from another node to the array
 785	 * cache on this cpu.
 786	 */
 787	if (likely(node == slab_node))
 788		return 0;
 789
 790	return __cache_free_alien(cachep, objp, node, slab_node);
 791}
 792
 793/*
 794 * Construct gfp mask to allocate from a specific node but do not reclaim or
 795 * warn about failures.
 796 */
 797static inline gfp_t gfp_exact_node(gfp_t flags)
 798{
 799	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
 800}
 801#endif
 802
 803static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
 804{
 805	struct kmem_cache_node *n;
 806
 807	/*
 808	 * Set up the kmem_cache_node for cpu before we can
 809	 * begin anything. Make sure some other cpu on this
 810	 * node has not already allocated this
 811	 */
 812	n = get_node(cachep, node);
 813	if (n) {
 814		raw_spin_lock_irq(&n->list_lock);
 815		n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
 816				cachep->num;
 817		raw_spin_unlock_irq(&n->list_lock);
 818
 819		return 0;
 820	}
 821
 822	n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
 823	if (!n)
 824		return -ENOMEM;
 825
 826	kmem_cache_node_init(n);
 827	n->next_reap = jiffies + REAPTIMEOUT_NODE +
 828		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
 829
 830	n->free_limit =
 831		(1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
 832
 833	/*
 834	 * The kmem_cache_nodes don't come and go as CPUs
 835	 * come and go.  slab_mutex provides sufficient
 836	 * protection here.
 837	 */
 838	cachep->node[node] = n;
 839
 840	return 0;
 841}
 842
 843#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
 844/*
 845 * Allocates and initializes node for a node on each slab cache, used for
 846 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
 847 * will be allocated off-node since memory is not yet online for the new node.
 848 * When hotplugging memory or a cpu, existing nodes are not replaced if
 849 * already in use.
 850 *
 851 * Must hold slab_mutex.
 852 */
 853static int init_cache_node_node(int node)
 854{
 855	int ret;
 856	struct kmem_cache *cachep;
 857
 858	list_for_each_entry(cachep, &slab_caches, list) {
 859		ret = init_cache_node(cachep, node, GFP_KERNEL);
 860		if (ret)
 861			return ret;
 862	}
 863
 864	return 0;
 865}
 866#endif
 867
 868static int setup_kmem_cache_node(struct kmem_cache *cachep,
 869				int node, gfp_t gfp, bool force_change)
 870{
 871	int ret = -ENOMEM;
 872	struct kmem_cache_node *n;
 873	struct array_cache *old_shared = NULL;
 874	struct array_cache *new_shared = NULL;
 875	struct alien_cache **new_alien = NULL;
 876	LIST_HEAD(list);
 877
 878	if (use_alien_caches) {
 879		new_alien = alloc_alien_cache(node, cachep->limit, gfp);
 880		if (!new_alien)
 881			goto fail;
 882	}
 883
 884	if (cachep->shared) {
 885		new_shared = alloc_arraycache(node,
 886			cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
 887		if (!new_shared)
 888			goto fail;
 889	}
 890
 891	ret = init_cache_node(cachep, node, gfp);
 892	if (ret)
 893		goto fail;
 894
 895	n = get_node(cachep, node);
 896	raw_spin_lock_irq(&n->list_lock);
 897	if (n->shared && force_change) {
 898		free_block(cachep, n->shared->entry,
 899				n->shared->avail, node, &list);
 900		n->shared->avail = 0;
 901	}
 902
 903	if (!n->shared || force_change) {
 904		old_shared = n->shared;
 905		n->shared = new_shared;
 906		new_shared = NULL;
 907	}
 908
 909	if (!n->alien) {
 910		n->alien = new_alien;
 911		new_alien = NULL;
 912	}
 913
 914	raw_spin_unlock_irq(&n->list_lock);
 915	slabs_destroy(cachep, &list);
 916
 917	/*
 918	 * To protect lockless access to n->shared during irq disabled context.
 919	 * If n->shared isn't NULL in irq disabled context, accessing to it is
 920	 * guaranteed to be valid until irq is re-enabled, because it will be
 921	 * freed after synchronize_rcu().
 922	 */
 923	if (old_shared && force_change)
 924		synchronize_rcu();
 925
 926fail:
 927	kfree(old_shared);
 928	kfree(new_shared);
 929	free_alien_cache(new_alien);
 930
 931	return ret;
 932}
 933
 934#ifdef CONFIG_SMP
 935
 936static void cpuup_canceled(long cpu)
 937{
 938	struct kmem_cache *cachep;
 939	struct kmem_cache_node *n = NULL;
 940	int node = cpu_to_mem(cpu);
 941	const struct cpumask *mask = cpumask_of_node(node);
 942
 943	list_for_each_entry(cachep, &slab_caches, list) {
 944		struct array_cache *nc;
 945		struct array_cache *shared;
 946		struct alien_cache **alien;
 947		LIST_HEAD(list);
 948
 949		n = get_node(cachep, node);
 950		if (!n)
 951			continue;
 952
 953		raw_spin_lock_irq(&n->list_lock);
 954
 955		/* Free limit for this kmem_cache_node */
 956		n->free_limit -= cachep->batchcount;
 957
 958		/* cpu is dead; no one can alloc from it. */
 959		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
 960		free_block(cachep, nc->entry, nc->avail, node, &list);
 961		nc->avail = 0;
 
 
 962
 963		if (!cpumask_empty(mask)) {
 964			raw_spin_unlock_irq(&n->list_lock);
 965			goto free_slab;
 966		}
 967
 968		shared = n->shared;
 969		if (shared) {
 970			free_block(cachep, shared->entry,
 971				   shared->avail, node, &list);
 972			n->shared = NULL;
 973		}
 974
 975		alien = n->alien;
 976		n->alien = NULL;
 977
 978		raw_spin_unlock_irq(&n->list_lock);
 979
 980		kfree(shared);
 981		if (alien) {
 982			drain_alien_cache(cachep, alien);
 983			free_alien_cache(alien);
 984		}
 985
 986free_slab:
 987		slabs_destroy(cachep, &list);
 988	}
 989	/*
 990	 * In the previous loop, all the objects were freed to
 991	 * the respective cache's slabs,  now we can go ahead and
 992	 * shrink each nodelist to its limit.
 993	 */
 994	list_for_each_entry(cachep, &slab_caches, list) {
 995		n = get_node(cachep, node);
 996		if (!n)
 997			continue;
 998		drain_freelist(cachep, n, INT_MAX);
 999	}
1000}
1001
1002static int cpuup_prepare(long cpu)
1003{
1004	struct kmem_cache *cachep;
1005	int node = cpu_to_mem(cpu);
1006	int err;
1007
1008	/*
1009	 * We need to do this right in the beginning since
1010	 * alloc_arraycache's are going to use this list.
1011	 * kmalloc_node allows us to add the slab to the right
1012	 * kmem_cache_node and not this cpu's kmem_cache_node
1013	 */
1014	err = init_cache_node_node(node);
1015	if (err < 0)
1016		goto bad;
1017
1018	/*
1019	 * Now we can go ahead with allocating the shared arrays and
1020	 * array caches
1021	 */
1022	list_for_each_entry(cachep, &slab_caches, list) {
1023		err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1024		if (err)
1025			goto bad;
1026	}
1027
1028	return 0;
1029bad:
1030	cpuup_canceled(cpu);
1031	return -ENOMEM;
1032}
1033
1034int slab_prepare_cpu(unsigned int cpu)
1035{
1036	int err;
1037
1038	mutex_lock(&slab_mutex);
1039	err = cpuup_prepare(cpu);
1040	mutex_unlock(&slab_mutex);
1041	return err;
1042}
1043
1044/*
1045 * This is called for a failed online attempt and for a successful
1046 * offline.
1047 *
1048 * Even if all the cpus of a node are down, we don't free the
1049 * kmem_cache_node of any cache. This is to avoid a race between cpu_down, and
1050 * a kmalloc allocation from another cpu for memory from the node of
1051 * the cpu going down.  The kmem_cache_node structure is usually allocated from
1052 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1053 */
1054int slab_dead_cpu(unsigned int cpu)
1055{
1056	mutex_lock(&slab_mutex);
1057	cpuup_canceled(cpu);
1058	mutex_unlock(&slab_mutex);
1059	return 0;
1060}
1061#endif
1062
1063static int slab_online_cpu(unsigned int cpu)
1064{
1065	start_cpu_timer(cpu);
1066	return 0;
1067}
1068
1069static int slab_offline_cpu(unsigned int cpu)
1070{
1071	/*
1072	 * Shutdown cache reaper. Note that the slab_mutex is held so
1073	 * that if cache_reap() is invoked it cannot do anything
1074	 * expensive but will only modify reap_work and reschedule the
1075	 * timer.
1076	 */
1077	cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1078	/* Now the cache_reaper is guaranteed to be not running. */
1079	per_cpu(slab_reap_work, cpu).work.func = NULL;
1080	return 0;
1081}
1082
1083#if defined(CONFIG_NUMA)
1084/*
1085 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1086 * Returns -EBUSY if all objects cannot be drained so that the node is not
1087 * removed.
1088 *
1089 * Must hold slab_mutex.
1090 */
1091static int __meminit drain_cache_node_node(int node)
1092{
1093	struct kmem_cache *cachep;
1094	int ret = 0;
1095
1096	list_for_each_entry(cachep, &slab_caches, list) {
1097		struct kmem_cache_node *n;
1098
1099		n = get_node(cachep, node);
1100		if (!n)
1101			continue;
1102
1103		drain_freelist(cachep, n, INT_MAX);
1104
1105		if (!list_empty(&n->slabs_full) ||
1106		    !list_empty(&n->slabs_partial)) {
1107			ret = -EBUSY;
1108			break;
1109		}
1110	}
1111	return ret;
1112}
1113
1114static int __meminit slab_memory_callback(struct notifier_block *self,
1115					unsigned long action, void *arg)
1116{
1117	struct memory_notify *mnb = arg;
1118	int ret = 0;
1119	int nid;
1120
1121	nid = mnb->status_change_nid;
1122	if (nid < 0)
1123		goto out;
1124
1125	switch (action) {
1126	case MEM_GOING_ONLINE:
1127		mutex_lock(&slab_mutex);
1128		ret = init_cache_node_node(nid);
1129		mutex_unlock(&slab_mutex);
1130		break;
1131	case MEM_GOING_OFFLINE:
1132		mutex_lock(&slab_mutex);
1133		ret = drain_cache_node_node(nid);
1134		mutex_unlock(&slab_mutex);
1135		break;
1136	case MEM_ONLINE:
1137	case MEM_OFFLINE:
1138	case MEM_CANCEL_ONLINE:
1139	case MEM_CANCEL_OFFLINE:
1140		break;
1141	}
1142out:
1143	return notifier_from_errno(ret);
1144}
1145#endif /* CONFIG_NUMA */
1146
1147/*
1148 * swap the static kmem_cache_node with kmalloced memory
1149 */
1150static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1151				int nodeid)
1152{
1153	struct kmem_cache_node *ptr;
1154
1155	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1156	BUG_ON(!ptr);
1157
1158	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1159	/*
1160	 * Do not assume that spinlocks can be initialized via memcpy:
1161	 */
1162	raw_spin_lock_init(&ptr->list_lock);
1163
1164	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1165	cachep->node[nodeid] = ptr;
1166}
1167
1168/*
1169 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1170 * size of kmem_cache_node.
1171 */
1172static void __init set_up_node(struct kmem_cache *cachep, int index)
1173{
1174	int node;
1175
1176	for_each_online_node(node) {
1177		cachep->node[node] = &init_kmem_cache_node[index + node];
1178		cachep->node[node]->next_reap = jiffies +
1179		    REAPTIMEOUT_NODE +
1180		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1181	}
1182}
1183
1184/*
1185 * Initialisation.  Called after the page allocator have been initialised and
1186 * before smp_init().
1187 */
1188void __init kmem_cache_init(void)
1189{
1190	int i;
1191
 
 
1192	kmem_cache = &kmem_cache_boot;
1193
1194	if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1195		use_alien_caches = 0;
1196
1197	for (i = 0; i < NUM_INIT_LISTS; i++)
1198		kmem_cache_node_init(&init_kmem_cache_node[i]);
1199
1200	/*
1201	 * Fragmentation resistance on low memory - only use bigger
1202	 * page orders on machines with more than 32MB of memory if
1203	 * not overridden on the command line.
1204	 */
1205	if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT)
1206		slab_max_order = SLAB_MAX_ORDER_HI;
1207
1208	/* Bootstrap is tricky, because several objects are allocated
1209	 * from caches that do not exist yet:
1210	 * 1) initialize the kmem_cache cache: it contains the struct
1211	 *    kmem_cache structures of all caches, except kmem_cache itself:
1212	 *    kmem_cache is statically allocated.
1213	 *    Initially an __init data area is used for the head array and the
1214	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1215	 *    array at the end of the bootstrap.
1216	 * 2) Create the first kmalloc cache.
1217	 *    The struct kmem_cache for the new cache is allocated normally.
1218	 *    An __init data area is used for the head array.
1219	 * 3) Create the remaining kmalloc caches, with minimally sized
1220	 *    head arrays.
1221	 * 4) Replace the __init data head arrays for kmem_cache and the first
1222	 *    kmalloc cache with kmalloc allocated arrays.
1223	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1224	 *    the other cache's with kmalloc allocated memory.
1225	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1226	 */
1227
1228	/* 1) create the kmem_cache */
1229
1230	/*
1231	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1232	 */
1233	create_boot_cache(kmem_cache, "kmem_cache",
1234		offsetof(struct kmem_cache, node) +
1235				  nr_node_ids * sizeof(struct kmem_cache_node *),
1236				  SLAB_HWCACHE_ALIGN, 0, 0);
1237	list_add(&kmem_cache->list, &slab_caches);
1238	slab_state = PARTIAL;
1239
1240	/*
1241	 * Initialize the caches that provide memory for the  kmem_cache_node
1242	 * structures first.  Without this, further allocations will bug.
1243	 */
1244	kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache(
1245				kmalloc_info[INDEX_NODE].name[KMALLOC_NORMAL],
1246				kmalloc_info[INDEX_NODE].size,
1247				ARCH_KMALLOC_FLAGS, 0,
1248				kmalloc_info[INDEX_NODE].size);
1249	slab_state = PARTIAL_NODE;
1250	setup_kmalloc_cache_index_table();
1251
1252	slab_early_init = 0;
1253
1254	/* 5) Replace the bootstrap kmem_cache_node */
1255	{
1256		int nid;
1257
1258		for_each_online_node(nid) {
1259			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1260
1261			init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE],
1262					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1263		}
1264	}
1265
1266	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1267}
1268
1269void __init kmem_cache_init_late(void)
1270{
1271	struct kmem_cache *cachep;
1272
 
 
1273	/* 6) resize the head arrays to their final sizes */
1274	mutex_lock(&slab_mutex);
1275	list_for_each_entry(cachep, &slab_caches, list)
1276		if (enable_cpucache(cachep, GFP_NOWAIT))
1277			BUG();
1278	mutex_unlock(&slab_mutex);
1279
1280	/* Done! */
1281	slab_state = FULL;
1282
1283#ifdef CONFIG_NUMA
1284	/*
1285	 * Register a memory hotplug callback that initializes and frees
1286	 * node.
1287	 */
1288	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1289#endif
1290
1291	/*
1292	 * The reap timers are started later, with a module init call: That part
1293	 * of the kernel is not yet operational.
1294	 */
1295}
1296
1297static int __init cpucache_init(void)
1298{
1299	int ret;
1300
1301	/*
1302	 * Register the timers that return unneeded pages to the page allocator
1303	 */
1304	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1305				slab_online_cpu, slab_offline_cpu);
1306	WARN_ON(ret < 0);
1307
 
 
1308	return 0;
1309}
1310__initcall(cpucache_init);
1311
1312static noinline void
1313slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1314{
1315#if DEBUG
1316	struct kmem_cache_node *n;
1317	unsigned long flags;
1318	int node;
1319	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1320				      DEFAULT_RATELIMIT_BURST);
1321
1322	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1323		return;
1324
1325	pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1326		nodeid, gfpflags, &gfpflags);
1327	pr_warn("  cache: %s, object size: %d, order: %d\n",
1328		cachep->name, cachep->size, cachep->gfporder);
1329
1330	for_each_kmem_cache_node(cachep, node, n) {
1331		unsigned long total_slabs, free_slabs, free_objs;
1332
1333		raw_spin_lock_irqsave(&n->list_lock, flags);
1334		total_slabs = n->total_slabs;
1335		free_slabs = n->free_slabs;
1336		free_objs = n->free_objects;
1337		raw_spin_unlock_irqrestore(&n->list_lock, flags);
1338
1339		pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1340			node, total_slabs - free_slabs, total_slabs,
1341			(total_slabs * cachep->num) - free_objs,
1342			total_slabs * cachep->num);
1343	}
1344#endif
1345}
1346
1347/*
1348 * Interface to system's page allocator. No need to hold the
1349 * kmem_cache_node ->list_lock.
1350 *
1351 * If we requested dmaable memory, we will get it. Even if we
1352 * did not request dmaable memory, we might get it, but that
1353 * would be relatively rare and ignorable.
1354 */
1355static struct slab *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1356								int nodeid)
1357{
1358	struct folio *folio;
1359	struct slab *slab;
1360
1361	flags |= cachep->allocflags;
 
 
1362
1363	folio = (struct folio *) __alloc_pages_node(nodeid, flags, cachep->gfporder);
1364	if (!folio) {
1365		slab_out_of_memory(cachep, flags, nodeid);
1366		return NULL;
1367	}
1368
1369	slab = folio_slab(folio);
 
 
 
 
 
 
 
 
 
 
 
1370
1371	account_slab(slab, cachep->gfporder, cachep, flags);
1372	__folio_set_slab(folio);
1373	/* Make the flag visible before any changes to folio->mapping */
1374	smp_wmb();
1375	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1376	if (sk_memalloc_socks() && page_is_pfmemalloc(folio_page(folio, 0)))
1377		slab_set_pfmemalloc(slab);
1378
1379	return slab;
 
 
 
 
 
 
 
 
 
1380}
1381
1382/*
1383 * Interface to system's page release.
1384 */
1385static void kmem_freepages(struct kmem_cache *cachep, struct slab *slab)
1386{
1387	int order = cachep->gfporder;
1388	struct folio *folio = slab_folio(slab);
 
 
 
 
 
 
 
 
 
1389
1390	BUG_ON(!folio_test_slab(folio));
1391	__slab_clear_pfmemalloc(slab);
1392	page_mapcount_reset(folio_page(folio, 0));
1393	folio->mapping = NULL;
1394	/* Make the mapping reset visible before clearing the flag */
1395	smp_wmb();
1396	__folio_clear_slab(folio);
1397
1398	if (current->reclaim_state)
1399		current->reclaim_state->reclaimed_slab += 1 << order;
1400	unaccount_slab(slab, order, cachep);
1401	__free_pages(folio_page(folio, 0), order);
1402}
1403
1404static void kmem_rcu_free(struct rcu_head *head)
1405{
1406	struct kmem_cache *cachep;
1407	struct slab *slab;
1408
1409	slab = container_of(head, struct slab, rcu_head);
1410	cachep = slab->slab_cache;
1411
1412	kmem_freepages(cachep, slab);
1413}
1414
1415#if DEBUG
1416static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1417{
1418	if (debug_pagealloc_enabled_static() && OFF_SLAB(cachep) &&
1419		(cachep->size % PAGE_SIZE) == 0)
1420		return true;
1421
1422	return false;
1423}
1424
1425#ifdef CONFIG_DEBUG_PAGEALLOC
1426static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1427{
1428	if (!is_debug_pagealloc_cache(cachep))
1429		return;
1430
1431	__kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
 
 
 
1432}
1433
1434#else
1435static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1436				int map) {}
1437
1438#endif
1439
1440static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1441{
1442	int size = cachep->object_size;
1443	addr = &((char *)addr)[obj_offset(cachep)];
1444
1445	memset(addr, val, size);
1446	*(unsigned char *)(addr + size - 1) = POISON_END;
1447}
1448
1449static void dump_line(char *data, int offset, int limit)
1450{
1451	int i;
1452	unsigned char error = 0;
1453	int bad_count = 0;
1454
1455	pr_err("%03x: ", offset);
1456	for (i = 0; i < limit; i++) {
1457		if (data[offset + i] != POISON_FREE) {
1458			error = data[offset + i];
1459			bad_count++;
1460		}
1461	}
1462	print_hex_dump(KERN_CONT, "", 0, 16, 1,
1463			&data[offset], limit, 1);
1464
1465	if (bad_count == 1) {
1466		error ^= POISON_FREE;
1467		if (!(error & (error - 1))) {
1468			pr_err("Single bit error detected. Probably bad RAM.\n");
1469#ifdef CONFIG_X86
1470			pr_err("Run memtest86+ or a similar memory test tool.\n");
1471#else
1472			pr_err("Run a memory test tool.\n");
1473#endif
1474		}
1475	}
1476}
1477#endif
1478
1479#if DEBUG
1480
1481static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1482{
1483	int i, size;
1484	char *realobj;
1485
1486	if (cachep->flags & SLAB_RED_ZONE) {
1487		pr_err("Redzone: 0x%llx/0x%llx\n",
1488		       *dbg_redzone1(cachep, objp),
1489		       *dbg_redzone2(cachep, objp));
1490	}
1491
1492	if (cachep->flags & SLAB_STORE_USER)
1493		pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
 
 
 
1494	realobj = (char *)objp + obj_offset(cachep);
1495	size = cachep->object_size;
1496	for (i = 0; i < size && lines; i += 16, lines--) {
1497		int limit;
1498		limit = 16;
1499		if (i + limit > size)
1500			limit = size - i;
1501		dump_line(realobj, i, limit);
1502	}
1503}
1504
1505static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1506{
1507	char *realobj;
1508	int size, i;
1509	int lines = 0;
1510
1511	if (is_debug_pagealloc_cache(cachep))
1512		return;
1513
1514	realobj = (char *)objp + obj_offset(cachep);
1515	size = cachep->object_size;
1516
1517	for (i = 0; i < size; i++) {
1518		char exp = POISON_FREE;
1519		if (i == size - 1)
1520			exp = POISON_END;
1521		if (realobj[i] != exp) {
1522			int limit;
1523			/* Mismatch ! */
1524			/* Print header */
1525			if (lines == 0) {
1526				pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1527				       print_tainted(), cachep->name,
1528				       realobj, size);
1529				print_objinfo(cachep, objp, 0);
1530			}
1531			/* Hexdump the affected line */
1532			i = (i / 16) * 16;
1533			limit = 16;
1534			if (i + limit > size)
1535				limit = size - i;
1536			dump_line(realobj, i, limit);
1537			i += 16;
1538			lines++;
1539			/* Limit to 5 lines */
1540			if (lines > 5)
1541				break;
1542		}
1543	}
1544	if (lines != 0) {
1545		/* Print some data about the neighboring objects, if they
1546		 * exist:
1547		 */
1548		struct slab *slab = virt_to_slab(objp);
1549		unsigned int objnr;
1550
1551		objnr = obj_to_index(cachep, slab, objp);
1552		if (objnr) {
1553			objp = index_to_obj(cachep, slab, objnr - 1);
1554			realobj = (char *)objp + obj_offset(cachep);
1555			pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
1556			print_objinfo(cachep, objp, 2);
1557		}
1558		if (objnr + 1 < cachep->num) {
1559			objp = index_to_obj(cachep, slab, objnr + 1);
1560			realobj = (char *)objp + obj_offset(cachep);
1561			pr_err("Next obj: start=%px, len=%d\n", realobj, size);
1562			print_objinfo(cachep, objp, 2);
1563		}
1564	}
1565}
1566#endif
1567
1568#if DEBUG
1569static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1570						struct slab *slab)
1571{
1572	int i;
1573
1574	if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1575		poison_obj(cachep, slab->freelist - obj_offset(cachep),
1576			POISON_FREE);
1577	}
1578
1579	for (i = 0; i < cachep->num; i++) {
1580		void *objp = index_to_obj(cachep, slab, i);
1581
1582		if (cachep->flags & SLAB_POISON) {
1583			check_poison_obj(cachep, objp);
1584			slab_kernel_map(cachep, objp, 1);
1585		}
1586		if (cachep->flags & SLAB_RED_ZONE) {
1587			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1588				slab_error(cachep, "start of a freed object was overwritten");
1589			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1590				slab_error(cachep, "end of a freed object was overwritten");
1591		}
1592	}
1593}
1594#else
1595static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1596						struct slab *slab)
1597{
1598}
1599#endif
1600
1601/**
1602 * slab_destroy - destroy and release all objects in a slab
1603 * @cachep: cache pointer being destroyed
1604 * @slab: slab being destroyed
1605 *
1606 * Destroy all the objs in a slab, and release the mem back to the system.
1607 * Before calling the slab must have been unlinked from the cache. The
1608 * kmem_cache_node ->list_lock is not held/needed.
1609 */
1610static void slab_destroy(struct kmem_cache *cachep, struct slab *slab)
1611{
1612	void *freelist;
1613
1614	freelist = slab->freelist;
1615	slab_destroy_debugcheck(cachep, slab);
1616	if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1617		call_rcu(&slab->rcu_head, kmem_rcu_free);
1618	else
1619		kmem_freepages(cachep, slab);
1620
1621	/*
1622	 * From now on, we don't use freelist
1623	 * although actual page can be freed in rcu context
1624	 */
1625	if (OFF_SLAB(cachep))
1626		kfree(freelist);
1627}
1628
1629/*
1630 * Update the size of the caches before calling slabs_destroy as it may
1631 * recursively call kfree.
1632 */
1633static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1634{
1635	struct slab *slab, *n;
1636
1637	list_for_each_entry_safe(slab, n, list, slab_list) {
1638		list_del(&slab->slab_list);
1639		slab_destroy(cachep, slab);
1640	}
1641}
1642
1643/**
1644 * calculate_slab_order - calculate size (page order) of slabs
1645 * @cachep: pointer to the cache that is being created
1646 * @size: size of objects to be created in this cache.
1647 * @flags: slab allocation flags
1648 *
1649 * Also calculates the number of objects per slab.
1650 *
1651 * This could be made much more intelligent.  For now, try to avoid using
1652 * high order pages for slabs.  When the gfp() functions are more friendly
1653 * towards high-order requests, this should be changed.
1654 *
1655 * Return: number of left-over bytes in a slab
1656 */
1657static size_t calculate_slab_order(struct kmem_cache *cachep,
1658				size_t size, slab_flags_t flags)
1659{
1660	size_t left_over = 0;
1661	int gfporder;
1662
1663	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1664		unsigned int num;
1665		size_t remainder;
1666
1667		num = cache_estimate(gfporder, size, flags, &remainder);
1668		if (!num)
1669			continue;
1670
1671		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1672		if (num > SLAB_OBJ_MAX_NUM)
1673			break;
1674
1675		if (flags & CFLGS_OFF_SLAB) {
1676			struct kmem_cache *freelist_cache;
1677			size_t freelist_size;
1678			size_t freelist_cache_size;
1679
1680			freelist_size = num * sizeof(freelist_idx_t);
1681			if (freelist_size > KMALLOC_MAX_CACHE_SIZE) {
1682				freelist_cache_size = PAGE_SIZE << get_order(freelist_size);
1683			} else {
1684				freelist_cache = kmalloc_slab(freelist_size, 0u);
1685				if (!freelist_cache)
1686					continue;
1687				freelist_cache_size = freelist_cache->size;
1688
1689				/*
1690				 * Needed to avoid possible looping condition
1691				 * in cache_grow_begin()
1692				 */
1693				if (OFF_SLAB(freelist_cache))
1694					continue;
1695			}
1696
1697			/* check if off slab has enough benefit */
1698			if (freelist_cache_size > cachep->size / 2)
1699				continue;
1700		}
1701
1702		/* Found something acceptable - save it away */
1703		cachep->num = num;
1704		cachep->gfporder = gfporder;
1705		left_over = remainder;
1706
1707		/*
1708		 * A VFS-reclaimable slab tends to have most allocations
1709		 * as GFP_NOFS and we really don't want to have to be allocating
1710		 * higher-order pages when we are unable to shrink dcache.
1711		 */
1712		if (flags & SLAB_RECLAIM_ACCOUNT)
1713			break;
1714
1715		/*
1716		 * Large number of objects is good, but very large slabs are
1717		 * currently bad for the gfp()s.
1718		 */
1719		if (gfporder >= slab_max_order)
1720			break;
1721
1722		/*
1723		 * Acceptable internal fragmentation?
1724		 */
1725		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1726			break;
1727	}
1728	return left_over;
1729}
1730
1731static struct array_cache __percpu *alloc_kmem_cache_cpus(
1732		struct kmem_cache *cachep, int entries, int batchcount)
1733{
1734	int cpu;
1735	size_t size;
1736	struct array_cache __percpu *cpu_cache;
1737
1738	size = sizeof(void *) * entries + sizeof(struct array_cache);
1739	cpu_cache = __alloc_percpu(size, sizeof(void *));
1740
1741	if (!cpu_cache)
1742		return NULL;
1743
1744	for_each_possible_cpu(cpu) {
1745		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1746				entries, batchcount);
1747	}
1748
1749	return cpu_cache;
1750}
1751
1752static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1753{
1754	if (slab_state >= FULL)
1755		return enable_cpucache(cachep, gfp);
1756
1757	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1758	if (!cachep->cpu_cache)
1759		return 1;
1760
1761	if (slab_state == DOWN) {
1762		/* Creation of first cache (kmem_cache). */
1763		set_up_node(kmem_cache, CACHE_CACHE);
1764	} else if (slab_state == PARTIAL) {
1765		/* For kmem_cache_node */
1766		set_up_node(cachep, SIZE_NODE);
1767	} else {
1768		int node;
1769
1770		for_each_online_node(node) {
1771			cachep->node[node] = kmalloc_node(
1772				sizeof(struct kmem_cache_node), gfp, node);
1773			BUG_ON(!cachep->node[node]);
1774			kmem_cache_node_init(cachep->node[node]);
1775		}
1776	}
1777
1778	cachep->node[numa_mem_id()]->next_reap =
1779			jiffies + REAPTIMEOUT_NODE +
1780			((unsigned long)cachep) % REAPTIMEOUT_NODE;
1781
1782	cpu_cache_get(cachep)->avail = 0;
1783	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1784	cpu_cache_get(cachep)->batchcount = 1;
1785	cpu_cache_get(cachep)->touched = 0;
1786	cachep->batchcount = 1;
1787	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1788	return 0;
1789}
1790
1791slab_flags_t kmem_cache_flags(unsigned int object_size,
1792	slab_flags_t flags, const char *name)
 
1793{
1794	return flags;
1795}
1796
1797struct kmem_cache *
1798__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
1799		   slab_flags_t flags, void (*ctor)(void *))
1800{
1801	struct kmem_cache *cachep;
1802
1803	cachep = find_mergeable(size, align, flags, name, ctor);
1804	if (cachep) {
1805		cachep->refcount++;
1806
1807		/*
1808		 * Adjust the object sizes so that we clear
1809		 * the complete object on kzalloc.
1810		 */
1811		cachep->object_size = max_t(int, cachep->object_size, size);
1812	}
1813	return cachep;
1814}
1815
1816static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1817			size_t size, slab_flags_t flags)
1818{
1819	size_t left;
1820
1821	cachep->num = 0;
1822
1823	/*
1824	 * If slab auto-initialization on free is enabled, store the freelist
1825	 * off-slab, so that its contents don't end up in one of the allocated
1826	 * objects.
1827	 */
1828	if (unlikely(slab_want_init_on_free(cachep)))
1829		return false;
1830
1831	if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1832		return false;
1833
1834	left = calculate_slab_order(cachep, size,
1835			flags | CFLGS_OBJFREELIST_SLAB);
1836	if (!cachep->num)
1837		return false;
1838
1839	if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1840		return false;
1841
1842	cachep->colour = left / cachep->colour_off;
1843
1844	return true;
1845}
1846
1847static bool set_off_slab_cache(struct kmem_cache *cachep,
1848			size_t size, slab_flags_t flags)
1849{
1850	size_t left;
1851
1852	cachep->num = 0;
1853
1854	/*
1855	 * Always use on-slab management when SLAB_NOLEAKTRACE
1856	 * to avoid recursive calls into kmemleak.
1857	 */
1858	if (flags & SLAB_NOLEAKTRACE)
1859		return false;
1860
1861	/*
1862	 * Size is large, assume best to place the slab management obj
1863	 * off-slab (should allow better packing of objs).
1864	 */
1865	left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1866	if (!cachep->num)
1867		return false;
1868
1869	/*
1870	 * If the slab has been placed off-slab, and we have enough space then
1871	 * move it on-slab. This is at the expense of any extra colouring.
1872	 */
1873	if (left >= cachep->num * sizeof(freelist_idx_t))
1874		return false;
1875
1876	cachep->colour = left / cachep->colour_off;
1877
1878	return true;
1879}
1880
1881static bool set_on_slab_cache(struct kmem_cache *cachep,
1882			size_t size, slab_flags_t flags)
1883{
1884	size_t left;
1885
1886	cachep->num = 0;
1887
1888	left = calculate_slab_order(cachep, size, flags);
1889	if (!cachep->num)
1890		return false;
1891
1892	cachep->colour = left / cachep->colour_off;
1893
1894	return true;
1895}
1896
1897/**
1898 * __kmem_cache_create - Create a cache.
1899 * @cachep: cache management descriptor
1900 * @flags: SLAB flags
1901 *
1902 * Returns a ptr to the cache on success, NULL on failure.
1903 * Cannot be called within an int, but can be interrupted.
1904 * The @ctor is run when new pages are allocated by the cache.
1905 *
1906 * The flags are
1907 *
1908 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1909 * to catch references to uninitialised memory.
1910 *
1911 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1912 * for buffer overruns.
1913 *
1914 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1915 * cacheline.  This can be beneficial if you're counting cycles as closely
1916 * as davem.
1917 *
1918 * Return: a pointer to the created cache or %NULL in case of error
1919 */
1920int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
 
1921{
1922	size_t ralign = BYTES_PER_WORD;
1923	gfp_t gfp;
1924	int err;
1925	unsigned int size = cachep->size;
1926
1927#if DEBUG
1928#if FORCED_DEBUG
1929	/*
1930	 * Enable redzoning and last user accounting, except for caches with
1931	 * large objects, if the increased size would increase the object size
1932	 * above the next power of two: caches with object sizes just above a
1933	 * power of two have a significant amount of internal fragmentation.
1934	 */
1935	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
1936						2 * sizeof(unsigned long long)))
1937		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1938	if (!(flags & SLAB_TYPESAFE_BY_RCU))
1939		flags |= SLAB_POISON;
1940#endif
1941#endif
1942
1943	/*
1944	 * Check that size is in terms of words.  This is needed to avoid
1945	 * unaligned accesses for some archs when redzoning is used, and makes
1946	 * sure any on-slab bufctl's are also correctly aligned.
1947	 */
1948	size = ALIGN(size, BYTES_PER_WORD);
 
 
 
1949
1950	if (flags & SLAB_RED_ZONE) {
1951		ralign = REDZONE_ALIGN;
1952		/* If redzoning, ensure that the second redzone is suitably
1953		 * aligned, by adjusting the object size accordingly. */
1954		size = ALIGN(size, REDZONE_ALIGN);
 
1955	}
1956
1957	/* 3) caller mandated alignment */
1958	if (ralign < cachep->align) {
1959		ralign = cachep->align;
1960	}
1961	/* disable debug if necessary */
1962	if (ralign > __alignof__(unsigned long long))
1963		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1964	/*
1965	 * 4) Store it.
1966	 */
1967	cachep->align = ralign;
1968	cachep->colour_off = cache_line_size();
1969	/* Offset must be a multiple of the alignment. */
1970	if (cachep->colour_off < cachep->align)
1971		cachep->colour_off = cachep->align;
1972
1973	if (slab_is_available())
1974		gfp = GFP_KERNEL;
1975	else
1976		gfp = GFP_NOWAIT;
1977
1978#if DEBUG
1979
1980	/*
1981	 * Both debugging options require word-alignment which is calculated
1982	 * into align above.
1983	 */
1984	if (flags & SLAB_RED_ZONE) {
1985		/* add space for red zone words */
1986		cachep->obj_offset += sizeof(unsigned long long);
1987		size += 2 * sizeof(unsigned long long);
1988	}
1989	if (flags & SLAB_STORE_USER) {
1990		/* user store requires one word storage behind the end of
1991		 * the real object. But if the second red zone needs to be
1992		 * aligned to 64 bits, we must allow that much space.
1993		 */
1994		if (flags & SLAB_RED_ZONE)
1995			size += REDZONE_ALIGN;
1996		else
1997			size += BYTES_PER_WORD;
1998	}
1999#endif
2000
2001	kasan_cache_create(cachep, &size, &flags);
2002
2003	size = ALIGN(size, cachep->align);
2004	/*
2005	 * We should restrict the number of objects in a slab to implement
2006	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2007	 */
2008	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2009		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2010
2011#if DEBUG
2012	/*
2013	 * To activate debug pagealloc, off-slab management is necessary
2014	 * requirement. In early phase of initialization, small sized slab
2015	 * doesn't get initialized so it would not be possible. So, we need
2016	 * to check size >= 256. It guarantees that all necessary small
2017	 * sized slab is initialized in current slab initialization sequence.
2018	 */
2019	if (debug_pagealloc_enabled_static() && (flags & SLAB_POISON) &&
2020		size >= 256 && cachep->object_size > cache_line_size()) {
2021		if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2022			size_t tmp_size = ALIGN(size, PAGE_SIZE);
2023
2024			if (set_off_slab_cache(cachep, tmp_size, flags)) {
2025				flags |= CFLGS_OFF_SLAB;
2026				cachep->obj_offset += tmp_size - size;
2027				size = tmp_size;
2028				goto done;
2029			}
2030		}
2031	}
2032#endif
2033
2034	if (set_objfreelist_slab_cache(cachep, size, flags)) {
2035		flags |= CFLGS_OBJFREELIST_SLAB;
2036		goto done;
2037	}
2038
2039	if (set_off_slab_cache(cachep, size, flags)) {
2040		flags |= CFLGS_OFF_SLAB;
2041		goto done;
2042	}
2043
2044	if (set_on_slab_cache(cachep, size, flags))
2045		goto done;
2046
2047	return -E2BIG;
2048
2049done:
2050	cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2051	cachep->flags = flags;
2052	cachep->allocflags = __GFP_COMP;
2053	if (flags & SLAB_CACHE_DMA)
2054		cachep->allocflags |= GFP_DMA;
2055	if (flags & SLAB_CACHE_DMA32)
2056		cachep->allocflags |= GFP_DMA32;
2057	if (flags & SLAB_RECLAIM_ACCOUNT)
2058		cachep->allocflags |= __GFP_RECLAIMABLE;
2059	cachep->size = size;
2060	cachep->reciprocal_buffer_size = reciprocal_value(size);
2061
2062#if DEBUG
2063	/*
2064	 * If we're going to use the generic kernel_map_pages()
2065	 * poisoning, then it's going to smash the contents of
2066	 * the redzone and userword anyhow, so switch them off.
2067	 */
2068	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2069		(cachep->flags & SLAB_POISON) &&
2070		is_debug_pagealloc_cache(cachep))
2071		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2072#endif
2073
 
 
 
 
 
2074	err = setup_cpu_cache(cachep, gfp);
2075	if (err) {
2076		__kmem_cache_release(cachep);
2077		return err;
2078	}
2079
2080	return 0;
2081}
2082
2083#if DEBUG
2084static void check_irq_off(void)
2085{
2086	BUG_ON(!irqs_disabled());
2087}
2088
2089static void check_irq_on(void)
2090{
2091	BUG_ON(irqs_disabled());
2092}
2093
2094static void check_mutex_acquired(void)
2095{
2096	BUG_ON(!mutex_is_locked(&slab_mutex));
2097}
2098
2099static void check_spinlock_acquired(struct kmem_cache *cachep)
2100{
2101#ifdef CONFIG_SMP
2102	check_irq_off();
2103	assert_raw_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2104#endif
2105}
2106
2107static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2108{
2109#ifdef CONFIG_SMP
2110	check_irq_off();
2111	assert_raw_spin_locked(&get_node(cachep, node)->list_lock);
2112#endif
2113}
2114
2115#else
2116#define check_irq_off()	do { } while(0)
2117#define check_irq_on()	do { } while(0)
2118#define check_mutex_acquired()	do { } while(0)
2119#define check_spinlock_acquired(x) do { } while(0)
2120#define check_spinlock_acquired_node(x, y) do { } while(0)
2121#endif
2122
2123static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2124				int node, bool free_all, struct list_head *list)
2125{
2126	int tofree;
2127
2128	if (!ac || !ac->avail)
2129		return;
2130
2131	tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2132	if (tofree > ac->avail)
2133		tofree = (ac->avail + 1) / 2;
2134
2135	free_block(cachep, ac->entry, tofree, node, list);
2136	ac->avail -= tofree;
2137	memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2138}
2139
2140static void do_drain(void *arg)
2141{
2142	struct kmem_cache *cachep = arg;
2143	struct array_cache *ac;
2144	int node = numa_mem_id();
2145	struct kmem_cache_node *n;
2146	LIST_HEAD(list);
2147
2148	check_irq_off();
2149	ac = cpu_cache_get(cachep);
2150	n = get_node(cachep, node);
2151	raw_spin_lock(&n->list_lock);
2152	free_block(cachep, ac->entry, ac->avail, node, &list);
2153	raw_spin_unlock(&n->list_lock);
2154	ac->avail = 0;
2155	slabs_destroy(cachep, &list);
 
2156}
2157
2158static void drain_cpu_caches(struct kmem_cache *cachep)
2159{
2160	struct kmem_cache_node *n;
2161	int node;
2162	LIST_HEAD(list);
2163
2164	on_each_cpu(do_drain, cachep, 1);
2165	check_irq_on();
2166	for_each_kmem_cache_node(cachep, node, n)
2167		if (n->alien)
2168			drain_alien_cache(cachep, n->alien);
2169
2170	for_each_kmem_cache_node(cachep, node, n) {
2171		raw_spin_lock_irq(&n->list_lock);
2172		drain_array_locked(cachep, n->shared, node, true, &list);
2173		raw_spin_unlock_irq(&n->list_lock);
2174
2175		slabs_destroy(cachep, &list);
2176	}
2177}
2178
2179/*
2180 * Remove slabs from the list of free slabs.
2181 * Specify the number of slabs to drain in tofree.
2182 *
2183 * Returns the actual number of slabs released.
2184 */
2185static int drain_freelist(struct kmem_cache *cache,
2186			struct kmem_cache_node *n, int tofree)
2187{
2188	struct list_head *p;
2189	int nr_freed;
2190	struct slab *slab;
2191
2192	nr_freed = 0;
2193	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2194
2195		raw_spin_lock_irq(&n->list_lock);
2196		p = n->slabs_free.prev;
2197		if (p == &n->slabs_free) {
2198			raw_spin_unlock_irq(&n->list_lock);
2199			goto out;
2200		}
2201
2202		slab = list_entry(p, struct slab, slab_list);
2203		list_del(&slab->slab_list);
2204		n->free_slabs--;
2205		n->total_slabs--;
2206		/*
2207		 * Safe to drop the lock. The slab is no longer linked
2208		 * to the cache.
2209		 */
2210		n->free_objects -= cache->num;
2211		raw_spin_unlock_irq(&n->list_lock);
2212		slab_destroy(cache, slab);
2213		nr_freed++;
2214
2215		cond_resched();
2216	}
2217out:
2218	return nr_freed;
2219}
2220
2221bool __kmem_cache_empty(struct kmem_cache *s)
2222{
2223	int node;
2224	struct kmem_cache_node *n;
2225
2226	for_each_kmem_cache_node(s, node, n)
2227		if (!list_empty(&n->slabs_full) ||
2228		    !list_empty(&n->slabs_partial))
2229			return false;
2230	return true;
2231}
2232
2233int __kmem_cache_shrink(struct kmem_cache *cachep)
2234{
2235	int ret = 0;
2236	int node;
2237	struct kmem_cache_node *n;
2238
2239	drain_cpu_caches(cachep);
2240
2241	check_irq_on();
2242	for_each_kmem_cache_node(cachep, node, n) {
2243		drain_freelist(cachep, n, INT_MAX);
2244
2245		ret += !list_empty(&n->slabs_full) ||
2246			!list_empty(&n->slabs_partial);
2247	}
2248	return (ret ? 1 : 0);
2249}
2250
2251int __kmem_cache_shutdown(struct kmem_cache *cachep)
2252{
2253	return __kmem_cache_shrink(cachep);
2254}
2255
2256void __kmem_cache_release(struct kmem_cache *cachep)
2257{
2258	int i;
2259	struct kmem_cache_node *n;
2260
2261	cache_random_seq_destroy(cachep);
2262
2263	free_percpu(cachep->cpu_cache);
2264
2265	/* NUMA: free the node structures */
2266	for_each_kmem_cache_node(cachep, i, n) {
2267		kfree(n->shared);
2268		free_alien_cache(n->alien);
2269		kfree(n);
2270		cachep->node[i] = NULL;
2271	}
2272}
2273
2274/*
2275 * Get the memory for a slab management obj.
2276 *
2277 * For a slab cache when the slab descriptor is off-slab, the
2278 * slab descriptor can't come from the same cache which is being created,
2279 * Because if it is the case, that means we defer the creation of
2280 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2281 * And we eventually call down to __kmem_cache_create(), which
2282 * in turn looks up in the kmalloc_{dma,}_caches for the desired-size one.
2283 * This is a "chicken-and-egg" problem.
2284 *
2285 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2286 * which are all initialized during kmem_cache_init().
2287 */
2288static void *alloc_slabmgmt(struct kmem_cache *cachep,
2289				   struct slab *slab, int colour_off,
2290				   gfp_t local_flags, int nodeid)
2291{
2292	void *freelist;
2293	void *addr = slab_address(slab);
2294
2295	slab->s_mem = addr + colour_off;
2296	slab->active = 0;
2297
2298	if (OBJFREELIST_SLAB(cachep))
2299		freelist = NULL;
2300	else if (OFF_SLAB(cachep)) {
2301		/* Slab management obj is off-slab. */
2302		freelist = kmalloc_node(cachep->freelist_size,
2303					      local_flags, nodeid);
 
 
2304	} else {
2305		/* We will use last bytes at the slab for freelist */
2306		freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2307				cachep->freelist_size;
2308	}
2309
2310	return freelist;
2311}
2312
2313static inline freelist_idx_t get_free_obj(struct slab *slab, unsigned int idx)
2314{
2315	return ((freelist_idx_t *) slab->freelist)[idx];
2316}
2317
2318static inline void set_free_obj(struct slab *slab,
2319					unsigned int idx, freelist_idx_t val)
2320{
2321	((freelist_idx_t *)(slab->freelist))[idx] = val;
2322}
2323
2324static void cache_init_objs_debug(struct kmem_cache *cachep, struct slab *slab)
2325{
2326#if DEBUG
2327	int i;
2328
2329	for (i = 0; i < cachep->num; i++) {
2330		void *objp = index_to_obj(cachep, slab, i);
2331
2332		if (cachep->flags & SLAB_STORE_USER)
2333			*dbg_userword(cachep, objp) = NULL;
2334
2335		if (cachep->flags & SLAB_RED_ZONE) {
2336			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2337			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2338		}
2339		/*
2340		 * Constructors are not allowed to allocate memory from the same
2341		 * cache which they are a constructor for.  Otherwise, deadlock.
2342		 * They must also be threaded.
2343		 */
2344		if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2345			kasan_unpoison_object_data(cachep,
2346						   objp + obj_offset(cachep));
2347			cachep->ctor(objp + obj_offset(cachep));
2348			kasan_poison_object_data(
2349				cachep, objp + obj_offset(cachep));
2350		}
2351
2352		if (cachep->flags & SLAB_RED_ZONE) {
2353			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2354				slab_error(cachep, "constructor overwrote the end of an object");
2355			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2356				slab_error(cachep, "constructor overwrote the start of an object");
2357		}
2358		/* need to poison the objs? */
2359		if (cachep->flags & SLAB_POISON) {
2360			poison_obj(cachep, objp, POISON_FREE);
2361			slab_kernel_map(cachep, objp, 0);
2362		}
2363	}
2364#endif
2365}
2366
2367#ifdef CONFIG_SLAB_FREELIST_RANDOM
2368/* Hold information during a freelist initialization */
2369union freelist_init_state {
2370	struct {
2371		unsigned int pos;
2372		unsigned int *list;
2373		unsigned int count;
2374	};
2375	struct rnd_state rnd_state;
2376};
2377
2378/*
2379 * Initialize the state based on the randomization method available.
2380 * return true if the pre-computed list is available, false otherwise.
2381 */
2382static bool freelist_state_initialize(union freelist_init_state *state,
2383				struct kmem_cache *cachep,
2384				unsigned int count)
2385{
2386	bool ret;
2387	unsigned int rand;
2388
2389	/* Use best entropy available to define a random shift */
2390	rand = get_random_u32();
2391
2392	/* Use a random state if the pre-computed list is not available */
2393	if (!cachep->random_seq) {
2394		prandom_seed_state(&state->rnd_state, rand);
2395		ret = false;
2396	} else {
2397		state->list = cachep->random_seq;
2398		state->count = count;
2399		state->pos = rand % count;
2400		ret = true;
2401	}
2402	return ret;
2403}
2404
2405/* Get the next entry on the list and randomize it using a random shift */
2406static freelist_idx_t next_random_slot(union freelist_init_state *state)
2407{
2408	if (state->pos >= state->count)
2409		state->pos = 0;
2410	return state->list[state->pos++];
2411}
2412
2413/* Swap two freelist entries */
2414static void swap_free_obj(struct slab *slab, unsigned int a, unsigned int b)
2415{
2416	swap(((freelist_idx_t *) slab->freelist)[a],
2417		((freelist_idx_t *) slab->freelist)[b]);
2418}
2419
2420/*
2421 * Shuffle the freelist initialization state based on pre-computed lists.
2422 * return true if the list was successfully shuffled, false otherwise.
2423 */
2424static bool shuffle_freelist(struct kmem_cache *cachep, struct slab *slab)
2425{
2426	unsigned int objfreelist = 0, i, rand, count = cachep->num;
2427	union freelist_init_state state;
2428	bool precomputed;
2429
2430	if (count < 2)
2431		return false;
2432
2433	precomputed = freelist_state_initialize(&state, cachep, count);
2434
2435	/* Take a random entry as the objfreelist */
2436	if (OBJFREELIST_SLAB(cachep)) {
2437		if (!precomputed)
2438			objfreelist = count - 1;
2439		else
2440			objfreelist = next_random_slot(&state);
2441		slab->freelist = index_to_obj(cachep, slab, objfreelist) +
2442						obj_offset(cachep);
2443		count--;
2444	}
2445
2446	/*
2447	 * On early boot, generate the list dynamically.
2448	 * Later use a pre-computed list for speed.
2449	 */
2450	if (!precomputed) {
2451		for (i = 0; i < count; i++)
2452			set_free_obj(slab, i, i);
2453
2454		/* Fisher-Yates shuffle */
2455		for (i = count - 1; i > 0; i--) {
2456			rand = prandom_u32_state(&state.rnd_state);
2457			rand %= (i + 1);
2458			swap_free_obj(slab, i, rand);
2459		}
2460	} else {
2461		for (i = 0; i < count; i++)
2462			set_free_obj(slab, i, next_random_slot(&state));
2463	}
2464
2465	if (OBJFREELIST_SLAB(cachep))
2466		set_free_obj(slab, cachep->num - 1, objfreelist);
2467
2468	return true;
2469}
2470#else
2471static inline bool shuffle_freelist(struct kmem_cache *cachep,
2472				struct slab *slab)
2473{
2474	return false;
2475}
2476#endif /* CONFIG_SLAB_FREELIST_RANDOM */
2477
2478static void cache_init_objs(struct kmem_cache *cachep,
2479			    struct slab *slab)
2480{
2481	int i;
2482	void *objp;
2483	bool shuffled;
2484
2485	cache_init_objs_debug(cachep, slab);
2486
2487	/* Try to randomize the freelist if enabled */
2488	shuffled = shuffle_freelist(cachep, slab);
2489
2490	if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2491		slab->freelist = index_to_obj(cachep, slab, cachep->num - 1) +
2492						obj_offset(cachep);
2493	}
2494
2495	for (i = 0; i < cachep->num; i++) {
2496		objp = index_to_obj(cachep, slab, i);
2497		objp = kasan_init_slab_obj(cachep, objp);
2498
2499		/* constructor could break poison info */
2500		if (DEBUG == 0 && cachep->ctor) {
2501			kasan_unpoison_object_data(cachep, objp);
2502			cachep->ctor(objp);
2503			kasan_poison_object_data(cachep, objp);
2504		}
2505
2506		if (!shuffled)
2507			set_free_obj(slab, i, i);
2508	}
2509}
2510
2511static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slab)
2512{
2513	void *objp;
2514
2515	objp = index_to_obj(cachep, slab, get_free_obj(slab, slab->active));
2516	slab->active++;
 
 
 
 
 
2517
2518	return objp;
2519}
2520
2521static void slab_put_obj(struct kmem_cache *cachep,
2522			struct slab *slab, void *objp)
2523{
2524	unsigned int objnr = obj_to_index(cachep, slab, objp);
2525#if DEBUG
2526	unsigned int i;
2527
2528	/* Verify double free bug */
2529	for (i = slab->active; i < cachep->num; i++) {
2530		if (get_free_obj(slab, i) == objnr) {
2531			pr_err("slab: double free detected in cache '%s', objp %px\n",
2532			       cachep->name, objp);
2533			BUG();
2534		}
2535	}
2536#endif
2537	slab->active--;
2538	if (!slab->freelist)
2539		slab->freelist = objp + obj_offset(cachep);
 
 
 
2540
2541	set_free_obj(slab, slab->active, objnr);
 
 
 
 
 
 
 
 
 
2542}
2543
2544/*
2545 * Grow (by 1) the number of slabs within a cache.  This is called by
2546 * kmem_cache_alloc() when there are no active objs left in a cache.
2547 */
2548static struct slab *cache_grow_begin(struct kmem_cache *cachep,
2549				gfp_t flags, int nodeid)
2550{
2551	void *freelist;
2552	size_t offset;
2553	gfp_t local_flags;
2554	int slab_node;
2555	struct kmem_cache_node *n;
2556	struct slab *slab;
2557
2558	/*
2559	 * Be lazy and only check for valid flags here,  keeping it out of the
2560	 * critical path in kmem_cache_alloc().
2561	 */
2562	if (unlikely(flags & GFP_SLAB_BUG_MASK))
2563		flags = kmalloc_fix_flags(flags);
2564
2565	WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
 
 
 
2566	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2567
2568	check_irq_off();
2569	if (gfpflags_allow_blocking(local_flags))
2570		local_irq_enable();
2571
2572	/*
2573	 * Get mem for the objs.  Attempt to allocate a physical page from
2574	 * 'nodeid'.
2575	 */
2576	slab = kmem_getpages(cachep, local_flags, nodeid);
2577	if (!slab)
2578		goto failed;
2579
2580	slab_node = slab_nid(slab);
2581	n = get_node(cachep, slab_node);
2582
2583	/* Get colour for the slab, and cal the next value. */
2584	n->colour_next++;
2585	if (n->colour_next >= cachep->colour)
2586		n->colour_next = 0;
2587
2588	offset = n->colour_next;
2589	if (offset >= cachep->colour)
2590		offset = 0;
2591
2592	offset *= cachep->colour_off;
2593
2594	/*
2595	 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so
2596	 * page_address() in the latter returns a non-tagged pointer,
2597	 * as it should be for slab pages.
2598	 */
2599	kasan_poison_slab(slab);
2600
2601	/* Get slab management. */
2602	freelist = alloc_slabmgmt(cachep, slab, offset,
2603			local_flags & ~GFP_CONSTRAINT_MASK, slab_node);
2604	if (OFF_SLAB(cachep) && !freelist)
2605		goto opps1;
2606
2607	slab->slab_cache = cachep;
2608	slab->freelist = freelist;
2609
2610	cache_init_objs(cachep, slab);
 
2611
2612	if (gfpflags_allow_blocking(local_flags))
2613		local_irq_disable();
2614
2615	return slab;
2616
2617opps1:
2618	kmem_freepages(cachep, slab);
2619failed:
2620	if (gfpflags_allow_blocking(local_flags))
2621		local_irq_disable();
2622	return NULL;
2623}
2624
2625static void cache_grow_end(struct kmem_cache *cachep, struct slab *slab)
2626{
2627	struct kmem_cache_node *n;
2628	void *list = NULL;
2629
2630	check_irq_off();
2631
2632	if (!slab)
2633		return;
2634
2635	INIT_LIST_HEAD(&slab->slab_list);
2636	n = get_node(cachep, slab_nid(slab));
2637
2638	raw_spin_lock(&n->list_lock);
2639	n->total_slabs++;
2640	if (!slab->active) {
2641		list_add_tail(&slab->slab_list, &n->slabs_free);
2642		n->free_slabs++;
2643	} else
2644		fixup_slab_list(cachep, n, slab, &list);
2645
2646	STATS_INC_GROWN(cachep);
2647	n->free_objects += cachep->num - slab->active;
2648	raw_spin_unlock(&n->list_lock);
2649
2650	fixup_objfreelist_debug(cachep, &list);
2651}
2652
2653#if DEBUG
2654
2655/*
2656 * Perform extra freeing checks:
2657 * - detect bad pointers.
2658 * - POISON/RED_ZONE checking
2659 */
2660static void kfree_debugcheck(const void *objp)
2661{
2662	if (!virt_addr_valid(objp)) {
2663		pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2664		       (unsigned long)objp);
2665		BUG();
2666	}
2667}
2668
2669static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2670{
2671	unsigned long long redzone1, redzone2;
2672
2673	redzone1 = *dbg_redzone1(cache, obj);
2674	redzone2 = *dbg_redzone2(cache, obj);
2675
2676	/*
2677	 * Redzone is ok.
2678	 */
2679	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2680		return;
2681
2682	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2683		slab_error(cache, "double free detected");
2684	else
2685		slab_error(cache, "memory outside object was overwritten");
2686
2687	pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2688	       obj, redzone1, redzone2);
2689}
2690
2691static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2692				   unsigned long caller)
2693{
2694	unsigned int objnr;
2695	struct slab *slab;
2696
2697	BUG_ON(virt_to_cache(objp) != cachep);
2698
2699	objp -= obj_offset(cachep);
2700	kfree_debugcheck(objp);
2701	slab = virt_to_slab(objp);
2702
2703	if (cachep->flags & SLAB_RED_ZONE) {
2704		verify_redzone_free(cachep, objp);
2705		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2706		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2707	}
2708	if (cachep->flags & SLAB_STORE_USER)
 
2709		*dbg_userword(cachep, objp) = (void *)caller;
 
2710
2711	objnr = obj_to_index(cachep, slab, objp);
2712
2713	BUG_ON(objnr >= cachep->num);
2714	BUG_ON(objp != index_to_obj(cachep, slab, objnr));
2715
2716	if (cachep->flags & SLAB_POISON) {
2717		poison_obj(cachep, objp, POISON_FREE);
2718		slab_kernel_map(cachep, objp, 0);
2719	}
2720	return objp;
2721}
2722
2723#else
2724#define kfree_debugcheck(x) do { } while(0)
2725#define cache_free_debugcheck(x, objp, z) (objp)
2726#endif
2727
2728static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2729						void **list)
2730{
2731#if DEBUG
2732	void *next = *list;
2733	void *objp;
2734
2735	while (next) {
2736		objp = next - obj_offset(cachep);
2737		next = *(void **)next;
2738		poison_obj(cachep, objp, POISON_FREE);
2739	}
2740#endif
2741}
2742
2743static inline void fixup_slab_list(struct kmem_cache *cachep,
2744				struct kmem_cache_node *n, struct slab *slab,
2745				void **list)
2746{
2747	/* move slabp to correct slabp list: */
2748	list_del(&slab->slab_list);
2749	if (slab->active == cachep->num) {
2750		list_add(&slab->slab_list, &n->slabs_full);
2751		if (OBJFREELIST_SLAB(cachep)) {
2752#if DEBUG
2753			/* Poisoning will be done without holding the lock */
2754			if (cachep->flags & SLAB_POISON) {
2755				void **objp = slab->freelist;
2756
2757				*objp = *list;
2758				*list = objp;
2759			}
2760#endif
2761			slab->freelist = NULL;
2762		}
2763	} else
2764		list_add(&slab->slab_list, &n->slabs_partial);
2765}
2766
2767/* Try to find non-pfmemalloc slab if needed */
2768static noinline struct slab *get_valid_first_slab(struct kmem_cache_node *n,
2769					struct slab *slab, bool pfmemalloc)
2770{
2771	if (!slab)
2772		return NULL;
2773
2774	if (pfmemalloc)
2775		return slab;
2776
2777	if (!slab_test_pfmemalloc(slab))
2778		return slab;
2779
2780	/* No need to keep pfmemalloc slab if we have enough free objects */
2781	if (n->free_objects > n->free_limit) {
2782		slab_clear_pfmemalloc(slab);
2783		return slab;
2784	}
2785
2786	/* Move pfmemalloc slab to the end of list to speed up next search */
2787	list_del(&slab->slab_list);
2788	if (!slab->active) {
2789		list_add_tail(&slab->slab_list, &n->slabs_free);
2790		n->free_slabs++;
2791	} else
2792		list_add_tail(&slab->slab_list, &n->slabs_partial);
2793
2794	list_for_each_entry(slab, &n->slabs_partial, slab_list) {
2795		if (!slab_test_pfmemalloc(slab))
2796			return slab;
2797	}
2798
2799	n->free_touched = 1;
2800	list_for_each_entry(slab, &n->slabs_free, slab_list) {
2801		if (!slab_test_pfmemalloc(slab)) {
2802			n->free_slabs--;
2803			return slab;
2804		}
2805	}
2806
2807	return NULL;
2808}
2809
2810static struct slab *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2811{
2812	struct slab *slab;
2813
2814	assert_raw_spin_locked(&n->list_lock);
2815	slab = list_first_entry_or_null(&n->slabs_partial, struct slab,
2816					slab_list);
2817	if (!slab) {
2818		n->free_touched = 1;
2819		slab = list_first_entry_or_null(&n->slabs_free, struct slab,
2820						slab_list);
2821		if (slab)
2822			n->free_slabs--;
2823	}
2824
2825	if (sk_memalloc_socks())
2826		slab = get_valid_first_slab(n, slab, pfmemalloc);
2827
2828	return slab;
2829}
2830
2831static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2832				struct kmem_cache_node *n, gfp_t flags)
2833{
2834	struct slab *slab;
2835	void *obj;
2836	void *list = NULL;
2837
2838	if (!gfp_pfmemalloc_allowed(flags))
2839		return NULL;
2840
2841	raw_spin_lock(&n->list_lock);
2842	slab = get_first_slab(n, true);
2843	if (!slab) {
2844		raw_spin_unlock(&n->list_lock);
2845		return NULL;
2846	}
2847
2848	obj = slab_get_obj(cachep, slab);
2849	n->free_objects--;
2850
2851	fixup_slab_list(cachep, n, slab, &list);
2852
2853	raw_spin_unlock(&n->list_lock);
2854	fixup_objfreelist_debug(cachep, &list);
2855
2856	return obj;
2857}
2858
2859/*
2860 * Slab list should be fixed up by fixup_slab_list() for existing slab
2861 * or cache_grow_end() for new slab
2862 */
2863static __always_inline int alloc_block(struct kmem_cache *cachep,
2864		struct array_cache *ac, struct slab *slab, int batchcount)
2865{
2866	/*
2867	 * There must be at least one object available for
2868	 * allocation.
2869	 */
2870	BUG_ON(slab->active >= cachep->num);
2871
2872	while (slab->active < cachep->num && batchcount--) {
2873		STATS_INC_ALLOCED(cachep);
2874		STATS_INC_ACTIVE(cachep);
2875		STATS_SET_HIGH(cachep);
2876
2877		ac->entry[ac->avail++] = slab_get_obj(cachep, slab);
2878	}
2879
2880	return batchcount;
2881}
2882
2883static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2884{
2885	int batchcount;
2886	struct kmem_cache_node *n;
2887	struct array_cache *ac, *shared;
2888	int node;
2889	void *list = NULL;
2890	struct slab *slab;
2891
2892	check_irq_off();
2893	node = numa_mem_id();
2894
2895	ac = cpu_cache_get(cachep);
2896	batchcount = ac->batchcount;
2897	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2898		/*
2899		 * If there was little recent activity on this cache, then
2900		 * perform only a partial refill.  Otherwise we could generate
2901		 * refill bouncing.
2902		 */
2903		batchcount = BATCHREFILL_LIMIT;
2904	}
2905	n = get_node(cachep, node);
2906
2907	BUG_ON(ac->avail > 0 || !n);
2908	shared = READ_ONCE(n->shared);
2909	if (!n->free_objects && (!shared || !shared->avail))
2910		goto direct_grow;
2911
2912	raw_spin_lock(&n->list_lock);
2913	shared = READ_ONCE(n->shared);
2914
2915	/* See if we can refill from the shared array */
2916	if (shared && transfer_objects(ac, shared, batchcount)) {
2917		shared->touched = 1;
2918		goto alloc_done;
2919	}
2920
2921	while (batchcount > 0) {
2922		/* Get slab alloc is to come from. */
2923		slab = get_first_slab(n, false);
2924		if (!slab)
2925			goto must_grow;
2926
2927		check_spinlock_acquired(cachep);
2928
2929		batchcount = alloc_block(cachep, ac, slab, batchcount);
2930		fixup_slab_list(cachep, n, slab, &list);
2931	}
2932
2933must_grow:
2934	n->free_objects -= ac->avail;
2935alloc_done:
2936	raw_spin_unlock(&n->list_lock);
2937	fixup_objfreelist_debug(cachep, &list);
2938
2939direct_grow:
2940	if (unlikely(!ac->avail)) {
2941		/* Check if we can use obj in pfmemalloc slab */
2942		if (sk_memalloc_socks()) {
2943			void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
2944
2945			if (obj)
2946				return obj;
2947		}
2948
2949		slab = cache_grow_begin(cachep, gfp_exact_node(flags), node);
2950
2951		/*
2952		 * cache_grow_begin() can reenable interrupts,
2953		 * then ac could change.
2954		 */
2955		ac = cpu_cache_get(cachep);
2956		if (!ac->avail && slab)
2957			alloc_block(cachep, ac, slab, batchcount);
2958		cache_grow_end(cachep, slab);
2959
2960		if (!ac->avail)
2961			return NULL;
2962	}
2963	ac->touched = 1;
2964
2965	return ac->entry[--ac->avail];
2966}
2967
 
 
 
 
 
 
2968#if DEBUG
2969static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2970				gfp_t flags, void *objp, unsigned long caller)
2971{
2972	WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
2973	if (!objp || is_kfence_address(objp))
2974		return objp;
2975	if (cachep->flags & SLAB_POISON) {
2976		check_poison_obj(cachep, objp);
2977		slab_kernel_map(cachep, objp, 1);
2978		poison_obj(cachep, objp, POISON_INUSE);
2979	}
2980	if (cachep->flags & SLAB_STORE_USER)
2981		*dbg_userword(cachep, objp) = (void *)caller;
2982
2983	if (cachep->flags & SLAB_RED_ZONE) {
2984		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2985				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2986			slab_error(cachep, "double free, or memory outside object was overwritten");
2987			pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2988			       objp, *dbg_redzone1(cachep, objp),
2989			       *dbg_redzone2(cachep, objp));
2990		}
2991		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
2992		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
2993	}
2994
2995	objp += obj_offset(cachep);
2996	if (cachep->ctor && cachep->flags & SLAB_POISON)
2997		cachep->ctor(objp);
2998	if ((unsigned long)objp & (arch_slab_minalign() - 1)) {
2999		pr_err("0x%px: not aligned to arch_slab_minalign()=%u\n", objp,
3000		       arch_slab_minalign());
 
3001	}
3002	return objp;
3003}
3004#else
3005#define cache_alloc_debugcheck_after(a, b, objp, d) (objp)
3006#endif
3007
3008static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3009{
3010	void *objp;
3011	struct array_cache *ac;
3012
3013	check_irq_off();
3014
3015	ac = cpu_cache_get(cachep);
3016	if (likely(ac->avail)) {
3017		ac->touched = 1;
3018		objp = ac->entry[--ac->avail];
3019
3020		STATS_INC_ALLOCHIT(cachep);
3021		goto out;
3022	}
3023
3024	STATS_INC_ALLOCMISS(cachep);
3025	objp = cache_alloc_refill(cachep, flags);
3026	/*
3027	 * the 'ac' may be updated by cache_alloc_refill(),
3028	 * and kmemleak_erase() requires its correct value.
3029	 */
3030	ac = cpu_cache_get(cachep);
3031
3032out:
3033	/*
3034	 * To avoid a false negative, if an object that is in one of the
3035	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3036	 * treat the array pointers as a reference to the object.
3037	 */
3038	if (objp)
3039		kmemleak_erase(&ac->entry[ac->avail]);
3040	return objp;
3041}
3042
3043#ifdef CONFIG_NUMA
3044static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
3045
3046/*
3047 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3048 *
3049 * If we are in_interrupt, then process context, including cpusets and
3050 * mempolicy, may not apply and should not be used for allocation policy.
3051 */
3052static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3053{
3054	int nid_alloc, nid_here;
3055
3056	if (in_interrupt() || (flags & __GFP_THISNODE))
3057		return NULL;
3058	nid_alloc = nid_here = numa_mem_id();
3059	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3060		nid_alloc = cpuset_slab_spread_node();
3061	else if (current->mempolicy)
3062		nid_alloc = mempolicy_slab_node();
3063	if (nid_alloc != nid_here)
3064		return ____cache_alloc_node(cachep, flags, nid_alloc);
3065	return NULL;
3066}
3067
3068/*
3069 * Fallback function if there was no memory available and no objects on a
3070 * certain node and fall back is permitted. First we scan all the
3071 * available node for available objects. If that fails then we
3072 * perform an allocation without specifying a node. This allows the page
3073 * allocator to do its reclaim / fallback magic. We then insert the
3074 * slab into the proper nodelist and then allocate from it.
3075 */
3076static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3077{
3078	struct zonelist *zonelist;
3079	struct zoneref *z;
3080	struct zone *zone;
3081	enum zone_type highest_zoneidx = gfp_zone(flags);
3082	void *obj = NULL;
3083	struct slab *slab;
3084	int nid;
3085	unsigned int cpuset_mems_cookie;
3086
3087	if (flags & __GFP_THISNODE)
3088		return NULL;
3089
3090retry_cpuset:
3091	cpuset_mems_cookie = read_mems_allowed_begin();
3092	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3093
3094retry:
3095	/*
3096	 * Look through allowed nodes for objects available
3097	 * from existing per node queues.
3098	 */
3099	for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
3100		nid = zone_to_nid(zone);
3101
3102		if (cpuset_zone_allowed(zone, flags) &&
3103			get_node(cache, nid) &&
3104			get_node(cache, nid)->free_objects) {
3105				obj = ____cache_alloc_node(cache,
3106					gfp_exact_node(flags), nid);
3107				if (obj)
3108					break;
3109		}
3110	}
3111
3112	if (!obj) {
3113		/*
3114		 * This allocation will be performed within the constraints
3115		 * of the current cpuset / memory policy requirements.
3116		 * We may trigger various forms of reclaim on the allowed
3117		 * set and go into memory reserves if necessary.
3118		 */
3119		slab = cache_grow_begin(cache, flags, numa_mem_id());
3120		cache_grow_end(cache, slab);
3121		if (slab) {
3122			nid = slab_nid(slab);
3123			obj = ____cache_alloc_node(cache,
3124				gfp_exact_node(flags), nid);
3125
3126			/*
3127			 * Another processor may allocate the objects in
3128			 * the slab since we are not holding any locks.
3129			 */
3130			if (!obj)
3131				goto retry;
3132		}
3133	}
3134
3135	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3136		goto retry_cpuset;
3137	return obj;
3138}
3139
3140/*
3141 * An interface to enable slab creation on nodeid
3142 */
3143static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3144				int nodeid)
3145{
3146	struct slab *slab;
3147	struct kmem_cache_node *n;
3148	void *obj = NULL;
3149	void *list = NULL;
3150
3151	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3152	n = get_node(cachep, nodeid);
3153	BUG_ON(!n);
3154
3155	check_irq_off();
3156	raw_spin_lock(&n->list_lock);
3157	slab = get_first_slab(n, false);
3158	if (!slab)
3159		goto must_grow;
3160
3161	check_spinlock_acquired_node(cachep, nodeid);
3162
3163	STATS_INC_NODEALLOCS(cachep);
3164	STATS_INC_ACTIVE(cachep);
3165	STATS_SET_HIGH(cachep);
3166
3167	BUG_ON(slab->active == cachep->num);
3168
3169	obj = slab_get_obj(cachep, slab);
3170	n->free_objects--;
3171
3172	fixup_slab_list(cachep, n, slab, &list);
3173
3174	raw_spin_unlock(&n->list_lock);
3175	fixup_objfreelist_debug(cachep, &list);
3176	return obj;
3177
3178must_grow:
3179	raw_spin_unlock(&n->list_lock);
3180	slab = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3181	if (slab) {
3182		/* This slab isn't counted yet so don't update free_objects */
3183		obj = slab_get_obj(cachep, slab);
3184	}
3185	cache_grow_end(cachep, slab);
3186
3187	return obj ? obj : fallback_alloc(cachep, flags);
3188}
3189
3190static __always_inline void *
3191__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags, int nodeid)
 
3192{
3193	void *objp = NULL;
 
3194	int slab_node = numa_mem_id();
3195
3196	if (nodeid == NUMA_NO_NODE) {
3197		if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3198			objp = alternate_node_alloc(cachep, flags);
3199			if (objp)
3200				goto out;
3201		}
 
 
 
 
 
 
 
 
 
 
 
 
3202		/*
3203		 * Use the locally cached objects if possible.
3204		 * However ____cache_alloc does not allow fallback
3205		 * to other nodes. It may fail while we still have
3206		 * objects on other nodes available.
3207		 */
3208		objp = ____cache_alloc(cachep, flags);
3209		nodeid = slab_node;
3210	} else if (nodeid == slab_node) {
3211		objp = ____cache_alloc(cachep, flags);
3212	} else if (!get_node(cachep, nodeid)) {
3213		/* Node not bootstrapped yet */
3214		objp = fallback_alloc(cachep, flags);
3215		goto out;
3216	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3217
3218	/*
3219	 * We may just have run out of memory on the local node.
3220	 * ____cache_alloc_node() knows how to locate memory on other nodes
3221	 */
3222	if (!objp)
3223		objp = ____cache_alloc_node(cachep, flags, nodeid);
3224out:
 
3225	return objp;
3226}
3227#else
3228
3229static __always_inline void *
3230__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags, int nodeid __maybe_unused)
3231{
3232	return ____cache_alloc(cachep, flags);
3233}
3234
3235#endif /* CONFIG_NUMA */
3236
3237static __always_inline void *
3238slab_alloc_node(struct kmem_cache *cachep, struct list_lru *lru, gfp_t flags,
3239		int nodeid, size_t orig_size, unsigned long caller)
3240{
3241	unsigned long save_flags;
3242	void *objp;
3243	struct obj_cgroup *objcg = NULL;
3244	bool init = false;
3245
3246	flags &= gfp_allowed_mask;
3247	cachep = slab_pre_alloc_hook(cachep, lru, &objcg, 1, flags);
3248	if (unlikely(!cachep))
3249		return NULL;
3250
3251	objp = kfence_alloc(cachep, orig_size, flags);
3252	if (unlikely(objp))
3253		goto out;
3254
3255	local_irq_save(save_flags);
3256	objp = __do_cache_alloc(cachep, flags, nodeid);
3257	local_irq_restore(save_flags);
3258	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3259	prefetchw(objp);
3260	init = slab_want_init_on_alloc(flags, cachep);
3261
3262out:
3263	slab_post_alloc_hook(cachep, objcg, flags, 1, &objp, init,
3264				cachep->object_size);
3265	return objp;
3266}
3267
3268static __always_inline void *
3269slab_alloc(struct kmem_cache *cachep, struct list_lru *lru, gfp_t flags,
3270	   size_t orig_size, unsigned long caller)
3271{
3272	return slab_alloc_node(cachep, lru, flags, NUMA_NO_NODE, orig_size,
3273			       caller);
3274}
3275
3276/*
3277 * Caller needs to acquire correct kmem_cache_node's list_lock
3278 * @list: List of detached free slabs should be freed by caller
3279 */
3280static void free_block(struct kmem_cache *cachep, void **objpp,
3281			int nr_objects, int node, struct list_head *list)
3282{
3283	int i;
3284	struct kmem_cache_node *n = get_node(cachep, node);
3285	struct slab *slab;
3286
3287	n->free_objects += nr_objects;
3288
3289	for (i = 0; i < nr_objects; i++) {
3290		void *objp;
3291		struct slab *slab;
3292
3293		objp = objpp[i];
3294
3295		slab = virt_to_slab(objp);
3296		list_del(&slab->slab_list);
3297		check_spinlock_acquired_node(cachep, node);
3298		slab_put_obj(cachep, slab, objp);
3299		STATS_DEC_ACTIVE(cachep);
3300
3301		/* fixup slab chains */
3302		if (slab->active == 0) {
3303			list_add(&slab->slab_list, &n->slabs_free);
3304			n->free_slabs++;
3305		} else {
3306			/* Unconditionally move a slab to the end of the
3307			 * partial list on free - maximum time for the
3308			 * other objects to be freed, too.
3309			 */
3310			list_add_tail(&slab->slab_list, &n->slabs_partial);
3311		}
3312	}
3313
3314	while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3315		n->free_objects -= cachep->num;
3316
3317		slab = list_last_entry(&n->slabs_free, struct slab, slab_list);
3318		list_move(&slab->slab_list, list);
3319		n->free_slabs--;
3320		n->total_slabs--;
3321	}
3322}
3323
3324static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3325{
3326	int batchcount;
3327	struct kmem_cache_node *n;
3328	int node = numa_mem_id();
3329	LIST_HEAD(list);
3330
3331	batchcount = ac->batchcount;
3332
3333	check_irq_off();
3334	n = get_node(cachep, node);
3335	raw_spin_lock(&n->list_lock);
3336	if (n->shared) {
3337		struct array_cache *shared_array = n->shared;
3338		int max = shared_array->limit - shared_array->avail;
3339		if (max) {
3340			if (batchcount > max)
3341				batchcount = max;
3342			memcpy(&(shared_array->entry[shared_array->avail]),
3343			       ac->entry, sizeof(void *) * batchcount);
3344			shared_array->avail += batchcount;
3345			goto free_done;
3346		}
3347	}
3348
3349	free_block(cachep, ac->entry, batchcount, node, &list);
3350free_done:
3351#if STATS
3352	{
3353		int i = 0;
3354		struct slab *slab;
3355
3356		list_for_each_entry(slab, &n->slabs_free, slab_list) {
3357			BUG_ON(slab->active);
3358
3359			i++;
3360		}
3361		STATS_SET_FREEABLE(cachep, i);
3362	}
3363#endif
3364	raw_spin_unlock(&n->list_lock);
 
3365	ac->avail -= batchcount;
3366	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3367	slabs_destroy(cachep, &list);
3368}
3369
3370/*
3371 * Release an obj back to its cache. If the obj has a constructed state, it must
3372 * be in this state _before_ it is released.  Called with disabled ints.
3373 */
3374static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
3375					 unsigned long caller)
3376{
3377	bool init;
3378
3379	memcg_slab_free_hook(cachep, virt_to_slab(objp), &objp, 1);
3380
3381	if (is_kfence_address(objp)) {
3382		kmemleak_free_recursive(objp, cachep->flags);
3383		__kfence_free(objp);
3384		return;
3385	}
3386
3387	/*
3388	 * As memory initialization might be integrated into KASAN,
3389	 * kasan_slab_free and initialization memset must be
3390	 * kept together to avoid discrepancies in behavior.
3391	 */
3392	init = slab_want_init_on_free(cachep);
3393	if (init && !kasan_has_integrated_init())
3394		memset(objp, 0, cachep->object_size);
3395	/* KASAN might put objp into memory quarantine, delaying its reuse. */
3396	if (kasan_slab_free(cachep, objp, init))
3397		return;
3398
3399	/* Use KCSAN to help debug racy use-after-free. */
3400	if (!(cachep->flags & SLAB_TYPESAFE_BY_RCU))
3401		__kcsan_check_access(objp, cachep->object_size,
3402				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
3403
3404	___cache_free(cachep, objp, caller);
3405}
3406
3407void ___cache_free(struct kmem_cache *cachep, void *objp,
3408		unsigned long caller)
3409{
3410	struct array_cache *ac = cpu_cache_get(cachep);
3411
3412	check_irq_off();
3413	kmemleak_free_recursive(objp, cachep->flags);
3414	objp = cache_free_debugcheck(cachep, objp, caller);
3415
 
 
3416	/*
3417	 * Skip calling cache_free_alien() when the platform is not numa.
3418	 * This will avoid cache misses that happen while accessing slabp (which
3419	 * is per page memory  reference) to get nodeid. Instead use a global
3420	 * variable to skip the call, which is mostly likely to be present in
3421	 * the cache.
3422	 */
3423	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3424		return;
3425
3426	if (ac->avail < ac->limit) {
3427		STATS_INC_FREEHIT(cachep);
3428	} else {
3429		STATS_INC_FREEMISS(cachep);
3430		cache_flusharray(cachep, ac);
3431	}
3432
3433	if (sk_memalloc_socks()) {
3434		struct slab *slab = virt_to_slab(objp);
3435
3436		if (unlikely(slab_test_pfmemalloc(slab))) {
3437			cache_free_pfmemalloc(cachep, slab, objp);
3438			return;
3439		}
3440	}
3441
3442	__free_one(ac, objp);
3443}
3444
3445static __always_inline
3446void *__kmem_cache_alloc_lru(struct kmem_cache *cachep, struct list_lru *lru,
3447			     gfp_t flags)
 
 
 
 
 
 
3448{
3449	void *ret = slab_alloc(cachep, lru, flags, cachep->object_size, _RET_IP_);
3450
3451	trace_kmem_cache_alloc(_RET_IP_, ret, cachep, flags, NUMA_NO_NODE);
 
 
3452
3453	return ret;
3454}
3455
3456void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3457{
3458	return __kmem_cache_alloc_lru(cachep, NULL, flags);
3459}
3460EXPORT_SYMBOL(kmem_cache_alloc);
3461
3462void *kmem_cache_alloc_lru(struct kmem_cache *cachep, struct list_lru *lru,
3463			   gfp_t flags)
3464{
3465	return __kmem_cache_alloc_lru(cachep, lru, flags);
3466}
3467EXPORT_SYMBOL(kmem_cache_alloc_lru);
3468
3469static __always_inline void
3470cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3471				  size_t size, void **p, unsigned long caller)
3472{
3473	size_t i;
3474
3475	for (i = 0; i < size; i++)
3476		p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3477}
3478
3479int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3480			  void **p)
3481{
3482	size_t i;
3483	struct obj_cgroup *objcg = NULL;
3484
3485	s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
3486	if (!s)
3487		return 0;
3488
 
 
3489	local_irq_disable();
3490	for (i = 0; i < size; i++) {
3491		void *objp = kfence_alloc(s, s->object_size, flags) ?:
3492			     __do_cache_alloc(s, flags, NUMA_NO_NODE);
3493
3494		if (unlikely(!objp))
3495			goto error;
3496		p[i] = objp;
3497	}
3498	local_irq_enable();
3499
3500	cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3501
3502	/*
3503	 * memcg and kmem_cache debug support and memory initialization.
3504	 * Done outside of the IRQ disabled section.
3505	 */
3506	slab_post_alloc_hook(s, objcg, flags, size, p,
3507			slab_want_init_on_alloc(flags, s), s->object_size);
3508	/* FIXME: Trace call missing. Christoph would like a bulk variant */
3509	return size;
3510error:
3511	local_irq_enable();
3512	cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3513	slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size);
3514	kmem_cache_free_bulk(s, i, p);
3515	return 0;
3516}
3517EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3518
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3519/**
3520 * kmem_cache_alloc_node - Allocate an object on the specified node
3521 * @cachep: The cache to allocate from.
3522 * @flags: See kmalloc().
3523 * @nodeid: node number of the target node.
3524 *
3525 * Identical to kmem_cache_alloc but it will allocate memory on the given
3526 * node, which can improve the performance for cpu bound structures.
3527 *
3528 * Fallback to other node is possible if __GFP_THISNODE is not set.
3529 *
3530 * Return: pointer to the new object or %NULL in case of error
3531 */
3532void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3533{
3534	void *ret = slab_alloc_node(cachep, NULL, flags, nodeid, cachep->object_size, _RET_IP_);
3535
3536	trace_kmem_cache_alloc(_RET_IP_, ret, cachep, flags, nodeid);
 
 
 
3537
3538	return ret;
3539}
3540EXPORT_SYMBOL(kmem_cache_alloc_node);
3541
3542void *__kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3543			     int nodeid, size_t orig_size,
3544			     unsigned long caller)
3545{
3546	return slab_alloc_node(cachep, NULL, flags, nodeid,
3547			       orig_size, caller);
 
 
 
 
 
 
 
 
 
3548}
 
 
3549
3550#ifdef CONFIG_PRINTK
3551void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
3552{
3553	struct kmem_cache *cachep;
3554	unsigned int objnr;
3555	void *objp;
3556
3557	kpp->kp_ptr = object;
3558	kpp->kp_slab = slab;
3559	cachep = slab->slab_cache;
3560	kpp->kp_slab_cache = cachep;
3561	objp = object - obj_offset(cachep);
3562	kpp->kp_data_offset = obj_offset(cachep);
3563	slab = virt_to_slab(objp);
3564	objnr = obj_to_index(cachep, slab, objp);
3565	objp = index_to_obj(cachep, slab, objnr);
3566	kpp->kp_objp = objp;
3567	if (DEBUG && cachep->flags & SLAB_STORE_USER)
3568		kpp->kp_ret = *dbg_userword(cachep, objp);
3569}
3570#endif
3571
3572static __always_inline
3573void __do_kmem_cache_free(struct kmem_cache *cachep, void *objp,
3574			  unsigned long caller)
3575{
3576	unsigned long flags;
 
 
3577
3578	local_irq_save(flags);
3579	debug_check_no_locks_freed(objp, cachep->object_size);
3580	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3581		debug_check_no_obj_freed(objp, cachep->object_size);
3582	__cache_free(cachep, objp, caller);
3583	local_irq_restore(flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3584}
 
3585
3586void __kmem_cache_free(struct kmem_cache *cachep, void *objp,
3587		       unsigned long caller)
3588{
3589	__do_kmem_cache_free(cachep, objp, caller);
3590}
 
3591
3592/**
3593 * kmem_cache_free - Deallocate an object
3594 * @cachep: The cache the allocation was from.
3595 * @objp: The previously allocated object.
3596 *
3597 * Free an object which was previously allocated from this
3598 * cache.
3599 */
3600void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3601{
 
3602	cachep = cache_from_obj(cachep, objp);
3603	if (!cachep)
3604		return;
3605
3606	trace_kmem_cache_free(_RET_IP_, objp, cachep);
3607	__do_kmem_cache_free(cachep, objp, _RET_IP_);
 
 
 
 
 
 
3608}
3609EXPORT_SYMBOL(kmem_cache_free);
3610
3611void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3612{
 
 
3613
3614	local_irq_disable();
3615	for (int i = 0; i < size; i++) {
3616		void *objp = p[i];
3617		struct kmem_cache *s;
3618
3619		if (!orig_s) {
3620			struct folio *folio = virt_to_folio(objp);
3621
3622			/* called via kfree_bulk */
3623			if (!folio_test_slab(folio)) {
3624				local_irq_enable();
3625				free_large_kmalloc(folio, objp);
3626				local_irq_disable();
3627				continue;
3628			}
3629			s = folio_slab(folio)->slab_cache;
3630		} else {
3631			s = cache_from_obj(orig_s, objp);
3632		}
3633
3634		if (!s)
3635			continue;
3636
3637		debug_check_no_locks_freed(objp, s->object_size);
3638		if (!(s->flags & SLAB_DEBUG_OBJECTS))
3639			debug_check_no_obj_freed(objp, s->object_size);
3640
3641		__cache_free(s, objp, _RET_IP_);
3642	}
3643	local_irq_enable();
3644
3645	/* FIXME: add tracing */
3646}
3647EXPORT_SYMBOL(kmem_cache_free_bulk);
3648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3649/*
3650 * This initializes kmem_cache_node or resizes various caches for all nodes.
3651 */
3652static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3653{
3654	int ret;
3655	int node;
3656	struct kmem_cache_node *n;
3657
3658	for_each_online_node(node) {
3659		ret = setup_kmem_cache_node(cachep, node, gfp, true);
3660		if (ret)
3661			goto fail;
3662
3663	}
3664
3665	return 0;
3666
3667fail:
3668	if (!cachep->list.next) {
3669		/* Cache is not active yet. Roll back what we did */
3670		node--;
3671		while (node >= 0) {
3672			n = get_node(cachep, node);
3673			if (n) {
3674				kfree(n->shared);
3675				free_alien_cache(n->alien);
3676				kfree(n);
3677				cachep->node[node] = NULL;
3678			}
3679			node--;
3680		}
3681	}
3682	return -ENOMEM;
3683}
3684
3685/* Always called with the slab_mutex held */
3686static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3687			    int batchcount, int shared, gfp_t gfp)
3688{
3689	struct array_cache __percpu *cpu_cache, *prev;
3690	int cpu;
3691
3692	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3693	if (!cpu_cache)
3694		return -ENOMEM;
3695
3696	prev = cachep->cpu_cache;
3697	cachep->cpu_cache = cpu_cache;
3698	/*
3699	 * Without a previous cpu_cache there's no need to synchronize remote
3700	 * cpus, so skip the IPIs.
3701	 */
3702	if (prev)
3703		kick_all_cpus_sync();
3704
3705	check_irq_on();
3706	cachep->batchcount = batchcount;
3707	cachep->limit = limit;
3708	cachep->shared = shared;
3709
3710	if (!prev)
3711		goto setup_node;
3712
3713	for_each_online_cpu(cpu) {
3714		LIST_HEAD(list);
3715		int node;
3716		struct kmem_cache_node *n;
3717		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3718
3719		node = cpu_to_mem(cpu);
3720		n = get_node(cachep, node);
3721		raw_spin_lock_irq(&n->list_lock);
3722		free_block(cachep, ac->entry, ac->avail, node, &list);
3723		raw_spin_unlock_irq(&n->list_lock);
3724		slabs_destroy(cachep, &list);
3725	}
3726	free_percpu(prev);
3727
3728setup_node:
3729	return setup_kmem_cache_nodes(cachep, gfp);
3730}
3731
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3732/* Called with slab_mutex held always */
3733static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3734{
3735	int err;
3736	int limit = 0;
3737	int shared = 0;
3738	int batchcount = 0;
3739
3740	err = cache_random_seq_create(cachep, cachep->num, gfp);
3741	if (err)
3742		goto end;
3743
 
 
 
 
 
 
 
 
 
3744	/*
3745	 * The head array serves three purposes:
3746	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3747	 * - reduce the number of spinlock operations.
3748	 * - reduce the number of linked list operations on the slab and
3749	 *   bufctl chains: array operations are cheaper.
3750	 * The numbers are guessed, we should auto-tune as described by
3751	 * Bonwick.
3752	 */
3753	if (cachep->size > 131072)
3754		limit = 1;
3755	else if (cachep->size > PAGE_SIZE)
3756		limit = 8;
3757	else if (cachep->size > 1024)
3758		limit = 24;
3759	else if (cachep->size > 256)
3760		limit = 54;
3761	else
3762		limit = 120;
3763
3764	/*
3765	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3766	 * allocation behaviour: Most allocs on one cpu, most free operations
3767	 * on another cpu. For these cases, an efficient object passing between
3768	 * cpus is necessary. This is provided by a shared array. The array
3769	 * replaces Bonwick's magazine layer.
3770	 * On uniprocessor, it's functionally equivalent (but less efficient)
3771	 * to a larger limit. Thus disabled by default.
3772	 */
3773	shared = 0;
3774	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3775		shared = 8;
3776
3777#if DEBUG
3778	/*
3779	 * With debugging enabled, large batchcount lead to excessively long
3780	 * periods with disabled local interrupts. Limit the batchcount
3781	 */
3782	if (limit > 32)
3783		limit = 32;
3784#endif
3785	batchcount = (limit + 1) / 2;
 
3786	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3787end:
3788	if (err)
3789		pr_err("enable_cpucache failed for %s, error %d\n",
3790		       cachep->name, -err);
3791	return err;
3792}
3793
3794/*
3795 * Drain an array if it contains any elements taking the node lock only if
3796 * necessary. Note that the node listlock also protects the array_cache
3797 * if drain_array() is used on the shared array.
3798 */
3799static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3800			 struct array_cache *ac, int node)
3801{
3802	LIST_HEAD(list);
3803
3804	/* ac from n->shared can be freed if we don't hold the slab_mutex. */
3805	check_mutex_acquired();
3806
3807	if (!ac || !ac->avail)
3808		return;
3809
3810	if (ac->touched) {
3811		ac->touched = 0;
3812		return;
3813	}
3814
3815	raw_spin_lock_irq(&n->list_lock);
3816	drain_array_locked(cachep, ac, node, false, &list);
3817	raw_spin_unlock_irq(&n->list_lock);
3818
3819	slabs_destroy(cachep, &list);
3820}
3821
3822/**
3823 * cache_reap - Reclaim memory from caches.
3824 * @w: work descriptor
3825 *
3826 * Called from workqueue/eventd every few seconds.
3827 * Purpose:
3828 * - clear the per-cpu caches for this CPU.
3829 * - return freeable pages to the main free memory pool.
3830 *
3831 * If we cannot acquire the cache chain mutex then just give up - we'll try
3832 * again on the next iteration.
3833 */
3834static void cache_reap(struct work_struct *w)
3835{
3836	struct kmem_cache *searchp;
3837	struct kmem_cache_node *n;
3838	int node = numa_mem_id();
3839	struct delayed_work *work = to_delayed_work(w);
3840
3841	if (!mutex_trylock(&slab_mutex))
3842		/* Give up. Setup the next iteration. */
3843		goto out;
3844
3845	list_for_each_entry(searchp, &slab_caches, list) {
3846		check_irq_on();
3847
3848		/*
3849		 * We only take the node lock if absolutely necessary and we
3850		 * have established with reasonable certainty that
3851		 * we can do some work if the lock was obtained.
3852		 */
3853		n = get_node(searchp, node);
3854
3855		reap_alien(searchp, n);
3856
3857		drain_array(searchp, n, cpu_cache_get(searchp), node);
3858
3859		/*
3860		 * These are racy checks but it does not matter
3861		 * if we skip one check or scan twice.
3862		 */
3863		if (time_after(n->next_reap, jiffies))
3864			goto next;
3865
3866		n->next_reap = jiffies + REAPTIMEOUT_NODE;
3867
3868		drain_array(searchp, n, n->shared, node);
3869
3870		if (n->free_touched)
3871			n->free_touched = 0;
3872		else {
3873			int freed;
3874
3875			freed = drain_freelist(searchp, n, (n->free_limit +
3876				5 * searchp->num - 1) / (5 * searchp->num));
3877			STATS_ADD_REAPED(searchp, freed);
3878		}
3879next:
3880		cond_resched();
3881	}
3882	check_irq_on();
3883	mutex_unlock(&slab_mutex);
3884	next_reap_node();
3885out:
3886	/* Set up the next iteration */
3887	schedule_delayed_work_on(smp_processor_id(), work,
3888				round_jiffies_relative(REAPTIMEOUT_AC));
3889}
3890
 
3891void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
3892{
3893	unsigned long active_objs, num_objs, active_slabs;
3894	unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
3895	unsigned long free_slabs = 0;
3896	int node;
3897	struct kmem_cache_node *n;
3898
3899	for_each_kmem_cache_node(cachep, node, n) {
3900		check_irq_on();
3901		raw_spin_lock_irq(&n->list_lock);
3902
3903		total_slabs += n->total_slabs;
3904		free_slabs += n->free_slabs;
3905		free_objs += n->free_objects;
3906
3907		if (n->shared)
3908			shared_avail += n->shared->avail;
3909
3910		raw_spin_unlock_irq(&n->list_lock);
3911	}
3912	num_objs = total_slabs * cachep->num;
3913	active_slabs = total_slabs - free_slabs;
3914	active_objs = num_objs - free_objs;
3915
3916	sinfo->active_objs = active_objs;
3917	sinfo->num_objs = num_objs;
3918	sinfo->active_slabs = active_slabs;
3919	sinfo->num_slabs = total_slabs;
3920	sinfo->shared_avail = shared_avail;
3921	sinfo->limit = cachep->limit;
3922	sinfo->batchcount = cachep->batchcount;
3923	sinfo->shared = cachep->shared;
3924	sinfo->objects_per_slab = cachep->num;
3925	sinfo->cache_order = cachep->gfporder;
3926}
3927
3928void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
3929{
3930#if STATS
3931	{			/* node stats */
3932		unsigned long high = cachep->high_mark;
3933		unsigned long allocs = cachep->num_allocations;
3934		unsigned long grown = cachep->grown;
3935		unsigned long reaped = cachep->reaped;
3936		unsigned long errors = cachep->errors;
3937		unsigned long max_freeable = cachep->max_freeable;
3938		unsigned long node_allocs = cachep->node_allocs;
3939		unsigned long node_frees = cachep->node_frees;
3940		unsigned long overflows = cachep->node_overflow;
3941
3942		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
3943			   allocs, high, grown,
3944			   reaped, errors, max_freeable, node_allocs,
3945			   node_frees, overflows);
3946	}
3947	/* cpu stats */
3948	{
3949		unsigned long allochit = atomic_read(&cachep->allochit);
3950		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3951		unsigned long freehit = atomic_read(&cachep->freehit);
3952		unsigned long freemiss = atomic_read(&cachep->freemiss);
3953
3954		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
3955			   allochit, allocmiss, freehit, freemiss);
3956	}
3957#endif
3958}
3959
3960#define MAX_SLABINFO_WRITE 128
3961/**
3962 * slabinfo_write - Tuning for the slab allocator
3963 * @file: unused
3964 * @buffer: user buffer
3965 * @count: data length
3966 * @ppos: unused
3967 *
3968 * Return: %0 on success, negative error code otherwise.
3969 */
3970ssize_t slabinfo_write(struct file *file, const char __user *buffer,
3971		       size_t count, loff_t *ppos)
3972{
3973	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
3974	int limit, batchcount, shared, res;
3975	struct kmem_cache *cachep;
3976
3977	if (count > MAX_SLABINFO_WRITE)
3978		return -EINVAL;
3979	if (copy_from_user(&kbuf, buffer, count))
3980		return -EFAULT;
3981	kbuf[MAX_SLABINFO_WRITE] = '\0';
3982
3983	tmp = strchr(kbuf, ' ');
3984	if (!tmp)
3985		return -EINVAL;
3986	*tmp = '\0';
3987	tmp++;
3988	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3989		return -EINVAL;
3990
3991	/* Find the cache in the chain of caches. */
3992	mutex_lock(&slab_mutex);
3993	res = -EINVAL;
3994	list_for_each_entry(cachep, &slab_caches, list) {
3995		if (!strcmp(cachep->name, kbuf)) {
3996			if (limit < 1 || batchcount < 1 ||
3997					batchcount > limit || shared < 0) {
3998				res = 0;
3999			} else {
4000				res = do_tune_cpucache(cachep, limit,
4001						       batchcount, shared,
4002						       GFP_KERNEL);
4003			}
4004			break;
4005		}
4006	}
4007	mutex_unlock(&slab_mutex);
4008	if (res >= 0)
4009		res = count;
4010	return res;
4011}
4012
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4013#ifdef CONFIG_HARDENED_USERCOPY
4014/*
4015 * Rejects incorrectly sized objects and objects that are to be copied
4016 * to/from userspace but do not fall entirely within the containing slab
4017 * cache's usercopy region.
4018 *
4019 * Returns NULL if check passes, otherwise const char * to name of cache
4020 * to indicate an error.
4021 */
4022void __check_heap_object(const void *ptr, unsigned long n,
4023			 const struct slab *slab, bool to_user)
4024{
4025	struct kmem_cache *cachep;
4026	unsigned int objnr;
4027	unsigned long offset;
4028
4029	ptr = kasan_reset_tag(ptr);
4030
4031	/* Find and validate object. */
4032	cachep = slab->slab_cache;
4033	objnr = obj_to_index(cachep, slab, (void *)ptr);
4034	BUG_ON(objnr >= cachep->num);
4035
4036	/* Find offset within object. */
4037	if (is_kfence_address(ptr))
4038		offset = ptr - kfence_object_start(ptr);
4039	else
4040		offset = ptr - index_to_obj(cachep, slab, objnr) - obj_offset(cachep);
4041
4042	/* Allow address range falling entirely within usercopy region. */
4043	if (offset >= cachep->useroffset &&
4044	    offset - cachep->useroffset <= cachep->usersize &&
4045	    n <= cachep->useroffset - offset + cachep->usersize)
4046		return;
4047
4048	usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
4049}
4050#endif /* CONFIG_HARDENED_USERCOPY */
v4.10.11
 
   1/*
   2 * linux/mm/slab.c
   3 * Written by Mark Hemment, 1996/97.
   4 * (markhe@nextd.demon.co.uk)
   5 *
   6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
   7 *
   8 * Major cleanup, different bufctl logic, per-cpu arrays
   9 *	(c) 2000 Manfred Spraul
  10 *
  11 * Cleanup, make the head arrays unconditional, preparation for NUMA
  12 * 	(c) 2002 Manfred Spraul
  13 *
  14 * An implementation of the Slab Allocator as described in outline in;
  15 *	UNIX Internals: The New Frontiers by Uresh Vahalia
  16 *	Pub: Prentice Hall	ISBN 0-13-101908-2
  17 * or with a little more detail in;
  18 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
  19 *	Jeff Bonwick (Sun Microsystems).
  20 *	Presented at: USENIX Summer 1994 Technical Conference
  21 *
  22 * The memory is organized in caches, one cache for each object type.
  23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  24 * Each cache consists out of many slabs (they are small (usually one
  25 * page long) and always contiguous), and each slab contains multiple
  26 * initialized objects.
  27 *
  28 * This means, that your constructor is used only for newly allocated
  29 * slabs and you must pass objects with the same initializations to
  30 * kmem_cache_free.
  31 *
  32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  33 * normal). If you need a special memory type, then must create a new
  34 * cache for that memory type.
  35 *
  36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  37 *   full slabs with 0 free objects
  38 *   partial slabs
  39 *   empty slabs with no allocated objects
  40 *
  41 * If partial slabs exist, then new allocations come from these slabs,
  42 * otherwise from empty slabs or new slabs are allocated.
  43 *
  44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  46 *
  47 * Each cache has a short per-cpu head array, most allocs
  48 * and frees go into that array, and if that array overflows, then 1/2
  49 * of the entries in the array are given back into the global cache.
  50 * The head array is strictly LIFO and should improve the cache hit rates.
  51 * On SMP, it additionally reduces the spinlock operations.
  52 *
  53 * The c_cpuarray may not be read with enabled local interrupts -
  54 * it's changed with a smp_call_function().
  55 *
  56 * SMP synchronization:
  57 *  constructors and destructors are called without any locking.
  58 *  Several members in struct kmem_cache and struct slab never change, they
  59 *	are accessed without any locking.
  60 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
  61 *  	and local interrupts are disabled so slab code is preempt-safe.
  62 *  The non-constant members are protected with a per-cache irq spinlock.
  63 *
  64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  65 * in 2000 - many ideas in the current implementation are derived from
  66 * his patch.
  67 *
  68 * Further notes from the original documentation:
  69 *
  70 * 11 April '97.  Started multi-threading - markhe
  71 *	The global cache-chain is protected by the mutex 'slab_mutex'.
  72 *	The sem is only needed when accessing/extending the cache-chain, which
  73 *	can never happen inside an interrupt (kmem_cache_create(),
  74 *	kmem_cache_shrink() and kmem_cache_reap()).
  75 *
  76 *	At present, each engine can be growing a cache.  This should be blocked.
  77 *
  78 * 15 March 2005. NUMA slab allocator.
  79 *	Shai Fultheim <shai@scalex86.org>.
  80 *	Shobhit Dayal <shobhit@calsoftinc.com>
  81 *	Alok N Kataria <alokk@calsoftinc.com>
  82 *	Christoph Lameter <christoph@lameter.com>
  83 *
  84 *	Modified the slab allocator to be node aware on NUMA systems.
  85 *	Each node has its own list of partial, free and full slabs.
  86 *	All object allocations for a node occur from node specific slab lists.
  87 */
  88
  89#include	<linux/__KEEPIDENTS__B.h>
  90#include	<linux/__KEEPIDENTS__C.h>
  91#include	<linux/__KEEPIDENTS__D.h>
  92#include	<linux/__KEEPIDENTS__E.h>
  93#include	<linux/__KEEPIDENTS__F.h>
  94#include	<linux/__KEEPIDENTS__G.h>
  95#include	<linux/__KEEPIDENTS__H.h>
  96#include	<linux/__KEEPIDENTS__I.h>
  97#include	<linux/__KEEPIDENTS__J.h>
  98#include	<linux/proc_fs.h>
  99#include	<linux/__KEEPIDENTS__BA.h>
 100#include	<linux/__KEEPIDENTS__BB.h>
 101#include	<linux/__KEEPIDENTS__BC.h>
 
 102#include	<linux/cpu.h>
 103#include	<linux/__KEEPIDENTS__BD.h>
 104#include	<linux/__KEEPIDENTS__BE.h>
 105#include	<linux/rcupdate.h>
 106#include	<linux/__KEEPIDENTS__BF.h>
 107#include	<linux/__KEEPIDENTS__BG.h>
 108#include	<linux/__KEEPIDENTS__BH.h>
 109#include	<linux/kmemleak.h>
 110#include	<linux/__KEEPIDENTS__BI.h>
 111#include	<linux/__KEEPIDENTS__BJ.h>
 112#include	<linux/__KEEPIDENTS__CA-__KEEPIDENTS__CB.h>
 113#include	<linux/__KEEPIDENTS__CC.h>
 114#include	<linux/reciprocal_div.h>
 115#include	<linux/debugobjects.h>
 116#include	<linux/kmemcheck.h>
 117#include	<linux/__KEEPIDENTS__CD.h>
 118#include	<linux/__KEEPIDENTS__CE.h>
 
 119
 120#include	<net/__KEEPIDENTS__CF.h>
 121
 122#include	<asm/cacheflush.h>
 123#include	<asm/tlbflush.h>
 124#include	<asm/page.h>
 125
 126#include <trace/events/kmem.h>
 127
 128#include	"internal.h"
 129
 130#include	"slab.h"
 131
 132/*
 133 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
 134 *		  0 for faster, smaller code (especially in the critical paths).
 135 *
 136 * STATS	- 1 to collect stats for /proc/slabinfo.
 137 *		  0 for faster, smaller code (especially in the critical paths).
 138 *
 139 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 140 */
 141
 142#ifdef CONFIG_DEBUG_SLAB
 143#define	DEBUG		1
 144#define	STATS		1
 145#define	FORCED_DEBUG	1
 146#else
 147#define	DEBUG		0
 148#define	STATS		0
 149#define	FORCED_DEBUG	0
 150#endif
 151
 152/* Shouldn't this be in a header file somewhere? */
 153#define	BYTES_PER_WORD		sizeof(void *)
 154#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
 155
 156#ifndef ARCH_KMALLOC_FLAGS
 157#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
 158#endif
 159
 160#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
 161				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
 162
 163#if FREELIST_BYTE_INDEX
 164typedef unsigned char freelist_idx_t;
 165#else
 166typedef unsigned short freelist_idx_t;
 167#endif
 168
 169#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
 170
 171/*
 172 * struct array_cache
 173 *
 174 * Purpose:
 175 * - LIFO ordering, to hand out cache-warm objects from _alloc
 176 * - reduce the number of linked list operations
 177 * - reduce spinlock operations
 178 *
 179 * The limit is stored in the per-cpu structure to reduce the data cache
 180 * footprint.
 181 *
 182 */
 183struct array_cache {
 184	unsigned int avail;
 185	unsigned int limit;
 186	unsigned int batchcount;
 187	unsigned int touched;
 188	void *entry[];	/*
 189			 * Must have this definition in here for the proper
 190			 * alignment of array_cache. Also simplifies accessing
 191			 * the entries.
 192			 */
 193};
 194
 195struct alien_cache {
 196	spinlock_t lock;
 197	struct array_cache ac;
 198};
 199
 200/*
 201 * Need this for bootstrapping a per node allocator.
 202 */
 203#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
 204static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
 205#define	CACHE_CACHE 0
 206#define	SIZE_NODE (MAX_NUMNODES)
 207
 208static int drain_freelist(struct kmem_cache *cache,
 209			struct kmem_cache_node *n, int tofree);
 210static void free_block(struct kmem_cache *cachep, void **objpp, int len,
 211			int node, struct list_head *list);
 212static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
 213static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
 214static void cache_reap(struct work_struct *unused);
 215
 216static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
 217						void **list);
 218static inline void fixup_slab_list(struct kmem_cache *cachep,
 219				struct kmem_cache_node *n, struct page *page,
 220				void **list);
 221static int slab_early_init = 1;
 222
 223#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
 224
 225static void kmem_cache_node_init(struct kmem_cache_node *parent)
 226{
 227	INIT_LIST_HEAD(&parent->slabs_full);
 228	INIT_LIST_HEAD(&parent->slabs_partial);
 229	INIT_LIST_HEAD(&parent->slabs_free);
 230	parent->total_slabs = 0;
 231	parent->free_slabs = 0;
 232	parent->shared = NULL;
 233	parent->alien = NULL;
 234	parent->colour_next = 0;
 235	spin_lock_init(&parent->list_lock);
 236	parent->free_objects = 0;
 237	parent->free_touched = 0;
 238}
 239
 240#define MAKE_LIST(cachep, listp, slab, nodeid)				\
 241	do {								\
 242		INIT_LIST_HEAD(listp);					\
 243		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
 244	} while (0)
 245
 246#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
 247	do {								\
 248	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
 249	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
 250	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
 251	} while (0)
 252
 253#define CFLGS_OBJFREELIST_SLAB	(0x40000000UL)
 254#define CFLGS_OFF_SLAB		(0x80000000UL)
 255#define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
 256#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
 257
 258#define BATCHREFILL_LIMIT	16
 259/*
 260 * Optimization question: fewer reaps means less probability for unnessary
 261 * cpucache drain/refill cycles.
 262 *
 263 * OTOH the cpuarrays can contain lots of objects,
 264 * which could lock up otherwise freeable slabs.
 265 */
 266#define REAPTIMEOUT_AC		(2*HZ)
 267#define REAPTIMEOUT_NODE	(4*HZ)
 268
 269#if STATS
 270#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
 271#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
 272#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
 273#define	STATS_INC_GROWN(x)	((x)->grown++)
 274#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
 275#define	STATS_SET_HIGH(x)						\
 276	do {								\
 277		if ((x)->num_active > (x)->high_mark)			\
 278			(x)->high_mark = (x)->num_active;		\
 279	} while (0)
 280#define	STATS_INC_ERR(x)	((x)->errors++)
 281#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
 282#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
 283#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
 284#define	STATS_SET_FREEABLE(x, i)					\
 285	do {								\
 286		if ((x)->max_freeable < i)				\
 287			(x)->max_freeable = i;				\
 288	} while (0)
 289#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
 290#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
 291#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
 292#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
 293#else
 294#define	STATS_INC_ACTIVE(x)	do { } while (0)
 295#define	STATS_DEC_ACTIVE(x)	do { } while (0)
 296#define	STATS_INC_ALLOCED(x)	do { } while (0)
 297#define	STATS_INC_GROWN(x)	do { } while (0)
 298#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
 299#define	STATS_SET_HIGH(x)	do { } while (0)
 300#define	STATS_INC_ERR(x)	do { } while (0)
 301#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
 302#define	STATS_INC_NODEFREES(x)	do { } while (0)
 303#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
 304#define	STATS_SET_FREEABLE(x, i) do { } while (0)
 305#define STATS_INC_ALLOCHIT(x)	do { } while (0)
 306#define STATS_INC_ALLOCMISS(x)	do { } while (0)
 307#define STATS_INC_FREEHIT(x)	do { } while (0)
 308#define STATS_INC_FREEMISS(x)	do { } while (0)
 309#endif
 310
 311#if DEBUG
 312
 313/*
 314 * memory layout of objects:
 315 * 0		: objp
 316 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
 317 * 		the end of an object is aligned with the end of the real
 318 * 		allocation. Catches writes behind the end of the allocation.
 319 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
 320 * 		redzone word.
 321 * cachep->obj_offset: The real object.
 322 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 323 * cachep->size - 1* BYTES_PER_WORD: last caller address
 324 *					[BYTES_PER_WORD long]
 325 */
 326static int obj_offset(struct kmem_cache *cachep)
 327{
 328	return cachep->obj_offset;
 329}
 330
 331static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
 332{
 333	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 334	return (unsigned long long*) (objp + obj_offset(cachep) -
 335				      sizeof(unsigned long long));
 336}
 337
 338static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
 339{
 340	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 341	if (cachep->flags & SLAB_STORE_USER)
 342		return (unsigned long long *)(objp + cachep->size -
 343					      sizeof(unsigned long long) -
 344					      REDZONE_ALIGN);
 345	return (unsigned long long *) (objp + cachep->size -
 346				       sizeof(unsigned long long));
 347}
 348
 349static void **dbg_userword(struct kmem_cache *cachep, void *objp)
 350{
 351	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
 352	return (void **)(objp + cachep->size - BYTES_PER_WORD);
 353}
 354
 355#else
 356
 357#define obj_offset(x)			0
 358#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
 359#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
 360#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
 361
 362#endif
 363
 364#ifdef CONFIG_DEBUG_SLAB_LEAK
 365
 366static inline bool is_store_user_clean(struct kmem_cache *cachep)
 367{
 368	return atomic_read(&cachep->store_user_clean) == 1;
 369}
 370
 371static inline void set_store_user_clean(struct kmem_cache *cachep)
 372{
 373	atomic_set(&cachep->store_user_clean, 1);
 374}
 375
 376static inline void set_store_user_dirty(struct kmem_cache *cachep)
 377{
 378	if (is_store_user_clean(cachep))
 379		atomic_set(&cachep->store_user_clean, 0);
 380}
 381
 382#else
 383static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
 384
 385#endif
 386
 387/*
 388 * Do not go above this order unless 0 objects fit into the slab or
 389 * overridden on the command line.
 390 */
 391#define	SLAB_MAX_ORDER_HI	1
 392#define	SLAB_MAX_ORDER_LO	0
 393static int slab_max_order = SLAB_MAX_ORDER_LO;
 394static bool slab_max_order_set __initdata;
 395
 396static inline struct kmem_cache *virt_to_cache(const void *obj)
 397{
 398	struct page *page = virt_to_head_page(obj);
 399	return page->slab_cache;
 400}
 401
 402static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
 403				 unsigned int idx)
 404{
 405	return page->s_mem + cache->size * idx;
 406}
 407
 408/*
 409 * We want to avoid an expensive divide : (offset / cache->size)
 410 *   Using the fact that size is a constant for a particular cache,
 411 *   we can replace (offset / cache->size) by
 412 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 413 */
 414static inline unsigned int obj_to_index(const struct kmem_cache *cache,
 415					const struct page *page, void *obj)
 416{
 417	u32 offset = (obj - page->s_mem);
 418	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
 419}
 420
 421#define BOOT_CPUCACHE_ENTRIES	1
 422/* internal cache of cache description objs */
 423static struct kmem_cache kmem_cache_boot = {
 424	.batchcount = 1,
 425	.limit = BOOT_CPUCACHE_ENTRIES,
 426	.shared = 1,
 427	.size = sizeof(struct kmem_cache),
 428	.name = "kmem_cache",
 429};
 430
 431static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
 432
 433static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
 434{
 435	return this_cpu_ptr(cachep->cpu_cache);
 436}
 437
 438/*
 439 * Calculate the number of objects and left-over bytes for a given buffer size.
 440 */
 441static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
 442		unsigned long flags, size_t *left_over)
 443{
 444	unsigned int num;
 445	size_t slab_size = PAGE_SIZE << gfporder;
 446
 447	/*
 448	 * The slab management structure can be either off the slab or
 449	 * on it. For the latter case, the memory allocated for a
 450	 * slab is used for:
 451	 *
 452	 * - @buffer_size bytes for each object
 453	 * - One freelist_idx_t for each object
 454	 *
 455	 * We don't need to consider alignment of freelist because
 456	 * freelist will be at the end of slab page. The objects will be
 457	 * at the correct alignment.
 458	 *
 459	 * If the slab management structure is off the slab, then the
 460	 * alignment will already be calculated into the size. Because
 461	 * the slabs are all pages aligned, the objects will be at the
 462	 * correct alignment when allocated.
 463	 */
 464	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
 465		num = slab_size / buffer_size;
 466		*left_over = slab_size % buffer_size;
 467	} else {
 468		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
 469		*left_over = slab_size %
 470			(buffer_size + sizeof(freelist_idx_t));
 471	}
 472
 473	return num;
 474}
 475
 476#if DEBUG
 477#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
 478
 479static void __slab_error(const char *function, struct kmem_cache *cachep,
 480			char *msg)
 481{
 482	pr_err("slab error in %s(): cache `%s': %s\n",
 483	       function, cachep->name, msg);
 484	dump_stack();
 485	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 486}
 487#endif
 488
 489/*
 490 * By default on NUMA we use alien caches to stage the freeing of
 491 * objects allocated from other nodes. This causes massive memory
 492 * inefficiencies when using fake NUMA setup to split memory into a
 493 * large number of small nodes, so it can be disabled on the command
 494 * line
 495  */
 496
 497static int use_alien_caches __read_mostly = 1;
 498static int __init noaliencache_setup(char *s)
 499{
 500	use_alien_caches = 0;
 501	return 1;
 502}
 503__setup("noaliencache", noaliencache_setup);
 504
 505static int __init slab_max_order_setup(char *str)
 506{
 507	get_option(&str, &slab_max_order);
 508	slab_max_order = slab_max_order < 0 ? 0 :
 509				min(slab_max_order, MAX_ORDER - 1);
 510	slab_max_order_set = true;
 511
 512	return 1;
 513}
 514__setup("slab_max_order=", slab_max_order_setup);
 515
 516#ifdef CONFIG_NUMA
 517/*
 518 * Special reaping functions for NUMA systems called from cache_reap().
 519 * These take care of doing round robin flushing of alien caches (containing
 520 * objects freed on different nodes from which they were allocated) and the
 521 * flushing of remote pcps by calling drain_node_pages.
 522 */
 523static DEFINE_PER_CPU(unsigned long, slab_reap_node);
 524
 525static void init_reap_node(int cpu)
 526{
 527	per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
 528						    node_online_map);
 529}
 530
 531static void next_reap_node(void)
 532{
 533	int node = __this_cpu_read(slab_reap_node);
 534
 535	node = next_node_in(node, node_online_map);
 536	__this_cpu_write(slab_reap_node, node);
 537}
 538
 539#else
 540#define init_reap_node(cpu) do { } while (0)
 541#define next_reap_node(void) do { } while (0)
 542#endif
 543
 544/*
 545 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 546 * via the workqueue/eventd.
 547 * Add the CPU number into the expiration time to minimize the possibility of
 548 * the CPUs getting into lockstep and contending for the global cache chain
 549 * lock.
 550 */
 551static void start_cpu_timer(int cpu)
 552{
 553	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
 554
 555	if (reap_work->work.func == NULL) {
 556		init_reap_node(cpu);
 557		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
 558		schedule_delayed_work_on(cpu, reap_work,
 559					__round_jiffies_relative(HZ, cpu));
 560	}
 561}
 562
 563static void init_arraycache(struct array_cache *ac, int limit, int batch)
 564{
 565	/*
 566	 * The array_cache structures contain pointers to free object.
 567	 * However, when such objects are allocated or transferred to another
 568	 * cache the pointers are not cleared and they could be counted as
 569	 * valid references during a kmemleak scan. Therefore, kmemleak must
 570	 * not scan such objects.
 571	 */
 572	kmemleak_no_scan(ac);
 573	if (ac) {
 574		ac->avail = 0;
 575		ac->limit = limit;
 576		ac->batchcount = batch;
 577		ac->touched = 0;
 578	}
 579}
 580
 581static struct array_cache *alloc_arraycache(int node, int entries,
 582					    int batchcount, gfp_t gfp)
 583{
 584	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
 585	struct array_cache *ac = NULL;
 586
 587	ac = kmalloc_node(memsize, gfp, node);
 
 
 
 
 
 
 
 
 588	init_arraycache(ac, entries, batchcount);
 589	return ac;
 590}
 591
 592static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
 593					struct page *page, void *objp)
 594{
 595	struct kmem_cache_node *n;
 596	int page_node;
 597	LIST_HEAD(list);
 598
 599	page_node = page_to_nid(page);
 600	n = get_node(cachep, page_node);
 601
 602	spin_lock(&n->list_lock);
 603	free_block(cachep, &objp, 1, page_node, &list);
 604	spin_unlock(&n->list_lock);
 605
 606	slabs_destroy(cachep, &list);
 607}
 608
 609/*
 610 * Transfer objects in one arraycache to another.
 611 * Locking must be handled by the caller.
 612 *
 613 * Return the number of entries transferred.
 614 */
 615static int transfer_objects(struct array_cache *to,
 616		struct array_cache *from, unsigned int max)
 617{
 618	/* Figure out how many entries to transfer */
 619	int nr = min3(from->avail, max, to->limit - to->avail);
 620
 621	if (!nr)
 622		return 0;
 623
 624	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
 625			sizeof(void *) *nr);
 626
 627	from->avail -= nr;
 628	to->avail += nr;
 629	return nr;
 630}
 631
 
 
 
 
 
 
 
 
 
 
 632#ifndef CONFIG_NUMA
 633
 634#define drain_alien_cache(cachep, alien) do { } while (0)
 635#define reap_alien(cachep, n) do { } while (0)
 636
 637static inline struct alien_cache **alloc_alien_cache(int node,
 638						int limit, gfp_t gfp)
 639{
 640	return NULL;
 641}
 642
 643static inline void free_alien_cache(struct alien_cache **ac_ptr)
 644{
 645}
 646
 647static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 648{
 649	return 0;
 650}
 651
 652static inline void *alternate_node_alloc(struct kmem_cache *cachep,
 653		gfp_t flags)
 654{
 655	return NULL;
 656}
 657
 658static inline void *____cache_alloc_node(struct kmem_cache *cachep,
 659		 gfp_t flags, int nodeid)
 660{
 661	return NULL;
 662}
 663
 664static inline gfp_t gfp_exact_node(gfp_t flags)
 665{
 666	return flags & ~__GFP_NOFAIL;
 667}
 668
 669#else	/* CONFIG_NUMA */
 670
 671static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
 672static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
 673
 674static struct alien_cache *__alloc_alien_cache(int node, int entries,
 675						int batch, gfp_t gfp)
 676{
 677	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
 678	struct alien_cache *alc = NULL;
 679
 680	alc = kmalloc_node(memsize, gfp, node);
 681	init_arraycache(&alc->ac, entries, batch);
 682	spin_lock_init(&alc->lock);
 
 
 
 683	return alc;
 684}
 685
 686static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
 687{
 688	struct alien_cache **alc_ptr;
 689	size_t memsize = sizeof(void *) * nr_node_ids;
 690	int i;
 691
 692	if (limit > 1)
 693		limit = 12;
 694	alc_ptr = kzalloc_node(memsize, gfp, node);
 695	if (!alc_ptr)
 696		return NULL;
 697
 698	for_each_node(i) {
 699		if (i == node || !node_online(i))
 700			continue;
 701		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
 702		if (!alc_ptr[i]) {
 703			for (i--; i >= 0; i--)
 704				kfree(alc_ptr[i]);
 705			kfree(alc_ptr);
 706			return NULL;
 707		}
 708	}
 709	return alc_ptr;
 710}
 711
 712static void free_alien_cache(struct alien_cache **alc_ptr)
 713{
 714	int i;
 715
 716	if (!alc_ptr)
 717		return;
 718	for_each_node(i)
 719	    kfree(alc_ptr[i]);
 720	kfree(alc_ptr);
 721}
 722
 723static void __drain_alien_cache(struct kmem_cache *cachep,
 724				struct array_cache *ac, int node,
 725				struct list_head *list)
 726{
 727	struct kmem_cache_node *n = get_node(cachep, node);
 728
 729	if (ac->avail) {
 730		spin_lock(&n->list_lock);
 731		/*
 732		 * Stuff objects into the remote nodes shared array first.
 733		 * That way we could avoid the overhead of putting the objects
 734		 * into the free lists and getting them back later.
 735		 */
 736		if (n->shared)
 737			transfer_objects(n->shared, ac, ac->limit);
 738
 739		free_block(cachep, ac->entry, ac->avail, node, list);
 740		ac->avail = 0;
 741		spin_unlock(&n->list_lock);
 742	}
 743}
 744
 745/*
 746 * Called from cache_reap() to regularly drain alien caches round robin.
 747 */
 748static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
 749{
 750	int node = __this_cpu_read(slab_reap_node);
 751
 752	if (n->alien) {
 753		struct alien_cache *alc = n->alien[node];
 754		struct array_cache *ac;
 755
 756		if (alc) {
 757			ac = &alc->ac;
 758			if (ac->avail && spin_trylock_irq(&alc->lock)) {
 759				LIST_HEAD(list);
 760
 761				__drain_alien_cache(cachep, ac, node, &list);
 762				spin_unlock_irq(&alc->lock);
 763				slabs_destroy(cachep, &list);
 764			}
 765		}
 766	}
 767}
 768
 769static void drain_alien_cache(struct kmem_cache *cachep,
 770				struct alien_cache **alien)
 771{
 772	int i = 0;
 773	struct alien_cache *alc;
 774	struct array_cache *ac;
 775	unsigned long flags;
 776
 777	for_each_online_node(i) {
 778		alc = alien[i];
 779		if (alc) {
 780			LIST_HEAD(list);
 781
 782			ac = &alc->ac;
 783			spin_lock_irqsave(&alc->lock, flags);
 784			__drain_alien_cache(cachep, ac, i, &list);
 785			spin_unlock_irqrestore(&alc->lock, flags);
 786			slabs_destroy(cachep, &list);
 787		}
 788	}
 789}
 790
 791static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
 792				int node, int page_node)
 793{
 794	struct kmem_cache_node *n;
 795	struct alien_cache *alien = NULL;
 796	struct array_cache *ac;
 797	LIST_HEAD(list);
 798
 799	n = get_node(cachep, node);
 800	STATS_INC_NODEFREES(cachep);
 801	if (n->alien && n->alien[page_node]) {
 802		alien = n->alien[page_node];
 803		ac = &alien->ac;
 804		spin_lock(&alien->lock);
 805		if (unlikely(ac->avail == ac->limit)) {
 806			STATS_INC_ACOVERFLOW(cachep);
 807			__drain_alien_cache(cachep, ac, page_node, &list);
 808		}
 809		ac->entry[ac->avail++] = objp;
 810		spin_unlock(&alien->lock);
 811		slabs_destroy(cachep, &list);
 812	} else {
 813		n = get_node(cachep, page_node);
 814		spin_lock(&n->list_lock);
 815		free_block(cachep, &objp, 1, page_node, &list);
 816		spin_unlock(&n->list_lock);
 817		slabs_destroy(cachep, &list);
 818	}
 819	return 1;
 820}
 821
 822static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 823{
 824	int page_node = page_to_nid(virt_to_page(objp));
 825	int node = numa_mem_id();
 826	/*
 827	 * Make sure we are not freeing a object from another node to the array
 828	 * cache on this cpu.
 829	 */
 830	if (likely(node == page_node))
 831		return 0;
 832
 833	return __cache_free_alien(cachep, objp, node, page_node);
 834}
 835
 836/*
 837 * Construct gfp mask to allocate from a specific node but do not reclaim or
 838 * warn about failures.
 839 */
 840static inline gfp_t gfp_exact_node(gfp_t flags)
 841{
 842	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
 843}
 844#endif
 845
 846static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
 847{
 848	struct kmem_cache_node *n;
 849
 850	/*
 851	 * Set up the kmem_cache_node for cpu before we can
 852	 * begin anything. Make sure some other cpu on this
 853	 * node has not already allocated this
 854	 */
 855	n = get_node(cachep, node);
 856	if (n) {
 857		spin_lock_irq(&n->list_lock);
 858		n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
 859				cachep->num;
 860		spin_unlock_irq(&n->list_lock);
 861
 862		return 0;
 863	}
 864
 865	n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
 866	if (!n)
 867		return -ENOMEM;
 868
 869	kmem_cache_node_init(n);
 870	n->next_reap = jiffies + REAPTIMEOUT_NODE +
 871		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
 872
 873	n->free_limit =
 874		(1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
 875
 876	/*
 877	 * The kmem_cache_nodes don't come and go as CPUs
 878	 * come and go.  slab_mutex is sufficient
 879	 * protection here.
 880	 */
 881	cachep->node[node] = n;
 882
 883	return 0;
 884}
 885
 886#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
 887/*
 888 * Allocates and initializes node for a node on each slab cache, used for
 889 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
 890 * will be allocated off-node since memory is not yet online for the new node.
 891 * When hotplugging memory or a cpu, existing node are not replaced if
 892 * already in use.
 893 *
 894 * Must hold slab_mutex.
 895 */
 896static int init_cache_node_node(int node)
 897{
 898	int ret;
 899	struct kmem_cache *cachep;
 900
 901	list_for_each_entry(cachep, &slab_caches, list) {
 902		ret = init_cache_node(cachep, node, GFP_KERNEL);
 903		if (ret)
 904			return ret;
 905	}
 906
 907	return 0;
 908}
 909#endif
 910
 911static int setup_kmem_cache_node(struct kmem_cache *cachep,
 912				int node, gfp_t gfp, bool force_change)
 913{
 914	int ret = -ENOMEM;
 915	struct kmem_cache_node *n;
 916	struct array_cache *old_shared = NULL;
 917	struct array_cache *new_shared = NULL;
 918	struct alien_cache **new_alien = NULL;
 919	LIST_HEAD(list);
 920
 921	if (use_alien_caches) {
 922		new_alien = alloc_alien_cache(node, cachep->limit, gfp);
 923		if (!new_alien)
 924			goto fail;
 925	}
 926
 927	if (cachep->shared) {
 928		new_shared = alloc_arraycache(node,
 929			cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
 930		if (!new_shared)
 931			goto fail;
 932	}
 933
 934	ret = init_cache_node(cachep, node, gfp);
 935	if (ret)
 936		goto fail;
 937
 938	n = get_node(cachep, node);
 939	spin_lock_irq(&n->list_lock);
 940	if (n->shared && force_change) {
 941		free_block(cachep, n->shared->entry,
 942				n->shared->avail, node, &list);
 943		n->shared->avail = 0;
 944	}
 945
 946	if (!n->shared || force_change) {
 947		old_shared = n->shared;
 948		n->shared = new_shared;
 949		new_shared = NULL;
 950	}
 951
 952	if (!n->alien) {
 953		n->alien = new_alien;
 954		new_alien = NULL;
 955	}
 956
 957	spin_unlock_irq(&n->list_lock);
 958	slabs_destroy(cachep, &list);
 959
 960	/*
 961	 * To protect lockless access to n->shared during irq disabled context.
 962	 * If n->shared isn't NULL in irq disabled context, accessing to it is
 963	 * guaranteed to be valid until irq is re-enabled, because it will be
 964	 * freed after synchronize_sched().
 965	 */
 966	if (old_shared && force_change)
 967		synchronize_sched();
 968
 969fail:
 970	kfree(old_shared);
 971	kfree(new_shared);
 972	free_alien_cache(new_alien);
 973
 974	return ret;
 975}
 976
 977#ifdef CONFIG_SMP
 978
 979static void cpuup_canceled(long cpu)
 980{
 981	struct kmem_cache *cachep;
 982	struct kmem_cache_node *n = NULL;
 983	int node = cpu_to_mem(cpu);
 984	const struct cpumask *mask = cpumask_of_node(node);
 985
 986	list_for_each_entry(cachep, &slab_caches, list) {
 987		struct array_cache *nc;
 988		struct array_cache *shared;
 989		struct alien_cache **alien;
 990		LIST_HEAD(list);
 991
 992		n = get_node(cachep, node);
 993		if (!n)
 994			continue;
 995
 996		spin_lock_irq(&n->list_lock);
 997
 998		/* Free limit for this kmem_cache_node */
 999		n->free_limit -= cachep->batchcount;
1000
1001		/* cpu is dead; no one can alloc from it. */
1002		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1003		if (nc) {
1004			free_block(cachep, nc->entry, nc->avail, node, &list);
1005			nc->avail = 0;
1006		}
1007
1008		if (!cpumask_empty(mask)) {
1009			spin_unlock_irq(&n->list_lock);
1010			goto free_slab;
1011		}
1012
1013		shared = n->shared;
1014		if (shared) {
1015			free_block(cachep, shared->entry,
1016				   shared->avail, node, &list);
1017			n->shared = NULL;
1018		}
1019
1020		alien = n->alien;
1021		n->alien = NULL;
1022
1023		spin_unlock_irq(&n->list_lock);
1024
1025		kfree(shared);
1026		if (alien) {
1027			drain_alien_cache(cachep, alien);
1028			free_alien_cache(alien);
1029		}
1030
1031free_slab:
1032		slabs_destroy(cachep, &list);
1033	}
1034	/*
1035	 * In the previous loop, all the objects were freed to
1036	 * the respective cache's slabs,  now we can go ahead and
1037	 * shrink each nodelist to its limit.
1038	 */
1039	list_for_each_entry(cachep, &slab_caches, list) {
1040		n = get_node(cachep, node);
1041		if (!n)
1042			continue;
1043		drain_freelist(cachep, n, INT_MAX);
1044	}
1045}
1046
1047static int cpuup_prepare(long cpu)
1048{
1049	struct kmem_cache *cachep;
1050	int node = cpu_to_mem(cpu);
1051	int err;
1052
1053	/*
1054	 * We need to do this right in the beginning since
1055	 * alloc_arraycache's are going to use this list.
1056	 * kmalloc_node allows us to add the slab to the right
1057	 * kmem_cache_node and not this cpu's kmem_cache_node
1058	 */
1059	err = init_cache_node_node(node);
1060	if (err < 0)
1061		goto bad;
1062
1063	/*
1064	 * Now we can go ahead with allocating the shared arrays and
1065	 * array caches
1066	 */
1067	list_for_each_entry(cachep, &slab_caches, list) {
1068		err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1069		if (err)
1070			goto bad;
1071	}
1072
1073	return 0;
1074bad:
1075	cpuup_canceled(cpu);
1076	return -ENOMEM;
1077}
1078
1079int slab_prepare_cpu(unsigned int cpu)
1080{
1081	int err;
1082
1083	mutex_lock(&slab_mutex);
1084	err = cpuup_prepare(cpu);
1085	mutex_unlock(&slab_mutex);
1086	return err;
1087}
1088
1089/*
1090 * This is called for a failed online attempt and for a successful
1091 * offline.
1092 *
1093 * Even if all the cpus of a node are down, we don't free the
1094 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1095 * a kmalloc allocation from another cpu for memory from the node of
1096 * the cpu going down.  The list3 structure is usually allocated from
1097 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1098 */
1099int slab_dead_cpu(unsigned int cpu)
1100{
1101	mutex_lock(&slab_mutex);
1102	cpuup_canceled(cpu);
1103	mutex_unlock(&slab_mutex);
1104	return 0;
1105}
1106#endif
1107
1108static int slab_online_cpu(unsigned int cpu)
1109{
1110	start_cpu_timer(cpu);
1111	return 0;
1112}
1113
1114static int slab_offline_cpu(unsigned int cpu)
1115{
1116	/*
1117	 * Shutdown cache reaper. Note that the slab_mutex is held so
1118	 * that if cache_reap() is invoked it cannot do anything
1119	 * expensive but will only modify reap_work and reschedule the
1120	 * timer.
1121	 */
1122	cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1123	/* Now the cache_reaper is guaranteed to be not running. */
1124	per_cpu(slab_reap_work, cpu).work.func = NULL;
1125	return 0;
1126}
1127
1128#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1129/*
1130 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1131 * Returns -EBUSY if all objects cannot be drained so that the node is not
1132 * removed.
1133 *
1134 * Must hold slab_mutex.
1135 */
1136static int __meminit drain_cache_node_node(int node)
1137{
1138	struct kmem_cache *cachep;
1139	int ret = 0;
1140
1141	list_for_each_entry(cachep, &slab_caches, list) {
1142		struct kmem_cache_node *n;
1143
1144		n = get_node(cachep, node);
1145		if (!n)
1146			continue;
1147
1148		drain_freelist(cachep, n, INT_MAX);
1149
1150		if (!list_empty(&n->slabs_full) ||
1151		    !list_empty(&n->slabs_partial)) {
1152			ret = -EBUSY;
1153			break;
1154		}
1155	}
1156	return ret;
1157}
1158
1159static int __meminit slab_memory_callback(struct notifier_block *self,
1160					unsigned long action, void *arg)
1161{
1162	struct memory_notify *mnb = arg;
1163	int ret = 0;
1164	int nid;
1165
1166	nid = mnb->status_change_nid;
1167	if (nid < 0)
1168		goto out;
1169
1170	switch (action) {
1171	case MEM_GOING_ONLINE:
1172		mutex_lock(&slab_mutex);
1173		ret = init_cache_node_node(nid);
1174		mutex_unlock(&slab_mutex);
1175		break;
1176	case MEM_GOING_OFFLINE:
1177		mutex_lock(&slab_mutex);
1178		ret = drain_cache_node_node(nid);
1179		mutex_unlock(&slab_mutex);
1180		break;
1181	case MEM_ONLINE:
1182	case MEM_OFFLINE:
1183	case MEM_CANCEL_ONLINE:
1184	case MEM_CANCEL_OFFLINE:
1185		break;
1186	}
1187out:
1188	return notifier_from_errno(ret);
1189}
1190#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1191
1192/*
1193 * swap the static kmem_cache_node with kmalloced memory
1194 */
1195static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1196				int nodeid)
1197{
1198	struct kmem_cache_node *ptr;
1199
1200	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1201	BUG_ON(!ptr);
1202
1203	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1204	/*
1205	 * Do not assume that spinlocks can be initialized via memcpy:
1206	 */
1207	spin_lock_init(&ptr->list_lock);
1208
1209	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1210	cachep->node[nodeid] = ptr;
1211}
1212
1213/*
1214 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1215 * size of kmem_cache_node.
1216 */
1217static void __init set_up_node(struct kmem_cache *cachep, int index)
1218{
1219	int node;
1220
1221	for_each_online_node(node) {
1222		cachep->node[node] = &init_kmem_cache_node[index + node];
1223		cachep->node[node]->next_reap = jiffies +
1224		    REAPTIMEOUT_NODE +
1225		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1226	}
1227}
1228
1229/*
1230 * Initialisation.  Called after the page allocator have been initialised and
1231 * before smp_init().
1232 */
1233void __init kmem_cache_init(void)
1234{
1235	int i;
1236
1237	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1238					sizeof(struct rcu_head));
1239	kmem_cache = &kmem_cache_boot;
1240
1241	if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1242		use_alien_caches = 0;
1243
1244	for (i = 0; i < NUM_INIT_LISTS; i++)
1245		kmem_cache_node_init(&init_kmem_cache_node[i]);
1246
1247	/*
1248	 * Fragmentation resistance on low memory - only use bigger
1249	 * page orders on machines with more than 32MB of memory if
1250	 * not overridden on the command line.
1251	 */
1252	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1253		slab_max_order = SLAB_MAX_ORDER_HI;
1254
1255	/* Bootstrap is tricky, because several objects are allocated
1256	 * from caches that do not exist yet:
1257	 * 1) initialize the kmem_cache cache: it contains the struct
1258	 *    kmem_cache structures of all caches, except kmem_cache itself:
1259	 *    kmem_cache is statically allocated.
1260	 *    Initially an __init data area is used for the head array and the
1261	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1262	 *    array at the end of the bootstrap.
1263	 * 2) Create the first kmalloc cache.
1264	 *    The struct kmem_cache for the new cache is allocated normally.
1265	 *    An __init data area is used for the head array.
1266	 * 3) Create the remaining kmalloc caches, with minimally sized
1267	 *    head arrays.
1268	 * 4) Replace the __init data head arrays for kmem_cache and the first
1269	 *    kmalloc cache with kmalloc allocated arrays.
1270	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1271	 *    the other cache's with kmalloc allocated memory.
1272	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1273	 */
1274
1275	/* 1) create the kmem_cache */
1276
1277	/*
1278	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1279	 */
1280	create_boot_cache(kmem_cache, "kmem_cache",
1281		offsetof(struct kmem_cache, node) +
1282				  nr_node_ids * sizeof(struct kmem_cache_node *),
1283				  SLAB_HWCACHE_ALIGN);
1284	list_add(&kmem_cache->list, &slab_caches);
1285	slab_state = PARTIAL;
1286
1287	/*
1288	 * Initialize the caches that provide memory for the  kmem_cache_node
1289	 * structures first.  Without this, further allocations will bug.
1290	 */
1291	kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1292				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
 
 
 
1293	slab_state = PARTIAL_NODE;
1294	setup_kmalloc_cache_index_table();
1295
1296	slab_early_init = 0;
1297
1298	/* 5) Replace the bootstrap kmem_cache_node */
1299	{
1300		int nid;
1301
1302		for_each_online_node(nid) {
1303			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1304
1305			init_list(kmalloc_caches[INDEX_NODE],
1306					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1307		}
1308	}
1309
1310	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1311}
1312
1313void __init kmem_cache_init_late(void)
1314{
1315	struct kmem_cache *cachep;
1316
1317	slab_state = UP;
1318
1319	/* 6) resize the head arrays to their final sizes */
1320	mutex_lock(&slab_mutex);
1321	list_for_each_entry(cachep, &slab_caches, list)
1322		if (enable_cpucache(cachep, GFP_NOWAIT))
1323			BUG();
1324	mutex_unlock(&slab_mutex);
1325
1326	/* Done! */
1327	slab_state = FULL;
1328
1329#ifdef CONFIG_NUMA
1330	/*
1331	 * Register a memory hotplug callback that initializes and frees
1332	 * node.
1333	 */
1334	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1335#endif
1336
1337	/*
1338	 * The reap timers are started later, with a module init call: That part
1339	 * of the kernel is not yet operational.
1340	 */
1341}
1342
1343static int __init cpucache_init(void)
1344{
1345	int ret;
1346
1347	/*
1348	 * Register the timers that return unneeded pages to the page allocator
1349	 */
1350	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1351				slab_online_cpu, slab_offline_cpu);
1352	WARN_ON(ret < 0);
1353
1354	/* Done! */
1355	slab_state = FULL;
1356	return 0;
1357}
1358__initcall(cpucache_init);
1359
1360static noinline void
1361slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1362{
1363#if DEBUG
1364	struct kmem_cache_node *n;
1365	unsigned long flags;
1366	int node;
1367	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1368				      DEFAULT_RATELIMIT_BURST);
1369
1370	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1371		return;
1372
1373	pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1374		nodeid, gfpflags, &gfpflags);
1375	pr_warn("  cache: %s, object size: %d, order: %d\n",
1376		cachep->name, cachep->size, cachep->gfporder);
1377
1378	for_each_kmem_cache_node(cachep, node, n) {
1379		unsigned long total_slabs, free_slabs, free_objs;
1380
1381		spin_lock_irqsave(&n->list_lock, flags);
1382		total_slabs = n->total_slabs;
1383		free_slabs = n->free_slabs;
1384		free_objs = n->free_objects;
1385		spin_unlock_irqrestore(&n->list_lock, flags);
1386
1387		pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1388			node, total_slabs - free_slabs, total_slabs,
1389			(total_slabs * cachep->num) - free_objs,
1390			total_slabs * cachep->num);
1391	}
1392#endif
1393}
1394
1395/*
1396 * Interface to system's page allocator. No need to hold the
1397 * kmem_cache_node ->list_lock.
1398 *
1399 * If we requested dmaable memory, we will get it. Even if we
1400 * did not request dmaable memory, we might get it, but that
1401 * would be relatively rare and ignorable.
1402 */
1403static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1404								int nodeid)
1405{
1406	struct page *page;
1407	int nr_pages;
1408
1409	flags |= cachep->allocflags;
1410	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1411		flags |= __GFP_RECLAIMABLE;
1412
1413	page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1414	if (!page) {
1415		slab_out_of_memory(cachep, flags, nodeid);
1416		return NULL;
1417	}
1418
1419	if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1420		__free_pages(page, cachep->gfporder);
1421		return NULL;
1422	}
1423
1424	nr_pages = (1 << cachep->gfporder);
1425	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1426		add_zone_page_state(page_zone(page),
1427			NR_SLAB_RECLAIMABLE, nr_pages);
1428	else
1429		add_zone_page_state(page_zone(page),
1430			NR_SLAB_UNRECLAIMABLE, nr_pages);
1431
1432	__SetPageSlab(page);
 
 
 
1433	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1434	if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1435		SetPageSlabPfmemalloc(page);
1436
1437	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1438		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1439
1440		if (cachep->ctor)
1441			kmemcheck_mark_uninitialized_pages(page, nr_pages);
1442		else
1443			kmemcheck_mark_unallocated_pages(page, nr_pages);
1444	}
1445
1446	return page;
1447}
1448
1449/*
1450 * Interface to system's page release.
1451 */
1452static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1453{
1454	int order = cachep->gfporder;
1455	unsigned long nr_freed = (1 << order);
1456
1457	kmemcheck_free_shadow(page, order);
1458
1459	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1460		sub_zone_page_state(page_zone(page),
1461				NR_SLAB_RECLAIMABLE, nr_freed);
1462	else
1463		sub_zone_page_state(page_zone(page),
1464				NR_SLAB_UNRECLAIMABLE, nr_freed);
1465
1466	BUG_ON(!PageSlab(page));
1467	__ClearPageSlabPfmemalloc(page);
1468	__ClearPageSlab(page);
1469	page_mapcount_reset(page);
1470	page->mapping = NULL;
 
 
1471
1472	if (current->reclaim_state)
1473		current->reclaim_state->reclaimed_slab += nr_freed;
1474	memcg_uncharge_slab(page, order, cachep);
1475	__free_pages(page, order);
1476}
1477
1478static void kmem_rcu_free(struct rcu_head *head)
1479{
1480	struct kmem_cache *cachep;
1481	struct page *page;
1482
1483	page = container_of(head, struct page, rcu_head);
1484	cachep = page->slab_cache;
1485
1486	kmem_freepages(cachep, page);
1487}
1488
1489#if DEBUG
1490static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1491{
1492	if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1493		(cachep->size % PAGE_SIZE) == 0)
1494		return true;
1495
1496	return false;
1497}
1498
1499#ifdef CONFIG_DEBUG_PAGEALLOC
1500static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1501			    unsigned long caller)
1502{
1503	int size = cachep->object_size;
1504
1505	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1506
1507	if (size < 5 * sizeof(unsigned long))
1508		return;
1509
1510	*addr++ = 0x12345678;
1511	*addr++ = caller;
1512	*addr++ = smp_processor_id();
1513	size -= 3 * sizeof(unsigned long);
1514	{
1515		unsigned long *sptr = &caller;
1516		unsigned long svalue;
1517
1518		while (!kstack_end(sptr)) {
1519			svalue = *sptr++;
1520			if (kernel_text_address(svalue)) {
1521				*addr++ = svalue;
1522				size -= sizeof(unsigned long);
1523				if (size <= sizeof(unsigned long))
1524					break;
1525			}
1526		}
1527
1528	}
1529	*addr++ = 0x87654321;
1530}
1531
1532static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1533				int map, unsigned long caller)
1534{
1535	if (!is_debug_pagealloc_cache(cachep))
1536		return;
1537
1538	if (caller)
1539		store_stackinfo(cachep, objp, caller);
1540
1541	kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1542}
1543
1544#else
1545static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1546				int map, unsigned long caller) {}
1547
1548#endif
1549
1550static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1551{
1552	int size = cachep->object_size;
1553	addr = &((char *)addr)[obj_offset(cachep)];
1554
1555	memset(addr, val, size);
1556	*(unsigned char *)(addr + size - 1) = POISON_END;
1557}
1558
1559static void dump_line(char *data, int offset, int limit)
1560{
1561	int i;
1562	unsigned char error = 0;
1563	int bad_count = 0;
1564
1565	pr_err("%03x: ", offset);
1566	for (i = 0; i < limit; i++) {
1567		if (data[offset + i] != POISON_FREE) {
1568			error = data[offset + i];
1569			bad_count++;
1570		}
1571	}
1572	print_hex_dump(KERN_CONT, "", 0, 16, 1,
1573			&data[offset], limit, 1);
1574
1575	if (bad_count == 1) {
1576		error ^= POISON_FREE;
1577		if (!(error & (error - 1))) {
1578			pr_err("Single bit error detected. Probably bad RAM.\n");
1579#ifdef CONFIG_X86
1580			pr_err("Run memtest86+ or a similar memory test tool.\n");
1581#else
1582			pr_err("Run a memory test tool.\n");
1583#endif
1584		}
1585	}
1586}
1587#endif
1588
1589#if DEBUG
1590
1591static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1592{
1593	int i, size;
1594	char *realobj;
1595
1596	if (cachep->flags & SLAB_RED_ZONE) {
1597		pr_err("Redzone: 0x%llx/0x%llx\n",
1598		       *dbg_redzone1(cachep, objp),
1599		       *dbg_redzone2(cachep, objp));
1600	}
1601
1602	if (cachep->flags & SLAB_STORE_USER) {
1603		pr_err("Last user: [<%p>](%pSR)\n",
1604		       *dbg_userword(cachep, objp),
1605		       *dbg_userword(cachep, objp));
1606	}
1607	realobj = (char *)objp + obj_offset(cachep);
1608	size = cachep->object_size;
1609	for (i = 0; i < size && lines; i += 16, lines--) {
1610		int limit;
1611		limit = 16;
1612		if (i + limit > size)
1613			limit = size - i;
1614		dump_line(realobj, i, limit);
1615	}
1616}
1617
1618static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1619{
1620	char *realobj;
1621	int size, i;
1622	int lines = 0;
1623
1624	if (is_debug_pagealloc_cache(cachep))
1625		return;
1626
1627	realobj = (char *)objp + obj_offset(cachep);
1628	size = cachep->object_size;
1629
1630	for (i = 0; i < size; i++) {
1631		char exp = POISON_FREE;
1632		if (i == size - 1)
1633			exp = POISON_END;
1634		if (realobj[i] != exp) {
1635			int limit;
1636			/* Mismatch ! */
1637			/* Print header */
1638			if (lines == 0) {
1639				pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
1640				       print_tainted(), cachep->name,
1641				       realobj, size);
1642				print_objinfo(cachep, objp, 0);
1643			}
1644			/* Hexdump the affected line */
1645			i = (i / 16) * 16;
1646			limit = 16;
1647			if (i + limit > size)
1648				limit = size - i;
1649			dump_line(realobj, i, limit);
1650			i += 16;
1651			lines++;
1652			/* Limit to 5 lines */
1653			if (lines > 5)
1654				break;
1655		}
1656	}
1657	if (lines != 0) {
1658		/* Print some data about the neighboring objects, if they
1659		 * exist:
1660		 */
1661		struct page *page = virt_to_head_page(objp);
1662		unsigned int objnr;
1663
1664		objnr = obj_to_index(cachep, page, objp);
1665		if (objnr) {
1666			objp = index_to_obj(cachep, page, objnr - 1);
1667			realobj = (char *)objp + obj_offset(cachep);
1668			pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
1669			print_objinfo(cachep, objp, 2);
1670		}
1671		if (objnr + 1 < cachep->num) {
1672			objp = index_to_obj(cachep, page, objnr + 1);
1673			realobj = (char *)objp + obj_offset(cachep);
1674			pr_err("Next obj: start=%p, len=%d\n", realobj, size);
1675			print_objinfo(cachep, objp, 2);
1676		}
1677	}
1678}
1679#endif
1680
1681#if DEBUG
1682static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1683						struct page *page)
1684{
1685	int i;
1686
1687	if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1688		poison_obj(cachep, page->freelist - obj_offset(cachep),
1689			POISON_FREE);
1690	}
1691
1692	for (i = 0; i < cachep->num; i++) {
1693		void *objp = index_to_obj(cachep, page, i);
1694
1695		if (cachep->flags & SLAB_POISON) {
1696			check_poison_obj(cachep, objp);
1697			slab_kernel_map(cachep, objp, 1, 0);
1698		}
1699		if (cachep->flags & SLAB_RED_ZONE) {
1700			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1701				slab_error(cachep, "start of a freed object was overwritten");
1702			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1703				slab_error(cachep, "end of a freed object was overwritten");
1704		}
1705	}
1706}
1707#else
1708static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1709						struct page *page)
1710{
1711}
1712#endif
1713
1714/**
1715 * slab_destroy - destroy and release all objects in a slab
1716 * @cachep: cache pointer being destroyed
1717 * @page: page pointer being destroyed
1718 *
1719 * Destroy all the objs in a slab page, and release the mem back to the system.
1720 * Before calling the slab page must have been unlinked from the cache. The
1721 * kmem_cache_node ->list_lock is not held/needed.
1722 */
1723static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1724{
1725	void *freelist;
1726
1727	freelist = page->freelist;
1728	slab_destroy_debugcheck(cachep, page);
1729	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
1730		call_rcu(&page->rcu_head, kmem_rcu_free);
1731	else
1732		kmem_freepages(cachep, page);
1733
1734	/*
1735	 * From now on, we don't use freelist
1736	 * although actual page can be freed in rcu context
1737	 */
1738	if (OFF_SLAB(cachep))
1739		kmem_cache_free(cachep->freelist_cache, freelist);
1740}
1741
 
 
 
 
1742static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1743{
1744	struct page *page, *n;
1745
1746	list_for_each_entry_safe(page, n, list, lru) {
1747		list_del(&page->lru);
1748		slab_destroy(cachep, page);
1749	}
1750}
1751
1752/**
1753 * calculate_slab_order - calculate size (page order) of slabs
1754 * @cachep: pointer to the cache that is being created
1755 * @size: size of objects to be created in this cache.
1756 * @flags: slab allocation flags
1757 *
1758 * Also calculates the number of objects per slab.
1759 *
1760 * This could be made much more intelligent.  For now, try to avoid using
1761 * high order pages for slabs.  When the gfp() functions are more friendly
1762 * towards high-order requests, this should be changed.
 
 
1763 */
1764static size_t calculate_slab_order(struct kmem_cache *cachep,
1765				size_t size, unsigned long flags)
1766{
1767	size_t left_over = 0;
1768	int gfporder;
1769
1770	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1771		unsigned int num;
1772		size_t remainder;
1773
1774		num = cache_estimate(gfporder, size, flags, &remainder);
1775		if (!num)
1776			continue;
1777
1778		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1779		if (num > SLAB_OBJ_MAX_NUM)
1780			break;
1781
1782		if (flags & CFLGS_OFF_SLAB) {
1783			struct kmem_cache *freelist_cache;
1784			size_t freelist_size;
 
1785
1786			freelist_size = num * sizeof(freelist_idx_t);
1787			freelist_cache = kmalloc_slab(freelist_size, 0u);
1788			if (!freelist_cache)
1789				continue;
1790
1791			/*
1792			 * Needed to avoid possible looping condition
1793			 * in cache_grow_begin()
1794			 */
1795			if (OFF_SLAB(freelist_cache))
1796				continue;
 
 
 
 
 
1797
1798			/* check if off slab has enough benefit */
1799			if (freelist_cache->size > cachep->size / 2)
1800				continue;
1801		}
1802
1803		/* Found something acceptable - save it away */
1804		cachep->num = num;
1805		cachep->gfporder = gfporder;
1806		left_over = remainder;
1807
1808		/*
1809		 * A VFS-reclaimable slab tends to have most allocations
1810		 * as GFP_NOFS and we really don't want to have to be allocating
1811		 * higher-order pages when we are unable to shrink dcache.
1812		 */
1813		if (flags & SLAB_RECLAIM_ACCOUNT)
1814			break;
1815
1816		/*
1817		 * Large number of objects is good, but very large slabs are
1818		 * currently bad for the gfp()s.
1819		 */
1820		if (gfporder >= slab_max_order)
1821			break;
1822
1823		/*
1824		 * Acceptable internal fragmentation?
1825		 */
1826		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1827			break;
1828	}
1829	return left_over;
1830}
1831
1832static struct array_cache __percpu *alloc_kmem_cache_cpus(
1833		struct kmem_cache *cachep, int entries, int batchcount)
1834{
1835	int cpu;
1836	size_t size;
1837	struct array_cache __percpu *cpu_cache;
1838
1839	size = sizeof(void *) * entries + sizeof(struct array_cache);
1840	cpu_cache = __alloc_percpu(size, sizeof(void *));
1841
1842	if (!cpu_cache)
1843		return NULL;
1844
1845	for_each_possible_cpu(cpu) {
1846		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1847				entries, batchcount);
1848	}
1849
1850	return cpu_cache;
1851}
1852
1853static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1854{
1855	if (slab_state >= FULL)
1856		return enable_cpucache(cachep, gfp);
1857
1858	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1859	if (!cachep->cpu_cache)
1860		return 1;
1861
1862	if (slab_state == DOWN) {
1863		/* Creation of first cache (kmem_cache). */
1864		set_up_node(kmem_cache, CACHE_CACHE);
1865	} else if (slab_state == PARTIAL) {
1866		/* For kmem_cache_node */
1867		set_up_node(cachep, SIZE_NODE);
1868	} else {
1869		int node;
1870
1871		for_each_online_node(node) {
1872			cachep->node[node] = kmalloc_node(
1873				sizeof(struct kmem_cache_node), gfp, node);
1874			BUG_ON(!cachep->node[node]);
1875			kmem_cache_node_init(cachep->node[node]);
1876		}
1877	}
1878
1879	cachep->node[numa_mem_id()]->next_reap =
1880			jiffies + REAPTIMEOUT_NODE +
1881			((unsigned long)cachep) % REAPTIMEOUT_NODE;
1882
1883	cpu_cache_get(cachep)->avail = 0;
1884	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1885	cpu_cache_get(cachep)->batchcount = 1;
1886	cpu_cache_get(cachep)->touched = 0;
1887	cachep->batchcount = 1;
1888	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1889	return 0;
1890}
1891
1892unsigned long kmem_cache_flags(unsigned long object_size,
1893	unsigned long flags, const char *name,
1894	void (*ctor)(void *))
1895{
1896	return flags;
1897}
1898
1899struct kmem_cache *
1900__kmem_cache_alias(const char *name, size_t size, size_t align,
1901		   unsigned long flags, void (*ctor)(void *))
1902{
1903	struct kmem_cache *cachep;
1904
1905	cachep = find_mergeable(size, align, flags, name, ctor);
1906	if (cachep) {
1907		cachep->refcount++;
1908
1909		/*
1910		 * Adjust the object sizes so that we clear
1911		 * the complete object on kzalloc.
1912		 */
1913		cachep->object_size = max_t(int, cachep->object_size, size);
1914	}
1915	return cachep;
1916}
1917
1918static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1919			size_t size, unsigned long flags)
1920{
1921	size_t left;
1922
1923	cachep->num = 0;
1924
1925	if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU)
 
 
 
 
 
 
 
 
1926		return false;
1927
1928	left = calculate_slab_order(cachep, size,
1929			flags | CFLGS_OBJFREELIST_SLAB);
1930	if (!cachep->num)
1931		return false;
1932
1933	if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1934		return false;
1935
1936	cachep->colour = left / cachep->colour_off;
1937
1938	return true;
1939}
1940
1941static bool set_off_slab_cache(struct kmem_cache *cachep,
1942			size_t size, unsigned long flags)
1943{
1944	size_t left;
1945
1946	cachep->num = 0;
1947
1948	/*
1949	 * Always use on-slab management when SLAB_NOLEAKTRACE
1950	 * to avoid recursive calls into kmemleak.
1951	 */
1952	if (flags & SLAB_NOLEAKTRACE)
1953		return false;
1954
1955	/*
1956	 * Size is large, assume best to place the slab management obj
1957	 * off-slab (should allow better packing of objs).
1958	 */
1959	left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1960	if (!cachep->num)
1961		return false;
1962
1963	/*
1964	 * If the slab has been placed off-slab, and we have enough space then
1965	 * move it on-slab. This is at the expense of any extra colouring.
1966	 */
1967	if (left >= cachep->num * sizeof(freelist_idx_t))
1968		return false;
1969
1970	cachep->colour = left / cachep->colour_off;
1971
1972	return true;
1973}
1974
1975static bool set_on_slab_cache(struct kmem_cache *cachep,
1976			size_t size, unsigned long flags)
1977{
1978	size_t left;
1979
1980	cachep->num = 0;
1981
1982	left = calculate_slab_order(cachep, size, flags);
1983	if (!cachep->num)
1984		return false;
1985
1986	cachep->colour = left / cachep->colour_off;
1987
1988	return true;
1989}
1990
1991/**
1992 * __kmem_cache_create - Create a cache.
1993 * @cachep: cache management descriptor
1994 * @flags: SLAB flags
1995 *
1996 * Returns a ptr to the cache on success, NULL on failure.
1997 * Cannot be called within a int, but can be interrupted.
1998 * The @ctor is run when new pages are allocated by the cache.
1999 *
2000 * The flags are
2001 *
2002 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2003 * to catch references to uninitialised memory.
2004 *
2005 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2006 * for buffer overruns.
2007 *
2008 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2009 * cacheline.  This can be beneficial if you're counting cycles as closely
2010 * as davem.
 
 
2011 */
2012int
2013__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2014{
2015	size_t ralign = BYTES_PER_WORD;
2016	gfp_t gfp;
2017	int err;
2018	size_t size = cachep->size;
2019
2020#if DEBUG
2021#if FORCED_DEBUG
2022	/*
2023	 * Enable redzoning and last user accounting, except for caches with
2024	 * large objects, if the increased size would increase the object size
2025	 * above the next power of two: caches with object sizes just above a
2026	 * power of two have a significant amount of internal fragmentation.
2027	 */
2028	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2029						2 * sizeof(unsigned long long)))
2030		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2031	if (!(flags & SLAB_DESTROY_BY_RCU))
2032		flags |= SLAB_POISON;
2033#endif
2034#endif
2035
2036	/*
2037	 * Check that size is in terms of words.  This is needed to avoid
2038	 * unaligned accesses for some archs when redzoning is used, and makes
2039	 * sure any on-slab bufctl's are also correctly aligned.
2040	 */
2041	if (size & (BYTES_PER_WORD - 1)) {
2042		size += (BYTES_PER_WORD - 1);
2043		size &= ~(BYTES_PER_WORD - 1);
2044	}
2045
2046	if (flags & SLAB_RED_ZONE) {
2047		ralign = REDZONE_ALIGN;
2048		/* If redzoning, ensure that the second redzone is suitably
2049		 * aligned, by adjusting the object size accordingly. */
2050		size += REDZONE_ALIGN - 1;
2051		size &= ~(REDZONE_ALIGN - 1);
2052	}
2053
2054	/* 3) caller mandated alignment */
2055	if (ralign < cachep->align) {
2056		ralign = cachep->align;
2057	}
2058	/* disable debug if necessary */
2059	if (ralign > __alignof__(unsigned long long))
2060		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2061	/*
2062	 * 4) Store it.
2063	 */
2064	cachep->align = ralign;
2065	cachep->colour_off = cache_line_size();
2066	/* Offset must be a multiple of the alignment. */
2067	if (cachep->colour_off < cachep->align)
2068		cachep->colour_off = cachep->align;
2069
2070	if (slab_is_available())
2071		gfp = GFP_KERNEL;
2072	else
2073		gfp = GFP_NOWAIT;
2074
2075#if DEBUG
2076
2077	/*
2078	 * Both debugging options require word-alignment which is calculated
2079	 * into align above.
2080	 */
2081	if (flags & SLAB_RED_ZONE) {
2082		/* add space for red zone words */
2083		cachep->obj_offset += sizeof(unsigned long long);
2084		size += 2 * sizeof(unsigned long long);
2085	}
2086	if (flags & SLAB_STORE_USER) {
2087		/* user store requires one word storage behind the end of
2088		 * the real object. But if the second red zone needs to be
2089		 * aligned to 64 bits, we must allow that much space.
2090		 */
2091		if (flags & SLAB_RED_ZONE)
2092			size += REDZONE_ALIGN;
2093		else
2094			size += BYTES_PER_WORD;
2095	}
2096#endif
2097
2098	kasan_cache_create(cachep, &size, &flags);
2099
2100	size = ALIGN(size, cachep->align);
2101	/*
2102	 * We should restrict the number of objects in a slab to implement
2103	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2104	 */
2105	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2106		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2107
2108#if DEBUG
2109	/*
2110	 * To activate debug pagealloc, off-slab management is necessary
2111	 * requirement. In early phase of initialization, small sized slab
2112	 * doesn't get initialized so it would not be possible. So, we need
2113	 * to check size >= 256. It guarantees that all necessary small
2114	 * sized slab is initialized in current slab initialization sequence.
2115	 */
2116	if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2117		size >= 256 && cachep->object_size > cache_line_size()) {
2118		if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2119			size_t tmp_size = ALIGN(size, PAGE_SIZE);
2120
2121			if (set_off_slab_cache(cachep, tmp_size, flags)) {
2122				flags |= CFLGS_OFF_SLAB;
2123				cachep->obj_offset += tmp_size - size;
2124				size = tmp_size;
2125				goto done;
2126			}
2127		}
2128	}
2129#endif
2130
2131	if (set_objfreelist_slab_cache(cachep, size, flags)) {
2132		flags |= CFLGS_OBJFREELIST_SLAB;
2133		goto done;
2134	}
2135
2136	if (set_off_slab_cache(cachep, size, flags)) {
2137		flags |= CFLGS_OFF_SLAB;
2138		goto done;
2139	}
2140
2141	if (set_on_slab_cache(cachep, size, flags))
2142		goto done;
2143
2144	return -E2BIG;
2145
2146done:
2147	cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2148	cachep->flags = flags;
2149	cachep->allocflags = __GFP_COMP;
2150	if (flags & SLAB_CACHE_DMA)
2151		cachep->allocflags |= GFP_DMA;
 
 
 
 
2152	cachep->size = size;
2153	cachep->reciprocal_buffer_size = reciprocal_value(size);
2154
2155#if DEBUG
2156	/*
2157	 * If we're going to use the generic kernel_map_pages()
2158	 * poisoning, then it's going to smash the contents of
2159	 * the redzone and userword anyhow, so switch them off.
2160	 */
2161	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2162		(cachep->flags & SLAB_POISON) &&
2163		is_debug_pagealloc_cache(cachep))
2164		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2165#endif
2166
2167	if (OFF_SLAB(cachep)) {
2168		cachep->freelist_cache =
2169			kmalloc_slab(cachep->freelist_size, 0u);
2170	}
2171
2172	err = setup_cpu_cache(cachep, gfp);
2173	if (err) {
2174		__kmem_cache_release(cachep);
2175		return err;
2176	}
2177
2178	return 0;
2179}
2180
2181#if DEBUG
2182static void check_irq_off(void)
2183{
2184	BUG_ON(!irqs_disabled());
2185}
2186
2187static void check_irq_on(void)
2188{
2189	BUG_ON(irqs_disabled());
2190}
2191
2192static void check_mutex_acquired(void)
2193{
2194	BUG_ON(!mutex_is_locked(&slab_mutex));
2195}
2196
2197static void check_spinlock_acquired(struct kmem_cache *cachep)
2198{
2199#ifdef CONFIG_SMP
2200	check_irq_off();
2201	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2202#endif
2203}
2204
2205static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2206{
2207#ifdef CONFIG_SMP
2208	check_irq_off();
2209	assert_spin_locked(&get_node(cachep, node)->list_lock);
2210#endif
2211}
2212
2213#else
2214#define check_irq_off()	do { } while(0)
2215#define check_irq_on()	do { } while(0)
2216#define check_mutex_acquired()	do { } while(0)
2217#define check_spinlock_acquired(x) do { } while(0)
2218#define check_spinlock_acquired_node(x, y) do { } while(0)
2219#endif
2220
2221static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2222				int node, bool free_all, struct list_head *list)
2223{
2224	int tofree;
2225
2226	if (!ac || !ac->avail)
2227		return;
2228
2229	tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2230	if (tofree > ac->avail)
2231		tofree = (ac->avail + 1) / 2;
2232
2233	free_block(cachep, ac->entry, tofree, node, list);
2234	ac->avail -= tofree;
2235	memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2236}
2237
2238static void do_drain(void *arg)
2239{
2240	struct kmem_cache *cachep = arg;
2241	struct array_cache *ac;
2242	int node = numa_mem_id();
2243	struct kmem_cache_node *n;
2244	LIST_HEAD(list);
2245
2246	check_irq_off();
2247	ac = cpu_cache_get(cachep);
2248	n = get_node(cachep, node);
2249	spin_lock(&n->list_lock);
2250	free_block(cachep, ac->entry, ac->avail, node, &list);
2251	spin_unlock(&n->list_lock);
 
2252	slabs_destroy(cachep, &list);
2253	ac->avail = 0;
2254}
2255
2256static void drain_cpu_caches(struct kmem_cache *cachep)
2257{
2258	struct kmem_cache_node *n;
2259	int node;
2260	LIST_HEAD(list);
2261
2262	on_each_cpu(do_drain, cachep, 1);
2263	check_irq_on();
2264	for_each_kmem_cache_node(cachep, node, n)
2265		if (n->alien)
2266			drain_alien_cache(cachep, n->alien);
2267
2268	for_each_kmem_cache_node(cachep, node, n) {
2269		spin_lock_irq(&n->list_lock);
2270		drain_array_locked(cachep, n->shared, node, true, &list);
2271		spin_unlock_irq(&n->list_lock);
2272
2273		slabs_destroy(cachep, &list);
2274	}
2275}
2276
2277/*
2278 * Remove slabs from the list of free slabs.
2279 * Specify the number of slabs to drain in tofree.
2280 *
2281 * Returns the actual number of slabs released.
2282 */
2283static int drain_freelist(struct kmem_cache *cache,
2284			struct kmem_cache_node *n, int tofree)
2285{
2286	struct list_head *p;
2287	int nr_freed;
2288	struct page *page;
2289
2290	nr_freed = 0;
2291	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2292
2293		spin_lock_irq(&n->list_lock);
2294		p = n->slabs_free.prev;
2295		if (p == &n->slabs_free) {
2296			spin_unlock_irq(&n->list_lock);
2297			goto out;
2298		}
2299
2300		page = list_entry(p, struct page, lru);
2301		list_del(&page->lru);
2302		n->free_slabs--;
2303		n->total_slabs--;
2304		/*
2305		 * Safe to drop the lock. The slab is no longer linked
2306		 * to the cache.
2307		 */
2308		n->free_objects -= cache->num;
2309		spin_unlock_irq(&n->list_lock);
2310		slab_destroy(cache, page);
2311		nr_freed++;
 
 
2312	}
2313out:
2314	return nr_freed;
2315}
2316
 
 
 
 
 
 
 
 
 
 
 
 
2317int __kmem_cache_shrink(struct kmem_cache *cachep)
2318{
2319	int ret = 0;
2320	int node;
2321	struct kmem_cache_node *n;
2322
2323	drain_cpu_caches(cachep);
2324
2325	check_irq_on();
2326	for_each_kmem_cache_node(cachep, node, n) {
2327		drain_freelist(cachep, n, INT_MAX);
2328
2329		ret += !list_empty(&n->slabs_full) ||
2330			!list_empty(&n->slabs_partial);
2331	}
2332	return (ret ? 1 : 0);
2333}
2334
2335int __kmem_cache_shutdown(struct kmem_cache *cachep)
2336{
2337	return __kmem_cache_shrink(cachep);
2338}
2339
2340void __kmem_cache_release(struct kmem_cache *cachep)
2341{
2342	int i;
2343	struct kmem_cache_node *n;
2344
2345	cache_random_seq_destroy(cachep);
2346
2347	free_percpu(cachep->cpu_cache);
2348
2349	/* NUMA: free the node structures */
2350	for_each_kmem_cache_node(cachep, i, n) {
2351		kfree(n->shared);
2352		free_alien_cache(n->alien);
2353		kfree(n);
2354		cachep->node[i] = NULL;
2355	}
2356}
2357
2358/*
2359 * Get the memory for a slab management obj.
2360 *
2361 * For a slab cache when the slab descriptor is off-slab, the
2362 * slab descriptor can't come from the same cache which is being created,
2363 * Because if it is the case, that means we defer the creation of
2364 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2365 * And we eventually call down to __kmem_cache_create(), which
2366 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2367 * This is a "chicken-and-egg" problem.
2368 *
2369 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2370 * which are all initialized during kmem_cache_init().
2371 */
2372static void *alloc_slabmgmt(struct kmem_cache *cachep,
2373				   struct page *page, int colour_off,
2374				   gfp_t local_flags, int nodeid)
2375{
2376	void *freelist;
2377	void *addr = page_address(page);
2378
2379	page->s_mem = addr + colour_off;
2380	page->active = 0;
2381
2382	if (OBJFREELIST_SLAB(cachep))
2383		freelist = NULL;
2384	else if (OFF_SLAB(cachep)) {
2385		/* Slab management obj is off-slab. */
2386		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2387					      local_flags, nodeid);
2388		if (!freelist)
2389			return NULL;
2390	} else {
2391		/* We will use last bytes at the slab for freelist */
2392		freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2393				cachep->freelist_size;
2394	}
2395
2396	return freelist;
2397}
2398
2399static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2400{
2401	return ((freelist_idx_t *)page->freelist)[idx];
2402}
2403
2404static inline void set_free_obj(struct page *page,
2405					unsigned int idx, freelist_idx_t val)
2406{
2407	((freelist_idx_t *)(page->freelist))[idx] = val;
2408}
2409
2410static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2411{
2412#if DEBUG
2413	int i;
2414
2415	for (i = 0; i < cachep->num; i++) {
2416		void *objp = index_to_obj(cachep, page, i);
2417
2418		if (cachep->flags & SLAB_STORE_USER)
2419			*dbg_userword(cachep, objp) = NULL;
2420
2421		if (cachep->flags & SLAB_RED_ZONE) {
2422			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2423			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2424		}
2425		/*
2426		 * Constructors are not allowed to allocate memory from the same
2427		 * cache which they are a constructor for.  Otherwise, deadlock.
2428		 * They must also be threaded.
2429		 */
2430		if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2431			kasan_unpoison_object_data(cachep,
2432						   objp + obj_offset(cachep));
2433			cachep->ctor(objp + obj_offset(cachep));
2434			kasan_poison_object_data(
2435				cachep, objp + obj_offset(cachep));
2436		}
2437
2438		if (cachep->flags & SLAB_RED_ZONE) {
2439			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2440				slab_error(cachep, "constructor overwrote the end of an object");
2441			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2442				slab_error(cachep, "constructor overwrote the start of an object");
2443		}
2444		/* need to poison the objs? */
2445		if (cachep->flags & SLAB_POISON) {
2446			poison_obj(cachep, objp, POISON_FREE);
2447			slab_kernel_map(cachep, objp, 0, 0);
2448		}
2449	}
2450#endif
2451}
2452
2453#ifdef CONFIG_SLAB_FREELIST_RANDOM
2454/* Hold information during a freelist initialization */
2455union freelist_init_state {
2456	struct {
2457		unsigned int pos;
2458		unsigned int *list;
2459		unsigned int count;
2460	};
2461	struct rnd_state rnd_state;
2462};
2463
2464/*
2465 * Initialize the state based on the randomization methode available.
2466 * return true if the pre-computed list is available, false otherwize.
2467 */
2468static bool freelist_state_initialize(union freelist_init_state *state,
2469				struct kmem_cache *cachep,
2470				unsigned int count)
2471{
2472	bool ret;
2473	unsigned int rand;
2474
2475	/* Use best entropy available to define a random shift */
2476	rand = get_random_int();
2477
2478	/* Use a random state if the pre-computed list is not available */
2479	if (!cachep->random_seq) {
2480		prandom_seed_state(&state->rnd_state, rand);
2481		ret = false;
2482	} else {
2483		state->list = cachep->random_seq;
2484		state->count = count;
2485		state->pos = rand % count;
2486		ret = true;
2487	}
2488	return ret;
2489}
2490
2491/* Get the next entry on the list and randomize it using a random shift */
2492static freelist_idx_t next_random_slot(union freelist_init_state *state)
2493{
2494	if (state->pos >= state->count)
2495		state->pos = 0;
2496	return state->list[state->pos++];
2497}
2498
2499/* Swap two freelist entries */
2500static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2501{
2502	swap(((freelist_idx_t *)page->freelist)[a],
2503		((freelist_idx_t *)page->freelist)[b]);
2504}
2505
2506/*
2507 * Shuffle the freelist initialization state based on pre-computed lists.
2508 * return true if the list was successfully shuffled, false otherwise.
2509 */
2510static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2511{
2512	unsigned int objfreelist = 0, i, rand, count = cachep->num;
2513	union freelist_init_state state;
2514	bool precomputed;
2515
2516	if (count < 2)
2517		return false;
2518
2519	precomputed = freelist_state_initialize(&state, cachep, count);
2520
2521	/* Take a random entry as the objfreelist */
2522	if (OBJFREELIST_SLAB(cachep)) {
2523		if (!precomputed)
2524			objfreelist = count - 1;
2525		else
2526			objfreelist = next_random_slot(&state);
2527		page->freelist = index_to_obj(cachep, page, objfreelist) +
2528						obj_offset(cachep);
2529		count--;
2530	}
2531
2532	/*
2533	 * On early boot, generate the list dynamically.
2534	 * Later use a pre-computed list for speed.
2535	 */
2536	if (!precomputed) {
2537		for (i = 0; i < count; i++)
2538			set_free_obj(page, i, i);
2539
2540		/* Fisher-Yates shuffle */
2541		for (i = count - 1; i > 0; i--) {
2542			rand = prandom_u32_state(&state.rnd_state);
2543			rand %= (i + 1);
2544			swap_free_obj(page, i, rand);
2545		}
2546	} else {
2547		for (i = 0; i < count; i++)
2548			set_free_obj(page, i, next_random_slot(&state));
2549	}
2550
2551	if (OBJFREELIST_SLAB(cachep))
2552		set_free_obj(page, cachep->num - 1, objfreelist);
2553
2554	return true;
2555}
2556#else
2557static inline bool shuffle_freelist(struct kmem_cache *cachep,
2558				struct page *page)
2559{
2560	return false;
2561}
2562#endif /* CONFIG_SLAB_FREELIST_RANDOM */
2563
2564static void cache_init_objs(struct kmem_cache *cachep,
2565			    struct page *page)
2566{
2567	int i;
2568	void *objp;
2569	bool shuffled;
2570
2571	cache_init_objs_debug(cachep, page);
2572
2573	/* Try to randomize the freelist if enabled */
2574	shuffled = shuffle_freelist(cachep, page);
2575
2576	if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2577		page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2578						obj_offset(cachep);
2579	}
2580
2581	for (i = 0; i < cachep->num; i++) {
2582		objp = index_to_obj(cachep, page, i);
2583		kasan_init_slab_obj(cachep, objp);
2584
2585		/* constructor could break poison info */
2586		if (DEBUG == 0 && cachep->ctor) {
2587			kasan_unpoison_object_data(cachep, objp);
2588			cachep->ctor(objp);
2589			kasan_poison_object_data(cachep, objp);
2590		}
2591
2592		if (!shuffled)
2593			set_free_obj(page, i, i);
2594	}
2595}
2596
2597static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2598{
2599	void *objp;
2600
2601	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2602	page->active++;
2603
2604#if DEBUG
2605	if (cachep->flags & SLAB_STORE_USER)
2606		set_store_user_dirty(cachep);
2607#endif
2608
2609	return objp;
2610}
2611
2612static void slab_put_obj(struct kmem_cache *cachep,
2613			struct page *page, void *objp)
2614{
2615	unsigned int objnr = obj_to_index(cachep, page, objp);
2616#if DEBUG
2617	unsigned int i;
2618
2619	/* Verify double free bug */
2620	for (i = page->active; i < cachep->num; i++) {
2621		if (get_free_obj(page, i) == objnr) {
2622			pr_err("slab: double free detected in cache '%s', objp %p\n",
2623			       cachep->name, objp);
2624			BUG();
2625		}
2626	}
2627#endif
2628	page->active--;
2629	if (!page->freelist)
2630		page->freelist = objp + obj_offset(cachep);
2631
2632	set_free_obj(page, page->active, objnr);
2633}
2634
2635/*
2636 * Map pages beginning at addr to the given cache and slab. This is required
2637 * for the slab allocator to be able to lookup the cache and slab of a
2638 * virtual address for kfree, ksize, and slab debugging.
2639 */
2640static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2641			   void *freelist)
2642{
2643	page->slab_cache = cache;
2644	page->freelist = freelist;
2645}
2646
2647/*
2648 * Grow (by 1) the number of slabs within a cache.  This is called by
2649 * kmem_cache_alloc() when there are no active objs left in a cache.
2650 */
2651static struct page *cache_grow_begin(struct kmem_cache *cachep,
2652				gfp_t flags, int nodeid)
2653{
2654	void *freelist;
2655	size_t offset;
2656	gfp_t local_flags;
2657	int page_node;
2658	struct kmem_cache_node *n;
2659	struct page *page;
2660
2661	/*
2662	 * Be lazy and only check for valid flags here,  keeping it out of the
2663	 * critical path in kmem_cache_alloc().
2664	 */
2665	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2666		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2667		flags &= ~GFP_SLAB_BUG_MASK;
2668		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2669				invalid_mask, &invalid_mask, flags, &flags);
2670		dump_stack();
2671	}
2672	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2673
2674	check_irq_off();
2675	if (gfpflags_allow_blocking(local_flags))
2676		local_irq_enable();
2677
2678	/*
2679	 * Get mem for the objs.  Attempt to allocate a physical page from
2680	 * 'nodeid'.
2681	 */
2682	page = kmem_getpages(cachep, local_flags, nodeid);
2683	if (!page)
2684		goto failed;
2685
2686	page_node = page_to_nid(page);
2687	n = get_node(cachep, page_node);
2688
2689	/* Get colour for the slab, and cal the next value. */
2690	n->colour_next++;
2691	if (n->colour_next >= cachep->colour)
2692		n->colour_next = 0;
2693
2694	offset = n->colour_next;
2695	if (offset >= cachep->colour)
2696		offset = 0;
2697
2698	offset *= cachep->colour_off;
2699
 
 
 
 
 
 
 
2700	/* Get slab management. */
2701	freelist = alloc_slabmgmt(cachep, page, offset,
2702			local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2703	if (OFF_SLAB(cachep) && !freelist)
2704		goto opps1;
2705
2706	slab_map_pages(cachep, page, freelist);
 
2707
2708	kasan_poison_slab(page);
2709	cache_init_objs(cachep, page);
2710
2711	if (gfpflags_allow_blocking(local_flags))
2712		local_irq_disable();
2713
2714	return page;
2715
2716opps1:
2717	kmem_freepages(cachep, page);
2718failed:
2719	if (gfpflags_allow_blocking(local_flags))
2720		local_irq_disable();
2721	return NULL;
2722}
2723
2724static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2725{
2726	struct kmem_cache_node *n;
2727	void *list = NULL;
2728
2729	check_irq_off();
2730
2731	if (!page)
2732		return;
2733
2734	INIT_LIST_HEAD(&page->lru);
2735	n = get_node(cachep, page_to_nid(page));
2736
2737	spin_lock(&n->list_lock);
2738	n->total_slabs++;
2739	if (!page->active) {
2740		list_add_tail(&page->lru, &(n->slabs_free));
2741		n->free_slabs++;
2742	} else
2743		fixup_slab_list(cachep, n, page, &list);
2744
2745	STATS_INC_GROWN(cachep);
2746	n->free_objects += cachep->num - page->active;
2747	spin_unlock(&n->list_lock);
2748
2749	fixup_objfreelist_debug(cachep, &list);
2750}
2751
2752#if DEBUG
2753
2754/*
2755 * Perform extra freeing checks:
2756 * - detect bad pointers.
2757 * - POISON/RED_ZONE checking
2758 */
2759static void kfree_debugcheck(const void *objp)
2760{
2761	if (!virt_addr_valid(objp)) {
2762		pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2763		       (unsigned long)objp);
2764		BUG();
2765	}
2766}
2767
2768static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2769{
2770	unsigned long long redzone1, redzone2;
2771
2772	redzone1 = *dbg_redzone1(cache, obj);
2773	redzone2 = *dbg_redzone2(cache, obj);
2774
2775	/*
2776	 * Redzone is ok.
2777	 */
2778	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2779		return;
2780
2781	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2782		slab_error(cache, "double free detected");
2783	else
2784		slab_error(cache, "memory outside object was overwritten");
2785
2786	pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2787	       obj, redzone1, redzone2);
2788}
2789
2790static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2791				   unsigned long caller)
2792{
2793	unsigned int objnr;
2794	struct page *page;
2795
2796	BUG_ON(virt_to_cache(objp) != cachep);
2797
2798	objp -= obj_offset(cachep);
2799	kfree_debugcheck(objp);
2800	page = virt_to_head_page(objp);
2801
2802	if (cachep->flags & SLAB_RED_ZONE) {
2803		verify_redzone_free(cachep, objp);
2804		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2805		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2806	}
2807	if (cachep->flags & SLAB_STORE_USER) {
2808		set_store_user_dirty(cachep);
2809		*dbg_userword(cachep, objp) = (void *)caller;
2810	}
2811
2812	objnr = obj_to_index(cachep, page, objp);
2813
2814	BUG_ON(objnr >= cachep->num);
2815	BUG_ON(objp != index_to_obj(cachep, page, objnr));
2816
2817	if (cachep->flags & SLAB_POISON) {
2818		poison_obj(cachep, objp, POISON_FREE);
2819		slab_kernel_map(cachep, objp, 0, caller);
2820	}
2821	return objp;
2822}
2823
2824#else
2825#define kfree_debugcheck(x) do { } while(0)
2826#define cache_free_debugcheck(x,objp,z) (objp)
2827#endif
2828
2829static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2830						void **list)
2831{
2832#if DEBUG
2833	void *next = *list;
2834	void *objp;
2835
2836	while (next) {
2837		objp = next - obj_offset(cachep);
2838		next = *(void **)next;
2839		poison_obj(cachep, objp, POISON_FREE);
2840	}
2841#endif
2842}
2843
2844static inline void fixup_slab_list(struct kmem_cache *cachep,
2845				struct kmem_cache_node *n, struct page *page,
2846				void **list)
2847{
2848	/* move slabp to correct slabp list: */
2849	list_del(&page->lru);
2850	if (page->active == cachep->num) {
2851		list_add(&page->lru, &n->slabs_full);
2852		if (OBJFREELIST_SLAB(cachep)) {
2853#if DEBUG
2854			/* Poisoning will be done without holding the lock */
2855			if (cachep->flags & SLAB_POISON) {
2856				void **objp = page->freelist;
2857
2858				*objp = *list;
2859				*list = objp;
2860			}
2861#endif
2862			page->freelist = NULL;
2863		}
2864	} else
2865		list_add(&page->lru, &n->slabs_partial);
2866}
2867
2868/* Try to find non-pfmemalloc slab if needed */
2869static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2870					struct page *page, bool pfmemalloc)
2871{
2872	if (!page)
2873		return NULL;
2874
2875	if (pfmemalloc)
2876		return page;
2877
2878	if (!PageSlabPfmemalloc(page))
2879		return page;
2880
2881	/* No need to keep pfmemalloc slab if we have enough free objects */
2882	if (n->free_objects > n->free_limit) {
2883		ClearPageSlabPfmemalloc(page);
2884		return page;
2885	}
2886
2887	/* Move pfmemalloc slab to the end of list to speed up next search */
2888	list_del(&page->lru);
2889	if (!page->active) {
2890		list_add_tail(&page->lru, &n->slabs_free);
2891		n->free_slabs++;
2892	} else
2893		list_add_tail(&page->lru, &n->slabs_partial);
2894
2895	list_for_each_entry(page, &n->slabs_partial, lru) {
2896		if (!PageSlabPfmemalloc(page))
2897			return page;
2898	}
2899
2900	n->free_touched = 1;
2901	list_for_each_entry(page, &n->slabs_free, lru) {
2902		if (!PageSlabPfmemalloc(page)) {
2903			n->free_slabs--;
2904			return page;
2905		}
2906	}
2907
2908	return NULL;
2909}
2910
2911static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2912{
2913	struct page *page;
2914
2915	assert_spin_locked(&n->list_lock);
2916	page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
2917	if (!page) {
 
2918		n->free_touched = 1;
2919		page = list_first_entry_or_null(&n->slabs_free, struct page,
2920						lru);
2921		if (page)
2922			n->free_slabs--;
2923	}
2924
2925	if (sk_memalloc_socks())
2926		page = get_valid_first_slab(n, page, pfmemalloc);
2927
2928	return page;
2929}
2930
2931static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2932				struct kmem_cache_node *n, gfp_t flags)
2933{
2934	struct page *page;
2935	void *obj;
2936	void *list = NULL;
2937
2938	if (!gfp_pfmemalloc_allowed(flags))
2939		return NULL;
2940
2941	spin_lock(&n->list_lock);
2942	page = get_first_slab(n, true);
2943	if (!page) {
2944		spin_unlock(&n->list_lock);
2945		return NULL;
2946	}
2947
2948	obj = slab_get_obj(cachep, page);
2949	n->free_objects--;
2950
2951	fixup_slab_list(cachep, n, page, &list);
2952
2953	spin_unlock(&n->list_lock);
2954	fixup_objfreelist_debug(cachep, &list);
2955
2956	return obj;
2957}
2958
2959/*
2960 * Slab list should be fixed up by fixup_slab_list() for existing slab
2961 * or cache_grow_end() for new slab
2962 */
2963static __always_inline int alloc_block(struct kmem_cache *cachep,
2964		struct array_cache *ac, struct page *page, int batchcount)
2965{
2966	/*
2967	 * There must be at least one object available for
2968	 * allocation.
2969	 */
2970	BUG_ON(page->active >= cachep->num);
2971
2972	while (page->active < cachep->num && batchcount--) {
2973		STATS_INC_ALLOCED(cachep);
2974		STATS_INC_ACTIVE(cachep);
2975		STATS_SET_HIGH(cachep);
2976
2977		ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2978	}
2979
2980	return batchcount;
2981}
2982
2983static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2984{
2985	int batchcount;
2986	struct kmem_cache_node *n;
2987	struct array_cache *ac, *shared;
2988	int node;
2989	void *list = NULL;
2990	struct page *page;
2991
2992	check_irq_off();
2993	node = numa_mem_id();
2994
2995	ac = cpu_cache_get(cachep);
2996	batchcount = ac->batchcount;
2997	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2998		/*
2999		 * If there was little recent activity on this cache, then
3000		 * perform only a partial refill.  Otherwise we could generate
3001		 * refill bouncing.
3002		 */
3003		batchcount = BATCHREFILL_LIMIT;
3004	}
3005	n = get_node(cachep, node);
3006
3007	BUG_ON(ac->avail > 0 || !n);
3008	shared = READ_ONCE(n->shared);
3009	if (!n->free_objects && (!shared || !shared->avail))
3010		goto direct_grow;
3011
3012	spin_lock(&n->list_lock);
3013	shared = READ_ONCE(n->shared);
3014
3015	/* See if we can refill from the shared array */
3016	if (shared && transfer_objects(ac, shared, batchcount)) {
3017		shared->touched = 1;
3018		goto alloc_done;
3019	}
3020
3021	while (batchcount > 0) {
3022		/* Get slab alloc is to come from. */
3023		page = get_first_slab(n, false);
3024		if (!page)
3025			goto must_grow;
3026
3027		check_spinlock_acquired(cachep);
3028
3029		batchcount = alloc_block(cachep, ac, page, batchcount);
3030		fixup_slab_list(cachep, n, page, &list);
3031	}
3032
3033must_grow:
3034	n->free_objects -= ac->avail;
3035alloc_done:
3036	spin_unlock(&n->list_lock);
3037	fixup_objfreelist_debug(cachep, &list);
3038
3039direct_grow:
3040	if (unlikely(!ac->avail)) {
3041		/* Check if we can use obj in pfmemalloc slab */
3042		if (sk_memalloc_socks()) {
3043			void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3044
3045			if (obj)
3046				return obj;
3047		}
3048
3049		page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3050
3051		/*
3052		 * cache_grow_begin() can reenable interrupts,
3053		 * then ac could change.
3054		 */
3055		ac = cpu_cache_get(cachep);
3056		if (!ac->avail && page)
3057			alloc_block(cachep, ac, page, batchcount);
3058		cache_grow_end(cachep, page);
3059
3060		if (!ac->avail)
3061			return NULL;
3062	}
3063	ac->touched = 1;
3064
3065	return ac->entry[--ac->avail];
3066}
3067
3068static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3069						gfp_t flags)
3070{
3071	might_sleep_if(gfpflags_allow_blocking(flags));
3072}
3073
3074#if DEBUG
3075static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3076				gfp_t flags, void *objp, unsigned long caller)
3077{
3078	if (!objp)
 
3079		return objp;
3080	if (cachep->flags & SLAB_POISON) {
3081		check_poison_obj(cachep, objp);
3082		slab_kernel_map(cachep, objp, 1, 0);
3083		poison_obj(cachep, objp, POISON_INUSE);
3084	}
3085	if (cachep->flags & SLAB_STORE_USER)
3086		*dbg_userword(cachep, objp) = (void *)caller;
3087
3088	if (cachep->flags & SLAB_RED_ZONE) {
3089		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3090				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3091			slab_error(cachep, "double free, or memory outside object was overwritten");
3092			pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3093			       objp, *dbg_redzone1(cachep, objp),
3094			       *dbg_redzone2(cachep, objp));
3095		}
3096		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
3097		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
3098	}
3099
3100	objp += obj_offset(cachep);
3101	if (cachep->ctor && cachep->flags & SLAB_POISON)
3102		cachep->ctor(objp);
3103	if (ARCH_SLAB_MINALIGN &&
3104	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3105		pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3106		       objp, (int)ARCH_SLAB_MINALIGN);
3107	}
3108	return objp;
3109}
3110#else
3111#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3112#endif
3113
3114static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3115{
3116	void *objp;
3117	struct array_cache *ac;
3118
3119	check_irq_off();
3120
3121	ac = cpu_cache_get(cachep);
3122	if (likely(ac->avail)) {
3123		ac->touched = 1;
3124		objp = ac->entry[--ac->avail];
3125
3126		STATS_INC_ALLOCHIT(cachep);
3127		goto out;
3128	}
3129
3130	STATS_INC_ALLOCMISS(cachep);
3131	objp = cache_alloc_refill(cachep, flags);
3132	/*
3133	 * the 'ac' may be updated by cache_alloc_refill(),
3134	 * and kmemleak_erase() requires its correct value.
3135	 */
3136	ac = cpu_cache_get(cachep);
3137
3138out:
3139	/*
3140	 * To avoid a false negative, if an object that is in one of the
3141	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3142	 * treat the array pointers as a reference to the object.
3143	 */
3144	if (objp)
3145		kmemleak_erase(&ac->entry[ac->avail]);
3146	return objp;
3147}
3148
3149#ifdef CONFIG_NUMA
 
 
3150/*
3151 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3152 *
3153 * If we are in_interrupt, then process context, including cpusets and
3154 * mempolicy, may not apply and should not be used for allocation policy.
3155 */
3156static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3157{
3158	int nid_alloc, nid_here;
3159
3160	if (in_interrupt() || (flags & __GFP_THISNODE))
3161		return NULL;
3162	nid_alloc = nid_here = numa_mem_id();
3163	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3164		nid_alloc = cpuset_slab_spread_node();
3165	else if (current->mempolicy)
3166		nid_alloc = mempolicy_slab_node();
3167	if (nid_alloc != nid_here)
3168		return ____cache_alloc_node(cachep, flags, nid_alloc);
3169	return NULL;
3170}
3171
3172/*
3173 * Fallback function if there was no memory available and no objects on a
3174 * certain node and fall back is permitted. First we scan all the
3175 * available node for available objects. If that fails then we
3176 * perform an allocation without specifying a node. This allows the page
3177 * allocator to do its reclaim / fallback magic. We then insert the
3178 * slab into the proper nodelist and then allocate from it.
3179 */
3180static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3181{
3182	struct zonelist *zonelist;
3183	struct zoneref *z;
3184	struct zone *zone;
3185	enum zone_type high_zoneidx = gfp_zone(flags);
3186	void *obj = NULL;
3187	struct page *page;
3188	int nid;
3189	unsigned int cpuset_mems_cookie;
3190
3191	if (flags & __GFP_THISNODE)
3192		return NULL;
3193
3194retry_cpuset:
3195	cpuset_mems_cookie = read_mems_allowed_begin();
3196	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3197
3198retry:
3199	/*
3200	 * Look through allowed nodes for objects available
3201	 * from existing per node queues.
3202	 */
3203	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3204		nid = zone_to_nid(zone);
3205
3206		if (cpuset_zone_allowed(zone, flags) &&
3207			get_node(cache, nid) &&
3208			get_node(cache, nid)->free_objects) {
3209				obj = ____cache_alloc_node(cache,
3210					gfp_exact_node(flags), nid);
3211				if (obj)
3212					break;
3213		}
3214	}
3215
3216	if (!obj) {
3217		/*
3218		 * This allocation will be performed within the constraints
3219		 * of the current cpuset / memory policy requirements.
3220		 * We may trigger various forms of reclaim on the allowed
3221		 * set and go into memory reserves if necessary.
3222		 */
3223		page = cache_grow_begin(cache, flags, numa_mem_id());
3224		cache_grow_end(cache, page);
3225		if (page) {
3226			nid = page_to_nid(page);
3227			obj = ____cache_alloc_node(cache,
3228				gfp_exact_node(flags), nid);
3229
3230			/*
3231			 * Another processor may allocate the objects in
3232			 * the slab since we are not holding any locks.
3233			 */
3234			if (!obj)
3235				goto retry;
3236		}
3237	}
3238
3239	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3240		goto retry_cpuset;
3241	return obj;
3242}
3243
3244/*
3245 * A interface to enable slab creation on nodeid
3246 */
3247static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3248				int nodeid)
3249{
3250	struct page *page;
3251	struct kmem_cache_node *n;
3252	void *obj = NULL;
3253	void *list = NULL;
3254
3255	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3256	n = get_node(cachep, nodeid);
3257	BUG_ON(!n);
3258
3259	check_irq_off();
3260	spin_lock(&n->list_lock);
3261	page = get_first_slab(n, false);
3262	if (!page)
3263		goto must_grow;
3264
3265	check_spinlock_acquired_node(cachep, nodeid);
3266
3267	STATS_INC_NODEALLOCS(cachep);
3268	STATS_INC_ACTIVE(cachep);
3269	STATS_SET_HIGH(cachep);
3270
3271	BUG_ON(page->active == cachep->num);
3272
3273	obj = slab_get_obj(cachep, page);
3274	n->free_objects--;
3275
3276	fixup_slab_list(cachep, n, page, &list);
3277
3278	spin_unlock(&n->list_lock);
3279	fixup_objfreelist_debug(cachep, &list);
3280	return obj;
3281
3282must_grow:
3283	spin_unlock(&n->list_lock);
3284	page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3285	if (page) {
3286		/* This slab isn't counted yet so don't update free_objects */
3287		obj = slab_get_obj(cachep, page);
3288	}
3289	cache_grow_end(cachep, page);
3290
3291	return obj ? obj : fallback_alloc(cachep, flags);
3292}
3293
3294static __always_inline void *
3295slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3296		   unsigned long caller)
3297{
3298	unsigned long save_flags;
3299	void *ptr;
3300	int slab_node = numa_mem_id();
3301
3302	flags &= gfp_allowed_mask;
3303	cachep = slab_pre_alloc_hook(cachep, flags);
3304	if (unlikely(!cachep))
3305		return NULL;
3306
3307	cache_alloc_debugcheck_before(cachep, flags);
3308	local_irq_save(save_flags);
3309
3310	if (nodeid == NUMA_NO_NODE)
3311		nodeid = slab_node;
3312
3313	if (unlikely(!get_node(cachep, nodeid))) {
3314		/* Node not bootstrapped yet */
3315		ptr = fallback_alloc(cachep, flags);
3316		goto out;
3317	}
3318
3319	if (nodeid == slab_node) {
3320		/*
3321		 * Use the locally cached objects if possible.
3322		 * However ____cache_alloc does not allow fallback
3323		 * to other nodes. It may fail while we still have
3324		 * objects on other nodes available.
3325		 */
3326		ptr = ____cache_alloc(cachep, flags);
3327		if (ptr)
3328			goto out;
 
 
 
 
 
3329	}
3330	/* ___cache_alloc_node can fall back to other nodes */
3331	ptr = ____cache_alloc_node(cachep, flags, nodeid);
3332  out:
3333	local_irq_restore(save_flags);
3334	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3335
3336	if (unlikely(flags & __GFP_ZERO) && ptr)
3337		memset(ptr, 0, cachep->object_size);
3338
3339	slab_post_alloc_hook(cachep, flags, 1, &ptr);
3340	return ptr;
3341}
3342
3343static __always_inline void *
3344__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3345{
3346	void *objp;
3347
3348	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3349		objp = alternate_node_alloc(cache, flags);
3350		if (objp)
3351			goto out;
3352	}
3353	objp = ____cache_alloc(cache, flags);
3354
3355	/*
3356	 * We may just have run out of memory on the local node.
3357	 * ____cache_alloc_node() knows how to locate memory on other nodes
3358	 */
3359	if (!objp)
3360		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3361
3362  out:
3363	return objp;
3364}
3365#else
3366
3367static __always_inline void *
3368__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3369{
3370	return ____cache_alloc(cachep, flags);
3371}
3372
3373#endif /* CONFIG_NUMA */
3374
3375static __always_inline void *
3376slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
 
3377{
3378	unsigned long save_flags;
3379	void *objp;
 
 
3380
3381	flags &= gfp_allowed_mask;
3382	cachep = slab_pre_alloc_hook(cachep, flags);
3383	if (unlikely(!cachep))
3384		return NULL;
3385
3386	cache_alloc_debugcheck_before(cachep, flags);
 
 
 
3387	local_irq_save(save_flags);
3388	objp = __do_cache_alloc(cachep, flags);
3389	local_irq_restore(save_flags);
3390	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3391	prefetchw(objp);
 
3392
3393	if (unlikely(flags & __GFP_ZERO) && objp)
3394		memset(objp, 0, cachep->object_size);
 
 
 
3395
3396	slab_post_alloc_hook(cachep, flags, 1, &objp);
3397	return objp;
 
 
 
 
3398}
3399
3400/*
3401 * Caller needs to acquire correct kmem_cache_node's list_lock
3402 * @list: List of detached free slabs should be freed by caller
3403 */
3404static void free_block(struct kmem_cache *cachep, void **objpp,
3405			int nr_objects, int node, struct list_head *list)
3406{
3407	int i;
3408	struct kmem_cache_node *n = get_node(cachep, node);
3409	struct page *page;
3410
3411	n->free_objects += nr_objects;
3412
3413	for (i = 0; i < nr_objects; i++) {
3414		void *objp;
3415		struct page *page;
3416
3417		objp = objpp[i];
3418
3419		page = virt_to_head_page(objp);
3420		list_del(&page->lru);
3421		check_spinlock_acquired_node(cachep, node);
3422		slab_put_obj(cachep, page, objp);
3423		STATS_DEC_ACTIVE(cachep);
3424
3425		/* fixup slab chains */
3426		if (page->active == 0) {
3427			list_add(&page->lru, &n->slabs_free);
3428			n->free_slabs++;
3429		} else {
3430			/* Unconditionally move a slab to the end of the
3431			 * partial list on free - maximum time for the
3432			 * other objects to be freed, too.
3433			 */
3434			list_add_tail(&page->lru, &n->slabs_partial);
3435		}
3436	}
3437
3438	while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3439		n->free_objects -= cachep->num;
3440
3441		page = list_last_entry(&n->slabs_free, struct page, lru);
3442		list_move(&page->lru, list);
3443		n->free_slabs--;
3444		n->total_slabs--;
3445	}
3446}
3447
3448static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3449{
3450	int batchcount;
3451	struct kmem_cache_node *n;
3452	int node = numa_mem_id();
3453	LIST_HEAD(list);
3454
3455	batchcount = ac->batchcount;
3456
3457	check_irq_off();
3458	n = get_node(cachep, node);
3459	spin_lock(&n->list_lock);
3460	if (n->shared) {
3461		struct array_cache *shared_array = n->shared;
3462		int max = shared_array->limit - shared_array->avail;
3463		if (max) {
3464			if (batchcount > max)
3465				batchcount = max;
3466			memcpy(&(shared_array->entry[shared_array->avail]),
3467			       ac->entry, sizeof(void *) * batchcount);
3468			shared_array->avail += batchcount;
3469			goto free_done;
3470		}
3471	}
3472
3473	free_block(cachep, ac->entry, batchcount, node, &list);
3474free_done:
3475#if STATS
3476	{
3477		int i = 0;
3478		struct page *page;
3479
3480		list_for_each_entry(page, &n->slabs_free, lru) {
3481			BUG_ON(page->active);
3482
3483			i++;
3484		}
3485		STATS_SET_FREEABLE(cachep, i);
3486	}
3487#endif
3488	spin_unlock(&n->list_lock);
3489	slabs_destroy(cachep, &list);
3490	ac->avail -= batchcount;
3491	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
 
3492}
3493
3494/*
3495 * Release an obj back to its cache. If the obj has a constructed state, it must
3496 * be in this state _before_ it is released.  Called with disabled ints.
3497 */
3498static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3499				unsigned long caller)
3500{
3501	/* Put the object into the quarantine, don't touch it for now. */
3502	if (kasan_slab_free(cachep, objp))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3503		return;
3504
 
 
 
 
 
3505	___cache_free(cachep, objp, caller);
3506}
3507
3508void ___cache_free(struct kmem_cache *cachep, void *objp,
3509		unsigned long caller)
3510{
3511	struct array_cache *ac = cpu_cache_get(cachep);
3512
3513	check_irq_off();
3514	kmemleak_free_recursive(objp, cachep->flags);
3515	objp = cache_free_debugcheck(cachep, objp, caller);
3516
3517	kmemcheck_slab_free(cachep, objp, cachep->object_size);
3518
3519	/*
3520	 * Skip calling cache_free_alien() when the platform is not numa.
3521	 * This will avoid cache misses that happen while accessing slabp (which
3522	 * is per page memory  reference) to get nodeid. Instead use a global
3523	 * variable to skip the call, which is mostly likely to be present in
3524	 * the cache.
3525	 */
3526	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3527		return;
3528
3529	if (ac->avail < ac->limit) {
3530		STATS_INC_FREEHIT(cachep);
3531	} else {
3532		STATS_INC_FREEMISS(cachep);
3533		cache_flusharray(cachep, ac);
3534	}
3535
3536	if (sk_memalloc_socks()) {
3537		struct page *page = virt_to_head_page(objp);
3538
3539		if (unlikely(PageSlabPfmemalloc(page))) {
3540			cache_free_pfmemalloc(cachep, page, objp);
3541			return;
3542		}
3543	}
3544
3545	ac->entry[ac->avail++] = objp;
3546}
3547
3548/**
3549 * kmem_cache_alloc - Allocate an object
3550 * @cachep: The cache to allocate from.
3551 * @flags: See kmalloc().
3552 *
3553 * Allocate an object from this cache.  The flags are only relevant
3554 * if the cache has no available objects.
3555 */
3556void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3557{
3558	void *ret = slab_alloc(cachep, flags, _RET_IP_);
3559
3560	kasan_slab_alloc(cachep, ret, flags);
3561	trace_kmem_cache_alloc(_RET_IP_, ret,
3562			       cachep->object_size, cachep->size, flags);
3563
3564	return ret;
3565}
 
 
 
 
 
3566EXPORT_SYMBOL(kmem_cache_alloc);
3567
 
 
 
 
 
 
 
3568static __always_inline void
3569cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3570				  size_t size, void **p, unsigned long caller)
3571{
3572	size_t i;
3573
3574	for (i = 0; i < size; i++)
3575		p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3576}
3577
3578int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3579			  void **p)
3580{
3581	size_t i;
 
3582
3583	s = slab_pre_alloc_hook(s, flags);
3584	if (!s)
3585		return 0;
3586
3587	cache_alloc_debugcheck_before(s, flags);
3588
3589	local_irq_disable();
3590	for (i = 0; i < size; i++) {
3591		void *objp = __do_cache_alloc(s, flags);
 
3592
3593		if (unlikely(!objp))
3594			goto error;
3595		p[i] = objp;
3596	}
3597	local_irq_enable();
3598
3599	cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3600
3601	/* Clear memory outside IRQ disabled section */
3602	if (unlikely(flags & __GFP_ZERO))
3603		for (i = 0; i < size; i++)
3604			memset(p[i], 0, s->object_size);
3605
3606	slab_post_alloc_hook(s, flags, size, p);
3607	/* FIXME: Trace call missing. Christoph would like a bulk variant */
3608	return size;
3609error:
3610	local_irq_enable();
3611	cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3612	slab_post_alloc_hook(s, flags, i, p);
3613	__kmem_cache_free_bulk(s, i, p);
3614	return 0;
3615}
3616EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3617
3618#ifdef CONFIG_TRACING
3619void *
3620kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3621{
3622	void *ret;
3623
3624	ret = slab_alloc(cachep, flags, _RET_IP_);
3625
3626	kasan_kmalloc(cachep, ret, size, flags);
3627	trace_kmalloc(_RET_IP_, ret,
3628		      size, cachep->size, flags);
3629	return ret;
3630}
3631EXPORT_SYMBOL(kmem_cache_alloc_trace);
3632#endif
3633
3634#ifdef CONFIG_NUMA
3635/**
3636 * kmem_cache_alloc_node - Allocate an object on the specified node
3637 * @cachep: The cache to allocate from.
3638 * @flags: See kmalloc().
3639 * @nodeid: node number of the target node.
3640 *
3641 * Identical to kmem_cache_alloc but it will allocate memory on the given
3642 * node, which can improve the performance for cpu bound structures.
3643 *
3644 * Fallback to other node is possible if __GFP_THISNODE is not set.
 
 
3645 */
3646void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3647{
3648	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3649
3650	kasan_slab_alloc(cachep, ret, flags);
3651	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3652				    cachep->object_size, cachep->size,
3653				    flags, nodeid);
3654
3655	return ret;
3656}
3657EXPORT_SYMBOL(kmem_cache_alloc_node);
3658
3659#ifdef CONFIG_TRACING
3660void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3661				  gfp_t flags,
3662				  int nodeid,
3663				  size_t size)
3664{
3665	void *ret;
3666
3667	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3668
3669	kasan_kmalloc(cachep, ret, size, flags);
3670	trace_kmalloc_node(_RET_IP_, ret,
3671			   size, cachep->size,
3672			   flags, nodeid);
3673	return ret;
3674}
3675EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3676#endif
3677
3678static __always_inline void *
3679__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3680{
3681	struct kmem_cache *cachep;
3682	void *ret;
 
3683
3684	cachep = kmalloc_slab(size, flags);
3685	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3686		return cachep;
3687	ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3688	kasan_kmalloc(cachep, ret, size, flags);
3689
3690	return ret;
 
 
 
 
 
3691}
 
3692
3693void *__kmalloc_node(size_t size, gfp_t flags, int node)
 
 
3694{
3695	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3696}
3697EXPORT_SYMBOL(__kmalloc_node);
3698
3699void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3700		int node, unsigned long caller)
3701{
3702	return __do_kmalloc_node(size, flags, node, caller);
3703}
3704EXPORT_SYMBOL(__kmalloc_node_track_caller);
3705#endif /* CONFIG_NUMA */
3706
3707/**
3708 * __do_kmalloc - allocate memory
3709 * @size: how many bytes of memory are required.
3710 * @flags: the type of memory to allocate (see kmalloc).
3711 * @caller: function caller for debug tracking of the caller
3712 */
3713static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3714					  unsigned long caller)
3715{
3716	struct kmem_cache *cachep;
3717	void *ret;
3718
3719	cachep = kmalloc_slab(size, flags);
3720	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3721		return cachep;
3722	ret = slab_alloc(cachep, flags, caller);
3723
3724	kasan_kmalloc(cachep, ret, size, flags);
3725	trace_kmalloc(caller, ret,
3726		      size, cachep->size, flags);
3727
3728	return ret;
3729}
3730
3731void *__kmalloc(size_t size, gfp_t flags)
3732{
3733	return __do_kmalloc(size, flags, _RET_IP_);
3734}
3735EXPORT_SYMBOL(__kmalloc);
3736
3737void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
 
3738{
3739	return __do_kmalloc(size, flags, caller);
3740}
3741EXPORT_SYMBOL(__kmalloc_track_caller);
3742
3743/**
3744 * kmem_cache_free - Deallocate an object
3745 * @cachep: The cache the allocation was from.
3746 * @objp: The previously allocated object.
3747 *
3748 * Free an object which was previously allocated from this
3749 * cache.
3750 */
3751void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3752{
3753	unsigned long flags;
3754	cachep = cache_from_obj(cachep, objp);
3755	if (!cachep)
3756		return;
3757
3758	local_irq_save(flags);
3759	debug_check_no_locks_freed(objp, cachep->object_size);
3760	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3761		debug_check_no_obj_freed(objp, cachep->object_size);
3762	__cache_free(cachep, objp, _RET_IP_);
3763	local_irq_restore(flags);
3764
3765	trace_kmem_cache_free(_RET_IP_, objp);
3766}
3767EXPORT_SYMBOL(kmem_cache_free);
3768
3769void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3770{
3771	struct kmem_cache *s;
3772	size_t i;
3773
3774	local_irq_disable();
3775	for (i = 0; i < size; i++) {
3776		void *objp = p[i];
 
3777
3778		if (!orig_s) /* called via kfree_bulk */
3779			s = virt_to_cache(objp);
3780		else
 
 
 
 
 
 
 
 
 
3781			s = cache_from_obj(orig_s, objp);
 
 
 
 
3782
3783		debug_check_no_locks_freed(objp, s->object_size);
3784		if (!(s->flags & SLAB_DEBUG_OBJECTS))
3785			debug_check_no_obj_freed(objp, s->object_size);
3786
3787		__cache_free(s, objp, _RET_IP_);
3788	}
3789	local_irq_enable();
3790
3791	/* FIXME: add tracing */
3792}
3793EXPORT_SYMBOL(kmem_cache_free_bulk);
3794
3795/**
3796 * kfree - free previously allocated memory
3797 * @objp: pointer returned by kmalloc.
3798 *
3799 * If @objp is NULL, no operation is performed.
3800 *
3801 * Don't free memory not originally allocated by kmalloc()
3802 * or you will run into trouble.
3803 */
3804void kfree(const void *objp)
3805{
3806	struct kmem_cache *c;
3807	unsigned long flags;
3808
3809	trace_kfree(_RET_IP_, objp);
3810
3811	if (unlikely(ZERO_OR_NULL_PTR(objp)))
3812		return;
3813	local_irq_save(flags);
3814	kfree_debugcheck(objp);
3815	c = virt_to_cache(objp);
3816	debug_check_no_locks_freed(objp, c->object_size);
3817
3818	debug_check_no_obj_freed(objp, c->object_size);
3819	__cache_free(c, (void *)objp, _RET_IP_);
3820	local_irq_restore(flags);
3821}
3822EXPORT_SYMBOL(kfree);
3823
3824/*
3825 * This initializes kmem_cache_node or resizes various caches for all nodes.
3826 */
3827static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3828{
3829	int ret;
3830	int node;
3831	struct kmem_cache_node *n;
3832
3833	for_each_online_node(node) {
3834		ret = setup_kmem_cache_node(cachep, node, gfp, true);
3835		if (ret)
3836			goto fail;
3837
3838	}
3839
3840	return 0;
3841
3842fail:
3843	if (!cachep->list.next) {
3844		/* Cache is not active yet. Roll back what we did */
3845		node--;
3846		while (node >= 0) {
3847			n = get_node(cachep, node);
3848			if (n) {
3849				kfree(n->shared);
3850				free_alien_cache(n->alien);
3851				kfree(n);
3852				cachep->node[node] = NULL;
3853			}
3854			node--;
3855		}
3856	}
3857	return -ENOMEM;
3858}
3859
3860/* Always called with the slab_mutex held */
3861static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3862				int batchcount, int shared, gfp_t gfp)
3863{
3864	struct array_cache __percpu *cpu_cache, *prev;
3865	int cpu;
3866
3867	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3868	if (!cpu_cache)
3869		return -ENOMEM;
3870
3871	prev = cachep->cpu_cache;
3872	cachep->cpu_cache = cpu_cache;
3873	kick_all_cpus_sync();
 
 
 
 
 
3874
3875	check_irq_on();
3876	cachep->batchcount = batchcount;
3877	cachep->limit = limit;
3878	cachep->shared = shared;
3879
3880	if (!prev)
3881		goto setup_node;
3882
3883	for_each_online_cpu(cpu) {
3884		LIST_HEAD(list);
3885		int node;
3886		struct kmem_cache_node *n;
3887		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3888
3889		node = cpu_to_mem(cpu);
3890		n = get_node(cachep, node);
3891		spin_lock_irq(&n->list_lock);
3892		free_block(cachep, ac->entry, ac->avail, node, &list);
3893		spin_unlock_irq(&n->list_lock);
3894		slabs_destroy(cachep, &list);
3895	}
3896	free_percpu(prev);
3897
3898setup_node:
3899	return setup_kmem_cache_nodes(cachep, gfp);
3900}
3901
3902static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3903				int batchcount, int shared, gfp_t gfp)
3904{
3905	int ret;
3906	struct kmem_cache *c;
3907
3908	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3909
3910	if (slab_state < FULL)
3911		return ret;
3912
3913	if ((ret < 0) || !is_root_cache(cachep))
3914		return ret;
3915
3916	lockdep_assert_held(&slab_mutex);
3917	for_each_memcg_cache(c, cachep) {
3918		/* return value determined by the root cache only */
3919		__do_tune_cpucache(c, limit, batchcount, shared, gfp);
3920	}
3921
3922	return ret;
3923}
3924
3925/* Called with slab_mutex held always */
3926static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3927{
3928	int err;
3929	int limit = 0;
3930	int shared = 0;
3931	int batchcount = 0;
3932
3933	err = cache_random_seq_create(cachep, cachep->num, gfp);
3934	if (err)
3935		goto end;
3936
3937	if (!is_root_cache(cachep)) {
3938		struct kmem_cache *root = memcg_root_cache(cachep);
3939		limit = root->limit;
3940		shared = root->shared;
3941		batchcount = root->batchcount;
3942	}
3943
3944	if (limit && shared && batchcount)
3945		goto skip_setup;
3946	/*
3947	 * The head array serves three purposes:
3948	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3949	 * - reduce the number of spinlock operations.
3950	 * - reduce the number of linked list operations on the slab and
3951	 *   bufctl chains: array operations are cheaper.
3952	 * The numbers are guessed, we should auto-tune as described by
3953	 * Bonwick.
3954	 */
3955	if (cachep->size > 131072)
3956		limit = 1;
3957	else if (cachep->size > PAGE_SIZE)
3958		limit = 8;
3959	else if (cachep->size > 1024)
3960		limit = 24;
3961	else if (cachep->size > 256)
3962		limit = 54;
3963	else
3964		limit = 120;
3965
3966	/*
3967	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3968	 * allocation behaviour: Most allocs on one cpu, most free operations
3969	 * on another cpu. For these cases, an efficient object passing between
3970	 * cpus is necessary. This is provided by a shared array. The array
3971	 * replaces Bonwick's magazine layer.
3972	 * On uniprocessor, it's functionally equivalent (but less efficient)
3973	 * to a larger limit. Thus disabled by default.
3974	 */
3975	shared = 0;
3976	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3977		shared = 8;
3978
3979#if DEBUG
3980	/*
3981	 * With debugging enabled, large batchcount lead to excessively long
3982	 * periods with disabled local interrupts. Limit the batchcount
3983	 */
3984	if (limit > 32)
3985		limit = 32;
3986#endif
3987	batchcount = (limit + 1) / 2;
3988skip_setup:
3989	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3990end:
3991	if (err)
3992		pr_err("enable_cpucache failed for %s, error %d\n",
3993		       cachep->name, -err);
3994	return err;
3995}
3996
3997/*
3998 * Drain an array if it contains any elements taking the node lock only if
3999 * necessary. Note that the node listlock also protects the array_cache
4000 * if drain_array() is used on the shared array.
4001 */
4002static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4003			 struct array_cache *ac, int node)
4004{
4005	LIST_HEAD(list);
4006
4007	/* ac from n->shared can be freed if we don't hold the slab_mutex. */
4008	check_mutex_acquired();
4009
4010	if (!ac || !ac->avail)
4011		return;
4012
4013	if (ac->touched) {
4014		ac->touched = 0;
4015		return;
4016	}
4017
4018	spin_lock_irq(&n->list_lock);
4019	drain_array_locked(cachep, ac, node, false, &list);
4020	spin_unlock_irq(&n->list_lock);
4021
4022	slabs_destroy(cachep, &list);
4023}
4024
4025/**
4026 * cache_reap - Reclaim memory from caches.
4027 * @w: work descriptor
4028 *
4029 * Called from workqueue/eventd every few seconds.
4030 * Purpose:
4031 * - clear the per-cpu caches for this CPU.
4032 * - return freeable pages to the main free memory pool.
4033 *
4034 * If we cannot acquire the cache chain mutex then just give up - we'll try
4035 * again on the next iteration.
4036 */
4037static void cache_reap(struct work_struct *w)
4038{
4039	struct kmem_cache *searchp;
4040	struct kmem_cache_node *n;
4041	int node = numa_mem_id();
4042	struct delayed_work *work = to_delayed_work(w);
4043
4044	if (!mutex_trylock(&slab_mutex))
4045		/* Give up. Setup the next iteration. */
4046		goto out;
4047
4048	list_for_each_entry(searchp, &slab_caches, list) {
4049		check_irq_on();
4050
4051		/*
4052		 * We only take the node lock if absolutely necessary and we
4053		 * have established with reasonable certainty that
4054		 * we can do some work if the lock was obtained.
4055		 */
4056		n = get_node(searchp, node);
4057
4058		reap_alien(searchp, n);
4059
4060		drain_array(searchp, n, cpu_cache_get(searchp), node);
4061
4062		/*
4063		 * These are racy checks but it does not matter
4064		 * if we skip one check or scan twice.
4065		 */
4066		if (time_after(n->next_reap, jiffies))
4067			goto next;
4068
4069		n->next_reap = jiffies + REAPTIMEOUT_NODE;
4070
4071		drain_array(searchp, n, n->shared, node);
4072
4073		if (n->free_touched)
4074			n->free_touched = 0;
4075		else {
4076			int freed;
4077
4078			freed = drain_freelist(searchp, n, (n->free_limit +
4079				5 * searchp->num - 1) / (5 * searchp->num));
4080			STATS_ADD_REAPED(searchp, freed);
4081		}
4082next:
4083		cond_resched();
4084	}
4085	check_irq_on();
4086	mutex_unlock(&slab_mutex);
4087	next_reap_node();
4088out:
4089	/* Set up the next iteration */
4090	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
 
4091}
4092
4093#ifdef CONFIG_SLABINFO
4094void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4095{
4096	unsigned long active_objs, num_objs, active_slabs;
4097	unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4098	unsigned long free_slabs = 0;
4099	int node;
4100	struct kmem_cache_node *n;
4101
4102	for_each_kmem_cache_node(cachep, node, n) {
4103		check_irq_on();
4104		spin_lock_irq(&n->list_lock);
4105
4106		total_slabs += n->total_slabs;
4107		free_slabs += n->free_slabs;
4108		free_objs += n->free_objects;
4109
4110		if (n->shared)
4111			shared_avail += n->shared->avail;
4112
4113		spin_unlock_irq(&n->list_lock);
4114	}
4115	num_objs = total_slabs * cachep->num;
4116	active_slabs = total_slabs - free_slabs;
4117	active_objs = num_objs - free_objs;
4118
4119	sinfo->active_objs = active_objs;
4120	sinfo->num_objs = num_objs;
4121	sinfo->active_slabs = active_slabs;
4122	sinfo->num_slabs = total_slabs;
4123	sinfo->shared_avail = shared_avail;
4124	sinfo->limit = cachep->limit;
4125	sinfo->batchcount = cachep->batchcount;
4126	sinfo->shared = cachep->shared;
4127	sinfo->objects_per_slab = cachep->num;
4128	sinfo->cache_order = cachep->gfporder;
4129}
4130
4131void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4132{
4133#if STATS
4134	{			/* node stats */
4135		unsigned long high = cachep->high_mark;
4136		unsigned long allocs = cachep->num_allocations;
4137		unsigned long grown = cachep->grown;
4138		unsigned long reaped = cachep->reaped;
4139		unsigned long errors = cachep->errors;
4140		unsigned long max_freeable = cachep->max_freeable;
4141		unsigned long node_allocs = cachep->node_allocs;
4142		unsigned long node_frees = cachep->node_frees;
4143		unsigned long overflows = cachep->node_overflow;
4144
4145		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4146			   allocs, high, grown,
4147			   reaped, errors, max_freeable, node_allocs,
4148			   node_frees, overflows);
4149	}
4150	/* cpu stats */
4151	{
4152		unsigned long allochit = atomic_read(&cachep->allochit);
4153		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4154		unsigned long freehit = atomic_read(&cachep->freehit);
4155		unsigned long freemiss = atomic_read(&cachep->freemiss);
4156
4157		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4158			   allochit, allocmiss, freehit, freemiss);
4159	}
4160#endif
4161}
4162
4163#define MAX_SLABINFO_WRITE 128
4164/**
4165 * slabinfo_write - Tuning for the slab allocator
4166 * @file: unused
4167 * @buffer: user buffer
4168 * @count: data length
4169 * @ppos: unused
 
 
4170 */
4171ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4172		       size_t count, loff_t *ppos)
4173{
4174	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4175	int limit, batchcount, shared, res;
4176	struct kmem_cache *cachep;
4177
4178	if (count > MAX_SLABINFO_WRITE)
4179		return -EINVAL;
4180	if (copy_from_user(&kbuf, buffer, count))
4181		return -EFAULT;
4182	kbuf[MAX_SLABINFO_WRITE] = '\0';
4183
4184	tmp = strchr(kbuf, ' ');
4185	if (!tmp)
4186		return -EINVAL;
4187	*tmp = '\0';
4188	tmp++;
4189	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4190		return -EINVAL;
4191
4192	/* Find the cache in the chain of caches. */
4193	mutex_lock(&slab_mutex);
4194	res = -EINVAL;
4195	list_for_each_entry(cachep, &slab_caches, list) {
4196		if (!strcmp(cachep->name, kbuf)) {
4197			if (limit < 1 || batchcount < 1 ||
4198					batchcount > limit || shared < 0) {
4199				res = 0;
4200			} else {
4201				res = do_tune_cpucache(cachep, limit,
4202						       batchcount, shared,
4203						       GFP_KERNEL);
4204			}
4205			break;
4206		}
4207	}
4208	mutex_unlock(&slab_mutex);
4209	if (res >= 0)
4210		res = count;
4211	return res;
4212}
4213
4214#ifdef CONFIG_DEBUG_SLAB_LEAK
4215
4216static inline int add_caller(unsigned long *n, unsigned long v)
4217{
4218	unsigned long *p;
4219	int l;
4220	if (!v)
4221		return 1;
4222	l = n[1];
4223	p = n + 2;
4224	while (l) {
4225		int i = l/2;
4226		unsigned long *q = p + 2 * i;
4227		if (*q == v) {
4228			q[1]++;
4229			return 1;
4230		}
4231		if (*q > v) {
4232			l = i;
4233		} else {
4234			p = q + 2;
4235			l -= i + 1;
4236		}
4237	}
4238	if (++n[1] == n[0])
4239		return 0;
4240	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4241	p[0] = v;
4242	p[1] = 1;
4243	return 1;
4244}
4245
4246static void handle_slab(unsigned long *n, struct kmem_cache *c,
4247						struct page *page)
4248{
4249	void *p;
4250	int i, j;
4251	unsigned long v;
4252
4253	if (n[0] == n[1])
4254		return;
4255	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4256		bool active = true;
4257
4258		for (j = page->active; j < c->num; j++) {
4259			if (get_free_obj(page, j) == i) {
4260				active = false;
4261				break;
4262			}
4263		}
4264
4265		if (!active)
4266			continue;
4267
4268		/*
4269		 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4270		 * mapping is established when actual object allocation and
4271		 * we could mistakenly access the unmapped object in the cpu
4272		 * cache.
4273		 */
4274		if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4275			continue;
4276
4277		if (!add_caller(n, v))
4278			return;
4279	}
4280}
4281
4282static void show_symbol(struct seq_file *m, unsigned long address)
4283{
4284#ifdef CONFIG_KALLSYMS
4285	unsigned long offset, size;
4286	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4287
4288	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4289		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4290		if (modname[0])
4291			seq_printf(m, " [%s]", modname);
4292		return;
4293	}
4294#endif
4295	seq_printf(m, "%p", (void *)address);
4296}
4297
4298static int leaks_show(struct seq_file *m, void *p)
4299{
4300	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4301	struct page *page;
4302	struct kmem_cache_node *n;
4303	const char *name;
4304	unsigned long *x = m->private;
4305	int node;
4306	int i;
4307
4308	if (!(cachep->flags & SLAB_STORE_USER))
4309		return 0;
4310	if (!(cachep->flags & SLAB_RED_ZONE))
4311		return 0;
4312
4313	/*
4314	 * Set store_user_clean and start to grab stored user information
4315	 * for all objects on this cache. If some alloc/free requests comes
4316	 * during the processing, information would be wrong so restart
4317	 * whole processing.
4318	 */
4319	do {
4320		set_store_user_clean(cachep);
4321		drain_cpu_caches(cachep);
4322
4323		x[1] = 0;
4324
4325		for_each_kmem_cache_node(cachep, node, n) {
4326
4327			check_irq_on();
4328			spin_lock_irq(&n->list_lock);
4329
4330			list_for_each_entry(page, &n->slabs_full, lru)
4331				handle_slab(x, cachep, page);
4332			list_for_each_entry(page, &n->slabs_partial, lru)
4333				handle_slab(x, cachep, page);
4334			spin_unlock_irq(&n->list_lock);
4335		}
4336	} while (!is_store_user_clean(cachep));
4337
4338	name = cachep->name;
4339	if (x[0] == x[1]) {
4340		/* Increase the buffer size */
4341		mutex_unlock(&slab_mutex);
4342		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4343		if (!m->private) {
4344			/* Too bad, we are really out */
4345			m->private = x;
4346			mutex_lock(&slab_mutex);
4347			return -ENOMEM;
4348		}
4349		*(unsigned long *)m->private = x[0] * 2;
4350		kfree(x);
4351		mutex_lock(&slab_mutex);
4352		/* Now make sure this entry will be retried */
4353		m->count = m->size;
4354		return 0;
4355	}
4356	for (i = 0; i < x[1]; i++) {
4357		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4358		show_symbol(m, x[2*i+2]);
4359		seq_putc(m, '\n');
4360	}
4361
4362	return 0;
4363}
4364
4365static const struct seq_operations slabstats_op = {
4366	.start = slab_start,
4367	.next = slab_next,
4368	.stop = slab_stop,
4369	.show = leaks_show,
4370};
4371
4372static int slabstats_open(struct inode *inode, struct file *file)
4373{
4374	unsigned long *n;
4375
4376	n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4377	if (!n)
4378		return -ENOMEM;
4379
4380	*n = PAGE_SIZE / (2 * sizeof(unsigned long));
4381
4382	return 0;
4383}
4384
4385static const struct file_operations proc_slabstats_operations = {
4386	.open		= slabstats_open,
4387	.read		= seq_read,
4388	.llseek		= seq_lseek,
4389	.release	= seq_release_private,
4390};
4391#endif
4392
4393static int __init slab_proc_init(void)
4394{
4395#ifdef CONFIG_DEBUG_SLAB_LEAK
4396	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4397#endif
4398	return 0;
4399}
4400module_init(slab_proc_init);
4401#endif
4402
4403#ifdef CONFIG_HARDENED_USERCOPY
4404/*
4405 * Rejects objects that are incorrectly sized.
 
 
4406 *
4407 * Returns NULL if check passes, otherwise const char * to name of cache
4408 * to indicate an error.
4409 */
4410const char *__check_heap_object(const void *ptr, unsigned long n,
4411				struct page *page)
4412{
4413	struct kmem_cache *cachep;
4414	unsigned int objnr;
4415	unsigned long offset;
4416
 
 
4417	/* Find and validate object. */
4418	cachep = page->slab_cache;
4419	objnr = obj_to_index(cachep, page, (void *)ptr);
4420	BUG_ON(objnr >= cachep->num);
4421
4422	/* Find offset within object. */
4423	offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
 
 
 
4424
4425	/* Allow address range falling entirely within object size. */
4426	if (offset <= cachep->object_size && n <= cachep->object_size - offset)
4427		return NULL;
 
 
4428
4429	return cachep->name;
4430}
4431#endif /* CONFIG_HARDENED_USERCOPY */
4432
4433/**
4434 * ksize - get the actual amount of memory allocated for a given object
4435 * @objp: Pointer to the object
4436 *
4437 * kmalloc may internally round up allocations and return more memory
4438 * than requested. ksize() can be used to determine the actual amount of
4439 * memory allocated. The caller may use this additional memory, even though
4440 * a smaller amount of memory was initially specified with the kmalloc call.
4441 * The caller must guarantee that objp points to a valid object previously
4442 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4443 * must not be freed during the duration of the call.
4444 */
4445size_t ksize(const void *objp)
4446{
4447	size_t size;
4448
4449	BUG_ON(!objp);
4450	if (unlikely(objp == ZERO_SIZE_PTR))
4451		return 0;
4452
4453	size = virt_to_cache(objp)->object_size;
4454	/* We assume that ksize callers could use the whole allocated area,
4455	 * so we need to unpoison this area.
4456	 */
4457	kasan_unpoison_shadow(objp, size);
4458
4459	return size;
4460}
4461EXPORT_SYMBOL(ksize);