Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Generic pwmlib implementation
   4 *
   5 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
   6 * Copyright (C) 2011-2012 Avionic Design GmbH
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   7 */
   8
   9#include <linux/acpi.h>
  10#include <linux/module.h>
  11#include <linux/pwm.h>
  12#include <linux/radix-tree.h>
  13#include <linux/list.h>
  14#include <linux/mutex.h>
  15#include <linux/err.h>
  16#include <linux/slab.h>
  17#include <linux/device.h>
  18#include <linux/debugfs.h>
  19#include <linux/seq_file.h>
  20
  21#include <dt-bindings/pwm/pwm.h>
  22
  23#define CREATE_TRACE_POINTS
  24#include <trace/events/pwm.h>
  25
  26#define MAX_PWMS 1024
  27
  28static DEFINE_MUTEX(pwm_lookup_lock);
  29static LIST_HEAD(pwm_lookup_list);
  30
  31/* protects access to pwm_chips, allocated_pwms, and pwm_tree */
  32static DEFINE_MUTEX(pwm_lock);
  33
  34static LIST_HEAD(pwm_chips);
  35static DECLARE_BITMAP(allocated_pwms, MAX_PWMS);
  36static RADIX_TREE(pwm_tree, GFP_KERNEL);
  37
  38static struct pwm_device *pwm_to_device(unsigned int pwm)
  39{
  40	return radix_tree_lookup(&pwm_tree, pwm);
  41}
  42
  43/* Called with pwm_lock held */
  44static int alloc_pwms(unsigned int count)
  45{
 
  46	unsigned int start;
  47
  48	start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, 0,
 
 
 
 
 
 
  49					   count, 0);
  50
 
 
 
  51	if (start + count > MAX_PWMS)
  52		return -ENOSPC;
  53
  54	bitmap_set(allocated_pwms, start, count);
  55
  56	return start;
  57}
  58
  59/* Called with pwm_lock held */
  60static void free_pwms(struct pwm_chip *chip)
  61{
  62	unsigned int i;
  63
  64	for (i = 0; i < chip->npwm; i++) {
  65		struct pwm_device *pwm = &chip->pwms[i];
  66
  67		radix_tree_delete(&pwm_tree, pwm->pwm);
  68	}
  69
  70	bitmap_clear(allocated_pwms, chip->base, chip->npwm);
  71
  72	kfree(chip->pwms);
  73	chip->pwms = NULL;
  74}
  75
  76static struct pwm_chip *pwmchip_find_by_name(const char *name)
  77{
  78	struct pwm_chip *chip;
  79
  80	if (!name)
  81		return NULL;
  82
  83	mutex_lock(&pwm_lock);
  84
  85	list_for_each_entry(chip, &pwm_chips, list) {
  86		const char *chip_name = dev_name(chip->dev);
  87
  88		if (chip_name && strcmp(chip_name, name) == 0) {
  89			mutex_unlock(&pwm_lock);
  90			return chip;
  91		}
  92	}
  93
  94	mutex_unlock(&pwm_lock);
  95
  96	return NULL;
  97}
  98
  99static int pwm_device_request(struct pwm_device *pwm, const char *label)
 100{
 101	int err;
 102
 103	if (test_bit(PWMF_REQUESTED, &pwm->flags))
 104		return -EBUSY;
 105
 106	if (!try_module_get(pwm->chip->ops->owner))
 107		return -ENODEV;
 108
 109	if (pwm->chip->ops->request) {
 110		err = pwm->chip->ops->request(pwm->chip, pwm);
 111		if (err) {
 112			module_put(pwm->chip->ops->owner);
 113			return err;
 114		}
 115	}
 116
 117	if (pwm->chip->ops->get_state) {
 118		struct pwm_state state;
 119
 120		err = pwm->chip->ops->get_state(pwm->chip, pwm, &state);
 121		trace_pwm_get(pwm, &state, err);
 122
 123		if (!err)
 124			pwm->state = state;
 125
 126		if (IS_ENABLED(CONFIG_PWM_DEBUG))
 127			pwm->last = pwm->state;
 128	}
 129
 130	set_bit(PWMF_REQUESTED, &pwm->flags);
 131	pwm->label = label;
 132
 133	return 0;
 134}
 135
 136struct pwm_device *
 137of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args)
 138{
 139	struct pwm_device *pwm;
 140
 141	if (pc->of_pwm_n_cells < 2)
 142		return ERR_PTR(-EINVAL);
 143
 144	/* flags in the third cell are optional */
 145	if (args->args_count < 2)
 146		return ERR_PTR(-EINVAL);
 147
 148	if (args->args[0] >= pc->npwm)
 149		return ERR_PTR(-EINVAL);
 150
 151	pwm = pwm_request_from_chip(pc, args->args[0], NULL);
 152	if (IS_ERR(pwm))
 153		return pwm;
 154
 155	pwm->args.period = args->args[1];
 156	pwm->args.polarity = PWM_POLARITY_NORMAL;
 157
 158	if (pc->of_pwm_n_cells >= 3) {
 159		if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
 160			pwm->args.polarity = PWM_POLARITY_INVERSED;
 161	}
 162
 163	return pwm;
 164}
 165EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
 166
 167struct pwm_device *
 168of_pwm_single_xlate(struct pwm_chip *pc, const struct of_phandle_args *args)
 169{
 170	struct pwm_device *pwm;
 171
 172	if (pc->of_pwm_n_cells < 1)
 173		return ERR_PTR(-EINVAL);
 174
 175	/* validate that one cell is specified, optionally with flags */
 176	if (args->args_count != 1 && args->args_count != 2)
 177		return ERR_PTR(-EINVAL);
 178
 179	pwm = pwm_request_from_chip(pc, 0, NULL);
 180	if (IS_ERR(pwm))
 181		return pwm;
 182
 183	pwm->args.period = args->args[0];
 184	pwm->args.polarity = PWM_POLARITY_NORMAL;
 185
 186	if (args->args_count == 2 && args->args[2] & PWM_POLARITY_INVERTED)
 187		pwm->args.polarity = PWM_POLARITY_INVERSED;
 188
 189	return pwm;
 190}
 191EXPORT_SYMBOL_GPL(of_pwm_single_xlate);
 192
 193static void of_pwmchip_add(struct pwm_chip *chip)
 194{
 195	if (!chip->dev || !chip->dev->of_node)
 196		return;
 197
 198	if (!chip->of_xlate) {
 199		u32 pwm_cells;
 200
 201		if (of_property_read_u32(chip->dev->of_node, "#pwm-cells",
 202					 &pwm_cells))
 203			pwm_cells = 2;
 204
 205		chip->of_xlate = of_pwm_xlate_with_flags;
 206		chip->of_pwm_n_cells = pwm_cells;
 207	}
 208
 209	of_node_get(chip->dev->of_node);
 210}
 211
 212static void of_pwmchip_remove(struct pwm_chip *chip)
 213{
 214	if (chip->dev)
 215		of_node_put(chip->dev->of_node);
 216}
 217
 218/**
 219 * pwm_set_chip_data() - set private chip data for a PWM
 220 * @pwm: PWM device
 221 * @data: pointer to chip-specific data
 222 *
 223 * Returns: 0 on success or a negative error code on failure.
 224 */
 225int pwm_set_chip_data(struct pwm_device *pwm, void *data)
 226{
 227	if (!pwm)
 228		return -EINVAL;
 229
 230	pwm->chip_data = data;
 231
 232	return 0;
 233}
 234EXPORT_SYMBOL_GPL(pwm_set_chip_data);
 235
 236/**
 237 * pwm_get_chip_data() - get private chip data for a PWM
 238 * @pwm: PWM device
 239 *
 240 * Returns: A pointer to the chip-private data for the PWM device.
 241 */
 242void *pwm_get_chip_data(struct pwm_device *pwm)
 243{
 244	return pwm ? pwm->chip_data : NULL;
 245}
 246EXPORT_SYMBOL_GPL(pwm_get_chip_data);
 247
 248static bool pwm_ops_check(const struct pwm_chip *chip)
 249{
 250	const struct pwm_ops *ops = chip->ops;
 251
 252	if (!ops->apply)
 253		return false;
 254
 255	if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state)
 256		dev_warn(chip->dev,
 257			 "Please implement the .get_state() callback\n");
 258
 259	return true;
 260}
 261
 262/**
 263 * pwmchip_add() - register a new PWM chip
 264 * @chip: the PWM chip to add
 
 265 *
 266 * Register a new PWM chip.
 
 
 267 *
 268 * Returns: 0 on success or a negative error code on failure.
 269 */
 270int pwmchip_add(struct pwm_chip *chip)
 
 271{
 272	struct pwm_device *pwm;
 273	unsigned int i;
 274	int ret;
 275
 276	if (!chip || !chip->dev || !chip->ops || !chip->npwm)
 277		return -EINVAL;
 278
 279	if (!pwm_ops_check(chip))
 280		return -EINVAL;
 281
 282	chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL);
 283	if (!chip->pwms)
 284		return -ENOMEM;
 285
 286	mutex_lock(&pwm_lock);
 287
 288	ret = alloc_pwms(chip->npwm);
 289	if (ret < 0) {
 290		mutex_unlock(&pwm_lock);
 291		kfree(chip->pwms);
 292		return ret;
 
 
 
 293	}
 294
 295	chip->base = ret;
 296
 297	for (i = 0; i < chip->npwm; i++) {
 298		pwm = &chip->pwms[i];
 299
 300		pwm->chip = chip;
 301		pwm->pwm = chip->base + i;
 302		pwm->hwpwm = i;
 
 
 
 
 303
 304		radix_tree_insert(&pwm_tree, pwm->pwm, pwm);
 305	}
 306
 
 
 
 307	list_add(&chip->list, &pwm_chips);
 308
 309	mutex_unlock(&pwm_lock);
 310
 311	if (IS_ENABLED(CONFIG_OF))
 312		of_pwmchip_add(chip);
 313
 314	pwmchip_sysfs_export(chip);
 315
 316	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 317}
 318EXPORT_SYMBOL_GPL(pwmchip_add);
 319
 320/**
 321 * pwmchip_remove() - remove a PWM chip
 322 * @chip: the PWM chip to remove
 323 *
 324 * Removes a PWM chip. This function may return busy if the PWM chip provides
 325 * a PWM device that is still requested.
 326 *
 327 * Returns: 0 on success or a negative error code on failure.
 328 */
 329void pwmchip_remove(struct pwm_chip *chip)
 330{
 331	pwmchip_sysfs_unexport(chip);
 
 
 
 332
 333	mutex_lock(&pwm_lock);
 334
 
 
 
 
 
 
 
 
 
 335	list_del_init(&chip->list);
 336
 337	if (IS_ENABLED(CONFIG_OF))
 338		of_pwmchip_remove(chip);
 339
 340	free_pwms(chip);
 341
 
 
 
 342	mutex_unlock(&pwm_lock);
 
 343}
 344EXPORT_SYMBOL_GPL(pwmchip_remove);
 345
 346static void devm_pwmchip_remove(void *data)
 347{
 348	struct pwm_chip *chip = data;
 349
 350	pwmchip_remove(chip);
 351}
 352
 353int devm_pwmchip_add(struct device *dev, struct pwm_chip *chip)
 354{
 355	int ret;
 356
 357	ret = pwmchip_add(chip);
 358	if (ret)
 359		return ret;
 360
 361	return devm_add_action_or_reset(dev, devm_pwmchip_remove, chip);
 362}
 363EXPORT_SYMBOL_GPL(devm_pwmchip_add);
 364
 365/**
 366 * pwm_request() - request a PWM device
 367 * @pwm: global PWM device index
 368 * @label: PWM device label
 369 *
 370 * This function is deprecated, use pwm_get() instead.
 371 *
 372 * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on
 373 * failure.
 374 */
 375struct pwm_device *pwm_request(int pwm, const char *label)
 376{
 377	struct pwm_device *dev;
 378	int err;
 379
 380	if (pwm < 0 || pwm >= MAX_PWMS)
 381		return ERR_PTR(-EINVAL);
 382
 383	mutex_lock(&pwm_lock);
 384
 385	dev = pwm_to_device(pwm);
 386	if (!dev) {
 387		dev = ERR_PTR(-EPROBE_DEFER);
 388		goto out;
 389	}
 390
 391	err = pwm_device_request(dev, label);
 392	if (err < 0)
 393		dev = ERR_PTR(err);
 394
 395out:
 396	mutex_unlock(&pwm_lock);
 397
 398	return dev;
 399}
 400EXPORT_SYMBOL_GPL(pwm_request);
 401
 402/**
 403 * pwm_request_from_chip() - request a PWM device relative to a PWM chip
 404 * @chip: PWM chip
 405 * @index: per-chip index of the PWM to request
 406 * @label: a literal description string of this PWM
 407 *
 408 * Returns: A pointer to the PWM device at the given index of the given PWM
 409 * chip. A negative error code is returned if the index is not valid for the
 410 * specified PWM chip or if the PWM device cannot be requested.
 411 */
 412struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
 413					 unsigned int index,
 414					 const char *label)
 415{
 416	struct pwm_device *pwm;
 417	int err;
 418
 419	if (!chip || index >= chip->npwm)
 420		return ERR_PTR(-EINVAL);
 421
 422	mutex_lock(&pwm_lock);
 423	pwm = &chip->pwms[index];
 424
 425	err = pwm_device_request(pwm, label);
 426	if (err < 0)
 427		pwm = ERR_PTR(err);
 428
 429	mutex_unlock(&pwm_lock);
 430	return pwm;
 431}
 432EXPORT_SYMBOL_GPL(pwm_request_from_chip);
 433
 434/**
 435 * pwm_free() - free a PWM device
 436 * @pwm: PWM device
 437 *
 438 * This function is deprecated, use pwm_put() instead.
 439 */
 440void pwm_free(struct pwm_device *pwm)
 441{
 442	pwm_put(pwm);
 443}
 444EXPORT_SYMBOL_GPL(pwm_free);
 445
 446static void pwm_apply_state_debug(struct pwm_device *pwm,
 447				  const struct pwm_state *state)
 448{
 449	struct pwm_state *last = &pwm->last;
 450	struct pwm_chip *chip = pwm->chip;
 451	struct pwm_state s1, s2;
 452	int err;
 453
 454	if (!IS_ENABLED(CONFIG_PWM_DEBUG))
 455		return;
 456
 457	/* No reasonable diagnosis possible without .get_state() */
 458	if (!chip->ops->get_state)
 459		return;
 460
 461	/*
 462	 * *state was just applied. Read out the hardware state and do some
 463	 * checks.
 464	 */
 465
 466	err = chip->ops->get_state(chip, pwm, &s1);
 467	trace_pwm_get(pwm, &s1, err);
 468	if (err)
 469		/* If that failed there isn't much to debug */
 470		return;
 471
 472	/*
 473	 * The lowlevel driver either ignored .polarity (which is a bug) or as
 474	 * best effort inverted .polarity and fixed .duty_cycle respectively.
 475	 * Undo this inversion and fixup for further tests.
 476	 */
 477	if (s1.enabled && s1.polarity != state->polarity) {
 478		s2.polarity = state->polarity;
 479		s2.duty_cycle = s1.period - s1.duty_cycle;
 480		s2.period = s1.period;
 481		s2.enabled = s1.enabled;
 482	} else {
 483		s2 = s1;
 484	}
 485
 486	if (s2.polarity != state->polarity &&
 487	    state->duty_cycle < state->period)
 488		dev_warn(chip->dev, ".apply ignored .polarity\n");
 489
 490	if (state->enabled &&
 491	    last->polarity == state->polarity &&
 492	    last->period > s2.period &&
 493	    last->period <= state->period)
 494		dev_warn(chip->dev,
 495			 ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n",
 496			 state->period, s2.period, last->period);
 497
 498	if (state->enabled && state->period < s2.period)
 499		dev_warn(chip->dev,
 500			 ".apply is supposed to round down period (requested: %llu, applied: %llu)\n",
 501			 state->period, s2.period);
 502
 503	if (state->enabled &&
 504	    last->polarity == state->polarity &&
 505	    last->period == s2.period &&
 506	    last->duty_cycle > s2.duty_cycle &&
 507	    last->duty_cycle <= state->duty_cycle)
 508		dev_warn(chip->dev,
 509			 ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n",
 510			 state->duty_cycle, state->period,
 511			 s2.duty_cycle, s2.period,
 512			 last->duty_cycle, last->period);
 513
 514	if (state->enabled && state->duty_cycle < s2.duty_cycle)
 515		dev_warn(chip->dev,
 516			 ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n",
 517			 state->duty_cycle, state->period,
 518			 s2.duty_cycle, s2.period);
 519
 520	if (!state->enabled && s2.enabled && s2.duty_cycle > 0)
 521		dev_warn(chip->dev,
 522			 "requested disabled, but yielded enabled with duty > 0\n");
 523
 524	/* reapply the state that the driver reported being configured. */
 525	err = chip->ops->apply(chip, pwm, &s1);
 526	trace_pwm_apply(pwm, &s1, err);
 527	if (err) {
 528		*last = s1;
 529		dev_err(chip->dev, "failed to reapply current setting\n");
 530		return;
 531	}
 532
 533	err = chip->ops->get_state(chip, pwm, last);
 534	trace_pwm_get(pwm, last, err);
 535	if (err)
 536		return;
 537
 538	/* reapplication of the current state should give an exact match */
 539	if (s1.enabled != last->enabled ||
 540	    s1.polarity != last->polarity ||
 541	    (s1.enabled && s1.period != last->period) ||
 542	    (s1.enabled && s1.duty_cycle != last->duty_cycle)) {
 543		dev_err(chip->dev,
 544			".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n",
 545			s1.enabled, s1.polarity, s1.duty_cycle, s1.period,
 546			last->enabled, last->polarity, last->duty_cycle,
 547			last->period);
 548	}
 549}
 550
 551/**
 552 * pwm_apply_state() - atomically apply a new state to a PWM device
 553 * @pwm: PWM device
 554 * @state: new state to apply
 
 
 555 */
 556int pwm_apply_state(struct pwm_device *pwm, const struct pwm_state *state)
 557{
 558	struct pwm_chip *chip;
 559	int err;
 560
 561	/*
 562	 * Some lowlevel driver's implementations of .apply() make use of
 563	 * mutexes, also with some drivers only returning when the new
 564	 * configuration is active calling pwm_apply_state() from atomic context
 565	 * is a bad idea. So make it explicit that calling this function might
 566	 * sleep.
 567	 */
 568	might_sleep();
 569
 570	if (!pwm || !state || !state->period ||
 571	    state->duty_cycle > state->period)
 572		return -EINVAL;
 573
 574	chip = pwm->chip;
 575
 576	if (state->period == pwm->state.period &&
 577	    state->duty_cycle == pwm->state.duty_cycle &&
 578	    state->polarity == pwm->state.polarity &&
 579	    state->enabled == pwm->state.enabled &&
 580	    state->usage_power == pwm->state.usage_power)
 581		return 0;
 582
 583	err = chip->ops->apply(chip, pwm, state);
 584	trace_pwm_apply(pwm, state, err);
 585	if (err)
 586		return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 587
 588	pwm->state = *state;
 
 589
 590	/*
 591	 * only do this after pwm->state was applied as some
 592	 * implementations of .get_state depend on this
 593	 */
 594	pwm_apply_state_debug(pwm, state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 595
 596	return 0;
 597}
 598EXPORT_SYMBOL_GPL(pwm_apply_state);
 599
 600/**
 601 * pwm_capture() - capture and report a PWM signal
 602 * @pwm: PWM device
 603 * @result: structure to fill with capture result
 604 * @timeout: time to wait, in milliseconds, before giving up on capture
 605 *
 606 * Returns: 0 on success or a negative error code on failure.
 607 */
 608int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
 609		unsigned long timeout)
 610{
 611	int err;
 612
 613	if (!pwm || !pwm->chip->ops)
 614		return -EINVAL;
 615
 616	if (!pwm->chip->ops->capture)
 617		return -ENOSYS;
 618
 619	mutex_lock(&pwm_lock);
 620	err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout);
 621	mutex_unlock(&pwm_lock);
 622
 623	return err;
 624}
 625EXPORT_SYMBOL_GPL(pwm_capture);
 626
 627/**
 628 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
 629 * @pwm: PWM device
 630 *
 631 * This function will adjust the PWM config to the PWM arguments provided
 632 * by the DT or PWM lookup table. This is particularly useful to adapt
 633 * the bootloader config to the Linux one.
 634 */
 635int pwm_adjust_config(struct pwm_device *pwm)
 636{
 637	struct pwm_state state;
 638	struct pwm_args pargs;
 639
 640	pwm_get_args(pwm, &pargs);
 641	pwm_get_state(pwm, &state);
 642
 643	/*
 644	 * If the current period is zero it means that either the PWM driver
 645	 * does not support initial state retrieval or the PWM has not yet
 646	 * been configured.
 647	 *
 648	 * In either case, we setup the new period and polarity, and assign a
 649	 * duty cycle of 0.
 650	 */
 651	if (!state.period) {
 652		state.duty_cycle = 0;
 653		state.period = pargs.period;
 654		state.polarity = pargs.polarity;
 655
 656		return pwm_apply_state(pwm, &state);
 657	}
 658
 659	/*
 660	 * Adjust the PWM duty cycle/period based on the period value provided
 661	 * in PWM args.
 662	 */
 663	if (pargs.period != state.period) {
 664		u64 dutycycle = (u64)state.duty_cycle * pargs.period;
 665
 666		do_div(dutycycle, state.period);
 667		state.duty_cycle = dutycycle;
 668		state.period = pargs.period;
 669	}
 670
 671	/*
 672	 * If the polarity changed, we should also change the duty cycle.
 673	 */
 674	if (pargs.polarity != state.polarity) {
 675		state.polarity = pargs.polarity;
 676		state.duty_cycle = state.period - state.duty_cycle;
 677	}
 678
 679	return pwm_apply_state(pwm, &state);
 680}
 681EXPORT_SYMBOL_GPL(pwm_adjust_config);
 682
 683static struct pwm_chip *fwnode_to_pwmchip(struct fwnode_handle *fwnode)
 684{
 685	struct pwm_chip *chip;
 686
 687	mutex_lock(&pwm_lock);
 688
 689	list_for_each_entry(chip, &pwm_chips, list)
 690		if (chip->dev && device_match_fwnode(chip->dev, fwnode)) {
 691			mutex_unlock(&pwm_lock);
 692			return chip;
 693		}
 694
 695	mutex_unlock(&pwm_lock);
 696
 697	return ERR_PTR(-EPROBE_DEFER);
 698}
 699
 700static struct device_link *pwm_device_link_add(struct device *dev,
 701					       struct pwm_device *pwm)
 702{
 703	struct device_link *dl;
 704
 705	if (!dev) {
 706		/*
 707		 * No device for the PWM consumer has been provided. It may
 708		 * impact the PM sequence ordering: the PWM supplier may get
 709		 * suspended before the consumer.
 710		 */
 711		dev_warn(pwm->chip->dev,
 712			 "No consumer device specified to create a link to\n");
 713		return NULL;
 714	}
 715
 716	dl = device_link_add(dev, pwm->chip->dev, DL_FLAG_AUTOREMOVE_CONSUMER);
 717	if (!dl) {
 718		dev_err(dev, "failed to create device link to %s\n",
 719			dev_name(pwm->chip->dev));
 720		return ERR_PTR(-EINVAL);
 721	}
 722
 723	return dl;
 724}
 725
 726/**
 727 * of_pwm_get() - request a PWM via the PWM framework
 728 * @dev: device for PWM consumer
 729 * @np: device node to get the PWM from
 730 * @con_id: consumer name
 731 *
 732 * Returns the PWM device parsed from the phandle and index specified in the
 733 * "pwms" property of a device tree node or a negative error-code on failure.
 734 * Values parsed from the device tree are stored in the returned PWM device
 735 * object.
 736 *
 737 * If con_id is NULL, the first PWM device listed in the "pwms" property will
 738 * be requested. Otherwise the "pwm-names" property is used to do a reverse
 739 * lookup of the PWM index. This also means that the "pwm-names" property
 740 * becomes mandatory for devices that look up the PWM device via the con_id
 741 * parameter.
 742 *
 743 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 744 * error code on failure.
 745 */
 746static struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
 747				     const char *con_id)
 748{
 749	struct pwm_device *pwm = NULL;
 750	struct of_phandle_args args;
 751	struct device_link *dl;
 752	struct pwm_chip *pc;
 753	int index = 0;
 754	int err;
 755
 756	if (con_id) {
 757		index = of_property_match_string(np, "pwm-names", con_id);
 758		if (index < 0)
 759			return ERR_PTR(index);
 760	}
 761
 762	err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
 763					 &args);
 764	if (err) {
 765		pr_err("%s(): can't parse \"pwms\" property\n", __func__);
 766		return ERR_PTR(err);
 767	}
 768
 769	pc = fwnode_to_pwmchip(of_fwnode_handle(args.np));
 770	if (IS_ERR(pc)) {
 771		if (PTR_ERR(pc) != -EPROBE_DEFER)
 772			pr_err("%s(): PWM chip not found\n", __func__);
 773
 774		pwm = ERR_CAST(pc);
 775		goto put;
 776	}
 777
 778	pwm = pc->of_xlate(pc, &args);
 779	if (IS_ERR(pwm))
 
 
 780		goto put;
 
 781
 782	dl = pwm_device_link_add(dev, pwm);
 783	if (IS_ERR(dl)) {
 784		/* of_xlate ended up calling pwm_request_from_chip() */
 785		pwm_free(pwm);
 786		pwm = ERR_CAST(dl);
 787		goto put;
 788	}
 789
 790	/*
 791	 * If a consumer name was not given, try to look it up from the
 792	 * "pwm-names" property if it exists. Otherwise use the name of
 793	 * the user device node.
 794	 */
 795	if (!con_id) {
 796		err = of_property_read_string_index(np, "pwm-names", index,
 797						    &con_id);
 798		if (err < 0)
 799			con_id = np->name;
 800	}
 801
 802	pwm->label = con_id;
 803
 804put:
 805	of_node_put(args.np);
 806
 807	return pwm;
 808}
 809
 810/**
 811 * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
 812 * @fwnode: firmware node to get the "pwms" property from
 813 *
 814 * Returns the PWM device parsed from the fwnode and index specified in the
 815 * "pwms" property or a negative error-code on failure.
 816 * Values parsed from the device tree are stored in the returned PWM device
 817 * object.
 818 *
 819 * This is analogous to of_pwm_get() except con_id is not yet supported.
 820 * ACPI entries must look like
 821 * Package () {"pwms", Package ()
 822 *     { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
 823 *
 824 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 825 * error code on failure.
 826 */
 827static struct pwm_device *acpi_pwm_get(const struct fwnode_handle *fwnode)
 828{
 829	struct pwm_device *pwm;
 830	struct fwnode_reference_args args;
 831	struct pwm_chip *chip;
 832	int ret;
 833
 834	memset(&args, 0, sizeof(args));
 835
 836	ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
 837	if (ret < 0)
 838		return ERR_PTR(ret);
 839
 840	if (args.nargs < 2)
 841		return ERR_PTR(-EPROTO);
 842
 843	chip = fwnode_to_pwmchip(args.fwnode);
 844	if (IS_ERR(chip))
 845		return ERR_CAST(chip);
 846
 847	pwm = pwm_request_from_chip(chip, args.args[0], NULL);
 848	if (IS_ERR(pwm))
 849		return pwm;
 850
 851	pwm->args.period = args.args[1];
 852	pwm->args.polarity = PWM_POLARITY_NORMAL;
 853
 854	if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
 855		pwm->args.polarity = PWM_POLARITY_INVERSED;
 856
 857	return pwm;
 858}
 859
 860/**
 861 * pwm_add_table() - register PWM device consumers
 862 * @table: array of consumers to register
 863 * @num: number of consumers in table
 864 */
 865void pwm_add_table(struct pwm_lookup *table, size_t num)
 866{
 867	mutex_lock(&pwm_lookup_lock);
 868
 869	while (num--) {
 870		list_add_tail(&table->list, &pwm_lookup_list);
 871		table++;
 872	}
 873
 874	mutex_unlock(&pwm_lookup_lock);
 875}
 876
 877/**
 878 * pwm_remove_table() - unregister PWM device consumers
 879 * @table: array of consumers to unregister
 880 * @num: number of consumers in table
 881 */
 882void pwm_remove_table(struct pwm_lookup *table, size_t num)
 883{
 884	mutex_lock(&pwm_lookup_lock);
 885
 886	while (num--) {
 887		list_del(&table->list);
 888		table++;
 889	}
 890
 891	mutex_unlock(&pwm_lookup_lock);
 892}
 893
 894/**
 895 * pwm_get() - look up and request a PWM device
 896 * @dev: device for PWM consumer
 897 * @con_id: consumer name
 898 *
 899 * Lookup is first attempted using DT. If the device was not instantiated from
 900 * a device tree, a PWM chip and a relative index is looked up via a table
 901 * supplied by board setup code (see pwm_add_table()).
 902 *
 903 * Once a PWM chip has been found the specified PWM device will be requested
 904 * and is ready to be used.
 905 *
 906 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 907 * error code on failure.
 908 */
 909struct pwm_device *pwm_get(struct device *dev, const char *con_id)
 910{
 911	const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
 912	const char *dev_id = dev ? dev_name(dev) : NULL;
 913	struct pwm_device *pwm;
 914	struct pwm_chip *chip;
 915	struct device_link *dl;
 916	unsigned int best = 0;
 917	struct pwm_lookup *p, *chosen = NULL;
 918	unsigned int match;
 919	int err;
 920
 921	/* look up via DT first */
 922	if (is_of_node(fwnode))
 923		return of_pwm_get(dev, to_of_node(fwnode), con_id);
 924
 925	/* then lookup via ACPI */
 926	if (is_acpi_node(fwnode)) {
 927		pwm = acpi_pwm_get(fwnode);
 928		if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
 929			return pwm;
 930	}
 931
 932	/*
 933	 * We look up the provider in the static table typically provided by
 934	 * board setup code. We first try to lookup the consumer device by
 935	 * name. If the consumer device was passed in as NULL or if no match
 936	 * was found, we try to find the consumer by directly looking it up
 937	 * by name.
 938	 *
 939	 * If a match is found, the provider PWM chip is looked up by name
 940	 * and a PWM device is requested using the PWM device per-chip index.
 941	 *
 942	 * The lookup algorithm was shamelessly taken from the clock
 943	 * framework:
 944	 *
 945	 * We do slightly fuzzy matching here:
 946	 *  An entry with a NULL ID is assumed to be a wildcard.
 947	 *  If an entry has a device ID, it must match
 948	 *  If an entry has a connection ID, it must match
 949	 * Then we take the most specific entry - with the following order
 950	 * of precedence: dev+con > dev only > con only.
 951	 */
 952	mutex_lock(&pwm_lookup_lock);
 953
 954	list_for_each_entry(p, &pwm_lookup_list, list) {
 955		match = 0;
 956
 957		if (p->dev_id) {
 958			if (!dev_id || strcmp(p->dev_id, dev_id))
 959				continue;
 960
 961			match += 2;
 962		}
 963
 964		if (p->con_id) {
 965			if (!con_id || strcmp(p->con_id, con_id))
 966				continue;
 967
 968			match += 1;
 969		}
 970
 971		if (match > best) {
 972			chosen = p;
 973
 974			if (match != 3)
 975				best = match;
 976			else
 977				break;
 978		}
 979	}
 980
 981	mutex_unlock(&pwm_lookup_lock);
 982
 983	if (!chosen)
 984		return ERR_PTR(-ENODEV);
 985
 986	chip = pwmchip_find_by_name(chosen->provider);
 987
 988	/*
 989	 * If the lookup entry specifies a module, load the module and retry
 990	 * the PWM chip lookup. This can be used to work around driver load
 991	 * ordering issues if driver's can't be made to properly support the
 992	 * deferred probe mechanism.
 993	 */
 994	if (!chip && chosen->module) {
 995		err = request_module(chosen->module);
 996		if (err == 0)
 997			chip = pwmchip_find_by_name(chosen->provider);
 998	}
 999
 
1000	if (!chip)
1001		return ERR_PTR(-EPROBE_DEFER);
1002
1003	pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
1004	if (IS_ERR(pwm))
1005		return pwm;
1006
1007	dl = pwm_device_link_add(dev, pwm);
1008	if (IS_ERR(dl)) {
1009		pwm_free(pwm);
1010		return ERR_CAST(dl);
1011	}
1012
1013	pwm->args.period = chosen->period;
1014	pwm->args.polarity = chosen->polarity;
1015
 
 
1016	return pwm;
1017}
1018EXPORT_SYMBOL_GPL(pwm_get);
1019
1020/**
1021 * pwm_put() - release a PWM device
1022 * @pwm: PWM device
1023 */
1024void pwm_put(struct pwm_device *pwm)
1025{
1026	if (!pwm)
1027		return;
1028
1029	mutex_lock(&pwm_lock);
1030
1031	if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
1032		pr_warn("PWM device already freed\n");
1033		goto out;
1034	}
1035
1036	if (pwm->chip->ops->free)
1037		pwm->chip->ops->free(pwm->chip, pwm);
1038
1039	pwm_set_chip_data(pwm, NULL);
1040	pwm->label = NULL;
1041
1042	module_put(pwm->chip->ops->owner);
1043out:
1044	mutex_unlock(&pwm_lock);
1045}
1046EXPORT_SYMBOL_GPL(pwm_put);
1047
1048static void devm_pwm_release(void *pwm)
1049{
1050	pwm_put(pwm);
1051}
1052
1053/**
1054 * devm_pwm_get() - resource managed pwm_get()
1055 * @dev: device for PWM consumer
1056 * @con_id: consumer name
1057 *
1058 * This function performs like pwm_get() but the acquired PWM device will
1059 * automatically be released on driver detach.
1060 *
1061 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1062 * error code on failure.
1063 */
1064struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
1065{
1066	struct pwm_device *pwm;
1067	int ret;
1068
1069	pwm = pwm_get(dev, con_id);
1070	if (IS_ERR(pwm))
1071		return pwm;
1072
1073	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1074	if (ret)
1075		return ERR_PTR(ret);
 
 
 
 
1076
1077	return pwm;
1078}
1079EXPORT_SYMBOL_GPL(devm_pwm_get);
1080
1081/**
1082 * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
1083 * @dev: device for PWM consumer
1084 * @fwnode: firmware node to get the PWM from
1085 * @con_id: consumer name
1086 *
1087 * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
1088 * acpi_pwm_get() for a detailed description.
1089 *
1090 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1091 * error code on failure.
1092 */
1093struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
1094				       struct fwnode_handle *fwnode,
1095				       const char *con_id)
1096{
1097	struct pwm_device *pwm = ERR_PTR(-ENODEV);
1098	int ret;
1099
1100	if (is_of_node(fwnode))
1101		pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
1102	else if (is_acpi_node(fwnode))
1103		pwm = acpi_pwm_get(fwnode);
1104	if (IS_ERR(pwm))
1105		return pwm;
1106
1107	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1108	if (ret)
1109		return ERR_PTR(ret);
 
1110
1111	return pwm;
1112}
1113EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1114
1115#ifdef CONFIG_DEBUG_FS
1116static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
1117{
1118	unsigned int i;
1119
1120	for (i = 0; i < chip->npwm; i++) {
1121		struct pwm_device *pwm = &chip->pwms[i];
1122		struct pwm_state state;
1123
1124		pwm_get_state(pwm, &state);
1125
1126		seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
1127
1128		if (test_bit(PWMF_REQUESTED, &pwm->flags))
1129			seq_puts(s, " requested");
1130
1131		if (state.enabled)
1132			seq_puts(s, " enabled");
1133
1134		seq_printf(s, " period: %llu ns", state.period);
1135		seq_printf(s, " duty: %llu ns", state.duty_cycle);
1136		seq_printf(s, " polarity: %s",
1137			   state.polarity ? "inverse" : "normal");
1138
1139		if (state.usage_power)
1140			seq_puts(s, " usage_power");
1141
1142		seq_puts(s, "\n");
1143	}
1144}
1145
1146static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1147{
1148	mutex_lock(&pwm_lock);
1149	s->private = "";
1150
1151	return seq_list_start(&pwm_chips, *pos);
1152}
1153
1154static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1155{
1156	s->private = "\n";
1157
1158	return seq_list_next(v, &pwm_chips, pos);
1159}
1160
1161static void pwm_seq_stop(struct seq_file *s, void *v)
1162{
1163	mutex_unlock(&pwm_lock);
1164}
1165
1166static int pwm_seq_show(struct seq_file *s, void *v)
1167{
1168	struct pwm_chip *chip = list_entry(v, struct pwm_chip, list);
1169
1170	seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private,
1171		   chip->dev->bus ? chip->dev->bus->name : "no-bus",
1172		   dev_name(chip->dev), chip->npwm,
1173		   (chip->npwm != 1) ? "s" : "");
1174
1175	pwm_dbg_show(chip, s);
 
 
 
1176
1177	return 0;
1178}
1179
1180static const struct seq_operations pwm_debugfs_sops = {
1181	.start = pwm_seq_start,
1182	.next = pwm_seq_next,
1183	.stop = pwm_seq_stop,
1184	.show = pwm_seq_show,
1185};
1186
1187DEFINE_SEQ_ATTRIBUTE(pwm_debugfs);
 
 
 
 
 
 
 
 
 
 
 
1188
1189static int __init pwm_debugfs_init(void)
1190{
1191	debugfs_create_file("pwm", 0444, NULL, NULL, &pwm_debugfs_fops);
 
1192
1193	return 0;
1194}
1195subsys_initcall(pwm_debugfs_init);
1196#endif /* CONFIG_DEBUG_FS */
v4.10.11
 
   1/*
   2 * Generic pwmlib implementation
   3 *
   4 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
   5 * Copyright (C) 2011-2012 Avionic Design GmbH
   6 *
   7 *  This program is free software; you can redistribute it and/or modify
   8 *  it under the terms of the GNU General Public License as published by
   9 *  the Free Software Foundation; either version 2, or (at your option)
  10 *  any later version.
  11 *
  12 *  This program is distributed in the hope that it will be useful,
  13 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 *  GNU General Public License for more details.
  16 *
  17 *  You should have received a copy of the GNU General Public License
  18 *  along with this program; see the file COPYING.  If not, write to
  19 *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
  20 */
  21
 
  22#include <linux/module.h>
  23#include <linux/pwm.h>
  24#include <linux/radix-tree.h>
  25#include <linux/list.h>
  26#include <linux/mutex.h>
  27#include <linux/err.h>
  28#include <linux/slab.h>
  29#include <linux/device.h>
  30#include <linux/debugfs.h>
  31#include <linux/seq_file.h>
  32
  33#include <dt-bindings/pwm/pwm.h>
  34
 
 
 
  35#define MAX_PWMS 1024
  36
  37static DEFINE_MUTEX(pwm_lookup_lock);
  38static LIST_HEAD(pwm_lookup_list);
 
 
  39static DEFINE_MUTEX(pwm_lock);
 
  40static LIST_HEAD(pwm_chips);
  41static DECLARE_BITMAP(allocated_pwms, MAX_PWMS);
  42static RADIX_TREE(pwm_tree, GFP_KERNEL);
  43
  44static struct pwm_device *pwm_to_device(unsigned int pwm)
  45{
  46	return radix_tree_lookup(&pwm_tree, pwm);
  47}
  48
  49static int alloc_pwms(int pwm, unsigned int count)
 
  50{
  51	unsigned int from = 0;
  52	unsigned int start;
  53
  54	if (pwm >= MAX_PWMS)
  55		return -EINVAL;
  56
  57	if (pwm >= 0)
  58		from = pwm;
  59
  60	start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, from,
  61					   count, 0);
  62
  63	if (pwm >= 0 && start != pwm)
  64		return -EEXIST;
  65
  66	if (start + count > MAX_PWMS)
  67		return -ENOSPC;
  68
 
 
  69	return start;
  70}
  71
 
  72static void free_pwms(struct pwm_chip *chip)
  73{
  74	unsigned int i;
  75
  76	for (i = 0; i < chip->npwm; i++) {
  77		struct pwm_device *pwm = &chip->pwms[i];
  78
  79		radix_tree_delete(&pwm_tree, pwm->pwm);
  80	}
  81
  82	bitmap_clear(allocated_pwms, chip->base, chip->npwm);
  83
  84	kfree(chip->pwms);
  85	chip->pwms = NULL;
  86}
  87
  88static struct pwm_chip *pwmchip_find_by_name(const char *name)
  89{
  90	struct pwm_chip *chip;
  91
  92	if (!name)
  93		return NULL;
  94
  95	mutex_lock(&pwm_lock);
  96
  97	list_for_each_entry(chip, &pwm_chips, list) {
  98		const char *chip_name = dev_name(chip->dev);
  99
 100		if (chip_name && strcmp(chip_name, name) == 0) {
 101			mutex_unlock(&pwm_lock);
 102			return chip;
 103		}
 104	}
 105
 106	mutex_unlock(&pwm_lock);
 107
 108	return NULL;
 109}
 110
 111static int pwm_device_request(struct pwm_device *pwm, const char *label)
 112{
 113	int err;
 114
 115	if (test_bit(PWMF_REQUESTED, &pwm->flags))
 116		return -EBUSY;
 117
 118	if (!try_module_get(pwm->chip->ops->owner))
 119		return -ENODEV;
 120
 121	if (pwm->chip->ops->request) {
 122		err = pwm->chip->ops->request(pwm->chip, pwm);
 123		if (err) {
 124			module_put(pwm->chip->ops->owner);
 125			return err;
 126		}
 127	}
 128
 
 
 
 
 
 
 
 
 
 
 
 
 
 129	set_bit(PWMF_REQUESTED, &pwm->flags);
 130	pwm->label = label;
 131
 132	return 0;
 133}
 134
 135struct pwm_device *
 136of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args)
 137{
 138	struct pwm_device *pwm;
 139
 140	if (pc->of_pwm_n_cells < 3)
 
 
 
 
 141		return ERR_PTR(-EINVAL);
 142
 143	if (args->args[0] >= pc->npwm)
 144		return ERR_PTR(-EINVAL);
 145
 146	pwm = pwm_request_from_chip(pc, args->args[0], NULL);
 147	if (IS_ERR(pwm))
 148		return pwm;
 149
 150	pwm->args.period = args->args[1];
 
 151
 152	if (args->args[2] & PWM_POLARITY_INVERTED)
 153		pwm->args.polarity = PWM_POLARITY_INVERSED;
 154	else
 155		pwm->args.polarity = PWM_POLARITY_NORMAL;
 156
 157	return pwm;
 158}
 159EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
 160
 161static struct pwm_device *
 162of_pwm_simple_xlate(struct pwm_chip *pc, const struct of_phandle_args *args)
 163{
 164	struct pwm_device *pwm;
 165
 166	if (pc->of_pwm_n_cells < 2)
 167		return ERR_PTR(-EINVAL);
 168
 169	if (args->args[0] >= pc->npwm)
 
 170		return ERR_PTR(-EINVAL);
 171
 172	pwm = pwm_request_from_chip(pc, args->args[0], NULL);
 173	if (IS_ERR(pwm))
 174		return pwm;
 175
 176	pwm->args.period = args->args[1];
 
 
 
 
 177
 178	return pwm;
 179}
 
 180
 181static void of_pwmchip_add(struct pwm_chip *chip)
 182{
 183	if (!chip->dev || !chip->dev->of_node)
 184		return;
 185
 186	if (!chip->of_xlate) {
 187		chip->of_xlate = of_pwm_simple_xlate;
 188		chip->of_pwm_n_cells = 2;
 
 
 
 
 
 
 189	}
 190
 191	of_node_get(chip->dev->of_node);
 192}
 193
 194static void of_pwmchip_remove(struct pwm_chip *chip)
 195{
 196	if (chip->dev)
 197		of_node_put(chip->dev->of_node);
 198}
 199
 200/**
 201 * pwm_set_chip_data() - set private chip data for a PWM
 202 * @pwm: PWM device
 203 * @data: pointer to chip-specific data
 204 *
 205 * Returns: 0 on success or a negative error code on failure.
 206 */
 207int pwm_set_chip_data(struct pwm_device *pwm, void *data)
 208{
 209	if (!pwm)
 210		return -EINVAL;
 211
 212	pwm->chip_data = data;
 213
 214	return 0;
 215}
 216EXPORT_SYMBOL_GPL(pwm_set_chip_data);
 217
 218/**
 219 * pwm_get_chip_data() - get private chip data for a PWM
 220 * @pwm: PWM device
 221 *
 222 * Returns: A pointer to the chip-private data for the PWM device.
 223 */
 224void *pwm_get_chip_data(struct pwm_device *pwm)
 225{
 226	return pwm ? pwm->chip_data : NULL;
 227}
 228EXPORT_SYMBOL_GPL(pwm_get_chip_data);
 229
 230static bool pwm_ops_check(const struct pwm_ops *ops)
 231{
 232	/* driver supports legacy, non-atomic operation */
 233	if (ops->config && ops->enable && ops->disable)
 234		return true;
 
 235
 236	/* driver supports atomic operation */
 237	if (ops->apply)
 238		return true;
 239
 240	return false;
 241}
 242
 243/**
 244 * pwmchip_add_with_polarity() - register a new PWM chip
 245 * @chip: the PWM chip to add
 246 * @polarity: initial polarity of PWM channels
 247 *
 248 * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
 249 * will be used. The initial polarity for all channels is specified by the
 250 * @polarity parameter.
 251 *
 252 * Returns: 0 on success or a negative error code on failure.
 253 */
 254int pwmchip_add_with_polarity(struct pwm_chip *chip,
 255			      enum pwm_polarity polarity)
 256{
 257	struct pwm_device *pwm;
 258	unsigned int i;
 259	int ret;
 260
 261	if (!chip || !chip->dev || !chip->ops || !chip->npwm)
 262		return -EINVAL;
 263
 264	if (!pwm_ops_check(chip->ops))
 265		return -EINVAL;
 266
 
 
 
 
 267	mutex_lock(&pwm_lock);
 268
 269	ret = alloc_pwms(chip->base, chip->npwm);
 270	if (ret < 0)
 271		goto out;
 272
 273	chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL);
 274	if (!chip->pwms) {
 275		ret = -ENOMEM;
 276		goto out;
 277	}
 278
 279	chip->base = ret;
 280
 281	for (i = 0; i < chip->npwm; i++) {
 282		pwm = &chip->pwms[i];
 283
 284		pwm->chip = chip;
 285		pwm->pwm = chip->base + i;
 286		pwm->hwpwm = i;
 287		pwm->state.polarity = polarity;
 288
 289		if (chip->ops->get_state)
 290			chip->ops->get_state(chip, pwm, &pwm->state);
 291
 292		radix_tree_insert(&pwm_tree, pwm->pwm, pwm);
 293	}
 294
 295	bitmap_set(allocated_pwms, chip->base, chip->npwm);
 296
 297	INIT_LIST_HEAD(&chip->list);
 298	list_add(&chip->list, &pwm_chips);
 299
 300	ret = 0;
 301
 302	if (IS_ENABLED(CONFIG_OF))
 303		of_pwmchip_add(chip);
 304
 305	pwmchip_sysfs_export(chip);
 306
 307out:
 308	mutex_unlock(&pwm_lock);
 309	return ret;
 310}
 311EXPORT_SYMBOL_GPL(pwmchip_add_with_polarity);
 312
 313/**
 314 * pwmchip_add() - register a new PWM chip
 315 * @chip: the PWM chip to add
 316 *
 317 * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
 318 * will be used. The initial polarity for all channels is normal.
 319 *
 320 * Returns: 0 on success or a negative error code on failure.
 321 */
 322int pwmchip_add(struct pwm_chip *chip)
 323{
 324	return pwmchip_add_with_polarity(chip, PWM_POLARITY_NORMAL);
 325}
 326EXPORT_SYMBOL_GPL(pwmchip_add);
 327
 328/**
 329 * pwmchip_remove() - remove a PWM chip
 330 * @chip: the PWM chip to remove
 331 *
 332 * Removes a PWM chip. This function may return busy if the PWM chip provides
 333 * a PWM device that is still requested.
 334 *
 335 * Returns: 0 on success or a negative error code on failure.
 336 */
 337int pwmchip_remove(struct pwm_chip *chip)
 338{
 339	unsigned int i;
 340	int ret = 0;
 341
 342	pwmchip_sysfs_unexport_children(chip);
 343
 344	mutex_lock(&pwm_lock);
 345
 346	for (i = 0; i < chip->npwm; i++) {
 347		struct pwm_device *pwm = &chip->pwms[i];
 348
 349		if (test_bit(PWMF_REQUESTED, &pwm->flags)) {
 350			ret = -EBUSY;
 351			goto out;
 352		}
 353	}
 354
 355	list_del_init(&chip->list);
 356
 357	if (IS_ENABLED(CONFIG_OF))
 358		of_pwmchip_remove(chip);
 359
 360	free_pwms(chip);
 361
 362	pwmchip_sysfs_unexport(chip);
 363
 364out:
 365	mutex_unlock(&pwm_lock);
 366	return ret;
 367}
 368EXPORT_SYMBOL_GPL(pwmchip_remove);
 369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 370/**
 371 * pwm_request() - request a PWM device
 372 * @pwm: global PWM device index
 373 * @label: PWM device label
 374 *
 375 * This function is deprecated, use pwm_get() instead.
 376 *
 377 * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on
 378 * failure.
 379 */
 380struct pwm_device *pwm_request(int pwm, const char *label)
 381{
 382	struct pwm_device *dev;
 383	int err;
 384
 385	if (pwm < 0 || pwm >= MAX_PWMS)
 386		return ERR_PTR(-EINVAL);
 387
 388	mutex_lock(&pwm_lock);
 389
 390	dev = pwm_to_device(pwm);
 391	if (!dev) {
 392		dev = ERR_PTR(-EPROBE_DEFER);
 393		goto out;
 394	}
 395
 396	err = pwm_device_request(dev, label);
 397	if (err < 0)
 398		dev = ERR_PTR(err);
 399
 400out:
 401	mutex_unlock(&pwm_lock);
 402
 403	return dev;
 404}
 405EXPORT_SYMBOL_GPL(pwm_request);
 406
 407/**
 408 * pwm_request_from_chip() - request a PWM device relative to a PWM chip
 409 * @chip: PWM chip
 410 * @index: per-chip index of the PWM to request
 411 * @label: a literal description string of this PWM
 412 *
 413 * Returns: A pointer to the PWM device at the given index of the given PWM
 414 * chip. A negative error code is returned if the index is not valid for the
 415 * specified PWM chip or if the PWM device cannot be requested.
 416 */
 417struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
 418					 unsigned int index,
 419					 const char *label)
 420{
 421	struct pwm_device *pwm;
 422	int err;
 423
 424	if (!chip || index >= chip->npwm)
 425		return ERR_PTR(-EINVAL);
 426
 427	mutex_lock(&pwm_lock);
 428	pwm = &chip->pwms[index];
 429
 430	err = pwm_device_request(pwm, label);
 431	if (err < 0)
 432		pwm = ERR_PTR(err);
 433
 434	mutex_unlock(&pwm_lock);
 435	return pwm;
 436}
 437EXPORT_SYMBOL_GPL(pwm_request_from_chip);
 438
 439/**
 440 * pwm_free() - free a PWM device
 441 * @pwm: PWM device
 442 *
 443 * This function is deprecated, use pwm_put() instead.
 444 */
 445void pwm_free(struct pwm_device *pwm)
 446{
 447	pwm_put(pwm);
 448}
 449EXPORT_SYMBOL_GPL(pwm_free);
 450
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 451/**
 452 * pwm_apply_state() - atomically apply a new state to a PWM device
 453 * @pwm: PWM device
 454 * @state: new state to apply. This can be adjusted by the PWM driver
 455 *	   if the requested config is not achievable, for example,
 456 *	   ->duty_cycle and ->period might be approximated.
 457 */
 458int pwm_apply_state(struct pwm_device *pwm, struct pwm_state *state)
 459{
 
 460	int err;
 461
 
 
 
 
 
 
 
 
 
 462	if (!pwm || !state || !state->period ||
 463	    state->duty_cycle > state->period)
 464		return -EINVAL;
 465
 466	if (!memcmp(state, &pwm->state, sizeof(*state)))
 
 
 
 
 
 
 467		return 0;
 468
 469	if (pwm->chip->ops->apply) {
 470		err = pwm->chip->ops->apply(pwm->chip, pwm, state);
 471		if (err)
 472			return err;
 473
 474		pwm->state = *state;
 475	} else {
 476		/*
 477		 * FIXME: restore the initial state in case of error.
 478		 */
 479		if (state->polarity != pwm->state.polarity) {
 480			if (!pwm->chip->ops->set_polarity)
 481				return -ENOTSUPP;
 482
 483			/*
 484			 * Changing the polarity of a running PWM is
 485			 * only allowed when the PWM driver implements
 486			 * ->apply().
 487			 */
 488			if (pwm->state.enabled) {
 489				pwm->chip->ops->disable(pwm->chip, pwm);
 490				pwm->state.enabled = false;
 491			}
 492
 493			err = pwm->chip->ops->set_polarity(pwm->chip, pwm,
 494							   state->polarity);
 495			if (err)
 496				return err;
 497
 498			pwm->state.polarity = state->polarity;
 499		}
 500
 501		if (state->period != pwm->state.period ||
 502		    state->duty_cycle != pwm->state.duty_cycle) {
 503			err = pwm->chip->ops->config(pwm->chip, pwm,
 504						     state->duty_cycle,
 505						     state->period);
 506			if (err)
 507				return err;
 508
 509			pwm->state.duty_cycle = state->duty_cycle;
 510			pwm->state.period = state->period;
 511		}
 512
 513		if (state->enabled != pwm->state.enabled) {
 514			if (state->enabled) {
 515				err = pwm->chip->ops->enable(pwm->chip, pwm);
 516				if (err)
 517					return err;
 518			} else {
 519				pwm->chip->ops->disable(pwm->chip, pwm);
 520			}
 521
 522			pwm->state.enabled = state->enabled;
 523		}
 524	}
 525
 526	return 0;
 527}
 528EXPORT_SYMBOL_GPL(pwm_apply_state);
 529
 530/**
 531 * pwm_capture() - capture and report a PWM signal
 532 * @pwm: PWM device
 533 * @result: structure to fill with capture result
 534 * @timeout: time to wait, in milliseconds, before giving up on capture
 535 *
 536 * Returns: 0 on success or a negative error code on failure.
 537 */
 538int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
 539		unsigned long timeout)
 540{
 541	int err;
 542
 543	if (!pwm || !pwm->chip->ops)
 544		return -EINVAL;
 545
 546	if (!pwm->chip->ops->capture)
 547		return -ENOSYS;
 548
 549	mutex_lock(&pwm_lock);
 550	err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout);
 551	mutex_unlock(&pwm_lock);
 552
 553	return err;
 554}
 555EXPORT_SYMBOL_GPL(pwm_capture);
 556
 557/**
 558 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
 559 * @pwm: PWM device
 560 *
 561 * This function will adjust the PWM config to the PWM arguments provided
 562 * by the DT or PWM lookup table. This is particularly useful to adapt
 563 * the bootloader config to the Linux one.
 564 */
 565int pwm_adjust_config(struct pwm_device *pwm)
 566{
 567	struct pwm_state state;
 568	struct pwm_args pargs;
 569
 570	pwm_get_args(pwm, &pargs);
 571	pwm_get_state(pwm, &state);
 572
 573	/*
 574	 * If the current period is zero it means that either the PWM driver
 575	 * does not support initial state retrieval or the PWM has not yet
 576	 * been configured.
 577	 *
 578	 * In either case, we setup the new period and polarity, and assign a
 579	 * duty cycle of 0.
 580	 */
 581	if (!state.period) {
 582		state.duty_cycle = 0;
 583		state.period = pargs.period;
 584		state.polarity = pargs.polarity;
 585
 586		return pwm_apply_state(pwm, &state);
 587	}
 588
 589	/*
 590	 * Adjust the PWM duty cycle/period based on the period value provided
 591	 * in PWM args.
 592	 */
 593	if (pargs.period != state.period) {
 594		u64 dutycycle = (u64)state.duty_cycle * pargs.period;
 595
 596		do_div(dutycycle, state.period);
 597		state.duty_cycle = dutycycle;
 598		state.period = pargs.period;
 599	}
 600
 601	/*
 602	 * If the polarity changed, we should also change the duty cycle.
 603	 */
 604	if (pargs.polarity != state.polarity) {
 605		state.polarity = pargs.polarity;
 606		state.duty_cycle = state.period - state.duty_cycle;
 607	}
 608
 609	return pwm_apply_state(pwm, &state);
 610}
 611EXPORT_SYMBOL_GPL(pwm_adjust_config);
 612
 613static struct pwm_chip *of_node_to_pwmchip(struct device_node *np)
 614{
 615	struct pwm_chip *chip;
 616
 617	mutex_lock(&pwm_lock);
 618
 619	list_for_each_entry(chip, &pwm_chips, list)
 620		if (chip->dev && chip->dev->of_node == np) {
 621			mutex_unlock(&pwm_lock);
 622			return chip;
 623		}
 624
 625	mutex_unlock(&pwm_lock);
 626
 627	return ERR_PTR(-EPROBE_DEFER);
 628}
 629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 630/**
 631 * of_pwm_get() - request a PWM via the PWM framework
 
 632 * @np: device node to get the PWM from
 633 * @con_id: consumer name
 634 *
 635 * Returns the PWM device parsed from the phandle and index specified in the
 636 * "pwms" property of a device tree node or a negative error-code on failure.
 637 * Values parsed from the device tree are stored in the returned PWM device
 638 * object.
 639 *
 640 * If con_id is NULL, the first PWM device listed in the "pwms" property will
 641 * be requested. Otherwise the "pwm-names" property is used to do a reverse
 642 * lookup of the PWM index. This also means that the "pwm-names" property
 643 * becomes mandatory for devices that look up the PWM device via the con_id
 644 * parameter.
 645 *
 646 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 647 * error code on failure.
 648 */
 649struct pwm_device *of_pwm_get(struct device_node *np, const char *con_id)
 
 650{
 651	struct pwm_device *pwm = NULL;
 652	struct of_phandle_args args;
 
 653	struct pwm_chip *pc;
 654	int index = 0;
 655	int err;
 656
 657	if (con_id) {
 658		index = of_property_match_string(np, "pwm-names", con_id);
 659		if (index < 0)
 660			return ERR_PTR(index);
 661	}
 662
 663	err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
 664					 &args);
 665	if (err) {
 666		pr_debug("%s(): can't parse \"pwms\" property\n", __func__);
 667		return ERR_PTR(err);
 668	}
 669
 670	pc = of_node_to_pwmchip(args.np);
 671	if (IS_ERR(pc)) {
 672		pr_debug("%s(): PWM chip not found\n", __func__);
 
 
 673		pwm = ERR_CAST(pc);
 674		goto put;
 675	}
 676
 677	if (args.args_count != pc->of_pwm_n_cells) {
 678		pr_debug("%s: wrong #pwm-cells for %s\n", np->full_name,
 679			 args.np->full_name);
 680		pwm = ERR_PTR(-EINVAL);
 681		goto put;
 682	}
 683
 684	pwm = pc->of_xlate(pc, &args);
 685	if (IS_ERR(pwm))
 
 
 
 686		goto put;
 
 687
 688	/*
 689	 * If a consumer name was not given, try to look it up from the
 690	 * "pwm-names" property if it exists. Otherwise use the name of
 691	 * the user device node.
 692	 */
 693	if (!con_id) {
 694		err = of_property_read_string_index(np, "pwm-names", index,
 695						    &con_id);
 696		if (err < 0)
 697			con_id = np->name;
 698	}
 699
 700	pwm->label = con_id;
 701
 702put:
 703	of_node_put(args.np);
 704
 705	return pwm;
 706}
 707EXPORT_SYMBOL_GPL(of_pwm_get);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 708
 709/**
 710 * pwm_add_table() - register PWM device consumers
 711 * @table: array of consumers to register
 712 * @num: number of consumers in table
 713 */
 714void pwm_add_table(struct pwm_lookup *table, size_t num)
 715{
 716	mutex_lock(&pwm_lookup_lock);
 717
 718	while (num--) {
 719		list_add_tail(&table->list, &pwm_lookup_list);
 720		table++;
 721	}
 722
 723	mutex_unlock(&pwm_lookup_lock);
 724}
 725
 726/**
 727 * pwm_remove_table() - unregister PWM device consumers
 728 * @table: array of consumers to unregister
 729 * @num: number of consumers in table
 730 */
 731void pwm_remove_table(struct pwm_lookup *table, size_t num)
 732{
 733	mutex_lock(&pwm_lookup_lock);
 734
 735	while (num--) {
 736		list_del(&table->list);
 737		table++;
 738	}
 739
 740	mutex_unlock(&pwm_lookup_lock);
 741}
 742
 743/**
 744 * pwm_get() - look up and request a PWM device
 745 * @dev: device for PWM consumer
 746 * @con_id: consumer name
 747 *
 748 * Lookup is first attempted using DT. If the device was not instantiated from
 749 * a device tree, a PWM chip and a relative index is looked up via a table
 750 * supplied by board setup code (see pwm_add_table()).
 751 *
 752 * Once a PWM chip has been found the specified PWM device will be requested
 753 * and is ready to be used.
 754 *
 755 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 756 * error code on failure.
 757 */
 758struct pwm_device *pwm_get(struct device *dev, const char *con_id)
 759{
 760	struct pwm_device *pwm = ERR_PTR(-EPROBE_DEFER);
 761	const char *dev_id = dev ? dev_name(dev) : NULL;
 762	struct pwm_chip *chip = NULL;
 
 
 763	unsigned int best = 0;
 764	struct pwm_lookup *p, *chosen = NULL;
 765	unsigned int match;
 
 766
 767	/* look up via DT first */
 768	if (IS_ENABLED(CONFIG_OF) && dev && dev->of_node)
 769		return of_pwm_get(dev->of_node, con_id);
 
 
 
 
 
 
 
 770
 771	/*
 772	 * We look up the provider in the static table typically provided by
 773	 * board setup code. We first try to lookup the consumer device by
 774	 * name. If the consumer device was passed in as NULL or if no match
 775	 * was found, we try to find the consumer by directly looking it up
 776	 * by name.
 777	 *
 778	 * If a match is found, the provider PWM chip is looked up by name
 779	 * and a PWM device is requested using the PWM device per-chip index.
 780	 *
 781	 * The lookup algorithm was shamelessly taken from the clock
 782	 * framework:
 783	 *
 784	 * We do slightly fuzzy matching here:
 785	 *  An entry with a NULL ID is assumed to be a wildcard.
 786	 *  If an entry has a device ID, it must match
 787	 *  If an entry has a connection ID, it must match
 788	 * Then we take the most specific entry - with the following order
 789	 * of precedence: dev+con > dev only > con only.
 790	 */
 791	mutex_lock(&pwm_lookup_lock);
 792
 793	list_for_each_entry(p, &pwm_lookup_list, list) {
 794		match = 0;
 795
 796		if (p->dev_id) {
 797			if (!dev_id || strcmp(p->dev_id, dev_id))
 798				continue;
 799
 800			match += 2;
 801		}
 802
 803		if (p->con_id) {
 804			if (!con_id || strcmp(p->con_id, con_id))
 805				continue;
 806
 807			match += 1;
 808		}
 809
 810		if (match > best) {
 811			chosen = p;
 812
 813			if (match != 3)
 814				best = match;
 815			else
 816				break;
 817		}
 818	}
 819
 820	if (!chosen) {
 821		pwm = ERR_PTR(-ENODEV);
 822		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 823	}
 824
 825	chip = pwmchip_find_by_name(chosen->provider);
 826	if (!chip)
 827		goto out;
 828
 829	pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
 830	if (IS_ERR(pwm))
 831		goto out;
 
 
 
 
 
 
 832
 833	pwm->args.period = chosen->period;
 834	pwm->args.polarity = chosen->polarity;
 835
 836out:
 837	mutex_unlock(&pwm_lookup_lock);
 838	return pwm;
 839}
 840EXPORT_SYMBOL_GPL(pwm_get);
 841
 842/**
 843 * pwm_put() - release a PWM device
 844 * @pwm: PWM device
 845 */
 846void pwm_put(struct pwm_device *pwm)
 847{
 848	if (!pwm)
 849		return;
 850
 851	mutex_lock(&pwm_lock);
 852
 853	if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
 854		pr_warn("PWM device already freed\n");
 855		goto out;
 856	}
 857
 858	if (pwm->chip->ops->free)
 859		pwm->chip->ops->free(pwm->chip, pwm);
 860
 
 861	pwm->label = NULL;
 862
 863	module_put(pwm->chip->ops->owner);
 864out:
 865	mutex_unlock(&pwm_lock);
 866}
 867EXPORT_SYMBOL_GPL(pwm_put);
 868
 869static void devm_pwm_release(struct device *dev, void *res)
 870{
 871	pwm_put(*(struct pwm_device **)res);
 872}
 873
 874/**
 875 * devm_pwm_get() - resource managed pwm_get()
 876 * @dev: device for PWM consumer
 877 * @con_id: consumer name
 878 *
 879 * This function performs like pwm_get() but the acquired PWM device will
 880 * automatically be released on driver detach.
 881 *
 882 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 883 * error code on failure.
 884 */
 885struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
 886{
 887	struct pwm_device **ptr, *pwm;
 
 888
 889	ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
 890	if (!ptr)
 891		return ERR_PTR(-ENOMEM);
 892
 893	pwm = pwm_get(dev, con_id);
 894	if (!IS_ERR(pwm)) {
 895		*ptr = pwm;
 896		devres_add(dev, ptr);
 897	} else {
 898		devres_free(ptr);
 899	}
 900
 901	return pwm;
 902}
 903EXPORT_SYMBOL_GPL(devm_pwm_get);
 904
 905/**
 906 * devm_of_pwm_get() - resource managed of_pwm_get()
 907 * @dev: device for PWM consumer
 908 * @np: device node to get the PWM from
 909 * @con_id: consumer name
 910 *
 911 * This function performs like of_pwm_get() but the acquired PWM device will
 912 * automatically be released on driver detach.
 913 *
 914 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 915 * error code on failure.
 916 */
 917struct pwm_device *devm_of_pwm_get(struct device *dev, struct device_node *np,
 918				   const char *con_id)
 
 919{
 920	struct pwm_device **ptr, *pwm;
 
 921
 922	ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
 923	if (!ptr)
 924		return ERR_PTR(-ENOMEM);
 925
 926	pwm = of_pwm_get(np, con_id);
 927	if (!IS_ERR(pwm)) {
 928		*ptr = pwm;
 929		devres_add(dev, ptr);
 930	} else {
 931		devres_free(ptr);
 932	}
 933
 934	return pwm;
 935}
 936EXPORT_SYMBOL_GPL(devm_of_pwm_get);
 937
 938static int devm_pwm_match(struct device *dev, void *res, void *data)
 939{
 940	struct pwm_device **p = res;
 941
 942	if (WARN_ON(!p || !*p))
 943		return 0;
 944
 945	return *p == data;
 946}
 947
 948/**
 949 * devm_pwm_put() - resource managed pwm_put()
 950 * @dev: device for PWM consumer
 951 * @pwm: PWM device
 952 *
 953 * Release a PWM previously allocated using devm_pwm_get(). Calling this
 954 * function is usually not needed because devm-allocated resources are
 955 * automatically released on driver detach.
 956 */
 957void devm_pwm_put(struct device *dev, struct pwm_device *pwm)
 958{
 959	WARN_ON(devres_release(dev, devm_pwm_release, devm_pwm_match, pwm));
 960}
 961EXPORT_SYMBOL_GPL(devm_pwm_put);
 962
 963/**
 964  * pwm_can_sleep() - report whether PWM access will sleep
 965  * @pwm: PWM device
 966  *
 967  * Returns: True if accessing the PWM can sleep, false otherwise.
 968  */
 969bool pwm_can_sleep(struct pwm_device *pwm)
 970{
 971	return true;
 972}
 973EXPORT_SYMBOL_GPL(pwm_can_sleep);
 974
 975#ifdef CONFIG_DEBUG_FS
 976static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
 977{
 978	unsigned int i;
 979
 980	for (i = 0; i < chip->npwm; i++) {
 981		struct pwm_device *pwm = &chip->pwms[i];
 982		struct pwm_state state;
 983
 984		pwm_get_state(pwm, &state);
 985
 986		seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
 987
 988		if (test_bit(PWMF_REQUESTED, &pwm->flags))
 989			seq_puts(s, " requested");
 990
 991		if (state.enabled)
 992			seq_puts(s, " enabled");
 993
 994		seq_printf(s, " period: %u ns", state.period);
 995		seq_printf(s, " duty: %u ns", state.duty_cycle);
 996		seq_printf(s, " polarity: %s",
 997			   state.polarity ? "inverse" : "normal");
 998
 
 
 
 999		seq_puts(s, "\n");
1000	}
1001}
1002
1003static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1004{
1005	mutex_lock(&pwm_lock);
1006	s->private = "";
1007
1008	return seq_list_start(&pwm_chips, *pos);
1009}
1010
1011static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1012{
1013	s->private = "\n";
1014
1015	return seq_list_next(v, &pwm_chips, pos);
1016}
1017
1018static void pwm_seq_stop(struct seq_file *s, void *v)
1019{
1020	mutex_unlock(&pwm_lock);
1021}
1022
1023static int pwm_seq_show(struct seq_file *s, void *v)
1024{
1025	struct pwm_chip *chip = list_entry(v, struct pwm_chip, list);
1026
1027	seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private,
1028		   chip->dev->bus ? chip->dev->bus->name : "no-bus",
1029		   dev_name(chip->dev), chip->npwm,
1030		   (chip->npwm != 1) ? "s" : "");
1031
1032	if (chip->ops->dbg_show)
1033		chip->ops->dbg_show(chip, s);
1034	else
1035		pwm_dbg_show(chip, s);
1036
1037	return 0;
1038}
1039
1040static const struct seq_operations pwm_seq_ops = {
1041	.start = pwm_seq_start,
1042	.next = pwm_seq_next,
1043	.stop = pwm_seq_stop,
1044	.show = pwm_seq_show,
1045};
1046
1047static int pwm_seq_open(struct inode *inode, struct file *file)
1048{
1049	return seq_open(file, &pwm_seq_ops);
1050}
1051
1052static const struct file_operations pwm_debugfs_ops = {
1053	.owner = THIS_MODULE,
1054	.open = pwm_seq_open,
1055	.read = seq_read,
1056	.llseek = seq_lseek,
1057	.release = seq_release,
1058};
1059
1060static int __init pwm_debugfs_init(void)
1061{
1062	debugfs_create_file("pwm", S_IFREG | S_IRUGO, NULL, NULL,
1063			    &pwm_debugfs_ops);
1064
1065	return 0;
1066}
1067subsys_initcall(pwm_debugfs_init);
1068#endif /* CONFIG_DEBUG_FS */