Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * at24.c - handle most I2C EEPROMs
4 *
5 * Copyright (C) 2005-2007 David Brownell
6 * Copyright (C) 2008 Wolfram Sang, Pengutronix
7 */
8
9#include <linux/acpi.h>
10#include <linux/bitops.h>
11#include <linux/capability.h>
12#include <linux/delay.h>
13#include <linux/i2c.h>
14#include <linux/init.h>
15#include <linux/jiffies.h>
16#include <linux/kernel.h>
17#include <linux/mod_devicetable.h>
18#include <linux/module.h>
19#include <linux/mutex.h>
20#include <linux/nvmem-provider.h>
21#include <linux/of_device.h>
22#include <linux/pm_runtime.h>
23#include <linux/property.h>
24#include <linux/regmap.h>
25#include <linux/regulator/consumer.h>
26#include <linux/slab.h>
27
28/* Address pointer is 16 bit. */
29#define AT24_FLAG_ADDR16 BIT(7)
30/* sysfs-entry will be read-only. */
31#define AT24_FLAG_READONLY BIT(6)
32/* sysfs-entry will be world-readable. */
33#define AT24_FLAG_IRUGO BIT(5)
34/* Take always 8 addresses (24c00). */
35#define AT24_FLAG_TAKE8ADDR BIT(4)
36/* Factory-programmed serial number. */
37#define AT24_FLAG_SERIAL BIT(3)
38/* Factory-programmed mac address. */
39#define AT24_FLAG_MAC BIT(2)
40/* Does not auto-rollover reads to the next slave address. */
41#define AT24_FLAG_NO_RDROL BIT(1)
42
43/*
44 * I2C EEPROMs from most vendors are inexpensive and mostly interchangeable.
45 * Differences between different vendor product lines (like Atmel AT24C or
46 * MicroChip 24LC, etc) won't much matter for typical read/write access.
47 * There are also I2C RAM chips, likewise interchangeable. One example
48 * would be the PCF8570, which acts like a 24c02 EEPROM (256 bytes).
49 *
50 * However, misconfiguration can lose data. "Set 16-bit memory address"
51 * to a part with 8-bit addressing will overwrite data. Writing with too
52 * big a page size also loses data. And it's not safe to assume that the
53 * conventional addresses 0x50..0x57 only hold eeproms; a PCF8563 RTC
54 * uses 0x51, for just one example.
55 *
56 * Accordingly, explicit board-specific configuration data should be used
57 * in almost all cases. (One partial exception is an SMBus used to access
58 * "SPD" data for DRAM sticks. Those only use 24c02 EEPROMs.)
59 *
60 * So this driver uses "new style" I2C driver binding, expecting to be
61 * told what devices exist. That may be in arch/X/mach-Y/board-Z.c or
62 * similar kernel-resident tables; or, configuration data coming from
63 * a bootloader.
64 *
65 * Other than binding model, current differences from "eeprom" driver are
66 * that this one handles write access and isn't restricted to 24c02 devices.
67 * It also handles larger devices (32 kbit and up) with two-byte addresses,
68 * which won't work on pure SMBus systems.
69 */
70
71struct at24_data {
72 /*
73 * Lock protects against activities from other Linux tasks,
74 * but not from changes by other I2C masters.
75 */
76 struct mutex lock;
77
78 unsigned int write_max;
79 unsigned int num_addresses;
80 unsigned int offset_adj;
81
82 u32 byte_len;
83 u16 page_size;
84 u8 flags;
85
86 struct nvmem_device *nvmem;
87 struct regulator *vcc_reg;
88 void (*read_post)(unsigned int off, char *buf, size_t count);
89
90 /*
91 * Some chips tie up multiple I2C addresses; dummy devices reserve
92 * them for us.
93 */
94 u8 bank_addr_shift;
95 struct regmap *client_regmaps[];
96};
97
98/*
99 * This parameter is to help this driver avoid blocking other drivers out
100 * of I2C for potentially troublesome amounts of time. With a 100 kHz I2C
101 * clock, one 256 byte read takes about 1/43 second which is excessive;
102 * but the 1/170 second it takes at 400 kHz may be quite reasonable; and
103 * at 1 MHz (Fm+) a 1/430 second delay could easily be invisible.
104 *
105 * This value is forced to be a power of two so that writes align on pages.
106 */
107static unsigned int at24_io_limit = 128;
108module_param_named(io_limit, at24_io_limit, uint, 0);
109MODULE_PARM_DESC(at24_io_limit, "Maximum bytes per I/O (default 128)");
110
111/*
112 * Specs often allow 5 msec for a page write, sometimes 20 msec;
113 * it's important to recover from write timeouts.
114 */
115static unsigned int at24_write_timeout = 25;
116module_param_named(write_timeout, at24_write_timeout, uint, 0);
117MODULE_PARM_DESC(at24_write_timeout, "Time (in ms) to try writes (default 25)");
118
119struct at24_chip_data {
120 u32 byte_len;
121 u8 flags;
122 u8 bank_addr_shift;
123 void (*read_post)(unsigned int off, char *buf, size_t count);
124};
125
126#define AT24_CHIP_DATA(_name, _len, _flags) \
127 static const struct at24_chip_data _name = { \
128 .byte_len = _len, .flags = _flags, \
129 }
130
131#define AT24_CHIP_DATA_CB(_name, _len, _flags, _read_post) \
132 static const struct at24_chip_data _name = { \
133 .byte_len = _len, .flags = _flags, \
134 .read_post = _read_post, \
135 }
136
137#define AT24_CHIP_DATA_BS(_name, _len, _flags, _bank_addr_shift) \
138 static const struct at24_chip_data _name = { \
139 .byte_len = _len, .flags = _flags, \
140 .bank_addr_shift = _bank_addr_shift \
141 }
142
143static void at24_read_post_vaio(unsigned int off, char *buf, size_t count)
144{
145 int i;
146
147 if (capable(CAP_SYS_ADMIN))
148 return;
149
150 /*
151 * Hide VAIO private settings to regular users:
152 * - BIOS passwords: bytes 0x00 to 0x0f
153 * - UUID: bytes 0x10 to 0x1f
154 * - Serial number: 0xc0 to 0xdf
155 */
156 for (i = 0; i < count; i++) {
157 if ((off + i <= 0x1f) ||
158 (off + i >= 0xc0 && off + i <= 0xdf))
159 buf[i] = 0;
160 }
161}
162
163/* needs 8 addresses as A0-A2 are ignored */
164AT24_CHIP_DATA(at24_data_24c00, 128 / 8, AT24_FLAG_TAKE8ADDR);
165/* old variants can't be handled with this generic entry! */
166AT24_CHIP_DATA(at24_data_24c01, 1024 / 8, 0);
167AT24_CHIP_DATA(at24_data_24cs01, 16,
168 AT24_FLAG_SERIAL | AT24_FLAG_READONLY);
169AT24_CHIP_DATA(at24_data_24c02, 2048 / 8, 0);
170AT24_CHIP_DATA(at24_data_24cs02, 16,
171 AT24_FLAG_SERIAL | AT24_FLAG_READONLY);
172AT24_CHIP_DATA(at24_data_24mac402, 48 / 8,
173 AT24_FLAG_MAC | AT24_FLAG_READONLY);
174AT24_CHIP_DATA(at24_data_24mac602, 64 / 8,
175 AT24_FLAG_MAC | AT24_FLAG_READONLY);
176/* spd is a 24c02 in memory DIMMs */
177AT24_CHIP_DATA(at24_data_spd, 2048 / 8,
178 AT24_FLAG_READONLY | AT24_FLAG_IRUGO);
179/* 24c02_vaio is a 24c02 on some Sony laptops */
180AT24_CHIP_DATA_CB(at24_data_24c02_vaio, 2048 / 8,
181 AT24_FLAG_READONLY | AT24_FLAG_IRUGO,
182 at24_read_post_vaio);
183AT24_CHIP_DATA(at24_data_24c04, 4096 / 8, 0);
184AT24_CHIP_DATA(at24_data_24cs04, 16,
185 AT24_FLAG_SERIAL | AT24_FLAG_READONLY);
186/* 24rf08 quirk is handled at i2c-core */
187AT24_CHIP_DATA(at24_data_24c08, 8192 / 8, 0);
188AT24_CHIP_DATA(at24_data_24cs08, 16,
189 AT24_FLAG_SERIAL | AT24_FLAG_READONLY);
190AT24_CHIP_DATA(at24_data_24c16, 16384 / 8, 0);
191AT24_CHIP_DATA(at24_data_24cs16, 16,
192 AT24_FLAG_SERIAL | AT24_FLAG_READONLY);
193AT24_CHIP_DATA(at24_data_24c32, 32768 / 8, AT24_FLAG_ADDR16);
194AT24_CHIP_DATA(at24_data_24cs32, 16,
195 AT24_FLAG_ADDR16 | AT24_FLAG_SERIAL | AT24_FLAG_READONLY);
196AT24_CHIP_DATA(at24_data_24c64, 65536 / 8, AT24_FLAG_ADDR16);
197AT24_CHIP_DATA(at24_data_24cs64, 16,
198 AT24_FLAG_ADDR16 | AT24_FLAG_SERIAL | AT24_FLAG_READONLY);
199AT24_CHIP_DATA(at24_data_24c128, 131072 / 8, AT24_FLAG_ADDR16);
200AT24_CHIP_DATA(at24_data_24c256, 262144 / 8, AT24_FLAG_ADDR16);
201AT24_CHIP_DATA(at24_data_24c512, 524288 / 8, AT24_FLAG_ADDR16);
202AT24_CHIP_DATA(at24_data_24c1024, 1048576 / 8, AT24_FLAG_ADDR16);
203AT24_CHIP_DATA_BS(at24_data_24c1025, 1048576 / 8, AT24_FLAG_ADDR16, 2);
204AT24_CHIP_DATA(at24_data_24c2048, 2097152 / 8, AT24_FLAG_ADDR16);
205/* identical to 24c08 ? */
206AT24_CHIP_DATA(at24_data_INT3499, 8192 / 8, 0);
207
208static const struct i2c_device_id at24_ids[] = {
209 { "24c00", (kernel_ulong_t)&at24_data_24c00 },
210 { "24c01", (kernel_ulong_t)&at24_data_24c01 },
211 { "24cs01", (kernel_ulong_t)&at24_data_24cs01 },
212 { "24c02", (kernel_ulong_t)&at24_data_24c02 },
213 { "24cs02", (kernel_ulong_t)&at24_data_24cs02 },
214 { "24mac402", (kernel_ulong_t)&at24_data_24mac402 },
215 { "24mac602", (kernel_ulong_t)&at24_data_24mac602 },
216 { "spd", (kernel_ulong_t)&at24_data_spd },
217 { "24c02-vaio", (kernel_ulong_t)&at24_data_24c02_vaio },
218 { "24c04", (kernel_ulong_t)&at24_data_24c04 },
219 { "24cs04", (kernel_ulong_t)&at24_data_24cs04 },
220 { "24c08", (kernel_ulong_t)&at24_data_24c08 },
221 { "24cs08", (kernel_ulong_t)&at24_data_24cs08 },
222 { "24c16", (kernel_ulong_t)&at24_data_24c16 },
223 { "24cs16", (kernel_ulong_t)&at24_data_24cs16 },
224 { "24c32", (kernel_ulong_t)&at24_data_24c32 },
225 { "24cs32", (kernel_ulong_t)&at24_data_24cs32 },
226 { "24c64", (kernel_ulong_t)&at24_data_24c64 },
227 { "24cs64", (kernel_ulong_t)&at24_data_24cs64 },
228 { "24c128", (kernel_ulong_t)&at24_data_24c128 },
229 { "24c256", (kernel_ulong_t)&at24_data_24c256 },
230 { "24c512", (kernel_ulong_t)&at24_data_24c512 },
231 { "24c1024", (kernel_ulong_t)&at24_data_24c1024 },
232 { "24c1025", (kernel_ulong_t)&at24_data_24c1025 },
233 { "24c2048", (kernel_ulong_t)&at24_data_24c2048 },
234 { "at24", 0 },
235 { /* END OF LIST */ }
236};
237MODULE_DEVICE_TABLE(i2c, at24_ids);
238
239static const struct of_device_id at24_of_match[] = {
240 { .compatible = "atmel,24c00", .data = &at24_data_24c00 },
241 { .compatible = "atmel,24c01", .data = &at24_data_24c01 },
242 { .compatible = "atmel,24cs01", .data = &at24_data_24cs01 },
243 { .compatible = "atmel,24c02", .data = &at24_data_24c02 },
244 { .compatible = "atmel,24cs02", .data = &at24_data_24cs02 },
245 { .compatible = "atmel,24mac402", .data = &at24_data_24mac402 },
246 { .compatible = "atmel,24mac602", .data = &at24_data_24mac602 },
247 { .compatible = "atmel,spd", .data = &at24_data_spd },
248 { .compatible = "atmel,24c04", .data = &at24_data_24c04 },
249 { .compatible = "atmel,24cs04", .data = &at24_data_24cs04 },
250 { .compatible = "atmel,24c08", .data = &at24_data_24c08 },
251 { .compatible = "atmel,24cs08", .data = &at24_data_24cs08 },
252 { .compatible = "atmel,24c16", .data = &at24_data_24c16 },
253 { .compatible = "atmel,24cs16", .data = &at24_data_24cs16 },
254 { .compatible = "atmel,24c32", .data = &at24_data_24c32 },
255 { .compatible = "atmel,24cs32", .data = &at24_data_24cs32 },
256 { .compatible = "atmel,24c64", .data = &at24_data_24c64 },
257 { .compatible = "atmel,24cs64", .data = &at24_data_24cs64 },
258 { .compatible = "atmel,24c128", .data = &at24_data_24c128 },
259 { .compatible = "atmel,24c256", .data = &at24_data_24c256 },
260 { .compatible = "atmel,24c512", .data = &at24_data_24c512 },
261 { .compatible = "atmel,24c1024", .data = &at24_data_24c1024 },
262 { .compatible = "atmel,24c1025", .data = &at24_data_24c1025 },
263 { .compatible = "atmel,24c2048", .data = &at24_data_24c2048 },
264 { /* END OF LIST */ },
265};
266MODULE_DEVICE_TABLE(of, at24_of_match);
267
268static const struct acpi_device_id __maybe_unused at24_acpi_ids[] = {
269 { "INT3499", (kernel_ulong_t)&at24_data_INT3499 },
270 { "TPF0001", (kernel_ulong_t)&at24_data_24c1024 },
271 { /* END OF LIST */ }
272};
273MODULE_DEVICE_TABLE(acpi, at24_acpi_ids);
274
275/*
276 * This routine supports chips which consume multiple I2C addresses. It
277 * computes the addressing information to be used for a given r/w request.
278 * Assumes that sanity checks for offset happened at sysfs-layer.
279 *
280 * Slave address and byte offset derive from the offset. Always
281 * set the byte address; on a multi-master board, another master
282 * may have changed the chip's "current" address pointer.
283 */
284static struct regmap *at24_translate_offset(struct at24_data *at24,
285 unsigned int *offset)
286{
287 unsigned int i;
288
289 if (at24->flags & AT24_FLAG_ADDR16) {
290 i = *offset >> 16;
291 *offset &= 0xffff;
292 } else {
293 i = *offset >> 8;
294 *offset &= 0xff;
295 }
296
297 return at24->client_regmaps[i];
298}
299
300static struct device *at24_base_client_dev(struct at24_data *at24)
301{
302 return regmap_get_device(at24->client_regmaps[0]);
303}
304
305static size_t at24_adjust_read_count(struct at24_data *at24,
306 unsigned int offset, size_t count)
307{
308 unsigned int bits;
309 size_t remainder;
310
311 /*
312 * In case of multi-address chips that don't rollover reads to
313 * the next slave address: truncate the count to the slave boundary,
314 * so that the read never straddles slaves.
315 */
316 if (at24->flags & AT24_FLAG_NO_RDROL) {
317 bits = (at24->flags & AT24_FLAG_ADDR16) ? 16 : 8;
318 remainder = BIT(bits) - offset;
319 if (count > remainder)
320 count = remainder;
321 }
322
323 if (count > at24_io_limit)
324 count = at24_io_limit;
325
326 return count;
327}
328
329static ssize_t at24_regmap_read(struct at24_data *at24, char *buf,
330 unsigned int offset, size_t count)
331{
332 unsigned long timeout, read_time;
333 struct regmap *regmap;
334 int ret;
335
336 regmap = at24_translate_offset(at24, &offset);
337 count = at24_adjust_read_count(at24, offset, count);
338
339 /* adjust offset for mac and serial read ops */
340 offset += at24->offset_adj;
341
342 timeout = jiffies + msecs_to_jiffies(at24_write_timeout);
343 do {
344 /*
345 * The timestamp shall be taken before the actual operation
346 * to avoid a premature timeout in case of high CPU load.
347 */
348 read_time = jiffies;
349
350 ret = regmap_bulk_read(regmap, offset, buf, count);
351 dev_dbg(regmap_get_device(regmap), "read %zu@%d --> %d (%ld)\n",
352 count, offset, ret, jiffies);
353 if (!ret)
354 return count;
355
356 usleep_range(1000, 1500);
357 } while (time_before(read_time, timeout));
358
359 return -ETIMEDOUT;
360}
361
362/*
363 * Note that if the hardware write-protect pin is pulled high, the whole
364 * chip is normally write protected. But there are plenty of product
365 * variants here, including OTP fuses and partial chip protect.
366 *
367 * We only use page mode writes; the alternative is sloooow. These routines
368 * write at most one page.
369 */
370
371static size_t at24_adjust_write_count(struct at24_data *at24,
372 unsigned int offset, size_t count)
373{
374 unsigned int next_page;
375
376 /* write_max is at most a page */
377 if (count > at24->write_max)
378 count = at24->write_max;
379
380 /* Never roll over backwards, to the start of this page */
381 next_page = roundup(offset + 1, at24->page_size);
382 if (offset + count > next_page)
383 count = next_page - offset;
384
385 return count;
386}
387
388static ssize_t at24_regmap_write(struct at24_data *at24, const char *buf,
389 unsigned int offset, size_t count)
390{
391 unsigned long timeout, write_time;
392 struct regmap *regmap;
393 int ret;
394
395 regmap = at24_translate_offset(at24, &offset);
396 count = at24_adjust_write_count(at24, offset, count);
397 timeout = jiffies + msecs_to_jiffies(at24_write_timeout);
398
399 do {
400 /*
401 * The timestamp shall be taken before the actual operation
402 * to avoid a premature timeout in case of high CPU load.
403 */
404 write_time = jiffies;
405
406 ret = regmap_bulk_write(regmap, offset, buf, count);
407 dev_dbg(regmap_get_device(regmap), "write %zu@%d --> %d (%ld)\n",
408 count, offset, ret, jiffies);
409 if (!ret)
410 return count;
411
412 usleep_range(1000, 1500);
413 } while (time_before(write_time, timeout));
414
415 return -ETIMEDOUT;
416}
417
418static int at24_read(void *priv, unsigned int off, void *val, size_t count)
419{
420 struct at24_data *at24;
421 struct device *dev;
422 char *buf = val;
423 int i, ret;
424
425 at24 = priv;
426 dev = at24_base_client_dev(at24);
427
428 if (unlikely(!count))
429 return count;
430
431 if (off + count > at24->byte_len)
432 return -EINVAL;
433
434 ret = pm_runtime_get_sync(dev);
435 if (ret < 0) {
436 pm_runtime_put_noidle(dev);
437 return ret;
438 }
439
440 /*
441 * Read data from chip, protecting against concurrent updates
442 * from this host, but not from other I2C masters.
443 */
444 mutex_lock(&at24->lock);
445
446 for (i = 0; count; i += ret, count -= ret) {
447 ret = at24_regmap_read(at24, buf + i, off + i, count);
448 if (ret < 0) {
449 mutex_unlock(&at24->lock);
450 pm_runtime_put(dev);
451 return ret;
452 }
453 }
454
455 mutex_unlock(&at24->lock);
456
457 pm_runtime_put(dev);
458
459 if (unlikely(at24->read_post))
460 at24->read_post(off, buf, i);
461
462 return 0;
463}
464
465static int at24_write(void *priv, unsigned int off, void *val, size_t count)
466{
467 struct at24_data *at24;
468 struct device *dev;
469 char *buf = val;
470 int ret;
471
472 at24 = priv;
473 dev = at24_base_client_dev(at24);
474
475 if (unlikely(!count))
476 return -EINVAL;
477
478 if (off + count > at24->byte_len)
479 return -EINVAL;
480
481 ret = pm_runtime_get_sync(dev);
482 if (ret < 0) {
483 pm_runtime_put_noidle(dev);
484 return ret;
485 }
486
487 /*
488 * Write data to chip, protecting against concurrent updates
489 * from this host, but not from other I2C masters.
490 */
491 mutex_lock(&at24->lock);
492
493 while (count) {
494 ret = at24_regmap_write(at24, buf, off, count);
495 if (ret < 0) {
496 mutex_unlock(&at24->lock);
497 pm_runtime_put(dev);
498 return ret;
499 }
500 buf += ret;
501 off += ret;
502 count -= ret;
503 }
504
505 mutex_unlock(&at24->lock);
506
507 pm_runtime_put(dev);
508
509 return 0;
510}
511
512static const struct at24_chip_data *at24_get_chip_data(struct device *dev)
513{
514 struct device_node *of_node = dev->of_node;
515 const struct at24_chip_data *cdata;
516 const struct i2c_device_id *id;
517
518 id = i2c_match_id(at24_ids, to_i2c_client(dev));
519
520 /*
521 * The I2C core allows OF nodes compatibles to match against the
522 * I2C device ID table as a fallback, so check not only if an OF
523 * node is present but also if it matches an OF device ID entry.
524 */
525 if (of_node && of_match_device(at24_of_match, dev))
526 cdata = of_device_get_match_data(dev);
527 else if (id)
528 cdata = (void *)id->driver_data;
529 else
530 cdata = acpi_device_get_match_data(dev);
531
532 if (!cdata)
533 return ERR_PTR(-ENODEV);
534
535 return cdata;
536}
537
538static int at24_make_dummy_client(struct at24_data *at24, unsigned int index,
539 struct i2c_client *base_client,
540 struct regmap_config *regmap_config)
541{
542 struct i2c_client *dummy_client;
543 struct regmap *regmap;
544
545 dummy_client = devm_i2c_new_dummy_device(&base_client->dev,
546 base_client->adapter,
547 base_client->addr +
548 (index << at24->bank_addr_shift));
549 if (IS_ERR(dummy_client))
550 return PTR_ERR(dummy_client);
551
552 regmap = devm_regmap_init_i2c(dummy_client, regmap_config);
553 if (IS_ERR(regmap))
554 return PTR_ERR(regmap);
555
556 at24->client_regmaps[index] = regmap;
557
558 return 0;
559}
560
561static unsigned int at24_get_offset_adj(u8 flags, unsigned int byte_len)
562{
563 if (flags & AT24_FLAG_MAC) {
564 /* EUI-48 starts from 0x9a, EUI-64 from 0x98 */
565 return 0xa0 - byte_len;
566 } else if (flags & AT24_FLAG_SERIAL && flags & AT24_FLAG_ADDR16) {
567 /*
568 * For 16 bit address pointers, the word address must contain
569 * a '10' sequence in bits 11 and 10 regardless of the
570 * intended position of the address pointer.
571 */
572 return 0x0800;
573 } else if (flags & AT24_FLAG_SERIAL) {
574 /*
575 * Otherwise the word address must begin with a '10' sequence,
576 * regardless of the intended address.
577 */
578 return 0x0080;
579 } else {
580 return 0;
581 }
582}
583
584static int at24_probe(struct i2c_client *client)
585{
586 struct regmap_config regmap_config = { };
587 struct nvmem_config nvmem_config = { };
588 u32 byte_len, page_size, flags, addrw;
589 const struct at24_chip_data *cdata;
590 struct device *dev = &client->dev;
591 bool i2c_fn_i2c, i2c_fn_block;
592 unsigned int i, num_addresses;
593 struct at24_data *at24;
594 bool full_power;
595 struct regmap *regmap;
596 bool writable;
597 u8 test_byte;
598 int err;
599
600 i2c_fn_i2c = i2c_check_functionality(client->adapter, I2C_FUNC_I2C);
601 i2c_fn_block = i2c_check_functionality(client->adapter,
602 I2C_FUNC_SMBUS_WRITE_I2C_BLOCK);
603
604 cdata = at24_get_chip_data(dev);
605 if (IS_ERR(cdata))
606 return PTR_ERR(cdata);
607
608 err = device_property_read_u32(dev, "pagesize", &page_size);
609 if (err)
610 /*
611 * This is slow, but we can't know all eeproms, so we better
612 * play safe. Specifying custom eeprom-types via device tree
613 * or properties is recommended anyhow.
614 */
615 page_size = 1;
616
617 flags = cdata->flags;
618 if (device_property_present(dev, "read-only"))
619 flags |= AT24_FLAG_READONLY;
620 if (device_property_present(dev, "no-read-rollover"))
621 flags |= AT24_FLAG_NO_RDROL;
622
623 err = device_property_read_u32(dev, "address-width", &addrw);
624 if (!err) {
625 switch (addrw) {
626 case 8:
627 if (flags & AT24_FLAG_ADDR16)
628 dev_warn(dev,
629 "Override address width to be 8, while default is 16\n");
630 flags &= ~AT24_FLAG_ADDR16;
631 break;
632 case 16:
633 flags |= AT24_FLAG_ADDR16;
634 break;
635 default:
636 dev_warn(dev, "Bad \"address-width\" property: %u\n",
637 addrw);
638 }
639 }
640
641 err = device_property_read_u32(dev, "size", &byte_len);
642 if (err)
643 byte_len = cdata->byte_len;
644
645 if (!i2c_fn_i2c && !i2c_fn_block)
646 page_size = 1;
647
648 if (!page_size) {
649 dev_err(dev, "page_size must not be 0!\n");
650 return -EINVAL;
651 }
652
653 if (!is_power_of_2(page_size))
654 dev_warn(dev, "page_size looks suspicious (no power of 2)!\n");
655
656 err = device_property_read_u32(dev, "num-addresses", &num_addresses);
657 if (err) {
658 if (flags & AT24_FLAG_TAKE8ADDR)
659 num_addresses = 8;
660 else
661 num_addresses = DIV_ROUND_UP(byte_len,
662 (flags & AT24_FLAG_ADDR16) ? 65536 : 256);
663 }
664
665 if ((flags & AT24_FLAG_SERIAL) && (flags & AT24_FLAG_MAC)) {
666 dev_err(dev,
667 "invalid device data - cannot have both AT24_FLAG_SERIAL & AT24_FLAG_MAC.");
668 return -EINVAL;
669 }
670
671 regmap_config.val_bits = 8;
672 regmap_config.reg_bits = (flags & AT24_FLAG_ADDR16) ? 16 : 8;
673 regmap_config.disable_locking = true;
674
675 regmap = devm_regmap_init_i2c(client, ®map_config);
676 if (IS_ERR(regmap))
677 return PTR_ERR(regmap);
678
679 at24 = devm_kzalloc(dev, struct_size(at24, client_regmaps, num_addresses),
680 GFP_KERNEL);
681 if (!at24)
682 return -ENOMEM;
683
684 mutex_init(&at24->lock);
685 at24->byte_len = byte_len;
686 at24->page_size = page_size;
687 at24->flags = flags;
688 at24->read_post = cdata->read_post;
689 at24->bank_addr_shift = cdata->bank_addr_shift;
690 at24->num_addresses = num_addresses;
691 at24->offset_adj = at24_get_offset_adj(flags, byte_len);
692 at24->client_regmaps[0] = regmap;
693
694 at24->vcc_reg = devm_regulator_get(dev, "vcc");
695 if (IS_ERR(at24->vcc_reg))
696 return PTR_ERR(at24->vcc_reg);
697
698 writable = !(flags & AT24_FLAG_READONLY);
699 if (writable) {
700 at24->write_max = min_t(unsigned int,
701 page_size, at24_io_limit);
702 if (!i2c_fn_i2c && at24->write_max > I2C_SMBUS_BLOCK_MAX)
703 at24->write_max = I2C_SMBUS_BLOCK_MAX;
704 }
705
706 /* use dummy devices for multiple-address chips */
707 for (i = 1; i < num_addresses; i++) {
708 err = at24_make_dummy_client(at24, i, client, ®map_config);
709 if (err)
710 return err;
711 }
712
713 /*
714 * We initialize nvmem_config.id to NVMEM_DEVID_AUTO even if the
715 * label property is set as some platform can have multiple eeproms
716 * with same label and we can not register each of those with same
717 * label. Failing to register those eeproms trigger cascade failure
718 * on such platform.
719 */
720 nvmem_config.id = NVMEM_DEVID_AUTO;
721
722 if (device_property_present(dev, "label")) {
723 err = device_property_read_string(dev, "label",
724 &nvmem_config.name);
725 if (err)
726 return err;
727 } else {
728 nvmem_config.name = dev_name(dev);
729 }
730
731 nvmem_config.type = NVMEM_TYPE_EEPROM;
732 nvmem_config.dev = dev;
733 nvmem_config.read_only = !writable;
734 nvmem_config.root_only = !(flags & AT24_FLAG_IRUGO);
735 nvmem_config.owner = THIS_MODULE;
736 nvmem_config.compat = true;
737 nvmem_config.base_dev = dev;
738 nvmem_config.reg_read = at24_read;
739 nvmem_config.reg_write = at24_write;
740 nvmem_config.priv = at24;
741 nvmem_config.stride = 1;
742 nvmem_config.word_size = 1;
743 nvmem_config.size = byte_len;
744
745 i2c_set_clientdata(client, at24);
746
747 full_power = acpi_dev_state_d0(&client->dev);
748 if (full_power) {
749 err = regulator_enable(at24->vcc_reg);
750 if (err) {
751 dev_err(dev, "Failed to enable vcc regulator\n");
752 return err;
753 }
754
755 pm_runtime_set_active(dev);
756 }
757 pm_runtime_enable(dev);
758
759 at24->nvmem = devm_nvmem_register(dev, &nvmem_config);
760 if (IS_ERR(at24->nvmem)) {
761 pm_runtime_disable(dev);
762 if (!pm_runtime_status_suspended(dev))
763 regulator_disable(at24->vcc_reg);
764 return PTR_ERR(at24->nvmem);
765 }
766
767 /*
768 * Perform a one-byte test read to verify that the chip is functional,
769 * unless powering on the device is to be avoided during probe (i.e.
770 * it's powered off right now).
771 */
772 if (full_power) {
773 err = at24_read(at24, 0, &test_byte, 1);
774 if (err) {
775 pm_runtime_disable(dev);
776 if (!pm_runtime_status_suspended(dev))
777 regulator_disable(at24->vcc_reg);
778 return -ENODEV;
779 }
780 }
781
782 pm_runtime_idle(dev);
783
784 if (writable)
785 dev_info(dev, "%u byte %s EEPROM, writable, %u bytes/write\n",
786 byte_len, client->name, at24->write_max);
787 else
788 dev_info(dev, "%u byte %s EEPROM, read-only\n",
789 byte_len, client->name);
790
791 return 0;
792}
793
794static void at24_remove(struct i2c_client *client)
795{
796 struct at24_data *at24 = i2c_get_clientdata(client);
797
798 pm_runtime_disable(&client->dev);
799 if (acpi_dev_state_d0(&client->dev)) {
800 if (!pm_runtime_status_suspended(&client->dev))
801 regulator_disable(at24->vcc_reg);
802 pm_runtime_set_suspended(&client->dev);
803 }
804}
805
806static int __maybe_unused at24_suspend(struct device *dev)
807{
808 struct i2c_client *client = to_i2c_client(dev);
809 struct at24_data *at24 = i2c_get_clientdata(client);
810
811 return regulator_disable(at24->vcc_reg);
812}
813
814static int __maybe_unused at24_resume(struct device *dev)
815{
816 struct i2c_client *client = to_i2c_client(dev);
817 struct at24_data *at24 = i2c_get_clientdata(client);
818
819 return regulator_enable(at24->vcc_reg);
820}
821
822static const struct dev_pm_ops at24_pm_ops = {
823 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
824 pm_runtime_force_resume)
825 SET_RUNTIME_PM_OPS(at24_suspend, at24_resume, NULL)
826};
827
828static struct i2c_driver at24_driver = {
829 .driver = {
830 .name = "at24",
831 .pm = &at24_pm_ops,
832 .of_match_table = at24_of_match,
833 .acpi_match_table = ACPI_PTR(at24_acpi_ids),
834 },
835 .probe_new = at24_probe,
836 .remove = at24_remove,
837 .id_table = at24_ids,
838 .flags = I2C_DRV_ACPI_WAIVE_D0_PROBE,
839};
840
841static int __init at24_init(void)
842{
843 if (!at24_io_limit) {
844 pr_err("at24: at24_io_limit must not be 0!\n");
845 return -EINVAL;
846 }
847
848 at24_io_limit = rounddown_pow_of_two(at24_io_limit);
849 return i2c_add_driver(&at24_driver);
850}
851module_init(at24_init);
852
853static void __exit at24_exit(void)
854{
855 i2c_del_driver(&at24_driver);
856}
857module_exit(at24_exit);
858
859MODULE_DESCRIPTION("Driver for most I2C EEPROMs");
860MODULE_AUTHOR("David Brownell and Wolfram Sang");
861MODULE_LICENSE("GPL");
1/*
2 * at24.c - handle most I2C EEPROMs
3 *
4 * Copyright (C) 2005-2007 David Brownell
5 * Copyright (C) 2008 Wolfram Sang, Pengutronix
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 */
12#include <linux/kernel.h>
13#include <linux/init.h>
14#include <linux/module.h>
15#include <linux/slab.h>
16#include <linux/delay.h>
17#include <linux/mutex.h>
18#include <linux/mod_devicetable.h>
19#include <linux/log2.h>
20#include <linux/bitops.h>
21#include <linux/jiffies.h>
22#include <linux/of.h>
23#include <linux/acpi.h>
24#include <linux/i2c.h>
25#include <linux/nvmem-provider.h>
26#include <linux/platform_data/at24.h>
27
28/*
29 * I2C EEPROMs from most vendors are inexpensive and mostly interchangeable.
30 * Differences between different vendor product lines (like Atmel AT24C or
31 * MicroChip 24LC, etc) won't much matter for typical read/write access.
32 * There are also I2C RAM chips, likewise interchangeable. One example
33 * would be the PCF8570, which acts like a 24c02 EEPROM (256 bytes).
34 *
35 * However, misconfiguration can lose data. "Set 16-bit memory address"
36 * to a part with 8-bit addressing will overwrite data. Writing with too
37 * big a page size also loses data. And it's not safe to assume that the
38 * conventional addresses 0x50..0x57 only hold eeproms; a PCF8563 RTC
39 * uses 0x51, for just one example.
40 *
41 * Accordingly, explicit board-specific configuration data should be used
42 * in almost all cases. (One partial exception is an SMBus used to access
43 * "SPD" data for DRAM sticks. Those only use 24c02 EEPROMs.)
44 *
45 * So this driver uses "new style" I2C driver binding, expecting to be
46 * told what devices exist. That may be in arch/X/mach-Y/board-Z.c or
47 * similar kernel-resident tables; or, configuration data coming from
48 * a bootloader.
49 *
50 * Other than binding model, current differences from "eeprom" driver are
51 * that this one handles write access and isn't restricted to 24c02 devices.
52 * It also handles larger devices (32 kbit and up) with two-byte addresses,
53 * which won't work on pure SMBus systems.
54 */
55
56struct at24_data {
57 struct at24_platform_data chip;
58 int use_smbus;
59 int use_smbus_write;
60
61 ssize_t (*read_func)(struct at24_data *, char *, unsigned int, size_t);
62 ssize_t (*write_func)(struct at24_data *,
63 const char *, unsigned int, size_t);
64
65 /*
66 * Lock protects against activities from other Linux tasks,
67 * but not from changes by other I2C masters.
68 */
69 struct mutex lock;
70
71 u8 *writebuf;
72 unsigned write_max;
73 unsigned num_addresses;
74
75 struct nvmem_config nvmem_config;
76 struct nvmem_device *nvmem;
77
78 /*
79 * Some chips tie up multiple I2C addresses; dummy devices reserve
80 * them for us, and we'll use them with SMBus calls.
81 */
82 struct i2c_client *client[];
83};
84
85/*
86 * This parameter is to help this driver avoid blocking other drivers out
87 * of I2C for potentially troublesome amounts of time. With a 100 kHz I2C
88 * clock, one 256 byte read takes about 1/43 second which is excessive;
89 * but the 1/170 second it takes at 400 kHz may be quite reasonable; and
90 * at 1 MHz (Fm+) a 1/430 second delay could easily be invisible.
91 *
92 * This value is forced to be a power of two so that writes align on pages.
93 */
94static unsigned io_limit = 128;
95module_param(io_limit, uint, 0);
96MODULE_PARM_DESC(io_limit, "Maximum bytes per I/O (default 128)");
97
98/*
99 * Specs often allow 5 msec for a page write, sometimes 20 msec;
100 * it's important to recover from write timeouts.
101 */
102static unsigned write_timeout = 25;
103module_param(write_timeout, uint, 0);
104MODULE_PARM_DESC(write_timeout, "Time (in ms) to try writes (default 25)");
105
106#define AT24_SIZE_BYTELEN 5
107#define AT24_SIZE_FLAGS 8
108
109#define AT24_BITMASK(x) (BIT(x) - 1)
110
111/* create non-zero magic value for given eeprom parameters */
112#define AT24_DEVICE_MAGIC(_len, _flags) \
113 ((1 << AT24_SIZE_FLAGS | (_flags)) \
114 << AT24_SIZE_BYTELEN | ilog2(_len))
115
116/*
117 * Both reads and writes fail if the previous write didn't complete yet. This
118 * macro loops a few times waiting at least long enough for one entire page
119 * write to work while making sure that at least one iteration is run before
120 * checking the break condition.
121 *
122 * It takes two parameters: a variable in which the future timeout in jiffies
123 * will be stored and a temporary variable holding the time of the last
124 * iteration of processing the request. Both should be unsigned integers
125 * holding at least 32 bits.
126 */
127#define loop_until_timeout(tout, op_time) \
128 for (tout = jiffies + msecs_to_jiffies(write_timeout), op_time = 0; \
129 op_time ? time_before(op_time, tout) : true; \
130 usleep_range(1000, 1500), op_time = jiffies)
131
132static const struct i2c_device_id at24_ids[] = {
133 /* needs 8 addresses as A0-A2 are ignored */
134 { "24c00", AT24_DEVICE_MAGIC(128 / 8, AT24_FLAG_TAKE8ADDR) },
135 /* old variants can't be handled with this generic entry! */
136 { "24c01", AT24_DEVICE_MAGIC(1024 / 8, 0) },
137 { "24cs01", AT24_DEVICE_MAGIC(16,
138 AT24_FLAG_SERIAL | AT24_FLAG_READONLY) },
139 { "24c02", AT24_DEVICE_MAGIC(2048 / 8, 0) },
140 { "24cs02", AT24_DEVICE_MAGIC(16,
141 AT24_FLAG_SERIAL | AT24_FLAG_READONLY) },
142 { "24mac402", AT24_DEVICE_MAGIC(48 / 8,
143 AT24_FLAG_MAC | AT24_FLAG_READONLY) },
144 { "24mac602", AT24_DEVICE_MAGIC(64 / 8,
145 AT24_FLAG_MAC | AT24_FLAG_READONLY) },
146 /* spd is a 24c02 in memory DIMMs */
147 { "spd", AT24_DEVICE_MAGIC(2048 / 8,
148 AT24_FLAG_READONLY | AT24_FLAG_IRUGO) },
149 { "24c04", AT24_DEVICE_MAGIC(4096 / 8, 0) },
150 { "24cs04", AT24_DEVICE_MAGIC(16,
151 AT24_FLAG_SERIAL | AT24_FLAG_READONLY) },
152 /* 24rf08 quirk is handled at i2c-core */
153 { "24c08", AT24_DEVICE_MAGIC(8192 / 8, 0) },
154 { "24cs08", AT24_DEVICE_MAGIC(16,
155 AT24_FLAG_SERIAL | AT24_FLAG_READONLY) },
156 { "24c16", AT24_DEVICE_MAGIC(16384 / 8, 0) },
157 { "24cs16", AT24_DEVICE_MAGIC(16,
158 AT24_FLAG_SERIAL | AT24_FLAG_READONLY) },
159 { "24c32", AT24_DEVICE_MAGIC(32768 / 8, AT24_FLAG_ADDR16) },
160 { "24cs32", AT24_DEVICE_MAGIC(16,
161 AT24_FLAG_ADDR16 |
162 AT24_FLAG_SERIAL |
163 AT24_FLAG_READONLY) },
164 { "24c64", AT24_DEVICE_MAGIC(65536 / 8, AT24_FLAG_ADDR16) },
165 { "24cs64", AT24_DEVICE_MAGIC(16,
166 AT24_FLAG_ADDR16 |
167 AT24_FLAG_SERIAL |
168 AT24_FLAG_READONLY) },
169 { "24c128", AT24_DEVICE_MAGIC(131072 / 8, AT24_FLAG_ADDR16) },
170 { "24c256", AT24_DEVICE_MAGIC(262144 / 8, AT24_FLAG_ADDR16) },
171 { "24c512", AT24_DEVICE_MAGIC(524288 / 8, AT24_FLAG_ADDR16) },
172 { "24c1024", AT24_DEVICE_MAGIC(1048576 / 8, AT24_FLAG_ADDR16) },
173 { "at24", 0 },
174 { /* END OF LIST */ }
175};
176MODULE_DEVICE_TABLE(i2c, at24_ids);
177
178static const struct acpi_device_id at24_acpi_ids[] = {
179 { "INT3499", AT24_DEVICE_MAGIC(8192 / 8, 0) },
180 { }
181};
182MODULE_DEVICE_TABLE(acpi, at24_acpi_ids);
183
184/*-------------------------------------------------------------------------*/
185
186/*
187 * This routine supports chips which consume multiple I2C addresses. It
188 * computes the addressing information to be used for a given r/w request.
189 * Assumes that sanity checks for offset happened at sysfs-layer.
190 *
191 * Slave address and byte offset derive from the offset. Always
192 * set the byte address; on a multi-master board, another master
193 * may have changed the chip's "current" address pointer.
194 *
195 * REVISIT some multi-address chips don't rollover page reads to
196 * the next slave address, so we may need to truncate the count.
197 * Those chips might need another quirk flag.
198 *
199 * If the real hardware used four adjacent 24c02 chips and that
200 * were misconfigured as one 24c08, that would be a similar effect:
201 * one "eeprom" file not four, but larger reads would fail when
202 * they crossed certain pages.
203 */
204static struct i2c_client *at24_translate_offset(struct at24_data *at24,
205 unsigned int *offset)
206{
207 unsigned i;
208
209 if (at24->chip.flags & AT24_FLAG_ADDR16) {
210 i = *offset >> 16;
211 *offset &= 0xffff;
212 } else {
213 i = *offset >> 8;
214 *offset &= 0xff;
215 }
216
217 return at24->client[i];
218}
219
220static ssize_t at24_eeprom_read_smbus(struct at24_data *at24, char *buf,
221 unsigned int offset, size_t count)
222{
223 unsigned long timeout, read_time;
224 struct i2c_client *client;
225 int status;
226
227 client = at24_translate_offset(at24, &offset);
228
229 if (count > io_limit)
230 count = io_limit;
231
232 /* Smaller eeproms can work given some SMBus extension calls */
233 if (count > I2C_SMBUS_BLOCK_MAX)
234 count = I2C_SMBUS_BLOCK_MAX;
235
236 loop_until_timeout(timeout, read_time) {
237 status = i2c_smbus_read_i2c_block_data_or_emulated(client,
238 offset,
239 count, buf);
240
241 dev_dbg(&client->dev, "read %zu@%d --> %d (%ld)\n",
242 count, offset, status, jiffies);
243
244 if (status == count)
245 return count;
246 }
247
248 return -ETIMEDOUT;
249}
250
251static ssize_t at24_eeprom_read_i2c(struct at24_data *at24, char *buf,
252 unsigned int offset, size_t count)
253{
254 unsigned long timeout, read_time;
255 struct i2c_client *client;
256 struct i2c_msg msg[2];
257 int status, i;
258 u8 msgbuf[2];
259
260 memset(msg, 0, sizeof(msg));
261 client = at24_translate_offset(at24, &offset);
262
263 if (count > io_limit)
264 count = io_limit;
265
266 /*
267 * When we have a better choice than SMBus calls, use a combined I2C
268 * message. Write address; then read up to io_limit data bytes. Note
269 * that read page rollover helps us here (unlike writes). msgbuf is
270 * u8 and will cast to our needs.
271 */
272 i = 0;
273 if (at24->chip.flags & AT24_FLAG_ADDR16)
274 msgbuf[i++] = offset >> 8;
275 msgbuf[i++] = offset;
276
277 msg[0].addr = client->addr;
278 msg[0].buf = msgbuf;
279 msg[0].len = i;
280
281 msg[1].addr = client->addr;
282 msg[1].flags = I2C_M_RD;
283 msg[1].buf = buf;
284 msg[1].len = count;
285
286 loop_until_timeout(timeout, read_time) {
287 status = i2c_transfer(client->adapter, msg, 2);
288 if (status == 2)
289 status = count;
290
291 dev_dbg(&client->dev, "read %zu@%d --> %d (%ld)\n",
292 count, offset, status, jiffies);
293
294 if (status == count)
295 return count;
296 }
297
298 return -ETIMEDOUT;
299}
300
301static ssize_t at24_eeprom_read_serial(struct at24_data *at24, char *buf,
302 unsigned int offset, size_t count)
303{
304 unsigned long timeout, read_time;
305 struct i2c_client *client;
306 struct i2c_msg msg[2];
307 u8 addrbuf[2];
308 int status;
309
310 client = at24_translate_offset(at24, &offset);
311
312 memset(msg, 0, sizeof(msg));
313 msg[0].addr = client->addr;
314 msg[0].buf = addrbuf;
315
316 /*
317 * The address pointer of the device is shared between the regular
318 * EEPROM array and the serial number block. The dummy write (part of
319 * the sequential read protocol) ensures the address pointer is reset
320 * to the desired position.
321 */
322 if (at24->chip.flags & AT24_FLAG_ADDR16) {
323 /*
324 * For 16 bit address pointers, the word address must contain
325 * a '10' sequence in bits 11 and 10 regardless of the
326 * intended position of the address pointer.
327 */
328 addrbuf[0] = 0x08;
329 addrbuf[1] = offset;
330 msg[0].len = 2;
331 } else {
332 /*
333 * Otherwise the word address must begin with a '10' sequence,
334 * regardless of the intended address.
335 */
336 addrbuf[0] = 0x80 + offset;
337 msg[0].len = 1;
338 }
339
340 msg[1].addr = client->addr;
341 msg[1].flags = I2C_M_RD;
342 msg[1].buf = buf;
343 msg[1].len = count;
344
345 loop_until_timeout(timeout, read_time) {
346 status = i2c_transfer(client->adapter, msg, 2);
347 if (status == 2)
348 return count;
349 }
350
351 return -ETIMEDOUT;
352}
353
354static ssize_t at24_eeprom_read_mac(struct at24_data *at24, char *buf,
355 unsigned int offset, size_t count)
356{
357 unsigned long timeout, read_time;
358 struct i2c_client *client;
359 struct i2c_msg msg[2];
360 u8 addrbuf[2];
361 int status;
362
363 client = at24_translate_offset(at24, &offset);
364
365 memset(msg, 0, sizeof(msg));
366 msg[0].addr = client->addr;
367 msg[0].buf = addrbuf;
368 addrbuf[0] = 0x90 + offset;
369 msg[0].len = 1;
370 msg[1].addr = client->addr;
371 msg[1].flags = I2C_M_RD;
372 msg[1].buf = buf;
373 msg[1].len = count;
374
375 loop_until_timeout(timeout, read_time) {
376 status = i2c_transfer(client->adapter, msg, 2);
377 if (status == 2)
378 return count;
379 }
380
381 return -ETIMEDOUT;
382}
383
384/*
385 * Note that if the hardware write-protect pin is pulled high, the whole
386 * chip is normally write protected. But there are plenty of product
387 * variants here, including OTP fuses and partial chip protect.
388 *
389 * We only use page mode writes; the alternative is sloooow. These routines
390 * write at most one page.
391 */
392
393static size_t at24_adjust_write_count(struct at24_data *at24,
394 unsigned int offset, size_t count)
395{
396 unsigned next_page;
397
398 /* write_max is at most a page */
399 if (count > at24->write_max)
400 count = at24->write_max;
401
402 /* Never roll over backwards, to the start of this page */
403 next_page = roundup(offset + 1, at24->chip.page_size);
404 if (offset + count > next_page)
405 count = next_page - offset;
406
407 return count;
408}
409
410static ssize_t at24_eeprom_write_smbus_block(struct at24_data *at24,
411 const char *buf,
412 unsigned int offset, size_t count)
413{
414 unsigned long timeout, write_time;
415 struct i2c_client *client;
416 ssize_t status = 0;
417
418 client = at24_translate_offset(at24, &offset);
419 count = at24_adjust_write_count(at24, offset, count);
420
421 loop_until_timeout(timeout, write_time) {
422 status = i2c_smbus_write_i2c_block_data(client,
423 offset, count, buf);
424 if (status == 0)
425 status = count;
426
427 dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n",
428 count, offset, status, jiffies);
429
430 if (status == count)
431 return count;
432 }
433
434 return -ETIMEDOUT;
435}
436
437static ssize_t at24_eeprom_write_smbus_byte(struct at24_data *at24,
438 const char *buf,
439 unsigned int offset, size_t count)
440{
441 unsigned long timeout, write_time;
442 struct i2c_client *client;
443 ssize_t status = 0;
444
445 client = at24_translate_offset(at24, &offset);
446
447 loop_until_timeout(timeout, write_time) {
448 status = i2c_smbus_write_byte_data(client, offset, buf[0]);
449 if (status == 0)
450 status = count;
451
452 dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n",
453 count, offset, status, jiffies);
454
455 if (status == count)
456 return count;
457 }
458
459 return -ETIMEDOUT;
460}
461
462static ssize_t at24_eeprom_write_i2c(struct at24_data *at24, const char *buf,
463 unsigned int offset, size_t count)
464{
465 unsigned long timeout, write_time;
466 struct i2c_client *client;
467 struct i2c_msg msg;
468 ssize_t status = 0;
469 int i = 0;
470
471 client = at24_translate_offset(at24, &offset);
472 count = at24_adjust_write_count(at24, offset, count);
473
474 msg.addr = client->addr;
475 msg.flags = 0;
476
477 /* msg.buf is u8 and casts will mask the values */
478 msg.buf = at24->writebuf;
479 if (at24->chip.flags & AT24_FLAG_ADDR16)
480 msg.buf[i++] = offset >> 8;
481
482 msg.buf[i++] = offset;
483 memcpy(&msg.buf[i], buf, count);
484 msg.len = i + count;
485
486 loop_until_timeout(timeout, write_time) {
487 status = i2c_transfer(client->adapter, &msg, 1);
488 if (status == 1)
489 status = count;
490
491 dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n",
492 count, offset, status, jiffies);
493
494 if (status == count)
495 return count;
496 }
497
498 return -ETIMEDOUT;
499}
500
501static int at24_read(void *priv, unsigned int off, void *val, size_t count)
502{
503 struct at24_data *at24 = priv;
504 char *buf = val;
505
506 if (unlikely(!count))
507 return count;
508
509 /*
510 * Read data from chip, protecting against concurrent updates
511 * from this host, but not from other I2C masters.
512 */
513 mutex_lock(&at24->lock);
514
515 while (count) {
516 int status;
517
518 status = at24->read_func(at24, buf, off, count);
519 if (status < 0) {
520 mutex_unlock(&at24->lock);
521 return status;
522 }
523 buf += status;
524 off += status;
525 count -= status;
526 }
527
528 mutex_unlock(&at24->lock);
529
530 return 0;
531}
532
533static int at24_write(void *priv, unsigned int off, void *val, size_t count)
534{
535 struct at24_data *at24 = priv;
536 char *buf = val;
537
538 if (unlikely(!count))
539 return -EINVAL;
540
541 /*
542 * Write data to chip, protecting against concurrent updates
543 * from this host, but not from other I2C masters.
544 */
545 mutex_lock(&at24->lock);
546
547 while (count) {
548 int status;
549
550 status = at24->write_func(at24, buf, off, count);
551 if (status < 0) {
552 mutex_unlock(&at24->lock);
553 return status;
554 }
555 buf += status;
556 off += status;
557 count -= status;
558 }
559
560 mutex_unlock(&at24->lock);
561
562 return 0;
563}
564
565#ifdef CONFIG_OF
566static void at24_get_ofdata(struct i2c_client *client,
567 struct at24_platform_data *chip)
568{
569 const __be32 *val;
570 struct device_node *node = client->dev.of_node;
571
572 if (node) {
573 if (of_get_property(node, "read-only", NULL))
574 chip->flags |= AT24_FLAG_READONLY;
575 val = of_get_property(node, "pagesize", NULL);
576 if (val)
577 chip->page_size = be32_to_cpup(val);
578 }
579}
580#else
581static void at24_get_ofdata(struct i2c_client *client,
582 struct at24_platform_data *chip)
583{ }
584#endif /* CONFIG_OF */
585
586static int at24_probe(struct i2c_client *client, const struct i2c_device_id *id)
587{
588 struct at24_platform_data chip;
589 kernel_ulong_t magic = 0;
590 bool writable;
591 int use_smbus = 0;
592 int use_smbus_write = 0;
593 struct at24_data *at24;
594 int err;
595 unsigned i, num_addresses;
596 u8 test_byte;
597
598 if (client->dev.platform_data) {
599 chip = *(struct at24_platform_data *)client->dev.platform_data;
600 } else {
601 if (id) {
602 magic = id->driver_data;
603 } else {
604 const struct acpi_device_id *aid;
605
606 aid = acpi_match_device(at24_acpi_ids, &client->dev);
607 if (aid)
608 magic = aid->driver_data;
609 }
610 if (!magic)
611 return -ENODEV;
612
613 chip.byte_len = BIT(magic & AT24_BITMASK(AT24_SIZE_BYTELEN));
614 magic >>= AT24_SIZE_BYTELEN;
615 chip.flags = magic & AT24_BITMASK(AT24_SIZE_FLAGS);
616 /*
617 * This is slow, but we can't know all eeproms, so we better
618 * play safe. Specifying custom eeprom-types via platform_data
619 * is recommended anyhow.
620 */
621 chip.page_size = 1;
622
623 /* update chipdata if OF is present */
624 at24_get_ofdata(client, &chip);
625
626 chip.setup = NULL;
627 chip.context = NULL;
628 }
629
630 if (!is_power_of_2(chip.byte_len))
631 dev_warn(&client->dev,
632 "byte_len looks suspicious (no power of 2)!\n");
633 if (!chip.page_size) {
634 dev_err(&client->dev, "page_size must not be 0!\n");
635 return -EINVAL;
636 }
637 if (!is_power_of_2(chip.page_size))
638 dev_warn(&client->dev,
639 "page_size looks suspicious (no power of 2)!\n");
640
641 /* Use I2C operations unless we're stuck with SMBus extensions. */
642 if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
643 if (chip.flags & AT24_FLAG_ADDR16)
644 return -EPFNOSUPPORT;
645
646 if (i2c_check_functionality(client->adapter,
647 I2C_FUNC_SMBUS_READ_I2C_BLOCK)) {
648 use_smbus = I2C_SMBUS_I2C_BLOCK_DATA;
649 } else if (i2c_check_functionality(client->adapter,
650 I2C_FUNC_SMBUS_READ_WORD_DATA)) {
651 use_smbus = I2C_SMBUS_WORD_DATA;
652 } else if (i2c_check_functionality(client->adapter,
653 I2C_FUNC_SMBUS_READ_BYTE_DATA)) {
654 use_smbus = I2C_SMBUS_BYTE_DATA;
655 } else {
656 return -EPFNOSUPPORT;
657 }
658
659 if (i2c_check_functionality(client->adapter,
660 I2C_FUNC_SMBUS_WRITE_I2C_BLOCK)) {
661 use_smbus_write = I2C_SMBUS_I2C_BLOCK_DATA;
662 } else if (i2c_check_functionality(client->adapter,
663 I2C_FUNC_SMBUS_WRITE_BYTE_DATA)) {
664 use_smbus_write = I2C_SMBUS_BYTE_DATA;
665 chip.page_size = 1;
666 }
667 }
668
669 if (chip.flags & AT24_FLAG_TAKE8ADDR)
670 num_addresses = 8;
671 else
672 num_addresses = DIV_ROUND_UP(chip.byte_len,
673 (chip.flags & AT24_FLAG_ADDR16) ? 65536 : 256);
674
675 at24 = devm_kzalloc(&client->dev, sizeof(struct at24_data) +
676 num_addresses * sizeof(struct i2c_client *), GFP_KERNEL);
677 if (!at24)
678 return -ENOMEM;
679
680 mutex_init(&at24->lock);
681 at24->use_smbus = use_smbus;
682 at24->use_smbus_write = use_smbus_write;
683 at24->chip = chip;
684 at24->num_addresses = num_addresses;
685
686 if ((chip.flags & AT24_FLAG_SERIAL) && (chip.flags & AT24_FLAG_MAC)) {
687 dev_err(&client->dev,
688 "invalid device data - cannot have both AT24_FLAG_SERIAL & AT24_FLAG_MAC.");
689 return -EINVAL;
690 }
691
692 if (chip.flags & AT24_FLAG_SERIAL) {
693 at24->read_func = at24_eeprom_read_serial;
694 } else if (chip.flags & AT24_FLAG_MAC) {
695 at24->read_func = at24_eeprom_read_mac;
696 } else {
697 at24->read_func = at24->use_smbus ? at24_eeprom_read_smbus
698 : at24_eeprom_read_i2c;
699 }
700
701 if (at24->use_smbus) {
702 if (at24->use_smbus_write == I2C_SMBUS_I2C_BLOCK_DATA)
703 at24->write_func = at24_eeprom_write_smbus_block;
704 else
705 at24->write_func = at24_eeprom_write_smbus_byte;
706 } else {
707 at24->write_func = at24_eeprom_write_i2c;
708 }
709
710 writable = !(chip.flags & AT24_FLAG_READONLY);
711 if (writable) {
712 if (!use_smbus || use_smbus_write) {
713
714 unsigned write_max = chip.page_size;
715
716 if (write_max > io_limit)
717 write_max = io_limit;
718 if (use_smbus && write_max > I2C_SMBUS_BLOCK_MAX)
719 write_max = I2C_SMBUS_BLOCK_MAX;
720 at24->write_max = write_max;
721
722 /* buffer (data + address at the beginning) */
723 at24->writebuf = devm_kzalloc(&client->dev,
724 write_max + 2, GFP_KERNEL);
725 if (!at24->writebuf)
726 return -ENOMEM;
727 } else {
728 dev_warn(&client->dev,
729 "cannot write due to controller restrictions.");
730 }
731 }
732
733 at24->client[0] = client;
734
735 /* use dummy devices for multiple-address chips */
736 for (i = 1; i < num_addresses; i++) {
737 at24->client[i] = i2c_new_dummy(client->adapter,
738 client->addr + i);
739 if (!at24->client[i]) {
740 dev_err(&client->dev, "address 0x%02x unavailable\n",
741 client->addr + i);
742 err = -EADDRINUSE;
743 goto err_clients;
744 }
745 }
746
747 i2c_set_clientdata(client, at24);
748
749 /*
750 * Perform a one-byte test read to verify that the
751 * chip is functional.
752 */
753 err = at24_read(at24, 0, &test_byte, 1);
754 if (err) {
755 err = -ENODEV;
756 goto err_clients;
757 }
758
759 at24->nvmem_config.name = dev_name(&client->dev);
760 at24->nvmem_config.dev = &client->dev;
761 at24->nvmem_config.read_only = !writable;
762 at24->nvmem_config.root_only = true;
763 at24->nvmem_config.owner = THIS_MODULE;
764 at24->nvmem_config.compat = true;
765 at24->nvmem_config.base_dev = &client->dev;
766 at24->nvmem_config.reg_read = at24_read;
767 at24->nvmem_config.reg_write = at24_write;
768 at24->nvmem_config.priv = at24;
769 at24->nvmem_config.stride = 4;
770 at24->nvmem_config.word_size = 1;
771 at24->nvmem_config.size = chip.byte_len;
772
773 at24->nvmem = nvmem_register(&at24->nvmem_config);
774
775 if (IS_ERR(at24->nvmem)) {
776 err = PTR_ERR(at24->nvmem);
777 goto err_clients;
778 }
779
780 dev_info(&client->dev, "%u byte %s EEPROM, %s, %u bytes/write\n",
781 chip.byte_len, client->name,
782 writable ? "writable" : "read-only", at24->write_max);
783 if (use_smbus == I2C_SMBUS_WORD_DATA ||
784 use_smbus == I2C_SMBUS_BYTE_DATA) {
785 dev_notice(&client->dev, "Falling back to %s reads, "
786 "performance will suffer\n", use_smbus ==
787 I2C_SMBUS_WORD_DATA ? "word" : "byte");
788 }
789
790 /* export data to kernel code */
791 if (chip.setup)
792 chip.setup(at24->nvmem, chip.context);
793
794 return 0;
795
796err_clients:
797 for (i = 1; i < num_addresses; i++)
798 if (at24->client[i])
799 i2c_unregister_device(at24->client[i]);
800
801 return err;
802}
803
804static int at24_remove(struct i2c_client *client)
805{
806 struct at24_data *at24;
807 int i;
808
809 at24 = i2c_get_clientdata(client);
810
811 nvmem_unregister(at24->nvmem);
812
813 for (i = 1; i < at24->num_addresses; i++)
814 i2c_unregister_device(at24->client[i]);
815
816 return 0;
817}
818
819/*-------------------------------------------------------------------------*/
820
821static struct i2c_driver at24_driver = {
822 .driver = {
823 .name = "at24",
824 .acpi_match_table = ACPI_PTR(at24_acpi_ids),
825 },
826 .probe = at24_probe,
827 .remove = at24_remove,
828 .id_table = at24_ids,
829};
830
831static int __init at24_init(void)
832{
833 if (!io_limit) {
834 pr_err("at24: io_limit must not be 0!\n");
835 return -EINVAL;
836 }
837
838 io_limit = rounddown_pow_of_two(io_limit);
839 return i2c_add_driver(&at24_driver);
840}
841module_init(at24_init);
842
843static void __exit at24_exit(void)
844{
845 i2c_del_driver(&at24_driver);
846}
847module_exit(at24_exit);
848
849MODULE_DESCRIPTION("Driver for most I2C EEPROMs");
850MODULE_AUTHOR("David Brownell and Wolfram Sang");
851MODULE_LICENSE("GPL");