Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.10.11.
   1// SPDX-License-Identifier: GPL-2.0
   2
   3#define pr_fmt(fmt)     "DMAR-IR: " fmt
   4
   5#include <linux/interrupt.h>
   6#include <linux/dmar.h>
   7#include <linux/spinlock.h>
   8#include <linux/slab.h>
   9#include <linux/jiffies.h>
  10#include <linux/hpet.h>
  11#include <linux/pci.h>
  12#include <linux/irq.h>
  13#include <linux/acpi.h>
  14#include <linux/irqdomain.h>
  15#include <linux/crash_dump.h>
  16#include <asm/io_apic.h>
  17#include <asm/apic.h>
  18#include <asm/smp.h>
  19#include <asm/cpu.h>
  20#include <asm/irq_remapping.h>
  21#include <asm/pci-direct.h>
  22
  23#include "iommu.h"
  24#include "../irq_remapping.h"
  25#include "cap_audit.h"
  26
  27enum irq_mode {
  28	IRQ_REMAPPING,
  29	IRQ_POSTING,
  30};
  31
  32struct ioapic_scope {
  33	struct intel_iommu *iommu;
  34	unsigned int id;
  35	unsigned int bus;	/* PCI bus number */
  36	unsigned int devfn;	/* PCI devfn number */
  37};
  38
  39struct hpet_scope {
  40	struct intel_iommu *iommu;
  41	u8 id;
  42	unsigned int bus;
  43	unsigned int devfn;
  44};
  45
  46struct irq_2_iommu {
  47	struct intel_iommu *iommu;
  48	u16 irte_index;
  49	u16 sub_handle;
  50	u8  irte_mask;
  51	enum irq_mode mode;
  52};
  53
  54struct intel_ir_data {
  55	struct irq_2_iommu			irq_2_iommu;
  56	struct irte				irte_entry;
  57	union {
  58		struct msi_msg			msi_entry;
  59	};
  60};
  61
  62#define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0)
  63#define IRTE_DEST(dest) ((eim_mode) ? dest : dest << 8)
  64
  65static int __read_mostly eim_mode;
  66static struct ioapic_scope ir_ioapic[MAX_IO_APICS];
  67static struct hpet_scope ir_hpet[MAX_HPET_TBS];
  68
  69/*
  70 * Lock ordering:
  71 * ->dmar_global_lock
  72 *	->irq_2_ir_lock
  73 *		->qi->q_lock
  74 *	->iommu->register_lock
  75 * Note:
  76 * intel_irq_remap_ops.{supported,prepare,enable,disable,reenable} are called
  77 * in single-threaded environment with interrupt disabled, so no need to tabke
  78 * the dmar_global_lock.
  79 */
  80DEFINE_RAW_SPINLOCK(irq_2_ir_lock);
  81static const struct irq_domain_ops intel_ir_domain_ops;
  82
  83static void iommu_disable_irq_remapping(struct intel_iommu *iommu);
  84static int __init parse_ioapics_under_ir(void);
  85static const struct msi_parent_ops dmar_msi_parent_ops, virt_dmar_msi_parent_ops;
  86
  87static bool ir_pre_enabled(struct intel_iommu *iommu)
  88{
  89	return (iommu->flags & VTD_FLAG_IRQ_REMAP_PRE_ENABLED);
  90}
  91
  92static void clear_ir_pre_enabled(struct intel_iommu *iommu)
  93{
  94	iommu->flags &= ~VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
  95}
  96
  97static void init_ir_status(struct intel_iommu *iommu)
  98{
  99	u32 gsts;
 100
 101	gsts = readl(iommu->reg + DMAR_GSTS_REG);
 102	if (gsts & DMA_GSTS_IRES)
 103		iommu->flags |= VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
 104}
 105
 106static int alloc_irte(struct intel_iommu *iommu,
 107		      struct irq_2_iommu *irq_iommu, u16 count)
 108{
 109	struct ir_table *table = iommu->ir_table;
 110	unsigned int mask = 0;
 111	unsigned long flags;
 112	int index;
 113
 114	if (!count || !irq_iommu)
 115		return -1;
 116
 117	if (count > 1) {
 118		count = __roundup_pow_of_two(count);
 119		mask = ilog2(count);
 120	}
 121
 122	if (mask > ecap_max_handle_mask(iommu->ecap)) {
 123		pr_err("Requested mask %x exceeds the max invalidation handle"
 124		       " mask value %Lx\n", mask,
 125		       ecap_max_handle_mask(iommu->ecap));
 126		return -1;
 127	}
 128
 129	raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
 130	index = bitmap_find_free_region(table->bitmap,
 131					INTR_REMAP_TABLE_ENTRIES, mask);
 132	if (index < 0) {
 133		pr_warn("IR%d: can't allocate an IRTE\n", iommu->seq_id);
 134	} else {
 135		irq_iommu->iommu = iommu;
 136		irq_iommu->irte_index =  index;
 137		irq_iommu->sub_handle = 0;
 138		irq_iommu->irte_mask = mask;
 139		irq_iommu->mode = IRQ_REMAPPING;
 140	}
 141	raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
 142
 143	return index;
 144}
 145
 146static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask)
 147{
 148	struct qi_desc desc;
 149
 150	desc.qw0 = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask)
 151		   | QI_IEC_SELECTIVE;
 152	desc.qw1 = 0;
 153	desc.qw2 = 0;
 154	desc.qw3 = 0;
 155
 156	return qi_submit_sync(iommu, &desc, 1, 0);
 157}
 158
 159static int modify_irte(struct irq_2_iommu *irq_iommu,
 160		       struct irte *irte_modified)
 161{
 162	struct intel_iommu *iommu;
 163	unsigned long flags;
 164	struct irte *irte;
 165	int rc, index;
 166
 167	if (!irq_iommu)
 168		return -1;
 169
 170	raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
 171
 172	iommu = irq_iommu->iommu;
 173
 174	index = irq_iommu->irte_index + irq_iommu->sub_handle;
 175	irte = &iommu->ir_table->base[index];
 176
 177	if ((irte->pst == 1) || (irte_modified->pst == 1)) {
 178		bool ret;
 179
 180		ret = cmpxchg_double(&irte->low, &irte->high,
 181				     irte->low, irte->high,
 182				     irte_modified->low, irte_modified->high);
 183		/*
 184		 * We use cmpxchg16 to atomically update the 128-bit IRTE,
 185		 * and it cannot be updated by the hardware or other processors
 186		 * behind us, so the return value of cmpxchg16 should be the
 187		 * same as the old value.
 188		 */
 189		WARN_ON(!ret);
 190	} else {
 191		WRITE_ONCE(irte->low, irte_modified->low);
 192		WRITE_ONCE(irte->high, irte_modified->high);
 193	}
 194	__iommu_flush_cache(iommu, irte, sizeof(*irte));
 195
 196	rc = qi_flush_iec(iommu, index, 0);
 197
 198	/* Update iommu mode according to the IRTE mode */
 199	irq_iommu->mode = irte->pst ? IRQ_POSTING : IRQ_REMAPPING;
 200	raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
 201
 202	return rc;
 203}
 204
 205static struct intel_iommu *map_hpet_to_iommu(u8 hpet_id)
 206{
 207	int i;
 208
 209	for (i = 0; i < MAX_HPET_TBS; i++) {
 210		if (ir_hpet[i].id == hpet_id && ir_hpet[i].iommu)
 211			return ir_hpet[i].iommu;
 212	}
 213	return NULL;
 214}
 215
 216static struct intel_iommu *map_ioapic_to_iommu(int apic)
 217{
 218	int i;
 219
 220	for (i = 0; i < MAX_IO_APICS; i++) {
 221		if (ir_ioapic[i].id == apic && ir_ioapic[i].iommu)
 222			return ir_ioapic[i].iommu;
 223	}
 224	return NULL;
 225}
 226
 227static struct irq_domain *map_dev_to_ir(struct pci_dev *dev)
 228{
 229	struct dmar_drhd_unit *drhd = dmar_find_matched_drhd_unit(dev);
 230
 231	return drhd ? drhd->iommu->ir_domain : NULL;
 232}
 233
 234static int clear_entries(struct irq_2_iommu *irq_iommu)
 235{
 236	struct irte *start, *entry, *end;
 237	struct intel_iommu *iommu;
 238	int index;
 239
 240	if (irq_iommu->sub_handle)
 241		return 0;
 242
 243	iommu = irq_iommu->iommu;
 244	index = irq_iommu->irte_index;
 245
 246	start = iommu->ir_table->base + index;
 247	end = start + (1 << irq_iommu->irte_mask);
 248
 249	for (entry = start; entry < end; entry++) {
 250		WRITE_ONCE(entry->low, 0);
 251		WRITE_ONCE(entry->high, 0);
 252	}
 253	bitmap_release_region(iommu->ir_table->bitmap, index,
 254			      irq_iommu->irte_mask);
 255
 256	return qi_flush_iec(iommu, index, irq_iommu->irte_mask);
 257}
 258
 259/*
 260 * source validation type
 261 */
 262#define SVT_NO_VERIFY		0x0  /* no verification is required */
 263#define SVT_VERIFY_SID_SQ	0x1  /* verify using SID and SQ fields */
 264#define SVT_VERIFY_BUS		0x2  /* verify bus of request-id */
 265
 266/*
 267 * source-id qualifier
 268 */
 269#define SQ_ALL_16	0x0  /* verify all 16 bits of request-id */
 270#define SQ_13_IGNORE_1	0x1  /* verify most significant 13 bits, ignore
 271			      * the third least significant bit
 272			      */
 273#define SQ_13_IGNORE_2	0x2  /* verify most significant 13 bits, ignore
 274			      * the second and third least significant bits
 275			      */
 276#define SQ_13_IGNORE_3	0x3  /* verify most significant 13 bits, ignore
 277			      * the least three significant bits
 278			      */
 279
 280/*
 281 * set SVT, SQ and SID fields of irte to verify
 282 * source ids of interrupt requests
 283 */
 284static void set_irte_sid(struct irte *irte, unsigned int svt,
 285			 unsigned int sq, unsigned int sid)
 286{
 287	if (disable_sourceid_checking)
 288		svt = SVT_NO_VERIFY;
 289	irte->svt = svt;
 290	irte->sq = sq;
 291	irte->sid = sid;
 292}
 293
 294/*
 295 * Set an IRTE to match only the bus number. Interrupt requests that reference
 296 * this IRTE must have a requester-id whose bus number is between or equal
 297 * to the start_bus and end_bus arguments.
 298 */
 299static void set_irte_verify_bus(struct irte *irte, unsigned int start_bus,
 300				unsigned int end_bus)
 301{
 302	set_irte_sid(irte, SVT_VERIFY_BUS, SQ_ALL_16,
 303		     (start_bus << 8) | end_bus);
 304}
 305
 306static int set_ioapic_sid(struct irte *irte, int apic)
 307{
 308	int i;
 309	u16 sid = 0;
 310
 311	if (!irte)
 312		return -1;
 313
 314	down_read(&dmar_global_lock);
 315	for (i = 0; i < MAX_IO_APICS; i++) {
 316		if (ir_ioapic[i].iommu && ir_ioapic[i].id == apic) {
 317			sid = (ir_ioapic[i].bus << 8) | ir_ioapic[i].devfn;
 318			break;
 319		}
 320	}
 321	up_read(&dmar_global_lock);
 322
 323	if (sid == 0) {
 324		pr_warn("Failed to set source-id of IOAPIC (%d)\n", apic);
 325		return -1;
 326	}
 327
 328	set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, sid);
 329
 330	return 0;
 331}
 332
 333static int set_hpet_sid(struct irte *irte, u8 id)
 334{
 335	int i;
 336	u16 sid = 0;
 337
 338	if (!irte)
 339		return -1;
 340
 341	down_read(&dmar_global_lock);
 342	for (i = 0; i < MAX_HPET_TBS; i++) {
 343		if (ir_hpet[i].iommu && ir_hpet[i].id == id) {
 344			sid = (ir_hpet[i].bus << 8) | ir_hpet[i].devfn;
 345			break;
 346		}
 347	}
 348	up_read(&dmar_global_lock);
 349
 350	if (sid == 0) {
 351		pr_warn("Failed to set source-id of HPET block (%d)\n", id);
 352		return -1;
 353	}
 354
 355	/*
 356	 * Should really use SQ_ALL_16. Some platforms are broken.
 357	 * While we figure out the right quirks for these broken platforms, use
 358	 * SQ_13_IGNORE_3 for now.
 359	 */
 360	set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_13_IGNORE_3, sid);
 361
 362	return 0;
 363}
 364
 365struct set_msi_sid_data {
 366	struct pci_dev *pdev;
 367	u16 alias;
 368	int count;
 369	int busmatch_count;
 370};
 371
 372static int set_msi_sid_cb(struct pci_dev *pdev, u16 alias, void *opaque)
 373{
 374	struct set_msi_sid_data *data = opaque;
 375
 376	if (data->count == 0 || PCI_BUS_NUM(alias) == PCI_BUS_NUM(data->alias))
 377		data->busmatch_count++;
 378
 379	data->pdev = pdev;
 380	data->alias = alias;
 381	data->count++;
 382
 383	return 0;
 384}
 385
 386static int set_msi_sid(struct irte *irte, struct pci_dev *dev)
 387{
 388	struct set_msi_sid_data data;
 389
 390	if (!irte || !dev)
 391		return -1;
 392
 393	data.count = 0;
 394	data.busmatch_count = 0;
 395	pci_for_each_dma_alias(dev, set_msi_sid_cb, &data);
 396
 397	/*
 398	 * DMA alias provides us with a PCI device and alias.  The only case
 399	 * where the it will return an alias on a different bus than the
 400	 * device is the case of a PCIe-to-PCI bridge, where the alias is for
 401	 * the subordinate bus.  In this case we can only verify the bus.
 402	 *
 403	 * If there are multiple aliases, all with the same bus number,
 404	 * then all we can do is verify the bus. This is typical in NTB
 405	 * hardware which use proxy IDs where the device will generate traffic
 406	 * from multiple devfn numbers on the same bus.
 407	 *
 408	 * If the alias device is on a different bus than our source device
 409	 * then we have a topology based alias, use it.
 410	 *
 411	 * Otherwise, the alias is for a device DMA quirk and we cannot
 412	 * assume that MSI uses the same requester ID.  Therefore use the
 413	 * original device.
 414	 */
 415	if (PCI_BUS_NUM(data.alias) != data.pdev->bus->number)
 416		set_irte_verify_bus(irte, PCI_BUS_NUM(data.alias),
 417				    dev->bus->number);
 418	else if (data.count >= 2 && data.busmatch_count == data.count)
 419		set_irte_verify_bus(irte, dev->bus->number, dev->bus->number);
 420	else if (data.pdev->bus->number != dev->bus->number)
 421		set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, data.alias);
 422	else
 423		set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16,
 424			     pci_dev_id(dev));
 425
 426	return 0;
 427}
 428
 429static int iommu_load_old_irte(struct intel_iommu *iommu)
 430{
 431	struct irte *old_ir_table;
 432	phys_addr_t irt_phys;
 433	unsigned int i;
 434	size_t size;
 435	u64 irta;
 436
 437	/* Check whether the old ir-table has the same size as ours */
 438	irta = dmar_readq(iommu->reg + DMAR_IRTA_REG);
 439	if ((irta & INTR_REMAP_TABLE_REG_SIZE_MASK)
 440	     != INTR_REMAP_TABLE_REG_SIZE)
 441		return -EINVAL;
 442
 443	irt_phys = irta & VTD_PAGE_MASK;
 444	size     = INTR_REMAP_TABLE_ENTRIES*sizeof(struct irte);
 445
 446	/* Map the old IR table */
 447	old_ir_table = memremap(irt_phys, size, MEMREMAP_WB);
 448	if (!old_ir_table)
 449		return -ENOMEM;
 450
 451	/* Copy data over */
 452	memcpy(iommu->ir_table->base, old_ir_table, size);
 453
 454	__iommu_flush_cache(iommu, iommu->ir_table->base, size);
 455
 456	/*
 457	 * Now check the table for used entries and mark those as
 458	 * allocated in the bitmap
 459	 */
 460	for (i = 0; i < INTR_REMAP_TABLE_ENTRIES; i++) {
 461		if (iommu->ir_table->base[i].present)
 462			bitmap_set(iommu->ir_table->bitmap, i, 1);
 463	}
 464
 465	memunmap(old_ir_table);
 466
 467	return 0;
 468}
 469
 470
 471static void iommu_set_irq_remapping(struct intel_iommu *iommu, int mode)
 472{
 473	unsigned long flags;
 474	u64 addr;
 475	u32 sts;
 476
 477	addr = virt_to_phys((void *)iommu->ir_table->base);
 478
 479	raw_spin_lock_irqsave(&iommu->register_lock, flags);
 480
 481	dmar_writeq(iommu->reg + DMAR_IRTA_REG,
 482		    (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE);
 483
 484	/* Set interrupt-remapping table pointer */
 485	writel(iommu->gcmd | DMA_GCMD_SIRTP, iommu->reg + DMAR_GCMD_REG);
 486
 487	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
 488		      readl, (sts & DMA_GSTS_IRTPS), sts);
 489	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
 490
 491	/*
 492	 * Global invalidation of interrupt entry cache to make sure the
 493	 * hardware uses the new irq remapping table.
 494	 */
 495	if (!cap_esirtps(iommu->cap))
 496		qi_global_iec(iommu);
 497}
 498
 499static void iommu_enable_irq_remapping(struct intel_iommu *iommu)
 500{
 501	unsigned long flags;
 502	u32 sts;
 503
 504	raw_spin_lock_irqsave(&iommu->register_lock, flags);
 505
 506	/* Enable interrupt-remapping */
 507	iommu->gcmd |= DMA_GCMD_IRE;
 508	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
 509	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
 510		      readl, (sts & DMA_GSTS_IRES), sts);
 511
 512	/* Block compatibility-format MSIs */
 513	if (sts & DMA_GSTS_CFIS) {
 514		iommu->gcmd &= ~DMA_GCMD_CFI;
 515		writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
 516		IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
 517			      readl, !(sts & DMA_GSTS_CFIS), sts);
 518	}
 519
 520	/*
 521	 * With CFI clear in the Global Command register, we should be
 522	 * protected from dangerous (i.e. compatibility) interrupts
 523	 * regardless of x2apic status.  Check just to be sure.
 524	 */
 525	if (sts & DMA_GSTS_CFIS)
 526		WARN(1, KERN_WARNING
 527			"Compatibility-format IRQs enabled despite intr remapping;\n"
 528			"you are vulnerable to IRQ injection.\n");
 529
 530	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
 531}
 532
 533static int intel_setup_irq_remapping(struct intel_iommu *iommu)
 534{
 535	struct ir_table *ir_table;
 536	struct fwnode_handle *fn;
 537	unsigned long *bitmap;
 538	struct page *pages;
 539
 540	if (iommu->ir_table)
 541		return 0;
 542
 543	ir_table = kzalloc(sizeof(struct ir_table), GFP_KERNEL);
 544	if (!ir_table)
 545		return -ENOMEM;
 546
 547	pages = alloc_pages_node(iommu->node, GFP_KERNEL | __GFP_ZERO,
 548				 INTR_REMAP_PAGE_ORDER);
 549	if (!pages) {
 550		pr_err("IR%d: failed to allocate pages of order %d\n",
 551		       iommu->seq_id, INTR_REMAP_PAGE_ORDER);
 552		goto out_free_table;
 553	}
 554
 555	bitmap = bitmap_zalloc(INTR_REMAP_TABLE_ENTRIES, GFP_ATOMIC);
 556	if (bitmap == NULL) {
 557		pr_err("IR%d: failed to allocate bitmap\n", iommu->seq_id);
 558		goto out_free_pages;
 559	}
 560
 561	fn = irq_domain_alloc_named_id_fwnode("INTEL-IR", iommu->seq_id);
 562	if (!fn)
 563		goto out_free_bitmap;
 564
 565	iommu->ir_domain =
 566		irq_domain_create_hierarchy(arch_get_ir_parent_domain(),
 567					    0, INTR_REMAP_TABLE_ENTRIES,
 568					    fn, &intel_ir_domain_ops,
 569					    iommu);
 570	if (!iommu->ir_domain) {
 571		pr_err("IR%d: failed to allocate irqdomain\n", iommu->seq_id);
 572		goto out_free_fwnode;
 573	}
 574
 575	irq_domain_update_bus_token(iommu->ir_domain,  DOMAIN_BUS_DMAR);
 576	iommu->ir_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT;
 577
 578	if (cap_caching_mode(iommu->cap))
 579		iommu->ir_domain->msi_parent_ops = &virt_dmar_msi_parent_ops;
 580	else
 581		iommu->ir_domain->msi_parent_ops = &dmar_msi_parent_ops;
 582
 583	ir_table->base = page_address(pages);
 584	ir_table->bitmap = bitmap;
 585	iommu->ir_table = ir_table;
 586
 587	/*
 588	 * If the queued invalidation is already initialized,
 589	 * shouldn't disable it.
 590	 */
 591	if (!iommu->qi) {
 592		/*
 593		 * Clear previous faults.
 594		 */
 595		dmar_fault(-1, iommu);
 596		dmar_disable_qi(iommu);
 597
 598		if (dmar_enable_qi(iommu)) {
 599			pr_err("Failed to enable queued invalidation\n");
 600			goto out_free_ir_domain;
 601		}
 602	}
 603
 604	init_ir_status(iommu);
 605
 606	if (ir_pre_enabled(iommu)) {
 607		if (!is_kdump_kernel()) {
 608			pr_warn("IRQ remapping was enabled on %s but we are not in kdump mode\n",
 609				iommu->name);
 610			clear_ir_pre_enabled(iommu);
 611			iommu_disable_irq_remapping(iommu);
 612		} else if (iommu_load_old_irte(iommu))
 613			pr_err("Failed to copy IR table for %s from previous kernel\n",
 614			       iommu->name);
 615		else
 616			pr_info("Copied IR table for %s from previous kernel\n",
 617				iommu->name);
 618	}
 619
 620	iommu_set_irq_remapping(iommu, eim_mode);
 621
 622	return 0;
 623
 624out_free_ir_domain:
 625	irq_domain_remove(iommu->ir_domain);
 626	iommu->ir_domain = NULL;
 627out_free_fwnode:
 628	irq_domain_free_fwnode(fn);
 629out_free_bitmap:
 630	bitmap_free(bitmap);
 631out_free_pages:
 632	__free_pages(pages, INTR_REMAP_PAGE_ORDER);
 633out_free_table:
 634	kfree(ir_table);
 635
 636	iommu->ir_table  = NULL;
 637
 638	return -ENOMEM;
 639}
 640
 641static void intel_teardown_irq_remapping(struct intel_iommu *iommu)
 642{
 643	struct fwnode_handle *fn;
 644
 645	if (iommu && iommu->ir_table) {
 646		if (iommu->ir_domain) {
 647			fn = iommu->ir_domain->fwnode;
 648
 649			irq_domain_remove(iommu->ir_domain);
 650			irq_domain_free_fwnode(fn);
 651			iommu->ir_domain = NULL;
 652		}
 653		free_pages((unsigned long)iommu->ir_table->base,
 654			   INTR_REMAP_PAGE_ORDER);
 655		bitmap_free(iommu->ir_table->bitmap);
 656		kfree(iommu->ir_table);
 657		iommu->ir_table = NULL;
 658	}
 659}
 660
 661/*
 662 * Disable Interrupt Remapping.
 663 */
 664static void iommu_disable_irq_remapping(struct intel_iommu *iommu)
 665{
 666	unsigned long flags;
 667	u32 sts;
 668
 669	if (!ecap_ir_support(iommu->ecap))
 670		return;
 671
 672	/*
 673	 * global invalidation of interrupt entry cache before disabling
 674	 * interrupt-remapping.
 675	 */
 676	if (!cap_esirtps(iommu->cap))
 677		qi_global_iec(iommu);
 678
 679	raw_spin_lock_irqsave(&iommu->register_lock, flags);
 680
 681	sts = readl(iommu->reg + DMAR_GSTS_REG);
 682	if (!(sts & DMA_GSTS_IRES))
 683		goto end;
 684
 685	iommu->gcmd &= ~DMA_GCMD_IRE;
 686	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
 687
 688	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
 689		      readl, !(sts & DMA_GSTS_IRES), sts);
 690
 691end:
 692	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
 693}
 694
 695static int __init dmar_x2apic_optout(void)
 696{
 697	struct acpi_table_dmar *dmar;
 698	dmar = (struct acpi_table_dmar *)dmar_tbl;
 699	if (!dmar || no_x2apic_optout)
 700		return 0;
 701	return dmar->flags & DMAR_X2APIC_OPT_OUT;
 702}
 703
 704static void __init intel_cleanup_irq_remapping(void)
 705{
 706	struct dmar_drhd_unit *drhd;
 707	struct intel_iommu *iommu;
 708
 709	for_each_iommu(iommu, drhd) {
 710		if (ecap_ir_support(iommu->ecap)) {
 711			iommu_disable_irq_remapping(iommu);
 712			intel_teardown_irq_remapping(iommu);
 713		}
 714	}
 715
 716	if (x2apic_supported())
 717		pr_warn("Failed to enable irq remapping. You are vulnerable to irq-injection attacks.\n");
 718}
 719
 720static int __init intel_prepare_irq_remapping(void)
 721{
 722	struct dmar_drhd_unit *drhd;
 723	struct intel_iommu *iommu;
 724	int eim = 0;
 725
 726	if (irq_remap_broken) {
 727		pr_warn("This system BIOS has enabled interrupt remapping\n"
 728			"on a chipset that contains an erratum making that\n"
 729			"feature unstable.  To maintain system stability\n"
 730			"interrupt remapping is being disabled.  Please\n"
 731			"contact your BIOS vendor for an update\n");
 732		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
 733		return -ENODEV;
 734	}
 735
 736	if (dmar_table_init() < 0)
 737		return -ENODEV;
 738
 739	if (intel_cap_audit(CAP_AUDIT_STATIC_IRQR, NULL))
 740		return -ENODEV;
 741
 742	if (!dmar_ir_support())
 743		return -ENODEV;
 744
 745	if (parse_ioapics_under_ir()) {
 746		pr_info("Not enabling interrupt remapping\n");
 747		goto error;
 748	}
 749
 750	/* First make sure all IOMMUs support IRQ remapping */
 751	for_each_iommu(iommu, drhd)
 752		if (!ecap_ir_support(iommu->ecap))
 753			goto error;
 754
 755	/* Detect remapping mode: lapic or x2apic */
 756	if (x2apic_supported()) {
 757		eim = !dmar_x2apic_optout();
 758		if (!eim) {
 759			pr_info("x2apic is disabled because BIOS sets x2apic opt out bit.");
 760			pr_info("Use 'intremap=no_x2apic_optout' to override the BIOS setting.\n");
 761		}
 762	}
 763
 764	for_each_iommu(iommu, drhd) {
 765		if (eim && !ecap_eim_support(iommu->ecap)) {
 766			pr_info("%s does not support EIM\n", iommu->name);
 767			eim = 0;
 768		}
 769	}
 770
 771	eim_mode = eim;
 772	if (eim)
 773		pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n");
 774
 775	/* Do the initializations early */
 776	for_each_iommu(iommu, drhd) {
 777		if (intel_setup_irq_remapping(iommu)) {
 778			pr_err("Failed to setup irq remapping for %s\n",
 779			       iommu->name);
 780			goto error;
 781		}
 782	}
 783
 784	return 0;
 785
 786error:
 787	intel_cleanup_irq_remapping();
 788	return -ENODEV;
 789}
 790
 791/*
 792 * Set Posted-Interrupts capability.
 793 */
 794static inline void set_irq_posting_cap(void)
 795{
 796	struct dmar_drhd_unit *drhd;
 797	struct intel_iommu *iommu;
 798
 799	if (!disable_irq_post) {
 800		/*
 801		 * If IRTE is in posted format, the 'pda' field goes across the
 802		 * 64-bit boundary, we need use cmpxchg16b to atomically update
 803		 * it. We only expose posted-interrupt when X86_FEATURE_CX16
 804		 * is supported. Actually, hardware platforms supporting PI
 805		 * should have X86_FEATURE_CX16 support, this has been confirmed
 806		 * with Intel hardware guys.
 807		 */
 808		if (boot_cpu_has(X86_FEATURE_CX16))
 809			intel_irq_remap_ops.capability |= 1 << IRQ_POSTING_CAP;
 810
 811		for_each_iommu(iommu, drhd)
 812			if (!cap_pi_support(iommu->cap)) {
 813				intel_irq_remap_ops.capability &=
 814						~(1 << IRQ_POSTING_CAP);
 815				break;
 816			}
 817	}
 818}
 819
 820static int __init intel_enable_irq_remapping(void)
 821{
 822	struct dmar_drhd_unit *drhd;
 823	struct intel_iommu *iommu;
 824	bool setup = false;
 825
 826	/*
 827	 * Setup Interrupt-remapping for all the DRHD's now.
 828	 */
 829	for_each_iommu(iommu, drhd) {
 830		if (!ir_pre_enabled(iommu))
 831			iommu_enable_irq_remapping(iommu);
 832		setup = true;
 833	}
 834
 835	if (!setup)
 836		goto error;
 837
 838	irq_remapping_enabled = 1;
 839
 840	set_irq_posting_cap();
 841
 842	pr_info("Enabled IRQ remapping in %s mode\n", eim_mode ? "x2apic" : "xapic");
 843
 844	return eim_mode ? IRQ_REMAP_X2APIC_MODE : IRQ_REMAP_XAPIC_MODE;
 845
 846error:
 847	intel_cleanup_irq_remapping();
 848	return -1;
 849}
 850
 851static int ir_parse_one_hpet_scope(struct acpi_dmar_device_scope *scope,
 852				   struct intel_iommu *iommu,
 853				   struct acpi_dmar_hardware_unit *drhd)
 854{
 855	struct acpi_dmar_pci_path *path;
 856	u8 bus;
 857	int count, free = -1;
 858
 859	bus = scope->bus;
 860	path = (struct acpi_dmar_pci_path *)(scope + 1);
 861	count = (scope->length - sizeof(struct acpi_dmar_device_scope))
 862		/ sizeof(struct acpi_dmar_pci_path);
 863
 864	while (--count > 0) {
 865		/*
 866		 * Access PCI directly due to the PCI
 867		 * subsystem isn't initialized yet.
 868		 */
 869		bus = read_pci_config_byte(bus, path->device, path->function,
 870					   PCI_SECONDARY_BUS);
 871		path++;
 872	}
 873
 874	for (count = 0; count < MAX_HPET_TBS; count++) {
 875		if (ir_hpet[count].iommu == iommu &&
 876		    ir_hpet[count].id == scope->enumeration_id)
 877			return 0;
 878		else if (ir_hpet[count].iommu == NULL && free == -1)
 879			free = count;
 880	}
 881	if (free == -1) {
 882		pr_warn("Exceeded Max HPET blocks\n");
 883		return -ENOSPC;
 884	}
 885
 886	ir_hpet[free].iommu = iommu;
 887	ir_hpet[free].id    = scope->enumeration_id;
 888	ir_hpet[free].bus   = bus;
 889	ir_hpet[free].devfn = PCI_DEVFN(path->device, path->function);
 890	pr_info("HPET id %d under DRHD base 0x%Lx\n",
 891		scope->enumeration_id, drhd->address);
 892
 893	return 0;
 894}
 895
 896static int ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope *scope,
 897				     struct intel_iommu *iommu,
 898				     struct acpi_dmar_hardware_unit *drhd)
 899{
 900	struct acpi_dmar_pci_path *path;
 901	u8 bus;
 902	int count, free = -1;
 903
 904	bus = scope->bus;
 905	path = (struct acpi_dmar_pci_path *)(scope + 1);
 906	count = (scope->length - sizeof(struct acpi_dmar_device_scope))
 907		/ sizeof(struct acpi_dmar_pci_path);
 908
 909	while (--count > 0) {
 910		/*
 911		 * Access PCI directly due to the PCI
 912		 * subsystem isn't initialized yet.
 913		 */
 914		bus = read_pci_config_byte(bus, path->device, path->function,
 915					   PCI_SECONDARY_BUS);
 916		path++;
 917	}
 918
 919	for (count = 0; count < MAX_IO_APICS; count++) {
 920		if (ir_ioapic[count].iommu == iommu &&
 921		    ir_ioapic[count].id == scope->enumeration_id)
 922			return 0;
 923		else if (ir_ioapic[count].iommu == NULL && free == -1)
 924			free = count;
 925	}
 926	if (free == -1) {
 927		pr_warn("Exceeded Max IO APICS\n");
 928		return -ENOSPC;
 929	}
 930
 931	ir_ioapic[free].bus   = bus;
 932	ir_ioapic[free].devfn = PCI_DEVFN(path->device, path->function);
 933	ir_ioapic[free].iommu = iommu;
 934	ir_ioapic[free].id    = scope->enumeration_id;
 935	pr_info("IOAPIC id %d under DRHD base  0x%Lx IOMMU %d\n",
 936		scope->enumeration_id, drhd->address, iommu->seq_id);
 937
 938	return 0;
 939}
 940
 941static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header *header,
 942				      struct intel_iommu *iommu)
 943{
 944	int ret = 0;
 945	struct acpi_dmar_hardware_unit *drhd;
 946	struct acpi_dmar_device_scope *scope;
 947	void *start, *end;
 948
 949	drhd = (struct acpi_dmar_hardware_unit *)header;
 950	start = (void *)(drhd + 1);
 951	end = ((void *)drhd) + header->length;
 952
 953	while (start < end && ret == 0) {
 954		scope = start;
 955		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC)
 956			ret = ir_parse_one_ioapic_scope(scope, iommu, drhd);
 957		else if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_HPET)
 958			ret = ir_parse_one_hpet_scope(scope, iommu, drhd);
 959		start += scope->length;
 960	}
 961
 962	return ret;
 963}
 964
 965static void ir_remove_ioapic_hpet_scope(struct intel_iommu *iommu)
 966{
 967	int i;
 968
 969	for (i = 0; i < MAX_HPET_TBS; i++)
 970		if (ir_hpet[i].iommu == iommu)
 971			ir_hpet[i].iommu = NULL;
 972
 973	for (i = 0; i < MAX_IO_APICS; i++)
 974		if (ir_ioapic[i].iommu == iommu)
 975			ir_ioapic[i].iommu = NULL;
 976}
 977
 978/*
 979 * Finds the assocaition between IOAPIC's and its Interrupt-remapping
 980 * hardware unit.
 981 */
 982static int __init parse_ioapics_under_ir(void)
 983{
 984	struct dmar_drhd_unit *drhd;
 985	struct intel_iommu *iommu;
 986	bool ir_supported = false;
 987	int ioapic_idx;
 988
 989	for_each_iommu(iommu, drhd) {
 990		int ret;
 991
 992		if (!ecap_ir_support(iommu->ecap))
 993			continue;
 994
 995		ret = ir_parse_ioapic_hpet_scope(drhd->hdr, iommu);
 996		if (ret)
 997			return ret;
 998
 999		ir_supported = true;
1000	}
1001
1002	if (!ir_supported)
1003		return -ENODEV;
1004
1005	for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++) {
1006		int ioapic_id = mpc_ioapic_id(ioapic_idx);
1007		if (!map_ioapic_to_iommu(ioapic_id)) {
1008			pr_err(FW_BUG "ioapic %d has no mapping iommu, "
1009			       "interrupt remapping will be disabled\n",
1010			       ioapic_id);
1011			return -1;
1012		}
1013	}
1014
1015	return 0;
1016}
1017
1018static int __init ir_dev_scope_init(void)
1019{
1020	int ret;
1021
1022	if (!irq_remapping_enabled)
1023		return 0;
1024
1025	down_write(&dmar_global_lock);
1026	ret = dmar_dev_scope_init();
1027	up_write(&dmar_global_lock);
1028
1029	return ret;
1030}
1031rootfs_initcall(ir_dev_scope_init);
1032
1033static void disable_irq_remapping(void)
1034{
1035	struct dmar_drhd_unit *drhd;
1036	struct intel_iommu *iommu = NULL;
1037
1038	/*
1039	 * Disable Interrupt-remapping for all the DRHD's now.
1040	 */
1041	for_each_iommu(iommu, drhd) {
1042		if (!ecap_ir_support(iommu->ecap))
1043			continue;
1044
1045		iommu_disable_irq_remapping(iommu);
1046	}
1047
1048	/*
1049	 * Clear Posted-Interrupts capability.
1050	 */
1051	if (!disable_irq_post)
1052		intel_irq_remap_ops.capability &= ~(1 << IRQ_POSTING_CAP);
1053}
1054
1055static int reenable_irq_remapping(int eim)
1056{
1057	struct dmar_drhd_unit *drhd;
1058	bool setup = false;
1059	struct intel_iommu *iommu = NULL;
1060
1061	for_each_iommu(iommu, drhd)
1062		if (iommu->qi)
1063			dmar_reenable_qi(iommu);
1064
1065	/*
1066	 * Setup Interrupt-remapping for all the DRHD's now.
1067	 */
1068	for_each_iommu(iommu, drhd) {
1069		if (!ecap_ir_support(iommu->ecap))
1070			continue;
1071
1072		/* Set up interrupt remapping for iommu.*/
1073		iommu_set_irq_remapping(iommu, eim);
1074		iommu_enable_irq_remapping(iommu);
1075		setup = true;
1076	}
1077
1078	if (!setup)
1079		goto error;
1080
1081	set_irq_posting_cap();
1082
1083	return 0;
1084
1085error:
1086	/*
1087	 * handle error condition gracefully here!
1088	 */
1089	return -1;
1090}
1091
1092/*
1093 * Store the MSI remapping domain pointer in the device if enabled.
1094 *
1095 * This is called from dmar_pci_bus_add_dev() so it works even when DMA
1096 * remapping is disabled. Only update the pointer if the device is not
1097 * already handled by a non default PCI/MSI interrupt domain. This protects
1098 * e.g. VMD devices.
1099 */
1100void intel_irq_remap_add_device(struct dmar_pci_notify_info *info)
1101{
1102	if (!irq_remapping_enabled || !pci_dev_has_default_msi_parent_domain(info->dev))
1103		return;
1104
1105	dev_set_msi_domain(&info->dev->dev, map_dev_to_ir(info->dev));
1106}
1107
1108static void prepare_irte(struct irte *irte, int vector, unsigned int dest)
1109{
1110	memset(irte, 0, sizeof(*irte));
1111
1112	irte->present = 1;
1113	irte->dst_mode = apic->dest_mode_logical;
1114	/*
1115	 * Trigger mode in the IRTE will always be edge, and for IO-APIC, the
1116	 * actual level or edge trigger will be setup in the IO-APIC
1117	 * RTE. This will help simplify level triggered irq migration.
1118	 * For more details, see the comments (in io_apic.c) explainig IO-APIC
1119	 * irq migration in the presence of interrupt-remapping.
1120	*/
1121	irte->trigger_mode = 0;
1122	irte->dlvry_mode = apic->delivery_mode;
1123	irte->vector = vector;
1124	irte->dest_id = IRTE_DEST(dest);
1125	irte->redir_hint = 1;
1126}
1127
1128struct irq_remap_ops intel_irq_remap_ops = {
1129	.prepare		= intel_prepare_irq_remapping,
1130	.enable			= intel_enable_irq_remapping,
1131	.disable		= disable_irq_remapping,
1132	.reenable		= reenable_irq_remapping,
1133	.enable_faulting	= enable_drhd_fault_handling,
1134};
1135
1136static void intel_ir_reconfigure_irte(struct irq_data *irqd, bool force)
1137{
1138	struct intel_ir_data *ir_data = irqd->chip_data;
1139	struct irte *irte = &ir_data->irte_entry;
1140	struct irq_cfg *cfg = irqd_cfg(irqd);
1141
1142	/*
1143	 * Atomically updates the IRTE with the new destination, vector
1144	 * and flushes the interrupt entry cache.
1145	 */
1146	irte->vector = cfg->vector;
1147	irte->dest_id = IRTE_DEST(cfg->dest_apicid);
1148
1149	/* Update the hardware only if the interrupt is in remapped mode. */
1150	if (force || ir_data->irq_2_iommu.mode == IRQ_REMAPPING)
1151		modify_irte(&ir_data->irq_2_iommu, irte);
1152}
1153
1154/*
1155 * Migrate the IO-APIC irq in the presence of intr-remapping.
1156 *
1157 * For both level and edge triggered, irq migration is a simple atomic
1158 * update(of vector and cpu destination) of IRTE and flush the hardware cache.
1159 *
1160 * For level triggered, we eliminate the io-apic RTE modification (with the
1161 * updated vector information), by using a virtual vector (io-apic pin number).
1162 * Real vector that is used for interrupting cpu will be coming from
1163 * the interrupt-remapping table entry.
1164 *
1165 * As the migration is a simple atomic update of IRTE, the same mechanism
1166 * is used to migrate MSI irq's in the presence of interrupt-remapping.
1167 */
1168static int
1169intel_ir_set_affinity(struct irq_data *data, const struct cpumask *mask,
1170		      bool force)
1171{
1172	struct irq_data *parent = data->parent_data;
1173	struct irq_cfg *cfg = irqd_cfg(data);
1174	int ret;
1175
1176	ret = parent->chip->irq_set_affinity(parent, mask, force);
1177	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
1178		return ret;
1179
1180	intel_ir_reconfigure_irte(data, false);
1181	/*
1182	 * After this point, all the interrupts will start arriving
1183	 * at the new destination. So, time to cleanup the previous
1184	 * vector allocation.
1185	 */
1186	send_cleanup_vector(cfg);
1187
1188	return IRQ_SET_MASK_OK_DONE;
1189}
1190
1191static void intel_ir_compose_msi_msg(struct irq_data *irq_data,
1192				     struct msi_msg *msg)
1193{
1194	struct intel_ir_data *ir_data = irq_data->chip_data;
1195
1196	*msg = ir_data->msi_entry;
1197}
1198
1199static int intel_ir_set_vcpu_affinity(struct irq_data *data, void *info)
1200{
1201	struct intel_ir_data *ir_data = data->chip_data;
1202	struct vcpu_data *vcpu_pi_info = info;
1203
1204	/* stop posting interrupts, back to remapping mode */
1205	if (!vcpu_pi_info) {
1206		modify_irte(&ir_data->irq_2_iommu, &ir_data->irte_entry);
1207	} else {
1208		struct irte irte_pi;
1209
1210		/*
1211		 * We are not caching the posted interrupt entry. We
1212		 * copy the data from the remapped entry and modify
1213		 * the fields which are relevant for posted mode. The
1214		 * cached remapped entry is used for switching back to
1215		 * remapped mode.
1216		 */
1217		memset(&irte_pi, 0, sizeof(irte_pi));
1218		dmar_copy_shared_irte(&irte_pi, &ir_data->irte_entry);
1219
1220		/* Update the posted mode fields */
1221		irte_pi.p_pst = 1;
1222		irte_pi.p_urgent = 0;
1223		irte_pi.p_vector = vcpu_pi_info->vector;
1224		irte_pi.pda_l = (vcpu_pi_info->pi_desc_addr >>
1225				(32 - PDA_LOW_BIT)) & ~(-1UL << PDA_LOW_BIT);
1226		irte_pi.pda_h = (vcpu_pi_info->pi_desc_addr >> 32) &
1227				~(-1UL << PDA_HIGH_BIT);
1228
1229		modify_irte(&ir_data->irq_2_iommu, &irte_pi);
1230	}
1231
1232	return 0;
1233}
1234
1235static struct irq_chip intel_ir_chip = {
1236	.name			= "INTEL-IR",
1237	.irq_ack		= apic_ack_irq,
1238	.irq_set_affinity	= intel_ir_set_affinity,
1239	.irq_compose_msi_msg	= intel_ir_compose_msi_msg,
1240	.irq_set_vcpu_affinity	= intel_ir_set_vcpu_affinity,
1241};
1242
1243static void fill_msi_msg(struct msi_msg *msg, u32 index, u32 subhandle)
1244{
1245	memset(msg, 0, sizeof(*msg));
1246
1247	msg->arch_addr_lo.dmar_base_address = X86_MSI_BASE_ADDRESS_LOW;
1248	msg->arch_addr_lo.dmar_subhandle_valid = true;
1249	msg->arch_addr_lo.dmar_format = true;
1250	msg->arch_addr_lo.dmar_index_0_14 = index & 0x7FFF;
1251	msg->arch_addr_lo.dmar_index_15 = !!(index & 0x8000);
1252
1253	msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
1254
1255	msg->arch_data.dmar_subhandle = subhandle;
1256}
1257
1258static void intel_irq_remapping_prepare_irte(struct intel_ir_data *data,
1259					     struct irq_cfg *irq_cfg,
1260					     struct irq_alloc_info *info,
1261					     int index, int sub_handle)
1262{
1263	struct irte *irte = &data->irte_entry;
1264
1265	prepare_irte(irte, irq_cfg->vector, irq_cfg->dest_apicid);
1266
1267	switch (info->type) {
1268	case X86_IRQ_ALLOC_TYPE_IOAPIC:
1269		/* Set source-id of interrupt request */
1270		set_ioapic_sid(irte, info->devid);
1271		apic_printk(APIC_VERBOSE, KERN_DEBUG "IOAPIC[%d]: Set IRTE entry (P:%d FPD:%d Dst_Mode:%d Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X Avail:%X Vector:%02X Dest:%08X SID:%04X SQ:%X SVT:%X)\n",
1272			info->devid, irte->present, irte->fpd,
1273			irte->dst_mode, irte->redir_hint,
1274			irte->trigger_mode, irte->dlvry_mode,
1275			irte->avail, irte->vector, irte->dest_id,
1276			irte->sid, irte->sq, irte->svt);
1277		sub_handle = info->ioapic.pin;
1278		break;
1279	case X86_IRQ_ALLOC_TYPE_HPET:
1280		set_hpet_sid(irte, info->devid);
1281		break;
1282	case X86_IRQ_ALLOC_TYPE_PCI_MSI:
1283	case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
1284		set_msi_sid(irte,
1285			    pci_real_dma_dev(msi_desc_to_pci_dev(info->desc)));
1286		break;
1287	default:
1288		BUG_ON(1);
1289		break;
1290	}
1291	fill_msi_msg(&data->msi_entry, index, sub_handle);
1292}
1293
1294static void intel_free_irq_resources(struct irq_domain *domain,
1295				     unsigned int virq, unsigned int nr_irqs)
1296{
1297	struct irq_data *irq_data;
1298	struct intel_ir_data *data;
1299	struct irq_2_iommu *irq_iommu;
1300	unsigned long flags;
1301	int i;
1302	for (i = 0; i < nr_irqs; i++) {
1303		irq_data = irq_domain_get_irq_data(domain, virq  + i);
1304		if (irq_data && irq_data->chip_data) {
1305			data = irq_data->chip_data;
1306			irq_iommu = &data->irq_2_iommu;
1307			raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
1308			clear_entries(irq_iommu);
1309			raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
1310			irq_domain_reset_irq_data(irq_data);
1311			kfree(data);
1312		}
1313	}
1314}
1315
1316static int intel_irq_remapping_alloc(struct irq_domain *domain,
1317				     unsigned int virq, unsigned int nr_irqs,
1318				     void *arg)
1319{
1320	struct intel_iommu *iommu = domain->host_data;
1321	struct irq_alloc_info *info = arg;
1322	struct intel_ir_data *data, *ird;
1323	struct irq_data *irq_data;
1324	struct irq_cfg *irq_cfg;
1325	int i, ret, index;
1326
1327	if (!info || !iommu)
1328		return -EINVAL;
1329	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI)
1330		return -EINVAL;
1331
1332	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
1333	if (ret < 0)
1334		return ret;
1335
1336	ret = -ENOMEM;
1337	data = kzalloc(sizeof(*data), GFP_KERNEL);
1338	if (!data)
1339		goto out_free_parent;
1340
1341	down_read(&dmar_global_lock);
1342	index = alloc_irte(iommu, &data->irq_2_iommu, nr_irqs);
1343	up_read(&dmar_global_lock);
1344	if (index < 0) {
1345		pr_warn("Failed to allocate IRTE\n");
1346		kfree(data);
1347		goto out_free_parent;
1348	}
1349
1350	for (i = 0; i < nr_irqs; i++) {
1351		irq_data = irq_domain_get_irq_data(domain, virq + i);
1352		irq_cfg = irqd_cfg(irq_data);
1353		if (!irq_data || !irq_cfg) {
1354			if (!i)
1355				kfree(data);
1356			ret = -EINVAL;
1357			goto out_free_data;
1358		}
1359
1360		if (i > 0) {
1361			ird = kzalloc(sizeof(*ird), GFP_KERNEL);
1362			if (!ird)
1363				goto out_free_data;
1364			/* Initialize the common data */
1365			ird->irq_2_iommu = data->irq_2_iommu;
1366			ird->irq_2_iommu.sub_handle = i;
1367		} else {
1368			ird = data;
1369		}
1370
1371		irq_data->hwirq = (index << 16) + i;
1372		irq_data->chip_data = ird;
1373		irq_data->chip = &intel_ir_chip;
1374		intel_irq_remapping_prepare_irte(ird, irq_cfg, info, index, i);
1375		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
1376	}
1377	return 0;
1378
1379out_free_data:
1380	intel_free_irq_resources(domain, virq, i);
1381out_free_parent:
1382	irq_domain_free_irqs_common(domain, virq, nr_irqs);
1383	return ret;
1384}
1385
1386static void intel_irq_remapping_free(struct irq_domain *domain,
1387				     unsigned int virq, unsigned int nr_irqs)
1388{
1389	intel_free_irq_resources(domain, virq, nr_irqs);
1390	irq_domain_free_irqs_common(domain, virq, nr_irqs);
1391}
1392
1393static int intel_irq_remapping_activate(struct irq_domain *domain,
1394					struct irq_data *irq_data, bool reserve)
1395{
1396	intel_ir_reconfigure_irte(irq_data, true);
1397	return 0;
1398}
1399
1400static void intel_irq_remapping_deactivate(struct irq_domain *domain,
1401					   struct irq_data *irq_data)
1402{
1403	struct intel_ir_data *data = irq_data->chip_data;
1404	struct irte entry;
1405
1406	memset(&entry, 0, sizeof(entry));
1407	modify_irte(&data->irq_2_iommu, &entry);
1408}
1409
1410static int intel_irq_remapping_select(struct irq_domain *d,
1411				      struct irq_fwspec *fwspec,
1412				      enum irq_domain_bus_token bus_token)
1413{
1414	struct intel_iommu *iommu = NULL;
1415
1416	if (x86_fwspec_is_ioapic(fwspec))
1417		iommu = map_ioapic_to_iommu(fwspec->param[0]);
1418	else if (x86_fwspec_is_hpet(fwspec))
1419		iommu = map_hpet_to_iommu(fwspec->param[0]);
1420
1421	return iommu && d == iommu->ir_domain;
1422}
1423
1424static const struct irq_domain_ops intel_ir_domain_ops = {
1425	.select = intel_irq_remapping_select,
1426	.alloc = intel_irq_remapping_alloc,
1427	.free = intel_irq_remapping_free,
1428	.activate = intel_irq_remapping_activate,
1429	.deactivate = intel_irq_remapping_deactivate,
1430};
1431
1432static const struct msi_parent_ops dmar_msi_parent_ops = {
1433	.supported_flags	= X86_VECTOR_MSI_FLAGS_SUPPORTED |
1434				  MSI_FLAG_MULTI_PCI_MSI |
1435				  MSI_FLAG_PCI_IMS,
1436	.prefix			= "IR-",
1437	.init_dev_msi_info	= msi_parent_init_dev_msi_info,
1438};
1439
1440static const struct msi_parent_ops virt_dmar_msi_parent_ops = {
1441	.supported_flags	= X86_VECTOR_MSI_FLAGS_SUPPORTED |
1442				  MSI_FLAG_MULTI_PCI_MSI,
1443	.prefix			= "vIR-",
1444	.init_dev_msi_info	= msi_parent_init_dev_msi_info,
1445};
1446
1447/*
1448 * Support of Interrupt Remapping Unit Hotplug
1449 */
1450static int dmar_ir_add(struct dmar_drhd_unit *dmaru, struct intel_iommu *iommu)
1451{
1452	int ret;
1453	int eim = x2apic_enabled();
1454
1455	ret = intel_cap_audit(CAP_AUDIT_HOTPLUG_IRQR, iommu);
1456	if (ret)
1457		return ret;
1458
1459	if (eim && !ecap_eim_support(iommu->ecap)) {
1460		pr_info("DRHD %Lx: EIM not supported by DRHD, ecap %Lx\n",
1461			iommu->reg_phys, iommu->ecap);
1462		return -ENODEV;
1463	}
1464
1465	if (ir_parse_ioapic_hpet_scope(dmaru->hdr, iommu)) {
1466		pr_warn("DRHD %Lx: failed to parse managed IOAPIC/HPET\n",
1467			iommu->reg_phys);
1468		return -ENODEV;
1469	}
1470
1471	/* TODO: check all IOAPICs are covered by IOMMU */
1472
1473	/* Setup Interrupt-remapping now. */
1474	ret = intel_setup_irq_remapping(iommu);
1475	if (ret) {
1476		pr_err("Failed to setup irq remapping for %s\n",
1477		       iommu->name);
1478		intel_teardown_irq_remapping(iommu);
1479		ir_remove_ioapic_hpet_scope(iommu);
1480	} else {
1481		iommu_enable_irq_remapping(iommu);
1482	}
1483
1484	return ret;
1485}
1486
1487int dmar_ir_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
1488{
1489	int ret = 0;
1490	struct intel_iommu *iommu = dmaru->iommu;
1491
1492	if (!irq_remapping_enabled)
1493		return 0;
1494	if (iommu == NULL)
1495		return -EINVAL;
1496	if (!ecap_ir_support(iommu->ecap))
1497		return 0;
1498	if (irq_remapping_cap(IRQ_POSTING_CAP) &&
1499	    !cap_pi_support(iommu->cap))
1500		return -EBUSY;
1501
1502	if (insert) {
1503		if (!iommu->ir_table)
1504			ret = dmar_ir_add(dmaru, iommu);
1505	} else {
1506		if (iommu->ir_table) {
1507			if (!bitmap_empty(iommu->ir_table->bitmap,
1508					  INTR_REMAP_TABLE_ENTRIES)) {
1509				ret = -EBUSY;
1510			} else {
1511				iommu_disable_irq_remapping(iommu);
1512				intel_teardown_irq_remapping(iommu);
1513				ir_remove_ioapic_hpet_scope(iommu);
1514			}
1515		}
1516	}
1517
1518	return ret;
1519}