Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_mount.h"
14#include "xfs_inode.h"
15#include "xfs_btree.h"
16#include "xfs_ialloc.h"
17#include "xfs_ialloc_btree.h"
18#include "xfs_alloc.h"
19#include "xfs_errortag.h"
20#include "xfs_error.h"
21#include "xfs_bmap.h"
22#include "xfs_trans.h"
23#include "xfs_buf_item.h"
24#include "xfs_icreate_item.h"
25#include "xfs_icache.h"
26#include "xfs_trace.h"
27#include "xfs_log.h"
28#include "xfs_rmap.h"
29#include "xfs_ag.h"
30
31/*
32 * Lookup a record by ino in the btree given by cur.
33 */
34int /* error */
35xfs_inobt_lookup(
36 struct xfs_btree_cur *cur, /* btree cursor */
37 xfs_agino_t ino, /* starting inode of chunk */
38 xfs_lookup_t dir, /* <=, >=, == */
39 int *stat) /* success/failure */
40{
41 cur->bc_rec.i.ir_startino = ino;
42 cur->bc_rec.i.ir_holemask = 0;
43 cur->bc_rec.i.ir_count = 0;
44 cur->bc_rec.i.ir_freecount = 0;
45 cur->bc_rec.i.ir_free = 0;
46 return xfs_btree_lookup(cur, dir, stat);
47}
48
49/*
50 * Update the record referred to by cur to the value given.
51 * This either works (return 0) or gets an EFSCORRUPTED error.
52 */
53STATIC int /* error */
54xfs_inobt_update(
55 struct xfs_btree_cur *cur, /* btree cursor */
56 xfs_inobt_rec_incore_t *irec) /* btree record */
57{
58 union xfs_btree_rec rec;
59
60 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
61 if (xfs_has_sparseinodes(cur->bc_mp)) {
62 rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
63 rec.inobt.ir_u.sp.ir_count = irec->ir_count;
64 rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
65 } else {
66 /* ir_holemask/ir_count not supported on-disk */
67 rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
68 }
69 rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
70 return xfs_btree_update(cur, &rec);
71}
72
73/* Convert on-disk btree record to incore inobt record. */
74void
75xfs_inobt_btrec_to_irec(
76 struct xfs_mount *mp,
77 const union xfs_btree_rec *rec,
78 struct xfs_inobt_rec_incore *irec)
79{
80 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
81 if (xfs_has_sparseinodes(mp)) {
82 irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
83 irec->ir_count = rec->inobt.ir_u.sp.ir_count;
84 irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
85 } else {
86 /*
87 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
88 * values for full inode chunks.
89 */
90 irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
91 irec->ir_count = XFS_INODES_PER_CHUNK;
92 irec->ir_freecount =
93 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
94 }
95 irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
96}
97
98/*
99 * Get the data from the pointed-to record.
100 */
101int
102xfs_inobt_get_rec(
103 struct xfs_btree_cur *cur,
104 struct xfs_inobt_rec_incore *irec,
105 int *stat)
106{
107 struct xfs_mount *mp = cur->bc_mp;
108 union xfs_btree_rec *rec;
109 int error;
110 uint64_t realfree;
111
112 error = xfs_btree_get_rec(cur, &rec, stat);
113 if (error || *stat == 0)
114 return error;
115
116 xfs_inobt_btrec_to_irec(mp, rec, irec);
117
118 if (!xfs_verify_agino(cur->bc_ag.pag, irec->ir_startino))
119 goto out_bad_rec;
120 if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT ||
121 irec->ir_count > XFS_INODES_PER_CHUNK)
122 goto out_bad_rec;
123 if (irec->ir_freecount > XFS_INODES_PER_CHUNK)
124 goto out_bad_rec;
125
126 /* if there are no holes, return the first available offset */
127 if (!xfs_inobt_issparse(irec->ir_holemask))
128 realfree = irec->ir_free;
129 else
130 realfree = irec->ir_free & xfs_inobt_irec_to_allocmask(irec);
131 if (hweight64(realfree) != irec->ir_freecount)
132 goto out_bad_rec;
133
134 return 0;
135
136out_bad_rec:
137 xfs_warn(mp,
138 "%s Inode BTree record corruption in AG %d detected!",
139 cur->bc_btnum == XFS_BTNUM_INO ? "Used" : "Free",
140 cur->bc_ag.pag->pag_agno);
141 xfs_warn(mp,
142"start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x",
143 irec->ir_startino, irec->ir_count, irec->ir_freecount,
144 irec->ir_free, irec->ir_holemask);
145 return -EFSCORRUPTED;
146}
147
148/*
149 * Insert a single inobt record. Cursor must already point to desired location.
150 */
151int
152xfs_inobt_insert_rec(
153 struct xfs_btree_cur *cur,
154 uint16_t holemask,
155 uint8_t count,
156 int32_t freecount,
157 xfs_inofree_t free,
158 int *stat)
159{
160 cur->bc_rec.i.ir_holemask = holemask;
161 cur->bc_rec.i.ir_count = count;
162 cur->bc_rec.i.ir_freecount = freecount;
163 cur->bc_rec.i.ir_free = free;
164 return xfs_btree_insert(cur, stat);
165}
166
167/*
168 * Insert records describing a newly allocated inode chunk into the inobt.
169 */
170STATIC int
171xfs_inobt_insert(
172 struct xfs_mount *mp,
173 struct xfs_trans *tp,
174 struct xfs_buf *agbp,
175 struct xfs_perag *pag,
176 xfs_agino_t newino,
177 xfs_agino_t newlen,
178 xfs_btnum_t btnum)
179{
180 struct xfs_btree_cur *cur;
181 xfs_agino_t thisino;
182 int i;
183 int error;
184
185 cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, btnum);
186
187 for (thisino = newino;
188 thisino < newino + newlen;
189 thisino += XFS_INODES_PER_CHUNK) {
190 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
191 if (error) {
192 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
193 return error;
194 }
195 ASSERT(i == 0);
196
197 error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
198 XFS_INODES_PER_CHUNK,
199 XFS_INODES_PER_CHUNK,
200 XFS_INOBT_ALL_FREE, &i);
201 if (error) {
202 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
203 return error;
204 }
205 ASSERT(i == 1);
206 }
207
208 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
209
210 return 0;
211}
212
213/*
214 * Verify that the number of free inodes in the AGI is correct.
215 */
216#ifdef DEBUG
217static int
218xfs_check_agi_freecount(
219 struct xfs_btree_cur *cur)
220{
221 if (cur->bc_nlevels == 1) {
222 xfs_inobt_rec_incore_t rec;
223 int freecount = 0;
224 int error;
225 int i;
226
227 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
228 if (error)
229 return error;
230
231 do {
232 error = xfs_inobt_get_rec(cur, &rec, &i);
233 if (error)
234 return error;
235
236 if (i) {
237 freecount += rec.ir_freecount;
238 error = xfs_btree_increment(cur, 0, &i);
239 if (error)
240 return error;
241 }
242 } while (i == 1);
243
244 if (!xfs_is_shutdown(cur->bc_mp))
245 ASSERT(freecount == cur->bc_ag.pag->pagi_freecount);
246 }
247 return 0;
248}
249#else
250#define xfs_check_agi_freecount(cur) 0
251#endif
252
253/*
254 * Initialise a new set of inodes. When called without a transaction context
255 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
256 * than logging them (which in a transaction context puts them into the AIL
257 * for writeback rather than the xfsbufd queue).
258 */
259int
260xfs_ialloc_inode_init(
261 struct xfs_mount *mp,
262 struct xfs_trans *tp,
263 struct list_head *buffer_list,
264 int icount,
265 xfs_agnumber_t agno,
266 xfs_agblock_t agbno,
267 xfs_agblock_t length,
268 unsigned int gen)
269{
270 struct xfs_buf *fbuf;
271 struct xfs_dinode *free;
272 int nbufs;
273 int version;
274 int i, j;
275 xfs_daddr_t d;
276 xfs_ino_t ino = 0;
277 int error;
278
279 /*
280 * Loop over the new block(s), filling in the inodes. For small block
281 * sizes, manipulate the inodes in buffers which are multiples of the
282 * blocks size.
283 */
284 nbufs = length / M_IGEO(mp)->blocks_per_cluster;
285
286 /*
287 * Figure out what version number to use in the inodes we create. If
288 * the superblock version has caught up to the one that supports the new
289 * inode format, then use the new inode version. Otherwise use the old
290 * version so that old kernels will continue to be able to use the file
291 * system.
292 *
293 * For v3 inodes, we also need to write the inode number into the inode,
294 * so calculate the first inode number of the chunk here as
295 * XFS_AGB_TO_AGINO() only works within a filesystem block, not
296 * across multiple filesystem blocks (such as a cluster) and so cannot
297 * be used in the cluster buffer loop below.
298 *
299 * Further, because we are writing the inode directly into the buffer
300 * and calculating a CRC on the entire inode, we have ot log the entire
301 * inode so that the entire range the CRC covers is present in the log.
302 * That means for v3 inode we log the entire buffer rather than just the
303 * inode cores.
304 */
305 if (xfs_has_v3inodes(mp)) {
306 version = 3;
307 ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno));
308
309 /*
310 * log the initialisation that is about to take place as an
311 * logical operation. This means the transaction does not
312 * need to log the physical changes to the inode buffers as log
313 * recovery will know what initialisation is actually needed.
314 * Hence we only need to log the buffers as "ordered" buffers so
315 * they track in the AIL as if they were physically logged.
316 */
317 if (tp)
318 xfs_icreate_log(tp, agno, agbno, icount,
319 mp->m_sb.sb_inodesize, length, gen);
320 } else
321 version = 2;
322
323 for (j = 0; j < nbufs; j++) {
324 /*
325 * Get the block.
326 */
327 d = XFS_AGB_TO_DADDR(mp, agno, agbno +
328 (j * M_IGEO(mp)->blocks_per_cluster));
329 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
330 mp->m_bsize * M_IGEO(mp)->blocks_per_cluster,
331 XBF_UNMAPPED, &fbuf);
332 if (error)
333 return error;
334
335 /* Initialize the inode buffers and log them appropriately. */
336 fbuf->b_ops = &xfs_inode_buf_ops;
337 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
338 for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) {
339 int ioffset = i << mp->m_sb.sb_inodelog;
340
341 free = xfs_make_iptr(mp, fbuf, i);
342 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
343 free->di_version = version;
344 free->di_gen = cpu_to_be32(gen);
345 free->di_next_unlinked = cpu_to_be32(NULLAGINO);
346
347 if (version == 3) {
348 free->di_ino = cpu_to_be64(ino);
349 ino++;
350 uuid_copy(&free->di_uuid,
351 &mp->m_sb.sb_meta_uuid);
352 xfs_dinode_calc_crc(mp, free);
353 } else if (tp) {
354 /* just log the inode core */
355 xfs_trans_log_buf(tp, fbuf, ioffset,
356 ioffset + XFS_DINODE_SIZE(mp) - 1);
357 }
358 }
359
360 if (tp) {
361 /*
362 * Mark the buffer as an inode allocation buffer so it
363 * sticks in AIL at the point of this allocation
364 * transaction. This ensures the they are on disk before
365 * the tail of the log can be moved past this
366 * transaction (i.e. by preventing relogging from moving
367 * it forward in the log).
368 */
369 xfs_trans_inode_alloc_buf(tp, fbuf);
370 if (version == 3) {
371 /*
372 * Mark the buffer as ordered so that they are
373 * not physically logged in the transaction but
374 * still tracked in the AIL as part of the
375 * transaction and pin the log appropriately.
376 */
377 xfs_trans_ordered_buf(tp, fbuf);
378 }
379 } else {
380 fbuf->b_flags |= XBF_DONE;
381 xfs_buf_delwri_queue(fbuf, buffer_list);
382 xfs_buf_relse(fbuf);
383 }
384 }
385 return 0;
386}
387
388/*
389 * Align startino and allocmask for a recently allocated sparse chunk such that
390 * they are fit for insertion (or merge) into the on-disk inode btrees.
391 *
392 * Background:
393 *
394 * When enabled, sparse inode support increases the inode alignment from cluster
395 * size to inode chunk size. This means that the minimum range between two
396 * non-adjacent inode records in the inobt is large enough for a full inode
397 * record. This allows for cluster sized, cluster aligned block allocation
398 * without need to worry about whether the resulting inode record overlaps with
399 * another record in the tree. Without this basic rule, we would have to deal
400 * with the consequences of overlap by potentially undoing recent allocations in
401 * the inode allocation codepath.
402 *
403 * Because of this alignment rule (which is enforced on mount), there are two
404 * inobt possibilities for newly allocated sparse chunks. One is that the
405 * aligned inode record for the chunk covers a range of inodes not already
406 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
407 * other is that a record already exists at the aligned startino that considers
408 * the newly allocated range as sparse. In the latter case, record content is
409 * merged in hope that sparse inode chunks fill to full chunks over time.
410 */
411STATIC void
412xfs_align_sparse_ino(
413 struct xfs_mount *mp,
414 xfs_agino_t *startino,
415 uint16_t *allocmask)
416{
417 xfs_agblock_t agbno;
418 xfs_agblock_t mod;
419 int offset;
420
421 agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
422 mod = agbno % mp->m_sb.sb_inoalignmt;
423 if (!mod)
424 return;
425
426 /* calculate the inode offset and align startino */
427 offset = XFS_AGB_TO_AGINO(mp, mod);
428 *startino -= offset;
429
430 /*
431 * Since startino has been aligned down, left shift allocmask such that
432 * it continues to represent the same physical inodes relative to the
433 * new startino.
434 */
435 *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
436}
437
438/*
439 * Determine whether the source inode record can merge into the target. Both
440 * records must be sparse, the inode ranges must match and there must be no
441 * allocation overlap between the records.
442 */
443STATIC bool
444__xfs_inobt_can_merge(
445 struct xfs_inobt_rec_incore *trec, /* tgt record */
446 struct xfs_inobt_rec_incore *srec) /* src record */
447{
448 uint64_t talloc;
449 uint64_t salloc;
450
451 /* records must cover the same inode range */
452 if (trec->ir_startino != srec->ir_startino)
453 return false;
454
455 /* both records must be sparse */
456 if (!xfs_inobt_issparse(trec->ir_holemask) ||
457 !xfs_inobt_issparse(srec->ir_holemask))
458 return false;
459
460 /* both records must track some inodes */
461 if (!trec->ir_count || !srec->ir_count)
462 return false;
463
464 /* can't exceed capacity of a full record */
465 if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
466 return false;
467
468 /* verify there is no allocation overlap */
469 talloc = xfs_inobt_irec_to_allocmask(trec);
470 salloc = xfs_inobt_irec_to_allocmask(srec);
471 if (talloc & salloc)
472 return false;
473
474 return true;
475}
476
477/*
478 * Merge the source inode record into the target. The caller must call
479 * __xfs_inobt_can_merge() to ensure the merge is valid.
480 */
481STATIC void
482__xfs_inobt_rec_merge(
483 struct xfs_inobt_rec_incore *trec, /* target */
484 struct xfs_inobt_rec_incore *srec) /* src */
485{
486 ASSERT(trec->ir_startino == srec->ir_startino);
487
488 /* combine the counts */
489 trec->ir_count += srec->ir_count;
490 trec->ir_freecount += srec->ir_freecount;
491
492 /*
493 * Merge the holemask and free mask. For both fields, 0 bits refer to
494 * allocated inodes. We combine the allocated ranges with bitwise AND.
495 */
496 trec->ir_holemask &= srec->ir_holemask;
497 trec->ir_free &= srec->ir_free;
498}
499
500/*
501 * Insert a new sparse inode chunk into the associated inode btree. The inode
502 * record for the sparse chunk is pre-aligned to a startino that should match
503 * any pre-existing sparse inode record in the tree. This allows sparse chunks
504 * to fill over time.
505 *
506 * This function supports two modes of handling preexisting records depending on
507 * the merge flag. If merge is true, the provided record is merged with the
508 * existing record and updated in place. The merged record is returned in nrec.
509 * If merge is false, an existing record is replaced with the provided record.
510 * If no preexisting record exists, the provided record is always inserted.
511 *
512 * It is considered corruption if a merge is requested and not possible. Given
513 * the sparse inode alignment constraints, this should never happen.
514 */
515STATIC int
516xfs_inobt_insert_sprec(
517 struct xfs_mount *mp,
518 struct xfs_trans *tp,
519 struct xfs_buf *agbp,
520 struct xfs_perag *pag,
521 int btnum,
522 struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */
523 bool merge) /* merge or replace */
524{
525 struct xfs_btree_cur *cur;
526 int error;
527 int i;
528 struct xfs_inobt_rec_incore rec;
529
530 cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, btnum);
531
532 /* the new record is pre-aligned so we know where to look */
533 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
534 if (error)
535 goto error;
536 /* if nothing there, insert a new record and return */
537 if (i == 0) {
538 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
539 nrec->ir_count, nrec->ir_freecount,
540 nrec->ir_free, &i);
541 if (error)
542 goto error;
543 if (XFS_IS_CORRUPT(mp, i != 1)) {
544 error = -EFSCORRUPTED;
545 goto error;
546 }
547
548 goto out;
549 }
550
551 /*
552 * A record exists at this startino. Merge or replace the record
553 * depending on what we've been asked to do.
554 */
555 if (merge) {
556 error = xfs_inobt_get_rec(cur, &rec, &i);
557 if (error)
558 goto error;
559 if (XFS_IS_CORRUPT(mp, i != 1)) {
560 error = -EFSCORRUPTED;
561 goto error;
562 }
563 if (XFS_IS_CORRUPT(mp, rec.ir_startino != nrec->ir_startino)) {
564 error = -EFSCORRUPTED;
565 goto error;
566 }
567
568 /*
569 * This should never fail. If we have coexisting records that
570 * cannot merge, something is seriously wrong.
571 */
572 if (XFS_IS_CORRUPT(mp, !__xfs_inobt_can_merge(nrec, &rec))) {
573 error = -EFSCORRUPTED;
574 goto error;
575 }
576
577 trace_xfs_irec_merge_pre(mp, pag->pag_agno, rec.ir_startino,
578 rec.ir_holemask, nrec->ir_startino,
579 nrec->ir_holemask);
580
581 /* merge to nrec to output the updated record */
582 __xfs_inobt_rec_merge(nrec, &rec);
583
584 trace_xfs_irec_merge_post(mp, pag->pag_agno, nrec->ir_startino,
585 nrec->ir_holemask);
586
587 error = xfs_inobt_rec_check_count(mp, nrec);
588 if (error)
589 goto error;
590 }
591
592 error = xfs_inobt_update(cur, nrec);
593 if (error)
594 goto error;
595
596out:
597 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
598 return 0;
599error:
600 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
601 return error;
602}
603
604/*
605 * Allocate new inodes in the allocation group specified by agbp. Returns 0 if
606 * inodes were allocated in this AG; -EAGAIN if there was no space in this AG so
607 * the caller knows it can try another AG, a hard -ENOSPC when over the maximum
608 * inode count threshold, or the usual negative error code for other errors.
609 */
610STATIC int
611xfs_ialloc_ag_alloc(
612 struct xfs_trans *tp,
613 struct xfs_buf *agbp,
614 struct xfs_perag *pag)
615{
616 struct xfs_agi *agi;
617 struct xfs_alloc_arg args;
618 int error;
619 xfs_agino_t newino; /* new first inode's number */
620 xfs_agino_t newlen; /* new number of inodes */
621 int isaligned = 0; /* inode allocation at stripe */
622 /* unit boundary */
623 /* init. to full chunk */
624 struct xfs_inobt_rec_incore rec;
625 struct xfs_ino_geometry *igeo = M_IGEO(tp->t_mountp);
626 uint16_t allocmask = (uint16_t) -1;
627 int do_sparse = 0;
628
629 memset(&args, 0, sizeof(args));
630 args.tp = tp;
631 args.mp = tp->t_mountp;
632 args.fsbno = NULLFSBLOCK;
633 args.oinfo = XFS_RMAP_OINFO_INODES;
634
635#ifdef DEBUG
636 /* randomly do sparse inode allocations */
637 if (xfs_has_sparseinodes(tp->t_mountp) &&
638 igeo->ialloc_min_blks < igeo->ialloc_blks)
639 do_sparse = get_random_u32_below(2);
640#endif
641
642 /*
643 * Locking will ensure that we don't have two callers in here
644 * at one time.
645 */
646 newlen = igeo->ialloc_inos;
647 if (igeo->maxicount &&
648 percpu_counter_read_positive(&args.mp->m_icount) + newlen >
649 igeo->maxicount)
650 return -ENOSPC;
651 args.minlen = args.maxlen = igeo->ialloc_blks;
652 /*
653 * First try to allocate inodes contiguous with the last-allocated
654 * chunk of inodes. If the filesystem is striped, this will fill
655 * an entire stripe unit with inodes.
656 */
657 agi = agbp->b_addr;
658 newino = be32_to_cpu(agi->agi_newino);
659 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
660 igeo->ialloc_blks;
661 if (do_sparse)
662 goto sparse_alloc;
663 if (likely(newino != NULLAGINO &&
664 (args.agbno < be32_to_cpu(agi->agi_length)))) {
665 args.fsbno = XFS_AGB_TO_FSB(args.mp, pag->pag_agno, args.agbno);
666 args.type = XFS_ALLOCTYPE_THIS_BNO;
667 args.prod = 1;
668
669 /*
670 * We need to take into account alignment here to ensure that
671 * we don't modify the free list if we fail to have an exact
672 * block. If we don't have an exact match, and every oher
673 * attempt allocation attempt fails, we'll end up cancelling
674 * a dirty transaction and shutting down.
675 *
676 * For an exact allocation, alignment must be 1,
677 * however we need to take cluster alignment into account when
678 * fixing up the freelist. Use the minalignslop field to
679 * indicate that extra blocks might be required for alignment,
680 * but not to use them in the actual exact allocation.
681 */
682 args.alignment = 1;
683 args.minalignslop = igeo->cluster_align - 1;
684
685 /* Allow space for the inode btree to split. */
686 args.minleft = igeo->inobt_maxlevels;
687 if ((error = xfs_alloc_vextent(&args)))
688 return error;
689
690 /*
691 * This request might have dirtied the transaction if the AG can
692 * satisfy the request, but the exact block was not available.
693 * If the allocation did fail, subsequent requests will relax
694 * the exact agbno requirement and increase the alignment
695 * instead. It is critical that the total size of the request
696 * (len + alignment + slop) does not increase from this point
697 * on, so reset minalignslop to ensure it is not included in
698 * subsequent requests.
699 */
700 args.minalignslop = 0;
701 }
702
703 if (unlikely(args.fsbno == NULLFSBLOCK)) {
704 /*
705 * Set the alignment for the allocation.
706 * If stripe alignment is turned on then align at stripe unit
707 * boundary.
708 * If the cluster size is smaller than a filesystem block
709 * then we're doing I/O for inodes in filesystem block size
710 * pieces, so don't need alignment anyway.
711 */
712 isaligned = 0;
713 if (igeo->ialloc_align) {
714 ASSERT(!xfs_has_noalign(args.mp));
715 args.alignment = args.mp->m_dalign;
716 isaligned = 1;
717 } else
718 args.alignment = igeo->cluster_align;
719 /*
720 * Need to figure out where to allocate the inode blocks.
721 * Ideally they should be spaced out through the a.g.
722 * For now, just allocate blocks up front.
723 */
724 args.agbno = be32_to_cpu(agi->agi_root);
725 args.fsbno = XFS_AGB_TO_FSB(args.mp, pag->pag_agno, args.agbno);
726 /*
727 * Allocate a fixed-size extent of inodes.
728 */
729 args.type = XFS_ALLOCTYPE_NEAR_BNO;
730 args.prod = 1;
731 /*
732 * Allow space for the inode btree to split.
733 */
734 args.minleft = igeo->inobt_maxlevels;
735 if ((error = xfs_alloc_vextent(&args)))
736 return error;
737 }
738
739 /*
740 * If stripe alignment is turned on, then try again with cluster
741 * alignment.
742 */
743 if (isaligned && args.fsbno == NULLFSBLOCK) {
744 args.type = XFS_ALLOCTYPE_NEAR_BNO;
745 args.agbno = be32_to_cpu(agi->agi_root);
746 args.fsbno = XFS_AGB_TO_FSB(args.mp, pag->pag_agno, args.agbno);
747 args.alignment = igeo->cluster_align;
748 if ((error = xfs_alloc_vextent(&args)))
749 return error;
750 }
751
752 /*
753 * Finally, try a sparse allocation if the filesystem supports it and
754 * the sparse allocation length is smaller than a full chunk.
755 */
756 if (xfs_has_sparseinodes(args.mp) &&
757 igeo->ialloc_min_blks < igeo->ialloc_blks &&
758 args.fsbno == NULLFSBLOCK) {
759sparse_alloc:
760 args.type = XFS_ALLOCTYPE_NEAR_BNO;
761 args.agbno = be32_to_cpu(agi->agi_root);
762 args.fsbno = XFS_AGB_TO_FSB(args.mp, pag->pag_agno, args.agbno);
763 args.alignment = args.mp->m_sb.sb_spino_align;
764 args.prod = 1;
765
766 args.minlen = igeo->ialloc_min_blks;
767 args.maxlen = args.minlen;
768
769 /*
770 * The inode record will be aligned to full chunk size. We must
771 * prevent sparse allocation from AG boundaries that result in
772 * invalid inode records, such as records that start at agbno 0
773 * or extend beyond the AG.
774 *
775 * Set min agbno to the first aligned, non-zero agbno and max to
776 * the last aligned agbno that is at least one full chunk from
777 * the end of the AG.
778 */
779 args.min_agbno = args.mp->m_sb.sb_inoalignmt;
780 args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
781 args.mp->m_sb.sb_inoalignmt) -
782 igeo->ialloc_blks;
783
784 error = xfs_alloc_vextent(&args);
785 if (error)
786 return error;
787
788 newlen = XFS_AGB_TO_AGINO(args.mp, args.len);
789 ASSERT(newlen <= XFS_INODES_PER_CHUNK);
790 allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
791 }
792
793 if (args.fsbno == NULLFSBLOCK)
794 return -EAGAIN;
795
796 ASSERT(args.len == args.minlen);
797
798 /*
799 * Stamp and write the inode buffers.
800 *
801 * Seed the new inode cluster with a random generation number. This
802 * prevents short-term reuse of generation numbers if a chunk is
803 * freed and then immediately reallocated. We use random numbers
804 * rather than a linear progression to prevent the next generation
805 * number from being easily guessable.
806 */
807 error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, pag->pag_agno,
808 args.agbno, args.len, get_random_u32());
809
810 if (error)
811 return error;
812 /*
813 * Convert the results.
814 */
815 newino = XFS_AGB_TO_AGINO(args.mp, args.agbno);
816
817 if (xfs_inobt_issparse(~allocmask)) {
818 /*
819 * We've allocated a sparse chunk. Align the startino and mask.
820 */
821 xfs_align_sparse_ino(args.mp, &newino, &allocmask);
822
823 rec.ir_startino = newino;
824 rec.ir_holemask = ~allocmask;
825 rec.ir_count = newlen;
826 rec.ir_freecount = newlen;
827 rec.ir_free = XFS_INOBT_ALL_FREE;
828
829 /*
830 * Insert the sparse record into the inobt and allow for a merge
831 * if necessary. If a merge does occur, rec is updated to the
832 * merged record.
833 */
834 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, pag,
835 XFS_BTNUM_INO, &rec, true);
836 if (error == -EFSCORRUPTED) {
837 xfs_alert(args.mp,
838 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
839 XFS_AGINO_TO_INO(args.mp, pag->pag_agno,
840 rec.ir_startino),
841 rec.ir_holemask, rec.ir_count);
842 xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
843 }
844 if (error)
845 return error;
846
847 /*
848 * We can't merge the part we've just allocated as for the inobt
849 * due to finobt semantics. The original record may or may not
850 * exist independent of whether physical inodes exist in this
851 * sparse chunk.
852 *
853 * We must update the finobt record based on the inobt record.
854 * rec contains the fully merged and up to date inobt record
855 * from the previous call. Set merge false to replace any
856 * existing record with this one.
857 */
858 if (xfs_has_finobt(args.mp)) {
859 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, pag,
860 XFS_BTNUM_FINO, &rec, false);
861 if (error)
862 return error;
863 }
864 } else {
865 /* full chunk - insert new records to both btrees */
866 error = xfs_inobt_insert(args.mp, tp, agbp, pag, newino, newlen,
867 XFS_BTNUM_INO);
868 if (error)
869 return error;
870
871 if (xfs_has_finobt(args.mp)) {
872 error = xfs_inobt_insert(args.mp, tp, agbp, pag, newino,
873 newlen, XFS_BTNUM_FINO);
874 if (error)
875 return error;
876 }
877 }
878
879 /*
880 * Update AGI counts and newino.
881 */
882 be32_add_cpu(&agi->agi_count, newlen);
883 be32_add_cpu(&agi->agi_freecount, newlen);
884 pag->pagi_freecount += newlen;
885 pag->pagi_count += newlen;
886 agi->agi_newino = cpu_to_be32(newino);
887
888 /*
889 * Log allocation group header fields
890 */
891 xfs_ialloc_log_agi(tp, agbp,
892 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
893 /*
894 * Modify/log superblock values for inode count and inode free count.
895 */
896 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
897 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
898 return 0;
899}
900
901/*
902 * Try to retrieve the next record to the left/right from the current one.
903 */
904STATIC int
905xfs_ialloc_next_rec(
906 struct xfs_btree_cur *cur,
907 xfs_inobt_rec_incore_t *rec,
908 int *done,
909 int left)
910{
911 int error;
912 int i;
913
914 if (left)
915 error = xfs_btree_decrement(cur, 0, &i);
916 else
917 error = xfs_btree_increment(cur, 0, &i);
918
919 if (error)
920 return error;
921 *done = !i;
922 if (i) {
923 error = xfs_inobt_get_rec(cur, rec, &i);
924 if (error)
925 return error;
926 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
927 return -EFSCORRUPTED;
928 }
929
930 return 0;
931}
932
933STATIC int
934xfs_ialloc_get_rec(
935 struct xfs_btree_cur *cur,
936 xfs_agino_t agino,
937 xfs_inobt_rec_incore_t *rec,
938 int *done)
939{
940 int error;
941 int i;
942
943 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
944 if (error)
945 return error;
946 *done = !i;
947 if (i) {
948 error = xfs_inobt_get_rec(cur, rec, &i);
949 if (error)
950 return error;
951 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
952 return -EFSCORRUPTED;
953 }
954
955 return 0;
956}
957
958/*
959 * Return the offset of the first free inode in the record. If the inode chunk
960 * is sparsely allocated, we convert the record holemask to inode granularity
961 * and mask off the unallocated regions from the inode free mask.
962 */
963STATIC int
964xfs_inobt_first_free_inode(
965 struct xfs_inobt_rec_incore *rec)
966{
967 xfs_inofree_t realfree;
968
969 /* if there are no holes, return the first available offset */
970 if (!xfs_inobt_issparse(rec->ir_holemask))
971 return xfs_lowbit64(rec->ir_free);
972
973 realfree = xfs_inobt_irec_to_allocmask(rec);
974 realfree &= rec->ir_free;
975
976 return xfs_lowbit64(realfree);
977}
978
979/*
980 * Allocate an inode using the inobt-only algorithm.
981 */
982STATIC int
983xfs_dialloc_ag_inobt(
984 struct xfs_trans *tp,
985 struct xfs_buf *agbp,
986 struct xfs_perag *pag,
987 xfs_ino_t parent,
988 xfs_ino_t *inop)
989{
990 struct xfs_mount *mp = tp->t_mountp;
991 struct xfs_agi *agi = agbp->b_addr;
992 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
993 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
994 struct xfs_btree_cur *cur, *tcur;
995 struct xfs_inobt_rec_incore rec, trec;
996 xfs_ino_t ino;
997 int error;
998 int offset;
999 int i, j;
1000 int searchdistance = 10;
1001
1002 ASSERT(pag->pagi_init);
1003 ASSERT(pag->pagi_inodeok);
1004 ASSERT(pag->pagi_freecount > 0);
1005
1006 restart_pagno:
1007 cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_INO);
1008 /*
1009 * If pagino is 0 (this is the root inode allocation) use newino.
1010 * This must work because we've just allocated some.
1011 */
1012 if (!pagino)
1013 pagino = be32_to_cpu(agi->agi_newino);
1014
1015 error = xfs_check_agi_freecount(cur);
1016 if (error)
1017 goto error0;
1018
1019 /*
1020 * If in the same AG as the parent, try to get near the parent.
1021 */
1022 if (pagno == pag->pag_agno) {
1023 int doneleft; /* done, to the left */
1024 int doneright; /* done, to the right */
1025
1026 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1027 if (error)
1028 goto error0;
1029 if (XFS_IS_CORRUPT(mp, i != 1)) {
1030 error = -EFSCORRUPTED;
1031 goto error0;
1032 }
1033
1034 error = xfs_inobt_get_rec(cur, &rec, &j);
1035 if (error)
1036 goto error0;
1037 if (XFS_IS_CORRUPT(mp, j != 1)) {
1038 error = -EFSCORRUPTED;
1039 goto error0;
1040 }
1041
1042 if (rec.ir_freecount > 0) {
1043 /*
1044 * Found a free inode in the same chunk
1045 * as the parent, done.
1046 */
1047 goto alloc_inode;
1048 }
1049
1050
1051 /*
1052 * In the same AG as parent, but parent's chunk is full.
1053 */
1054
1055 /* duplicate the cursor, search left & right simultaneously */
1056 error = xfs_btree_dup_cursor(cur, &tcur);
1057 if (error)
1058 goto error0;
1059
1060 /*
1061 * Skip to last blocks looked up if same parent inode.
1062 */
1063 if (pagino != NULLAGINO &&
1064 pag->pagl_pagino == pagino &&
1065 pag->pagl_leftrec != NULLAGINO &&
1066 pag->pagl_rightrec != NULLAGINO) {
1067 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1068 &trec, &doneleft);
1069 if (error)
1070 goto error1;
1071
1072 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1073 &rec, &doneright);
1074 if (error)
1075 goto error1;
1076 } else {
1077 /* search left with tcur, back up 1 record */
1078 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1079 if (error)
1080 goto error1;
1081
1082 /* search right with cur, go forward 1 record. */
1083 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1084 if (error)
1085 goto error1;
1086 }
1087
1088 /*
1089 * Loop until we find an inode chunk with a free inode.
1090 */
1091 while (--searchdistance > 0 && (!doneleft || !doneright)) {
1092 int useleft; /* using left inode chunk this time */
1093
1094 /* figure out the closer block if both are valid. */
1095 if (!doneleft && !doneright) {
1096 useleft = pagino -
1097 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1098 rec.ir_startino - pagino;
1099 } else {
1100 useleft = !doneleft;
1101 }
1102
1103 /* free inodes to the left? */
1104 if (useleft && trec.ir_freecount) {
1105 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1106 cur = tcur;
1107
1108 pag->pagl_leftrec = trec.ir_startino;
1109 pag->pagl_rightrec = rec.ir_startino;
1110 pag->pagl_pagino = pagino;
1111 rec = trec;
1112 goto alloc_inode;
1113 }
1114
1115 /* free inodes to the right? */
1116 if (!useleft && rec.ir_freecount) {
1117 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1118
1119 pag->pagl_leftrec = trec.ir_startino;
1120 pag->pagl_rightrec = rec.ir_startino;
1121 pag->pagl_pagino = pagino;
1122 goto alloc_inode;
1123 }
1124
1125 /* get next record to check */
1126 if (useleft) {
1127 error = xfs_ialloc_next_rec(tcur, &trec,
1128 &doneleft, 1);
1129 } else {
1130 error = xfs_ialloc_next_rec(cur, &rec,
1131 &doneright, 0);
1132 }
1133 if (error)
1134 goto error1;
1135 }
1136
1137 if (searchdistance <= 0) {
1138 /*
1139 * Not in range - save last search
1140 * location and allocate a new inode
1141 */
1142 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1143 pag->pagl_leftrec = trec.ir_startino;
1144 pag->pagl_rightrec = rec.ir_startino;
1145 pag->pagl_pagino = pagino;
1146
1147 } else {
1148 /*
1149 * We've reached the end of the btree. because
1150 * we are only searching a small chunk of the
1151 * btree each search, there is obviously free
1152 * inodes closer to the parent inode than we
1153 * are now. restart the search again.
1154 */
1155 pag->pagl_pagino = NULLAGINO;
1156 pag->pagl_leftrec = NULLAGINO;
1157 pag->pagl_rightrec = NULLAGINO;
1158 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1159 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1160 goto restart_pagno;
1161 }
1162 }
1163
1164 /*
1165 * In a different AG from the parent.
1166 * See if the most recently allocated block has any free.
1167 */
1168 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1169 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1170 XFS_LOOKUP_EQ, &i);
1171 if (error)
1172 goto error0;
1173
1174 if (i == 1) {
1175 error = xfs_inobt_get_rec(cur, &rec, &j);
1176 if (error)
1177 goto error0;
1178
1179 if (j == 1 && rec.ir_freecount > 0) {
1180 /*
1181 * The last chunk allocated in the group
1182 * still has a free inode.
1183 */
1184 goto alloc_inode;
1185 }
1186 }
1187 }
1188
1189 /*
1190 * None left in the last group, search the whole AG
1191 */
1192 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1193 if (error)
1194 goto error0;
1195 if (XFS_IS_CORRUPT(mp, i != 1)) {
1196 error = -EFSCORRUPTED;
1197 goto error0;
1198 }
1199
1200 for (;;) {
1201 error = xfs_inobt_get_rec(cur, &rec, &i);
1202 if (error)
1203 goto error0;
1204 if (XFS_IS_CORRUPT(mp, i != 1)) {
1205 error = -EFSCORRUPTED;
1206 goto error0;
1207 }
1208 if (rec.ir_freecount > 0)
1209 break;
1210 error = xfs_btree_increment(cur, 0, &i);
1211 if (error)
1212 goto error0;
1213 if (XFS_IS_CORRUPT(mp, i != 1)) {
1214 error = -EFSCORRUPTED;
1215 goto error0;
1216 }
1217 }
1218
1219alloc_inode:
1220 offset = xfs_inobt_first_free_inode(&rec);
1221 ASSERT(offset >= 0);
1222 ASSERT(offset < XFS_INODES_PER_CHUNK);
1223 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1224 XFS_INODES_PER_CHUNK) == 0);
1225 ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
1226 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1227 rec.ir_freecount--;
1228 error = xfs_inobt_update(cur, &rec);
1229 if (error)
1230 goto error0;
1231 be32_add_cpu(&agi->agi_freecount, -1);
1232 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1233 pag->pagi_freecount--;
1234
1235 error = xfs_check_agi_freecount(cur);
1236 if (error)
1237 goto error0;
1238
1239 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1240 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1241 *inop = ino;
1242 return 0;
1243error1:
1244 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1245error0:
1246 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1247 return error;
1248}
1249
1250/*
1251 * Use the free inode btree to allocate an inode based on distance from the
1252 * parent. Note that the provided cursor may be deleted and replaced.
1253 */
1254STATIC int
1255xfs_dialloc_ag_finobt_near(
1256 xfs_agino_t pagino,
1257 struct xfs_btree_cur **ocur,
1258 struct xfs_inobt_rec_incore *rec)
1259{
1260 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */
1261 struct xfs_btree_cur *rcur; /* right search cursor */
1262 struct xfs_inobt_rec_incore rrec;
1263 int error;
1264 int i, j;
1265
1266 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1267 if (error)
1268 return error;
1269
1270 if (i == 1) {
1271 error = xfs_inobt_get_rec(lcur, rec, &i);
1272 if (error)
1273 return error;
1274 if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1))
1275 return -EFSCORRUPTED;
1276
1277 /*
1278 * See if we've landed in the parent inode record. The finobt
1279 * only tracks chunks with at least one free inode, so record
1280 * existence is enough.
1281 */
1282 if (pagino >= rec->ir_startino &&
1283 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1284 return 0;
1285 }
1286
1287 error = xfs_btree_dup_cursor(lcur, &rcur);
1288 if (error)
1289 return error;
1290
1291 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1292 if (error)
1293 goto error_rcur;
1294 if (j == 1) {
1295 error = xfs_inobt_get_rec(rcur, &rrec, &j);
1296 if (error)
1297 goto error_rcur;
1298 if (XFS_IS_CORRUPT(lcur->bc_mp, j != 1)) {
1299 error = -EFSCORRUPTED;
1300 goto error_rcur;
1301 }
1302 }
1303
1304 if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1 && j != 1)) {
1305 error = -EFSCORRUPTED;
1306 goto error_rcur;
1307 }
1308 if (i == 1 && j == 1) {
1309 /*
1310 * Both the left and right records are valid. Choose the closer
1311 * inode chunk to the target.
1312 */
1313 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1314 (rrec.ir_startino - pagino)) {
1315 *rec = rrec;
1316 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1317 *ocur = rcur;
1318 } else {
1319 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1320 }
1321 } else if (j == 1) {
1322 /* only the right record is valid */
1323 *rec = rrec;
1324 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1325 *ocur = rcur;
1326 } else if (i == 1) {
1327 /* only the left record is valid */
1328 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1329 }
1330
1331 return 0;
1332
1333error_rcur:
1334 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1335 return error;
1336}
1337
1338/*
1339 * Use the free inode btree to find a free inode based on a newino hint. If
1340 * the hint is NULL, find the first free inode in the AG.
1341 */
1342STATIC int
1343xfs_dialloc_ag_finobt_newino(
1344 struct xfs_agi *agi,
1345 struct xfs_btree_cur *cur,
1346 struct xfs_inobt_rec_incore *rec)
1347{
1348 int error;
1349 int i;
1350
1351 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1352 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1353 XFS_LOOKUP_EQ, &i);
1354 if (error)
1355 return error;
1356 if (i == 1) {
1357 error = xfs_inobt_get_rec(cur, rec, &i);
1358 if (error)
1359 return error;
1360 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1361 return -EFSCORRUPTED;
1362 return 0;
1363 }
1364 }
1365
1366 /*
1367 * Find the first inode available in the AG.
1368 */
1369 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1370 if (error)
1371 return error;
1372 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1373 return -EFSCORRUPTED;
1374
1375 error = xfs_inobt_get_rec(cur, rec, &i);
1376 if (error)
1377 return error;
1378 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1379 return -EFSCORRUPTED;
1380
1381 return 0;
1382}
1383
1384/*
1385 * Update the inobt based on a modification made to the finobt. Also ensure that
1386 * the records from both trees are equivalent post-modification.
1387 */
1388STATIC int
1389xfs_dialloc_ag_update_inobt(
1390 struct xfs_btree_cur *cur, /* inobt cursor */
1391 struct xfs_inobt_rec_incore *frec, /* finobt record */
1392 int offset) /* inode offset */
1393{
1394 struct xfs_inobt_rec_incore rec;
1395 int error;
1396 int i;
1397
1398 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1399 if (error)
1400 return error;
1401 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1402 return -EFSCORRUPTED;
1403
1404 error = xfs_inobt_get_rec(cur, &rec, &i);
1405 if (error)
1406 return error;
1407 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1408 return -EFSCORRUPTED;
1409 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1410 XFS_INODES_PER_CHUNK) == 0);
1411
1412 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1413 rec.ir_freecount--;
1414
1415 if (XFS_IS_CORRUPT(cur->bc_mp,
1416 rec.ir_free != frec->ir_free ||
1417 rec.ir_freecount != frec->ir_freecount))
1418 return -EFSCORRUPTED;
1419
1420 return xfs_inobt_update(cur, &rec);
1421}
1422
1423/*
1424 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1425 * back to the inobt search algorithm.
1426 *
1427 * The caller selected an AG for us, and made sure that free inodes are
1428 * available.
1429 */
1430static int
1431xfs_dialloc_ag(
1432 struct xfs_trans *tp,
1433 struct xfs_buf *agbp,
1434 struct xfs_perag *pag,
1435 xfs_ino_t parent,
1436 xfs_ino_t *inop)
1437{
1438 struct xfs_mount *mp = tp->t_mountp;
1439 struct xfs_agi *agi = agbp->b_addr;
1440 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1441 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1442 struct xfs_btree_cur *cur; /* finobt cursor */
1443 struct xfs_btree_cur *icur; /* inobt cursor */
1444 struct xfs_inobt_rec_incore rec;
1445 xfs_ino_t ino;
1446 int error;
1447 int offset;
1448 int i;
1449
1450 if (!xfs_has_finobt(mp))
1451 return xfs_dialloc_ag_inobt(tp, agbp, pag, parent, inop);
1452
1453 /*
1454 * If pagino is 0 (this is the root inode allocation) use newino.
1455 * This must work because we've just allocated some.
1456 */
1457 if (!pagino)
1458 pagino = be32_to_cpu(agi->agi_newino);
1459
1460 cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_FINO);
1461
1462 error = xfs_check_agi_freecount(cur);
1463 if (error)
1464 goto error_cur;
1465
1466 /*
1467 * The search algorithm depends on whether we're in the same AG as the
1468 * parent. If so, find the closest available inode to the parent. If
1469 * not, consider the agi hint or find the first free inode in the AG.
1470 */
1471 if (pag->pag_agno == pagno)
1472 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1473 else
1474 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1475 if (error)
1476 goto error_cur;
1477
1478 offset = xfs_inobt_first_free_inode(&rec);
1479 ASSERT(offset >= 0);
1480 ASSERT(offset < XFS_INODES_PER_CHUNK);
1481 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1482 XFS_INODES_PER_CHUNK) == 0);
1483 ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
1484
1485 /*
1486 * Modify or remove the finobt record.
1487 */
1488 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1489 rec.ir_freecount--;
1490 if (rec.ir_freecount)
1491 error = xfs_inobt_update(cur, &rec);
1492 else
1493 error = xfs_btree_delete(cur, &i);
1494 if (error)
1495 goto error_cur;
1496
1497 /*
1498 * The finobt has now been updated appropriately. We haven't updated the
1499 * agi and superblock yet, so we can create an inobt cursor and validate
1500 * the original freecount. If all is well, make the equivalent update to
1501 * the inobt using the finobt record and offset information.
1502 */
1503 icur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_INO);
1504
1505 error = xfs_check_agi_freecount(icur);
1506 if (error)
1507 goto error_icur;
1508
1509 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1510 if (error)
1511 goto error_icur;
1512
1513 /*
1514 * Both trees have now been updated. We must update the perag and
1515 * superblock before we can check the freecount for each btree.
1516 */
1517 be32_add_cpu(&agi->agi_freecount, -1);
1518 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1519 pag->pagi_freecount--;
1520
1521 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1522
1523 error = xfs_check_agi_freecount(icur);
1524 if (error)
1525 goto error_icur;
1526 error = xfs_check_agi_freecount(cur);
1527 if (error)
1528 goto error_icur;
1529
1530 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1531 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1532 *inop = ino;
1533 return 0;
1534
1535error_icur:
1536 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1537error_cur:
1538 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1539 return error;
1540}
1541
1542static int
1543xfs_dialloc_roll(
1544 struct xfs_trans **tpp,
1545 struct xfs_buf *agibp)
1546{
1547 struct xfs_trans *tp = *tpp;
1548 struct xfs_dquot_acct *dqinfo;
1549 int error;
1550
1551 /*
1552 * Hold to on to the agibp across the commit so no other allocation can
1553 * come in and take the free inodes we just allocated for our caller.
1554 */
1555 xfs_trans_bhold(tp, agibp);
1556
1557 /*
1558 * We want the quota changes to be associated with the next transaction,
1559 * NOT this one. So, detach the dqinfo from this and attach it to the
1560 * next transaction.
1561 */
1562 dqinfo = tp->t_dqinfo;
1563 tp->t_dqinfo = NULL;
1564
1565 error = xfs_trans_roll(&tp);
1566
1567 /* Re-attach the quota info that we detached from prev trx. */
1568 tp->t_dqinfo = dqinfo;
1569
1570 /*
1571 * Join the buffer even on commit error so that the buffer is released
1572 * when the caller cancels the transaction and doesn't have to handle
1573 * this error case specially.
1574 */
1575 xfs_trans_bjoin(tp, agibp);
1576 *tpp = tp;
1577 return error;
1578}
1579
1580static xfs_agnumber_t
1581xfs_ialloc_next_ag(
1582 xfs_mount_t *mp)
1583{
1584 xfs_agnumber_t agno;
1585
1586 spin_lock(&mp->m_agirotor_lock);
1587 agno = mp->m_agirotor;
1588 if (++mp->m_agirotor >= mp->m_maxagi)
1589 mp->m_agirotor = 0;
1590 spin_unlock(&mp->m_agirotor_lock);
1591
1592 return agno;
1593}
1594
1595static bool
1596xfs_dialloc_good_ag(
1597 struct xfs_trans *tp,
1598 struct xfs_perag *pag,
1599 umode_t mode,
1600 int flags,
1601 bool ok_alloc)
1602{
1603 struct xfs_mount *mp = tp->t_mountp;
1604 xfs_extlen_t ineed;
1605 xfs_extlen_t longest = 0;
1606 int needspace;
1607 int error;
1608
1609 if (!pag->pagi_inodeok)
1610 return false;
1611
1612 if (!pag->pagi_init) {
1613 error = xfs_ialloc_read_agi(pag, tp, NULL);
1614 if (error)
1615 return false;
1616 }
1617
1618 if (pag->pagi_freecount)
1619 return true;
1620 if (!ok_alloc)
1621 return false;
1622
1623 if (!pag->pagf_init) {
1624 error = xfs_alloc_read_agf(pag, tp, flags, NULL);
1625 if (error)
1626 return false;
1627 }
1628
1629 /*
1630 * Check that there is enough free space for the file plus a chunk of
1631 * inodes if we need to allocate some. If this is the first pass across
1632 * the AGs, take into account the potential space needed for alignment
1633 * of inode chunks when checking the longest contiguous free space in
1634 * the AG - this prevents us from getting ENOSPC because we have free
1635 * space larger than ialloc_blks but alignment constraints prevent us
1636 * from using it.
1637 *
1638 * If we can't find an AG with space for full alignment slack to be
1639 * taken into account, we must be near ENOSPC in all AGs. Hence we
1640 * don't include alignment for the second pass and so if we fail
1641 * allocation due to alignment issues then it is most likely a real
1642 * ENOSPC condition.
1643 *
1644 * XXX(dgc): this calculation is now bogus thanks to the per-ag
1645 * reservations that xfs_alloc_fix_freelist() now does via
1646 * xfs_alloc_space_available(). When the AG fills up, pagf_freeblks will
1647 * be more than large enough for the check below to succeed, but
1648 * xfs_alloc_space_available() will fail because of the non-zero
1649 * metadata reservation and hence we won't actually be able to allocate
1650 * more inodes in this AG. We do soooo much unnecessary work near ENOSPC
1651 * because of this.
1652 */
1653 ineed = M_IGEO(mp)->ialloc_min_blks;
1654 if (flags && ineed > 1)
1655 ineed += M_IGEO(mp)->cluster_align;
1656 longest = pag->pagf_longest;
1657 if (!longest)
1658 longest = pag->pagf_flcount > 0;
1659 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
1660
1661 if (pag->pagf_freeblks < needspace + ineed || longest < ineed)
1662 return false;
1663 return true;
1664}
1665
1666static int
1667xfs_dialloc_try_ag(
1668 struct xfs_trans **tpp,
1669 struct xfs_perag *pag,
1670 xfs_ino_t parent,
1671 xfs_ino_t *new_ino,
1672 bool ok_alloc)
1673{
1674 struct xfs_buf *agbp;
1675 xfs_ino_t ino;
1676 int error;
1677
1678 /*
1679 * Then read in the AGI buffer and recheck with the AGI buffer
1680 * lock held.
1681 */
1682 error = xfs_ialloc_read_agi(pag, *tpp, &agbp);
1683 if (error)
1684 return error;
1685
1686 if (!pag->pagi_freecount) {
1687 if (!ok_alloc) {
1688 error = -EAGAIN;
1689 goto out_release;
1690 }
1691
1692 error = xfs_ialloc_ag_alloc(*tpp, agbp, pag);
1693 if (error < 0)
1694 goto out_release;
1695
1696 /*
1697 * We successfully allocated space for an inode cluster in this
1698 * AG. Roll the transaction so that we can allocate one of the
1699 * new inodes.
1700 */
1701 ASSERT(pag->pagi_freecount > 0);
1702 error = xfs_dialloc_roll(tpp, agbp);
1703 if (error)
1704 goto out_release;
1705 }
1706
1707 /* Allocate an inode in the found AG */
1708 error = xfs_dialloc_ag(*tpp, agbp, pag, parent, &ino);
1709 if (!error)
1710 *new_ino = ino;
1711 return error;
1712
1713out_release:
1714 xfs_trans_brelse(*tpp, agbp);
1715 return error;
1716}
1717
1718/*
1719 * Allocate an on-disk inode.
1720 *
1721 * Mode is used to tell whether the new inode is a directory and hence where to
1722 * locate it. The on-disk inode that is allocated will be returned in @new_ino
1723 * on success, otherwise an error will be set to indicate the failure (e.g.
1724 * -ENOSPC).
1725 */
1726int
1727xfs_dialloc(
1728 struct xfs_trans **tpp,
1729 xfs_ino_t parent,
1730 umode_t mode,
1731 xfs_ino_t *new_ino)
1732{
1733 struct xfs_mount *mp = (*tpp)->t_mountp;
1734 xfs_agnumber_t agno;
1735 int error = 0;
1736 xfs_agnumber_t start_agno;
1737 struct xfs_perag *pag;
1738 struct xfs_ino_geometry *igeo = M_IGEO(mp);
1739 bool ok_alloc = true;
1740 int flags;
1741 xfs_ino_t ino;
1742
1743 /*
1744 * Directories, symlinks, and regular files frequently allocate at least
1745 * one block, so factor that potential expansion when we examine whether
1746 * an AG has enough space for file creation.
1747 */
1748 if (S_ISDIR(mode))
1749 start_agno = xfs_ialloc_next_ag(mp);
1750 else {
1751 start_agno = XFS_INO_TO_AGNO(mp, parent);
1752 if (start_agno >= mp->m_maxagi)
1753 start_agno = 0;
1754 }
1755
1756 /*
1757 * If we have already hit the ceiling of inode blocks then clear
1758 * ok_alloc so we scan all available agi structures for a free
1759 * inode.
1760 *
1761 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1762 * which will sacrifice the preciseness but improve the performance.
1763 */
1764 if (igeo->maxicount &&
1765 percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos
1766 > igeo->maxicount) {
1767 ok_alloc = false;
1768 }
1769
1770 /*
1771 * Loop until we find an allocation group that either has free inodes
1772 * or in which we can allocate some inodes. Iterate through the
1773 * allocation groups upward, wrapping at the end.
1774 */
1775 agno = start_agno;
1776 flags = XFS_ALLOC_FLAG_TRYLOCK;
1777 for (;;) {
1778 pag = xfs_perag_get(mp, agno);
1779 if (xfs_dialloc_good_ag(*tpp, pag, mode, flags, ok_alloc)) {
1780 error = xfs_dialloc_try_ag(tpp, pag, parent,
1781 &ino, ok_alloc);
1782 if (error != -EAGAIN)
1783 break;
1784 }
1785
1786 if (xfs_is_shutdown(mp)) {
1787 error = -EFSCORRUPTED;
1788 break;
1789 }
1790 if (++agno == mp->m_maxagi)
1791 agno = 0;
1792 if (agno == start_agno) {
1793 if (!flags) {
1794 error = -ENOSPC;
1795 break;
1796 }
1797 flags = 0;
1798 }
1799 xfs_perag_put(pag);
1800 }
1801
1802 if (!error)
1803 *new_ino = ino;
1804 xfs_perag_put(pag);
1805 return error;
1806}
1807
1808/*
1809 * Free the blocks of an inode chunk. We must consider that the inode chunk
1810 * might be sparse and only free the regions that are allocated as part of the
1811 * chunk.
1812 */
1813STATIC void
1814xfs_difree_inode_chunk(
1815 struct xfs_trans *tp,
1816 xfs_agnumber_t agno,
1817 struct xfs_inobt_rec_incore *rec)
1818{
1819 struct xfs_mount *mp = tp->t_mountp;
1820 xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp,
1821 rec->ir_startino);
1822 int startidx, endidx;
1823 int nextbit;
1824 xfs_agblock_t agbno;
1825 int contigblk;
1826 DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1827
1828 if (!xfs_inobt_issparse(rec->ir_holemask)) {
1829 /* not sparse, calculate extent info directly */
1830 xfs_free_extent_later(tp, XFS_AGB_TO_FSB(mp, agno, sagbno),
1831 M_IGEO(mp)->ialloc_blks,
1832 &XFS_RMAP_OINFO_INODES);
1833 return;
1834 }
1835
1836 /* holemask is only 16-bits (fits in an unsigned long) */
1837 ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1838 holemask[0] = rec->ir_holemask;
1839
1840 /*
1841 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1842 * holemask and convert the start/end index of each range to an extent.
1843 * We start with the start and end index both pointing at the first 0 in
1844 * the mask.
1845 */
1846 startidx = endidx = find_first_zero_bit(holemask,
1847 XFS_INOBT_HOLEMASK_BITS);
1848 nextbit = startidx + 1;
1849 while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1850 nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1851 nextbit);
1852 /*
1853 * If the next zero bit is contiguous, update the end index of
1854 * the current range and continue.
1855 */
1856 if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1857 nextbit == endidx + 1) {
1858 endidx = nextbit;
1859 goto next;
1860 }
1861
1862 /*
1863 * nextbit is not contiguous with the current end index. Convert
1864 * the current start/end to an extent and add it to the free
1865 * list.
1866 */
1867 agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1868 mp->m_sb.sb_inopblock;
1869 contigblk = ((endidx - startidx + 1) *
1870 XFS_INODES_PER_HOLEMASK_BIT) /
1871 mp->m_sb.sb_inopblock;
1872
1873 ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1874 ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1875 xfs_free_extent_later(tp, XFS_AGB_TO_FSB(mp, agno, agbno),
1876 contigblk, &XFS_RMAP_OINFO_INODES);
1877
1878 /* reset range to current bit and carry on... */
1879 startidx = endidx = nextbit;
1880
1881next:
1882 nextbit++;
1883 }
1884}
1885
1886STATIC int
1887xfs_difree_inobt(
1888 struct xfs_mount *mp,
1889 struct xfs_trans *tp,
1890 struct xfs_buf *agbp,
1891 struct xfs_perag *pag,
1892 xfs_agino_t agino,
1893 struct xfs_icluster *xic,
1894 struct xfs_inobt_rec_incore *orec)
1895{
1896 struct xfs_agi *agi = agbp->b_addr;
1897 struct xfs_btree_cur *cur;
1898 struct xfs_inobt_rec_incore rec;
1899 int ilen;
1900 int error;
1901 int i;
1902 int off;
1903
1904 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1905 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1906
1907 /*
1908 * Initialize the cursor.
1909 */
1910 cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_INO);
1911
1912 error = xfs_check_agi_freecount(cur);
1913 if (error)
1914 goto error0;
1915
1916 /*
1917 * Look for the entry describing this inode.
1918 */
1919 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1920 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1921 __func__, error);
1922 goto error0;
1923 }
1924 if (XFS_IS_CORRUPT(mp, i != 1)) {
1925 error = -EFSCORRUPTED;
1926 goto error0;
1927 }
1928 error = xfs_inobt_get_rec(cur, &rec, &i);
1929 if (error) {
1930 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1931 __func__, error);
1932 goto error0;
1933 }
1934 if (XFS_IS_CORRUPT(mp, i != 1)) {
1935 error = -EFSCORRUPTED;
1936 goto error0;
1937 }
1938 /*
1939 * Get the offset in the inode chunk.
1940 */
1941 off = agino - rec.ir_startino;
1942 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1943 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1944 /*
1945 * Mark the inode free & increment the count.
1946 */
1947 rec.ir_free |= XFS_INOBT_MASK(off);
1948 rec.ir_freecount++;
1949
1950 /*
1951 * When an inode chunk is free, it becomes eligible for removal. Don't
1952 * remove the chunk if the block size is large enough for multiple inode
1953 * chunks (that might not be free).
1954 */
1955 if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
1956 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1957 struct xfs_perag *pag = agbp->b_pag;
1958
1959 xic->deleted = true;
1960 xic->first_ino = XFS_AGINO_TO_INO(mp, pag->pag_agno,
1961 rec.ir_startino);
1962 xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
1963
1964 /*
1965 * Remove the inode cluster from the AGI B+Tree, adjust the
1966 * AGI and Superblock inode counts, and mark the disk space
1967 * to be freed when the transaction is committed.
1968 */
1969 ilen = rec.ir_freecount;
1970 be32_add_cpu(&agi->agi_count, -ilen);
1971 be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1972 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
1973 pag->pagi_freecount -= ilen - 1;
1974 pag->pagi_count -= ilen;
1975 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1976 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1977
1978 if ((error = xfs_btree_delete(cur, &i))) {
1979 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1980 __func__, error);
1981 goto error0;
1982 }
1983
1984 xfs_difree_inode_chunk(tp, pag->pag_agno, &rec);
1985 } else {
1986 xic->deleted = false;
1987
1988 error = xfs_inobt_update(cur, &rec);
1989 if (error) {
1990 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
1991 __func__, error);
1992 goto error0;
1993 }
1994
1995 /*
1996 * Change the inode free counts and log the ag/sb changes.
1997 */
1998 be32_add_cpu(&agi->agi_freecount, 1);
1999 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
2000 pag->pagi_freecount++;
2001 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2002 }
2003
2004 error = xfs_check_agi_freecount(cur);
2005 if (error)
2006 goto error0;
2007
2008 *orec = rec;
2009 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2010 return 0;
2011
2012error0:
2013 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2014 return error;
2015}
2016
2017/*
2018 * Free an inode in the free inode btree.
2019 */
2020STATIC int
2021xfs_difree_finobt(
2022 struct xfs_mount *mp,
2023 struct xfs_trans *tp,
2024 struct xfs_buf *agbp,
2025 struct xfs_perag *pag,
2026 xfs_agino_t agino,
2027 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */
2028{
2029 struct xfs_btree_cur *cur;
2030 struct xfs_inobt_rec_incore rec;
2031 int offset = agino - ibtrec->ir_startino;
2032 int error;
2033 int i;
2034
2035 cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_FINO);
2036
2037 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2038 if (error)
2039 goto error;
2040 if (i == 0) {
2041 /*
2042 * If the record does not exist in the finobt, we must have just
2043 * freed an inode in a previously fully allocated chunk. If not,
2044 * something is out of sync.
2045 */
2046 if (XFS_IS_CORRUPT(mp, ibtrec->ir_freecount != 1)) {
2047 error = -EFSCORRUPTED;
2048 goto error;
2049 }
2050
2051 error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2052 ibtrec->ir_count,
2053 ibtrec->ir_freecount,
2054 ibtrec->ir_free, &i);
2055 if (error)
2056 goto error;
2057 ASSERT(i == 1);
2058
2059 goto out;
2060 }
2061
2062 /*
2063 * Read and update the existing record. We could just copy the ibtrec
2064 * across here, but that would defeat the purpose of having redundant
2065 * metadata. By making the modifications independently, we can catch
2066 * corruptions that we wouldn't see if we just copied from one record
2067 * to another.
2068 */
2069 error = xfs_inobt_get_rec(cur, &rec, &i);
2070 if (error)
2071 goto error;
2072 if (XFS_IS_CORRUPT(mp, i != 1)) {
2073 error = -EFSCORRUPTED;
2074 goto error;
2075 }
2076
2077 rec.ir_free |= XFS_INOBT_MASK(offset);
2078 rec.ir_freecount++;
2079
2080 if (XFS_IS_CORRUPT(mp,
2081 rec.ir_free != ibtrec->ir_free ||
2082 rec.ir_freecount != ibtrec->ir_freecount)) {
2083 error = -EFSCORRUPTED;
2084 goto error;
2085 }
2086
2087 /*
2088 * The content of inobt records should always match between the inobt
2089 * and finobt. The lifecycle of records in the finobt is different from
2090 * the inobt in that the finobt only tracks records with at least one
2091 * free inode. Hence, if all of the inodes are free and we aren't
2092 * keeping inode chunks permanently on disk, remove the record.
2093 * Otherwise, update the record with the new information.
2094 *
2095 * Note that we currently can't free chunks when the block size is large
2096 * enough for multiple chunks. Leave the finobt record to remain in sync
2097 * with the inobt.
2098 */
2099 if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
2100 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
2101 error = xfs_btree_delete(cur, &i);
2102 if (error)
2103 goto error;
2104 ASSERT(i == 1);
2105 } else {
2106 error = xfs_inobt_update(cur, &rec);
2107 if (error)
2108 goto error;
2109 }
2110
2111out:
2112 error = xfs_check_agi_freecount(cur);
2113 if (error)
2114 goto error;
2115
2116 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2117 return 0;
2118
2119error:
2120 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2121 return error;
2122}
2123
2124/*
2125 * Free disk inode. Carefully avoids touching the incore inode, all
2126 * manipulations incore are the caller's responsibility.
2127 * The on-disk inode is not changed by this operation, only the
2128 * btree (free inode mask) is changed.
2129 */
2130int
2131xfs_difree(
2132 struct xfs_trans *tp,
2133 struct xfs_perag *pag,
2134 xfs_ino_t inode,
2135 struct xfs_icluster *xic)
2136{
2137 /* REFERENCED */
2138 xfs_agblock_t agbno; /* block number containing inode */
2139 struct xfs_buf *agbp; /* buffer for allocation group header */
2140 xfs_agino_t agino; /* allocation group inode number */
2141 int error; /* error return value */
2142 struct xfs_mount *mp = tp->t_mountp;
2143 struct xfs_inobt_rec_incore rec;/* btree record */
2144
2145 /*
2146 * Break up inode number into its components.
2147 */
2148 if (pag->pag_agno != XFS_INO_TO_AGNO(mp, inode)) {
2149 xfs_warn(mp, "%s: agno != pag->pag_agno (%d != %d).",
2150 __func__, XFS_INO_TO_AGNO(mp, inode), pag->pag_agno);
2151 ASSERT(0);
2152 return -EINVAL;
2153 }
2154 agino = XFS_INO_TO_AGINO(mp, inode);
2155 if (inode != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2156 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2157 __func__, (unsigned long long)inode,
2158 (unsigned long long)XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
2159 ASSERT(0);
2160 return -EINVAL;
2161 }
2162 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2163 if (agbno >= mp->m_sb.sb_agblocks) {
2164 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2165 __func__, agbno, mp->m_sb.sb_agblocks);
2166 ASSERT(0);
2167 return -EINVAL;
2168 }
2169 /*
2170 * Get the allocation group header.
2171 */
2172 error = xfs_ialloc_read_agi(pag, tp, &agbp);
2173 if (error) {
2174 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2175 __func__, error);
2176 return error;
2177 }
2178
2179 /*
2180 * Fix up the inode allocation btree.
2181 */
2182 error = xfs_difree_inobt(mp, tp, agbp, pag, agino, xic, &rec);
2183 if (error)
2184 goto error0;
2185
2186 /*
2187 * Fix up the free inode btree.
2188 */
2189 if (xfs_has_finobt(mp)) {
2190 error = xfs_difree_finobt(mp, tp, agbp, pag, agino, &rec);
2191 if (error)
2192 goto error0;
2193 }
2194
2195 return 0;
2196
2197error0:
2198 return error;
2199}
2200
2201STATIC int
2202xfs_imap_lookup(
2203 struct xfs_mount *mp,
2204 struct xfs_trans *tp,
2205 struct xfs_perag *pag,
2206 xfs_agino_t agino,
2207 xfs_agblock_t agbno,
2208 xfs_agblock_t *chunk_agbno,
2209 xfs_agblock_t *offset_agbno,
2210 int flags)
2211{
2212 struct xfs_inobt_rec_incore rec;
2213 struct xfs_btree_cur *cur;
2214 struct xfs_buf *agbp;
2215 int error;
2216 int i;
2217
2218 error = xfs_ialloc_read_agi(pag, tp, &agbp);
2219 if (error) {
2220 xfs_alert(mp,
2221 "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2222 __func__, error, pag->pag_agno);
2223 return error;
2224 }
2225
2226 /*
2227 * Lookup the inode record for the given agino. If the record cannot be
2228 * found, then it's an invalid inode number and we should abort. Once
2229 * we have a record, we need to ensure it contains the inode number
2230 * we are looking up.
2231 */
2232 cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_INO);
2233 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2234 if (!error) {
2235 if (i)
2236 error = xfs_inobt_get_rec(cur, &rec, &i);
2237 if (!error && i == 0)
2238 error = -EINVAL;
2239 }
2240
2241 xfs_trans_brelse(tp, agbp);
2242 xfs_btree_del_cursor(cur, error);
2243 if (error)
2244 return error;
2245
2246 /* check that the returned record contains the required inode */
2247 if (rec.ir_startino > agino ||
2248 rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino)
2249 return -EINVAL;
2250
2251 /* for untrusted inodes check it is allocated first */
2252 if ((flags & XFS_IGET_UNTRUSTED) &&
2253 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2254 return -EINVAL;
2255
2256 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2257 *offset_agbno = agbno - *chunk_agbno;
2258 return 0;
2259}
2260
2261/*
2262 * Return the location of the inode in imap, for mapping it into a buffer.
2263 */
2264int
2265xfs_imap(
2266 struct xfs_mount *mp, /* file system mount structure */
2267 struct xfs_trans *tp, /* transaction pointer */
2268 xfs_ino_t ino, /* inode to locate */
2269 struct xfs_imap *imap, /* location map structure */
2270 uint flags) /* flags for inode btree lookup */
2271{
2272 xfs_agblock_t agbno; /* block number of inode in the alloc group */
2273 xfs_agino_t agino; /* inode number within alloc group */
2274 xfs_agblock_t chunk_agbno; /* first block in inode chunk */
2275 xfs_agblock_t cluster_agbno; /* first block in inode cluster */
2276 int error; /* error code */
2277 int offset; /* index of inode in its buffer */
2278 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */
2279 struct xfs_perag *pag;
2280
2281 ASSERT(ino != NULLFSINO);
2282
2283 /*
2284 * Split up the inode number into its parts.
2285 */
2286 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
2287 agino = XFS_INO_TO_AGINO(mp, ino);
2288 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2289 if (!pag || agbno >= mp->m_sb.sb_agblocks ||
2290 ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2291 error = -EINVAL;
2292#ifdef DEBUG
2293 /*
2294 * Don't output diagnostic information for untrusted inodes
2295 * as they can be invalid without implying corruption.
2296 */
2297 if (flags & XFS_IGET_UNTRUSTED)
2298 goto out_drop;
2299 if (!pag) {
2300 xfs_alert(mp,
2301 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2302 __func__, XFS_INO_TO_AGNO(mp, ino),
2303 mp->m_sb.sb_agcount);
2304 }
2305 if (agbno >= mp->m_sb.sb_agblocks) {
2306 xfs_alert(mp,
2307 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2308 __func__, (unsigned long long)agbno,
2309 (unsigned long)mp->m_sb.sb_agblocks);
2310 }
2311 if (pag && ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2312 xfs_alert(mp,
2313 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2314 __func__, ino,
2315 XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
2316 }
2317 xfs_stack_trace();
2318#endif /* DEBUG */
2319 goto out_drop;
2320 }
2321
2322 /*
2323 * For bulkstat and handle lookups, we have an untrusted inode number
2324 * that we have to verify is valid. We cannot do this just by reading
2325 * the inode buffer as it may have been unlinked and removed leaving
2326 * inodes in stale state on disk. Hence we have to do a btree lookup
2327 * in all cases where an untrusted inode number is passed.
2328 */
2329 if (flags & XFS_IGET_UNTRUSTED) {
2330 error = xfs_imap_lookup(mp, tp, pag, agino, agbno,
2331 &chunk_agbno, &offset_agbno, flags);
2332 if (error)
2333 goto out_drop;
2334 goto out_map;
2335 }
2336
2337 /*
2338 * If the inode cluster size is the same as the blocksize or
2339 * smaller we get to the buffer by simple arithmetics.
2340 */
2341 if (M_IGEO(mp)->blocks_per_cluster == 1) {
2342 offset = XFS_INO_TO_OFFSET(mp, ino);
2343 ASSERT(offset < mp->m_sb.sb_inopblock);
2344
2345 imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, agbno);
2346 imap->im_len = XFS_FSB_TO_BB(mp, 1);
2347 imap->im_boffset = (unsigned short)(offset <<
2348 mp->m_sb.sb_inodelog);
2349 error = 0;
2350 goto out_drop;
2351 }
2352
2353 /*
2354 * If the inode chunks are aligned then use simple maths to
2355 * find the location. Otherwise we have to do a btree
2356 * lookup to find the location.
2357 */
2358 if (M_IGEO(mp)->inoalign_mask) {
2359 offset_agbno = agbno & M_IGEO(mp)->inoalign_mask;
2360 chunk_agbno = agbno - offset_agbno;
2361 } else {
2362 error = xfs_imap_lookup(mp, tp, pag, agino, agbno,
2363 &chunk_agbno, &offset_agbno, flags);
2364 if (error)
2365 goto out_drop;
2366 }
2367
2368out_map:
2369 ASSERT(agbno >= chunk_agbno);
2370 cluster_agbno = chunk_agbno +
2371 ((offset_agbno / M_IGEO(mp)->blocks_per_cluster) *
2372 M_IGEO(mp)->blocks_per_cluster);
2373 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2374 XFS_INO_TO_OFFSET(mp, ino);
2375
2376 imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, cluster_agbno);
2377 imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster);
2378 imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2379
2380 /*
2381 * If the inode number maps to a block outside the bounds
2382 * of the file system then return NULL rather than calling
2383 * read_buf and panicing when we get an error from the
2384 * driver.
2385 */
2386 if ((imap->im_blkno + imap->im_len) >
2387 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2388 xfs_alert(mp,
2389 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2390 __func__, (unsigned long long) imap->im_blkno,
2391 (unsigned long long) imap->im_len,
2392 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2393 error = -EINVAL;
2394 goto out_drop;
2395 }
2396 error = 0;
2397out_drop:
2398 if (pag)
2399 xfs_perag_put(pag);
2400 return error;
2401}
2402
2403/*
2404 * Log specified fields for the ag hdr (inode section). The growth of the agi
2405 * structure over time requires that we interpret the buffer as two logical
2406 * regions delineated by the end of the unlinked list. This is due to the size
2407 * of the hash table and its location in the middle of the agi.
2408 *
2409 * For example, a request to log a field before agi_unlinked and a field after
2410 * agi_unlinked could cause us to log the entire hash table and use an excessive
2411 * amount of log space. To avoid this behavior, log the region up through
2412 * agi_unlinked in one call and the region after agi_unlinked through the end of
2413 * the structure in another.
2414 */
2415void
2416xfs_ialloc_log_agi(
2417 struct xfs_trans *tp,
2418 struct xfs_buf *bp,
2419 uint32_t fields)
2420{
2421 int first; /* first byte number */
2422 int last; /* last byte number */
2423 static const short offsets[] = { /* field starting offsets */
2424 /* keep in sync with bit definitions */
2425 offsetof(xfs_agi_t, agi_magicnum),
2426 offsetof(xfs_agi_t, agi_versionnum),
2427 offsetof(xfs_agi_t, agi_seqno),
2428 offsetof(xfs_agi_t, agi_length),
2429 offsetof(xfs_agi_t, agi_count),
2430 offsetof(xfs_agi_t, agi_root),
2431 offsetof(xfs_agi_t, agi_level),
2432 offsetof(xfs_agi_t, agi_freecount),
2433 offsetof(xfs_agi_t, agi_newino),
2434 offsetof(xfs_agi_t, agi_dirino),
2435 offsetof(xfs_agi_t, agi_unlinked),
2436 offsetof(xfs_agi_t, agi_free_root),
2437 offsetof(xfs_agi_t, agi_free_level),
2438 offsetof(xfs_agi_t, agi_iblocks),
2439 sizeof(xfs_agi_t)
2440 };
2441#ifdef DEBUG
2442 struct xfs_agi *agi = bp->b_addr;
2443
2444 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2445#endif
2446
2447 /*
2448 * Compute byte offsets for the first and last fields in the first
2449 * region and log the agi buffer. This only logs up through
2450 * agi_unlinked.
2451 */
2452 if (fields & XFS_AGI_ALL_BITS_R1) {
2453 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2454 &first, &last);
2455 xfs_trans_log_buf(tp, bp, first, last);
2456 }
2457
2458 /*
2459 * Mask off the bits in the first region and calculate the first and
2460 * last field offsets for any bits in the second region.
2461 */
2462 fields &= ~XFS_AGI_ALL_BITS_R1;
2463 if (fields) {
2464 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2465 &first, &last);
2466 xfs_trans_log_buf(tp, bp, first, last);
2467 }
2468}
2469
2470static xfs_failaddr_t
2471xfs_agi_verify(
2472 struct xfs_buf *bp)
2473{
2474 struct xfs_mount *mp = bp->b_mount;
2475 struct xfs_agi *agi = bp->b_addr;
2476 int i;
2477
2478 if (xfs_has_crc(mp)) {
2479 if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2480 return __this_address;
2481 if (!xfs_log_check_lsn(mp, be64_to_cpu(agi->agi_lsn)))
2482 return __this_address;
2483 }
2484
2485 /*
2486 * Validate the magic number of the agi block.
2487 */
2488 if (!xfs_verify_magic(bp, agi->agi_magicnum))
2489 return __this_address;
2490 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2491 return __this_address;
2492
2493 if (be32_to_cpu(agi->agi_level) < 1 ||
2494 be32_to_cpu(agi->agi_level) > M_IGEO(mp)->inobt_maxlevels)
2495 return __this_address;
2496
2497 if (xfs_has_finobt(mp) &&
2498 (be32_to_cpu(agi->agi_free_level) < 1 ||
2499 be32_to_cpu(agi->agi_free_level) > M_IGEO(mp)->inobt_maxlevels))
2500 return __this_address;
2501
2502 /*
2503 * during growfs operations, the perag is not fully initialised,
2504 * so we can't use it for any useful checking. growfs ensures we can't
2505 * use it by using uncached buffers that don't have the perag attached
2506 * so we can detect and avoid this problem.
2507 */
2508 if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2509 return __this_address;
2510
2511 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) {
2512 if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO))
2513 continue;
2514 if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i])))
2515 return __this_address;
2516 }
2517
2518 return NULL;
2519}
2520
2521static void
2522xfs_agi_read_verify(
2523 struct xfs_buf *bp)
2524{
2525 struct xfs_mount *mp = bp->b_mount;
2526 xfs_failaddr_t fa;
2527
2528 if (xfs_has_crc(mp) &&
2529 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2530 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2531 else {
2532 fa = xfs_agi_verify(bp);
2533 if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
2534 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2535 }
2536}
2537
2538static void
2539xfs_agi_write_verify(
2540 struct xfs_buf *bp)
2541{
2542 struct xfs_mount *mp = bp->b_mount;
2543 struct xfs_buf_log_item *bip = bp->b_log_item;
2544 struct xfs_agi *agi = bp->b_addr;
2545 xfs_failaddr_t fa;
2546
2547 fa = xfs_agi_verify(bp);
2548 if (fa) {
2549 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2550 return;
2551 }
2552
2553 if (!xfs_has_crc(mp))
2554 return;
2555
2556 if (bip)
2557 agi->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2558 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2559}
2560
2561const struct xfs_buf_ops xfs_agi_buf_ops = {
2562 .name = "xfs_agi",
2563 .magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) },
2564 .verify_read = xfs_agi_read_verify,
2565 .verify_write = xfs_agi_write_verify,
2566 .verify_struct = xfs_agi_verify,
2567};
2568
2569/*
2570 * Read in the allocation group header (inode allocation section)
2571 */
2572int
2573xfs_read_agi(
2574 struct xfs_perag *pag,
2575 struct xfs_trans *tp,
2576 struct xfs_buf **agibpp)
2577{
2578 struct xfs_mount *mp = pag->pag_mount;
2579 int error;
2580
2581 trace_xfs_read_agi(pag->pag_mount, pag->pag_agno);
2582
2583 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2584 XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGI_DADDR(mp)),
2585 XFS_FSS_TO_BB(mp, 1), 0, agibpp, &xfs_agi_buf_ops);
2586 if (error)
2587 return error;
2588 if (tp)
2589 xfs_trans_buf_set_type(tp, *agibpp, XFS_BLFT_AGI_BUF);
2590
2591 xfs_buf_set_ref(*agibpp, XFS_AGI_REF);
2592 return 0;
2593}
2594
2595/*
2596 * Read in the agi and initialise the per-ag data. If the caller supplies a
2597 * @agibpp, return the locked AGI buffer to them, otherwise release it.
2598 */
2599int
2600xfs_ialloc_read_agi(
2601 struct xfs_perag *pag,
2602 struct xfs_trans *tp,
2603 struct xfs_buf **agibpp)
2604{
2605 struct xfs_buf *agibp;
2606 struct xfs_agi *agi;
2607 int error;
2608
2609 trace_xfs_ialloc_read_agi(pag->pag_mount, pag->pag_agno);
2610
2611 error = xfs_read_agi(pag, tp, &agibp);
2612 if (error)
2613 return error;
2614
2615 agi = agibp->b_addr;
2616 if (!pag->pagi_init) {
2617 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2618 pag->pagi_count = be32_to_cpu(agi->agi_count);
2619 pag->pagi_init = 1;
2620 }
2621
2622 /*
2623 * It's possible for these to be out of sync if
2624 * we are in the middle of a forced shutdown.
2625 */
2626 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2627 xfs_is_shutdown(pag->pag_mount));
2628 if (agibpp)
2629 *agibpp = agibp;
2630 else
2631 xfs_trans_brelse(tp, agibp);
2632 return 0;
2633}
2634
2635/* Is there an inode record covering a given range of inode numbers? */
2636int
2637xfs_ialloc_has_inode_record(
2638 struct xfs_btree_cur *cur,
2639 xfs_agino_t low,
2640 xfs_agino_t high,
2641 bool *exists)
2642{
2643 struct xfs_inobt_rec_incore irec;
2644 xfs_agino_t agino;
2645 uint16_t holemask;
2646 int has_record;
2647 int i;
2648 int error;
2649
2650 *exists = false;
2651 error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
2652 while (error == 0 && has_record) {
2653 error = xfs_inobt_get_rec(cur, &irec, &has_record);
2654 if (error || irec.ir_startino > high)
2655 break;
2656
2657 agino = irec.ir_startino;
2658 holemask = irec.ir_holemask;
2659 for (i = 0; i < XFS_INOBT_HOLEMASK_BITS; holemask >>= 1,
2660 i++, agino += XFS_INODES_PER_HOLEMASK_BIT) {
2661 if (holemask & 1)
2662 continue;
2663 if (agino + XFS_INODES_PER_HOLEMASK_BIT > low &&
2664 agino <= high) {
2665 *exists = true;
2666 return 0;
2667 }
2668 }
2669
2670 error = xfs_btree_increment(cur, 0, &has_record);
2671 }
2672 return error;
2673}
2674
2675/* Is there an inode record covering a given extent? */
2676int
2677xfs_ialloc_has_inodes_at_extent(
2678 struct xfs_btree_cur *cur,
2679 xfs_agblock_t bno,
2680 xfs_extlen_t len,
2681 bool *exists)
2682{
2683 xfs_agino_t low;
2684 xfs_agino_t high;
2685
2686 low = XFS_AGB_TO_AGINO(cur->bc_mp, bno);
2687 high = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1;
2688
2689 return xfs_ialloc_has_inode_record(cur, low, high, exists);
2690}
2691
2692struct xfs_ialloc_count_inodes {
2693 xfs_agino_t count;
2694 xfs_agino_t freecount;
2695};
2696
2697/* Record inode counts across all inobt records. */
2698STATIC int
2699xfs_ialloc_count_inodes_rec(
2700 struct xfs_btree_cur *cur,
2701 const union xfs_btree_rec *rec,
2702 void *priv)
2703{
2704 struct xfs_inobt_rec_incore irec;
2705 struct xfs_ialloc_count_inodes *ci = priv;
2706
2707 xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
2708 ci->count += irec.ir_count;
2709 ci->freecount += irec.ir_freecount;
2710
2711 return 0;
2712}
2713
2714/* Count allocated and free inodes under an inobt. */
2715int
2716xfs_ialloc_count_inodes(
2717 struct xfs_btree_cur *cur,
2718 xfs_agino_t *count,
2719 xfs_agino_t *freecount)
2720{
2721 struct xfs_ialloc_count_inodes ci = {0};
2722 int error;
2723
2724 ASSERT(cur->bc_btnum == XFS_BTNUM_INO);
2725 error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
2726 if (error)
2727 return error;
2728
2729 *count = ci.count;
2730 *freecount = ci.freecount;
2731 return 0;
2732}
2733
2734/*
2735 * Initialize inode-related geometry information.
2736 *
2737 * Compute the inode btree min and max levels and set maxicount.
2738 *
2739 * Set the inode cluster size. This may still be overridden by the file
2740 * system block size if it is larger than the chosen cluster size.
2741 *
2742 * For v5 filesystems, scale the cluster size with the inode size to keep a
2743 * constant ratio of inode per cluster buffer, but only if mkfs has set the
2744 * inode alignment value appropriately for larger cluster sizes.
2745 *
2746 * Then compute the inode cluster alignment information.
2747 */
2748void
2749xfs_ialloc_setup_geometry(
2750 struct xfs_mount *mp)
2751{
2752 struct xfs_sb *sbp = &mp->m_sb;
2753 struct xfs_ino_geometry *igeo = M_IGEO(mp);
2754 uint64_t icount;
2755 uint inodes;
2756
2757 igeo->new_diflags2 = 0;
2758 if (xfs_has_bigtime(mp))
2759 igeo->new_diflags2 |= XFS_DIFLAG2_BIGTIME;
2760 if (xfs_has_large_extent_counts(mp))
2761 igeo->new_diflags2 |= XFS_DIFLAG2_NREXT64;
2762
2763 /* Compute inode btree geometry. */
2764 igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
2765 igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
2766 igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
2767 igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2;
2768 igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2;
2769
2770 igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK,
2771 sbp->sb_inopblock);
2772 igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog;
2773
2774 if (sbp->sb_spino_align)
2775 igeo->ialloc_min_blks = sbp->sb_spino_align;
2776 else
2777 igeo->ialloc_min_blks = igeo->ialloc_blks;
2778
2779 /* Compute and fill in value of m_ino_geo.inobt_maxlevels. */
2780 inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2781 igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr,
2782 inodes);
2783 ASSERT(igeo->inobt_maxlevels <= xfs_iallocbt_maxlevels_ondisk());
2784
2785 /*
2786 * Set the maximum inode count for this filesystem, being careful not
2787 * to use obviously garbage sb_inopblog/sb_inopblock values. Regular
2788 * users should never get here due to failing sb verification, but
2789 * certain users (xfs_db) need to be usable even with corrupt metadata.
2790 */
2791 if (sbp->sb_imax_pct && igeo->ialloc_blks) {
2792 /*
2793 * Make sure the maximum inode count is a multiple
2794 * of the units we allocate inodes in.
2795 */
2796 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
2797 do_div(icount, 100);
2798 do_div(icount, igeo->ialloc_blks);
2799 igeo->maxicount = XFS_FSB_TO_INO(mp,
2800 icount * igeo->ialloc_blks);
2801 } else {
2802 igeo->maxicount = 0;
2803 }
2804
2805 /*
2806 * Compute the desired size of an inode cluster buffer size, which
2807 * starts at 8K and (on v5 filesystems) scales up with larger inode
2808 * sizes.
2809 *
2810 * Preserve the desired inode cluster size because the sparse inodes
2811 * feature uses that desired size (not the actual size) to compute the
2812 * sparse inode alignment. The mount code validates this value, so we
2813 * cannot change the behavior.
2814 */
2815 igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE;
2816 if (xfs_has_v3inodes(mp)) {
2817 int new_size = igeo->inode_cluster_size_raw;
2818
2819 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
2820 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
2821 igeo->inode_cluster_size_raw = new_size;
2822 }
2823
2824 /* Calculate inode cluster ratios. */
2825 if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize)
2826 igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp,
2827 igeo->inode_cluster_size_raw);
2828 else
2829 igeo->blocks_per_cluster = 1;
2830 igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster);
2831 igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster);
2832
2833 /* Calculate inode cluster alignment. */
2834 if (xfs_has_align(mp) &&
2835 mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster)
2836 igeo->cluster_align = mp->m_sb.sb_inoalignmt;
2837 else
2838 igeo->cluster_align = 1;
2839 igeo->inoalign_mask = igeo->cluster_align - 1;
2840 igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align);
2841
2842 /*
2843 * If we are using stripe alignment, check whether
2844 * the stripe unit is a multiple of the inode alignment
2845 */
2846 if (mp->m_dalign && igeo->inoalign_mask &&
2847 !(mp->m_dalign & igeo->inoalign_mask))
2848 igeo->ialloc_align = mp->m_dalign;
2849 else
2850 igeo->ialloc_align = 0;
2851}
2852
2853/* Compute the location of the root directory inode that is laid out by mkfs. */
2854xfs_ino_t
2855xfs_ialloc_calc_rootino(
2856 struct xfs_mount *mp,
2857 int sunit)
2858{
2859 struct xfs_ino_geometry *igeo = M_IGEO(mp);
2860 xfs_agblock_t first_bno;
2861
2862 /*
2863 * Pre-calculate the geometry of AG 0. We know what it looks like
2864 * because libxfs knows how to create allocation groups now.
2865 *
2866 * first_bno is the first block in which mkfs could possibly have
2867 * allocated the root directory inode, once we factor in the metadata
2868 * that mkfs formats before it. Namely, the four AG headers...
2869 */
2870 first_bno = howmany(4 * mp->m_sb.sb_sectsize, mp->m_sb.sb_blocksize);
2871
2872 /* ...the two free space btree roots... */
2873 first_bno += 2;
2874
2875 /* ...the inode btree root... */
2876 first_bno += 1;
2877
2878 /* ...the initial AGFL... */
2879 first_bno += xfs_alloc_min_freelist(mp, NULL);
2880
2881 /* ...the free inode btree root... */
2882 if (xfs_has_finobt(mp))
2883 first_bno++;
2884
2885 /* ...the reverse mapping btree root... */
2886 if (xfs_has_rmapbt(mp))
2887 first_bno++;
2888
2889 /* ...the reference count btree... */
2890 if (xfs_has_reflink(mp))
2891 first_bno++;
2892
2893 /*
2894 * ...and the log, if it is allocated in the first allocation group.
2895 *
2896 * This can happen with filesystems that only have a single
2897 * allocation group, or very odd geometries created by old mkfs
2898 * versions on very small filesystems.
2899 */
2900 if (xfs_ag_contains_log(mp, 0))
2901 first_bno += mp->m_sb.sb_logblocks;
2902
2903 /*
2904 * Now round first_bno up to whatever allocation alignment is given
2905 * by the filesystem or was passed in.
2906 */
2907 if (xfs_has_dalign(mp) && igeo->ialloc_align > 0)
2908 first_bno = roundup(first_bno, sunit);
2909 else if (xfs_has_align(mp) &&
2910 mp->m_sb.sb_inoalignmt > 1)
2911 first_bno = roundup(first_bno, mp->m_sb.sb_inoalignmt);
2912
2913 return XFS_AGINO_TO_INO(mp, 0, XFS_AGB_TO_AGINO(mp, first_bno));
2914}
2915
2916/*
2917 * Ensure there are not sparse inode clusters that cross the new EOAG.
2918 *
2919 * This is a no-op for non-spinode filesystems since clusters are always fully
2920 * allocated and checking the bnobt suffices. However, a spinode filesystem
2921 * could have a record where the upper inodes are free blocks. If those blocks
2922 * were removed from the filesystem, the inode record would extend beyond EOAG,
2923 * which will be flagged as corruption.
2924 */
2925int
2926xfs_ialloc_check_shrink(
2927 struct xfs_trans *tp,
2928 xfs_agnumber_t agno,
2929 struct xfs_buf *agibp,
2930 xfs_agblock_t new_length)
2931{
2932 struct xfs_inobt_rec_incore rec;
2933 struct xfs_btree_cur *cur;
2934 struct xfs_mount *mp = tp->t_mountp;
2935 struct xfs_perag *pag;
2936 xfs_agino_t agino = XFS_AGB_TO_AGINO(mp, new_length);
2937 int has;
2938 int error;
2939
2940 if (!xfs_has_sparseinodes(mp))
2941 return 0;
2942
2943 pag = xfs_perag_get(mp, agno);
2944 cur = xfs_inobt_init_cursor(mp, tp, agibp, pag, XFS_BTNUM_INO);
2945
2946 /* Look up the inobt record that would correspond to the new EOFS. */
2947 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &has);
2948 if (error || !has)
2949 goto out;
2950
2951 error = xfs_inobt_get_rec(cur, &rec, &has);
2952 if (error)
2953 goto out;
2954
2955 if (!has) {
2956 error = -EFSCORRUPTED;
2957 goto out;
2958 }
2959
2960 /* If the record covers inodes that would be beyond EOFS, bail out. */
2961 if (rec.ir_startino + XFS_INODES_PER_CHUNK > agino) {
2962 error = -ENOSPC;
2963 goto out;
2964 }
2965out:
2966 xfs_btree_del_cursor(cur, error);
2967 xfs_perag_put(pag);
2968 return error;
2969}
1/*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_shared.h"
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
24#include "xfs_bit.h"
25#include "xfs_sb.h"
26#include "xfs_mount.h"
27#include "xfs_defer.h"
28#include "xfs_inode.h"
29#include "xfs_btree.h"
30#include "xfs_ialloc.h"
31#include "xfs_ialloc_btree.h"
32#include "xfs_alloc.h"
33#include "xfs_rtalloc.h"
34#include "xfs_error.h"
35#include "xfs_bmap.h"
36#include "xfs_cksum.h"
37#include "xfs_trans.h"
38#include "xfs_buf_item.h"
39#include "xfs_icreate_item.h"
40#include "xfs_icache.h"
41#include "xfs_trace.h"
42#include "xfs_log.h"
43#include "xfs_rmap.h"
44
45
46/*
47 * Allocation group level functions.
48 */
49static inline int
50xfs_ialloc_cluster_alignment(
51 struct xfs_mount *mp)
52{
53 if (xfs_sb_version_hasalign(&mp->m_sb) &&
54 mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp))
55 return mp->m_sb.sb_inoalignmt;
56 return 1;
57}
58
59/*
60 * Lookup a record by ino in the btree given by cur.
61 */
62int /* error */
63xfs_inobt_lookup(
64 struct xfs_btree_cur *cur, /* btree cursor */
65 xfs_agino_t ino, /* starting inode of chunk */
66 xfs_lookup_t dir, /* <=, >=, == */
67 int *stat) /* success/failure */
68{
69 cur->bc_rec.i.ir_startino = ino;
70 cur->bc_rec.i.ir_holemask = 0;
71 cur->bc_rec.i.ir_count = 0;
72 cur->bc_rec.i.ir_freecount = 0;
73 cur->bc_rec.i.ir_free = 0;
74 return xfs_btree_lookup(cur, dir, stat);
75}
76
77/*
78 * Update the record referred to by cur to the value given.
79 * This either works (return 0) or gets an EFSCORRUPTED error.
80 */
81STATIC int /* error */
82xfs_inobt_update(
83 struct xfs_btree_cur *cur, /* btree cursor */
84 xfs_inobt_rec_incore_t *irec) /* btree record */
85{
86 union xfs_btree_rec rec;
87
88 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
89 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
90 rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
91 rec.inobt.ir_u.sp.ir_count = irec->ir_count;
92 rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
93 } else {
94 /* ir_holemask/ir_count not supported on-disk */
95 rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
96 }
97 rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
98 return xfs_btree_update(cur, &rec);
99}
100
101/*
102 * Get the data from the pointed-to record.
103 */
104int /* error */
105xfs_inobt_get_rec(
106 struct xfs_btree_cur *cur, /* btree cursor */
107 xfs_inobt_rec_incore_t *irec, /* btree record */
108 int *stat) /* output: success/failure */
109{
110 union xfs_btree_rec *rec;
111 int error;
112
113 error = xfs_btree_get_rec(cur, &rec, stat);
114 if (error || *stat == 0)
115 return error;
116
117 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
118 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
119 irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
120 irec->ir_count = rec->inobt.ir_u.sp.ir_count;
121 irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
122 } else {
123 /*
124 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
125 * values for full inode chunks.
126 */
127 irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
128 irec->ir_count = XFS_INODES_PER_CHUNK;
129 irec->ir_freecount =
130 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
131 }
132 irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
133
134 return 0;
135}
136
137/*
138 * Insert a single inobt record. Cursor must already point to desired location.
139 */
140STATIC int
141xfs_inobt_insert_rec(
142 struct xfs_btree_cur *cur,
143 __uint16_t holemask,
144 __uint8_t count,
145 __int32_t freecount,
146 xfs_inofree_t free,
147 int *stat)
148{
149 cur->bc_rec.i.ir_holemask = holemask;
150 cur->bc_rec.i.ir_count = count;
151 cur->bc_rec.i.ir_freecount = freecount;
152 cur->bc_rec.i.ir_free = free;
153 return xfs_btree_insert(cur, stat);
154}
155
156/*
157 * Insert records describing a newly allocated inode chunk into the inobt.
158 */
159STATIC int
160xfs_inobt_insert(
161 struct xfs_mount *mp,
162 struct xfs_trans *tp,
163 struct xfs_buf *agbp,
164 xfs_agino_t newino,
165 xfs_agino_t newlen,
166 xfs_btnum_t btnum)
167{
168 struct xfs_btree_cur *cur;
169 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
170 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
171 xfs_agino_t thisino;
172 int i;
173 int error;
174
175 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
176
177 for (thisino = newino;
178 thisino < newino + newlen;
179 thisino += XFS_INODES_PER_CHUNK) {
180 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
181 if (error) {
182 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
183 return error;
184 }
185 ASSERT(i == 0);
186
187 error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
188 XFS_INODES_PER_CHUNK,
189 XFS_INODES_PER_CHUNK,
190 XFS_INOBT_ALL_FREE, &i);
191 if (error) {
192 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
193 return error;
194 }
195 ASSERT(i == 1);
196 }
197
198 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
199
200 return 0;
201}
202
203/*
204 * Verify that the number of free inodes in the AGI is correct.
205 */
206#ifdef DEBUG
207STATIC int
208xfs_check_agi_freecount(
209 struct xfs_btree_cur *cur,
210 struct xfs_agi *agi)
211{
212 if (cur->bc_nlevels == 1) {
213 xfs_inobt_rec_incore_t rec;
214 int freecount = 0;
215 int error;
216 int i;
217
218 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
219 if (error)
220 return error;
221
222 do {
223 error = xfs_inobt_get_rec(cur, &rec, &i);
224 if (error)
225 return error;
226
227 if (i) {
228 freecount += rec.ir_freecount;
229 error = xfs_btree_increment(cur, 0, &i);
230 if (error)
231 return error;
232 }
233 } while (i == 1);
234
235 if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
236 ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
237 }
238 return 0;
239}
240#else
241#define xfs_check_agi_freecount(cur, agi) 0
242#endif
243
244/*
245 * Initialise a new set of inodes. When called without a transaction context
246 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
247 * than logging them (which in a transaction context puts them into the AIL
248 * for writeback rather than the xfsbufd queue).
249 */
250int
251xfs_ialloc_inode_init(
252 struct xfs_mount *mp,
253 struct xfs_trans *tp,
254 struct list_head *buffer_list,
255 int icount,
256 xfs_agnumber_t agno,
257 xfs_agblock_t agbno,
258 xfs_agblock_t length,
259 unsigned int gen)
260{
261 struct xfs_buf *fbuf;
262 struct xfs_dinode *free;
263 int nbufs, blks_per_cluster, inodes_per_cluster;
264 int version;
265 int i, j;
266 xfs_daddr_t d;
267 xfs_ino_t ino = 0;
268
269 /*
270 * Loop over the new block(s), filling in the inodes. For small block
271 * sizes, manipulate the inodes in buffers which are multiples of the
272 * blocks size.
273 */
274 blks_per_cluster = xfs_icluster_size_fsb(mp);
275 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
276 nbufs = length / blks_per_cluster;
277
278 /*
279 * Figure out what version number to use in the inodes we create. If
280 * the superblock version has caught up to the one that supports the new
281 * inode format, then use the new inode version. Otherwise use the old
282 * version so that old kernels will continue to be able to use the file
283 * system.
284 *
285 * For v3 inodes, we also need to write the inode number into the inode,
286 * so calculate the first inode number of the chunk here as
287 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not
288 * across multiple filesystem blocks (such as a cluster) and so cannot
289 * be used in the cluster buffer loop below.
290 *
291 * Further, because we are writing the inode directly into the buffer
292 * and calculating a CRC on the entire inode, we have ot log the entire
293 * inode so that the entire range the CRC covers is present in the log.
294 * That means for v3 inode we log the entire buffer rather than just the
295 * inode cores.
296 */
297 if (xfs_sb_version_hascrc(&mp->m_sb)) {
298 version = 3;
299 ino = XFS_AGINO_TO_INO(mp, agno,
300 XFS_OFFBNO_TO_AGINO(mp, agbno, 0));
301
302 /*
303 * log the initialisation that is about to take place as an
304 * logical operation. This means the transaction does not
305 * need to log the physical changes to the inode buffers as log
306 * recovery will know what initialisation is actually needed.
307 * Hence we only need to log the buffers as "ordered" buffers so
308 * they track in the AIL as if they were physically logged.
309 */
310 if (tp)
311 xfs_icreate_log(tp, agno, agbno, icount,
312 mp->m_sb.sb_inodesize, length, gen);
313 } else
314 version = 2;
315
316 for (j = 0; j < nbufs; j++) {
317 /*
318 * Get the block.
319 */
320 d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster));
321 fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
322 mp->m_bsize * blks_per_cluster,
323 XBF_UNMAPPED);
324 if (!fbuf)
325 return -ENOMEM;
326
327 /* Initialize the inode buffers and log them appropriately. */
328 fbuf->b_ops = &xfs_inode_buf_ops;
329 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
330 for (i = 0; i < inodes_per_cluster; i++) {
331 int ioffset = i << mp->m_sb.sb_inodelog;
332 uint isize = xfs_dinode_size(version);
333
334 free = xfs_make_iptr(mp, fbuf, i);
335 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
336 free->di_version = version;
337 free->di_gen = cpu_to_be32(gen);
338 free->di_next_unlinked = cpu_to_be32(NULLAGINO);
339
340 if (version == 3) {
341 free->di_ino = cpu_to_be64(ino);
342 ino++;
343 uuid_copy(&free->di_uuid,
344 &mp->m_sb.sb_meta_uuid);
345 xfs_dinode_calc_crc(mp, free);
346 } else if (tp) {
347 /* just log the inode core */
348 xfs_trans_log_buf(tp, fbuf, ioffset,
349 ioffset + isize - 1);
350 }
351 }
352
353 if (tp) {
354 /*
355 * Mark the buffer as an inode allocation buffer so it
356 * sticks in AIL at the point of this allocation
357 * transaction. This ensures the they are on disk before
358 * the tail of the log can be moved past this
359 * transaction (i.e. by preventing relogging from moving
360 * it forward in the log).
361 */
362 xfs_trans_inode_alloc_buf(tp, fbuf);
363 if (version == 3) {
364 /*
365 * Mark the buffer as ordered so that they are
366 * not physically logged in the transaction but
367 * still tracked in the AIL as part of the
368 * transaction and pin the log appropriately.
369 */
370 xfs_trans_ordered_buf(tp, fbuf);
371 xfs_trans_log_buf(tp, fbuf, 0,
372 BBTOB(fbuf->b_length) - 1);
373 }
374 } else {
375 fbuf->b_flags |= XBF_DONE;
376 xfs_buf_delwri_queue(fbuf, buffer_list);
377 xfs_buf_relse(fbuf);
378 }
379 }
380 return 0;
381}
382
383/*
384 * Align startino and allocmask for a recently allocated sparse chunk such that
385 * they are fit for insertion (or merge) into the on-disk inode btrees.
386 *
387 * Background:
388 *
389 * When enabled, sparse inode support increases the inode alignment from cluster
390 * size to inode chunk size. This means that the minimum range between two
391 * non-adjacent inode records in the inobt is large enough for a full inode
392 * record. This allows for cluster sized, cluster aligned block allocation
393 * without need to worry about whether the resulting inode record overlaps with
394 * another record in the tree. Without this basic rule, we would have to deal
395 * with the consequences of overlap by potentially undoing recent allocations in
396 * the inode allocation codepath.
397 *
398 * Because of this alignment rule (which is enforced on mount), there are two
399 * inobt possibilities for newly allocated sparse chunks. One is that the
400 * aligned inode record for the chunk covers a range of inodes not already
401 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
402 * other is that a record already exists at the aligned startino that considers
403 * the newly allocated range as sparse. In the latter case, record content is
404 * merged in hope that sparse inode chunks fill to full chunks over time.
405 */
406STATIC void
407xfs_align_sparse_ino(
408 struct xfs_mount *mp,
409 xfs_agino_t *startino,
410 uint16_t *allocmask)
411{
412 xfs_agblock_t agbno;
413 xfs_agblock_t mod;
414 int offset;
415
416 agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
417 mod = agbno % mp->m_sb.sb_inoalignmt;
418 if (!mod)
419 return;
420
421 /* calculate the inode offset and align startino */
422 offset = mod << mp->m_sb.sb_inopblog;
423 *startino -= offset;
424
425 /*
426 * Since startino has been aligned down, left shift allocmask such that
427 * it continues to represent the same physical inodes relative to the
428 * new startino.
429 */
430 *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
431}
432
433/*
434 * Determine whether the source inode record can merge into the target. Both
435 * records must be sparse, the inode ranges must match and there must be no
436 * allocation overlap between the records.
437 */
438STATIC bool
439__xfs_inobt_can_merge(
440 struct xfs_inobt_rec_incore *trec, /* tgt record */
441 struct xfs_inobt_rec_incore *srec) /* src record */
442{
443 uint64_t talloc;
444 uint64_t salloc;
445
446 /* records must cover the same inode range */
447 if (trec->ir_startino != srec->ir_startino)
448 return false;
449
450 /* both records must be sparse */
451 if (!xfs_inobt_issparse(trec->ir_holemask) ||
452 !xfs_inobt_issparse(srec->ir_holemask))
453 return false;
454
455 /* both records must track some inodes */
456 if (!trec->ir_count || !srec->ir_count)
457 return false;
458
459 /* can't exceed capacity of a full record */
460 if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
461 return false;
462
463 /* verify there is no allocation overlap */
464 talloc = xfs_inobt_irec_to_allocmask(trec);
465 salloc = xfs_inobt_irec_to_allocmask(srec);
466 if (talloc & salloc)
467 return false;
468
469 return true;
470}
471
472/*
473 * Merge the source inode record into the target. The caller must call
474 * __xfs_inobt_can_merge() to ensure the merge is valid.
475 */
476STATIC void
477__xfs_inobt_rec_merge(
478 struct xfs_inobt_rec_incore *trec, /* target */
479 struct xfs_inobt_rec_incore *srec) /* src */
480{
481 ASSERT(trec->ir_startino == srec->ir_startino);
482
483 /* combine the counts */
484 trec->ir_count += srec->ir_count;
485 trec->ir_freecount += srec->ir_freecount;
486
487 /*
488 * Merge the holemask and free mask. For both fields, 0 bits refer to
489 * allocated inodes. We combine the allocated ranges with bitwise AND.
490 */
491 trec->ir_holemask &= srec->ir_holemask;
492 trec->ir_free &= srec->ir_free;
493}
494
495/*
496 * Insert a new sparse inode chunk into the associated inode btree. The inode
497 * record for the sparse chunk is pre-aligned to a startino that should match
498 * any pre-existing sparse inode record in the tree. This allows sparse chunks
499 * to fill over time.
500 *
501 * This function supports two modes of handling preexisting records depending on
502 * the merge flag. If merge is true, the provided record is merged with the
503 * existing record and updated in place. The merged record is returned in nrec.
504 * If merge is false, an existing record is replaced with the provided record.
505 * If no preexisting record exists, the provided record is always inserted.
506 *
507 * It is considered corruption if a merge is requested and not possible. Given
508 * the sparse inode alignment constraints, this should never happen.
509 */
510STATIC int
511xfs_inobt_insert_sprec(
512 struct xfs_mount *mp,
513 struct xfs_trans *tp,
514 struct xfs_buf *agbp,
515 int btnum,
516 struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */
517 bool merge) /* merge or replace */
518{
519 struct xfs_btree_cur *cur;
520 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
521 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
522 int error;
523 int i;
524 struct xfs_inobt_rec_incore rec;
525
526 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
527
528 /* the new record is pre-aligned so we know where to look */
529 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
530 if (error)
531 goto error;
532 /* if nothing there, insert a new record and return */
533 if (i == 0) {
534 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
535 nrec->ir_count, nrec->ir_freecount,
536 nrec->ir_free, &i);
537 if (error)
538 goto error;
539 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
540
541 goto out;
542 }
543
544 /*
545 * A record exists at this startino. Merge or replace the record
546 * depending on what we've been asked to do.
547 */
548 if (merge) {
549 error = xfs_inobt_get_rec(cur, &rec, &i);
550 if (error)
551 goto error;
552 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
553 XFS_WANT_CORRUPTED_GOTO(mp,
554 rec.ir_startino == nrec->ir_startino,
555 error);
556
557 /*
558 * This should never fail. If we have coexisting records that
559 * cannot merge, something is seriously wrong.
560 */
561 XFS_WANT_CORRUPTED_GOTO(mp, __xfs_inobt_can_merge(nrec, &rec),
562 error);
563
564 trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino,
565 rec.ir_holemask, nrec->ir_startino,
566 nrec->ir_holemask);
567
568 /* merge to nrec to output the updated record */
569 __xfs_inobt_rec_merge(nrec, &rec);
570
571 trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino,
572 nrec->ir_holemask);
573
574 error = xfs_inobt_rec_check_count(mp, nrec);
575 if (error)
576 goto error;
577 }
578
579 error = xfs_inobt_update(cur, nrec);
580 if (error)
581 goto error;
582
583out:
584 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
585 return 0;
586error:
587 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
588 return error;
589}
590
591/*
592 * Allocate new inodes in the allocation group specified by agbp.
593 * Return 0 for success, else error code.
594 */
595STATIC int /* error code or 0 */
596xfs_ialloc_ag_alloc(
597 xfs_trans_t *tp, /* transaction pointer */
598 xfs_buf_t *agbp, /* alloc group buffer */
599 int *alloc)
600{
601 xfs_agi_t *agi; /* allocation group header */
602 xfs_alloc_arg_t args; /* allocation argument structure */
603 xfs_agnumber_t agno;
604 int error;
605 xfs_agino_t newino; /* new first inode's number */
606 xfs_agino_t newlen; /* new number of inodes */
607 int isaligned = 0; /* inode allocation at stripe unit */
608 /* boundary */
609 uint16_t allocmask = (uint16_t) -1; /* init. to full chunk */
610 struct xfs_inobt_rec_incore rec;
611 struct xfs_perag *pag;
612 int do_sparse = 0;
613
614 memset(&args, 0, sizeof(args));
615 args.tp = tp;
616 args.mp = tp->t_mountp;
617 args.fsbno = NULLFSBLOCK;
618 xfs_rmap_ag_owner(&args.oinfo, XFS_RMAP_OWN_INODES);
619
620#ifdef DEBUG
621 /* randomly do sparse inode allocations */
622 if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) &&
623 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks)
624 do_sparse = prandom_u32() & 1;
625#endif
626
627 /*
628 * Locking will ensure that we don't have two callers in here
629 * at one time.
630 */
631 newlen = args.mp->m_ialloc_inos;
632 if (args.mp->m_maxicount &&
633 percpu_counter_read_positive(&args.mp->m_icount) + newlen >
634 args.mp->m_maxicount)
635 return -ENOSPC;
636 args.minlen = args.maxlen = args.mp->m_ialloc_blks;
637 /*
638 * First try to allocate inodes contiguous with the last-allocated
639 * chunk of inodes. If the filesystem is striped, this will fill
640 * an entire stripe unit with inodes.
641 */
642 agi = XFS_BUF_TO_AGI(agbp);
643 newino = be32_to_cpu(agi->agi_newino);
644 agno = be32_to_cpu(agi->agi_seqno);
645 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
646 args.mp->m_ialloc_blks;
647 if (do_sparse)
648 goto sparse_alloc;
649 if (likely(newino != NULLAGINO &&
650 (args.agbno < be32_to_cpu(agi->agi_length)))) {
651 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
652 args.type = XFS_ALLOCTYPE_THIS_BNO;
653 args.prod = 1;
654
655 /*
656 * We need to take into account alignment here to ensure that
657 * we don't modify the free list if we fail to have an exact
658 * block. If we don't have an exact match, and every oher
659 * attempt allocation attempt fails, we'll end up cancelling
660 * a dirty transaction and shutting down.
661 *
662 * For an exact allocation, alignment must be 1,
663 * however we need to take cluster alignment into account when
664 * fixing up the freelist. Use the minalignslop field to
665 * indicate that extra blocks might be required for alignment,
666 * but not to use them in the actual exact allocation.
667 */
668 args.alignment = 1;
669 args.minalignslop = xfs_ialloc_cluster_alignment(args.mp) - 1;
670
671 /* Allow space for the inode btree to split. */
672 args.minleft = args.mp->m_in_maxlevels - 1;
673 if ((error = xfs_alloc_vextent(&args)))
674 return error;
675
676 /*
677 * This request might have dirtied the transaction if the AG can
678 * satisfy the request, but the exact block was not available.
679 * If the allocation did fail, subsequent requests will relax
680 * the exact agbno requirement and increase the alignment
681 * instead. It is critical that the total size of the request
682 * (len + alignment + slop) does not increase from this point
683 * on, so reset minalignslop to ensure it is not included in
684 * subsequent requests.
685 */
686 args.minalignslop = 0;
687 }
688
689 if (unlikely(args.fsbno == NULLFSBLOCK)) {
690 /*
691 * Set the alignment for the allocation.
692 * If stripe alignment is turned on then align at stripe unit
693 * boundary.
694 * If the cluster size is smaller than a filesystem block
695 * then we're doing I/O for inodes in filesystem block size
696 * pieces, so don't need alignment anyway.
697 */
698 isaligned = 0;
699 if (args.mp->m_sinoalign) {
700 ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
701 args.alignment = args.mp->m_dalign;
702 isaligned = 1;
703 } else
704 args.alignment = xfs_ialloc_cluster_alignment(args.mp);
705 /*
706 * Need to figure out where to allocate the inode blocks.
707 * Ideally they should be spaced out through the a.g.
708 * For now, just allocate blocks up front.
709 */
710 args.agbno = be32_to_cpu(agi->agi_root);
711 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
712 /*
713 * Allocate a fixed-size extent of inodes.
714 */
715 args.type = XFS_ALLOCTYPE_NEAR_BNO;
716 args.prod = 1;
717 /*
718 * Allow space for the inode btree to split.
719 */
720 args.minleft = args.mp->m_in_maxlevels - 1;
721 if ((error = xfs_alloc_vextent(&args)))
722 return error;
723 }
724
725 /*
726 * If stripe alignment is turned on, then try again with cluster
727 * alignment.
728 */
729 if (isaligned && args.fsbno == NULLFSBLOCK) {
730 args.type = XFS_ALLOCTYPE_NEAR_BNO;
731 args.agbno = be32_to_cpu(agi->agi_root);
732 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
733 args.alignment = xfs_ialloc_cluster_alignment(args.mp);
734 if ((error = xfs_alloc_vextent(&args)))
735 return error;
736 }
737
738 /*
739 * Finally, try a sparse allocation if the filesystem supports it and
740 * the sparse allocation length is smaller than a full chunk.
741 */
742 if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) &&
743 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks &&
744 args.fsbno == NULLFSBLOCK) {
745sparse_alloc:
746 args.type = XFS_ALLOCTYPE_NEAR_BNO;
747 args.agbno = be32_to_cpu(agi->agi_root);
748 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
749 args.alignment = args.mp->m_sb.sb_spino_align;
750 args.prod = 1;
751
752 args.minlen = args.mp->m_ialloc_min_blks;
753 args.maxlen = args.minlen;
754
755 /*
756 * The inode record will be aligned to full chunk size. We must
757 * prevent sparse allocation from AG boundaries that result in
758 * invalid inode records, such as records that start at agbno 0
759 * or extend beyond the AG.
760 *
761 * Set min agbno to the first aligned, non-zero agbno and max to
762 * the last aligned agbno that is at least one full chunk from
763 * the end of the AG.
764 */
765 args.min_agbno = args.mp->m_sb.sb_inoalignmt;
766 args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
767 args.mp->m_sb.sb_inoalignmt) -
768 args.mp->m_ialloc_blks;
769
770 error = xfs_alloc_vextent(&args);
771 if (error)
772 return error;
773
774 newlen = args.len << args.mp->m_sb.sb_inopblog;
775 ASSERT(newlen <= XFS_INODES_PER_CHUNK);
776 allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
777 }
778
779 if (args.fsbno == NULLFSBLOCK) {
780 *alloc = 0;
781 return 0;
782 }
783 ASSERT(args.len == args.minlen);
784
785 /*
786 * Stamp and write the inode buffers.
787 *
788 * Seed the new inode cluster with a random generation number. This
789 * prevents short-term reuse of generation numbers if a chunk is
790 * freed and then immediately reallocated. We use random numbers
791 * rather than a linear progression to prevent the next generation
792 * number from being easily guessable.
793 */
794 error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno,
795 args.agbno, args.len, prandom_u32());
796
797 if (error)
798 return error;
799 /*
800 * Convert the results.
801 */
802 newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0);
803
804 if (xfs_inobt_issparse(~allocmask)) {
805 /*
806 * We've allocated a sparse chunk. Align the startino and mask.
807 */
808 xfs_align_sparse_ino(args.mp, &newino, &allocmask);
809
810 rec.ir_startino = newino;
811 rec.ir_holemask = ~allocmask;
812 rec.ir_count = newlen;
813 rec.ir_freecount = newlen;
814 rec.ir_free = XFS_INOBT_ALL_FREE;
815
816 /*
817 * Insert the sparse record into the inobt and allow for a merge
818 * if necessary. If a merge does occur, rec is updated to the
819 * merged record.
820 */
821 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO,
822 &rec, true);
823 if (error == -EFSCORRUPTED) {
824 xfs_alert(args.mp,
825 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
826 XFS_AGINO_TO_INO(args.mp, agno,
827 rec.ir_startino),
828 rec.ir_holemask, rec.ir_count);
829 xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
830 }
831 if (error)
832 return error;
833
834 /*
835 * We can't merge the part we've just allocated as for the inobt
836 * due to finobt semantics. The original record may or may not
837 * exist independent of whether physical inodes exist in this
838 * sparse chunk.
839 *
840 * We must update the finobt record based on the inobt record.
841 * rec contains the fully merged and up to date inobt record
842 * from the previous call. Set merge false to replace any
843 * existing record with this one.
844 */
845 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
846 error = xfs_inobt_insert_sprec(args.mp, tp, agbp,
847 XFS_BTNUM_FINO, &rec,
848 false);
849 if (error)
850 return error;
851 }
852 } else {
853 /* full chunk - insert new records to both btrees */
854 error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
855 XFS_BTNUM_INO);
856 if (error)
857 return error;
858
859 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
860 error = xfs_inobt_insert(args.mp, tp, agbp, newino,
861 newlen, XFS_BTNUM_FINO);
862 if (error)
863 return error;
864 }
865 }
866
867 /*
868 * Update AGI counts and newino.
869 */
870 be32_add_cpu(&agi->agi_count, newlen);
871 be32_add_cpu(&agi->agi_freecount, newlen);
872 pag = xfs_perag_get(args.mp, agno);
873 pag->pagi_freecount += newlen;
874 xfs_perag_put(pag);
875 agi->agi_newino = cpu_to_be32(newino);
876
877 /*
878 * Log allocation group header fields
879 */
880 xfs_ialloc_log_agi(tp, agbp,
881 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
882 /*
883 * Modify/log superblock values for inode count and inode free count.
884 */
885 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
886 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
887 *alloc = 1;
888 return 0;
889}
890
891STATIC xfs_agnumber_t
892xfs_ialloc_next_ag(
893 xfs_mount_t *mp)
894{
895 xfs_agnumber_t agno;
896
897 spin_lock(&mp->m_agirotor_lock);
898 agno = mp->m_agirotor;
899 if (++mp->m_agirotor >= mp->m_maxagi)
900 mp->m_agirotor = 0;
901 spin_unlock(&mp->m_agirotor_lock);
902
903 return agno;
904}
905
906/*
907 * Select an allocation group to look for a free inode in, based on the parent
908 * inode and the mode. Return the allocation group buffer.
909 */
910STATIC xfs_agnumber_t
911xfs_ialloc_ag_select(
912 xfs_trans_t *tp, /* transaction pointer */
913 xfs_ino_t parent, /* parent directory inode number */
914 umode_t mode, /* bits set to indicate file type */
915 int okalloc) /* ok to allocate more space */
916{
917 xfs_agnumber_t agcount; /* number of ag's in the filesystem */
918 xfs_agnumber_t agno; /* current ag number */
919 int flags; /* alloc buffer locking flags */
920 xfs_extlen_t ineed; /* blocks needed for inode allocation */
921 xfs_extlen_t longest = 0; /* longest extent available */
922 xfs_mount_t *mp; /* mount point structure */
923 int needspace; /* file mode implies space allocated */
924 xfs_perag_t *pag; /* per allocation group data */
925 xfs_agnumber_t pagno; /* parent (starting) ag number */
926 int error;
927
928 /*
929 * Files of these types need at least one block if length > 0
930 * (and they won't fit in the inode, but that's hard to figure out).
931 */
932 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
933 mp = tp->t_mountp;
934 agcount = mp->m_maxagi;
935 if (S_ISDIR(mode))
936 pagno = xfs_ialloc_next_ag(mp);
937 else {
938 pagno = XFS_INO_TO_AGNO(mp, parent);
939 if (pagno >= agcount)
940 pagno = 0;
941 }
942
943 ASSERT(pagno < agcount);
944
945 /*
946 * Loop through allocation groups, looking for one with a little
947 * free space in it. Note we don't look for free inodes, exactly.
948 * Instead, we include whether there is a need to allocate inodes
949 * to mean that blocks must be allocated for them,
950 * if none are currently free.
951 */
952 agno = pagno;
953 flags = XFS_ALLOC_FLAG_TRYLOCK;
954 for (;;) {
955 pag = xfs_perag_get(mp, agno);
956 if (!pag->pagi_inodeok) {
957 xfs_ialloc_next_ag(mp);
958 goto nextag;
959 }
960
961 if (!pag->pagi_init) {
962 error = xfs_ialloc_pagi_init(mp, tp, agno);
963 if (error)
964 goto nextag;
965 }
966
967 if (pag->pagi_freecount) {
968 xfs_perag_put(pag);
969 return agno;
970 }
971
972 if (!okalloc)
973 goto nextag;
974
975 if (!pag->pagf_init) {
976 error = xfs_alloc_pagf_init(mp, tp, agno, flags);
977 if (error)
978 goto nextag;
979 }
980
981 /*
982 * Check that there is enough free space for the file plus a
983 * chunk of inodes if we need to allocate some. If this is the
984 * first pass across the AGs, take into account the potential
985 * space needed for alignment of inode chunks when checking the
986 * longest contiguous free space in the AG - this prevents us
987 * from getting ENOSPC because we have free space larger than
988 * m_ialloc_blks but alignment constraints prevent us from using
989 * it.
990 *
991 * If we can't find an AG with space for full alignment slack to
992 * be taken into account, we must be near ENOSPC in all AGs.
993 * Hence we don't include alignment for the second pass and so
994 * if we fail allocation due to alignment issues then it is most
995 * likely a real ENOSPC condition.
996 */
997 ineed = mp->m_ialloc_min_blks;
998 if (flags && ineed > 1)
999 ineed += xfs_ialloc_cluster_alignment(mp);
1000 longest = pag->pagf_longest;
1001 if (!longest)
1002 longest = pag->pagf_flcount > 0;
1003
1004 if (pag->pagf_freeblks >= needspace + ineed &&
1005 longest >= ineed) {
1006 xfs_perag_put(pag);
1007 return agno;
1008 }
1009nextag:
1010 xfs_perag_put(pag);
1011 /*
1012 * No point in iterating over the rest, if we're shutting
1013 * down.
1014 */
1015 if (XFS_FORCED_SHUTDOWN(mp))
1016 return NULLAGNUMBER;
1017 agno++;
1018 if (agno >= agcount)
1019 agno = 0;
1020 if (agno == pagno) {
1021 if (flags == 0)
1022 return NULLAGNUMBER;
1023 flags = 0;
1024 }
1025 }
1026}
1027
1028/*
1029 * Try to retrieve the next record to the left/right from the current one.
1030 */
1031STATIC int
1032xfs_ialloc_next_rec(
1033 struct xfs_btree_cur *cur,
1034 xfs_inobt_rec_incore_t *rec,
1035 int *done,
1036 int left)
1037{
1038 int error;
1039 int i;
1040
1041 if (left)
1042 error = xfs_btree_decrement(cur, 0, &i);
1043 else
1044 error = xfs_btree_increment(cur, 0, &i);
1045
1046 if (error)
1047 return error;
1048 *done = !i;
1049 if (i) {
1050 error = xfs_inobt_get_rec(cur, rec, &i);
1051 if (error)
1052 return error;
1053 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1054 }
1055
1056 return 0;
1057}
1058
1059STATIC int
1060xfs_ialloc_get_rec(
1061 struct xfs_btree_cur *cur,
1062 xfs_agino_t agino,
1063 xfs_inobt_rec_incore_t *rec,
1064 int *done)
1065{
1066 int error;
1067 int i;
1068
1069 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1070 if (error)
1071 return error;
1072 *done = !i;
1073 if (i) {
1074 error = xfs_inobt_get_rec(cur, rec, &i);
1075 if (error)
1076 return error;
1077 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1078 }
1079
1080 return 0;
1081}
1082
1083/*
1084 * Return the offset of the first free inode in the record. If the inode chunk
1085 * is sparsely allocated, we convert the record holemask to inode granularity
1086 * and mask off the unallocated regions from the inode free mask.
1087 */
1088STATIC int
1089xfs_inobt_first_free_inode(
1090 struct xfs_inobt_rec_incore *rec)
1091{
1092 xfs_inofree_t realfree;
1093
1094 /* if there are no holes, return the first available offset */
1095 if (!xfs_inobt_issparse(rec->ir_holemask))
1096 return xfs_lowbit64(rec->ir_free);
1097
1098 realfree = xfs_inobt_irec_to_allocmask(rec);
1099 realfree &= rec->ir_free;
1100
1101 return xfs_lowbit64(realfree);
1102}
1103
1104/*
1105 * Allocate an inode using the inobt-only algorithm.
1106 */
1107STATIC int
1108xfs_dialloc_ag_inobt(
1109 struct xfs_trans *tp,
1110 struct xfs_buf *agbp,
1111 xfs_ino_t parent,
1112 xfs_ino_t *inop)
1113{
1114 struct xfs_mount *mp = tp->t_mountp;
1115 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1116 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1117 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1118 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1119 struct xfs_perag *pag;
1120 struct xfs_btree_cur *cur, *tcur;
1121 struct xfs_inobt_rec_incore rec, trec;
1122 xfs_ino_t ino;
1123 int error;
1124 int offset;
1125 int i, j;
1126
1127 pag = xfs_perag_get(mp, agno);
1128
1129 ASSERT(pag->pagi_init);
1130 ASSERT(pag->pagi_inodeok);
1131 ASSERT(pag->pagi_freecount > 0);
1132
1133 restart_pagno:
1134 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1135 /*
1136 * If pagino is 0 (this is the root inode allocation) use newino.
1137 * This must work because we've just allocated some.
1138 */
1139 if (!pagino)
1140 pagino = be32_to_cpu(agi->agi_newino);
1141
1142 error = xfs_check_agi_freecount(cur, agi);
1143 if (error)
1144 goto error0;
1145
1146 /*
1147 * If in the same AG as the parent, try to get near the parent.
1148 */
1149 if (pagno == agno) {
1150 int doneleft; /* done, to the left */
1151 int doneright; /* done, to the right */
1152 int searchdistance = 10;
1153
1154 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1155 if (error)
1156 goto error0;
1157 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1158
1159 error = xfs_inobt_get_rec(cur, &rec, &j);
1160 if (error)
1161 goto error0;
1162 XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0);
1163
1164 if (rec.ir_freecount > 0) {
1165 /*
1166 * Found a free inode in the same chunk
1167 * as the parent, done.
1168 */
1169 goto alloc_inode;
1170 }
1171
1172
1173 /*
1174 * In the same AG as parent, but parent's chunk is full.
1175 */
1176
1177 /* duplicate the cursor, search left & right simultaneously */
1178 error = xfs_btree_dup_cursor(cur, &tcur);
1179 if (error)
1180 goto error0;
1181
1182 /*
1183 * Skip to last blocks looked up if same parent inode.
1184 */
1185 if (pagino != NULLAGINO &&
1186 pag->pagl_pagino == pagino &&
1187 pag->pagl_leftrec != NULLAGINO &&
1188 pag->pagl_rightrec != NULLAGINO) {
1189 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1190 &trec, &doneleft);
1191 if (error)
1192 goto error1;
1193
1194 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1195 &rec, &doneright);
1196 if (error)
1197 goto error1;
1198 } else {
1199 /* search left with tcur, back up 1 record */
1200 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1201 if (error)
1202 goto error1;
1203
1204 /* search right with cur, go forward 1 record. */
1205 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1206 if (error)
1207 goto error1;
1208 }
1209
1210 /*
1211 * Loop until we find an inode chunk with a free inode.
1212 */
1213 while (!doneleft || !doneright) {
1214 int useleft; /* using left inode chunk this time */
1215
1216 if (!--searchdistance) {
1217 /*
1218 * Not in range - save last search
1219 * location and allocate a new inode
1220 */
1221 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1222 pag->pagl_leftrec = trec.ir_startino;
1223 pag->pagl_rightrec = rec.ir_startino;
1224 pag->pagl_pagino = pagino;
1225 goto newino;
1226 }
1227
1228 /* figure out the closer block if both are valid. */
1229 if (!doneleft && !doneright) {
1230 useleft = pagino -
1231 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1232 rec.ir_startino - pagino;
1233 } else {
1234 useleft = !doneleft;
1235 }
1236
1237 /* free inodes to the left? */
1238 if (useleft && trec.ir_freecount) {
1239 rec = trec;
1240 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1241 cur = tcur;
1242
1243 pag->pagl_leftrec = trec.ir_startino;
1244 pag->pagl_rightrec = rec.ir_startino;
1245 pag->pagl_pagino = pagino;
1246 goto alloc_inode;
1247 }
1248
1249 /* free inodes to the right? */
1250 if (!useleft && rec.ir_freecount) {
1251 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1252
1253 pag->pagl_leftrec = trec.ir_startino;
1254 pag->pagl_rightrec = rec.ir_startino;
1255 pag->pagl_pagino = pagino;
1256 goto alloc_inode;
1257 }
1258
1259 /* get next record to check */
1260 if (useleft) {
1261 error = xfs_ialloc_next_rec(tcur, &trec,
1262 &doneleft, 1);
1263 } else {
1264 error = xfs_ialloc_next_rec(cur, &rec,
1265 &doneright, 0);
1266 }
1267 if (error)
1268 goto error1;
1269 }
1270
1271 /*
1272 * We've reached the end of the btree. because
1273 * we are only searching a small chunk of the
1274 * btree each search, there is obviously free
1275 * inodes closer to the parent inode than we
1276 * are now. restart the search again.
1277 */
1278 pag->pagl_pagino = NULLAGINO;
1279 pag->pagl_leftrec = NULLAGINO;
1280 pag->pagl_rightrec = NULLAGINO;
1281 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1282 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1283 goto restart_pagno;
1284 }
1285
1286 /*
1287 * In a different AG from the parent.
1288 * See if the most recently allocated block has any free.
1289 */
1290newino:
1291 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1292 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1293 XFS_LOOKUP_EQ, &i);
1294 if (error)
1295 goto error0;
1296
1297 if (i == 1) {
1298 error = xfs_inobt_get_rec(cur, &rec, &j);
1299 if (error)
1300 goto error0;
1301
1302 if (j == 1 && rec.ir_freecount > 0) {
1303 /*
1304 * The last chunk allocated in the group
1305 * still has a free inode.
1306 */
1307 goto alloc_inode;
1308 }
1309 }
1310 }
1311
1312 /*
1313 * None left in the last group, search the whole AG
1314 */
1315 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1316 if (error)
1317 goto error0;
1318 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1319
1320 for (;;) {
1321 error = xfs_inobt_get_rec(cur, &rec, &i);
1322 if (error)
1323 goto error0;
1324 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1325 if (rec.ir_freecount > 0)
1326 break;
1327 error = xfs_btree_increment(cur, 0, &i);
1328 if (error)
1329 goto error0;
1330 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1331 }
1332
1333alloc_inode:
1334 offset = xfs_inobt_first_free_inode(&rec);
1335 ASSERT(offset >= 0);
1336 ASSERT(offset < XFS_INODES_PER_CHUNK);
1337 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1338 XFS_INODES_PER_CHUNK) == 0);
1339 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1340 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1341 rec.ir_freecount--;
1342 error = xfs_inobt_update(cur, &rec);
1343 if (error)
1344 goto error0;
1345 be32_add_cpu(&agi->agi_freecount, -1);
1346 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1347 pag->pagi_freecount--;
1348
1349 error = xfs_check_agi_freecount(cur, agi);
1350 if (error)
1351 goto error0;
1352
1353 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1354 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1355 xfs_perag_put(pag);
1356 *inop = ino;
1357 return 0;
1358error1:
1359 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1360error0:
1361 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1362 xfs_perag_put(pag);
1363 return error;
1364}
1365
1366/*
1367 * Use the free inode btree to allocate an inode based on distance from the
1368 * parent. Note that the provided cursor may be deleted and replaced.
1369 */
1370STATIC int
1371xfs_dialloc_ag_finobt_near(
1372 xfs_agino_t pagino,
1373 struct xfs_btree_cur **ocur,
1374 struct xfs_inobt_rec_incore *rec)
1375{
1376 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */
1377 struct xfs_btree_cur *rcur; /* right search cursor */
1378 struct xfs_inobt_rec_incore rrec;
1379 int error;
1380 int i, j;
1381
1382 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1383 if (error)
1384 return error;
1385
1386 if (i == 1) {
1387 error = xfs_inobt_get_rec(lcur, rec, &i);
1388 if (error)
1389 return error;
1390 XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1);
1391
1392 /*
1393 * See if we've landed in the parent inode record. The finobt
1394 * only tracks chunks with at least one free inode, so record
1395 * existence is enough.
1396 */
1397 if (pagino >= rec->ir_startino &&
1398 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1399 return 0;
1400 }
1401
1402 error = xfs_btree_dup_cursor(lcur, &rcur);
1403 if (error)
1404 return error;
1405
1406 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1407 if (error)
1408 goto error_rcur;
1409 if (j == 1) {
1410 error = xfs_inobt_get_rec(rcur, &rrec, &j);
1411 if (error)
1412 goto error_rcur;
1413 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur);
1414 }
1415
1416 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur);
1417 if (i == 1 && j == 1) {
1418 /*
1419 * Both the left and right records are valid. Choose the closer
1420 * inode chunk to the target.
1421 */
1422 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1423 (rrec.ir_startino - pagino)) {
1424 *rec = rrec;
1425 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1426 *ocur = rcur;
1427 } else {
1428 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1429 }
1430 } else if (j == 1) {
1431 /* only the right record is valid */
1432 *rec = rrec;
1433 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1434 *ocur = rcur;
1435 } else if (i == 1) {
1436 /* only the left record is valid */
1437 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1438 }
1439
1440 return 0;
1441
1442error_rcur:
1443 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1444 return error;
1445}
1446
1447/*
1448 * Use the free inode btree to find a free inode based on a newino hint. If
1449 * the hint is NULL, find the first free inode in the AG.
1450 */
1451STATIC int
1452xfs_dialloc_ag_finobt_newino(
1453 struct xfs_agi *agi,
1454 struct xfs_btree_cur *cur,
1455 struct xfs_inobt_rec_incore *rec)
1456{
1457 int error;
1458 int i;
1459
1460 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1461 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1462 XFS_LOOKUP_EQ, &i);
1463 if (error)
1464 return error;
1465 if (i == 1) {
1466 error = xfs_inobt_get_rec(cur, rec, &i);
1467 if (error)
1468 return error;
1469 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1470 return 0;
1471 }
1472 }
1473
1474 /*
1475 * Find the first inode available in the AG.
1476 */
1477 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1478 if (error)
1479 return error;
1480 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1481
1482 error = xfs_inobt_get_rec(cur, rec, &i);
1483 if (error)
1484 return error;
1485 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1486
1487 return 0;
1488}
1489
1490/*
1491 * Update the inobt based on a modification made to the finobt. Also ensure that
1492 * the records from both trees are equivalent post-modification.
1493 */
1494STATIC int
1495xfs_dialloc_ag_update_inobt(
1496 struct xfs_btree_cur *cur, /* inobt cursor */
1497 struct xfs_inobt_rec_incore *frec, /* finobt record */
1498 int offset) /* inode offset */
1499{
1500 struct xfs_inobt_rec_incore rec;
1501 int error;
1502 int i;
1503
1504 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1505 if (error)
1506 return error;
1507 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1508
1509 error = xfs_inobt_get_rec(cur, &rec, &i);
1510 if (error)
1511 return error;
1512 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1513 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1514 XFS_INODES_PER_CHUNK) == 0);
1515
1516 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1517 rec.ir_freecount--;
1518
1519 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) &&
1520 (rec.ir_freecount == frec->ir_freecount));
1521
1522 return xfs_inobt_update(cur, &rec);
1523}
1524
1525/*
1526 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1527 * back to the inobt search algorithm.
1528 *
1529 * The caller selected an AG for us, and made sure that free inodes are
1530 * available.
1531 */
1532STATIC int
1533xfs_dialloc_ag(
1534 struct xfs_trans *tp,
1535 struct xfs_buf *agbp,
1536 xfs_ino_t parent,
1537 xfs_ino_t *inop)
1538{
1539 struct xfs_mount *mp = tp->t_mountp;
1540 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1541 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1542 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1543 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1544 struct xfs_perag *pag;
1545 struct xfs_btree_cur *cur; /* finobt cursor */
1546 struct xfs_btree_cur *icur; /* inobt cursor */
1547 struct xfs_inobt_rec_incore rec;
1548 xfs_ino_t ino;
1549 int error;
1550 int offset;
1551 int i;
1552
1553 if (!xfs_sb_version_hasfinobt(&mp->m_sb))
1554 return xfs_dialloc_ag_inobt(tp, agbp, parent, inop);
1555
1556 pag = xfs_perag_get(mp, agno);
1557
1558 /*
1559 * If pagino is 0 (this is the root inode allocation) use newino.
1560 * This must work because we've just allocated some.
1561 */
1562 if (!pagino)
1563 pagino = be32_to_cpu(agi->agi_newino);
1564
1565 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1566
1567 error = xfs_check_agi_freecount(cur, agi);
1568 if (error)
1569 goto error_cur;
1570
1571 /*
1572 * The search algorithm depends on whether we're in the same AG as the
1573 * parent. If so, find the closest available inode to the parent. If
1574 * not, consider the agi hint or find the first free inode in the AG.
1575 */
1576 if (agno == pagno)
1577 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1578 else
1579 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1580 if (error)
1581 goto error_cur;
1582
1583 offset = xfs_inobt_first_free_inode(&rec);
1584 ASSERT(offset >= 0);
1585 ASSERT(offset < XFS_INODES_PER_CHUNK);
1586 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1587 XFS_INODES_PER_CHUNK) == 0);
1588 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1589
1590 /*
1591 * Modify or remove the finobt record.
1592 */
1593 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1594 rec.ir_freecount--;
1595 if (rec.ir_freecount)
1596 error = xfs_inobt_update(cur, &rec);
1597 else
1598 error = xfs_btree_delete(cur, &i);
1599 if (error)
1600 goto error_cur;
1601
1602 /*
1603 * The finobt has now been updated appropriately. We haven't updated the
1604 * agi and superblock yet, so we can create an inobt cursor and validate
1605 * the original freecount. If all is well, make the equivalent update to
1606 * the inobt using the finobt record and offset information.
1607 */
1608 icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1609
1610 error = xfs_check_agi_freecount(icur, agi);
1611 if (error)
1612 goto error_icur;
1613
1614 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1615 if (error)
1616 goto error_icur;
1617
1618 /*
1619 * Both trees have now been updated. We must update the perag and
1620 * superblock before we can check the freecount for each btree.
1621 */
1622 be32_add_cpu(&agi->agi_freecount, -1);
1623 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1624 pag->pagi_freecount--;
1625
1626 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1627
1628 error = xfs_check_agi_freecount(icur, agi);
1629 if (error)
1630 goto error_icur;
1631 error = xfs_check_agi_freecount(cur, agi);
1632 if (error)
1633 goto error_icur;
1634
1635 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1636 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1637 xfs_perag_put(pag);
1638 *inop = ino;
1639 return 0;
1640
1641error_icur:
1642 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1643error_cur:
1644 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1645 xfs_perag_put(pag);
1646 return error;
1647}
1648
1649/*
1650 * Allocate an inode on disk.
1651 *
1652 * Mode is used to tell whether the new inode will need space, and whether it
1653 * is a directory.
1654 *
1655 * This function is designed to be called twice if it has to do an allocation
1656 * to make more free inodes. On the first call, *IO_agbp should be set to NULL.
1657 * If an inode is available without having to performn an allocation, an inode
1658 * number is returned. In this case, *IO_agbp is set to NULL. If an allocation
1659 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1660 * The caller should then commit the current transaction, allocate a
1661 * new transaction, and call xfs_dialloc() again, passing in the previous value
1662 * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI
1663 * buffer is locked across the two calls, the second call is guaranteed to have
1664 * a free inode available.
1665 *
1666 * Once we successfully pick an inode its number is returned and the on-disk
1667 * data structures are updated. The inode itself is not read in, since doing so
1668 * would break ordering constraints with xfs_reclaim.
1669 */
1670int
1671xfs_dialloc(
1672 struct xfs_trans *tp,
1673 xfs_ino_t parent,
1674 umode_t mode,
1675 int okalloc,
1676 struct xfs_buf **IO_agbp,
1677 xfs_ino_t *inop)
1678{
1679 struct xfs_mount *mp = tp->t_mountp;
1680 struct xfs_buf *agbp;
1681 xfs_agnumber_t agno;
1682 int error;
1683 int ialloced;
1684 int noroom = 0;
1685 xfs_agnumber_t start_agno;
1686 struct xfs_perag *pag;
1687
1688 if (*IO_agbp) {
1689 /*
1690 * If the caller passes in a pointer to the AGI buffer,
1691 * continue where we left off before. In this case, we
1692 * know that the allocation group has free inodes.
1693 */
1694 agbp = *IO_agbp;
1695 goto out_alloc;
1696 }
1697
1698 /*
1699 * We do not have an agbp, so select an initial allocation
1700 * group for inode allocation.
1701 */
1702 start_agno = xfs_ialloc_ag_select(tp, parent, mode, okalloc);
1703 if (start_agno == NULLAGNUMBER) {
1704 *inop = NULLFSINO;
1705 return 0;
1706 }
1707
1708 /*
1709 * If we have already hit the ceiling of inode blocks then clear
1710 * okalloc so we scan all available agi structures for a free
1711 * inode.
1712 *
1713 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1714 * which will sacrifice the preciseness but improve the performance.
1715 */
1716 if (mp->m_maxicount &&
1717 percpu_counter_read_positive(&mp->m_icount) + mp->m_ialloc_inos
1718 > mp->m_maxicount) {
1719 noroom = 1;
1720 okalloc = 0;
1721 }
1722
1723 /*
1724 * Loop until we find an allocation group that either has free inodes
1725 * or in which we can allocate some inodes. Iterate through the
1726 * allocation groups upward, wrapping at the end.
1727 */
1728 agno = start_agno;
1729 for (;;) {
1730 pag = xfs_perag_get(mp, agno);
1731 if (!pag->pagi_inodeok) {
1732 xfs_ialloc_next_ag(mp);
1733 goto nextag;
1734 }
1735
1736 if (!pag->pagi_init) {
1737 error = xfs_ialloc_pagi_init(mp, tp, agno);
1738 if (error)
1739 goto out_error;
1740 }
1741
1742 /*
1743 * Do a first racy fast path check if this AG is usable.
1744 */
1745 if (!pag->pagi_freecount && !okalloc)
1746 goto nextag;
1747
1748 /*
1749 * Then read in the AGI buffer and recheck with the AGI buffer
1750 * lock held.
1751 */
1752 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1753 if (error)
1754 goto out_error;
1755
1756 if (pag->pagi_freecount) {
1757 xfs_perag_put(pag);
1758 goto out_alloc;
1759 }
1760
1761 if (!okalloc)
1762 goto nextag_relse_buffer;
1763
1764
1765 error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
1766 if (error) {
1767 xfs_trans_brelse(tp, agbp);
1768
1769 if (error != -ENOSPC)
1770 goto out_error;
1771
1772 xfs_perag_put(pag);
1773 *inop = NULLFSINO;
1774 return 0;
1775 }
1776
1777 if (ialloced) {
1778 /*
1779 * We successfully allocated some inodes, return
1780 * the current context to the caller so that it
1781 * can commit the current transaction and call
1782 * us again where we left off.
1783 */
1784 ASSERT(pag->pagi_freecount > 0);
1785 xfs_perag_put(pag);
1786
1787 *IO_agbp = agbp;
1788 *inop = NULLFSINO;
1789 return 0;
1790 }
1791
1792nextag_relse_buffer:
1793 xfs_trans_brelse(tp, agbp);
1794nextag:
1795 xfs_perag_put(pag);
1796 if (++agno == mp->m_sb.sb_agcount)
1797 agno = 0;
1798 if (agno == start_agno) {
1799 *inop = NULLFSINO;
1800 return noroom ? -ENOSPC : 0;
1801 }
1802 }
1803
1804out_alloc:
1805 *IO_agbp = NULL;
1806 return xfs_dialloc_ag(tp, agbp, parent, inop);
1807out_error:
1808 xfs_perag_put(pag);
1809 return error;
1810}
1811
1812/*
1813 * Free the blocks of an inode chunk. We must consider that the inode chunk
1814 * might be sparse and only free the regions that are allocated as part of the
1815 * chunk.
1816 */
1817STATIC void
1818xfs_difree_inode_chunk(
1819 struct xfs_mount *mp,
1820 xfs_agnumber_t agno,
1821 struct xfs_inobt_rec_incore *rec,
1822 struct xfs_defer_ops *dfops)
1823{
1824 xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp, rec->ir_startino);
1825 int startidx, endidx;
1826 int nextbit;
1827 xfs_agblock_t agbno;
1828 int contigblk;
1829 struct xfs_owner_info oinfo;
1830 DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1831 xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_INODES);
1832
1833 if (!xfs_inobt_issparse(rec->ir_holemask)) {
1834 /* not sparse, calculate extent info directly */
1835 xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, sagbno),
1836 mp->m_ialloc_blks, &oinfo);
1837 return;
1838 }
1839
1840 /* holemask is only 16-bits (fits in an unsigned long) */
1841 ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1842 holemask[0] = rec->ir_holemask;
1843
1844 /*
1845 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1846 * holemask and convert the start/end index of each range to an extent.
1847 * We start with the start and end index both pointing at the first 0 in
1848 * the mask.
1849 */
1850 startidx = endidx = find_first_zero_bit(holemask,
1851 XFS_INOBT_HOLEMASK_BITS);
1852 nextbit = startidx + 1;
1853 while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1854 nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1855 nextbit);
1856 /*
1857 * If the next zero bit is contiguous, update the end index of
1858 * the current range and continue.
1859 */
1860 if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1861 nextbit == endidx + 1) {
1862 endidx = nextbit;
1863 goto next;
1864 }
1865
1866 /*
1867 * nextbit is not contiguous with the current end index. Convert
1868 * the current start/end to an extent and add it to the free
1869 * list.
1870 */
1871 agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1872 mp->m_sb.sb_inopblock;
1873 contigblk = ((endidx - startidx + 1) *
1874 XFS_INODES_PER_HOLEMASK_BIT) /
1875 mp->m_sb.sb_inopblock;
1876
1877 ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1878 ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1879 xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, agbno),
1880 contigblk, &oinfo);
1881
1882 /* reset range to current bit and carry on... */
1883 startidx = endidx = nextbit;
1884
1885next:
1886 nextbit++;
1887 }
1888}
1889
1890STATIC int
1891xfs_difree_inobt(
1892 struct xfs_mount *mp,
1893 struct xfs_trans *tp,
1894 struct xfs_buf *agbp,
1895 xfs_agino_t agino,
1896 struct xfs_defer_ops *dfops,
1897 struct xfs_icluster *xic,
1898 struct xfs_inobt_rec_incore *orec)
1899{
1900 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1901 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1902 struct xfs_perag *pag;
1903 struct xfs_btree_cur *cur;
1904 struct xfs_inobt_rec_incore rec;
1905 int ilen;
1906 int error;
1907 int i;
1908 int off;
1909
1910 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1911 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1912
1913 /*
1914 * Initialize the cursor.
1915 */
1916 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1917
1918 error = xfs_check_agi_freecount(cur, agi);
1919 if (error)
1920 goto error0;
1921
1922 /*
1923 * Look for the entry describing this inode.
1924 */
1925 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1926 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1927 __func__, error);
1928 goto error0;
1929 }
1930 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1931 error = xfs_inobt_get_rec(cur, &rec, &i);
1932 if (error) {
1933 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1934 __func__, error);
1935 goto error0;
1936 }
1937 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1938 /*
1939 * Get the offset in the inode chunk.
1940 */
1941 off = agino - rec.ir_startino;
1942 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1943 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1944 /*
1945 * Mark the inode free & increment the count.
1946 */
1947 rec.ir_free |= XFS_INOBT_MASK(off);
1948 rec.ir_freecount++;
1949
1950 /*
1951 * When an inode chunk is free, it becomes eligible for removal. Don't
1952 * remove the chunk if the block size is large enough for multiple inode
1953 * chunks (that might not be free).
1954 */
1955 if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
1956 rec.ir_free == XFS_INOBT_ALL_FREE &&
1957 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1958 xic->deleted = 1;
1959 xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
1960 xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
1961
1962 /*
1963 * Remove the inode cluster from the AGI B+Tree, adjust the
1964 * AGI and Superblock inode counts, and mark the disk space
1965 * to be freed when the transaction is committed.
1966 */
1967 ilen = rec.ir_freecount;
1968 be32_add_cpu(&agi->agi_count, -ilen);
1969 be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1970 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
1971 pag = xfs_perag_get(mp, agno);
1972 pag->pagi_freecount -= ilen - 1;
1973 xfs_perag_put(pag);
1974 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1975 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1976
1977 if ((error = xfs_btree_delete(cur, &i))) {
1978 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1979 __func__, error);
1980 goto error0;
1981 }
1982
1983 xfs_difree_inode_chunk(mp, agno, &rec, dfops);
1984 } else {
1985 xic->deleted = 0;
1986
1987 error = xfs_inobt_update(cur, &rec);
1988 if (error) {
1989 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
1990 __func__, error);
1991 goto error0;
1992 }
1993
1994 /*
1995 * Change the inode free counts and log the ag/sb changes.
1996 */
1997 be32_add_cpu(&agi->agi_freecount, 1);
1998 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1999 pag = xfs_perag_get(mp, agno);
2000 pag->pagi_freecount++;
2001 xfs_perag_put(pag);
2002 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2003 }
2004
2005 error = xfs_check_agi_freecount(cur, agi);
2006 if (error)
2007 goto error0;
2008
2009 *orec = rec;
2010 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2011 return 0;
2012
2013error0:
2014 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2015 return error;
2016}
2017
2018/*
2019 * Free an inode in the free inode btree.
2020 */
2021STATIC int
2022xfs_difree_finobt(
2023 struct xfs_mount *mp,
2024 struct xfs_trans *tp,
2025 struct xfs_buf *agbp,
2026 xfs_agino_t agino,
2027 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */
2028{
2029 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
2030 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
2031 struct xfs_btree_cur *cur;
2032 struct xfs_inobt_rec_incore rec;
2033 int offset = agino - ibtrec->ir_startino;
2034 int error;
2035 int i;
2036
2037 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
2038
2039 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2040 if (error)
2041 goto error;
2042 if (i == 0) {
2043 /*
2044 * If the record does not exist in the finobt, we must have just
2045 * freed an inode in a previously fully allocated chunk. If not,
2046 * something is out of sync.
2047 */
2048 XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error);
2049
2050 error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2051 ibtrec->ir_count,
2052 ibtrec->ir_freecount,
2053 ibtrec->ir_free, &i);
2054 if (error)
2055 goto error;
2056 ASSERT(i == 1);
2057
2058 goto out;
2059 }
2060
2061 /*
2062 * Read and update the existing record. We could just copy the ibtrec
2063 * across here, but that would defeat the purpose of having redundant
2064 * metadata. By making the modifications independently, we can catch
2065 * corruptions that we wouldn't see if we just copied from one record
2066 * to another.
2067 */
2068 error = xfs_inobt_get_rec(cur, &rec, &i);
2069 if (error)
2070 goto error;
2071 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
2072
2073 rec.ir_free |= XFS_INOBT_MASK(offset);
2074 rec.ir_freecount++;
2075
2076 XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) &&
2077 (rec.ir_freecount == ibtrec->ir_freecount),
2078 error);
2079
2080 /*
2081 * The content of inobt records should always match between the inobt
2082 * and finobt. The lifecycle of records in the finobt is different from
2083 * the inobt in that the finobt only tracks records with at least one
2084 * free inode. Hence, if all of the inodes are free and we aren't
2085 * keeping inode chunks permanently on disk, remove the record.
2086 * Otherwise, update the record with the new information.
2087 *
2088 * Note that we currently can't free chunks when the block size is large
2089 * enough for multiple chunks. Leave the finobt record to remain in sync
2090 * with the inobt.
2091 */
2092 if (rec.ir_free == XFS_INOBT_ALL_FREE &&
2093 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK &&
2094 !(mp->m_flags & XFS_MOUNT_IKEEP)) {
2095 error = xfs_btree_delete(cur, &i);
2096 if (error)
2097 goto error;
2098 ASSERT(i == 1);
2099 } else {
2100 error = xfs_inobt_update(cur, &rec);
2101 if (error)
2102 goto error;
2103 }
2104
2105out:
2106 error = xfs_check_agi_freecount(cur, agi);
2107 if (error)
2108 goto error;
2109
2110 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2111 return 0;
2112
2113error:
2114 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2115 return error;
2116}
2117
2118/*
2119 * Free disk inode. Carefully avoids touching the incore inode, all
2120 * manipulations incore are the caller's responsibility.
2121 * The on-disk inode is not changed by this operation, only the
2122 * btree (free inode mask) is changed.
2123 */
2124int
2125xfs_difree(
2126 struct xfs_trans *tp, /* transaction pointer */
2127 xfs_ino_t inode, /* inode to be freed */
2128 struct xfs_defer_ops *dfops, /* extents to free */
2129 struct xfs_icluster *xic) /* cluster info if deleted */
2130{
2131 /* REFERENCED */
2132 xfs_agblock_t agbno; /* block number containing inode */
2133 struct xfs_buf *agbp; /* buffer for allocation group header */
2134 xfs_agino_t agino; /* allocation group inode number */
2135 xfs_agnumber_t agno; /* allocation group number */
2136 int error; /* error return value */
2137 struct xfs_mount *mp; /* mount structure for filesystem */
2138 struct xfs_inobt_rec_incore rec;/* btree record */
2139
2140 mp = tp->t_mountp;
2141
2142 /*
2143 * Break up inode number into its components.
2144 */
2145 agno = XFS_INO_TO_AGNO(mp, inode);
2146 if (agno >= mp->m_sb.sb_agcount) {
2147 xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
2148 __func__, agno, mp->m_sb.sb_agcount);
2149 ASSERT(0);
2150 return -EINVAL;
2151 }
2152 agino = XFS_INO_TO_AGINO(mp, inode);
2153 if (inode != XFS_AGINO_TO_INO(mp, agno, agino)) {
2154 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2155 __func__, (unsigned long long)inode,
2156 (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
2157 ASSERT(0);
2158 return -EINVAL;
2159 }
2160 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2161 if (agbno >= mp->m_sb.sb_agblocks) {
2162 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2163 __func__, agbno, mp->m_sb.sb_agblocks);
2164 ASSERT(0);
2165 return -EINVAL;
2166 }
2167 /*
2168 * Get the allocation group header.
2169 */
2170 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2171 if (error) {
2172 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2173 __func__, error);
2174 return error;
2175 }
2176
2177 /*
2178 * Fix up the inode allocation btree.
2179 */
2180 error = xfs_difree_inobt(mp, tp, agbp, agino, dfops, xic, &rec);
2181 if (error)
2182 goto error0;
2183
2184 /*
2185 * Fix up the free inode btree.
2186 */
2187 if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
2188 error = xfs_difree_finobt(mp, tp, agbp, agino, &rec);
2189 if (error)
2190 goto error0;
2191 }
2192
2193 return 0;
2194
2195error0:
2196 return error;
2197}
2198
2199STATIC int
2200xfs_imap_lookup(
2201 struct xfs_mount *mp,
2202 struct xfs_trans *tp,
2203 xfs_agnumber_t agno,
2204 xfs_agino_t agino,
2205 xfs_agblock_t agbno,
2206 xfs_agblock_t *chunk_agbno,
2207 xfs_agblock_t *offset_agbno,
2208 int flags)
2209{
2210 struct xfs_inobt_rec_incore rec;
2211 struct xfs_btree_cur *cur;
2212 struct xfs_buf *agbp;
2213 int error;
2214 int i;
2215
2216 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2217 if (error) {
2218 xfs_alert(mp,
2219 "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2220 __func__, error, agno);
2221 return error;
2222 }
2223
2224 /*
2225 * Lookup the inode record for the given agino. If the record cannot be
2226 * found, then it's an invalid inode number and we should abort. Once
2227 * we have a record, we need to ensure it contains the inode number
2228 * we are looking up.
2229 */
2230 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
2231 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2232 if (!error) {
2233 if (i)
2234 error = xfs_inobt_get_rec(cur, &rec, &i);
2235 if (!error && i == 0)
2236 error = -EINVAL;
2237 }
2238
2239 xfs_trans_brelse(tp, agbp);
2240 xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR);
2241 if (error)
2242 return error;
2243
2244 /* check that the returned record contains the required inode */
2245 if (rec.ir_startino > agino ||
2246 rec.ir_startino + mp->m_ialloc_inos <= agino)
2247 return -EINVAL;
2248
2249 /* for untrusted inodes check it is allocated first */
2250 if ((flags & XFS_IGET_UNTRUSTED) &&
2251 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2252 return -EINVAL;
2253
2254 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2255 *offset_agbno = agbno - *chunk_agbno;
2256 return 0;
2257}
2258
2259/*
2260 * Return the location of the inode in imap, for mapping it into a buffer.
2261 */
2262int
2263xfs_imap(
2264 xfs_mount_t *mp, /* file system mount structure */
2265 xfs_trans_t *tp, /* transaction pointer */
2266 xfs_ino_t ino, /* inode to locate */
2267 struct xfs_imap *imap, /* location map structure */
2268 uint flags) /* flags for inode btree lookup */
2269{
2270 xfs_agblock_t agbno; /* block number of inode in the alloc group */
2271 xfs_agino_t agino; /* inode number within alloc group */
2272 xfs_agnumber_t agno; /* allocation group number */
2273 int blks_per_cluster; /* num blocks per inode cluster */
2274 xfs_agblock_t chunk_agbno; /* first block in inode chunk */
2275 xfs_agblock_t cluster_agbno; /* first block in inode cluster */
2276 int error; /* error code */
2277 int offset; /* index of inode in its buffer */
2278 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */
2279
2280 ASSERT(ino != NULLFSINO);
2281
2282 /*
2283 * Split up the inode number into its parts.
2284 */
2285 agno = XFS_INO_TO_AGNO(mp, ino);
2286 agino = XFS_INO_TO_AGINO(mp, ino);
2287 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2288 if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
2289 ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2290#ifdef DEBUG
2291 /*
2292 * Don't output diagnostic information for untrusted inodes
2293 * as they can be invalid without implying corruption.
2294 */
2295 if (flags & XFS_IGET_UNTRUSTED)
2296 return -EINVAL;
2297 if (agno >= mp->m_sb.sb_agcount) {
2298 xfs_alert(mp,
2299 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2300 __func__, agno, mp->m_sb.sb_agcount);
2301 }
2302 if (agbno >= mp->m_sb.sb_agblocks) {
2303 xfs_alert(mp,
2304 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2305 __func__, (unsigned long long)agbno,
2306 (unsigned long)mp->m_sb.sb_agblocks);
2307 }
2308 if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2309 xfs_alert(mp,
2310 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2311 __func__, ino,
2312 XFS_AGINO_TO_INO(mp, agno, agino));
2313 }
2314 xfs_stack_trace();
2315#endif /* DEBUG */
2316 return -EINVAL;
2317 }
2318
2319 blks_per_cluster = xfs_icluster_size_fsb(mp);
2320
2321 /*
2322 * For bulkstat and handle lookups, we have an untrusted inode number
2323 * that we have to verify is valid. We cannot do this just by reading
2324 * the inode buffer as it may have been unlinked and removed leaving
2325 * inodes in stale state on disk. Hence we have to do a btree lookup
2326 * in all cases where an untrusted inode number is passed.
2327 */
2328 if (flags & XFS_IGET_UNTRUSTED) {
2329 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2330 &chunk_agbno, &offset_agbno, flags);
2331 if (error)
2332 return error;
2333 goto out_map;
2334 }
2335
2336 /*
2337 * If the inode cluster size is the same as the blocksize or
2338 * smaller we get to the buffer by simple arithmetics.
2339 */
2340 if (blks_per_cluster == 1) {
2341 offset = XFS_INO_TO_OFFSET(mp, ino);
2342 ASSERT(offset < mp->m_sb.sb_inopblock);
2343
2344 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
2345 imap->im_len = XFS_FSB_TO_BB(mp, 1);
2346 imap->im_boffset = (unsigned short)(offset <<
2347 mp->m_sb.sb_inodelog);
2348 return 0;
2349 }
2350
2351 /*
2352 * If the inode chunks are aligned then use simple maths to
2353 * find the location. Otherwise we have to do a btree
2354 * lookup to find the location.
2355 */
2356 if (mp->m_inoalign_mask) {
2357 offset_agbno = agbno & mp->m_inoalign_mask;
2358 chunk_agbno = agbno - offset_agbno;
2359 } else {
2360 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2361 &chunk_agbno, &offset_agbno, flags);
2362 if (error)
2363 return error;
2364 }
2365
2366out_map:
2367 ASSERT(agbno >= chunk_agbno);
2368 cluster_agbno = chunk_agbno +
2369 ((offset_agbno / blks_per_cluster) * blks_per_cluster);
2370 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2371 XFS_INO_TO_OFFSET(mp, ino);
2372
2373 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
2374 imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster);
2375 imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2376
2377 /*
2378 * If the inode number maps to a block outside the bounds
2379 * of the file system then return NULL rather than calling
2380 * read_buf and panicing when we get an error from the
2381 * driver.
2382 */
2383 if ((imap->im_blkno + imap->im_len) >
2384 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2385 xfs_alert(mp,
2386 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2387 __func__, (unsigned long long) imap->im_blkno,
2388 (unsigned long long) imap->im_len,
2389 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2390 return -EINVAL;
2391 }
2392 return 0;
2393}
2394
2395/*
2396 * Compute and fill in value of m_in_maxlevels.
2397 */
2398void
2399xfs_ialloc_compute_maxlevels(
2400 xfs_mount_t *mp) /* file system mount structure */
2401{
2402 uint inodes;
2403
2404 inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2405 mp->m_in_maxlevels = xfs_btree_compute_maxlevels(mp, mp->m_inobt_mnr,
2406 inodes);
2407}
2408
2409/*
2410 * Log specified fields for the ag hdr (inode section). The growth of the agi
2411 * structure over time requires that we interpret the buffer as two logical
2412 * regions delineated by the end of the unlinked list. This is due to the size
2413 * of the hash table and its location in the middle of the agi.
2414 *
2415 * For example, a request to log a field before agi_unlinked and a field after
2416 * agi_unlinked could cause us to log the entire hash table and use an excessive
2417 * amount of log space. To avoid this behavior, log the region up through
2418 * agi_unlinked in one call and the region after agi_unlinked through the end of
2419 * the structure in another.
2420 */
2421void
2422xfs_ialloc_log_agi(
2423 xfs_trans_t *tp, /* transaction pointer */
2424 xfs_buf_t *bp, /* allocation group header buffer */
2425 int fields) /* bitmask of fields to log */
2426{
2427 int first; /* first byte number */
2428 int last; /* last byte number */
2429 static const short offsets[] = { /* field starting offsets */
2430 /* keep in sync with bit definitions */
2431 offsetof(xfs_agi_t, agi_magicnum),
2432 offsetof(xfs_agi_t, agi_versionnum),
2433 offsetof(xfs_agi_t, agi_seqno),
2434 offsetof(xfs_agi_t, agi_length),
2435 offsetof(xfs_agi_t, agi_count),
2436 offsetof(xfs_agi_t, agi_root),
2437 offsetof(xfs_agi_t, agi_level),
2438 offsetof(xfs_agi_t, agi_freecount),
2439 offsetof(xfs_agi_t, agi_newino),
2440 offsetof(xfs_agi_t, agi_dirino),
2441 offsetof(xfs_agi_t, agi_unlinked),
2442 offsetof(xfs_agi_t, agi_free_root),
2443 offsetof(xfs_agi_t, agi_free_level),
2444 sizeof(xfs_agi_t)
2445 };
2446#ifdef DEBUG
2447 xfs_agi_t *agi; /* allocation group header */
2448
2449 agi = XFS_BUF_TO_AGI(bp);
2450 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2451#endif
2452
2453 /*
2454 * Compute byte offsets for the first and last fields in the first
2455 * region and log the agi buffer. This only logs up through
2456 * agi_unlinked.
2457 */
2458 if (fields & XFS_AGI_ALL_BITS_R1) {
2459 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2460 &first, &last);
2461 xfs_trans_log_buf(tp, bp, first, last);
2462 }
2463
2464 /*
2465 * Mask off the bits in the first region and calculate the first and
2466 * last field offsets for any bits in the second region.
2467 */
2468 fields &= ~XFS_AGI_ALL_BITS_R1;
2469 if (fields) {
2470 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2471 &first, &last);
2472 xfs_trans_log_buf(tp, bp, first, last);
2473 }
2474}
2475
2476#ifdef DEBUG
2477STATIC void
2478xfs_check_agi_unlinked(
2479 struct xfs_agi *agi)
2480{
2481 int i;
2482
2483 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++)
2484 ASSERT(agi->agi_unlinked[i]);
2485}
2486#else
2487#define xfs_check_agi_unlinked(agi)
2488#endif
2489
2490static bool
2491xfs_agi_verify(
2492 struct xfs_buf *bp)
2493{
2494 struct xfs_mount *mp = bp->b_target->bt_mount;
2495 struct xfs_agi *agi = XFS_BUF_TO_AGI(bp);
2496
2497 if (xfs_sb_version_hascrc(&mp->m_sb)) {
2498 if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2499 return false;
2500 if (!xfs_log_check_lsn(mp,
2501 be64_to_cpu(XFS_BUF_TO_AGI(bp)->agi_lsn)))
2502 return false;
2503 }
2504
2505 /*
2506 * Validate the magic number of the agi block.
2507 */
2508 if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC))
2509 return false;
2510 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2511 return false;
2512
2513 if (be32_to_cpu(agi->agi_level) < 1 ||
2514 be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS)
2515 return false;
2516
2517 if (xfs_sb_version_hasfinobt(&mp->m_sb) &&
2518 (be32_to_cpu(agi->agi_free_level) < 1 ||
2519 be32_to_cpu(agi->agi_free_level) > XFS_BTREE_MAXLEVELS))
2520 return false;
2521
2522 /*
2523 * during growfs operations, the perag is not fully initialised,
2524 * so we can't use it for any useful checking. growfs ensures we can't
2525 * use it by using uncached buffers that don't have the perag attached
2526 * so we can detect and avoid this problem.
2527 */
2528 if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2529 return false;
2530
2531 xfs_check_agi_unlinked(agi);
2532 return true;
2533}
2534
2535static void
2536xfs_agi_read_verify(
2537 struct xfs_buf *bp)
2538{
2539 struct xfs_mount *mp = bp->b_target->bt_mount;
2540
2541 if (xfs_sb_version_hascrc(&mp->m_sb) &&
2542 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2543 xfs_buf_ioerror(bp, -EFSBADCRC);
2544 else if (XFS_TEST_ERROR(!xfs_agi_verify(bp), mp,
2545 XFS_ERRTAG_IALLOC_READ_AGI,
2546 XFS_RANDOM_IALLOC_READ_AGI))
2547 xfs_buf_ioerror(bp, -EFSCORRUPTED);
2548
2549 if (bp->b_error)
2550 xfs_verifier_error(bp);
2551}
2552
2553static void
2554xfs_agi_write_verify(
2555 struct xfs_buf *bp)
2556{
2557 struct xfs_mount *mp = bp->b_target->bt_mount;
2558 struct xfs_buf_log_item *bip = bp->b_fspriv;
2559
2560 if (!xfs_agi_verify(bp)) {
2561 xfs_buf_ioerror(bp, -EFSCORRUPTED);
2562 xfs_verifier_error(bp);
2563 return;
2564 }
2565
2566 if (!xfs_sb_version_hascrc(&mp->m_sb))
2567 return;
2568
2569 if (bip)
2570 XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2571 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2572}
2573
2574const struct xfs_buf_ops xfs_agi_buf_ops = {
2575 .name = "xfs_agi",
2576 .verify_read = xfs_agi_read_verify,
2577 .verify_write = xfs_agi_write_verify,
2578};
2579
2580/*
2581 * Read in the allocation group header (inode allocation section)
2582 */
2583int
2584xfs_read_agi(
2585 struct xfs_mount *mp, /* file system mount structure */
2586 struct xfs_trans *tp, /* transaction pointer */
2587 xfs_agnumber_t agno, /* allocation group number */
2588 struct xfs_buf **bpp) /* allocation group hdr buf */
2589{
2590 int error;
2591
2592 trace_xfs_read_agi(mp, agno);
2593
2594 ASSERT(agno != NULLAGNUMBER);
2595 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2596 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
2597 XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
2598 if (error)
2599 return error;
2600 if (tp)
2601 xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_AGI_BUF);
2602
2603 xfs_buf_set_ref(*bpp, XFS_AGI_REF);
2604 return 0;
2605}
2606
2607int
2608xfs_ialloc_read_agi(
2609 struct xfs_mount *mp, /* file system mount structure */
2610 struct xfs_trans *tp, /* transaction pointer */
2611 xfs_agnumber_t agno, /* allocation group number */
2612 struct xfs_buf **bpp) /* allocation group hdr buf */
2613{
2614 struct xfs_agi *agi; /* allocation group header */
2615 struct xfs_perag *pag; /* per allocation group data */
2616 int error;
2617
2618 trace_xfs_ialloc_read_agi(mp, agno);
2619
2620 error = xfs_read_agi(mp, tp, agno, bpp);
2621 if (error)
2622 return error;
2623
2624 agi = XFS_BUF_TO_AGI(*bpp);
2625 pag = xfs_perag_get(mp, agno);
2626 if (!pag->pagi_init) {
2627 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2628 pag->pagi_count = be32_to_cpu(agi->agi_count);
2629 pag->pagi_init = 1;
2630 }
2631
2632 /*
2633 * It's possible for these to be out of sync if
2634 * we are in the middle of a forced shutdown.
2635 */
2636 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2637 XFS_FORCED_SHUTDOWN(mp));
2638 xfs_perag_put(pag);
2639 return 0;
2640}
2641
2642/*
2643 * Read in the agi to initialise the per-ag data in the mount structure
2644 */
2645int
2646xfs_ialloc_pagi_init(
2647 xfs_mount_t *mp, /* file system mount structure */
2648 xfs_trans_t *tp, /* transaction pointer */
2649 xfs_agnumber_t agno) /* allocation group number */
2650{
2651 xfs_buf_t *bp = NULL;
2652 int error;
2653
2654 error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2655 if (error)
2656 return error;
2657 if (bp)
2658 xfs_trans_brelse(tp, bp);
2659 return 0;
2660}