Loading...
Note: File does not exist in v4.10.11.
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2006, Intel Corporation.
4 *
5 * Copyright (C) 2006-2008 Intel Corporation
6 * Author: Ashok Raj <ashok.raj@intel.com>
7 * Author: Shaohua Li <shaohua.li@intel.com>
8 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9 *
10 * This file implements early detection/parsing of Remapping Devices
11 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
12 * tables.
13 *
14 * These routines are used by both DMA-remapping and Interrupt-remapping
15 */
16
17#define pr_fmt(fmt) "DMAR: " fmt
18
19#include <linux/pci.h>
20#include <linux/dmar.h>
21#include <linux/iova.h>
22#include <linux/timer.h>
23#include <linux/irq.h>
24#include <linux/interrupt.h>
25#include <linux/tboot.h>
26#include <linux/dmi.h>
27#include <linux/slab.h>
28#include <linux/iommu.h>
29#include <linux/numa.h>
30#include <linux/limits.h>
31#include <asm/irq_remapping.h>
32
33#include "iommu.h"
34#include "../irq_remapping.h"
35#include "perf.h"
36#include "trace.h"
37
38typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
39struct dmar_res_callback {
40 dmar_res_handler_t cb[ACPI_DMAR_TYPE_RESERVED];
41 void *arg[ACPI_DMAR_TYPE_RESERVED];
42 bool ignore_unhandled;
43 bool print_entry;
44};
45
46/*
47 * Assumptions:
48 * 1) The hotplug framework guarentees that DMAR unit will be hot-added
49 * before IO devices managed by that unit.
50 * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
51 * after IO devices managed by that unit.
52 * 3) Hotplug events are rare.
53 *
54 * Locking rules for DMA and interrupt remapping related global data structures:
55 * 1) Use dmar_global_lock in process context
56 * 2) Use RCU in interrupt context
57 */
58DECLARE_RWSEM(dmar_global_lock);
59LIST_HEAD(dmar_drhd_units);
60
61struct acpi_table_header * __initdata dmar_tbl;
62static int dmar_dev_scope_status = 1;
63static DEFINE_IDA(dmar_seq_ids);
64
65static int alloc_iommu(struct dmar_drhd_unit *drhd);
66static void free_iommu(struct intel_iommu *iommu);
67
68static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
69{
70 /*
71 * add INCLUDE_ALL at the tail, so scan the list will find it at
72 * the very end.
73 */
74 if (drhd->include_all)
75 list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
76 else
77 list_add_rcu(&drhd->list, &dmar_drhd_units);
78}
79
80void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
81{
82 struct acpi_dmar_device_scope *scope;
83
84 *cnt = 0;
85 while (start < end) {
86 scope = start;
87 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
88 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
89 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
90 (*cnt)++;
91 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
92 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
93 pr_warn("Unsupported device scope\n");
94 }
95 start += scope->length;
96 }
97 if (*cnt == 0)
98 return NULL;
99
100 return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
101}
102
103void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
104{
105 int i;
106 struct device *tmp_dev;
107
108 if (*devices && *cnt) {
109 for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
110 put_device(tmp_dev);
111 kfree(*devices);
112 }
113
114 *devices = NULL;
115 *cnt = 0;
116}
117
118/* Optimize out kzalloc()/kfree() for normal cases */
119static char dmar_pci_notify_info_buf[64];
120
121static struct dmar_pci_notify_info *
122dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
123{
124 int level = 0;
125 size_t size;
126 struct pci_dev *tmp;
127 struct dmar_pci_notify_info *info;
128
129 BUG_ON(dev->is_virtfn);
130
131 /*
132 * Ignore devices that have a domain number higher than what can
133 * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000
134 */
135 if (pci_domain_nr(dev->bus) > U16_MAX)
136 return NULL;
137
138 /* Only generate path[] for device addition event */
139 if (event == BUS_NOTIFY_ADD_DEVICE)
140 for (tmp = dev; tmp; tmp = tmp->bus->self)
141 level++;
142
143 size = struct_size(info, path, level);
144 if (size <= sizeof(dmar_pci_notify_info_buf)) {
145 info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
146 } else {
147 info = kzalloc(size, GFP_KERNEL);
148 if (!info) {
149 if (dmar_dev_scope_status == 0)
150 dmar_dev_scope_status = -ENOMEM;
151 return NULL;
152 }
153 }
154
155 info->event = event;
156 info->dev = dev;
157 info->seg = pci_domain_nr(dev->bus);
158 info->level = level;
159 if (event == BUS_NOTIFY_ADD_DEVICE) {
160 for (tmp = dev; tmp; tmp = tmp->bus->self) {
161 level--;
162 info->path[level].bus = tmp->bus->number;
163 info->path[level].device = PCI_SLOT(tmp->devfn);
164 info->path[level].function = PCI_FUNC(tmp->devfn);
165 if (pci_is_root_bus(tmp->bus))
166 info->bus = tmp->bus->number;
167 }
168 }
169
170 return info;
171}
172
173static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
174{
175 if ((void *)info != dmar_pci_notify_info_buf)
176 kfree(info);
177}
178
179static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
180 struct acpi_dmar_pci_path *path, int count)
181{
182 int i;
183
184 if (info->bus != bus)
185 goto fallback;
186 if (info->level != count)
187 goto fallback;
188
189 for (i = 0; i < count; i++) {
190 if (path[i].device != info->path[i].device ||
191 path[i].function != info->path[i].function)
192 goto fallback;
193 }
194
195 return true;
196
197fallback:
198
199 if (count != 1)
200 return false;
201
202 i = info->level - 1;
203 if (bus == info->path[i].bus &&
204 path[0].device == info->path[i].device &&
205 path[0].function == info->path[i].function) {
206 pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
207 bus, path[0].device, path[0].function);
208 return true;
209 }
210
211 return false;
212}
213
214/* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
215int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
216 void *start, void*end, u16 segment,
217 struct dmar_dev_scope *devices,
218 int devices_cnt)
219{
220 int i, level;
221 struct device *tmp, *dev = &info->dev->dev;
222 struct acpi_dmar_device_scope *scope;
223 struct acpi_dmar_pci_path *path;
224
225 if (segment != info->seg)
226 return 0;
227
228 for (; start < end; start += scope->length) {
229 scope = start;
230 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
231 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
232 continue;
233
234 path = (struct acpi_dmar_pci_path *)(scope + 1);
235 level = (scope->length - sizeof(*scope)) / sizeof(*path);
236 if (!dmar_match_pci_path(info, scope->bus, path, level))
237 continue;
238
239 /*
240 * We expect devices with endpoint scope to have normal PCI
241 * headers, and devices with bridge scope to have bridge PCI
242 * headers. However PCI NTB devices may be listed in the
243 * DMAR table with bridge scope, even though they have a
244 * normal PCI header. NTB devices are identified by class
245 * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch
246 * for this special case.
247 */
248 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
249 info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) ||
250 (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE &&
251 (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
252 info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) {
253 pr_warn("Device scope type does not match for %s\n",
254 pci_name(info->dev));
255 return -EINVAL;
256 }
257
258 for_each_dev_scope(devices, devices_cnt, i, tmp)
259 if (tmp == NULL) {
260 devices[i].bus = info->dev->bus->number;
261 devices[i].devfn = info->dev->devfn;
262 rcu_assign_pointer(devices[i].dev,
263 get_device(dev));
264 return 1;
265 }
266 BUG_ON(i >= devices_cnt);
267 }
268
269 return 0;
270}
271
272int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
273 struct dmar_dev_scope *devices, int count)
274{
275 int index;
276 struct device *tmp;
277
278 if (info->seg != segment)
279 return 0;
280
281 for_each_active_dev_scope(devices, count, index, tmp)
282 if (tmp == &info->dev->dev) {
283 RCU_INIT_POINTER(devices[index].dev, NULL);
284 synchronize_rcu();
285 put_device(tmp);
286 return 1;
287 }
288
289 return 0;
290}
291
292static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
293{
294 int ret = 0;
295 struct dmar_drhd_unit *dmaru;
296 struct acpi_dmar_hardware_unit *drhd;
297
298 for_each_drhd_unit(dmaru) {
299 if (dmaru->include_all)
300 continue;
301
302 drhd = container_of(dmaru->hdr,
303 struct acpi_dmar_hardware_unit, header);
304 ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
305 ((void *)drhd) + drhd->header.length,
306 dmaru->segment,
307 dmaru->devices, dmaru->devices_cnt);
308 if (ret)
309 break;
310 }
311 if (ret >= 0)
312 ret = dmar_iommu_notify_scope_dev(info);
313 if (ret < 0 && dmar_dev_scope_status == 0)
314 dmar_dev_scope_status = ret;
315
316 if (ret >= 0)
317 intel_irq_remap_add_device(info);
318
319 return ret;
320}
321
322static void dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
323{
324 struct dmar_drhd_unit *dmaru;
325
326 for_each_drhd_unit(dmaru)
327 if (dmar_remove_dev_scope(info, dmaru->segment,
328 dmaru->devices, dmaru->devices_cnt))
329 break;
330 dmar_iommu_notify_scope_dev(info);
331}
332
333static inline void vf_inherit_msi_domain(struct pci_dev *pdev)
334{
335 struct pci_dev *physfn = pci_physfn(pdev);
336
337 dev_set_msi_domain(&pdev->dev, dev_get_msi_domain(&physfn->dev));
338}
339
340static int dmar_pci_bus_notifier(struct notifier_block *nb,
341 unsigned long action, void *data)
342{
343 struct pci_dev *pdev = to_pci_dev(data);
344 struct dmar_pci_notify_info *info;
345
346 /* Only care about add/remove events for physical functions.
347 * For VFs we actually do the lookup based on the corresponding
348 * PF in device_to_iommu() anyway. */
349 if (pdev->is_virtfn) {
350 /*
351 * Ensure that the VF device inherits the irq domain of the
352 * PF device. Ideally the device would inherit the domain
353 * from the bus, but DMAR can have multiple units per bus
354 * which makes this impossible. The VF 'bus' could inherit
355 * from the PF device, but that's yet another x86'sism to
356 * inflict on everybody else.
357 */
358 if (action == BUS_NOTIFY_ADD_DEVICE)
359 vf_inherit_msi_domain(pdev);
360 return NOTIFY_DONE;
361 }
362
363 if (action != BUS_NOTIFY_ADD_DEVICE &&
364 action != BUS_NOTIFY_REMOVED_DEVICE)
365 return NOTIFY_DONE;
366
367 info = dmar_alloc_pci_notify_info(pdev, action);
368 if (!info)
369 return NOTIFY_DONE;
370
371 down_write(&dmar_global_lock);
372 if (action == BUS_NOTIFY_ADD_DEVICE)
373 dmar_pci_bus_add_dev(info);
374 else if (action == BUS_NOTIFY_REMOVED_DEVICE)
375 dmar_pci_bus_del_dev(info);
376 up_write(&dmar_global_lock);
377
378 dmar_free_pci_notify_info(info);
379
380 return NOTIFY_OK;
381}
382
383static struct notifier_block dmar_pci_bus_nb = {
384 .notifier_call = dmar_pci_bus_notifier,
385 .priority = 1,
386};
387
388static struct dmar_drhd_unit *
389dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
390{
391 struct dmar_drhd_unit *dmaru;
392
393 list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list,
394 dmar_rcu_check())
395 if (dmaru->segment == drhd->segment &&
396 dmaru->reg_base_addr == drhd->address)
397 return dmaru;
398
399 return NULL;
400}
401
402/*
403 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
404 * structure which uniquely represent one DMA remapping hardware unit
405 * present in the platform
406 */
407static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
408{
409 struct acpi_dmar_hardware_unit *drhd;
410 struct dmar_drhd_unit *dmaru;
411 int ret;
412
413 drhd = (struct acpi_dmar_hardware_unit *)header;
414 dmaru = dmar_find_dmaru(drhd);
415 if (dmaru)
416 goto out;
417
418 dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
419 if (!dmaru)
420 return -ENOMEM;
421
422 /*
423 * If header is allocated from slab by ACPI _DSM method, we need to
424 * copy the content because the memory buffer will be freed on return.
425 */
426 dmaru->hdr = (void *)(dmaru + 1);
427 memcpy(dmaru->hdr, header, header->length);
428 dmaru->reg_base_addr = drhd->address;
429 dmaru->segment = drhd->segment;
430 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
431 dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
432 ((void *)drhd) + drhd->header.length,
433 &dmaru->devices_cnt);
434 if (dmaru->devices_cnt && dmaru->devices == NULL) {
435 kfree(dmaru);
436 return -ENOMEM;
437 }
438
439 ret = alloc_iommu(dmaru);
440 if (ret) {
441 dmar_free_dev_scope(&dmaru->devices,
442 &dmaru->devices_cnt);
443 kfree(dmaru);
444 return ret;
445 }
446 dmar_register_drhd_unit(dmaru);
447
448out:
449 if (arg)
450 (*(int *)arg)++;
451
452 return 0;
453}
454
455static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
456{
457 if (dmaru->devices && dmaru->devices_cnt)
458 dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
459 if (dmaru->iommu)
460 free_iommu(dmaru->iommu);
461 kfree(dmaru);
462}
463
464static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
465 void *arg)
466{
467 struct acpi_dmar_andd *andd = (void *)header;
468
469 /* Check for NUL termination within the designated length */
470 if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
471 pr_warn(FW_BUG
472 "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
473 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
474 dmi_get_system_info(DMI_BIOS_VENDOR),
475 dmi_get_system_info(DMI_BIOS_VERSION),
476 dmi_get_system_info(DMI_PRODUCT_VERSION));
477 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
478 return -EINVAL;
479 }
480 pr_info("ANDD device: %x name: %s\n", andd->device_number,
481 andd->device_name);
482
483 return 0;
484}
485
486#ifdef CONFIG_ACPI_NUMA
487static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
488{
489 struct acpi_dmar_rhsa *rhsa;
490 struct dmar_drhd_unit *drhd;
491
492 rhsa = (struct acpi_dmar_rhsa *)header;
493 for_each_drhd_unit(drhd) {
494 if (drhd->reg_base_addr == rhsa->base_address) {
495 int node = pxm_to_node(rhsa->proximity_domain);
496
497 if (node != NUMA_NO_NODE && !node_online(node))
498 node = NUMA_NO_NODE;
499 drhd->iommu->node = node;
500 return 0;
501 }
502 }
503 pr_warn(FW_BUG
504 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
505 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
506 rhsa->base_address,
507 dmi_get_system_info(DMI_BIOS_VENDOR),
508 dmi_get_system_info(DMI_BIOS_VERSION),
509 dmi_get_system_info(DMI_PRODUCT_VERSION));
510 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
511
512 return 0;
513}
514#else
515#define dmar_parse_one_rhsa dmar_res_noop
516#endif
517
518static void
519dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
520{
521 struct acpi_dmar_hardware_unit *drhd;
522 struct acpi_dmar_reserved_memory *rmrr;
523 struct acpi_dmar_atsr *atsr;
524 struct acpi_dmar_rhsa *rhsa;
525 struct acpi_dmar_satc *satc;
526
527 switch (header->type) {
528 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
529 drhd = container_of(header, struct acpi_dmar_hardware_unit,
530 header);
531 pr_info("DRHD base: %#016Lx flags: %#x\n",
532 (unsigned long long)drhd->address, drhd->flags);
533 break;
534 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
535 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
536 header);
537 pr_info("RMRR base: %#016Lx end: %#016Lx\n",
538 (unsigned long long)rmrr->base_address,
539 (unsigned long long)rmrr->end_address);
540 break;
541 case ACPI_DMAR_TYPE_ROOT_ATS:
542 atsr = container_of(header, struct acpi_dmar_atsr, header);
543 pr_info("ATSR flags: %#x\n", atsr->flags);
544 break;
545 case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
546 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
547 pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
548 (unsigned long long)rhsa->base_address,
549 rhsa->proximity_domain);
550 break;
551 case ACPI_DMAR_TYPE_NAMESPACE:
552 /* We don't print this here because we need to sanity-check
553 it first. So print it in dmar_parse_one_andd() instead. */
554 break;
555 case ACPI_DMAR_TYPE_SATC:
556 satc = container_of(header, struct acpi_dmar_satc, header);
557 pr_info("SATC flags: 0x%x\n", satc->flags);
558 break;
559 }
560}
561
562/**
563 * dmar_table_detect - checks to see if the platform supports DMAR devices
564 */
565static int __init dmar_table_detect(void)
566{
567 acpi_status status = AE_OK;
568
569 /* if we could find DMAR table, then there are DMAR devices */
570 status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl);
571
572 if (ACPI_SUCCESS(status) && !dmar_tbl) {
573 pr_warn("Unable to map DMAR\n");
574 status = AE_NOT_FOUND;
575 }
576
577 return ACPI_SUCCESS(status) ? 0 : -ENOENT;
578}
579
580static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
581 size_t len, struct dmar_res_callback *cb)
582{
583 struct acpi_dmar_header *iter, *next;
584 struct acpi_dmar_header *end = ((void *)start) + len;
585
586 for (iter = start; iter < end; iter = next) {
587 next = (void *)iter + iter->length;
588 if (iter->length == 0) {
589 /* Avoid looping forever on bad ACPI tables */
590 pr_debug(FW_BUG "Invalid 0-length structure\n");
591 break;
592 } else if (next > end) {
593 /* Avoid passing table end */
594 pr_warn(FW_BUG "Record passes table end\n");
595 return -EINVAL;
596 }
597
598 if (cb->print_entry)
599 dmar_table_print_dmar_entry(iter);
600
601 if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
602 /* continue for forward compatibility */
603 pr_debug("Unknown DMAR structure type %d\n",
604 iter->type);
605 } else if (cb->cb[iter->type]) {
606 int ret;
607
608 ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
609 if (ret)
610 return ret;
611 } else if (!cb->ignore_unhandled) {
612 pr_warn("No handler for DMAR structure type %d\n",
613 iter->type);
614 return -EINVAL;
615 }
616 }
617
618 return 0;
619}
620
621static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
622 struct dmar_res_callback *cb)
623{
624 return dmar_walk_remapping_entries((void *)(dmar + 1),
625 dmar->header.length - sizeof(*dmar), cb);
626}
627
628/**
629 * parse_dmar_table - parses the DMA reporting table
630 */
631static int __init
632parse_dmar_table(void)
633{
634 struct acpi_table_dmar *dmar;
635 int drhd_count = 0;
636 int ret;
637 struct dmar_res_callback cb = {
638 .print_entry = true,
639 .ignore_unhandled = true,
640 .arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
641 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
642 .cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
643 .cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
644 .cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
645 .cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
646 .cb[ACPI_DMAR_TYPE_SATC] = &dmar_parse_one_satc,
647 };
648
649 /*
650 * Do it again, earlier dmar_tbl mapping could be mapped with
651 * fixed map.
652 */
653 dmar_table_detect();
654
655 /*
656 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
657 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
658 */
659 dmar_tbl = tboot_get_dmar_table(dmar_tbl);
660
661 dmar = (struct acpi_table_dmar *)dmar_tbl;
662 if (!dmar)
663 return -ENODEV;
664
665 if (dmar->width < PAGE_SHIFT - 1) {
666 pr_warn("Invalid DMAR haw\n");
667 return -EINVAL;
668 }
669
670 pr_info("Host address width %d\n", dmar->width + 1);
671 ret = dmar_walk_dmar_table(dmar, &cb);
672 if (ret == 0 && drhd_count == 0)
673 pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
674
675 return ret;
676}
677
678static int dmar_pci_device_match(struct dmar_dev_scope devices[],
679 int cnt, struct pci_dev *dev)
680{
681 int index;
682 struct device *tmp;
683
684 while (dev) {
685 for_each_active_dev_scope(devices, cnt, index, tmp)
686 if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
687 return 1;
688
689 /* Check our parent */
690 dev = dev->bus->self;
691 }
692
693 return 0;
694}
695
696struct dmar_drhd_unit *
697dmar_find_matched_drhd_unit(struct pci_dev *dev)
698{
699 struct dmar_drhd_unit *dmaru;
700 struct acpi_dmar_hardware_unit *drhd;
701
702 dev = pci_physfn(dev);
703
704 rcu_read_lock();
705 for_each_drhd_unit(dmaru) {
706 drhd = container_of(dmaru->hdr,
707 struct acpi_dmar_hardware_unit,
708 header);
709
710 if (dmaru->include_all &&
711 drhd->segment == pci_domain_nr(dev->bus))
712 goto out;
713
714 if (dmar_pci_device_match(dmaru->devices,
715 dmaru->devices_cnt, dev))
716 goto out;
717 }
718 dmaru = NULL;
719out:
720 rcu_read_unlock();
721
722 return dmaru;
723}
724
725static void __init dmar_acpi_insert_dev_scope(u8 device_number,
726 struct acpi_device *adev)
727{
728 struct dmar_drhd_unit *dmaru;
729 struct acpi_dmar_hardware_unit *drhd;
730 struct acpi_dmar_device_scope *scope;
731 struct device *tmp;
732 int i;
733 struct acpi_dmar_pci_path *path;
734
735 for_each_drhd_unit(dmaru) {
736 drhd = container_of(dmaru->hdr,
737 struct acpi_dmar_hardware_unit,
738 header);
739
740 for (scope = (void *)(drhd + 1);
741 (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
742 scope = ((void *)scope) + scope->length) {
743 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
744 continue;
745 if (scope->enumeration_id != device_number)
746 continue;
747
748 path = (void *)(scope + 1);
749 pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
750 dev_name(&adev->dev), dmaru->reg_base_addr,
751 scope->bus, path->device, path->function);
752 for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
753 if (tmp == NULL) {
754 dmaru->devices[i].bus = scope->bus;
755 dmaru->devices[i].devfn = PCI_DEVFN(path->device,
756 path->function);
757 rcu_assign_pointer(dmaru->devices[i].dev,
758 get_device(&adev->dev));
759 return;
760 }
761 BUG_ON(i >= dmaru->devices_cnt);
762 }
763 }
764 pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
765 device_number, dev_name(&adev->dev));
766}
767
768static int __init dmar_acpi_dev_scope_init(void)
769{
770 struct acpi_dmar_andd *andd;
771
772 if (dmar_tbl == NULL)
773 return -ENODEV;
774
775 for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
776 ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
777 andd = ((void *)andd) + andd->header.length) {
778 if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
779 acpi_handle h;
780 struct acpi_device *adev;
781
782 if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
783 andd->device_name,
784 &h))) {
785 pr_err("Failed to find handle for ACPI object %s\n",
786 andd->device_name);
787 continue;
788 }
789 adev = acpi_fetch_acpi_dev(h);
790 if (!adev) {
791 pr_err("Failed to get device for ACPI object %s\n",
792 andd->device_name);
793 continue;
794 }
795 dmar_acpi_insert_dev_scope(andd->device_number, adev);
796 }
797 }
798 return 0;
799}
800
801int __init dmar_dev_scope_init(void)
802{
803 struct pci_dev *dev = NULL;
804 struct dmar_pci_notify_info *info;
805
806 if (dmar_dev_scope_status != 1)
807 return dmar_dev_scope_status;
808
809 if (list_empty(&dmar_drhd_units)) {
810 dmar_dev_scope_status = -ENODEV;
811 } else {
812 dmar_dev_scope_status = 0;
813
814 dmar_acpi_dev_scope_init();
815
816 for_each_pci_dev(dev) {
817 if (dev->is_virtfn)
818 continue;
819
820 info = dmar_alloc_pci_notify_info(dev,
821 BUS_NOTIFY_ADD_DEVICE);
822 if (!info) {
823 pci_dev_put(dev);
824 return dmar_dev_scope_status;
825 } else {
826 dmar_pci_bus_add_dev(info);
827 dmar_free_pci_notify_info(info);
828 }
829 }
830 }
831
832 return dmar_dev_scope_status;
833}
834
835void __init dmar_register_bus_notifier(void)
836{
837 bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
838}
839
840
841int __init dmar_table_init(void)
842{
843 static int dmar_table_initialized;
844 int ret;
845
846 if (dmar_table_initialized == 0) {
847 ret = parse_dmar_table();
848 if (ret < 0) {
849 if (ret != -ENODEV)
850 pr_info("Parse DMAR table failure.\n");
851 } else if (list_empty(&dmar_drhd_units)) {
852 pr_info("No DMAR devices found\n");
853 ret = -ENODEV;
854 }
855
856 if (ret < 0)
857 dmar_table_initialized = ret;
858 else
859 dmar_table_initialized = 1;
860 }
861
862 return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
863}
864
865static void warn_invalid_dmar(u64 addr, const char *message)
866{
867 pr_warn_once(FW_BUG
868 "Your BIOS is broken; DMAR reported at address %llx%s!\n"
869 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
870 addr, message,
871 dmi_get_system_info(DMI_BIOS_VENDOR),
872 dmi_get_system_info(DMI_BIOS_VERSION),
873 dmi_get_system_info(DMI_PRODUCT_VERSION));
874 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
875}
876
877static int __ref
878dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
879{
880 struct acpi_dmar_hardware_unit *drhd;
881 void __iomem *addr;
882 u64 cap, ecap;
883
884 drhd = (void *)entry;
885 if (!drhd->address) {
886 warn_invalid_dmar(0, "");
887 return -EINVAL;
888 }
889
890 if (arg)
891 addr = ioremap(drhd->address, VTD_PAGE_SIZE);
892 else
893 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
894 if (!addr) {
895 pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
896 return -EINVAL;
897 }
898
899 cap = dmar_readq(addr + DMAR_CAP_REG);
900 ecap = dmar_readq(addr + DMAR_ECAP_REG);
901
902 if (arg)
903 iounmap(addr);
904 else
905 early_iounmap(addr, VTD_PAGE_SIZE);
906
907 if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
908 warn_invalid_dmar(drhd->address, " returns all ones");
909 return -EINVAL;
910 }
911
912 return 0;
913}
914
915void __init detect_intel_iommu(void)
916{
917 int ret;
918 struct dmar_res_callback validate_drhd_cb = {
919 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
920 .ignore_unhandled = true,
921 };
922
923 down_write(&dmar_global_lock);
924 ret = dmar_table_detect();
925 if (!ret)
926 ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
927 &validate_drhd_cb);
928 if (!ret && !no_iommu && !iommu_detected &&
929 (!dmar_disabled || dmar_platform_optin())) {
930 iommu_detected = 1;
931 /* Make sure ACS will be enabled */
932 pci_request_acs();
933 }
934
935#ifdef CONFIG_X86
936 if (!ret) {
937 x86_init.iommu.iommu_init = intel_iommu_init;
938 x86_platform.iommu_shutdown = intel_iommu_shutdown;
939 }
940
941#endif
942
943 if (dmar_tbl) {
944 acpi_put_table(dmar_tbl);
945 dmar_tbl = NULL;
946 }
947 up_write(&dmar_global_lock);
948}
949
950static void unmap_iommu(struct intel_iommu *iommu)
951{
952 iounmap(iommu->reg);
953 release_mem_region(iommu->reg_phys, iommu->reg_size);
954}
955
956/**
957 * map_iommu: map the iommu's registers
958 * @iommu: the iommu to map
959 * @phys_addr: the physical address of the base resgister
960 *
961 * Memory map the iommu's registers. Start w/ a single page, and
962 * possibly expand if that turns out to be insufficent.
963 */
964static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
965{
966 int map_size, err=0;
967
968 iommu->reg_phys = phys_addr;
969 iommu->reg_size = VTD_PAGE_SIZE;
970
971 if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
972 pr_err("Can't reserve memory\n");
973 err = -EBUSY;
974 goto out;
975 }
976
977 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
978 if (!iommu->reg) {
979 pr_err("Can't map the region\n");
980 err = -ENOMEM;
981 goto release;
982 }
983
984 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
985 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
986
987 if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
988 err = -EINVAL;
989 warn_invalid_dmar(phys_addr, " returns all ones");
990 goto unmap;
991 }
992 if (ecap_vcs(iommu->ecap))
993 iommu->vccap = dmar_readq(iommu->reg + DMAR_VCCAP_REG);
994
995 /* the registers might be more than one page */
996 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
997 cap_max_fault_reg_offset(iommu->cap));
998 map_size = VTD_PAGE_ALIGN(map_size);
999 if (map_size > iommu->reg_size) {
1000 iounmap(iommu->reg);
1001 release_mem_region(iommu->reg_phys, iommu->reg_size);
1002 iommu->reg_size = map_size;
1003 if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
1004 iommu->name)) {
1005 pr_err("Can't reserve memory\n");
1006 err = -EBUSY;
1007 goto out;
1008 }
1009 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
1010 if (!iommu->reg) {
1011 pr_err("Can't map the region\n");
1012 err = -ENOMEM;
1013 goto release;
1014 }
1015 }
1016 err = 0;
1017 goto out;
1018
1019unmap:
1020 iounmap(iommu->reg);
1021release:
1022 release_mem_region(iommu->reg_phys, iommu->reg_size);
1023out:
1024 return err;
1025}
1026
1027static int alloc_iommu(struct dmar_drhd_unit *drhd)
1028{
1029 struct intel_iommu *iommu;
1030 u32 ver, sts;
1031 int agaw = -1;
1032 int msagaw = -1;
1033 int err;
1034
1035 if (!drhd->reg_base_addr) {
1036 warn_invalid_dmar(0, "");
1037 return -EINVAL;
1038 }
1039
1040 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1041 if (!iommu)
1042 return -ENOMEM;
1043
1044 iommu->seq_id = ida_alloc_range(&dmar_seq_ids, 0,
1045 DMAR_UNITS_SUPPORTED - 1, GFP_KERNEL);
1046 if (iommu->seq_id < 0) {
1047 pr_err("Failed to allocate seq_id\n");
1048 err = iommu->seq_id;
1049 goto error;
1050 }
1051 sprintf(iommu->name, "dmar%d", iommu->seq_id);
1052
1053 err = map_iommu(iommu, drhd->reg_base_addr);
1054 if (err) {
1055 pr_err("Failed to map %s\n", iommu->name);
1056 goto error_free_seq_id;
1057 }
1058
1059 err = -EINVAL;
1060 if (cap_sagaw(iommu->cap) == 0) {
1061 pr_info("%s: No supported address widths. Not attempting DMA translation.\n",
1062 iommu->name);
1063 drhd->ignored = 1;
1064 }
1065
1066 if (!drhd->ignored) {
1067 agaw = iommu_calculate_agaw(iommu);
1068 if (agaw < 0) {
1069 pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
1070 iommu->seq_id);
1071 drhd->ignored = 1;
1072 }
1073 }
1074 if (!drhd->ignored) {
1075 msagaw = iommu_calculate_max_sagaw(iommu);
1076 if (msagaw < 0) {
1077 pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
1078 iommu->seq_id);
1079 drhd->ignored = 1;
1080 agaw = -1;
1081 }
1082 }
1083 iommu->agaw = agaw;
1084 iommu->msagaw = msagaw;
1085 iommu->segment = drhd->segment;
1086
1087 iommu->node = NUMA_NO_NODE;
1088
1089 ver = readl(iommu->reg + DMAR_VER_REG);
1090 pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
1091 iommu->name,
1092 (unsigned long long)drhd->reg_base_addr,
1093 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
1094 (unsigned long long)iommu->cap,
1095 (unsigned long long)iommu->ecap);
1096
1097 /* Reflect status in gcmd */
1098 sts = readl(iommu->reg + DMAR_GSTS_REG);
1099 if (sts & DMA_GSTS_IRES)
1100 iommu->gcmd |= DMA_GCMD_IRE;
1101 if (sts & DMA_GSTS_TES)
1102 iommu->gcmd |= DMA_GCMD_TE;
1103 if (sts & DMA_GSTS_QIES)
1104 iommu->gcmd |= DMA_GCMD_QIE;
1105
1106 raw_spin_lock_init(&iommu->register_lock);
1107
1108 /*
1109 * A value of N in PSS field of eCap register indicates hardware
1110 * supports PASID field of N+1 bits.
1111 */
1112 if (pasid_supported(iommu))
1113 iommu->iommu.max_pasids = 2UL << ecap_pss(iommu->ecap);
1114
1115 /*
1116 * This is only for hotplug; at boot time intel_iommu_enabled won't
1117 * be set yet. When intel_iommu_init() runs, it registers the units
1118 * present at boot time, then sets intel_iommu_enabled.
1119 */
1120 if (intel_iommu_enabled && !drhd->ignored) {
1121 err = iommu_device_sysfs_add(&iommu->iommu, NULL,
1122 intel_iommu_groups,
1123 "%s", iommu->name);
1124 if (err)
1125 goto err_unmap;
1126
1127 err = iommu_device_register(&iommu->iommu, &intel_iommu_ops, NULL);
1128 if (err)
1129 goto err_sysfs;
1130 }
1131
1132 drhd->iommu = iommu;
1133 iommu->drhd = drhd;
1134
1135 return 0;
1136
1137err_sysfs:
1138 iommu_device_sysfs_remove(&iommu->iommu);
1139err_unmap:
1140 unmap_iommu(iommu);
1141error_free_seq_id:
1142 ida_free(&dmar_seq_ids, iommu->seq_id);
1143error:
1144 kfree(iommu);
1145 return err;
1146}
1147
1148static void free_iommu(struct intel_iommu *iommu)
1149{
1150 if (intel_iommu_enabled && !iommu->drhd->ignored) {
1151 iommu_device_unregister(&iommu->iommu);
1152 iommu_device_sysfs_remove(&iommu->iommu);
1153 }
1154
1155 if (iommu->irq) {
1156 if (iommu->pr_irq) {
1157 free_irq(iommu->pr_irq, iommu);
1158 dmar_free_hwirq(iommu->pr_irq);
1159 iommu->pr_irq = 0;
1160 }
1161 free_irq(iommu->irq, iommu);
1162 dmar_free_hwirq(iommu->irq);
1163 iommu->irq = 0;
1164 }
1165
1166 if (iommu->qi) {
1167 free_page((unsigned long)iommu->qi->desc);
1168 kfree(iommu->qi->desc_status);
1169 kfree(iommu->qi);
1170 }
1171
1172 if (iommu->reg)
1173 unmap_iommu(iommu);
1174
1175 ida_free(&dmar_seq_ids, iommu->seq_id);
1176 kfree(iommu);
1177}
1178
1179/*
1180 * Reclaim all the submitted descriptors which have completed its work.
1181 */
1182static inline void reclaim_free_desc(struct q_inval *qi)
1183{
1184 while (qi->desc_status[qi->free_tail] == QI_DONE ||
1185 qi->desc_status[qi->free_tail] == QI_ABORT) {
1186 qi->desc_status[qi->free_tail] = QI_FREE;
1187 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1188 qi->free_cnt++;
1189 }
1190}
1191
1192static const char *qi_type_string(u8 type)
1193{
1194 switch (type) {
1195 case QI_CC_TYPE:
1196 return "Context-cache Invalidation";
1197 case QI_IOTLB_TYPE:
1198 return "IOTLB Invalidation";
1199 case QI_DIOTLB_TYPE:
1200 return "Device-TLB Invalidation";
1201 case QI_IEC_TYPE:
1202 return "Interrupt Entry Cache Invalidation";
1203 case QI_IWD_TYPE:
1204 return "Invalidation Wait";
1205 case QI_EIOTLB_TYPE:
1206 return "PASID-based IOTLB Invalidation";
1207 case QI_PC_TYPE:
1208 return "PASID-cache Invalidation";
1209 case QI_DEIOTLB_TYPE:
1210 return "PASID-based Device-TLB Invalidation";
1211 case QI_PGRP_RESP_TYPE:
1212 return "Page Group Response";
1213 default:
1214 return "UNKNOWN";
1215 }
1216}
1217
1218static void qi_dump_fault(struct intel_iommu *iommu, u32 fault)
1219{
1220 unsigned int head = dmar_readl(iommu->reg + DMAR_IQH_REG);
1221 u64 iqe_err = dmar_readq(iommu->reg + DMAR_IQER_REG);
1222 struct qi_desc *desc = iommu->qi->desc + head;
1223
1224 if (fault & DMA_FSTS_IQE)
1225 pr_err("VT-d detected Invalidation Queue Error: Reason %llx",
1226 DMAR_IQER_REG_IQEI(iqe_err));
1227 if (fault & DMA_FSTS_ITE)
1228 pr_err("VT-d detected Invalidation Time-out Error: SID %llx",
1229 DMAR_IQER_REG_ITESID(iqe_err));
1230 if (fault & DMA_FSTS_ICE)
1231 pr_err("VT-d detected Invalidation Completion Error: SID %llx",
1232 DMAR_IQER_REG_ICESID(iqe_err));
1233
1234 pr_err("QI HEAD: %s qw0 = 0x%llx, qw1 = 0x%llx\n",
1235 qi_type_string(desc->qw0 & 0xf),
1236 (unsigned long long)desc->qw0,
1237 (unsigned long long)desc->qw1);
1238
1239 head = ((head >> qi_shift(iommu)) + QI_LENGTH - 1) % QI_LENGTH;
1240 head <<= qi_shift(iommu);
1241 desc = iommu->qi->desc + head;
1242
1243 pr_err("QI PRIOR: %s qw0 = 0x%llx, qw1 = 0x%llx\n",
1244 qi_type_string(desc->qw0 & 0xf),
1245 (unsigned long long)desc->qw0,
1246 (unsigned long long)desc->qw1);
1247}
1248
1249static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index)
1250{
1251 u32 fault;
1252 int head, tail;
1253 struct q_inval *qi = iommu->qi;
1254 int shift = qi_shift(iommu);
1255
1256 if (qi->desc_status[wait_index] == QI_ABORT)
1257 return -EAGAIN;
1258
1259 fault = readl(iommu->reg + DMAR_FSTS_REG);
1260 if (fault & (DMA_FSTS_IQE | DMA_FSTS_ITE | DMA_FSTS_ICE))
1261 qi_dump_fault(iommu, fault);
1262
1263 /*
1264 * If IQE happens, the head points to the descriptor associated
1265 * with the error. No new descriptors are fetched until the IQE
1266 * is cleared.
1267 */
1268 if (fault & DMA_FSTS_IQE) {
1269 head = readl(iommu->reg + DMAR_IQH_REG);
1270 if ((head >> shift) == index) {
1271 struct qi_desc *desc = qi->desc + head;
1272
1273 /*
1274 * desc->qw2 and desc->qw3 are either reserved or
1275 * used by software as private data. We won't print
1276 * out these two qw's for security consideration.
1277 */
1278 memcpy(desc, qi->desc + (wait_index << shift),
1279 1 << shift);
1280 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
1281 pr_info("Invalidation Queue Error (IQE) cleared\n");
1282 return -EINVAL;
1283 }
1284 }
1285
1286 /*
1287 * If ITE happens, all pending wait_desc commands are aborted.
1288 * No new descriptors are fetched until the ITE is cleared.
1289 */
1290 if (fault & DMA_FSTS_ITE) {
1291 head = readl(iommu->reg + DMAR_IQH_REG);
1292 head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1293 head |= 1;
1294 tail = readl(iommu->reg + DMAR_IQT_REG);
1295 tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1296
1297 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
1298 pr_info("Invalidation Time-out Error (ITE) cleared\n");
1299
1300 do {
1301 if (qi->desc_status[head] == QI_IN_USE)
1302 qi->desc_status[head] = QI_ABORT;
1303 head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1304 } while (head != tail);
1305
1306 if (qi->desc_status[wait_index] == QI_ABORT)
1307 return -EAGAIN;
1308 }
1309
1310 if (fault & DMA_FSTS_ICE) {
1311 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
1312 pr_info("Invalidation Completion Error (ICE) cleared\n");
1313 }
1314
1315 return 0;
1316}
1317
1318/*
1319 * Function to submit invalidation descriptors of all types to the queued
1320 * invalidation interface(QI). Multiple descriptors can be submitted at a
1321 * time, a wait descriptor will be appended to each submission to ensure
1322 * hardware has completed the invalidation before return. Wait descriptors
1323 * can be part of the submission but it will not be polled for completion.
1324 */
1325int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc,
1326 unsigned int count, unsigned long options)
1327{
1328 struct q_inval *qi = iommu->qi;
1329 s64 devtlb_start_ktime = 0;
1330 s64 iotlb_start_ktime = 0;
1331 s64 iec_start_ktime = 0;
1332 struct qi_desc wait_desc;
1333 int wait_index, index;
1334 unsigned long flags;
1335 int offset, shift;
1336 int rc, i;
1337 u64 type;
1338
1339 if (!qi)
1340 return 0;
1341
1342 type = desc->qw0 & GENMASK_ULL(3, 0);
1343
1344 if ((type == QI_IOTLB_TYPE || type == QI_EIOTLB_TYPE) &&
1345 dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IOTLB))
1346 iotlb_start_ktime = ktime_to_ns(ktime_get());
1347
1348 if ((type == QI_DIOTLB_TYPE || type == QI_DEIOTLB_TYPE) &&
1349 dmar_latency_enabled(iommu, DMAR_LATENCY_INV_DEVTLB))
1350 devtlb_start_ktime = ktime_to_ns(ktime_get());
1351
1352 if (type == QI_IEC_TYPE &&
1353 dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IEC))
1354 iec_start_ktime = ktime_to_ns(ktime_get());
1355
1356restart:
1357 rc = 0;
1358
1359 raw_spin_lock_irqsave(&qi->q_lock, flags);
1360 /*
1361 * Check if we have enough empty slots in the queue to submit,
1362 * the calculation is based on:
1363 * # of desc + 1 wait desc + 1 space between head and tail
1364 */
1365 while (qi->free_cnt < count + 2) {
1366 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1367 cpu_relax();
1368 raw_spin_lock_irqsave(&qi->q_lock, flags);
1369 }
1370
1371 index = qi->free_head;
1372 wait_index = (index + count) % QI_LENGTH;
1373 shift = qi_shift(iommu);
1374
1375 for (i = 0; i < count; i++) {
1376 offset = ((index + i) % QI_LENGTH) << shift;
1377 memcpy(qi->desc + offset, &desc[i], 1 << shift);
1378 qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE;
1379 trace_qi_submit(iommu, desc[i].qw0, desc[i].qw1,
1380 desc[i].qw2, desc[i].qw3);
1381 }
1382 qi->desc_status[wait_index] = QI_IN_USE;
1383
1384 wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) |
1385 QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1386 if (options & QI_OPT_WAIT_DRAIN)
1387 wait_desc.qw0 |= QI_IWD_PRQ_DRAIN;
1388 wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]);
1389 wait_desc.qw2 = 0;
1390 wait_desc.qw3 = 0;
1391
1392 offset = wait_index << shift;
1393 memcpy(qi->desc + offset, &wait_desc, 1 << shift);
1394
1395 qi->free_head = (qi->free_head + count + 1) % QI_LENGTH;
1396 qi->free_cnt -= count + 1;
1397
1398 /*
1399 * update the HW tail register indicating the presence of
1400 * new descriptors.
1401 */
1402 writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG);
1403
1404 while (qi->desc_status[wait_index] != QI_DONE) {
1405 /*
1406 * We will leave the interrupts disabled, to prevent interrupt
1407 * context to queue another cmd while a cmd is already submitted
1408 * and waiting for completion on this cpu. This is to avoid
1409 * a deadlock where the interrupt context can wait indefinitely
1410 * for free slots in the queue.
1411 */
1412 rc = qi_check_fault(iommu, index, wait_index);
1413 if (rc)
1414 break;
1415
1416 raw_spin_unlock(&qi->q_lock);
1417 cpu_relax();
1418 raw_spin_lock(&qi->q_lock);
1419 }
1420
1421 for (i = 0; i < count; i++)
1422 qi->desc_status[(index + i) % QI_LENGTH] = QI_DONE;
1423
1424 reclaim_free_desc(qi);
1425 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1426
1427 if (rc == -EAGAIN)
1428 goto restart;
1429
1430 if (iotlb_start_ktime)
1431 dmar_latency_update(iommu, DMAR_LATENCY_INV_IOTLB,
1432 ktime_to_ns(ktime_get()) - iotlb_start_ktime);
1433
1434 if (devtlb_start_ktime)
1435 dmar_latency_update(iommu, DMAR_LATENCY_INV_DEVTLB,
1436 ktime_to_ns(ktime_get()) - devtlb_start_ktime);
1437
1438 if (iec_start_ktime)
1439 dmar_latency_update(iommu, DMAR_LATENCY_INV_IEC,
1440 ktime_to_ns(ktime_get()) - iec_start_ktime);
1441
1442 return rc;
1443}
1444
1445/*
1446 * Flush the global interrupt entry cache.
1447 */
1448void qi_global_iec(struct intel_iommu *iommu)
1449{
1450 struct qi_desc desc;
1451
1452 desc.qw0 = QI_IEC_TYPE;
1453 desc.qw1 = 0;
1454 desc.qw2 = 0;
1455 desc.qw3 = 0;
1456
1457 /* should never fail */
1458 qi_submit_sync(iommu, &desc, 1, 0);
1459}
1460
1461void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1462 u64 type)
1463{
1464 struct qi_desc desc;
1465
1466 desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1467 | QI_CC_GRAN(type) | QI_CC_TYPE;
1468 desc.qw1 = 0;
1469 desc.qw2 = 0;
1470 desc.qw3 = 0;
1471
1472 qi_submit_sync(iommu, &desc, 1, 0);
1473}
1474
1475void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1476 unsigned int size_order, u64 type)
1477{
1478 u8 dw = 0, dr = 0;
1479
1480 struct qi_desc desc;
1481 int ih = 0;
1482
1483 if (cap_write_drain(iommu->cap))
1484 dw = 1;
1485
1486 if (cap_read_drain(iommu->cap))
1487 dr = 1;
1488
1489 desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1490 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1491 desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1492 | QI_IOTLB_AM(size_order);
1493 desc.qw2 = 0;
1494 desc.qw3 = 0;
1495
1496 qi_submit_sync(iommu, &desc, 1, 0);
1497}
1498
1499void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1500 u16 qdep, u64 addr, unsigned mask)
1501{
1502 struct qi_desc desc;
1503
1504 if (mask) {
1505 addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1506 desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1507 } else
1508 desc.qw1 = QI_DEV_IOTLB_ADDR(addr);
1509
1510 if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1511 qdep = 0;
1512
1513 desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1514 QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid);
1515 desc.qw2 = 0;
1516 desc.qw3 = 0;
1517
1518 qi_submit_sync(iommu, &desc, 1, 0);
1519}
1520
1521/* PASID-based IOTLB invalidation */
1522void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr,
1523 unsigned long npages, bool ih)
1524{
1525 struct qi_desc desc = {.qw2 = 0, .qw3 = 0};
1526
1527 /*
1528 * npages == -1 means a PASID-selective invalidation, otherwise,
1529 * a positive value for Page-selective-within-PASID invalidation.
1530 * 0 is not a valid input.
1531 */
1532 if (WARN_ON(!npages)) {
1533 pr_err("Invalid input npages = %ld\n", npages);
1534 return;
1535 }
1536
1537 if (npages == -1) {
1538 desc.qw0 = QI_EIOTLB_PASID(pasid) |
1539 QI_EIOTLB_DID(did) |
1540 QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) |
1541 QI_EIOTLB_TYPE;
1542 desc.qw1 = 0;
1543 } else {
1544 int mask = ilog2(__roundup_pow_of_two(npages));
1545 unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask));
1546
1547 if (WARN_ON_ONCE(!IS_ALIGNED(addr, align)))
1548 addr = ALIGN_DOWN(addr, align);
1549
1550 desc.qw0 = QI_EIOTLB_PASID(pasid) |
1551 QI_EIOTLB_DID(did) |
1552 QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) |
1553 QI_EIOTLB_TYPE;
1554 desc.qw1 = QI_EIOTLB_ADDR(addr) |
1555 QI_EIOTLB_IH(ih) |
1556 QI_EIOTLB_AM(mask);
1557 }
1558
1559 qi_submit_sync(iommu, &desc, 1, 0);
1560}
1561
1562/* PASID-based device IOTLB Invalidate */
1563void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1564 u32 pasid, u16 qdep, u64 addr, unsigned int size_order)
1565{
1566 unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1);
1567 struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1568
1569 desc.qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) |
1570 QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE |
1571 QI_DEV_IOTLB_PFSID(pfsid);
1572
1573 /*
1574 * If S bit is 0, we only flush a single page. If S bit is set,
1575 * The least significant zero bit indicates the invalidation address
1576 * range. VT-d spec 6.5.2.6.
1577 * e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB.
1578 * size order = 0 is PAGE_SIZE 4KB
1579 * Max Invs Pending (MIP) is set to 0 for now until we have DIT in
1580 * ECAP.
1581 */
1582 if (!IS_ALIGNED(addr, VTD_PAGE_SIZE << size_order))
1583 pr_warn_ratelimited("Invalidate non-aligned address %llx, order %d\n",
1584 addr, size_order);
1585
1586 /* Take page address */
1587 desc.qw1 = QI_DEV_EIOTLB_ADDR(addr);
1588
1589 if (size_order) {
1590 /*
1591 * Existing 0s in address below size_order may be the least
1592 * significant bit, we must set them to 1s to avoid having
1593 * smaller size than desired.
1594 */
1595 desc.qw1 |= GENMASK_ULL(size_order + VTD_PAGE_SHIFT - 1,
1596 VTD_PAGE_SHIFT);
1597 /* Clear size_order bit to indicate size */
1598 desc.qw1 &= ~mask;
1599 /* Set the S bit to indicate flushing more than 1 page */
1600 desc.qw1 |= QI_DEV_EIOTLB_SIZE;
1601 }
1602
1603 qi_submit_sync(iommu, &desc, 1, 0);
1604}
1605
1606void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did,
1607 u64 granu, u32 pasid)
1608{
1609 struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1610
1611 desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) |
1612 QI_PC_GRAN(granu) | QI_PC_TYPE;
1613 qi_submit_sync(iommu, &desc, 1, 0);
1614}
1615
1616/*
1617 * Disable Queued Invalidation interface.
1618 */
1619void dmar_disable_qi(struct intel_iommu *iommu)
1620{
1621 unsigned long flags;
1622 u32 sts;
1623 cycles_t start_time = get_cycles();
1624
1625 if (!ecap_qis(iommu->ecap))
1626 return;
1627
1628 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1629
1630 sts = readl(iommu->reg + DMAR_GSTS_REG);
1631 if (!(sts & DMA_GSTS_QIES))
1632 goto end;
1633
1634 /*
1635 * Give a chance to HW to complete the pending invalidation requests.
1636 */
1637 while ((readl(iommu->reg + DMAR_IQT_REG) !=
1638 readl(iommu->reg + DMAR_IQH_REG)) &&
1639 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1640 cpu_relax();
1641
1642 iommu->gcmd &= ~DMA_GCMD_QIE;
1643 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1644
1645 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1646 !(sts & DMA_GSTS_QIES), sts);
1647end:
1648 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1649}
1650
1651/*
1652 * Enable queued invalidation.
1653 */
1654static void __dmar_enable_qi(struct intel_iommu *iommu)
1655{
1656 u32 sts;
1657 unsigned long flags;
1658 struct q_inval *qi = iommu->qi;
1659 u64 val = virt_to_phys(qi->desc);
1660
1661 qi->free_head = qi->free_tail = 0;
1662 qi->free_cnt = QI_LENGTH;
1663
1664 /*
1665 * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability
1666 * is present.
1667 */
1668 if (ecap_smts(iommu->ecap))
1669 val |= (1 << 11) | 1;
1670
1671 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1672
1673 /* write zero to the tail reg */
1674 writel(0, iommu->reg + DMAR_IQT_REG);
1675
1676 dmar_writeq(iommu->reg + DMAR_IQA_REG, val);
1677
1678 iommu->gcmd |= DMA_GCMD_QIE;
1679 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1680
1681 /* Make sure hardware complete it */
1682 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1683
1684 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1685}
1686
1687/*
1688 * Enable Queued Invalidation interface. This is a must to support
1689 * interrupt-remapping. Also used by DMA-remapping, which replaces
1690 * register based IOTLB invalidation.
1691 */
1692int dmar_enable_qi(struct intel_iommu *iommu)
1693{
1694 struct q_inval *qi;
1695 struct page *desc_page;
1696
1697 if (!ecap_qis(iommu->ecap))
1698 return -ENOENT;
1699
1700 /*
1701 * queued invalidation is already setup and enabled.
1702 */
1703 if (iommu->qi)
1704 return 0;
1705
1706 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1707 if (!iommu->qi)
1708 return -ENOMEM;
1709
1710 qi = iommu->qi;
1711
1712 /*
1713 * Need two pages to accommodate 256 descriptors of 256 bits each
1714 * if the remapping hardware supports scalable mode translation.
1715 */
1716 desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO,
1717 !!ecap_smts(iommu->ecap));
1718 if (!desc_page) {
1719 kfree(qi);
1720 iommu->qi = NULL;
1721 return -ENOMEM;
1722 }
1723
1724 qi->desc = page_address(desc_page);
1725
1726 qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC);
1727 if (!qi->desc_status) {
1728 free_page((unsigned long) qi->desc);
1729 kfree(qi);
1730 iommu->qi = NULL;
1731 return -ENOMEM;
1732 }
1733
1734 raw_spin_lock_init(&qi->q_lock);
1735
1736 __dmar_enable_qi(iommu);
1737
1738 return 0;
1739}
1740
1741/* iommu interrupt handling. Most stuff are MSI-like. */
1742
1743enum faulttype {
1744 DMA_REMAP,
1745 INTR_REMAP,
1746 UNKNOWN,
1747};
1748
1749static const char *dma_remap_fault_reasons[] =
1750{
1751 "Software",
1752 "Present bit in root entry is clear",
1753 "Present bit in context entry is clear",
1754 "Invalid context entry",
1755 "Access beyond MGAW",
1756 "PTE Write access is not set",
1757 "PTE Read access is not set",
1758 "Next page table ptr is invalid",
1759 "Root table address invalid",
1760 "Context table ptr is invalid",
1761 "non-zero reserved fields in RTP",
1762 "non-zero reserved fields in CTP",
1763 "non-zero reserved fields in PTE",
1764 "PCE for translation request specifies blocking",
1765};
1766
1767static const char * const dma_remap_sm_fault_reasons[] = {
1768 "SM: Invalid Root Table Address",
1769 "SM: TTM 0 for request with PASID",
1770 "SM: TTM 0 for page group request",
1771 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */
1772 "SM: Error attempting to access Root Entry",
1773 "SM: Present bit in Root Entry is clear",
1774 "SM: Non-zero reserved field set in Root Entry",
1775 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */
1776 "SM: Error attempting to access Context Entry",
1777 "SM: Present bit in Context Entry is clear",
1778 "SM: Non-zero reserved field set in the Context Entry",
1779 "SM: Invalid Context Entry",
1780 "SM: DTE field in Context Entry is clear",
1781 "SM: PASID Enable field in Context Entry is clear",
1782 "SM: PASID is larger than the max in Context Entry",
1783 "SM: PRE field in Context-Entry is clear",
1784 "SM: RID_PASID field error in Context-Entry",
1785 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */
1786 "SM: Error attempting to access the PASID Directory Entry",
1787 "SM: Present bit in Directory Entry is clear",
1788 "SM: Non-zero reserved field set in PASID Directory Entry",
1789 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */
1790 "SM: Error attempting to access PASID Table Entry",
1791 "SM: Present bit in PASID Table Entry is clear",
1792 "SM: Non-zero reserved field set in PASID Table Entry",
1793 "SM: Invalid Scalable-Mode PASID Table Entry",
1794 "SM: ERE field is clear in PASID Table Entry",
1795 "SM: SRE field is clear in PASID Table Entry",
1796 "Unknown", "Unknown",/* 0x5E-0x5F */
1797 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */
1798 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */
1799 "SM: Error attempting to access first-level paging entry",
1800 "SM: Present bit in first-level paging entry is clear",
1801 "SM: Non-zero reserved field set in first-level paging entry",
1802 "SM: Error attempting to access FL-PML4 entry",
1803 "SM: First-level entry address beyond MGAW in Nested translation",
1804 "SM: Read permission error in FL-PML4 entry in Nested translation",
1805 "SM: Read permission error in first-level paging entry in Nested translation",
1806 "SM: Write permission error in first-level paging entry in Nested translation",
1807 "SM: Error attempting to access second-level paging entry",
1808 "SM: Read/Write permission error in second-level paging entry",
1809 "SM: Non-zero reserved field set in second-level paging entry",
1810 "SM: Invalid second-level page table pointer",
1811 "SM: A/D bit update needed in second-level entry when set up in no snoop",
1812 "Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */
1813 "SM: Address in first-level translation is not canonical",
1814 "SM: U/S set 0 for first-level translation with user privilege",
1815 "SM: No execute permission for request with PASID and ER=1",
1816 "SM: Address beyond the DMA hardware max",
1817 "SM: Second-level entry address beyond the max",
1818 "SM: No write permission for Write/AtomicOp request",
1819 "SM: No read permission for Read/AtomicOp request",
1820 "SM: Invalid address-interrupt address",
1821 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */
1822 "SM: A/D bit update needed in first-level entry when set up in no snoop",
1823};
1824
1825static const char *irq_remap_fault_reasons[] =
1826{
1827 "Detected reserved fields in the decoded interrupt-remapped request",
1828 "Interrupt index exceeded the interrupt-remapping table size",
1829 "Present field in the IRTE entry is clear",
1830 "Error accessing interrupt-remapping table pointed by IRTA_REG",
1831 "Detected reserved fields in the IRTE entry",
1832 "Blocked a compatibility format interrupt request",
1833 "Blocked an interrupt request due to source-id verification failure",
1834};
1835
1836static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1837{
1838 if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1839 ARRAY_SIZE(irq_remap_fault_reasons))) {
1840 *fault_type = INTR_REMAP;
1841 return irq_remap_fault_reasons[fault_reason - 0x20];
1842 } else if (fault_reason >= 0x30 && (fault_reason - 0x30 <
1843 ARRAY_SIZE(dma_remap_sm_fault_reasons))) {
1844 *fault_type = DMA_REMAP;
1845 return dma_remap_sm_fault_reasons[fault_reason - 0x30];
1846 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1847 *fault_type = DMA_REMAP;
1848 return dma_remap_fault_reasons[fault_reason];
1849 } else {
1850 *fault_type = UNKNOWN;
1851 return "Unknown";
1852 }
1853}
1854
1855
1856static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
1857{
1858 if (iommu->irq == irq)
1859 return DMAR_FECTL_REG;
1860 else if (iommu->pr_irq == irq)
1861 return DMAR_PECTL_REG;
1862 else
1863 BUG();
1864}
1865
1866void dmar_msi_unmask(struct irq_data *data)
1867{
1868 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1869 int reg = dmar_msi_reg(iommu, data->irq);
1870 unsigned long flag;
1871
1872 /* unmask it */
1873 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1874 writel(0, iommu->reg + reg);
1875 /* Read a reg to force flush the post write */
1876 readl(iommu->reg + reg);
1877 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1878}
1879
1880void dmar_msi_mask(struct irq_data *data)
1881{
1882 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1883 int reg = dmar_msi_reg(iommu, data->irq);
1884 unsigned long flag;
1885
1886 /* mask it */
1887 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1888 writel(DMA_FECTL_IM, iommu->reg + reg);
1889 /* Read a reg to force flush the post write */
1890 readl(iommu->reg + reg);
1891 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1892}
1893
1894void dmar_msi_write(int irq, struct msi_msg *msg)
1895{
1896 struct intel_iommu *iommu = irq_get_handler_data(irq);
1897 int reg = dmar_msi_reg(iommu, irq);
1898 unsigned long flag;
1899
1900 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1901 writel(msg->data, iommu->reg + reg + 4);
1902 writel(msg->address_lo, iommu->reg + reg + 8);
1903 writel(msg->address_hi, iommu->reg + reg + 12);
1904 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1905}
1906
1907void dmar_msi_read(int irq, struct msi_msg *msg)
1908{
1909 struct intel_iommu *iommu = irq_get_handler_data(irq);
1910 int reg = dmar_msi_reg(iommu, irq);
1911 unsigned long flag;
1912
1913 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1914 msg->data = readl(iommu->reg + reg + 4);
1915 msg->address_lo = readl(iommu->reg + reg + 8);
1916 msg->address_hi = readl(iommu->reg + reg + 12);
1917 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1918}
1919
1920static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1921 u8 fault_reason, u32 pasid, u16 source_id,
1922 unsigned long long addr)
1923{
1924 const char *reason;
1925 int fault_type;
1926
1927 reason = dmar_get_fault_reason(fault_reason, &fault_type);
1928
1929 if (fault_type == INTR_REMAP) {
1930 pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index 0x%llx [fault reason 0x%02x] %s\n",
1931 source_id >> 8, PCI_SLOT(source_id & 0xFF),
1932 PCI_FUNC(source_id & 0xFF), addr >> 48,
1933 fault_reason, reason);
1934
1935 return 0;
1936 }
1937
1938 if (pasid == INVALID_IOASID)
1939 pr_err("[%s NO_PASID] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n",
1940 type ? "DMA Read" : "DMA Write",
1941 source_id >> 8, PCI_SLOT(source_id & 0xFF),
1942 PCI_FUNC(source_id & 0xFF), addr,
1943 fault_reason, reason);
1944 else
1945 pr_err("[%s PASID 0x%x] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n",
1946 type ? "DMA Read" : "DMA Write", pasid,
1947 source_id >> 8, PCI_SLOT(source_id & 0xFF),
1948 PCI_FUNC(source_id & 0xFF), addr,
1949 fault_reason, reason);
1950
1951 dmar_fault_dump_ptes(iommu, source_id, addr, pasid);
1952
1953 return 0;
1954}
1955
1956#define PRIMARY_FAULT_REG_LEN (16)
1957irqreturn_t dmar_fault(int irq, void *dev_id)
1958{
1959 struct intel_iommu *iommu = dev_id;
1960 int reg, fault_index;
1961 u32 fault_status;
1962 unsigned long flag;
1963 static DEFINE_RATELIMIT_STATE(rs,
1964 DEFAULT_RATELIMIT_INTERVAL,
1965 DEFAULT_RATELIMIT_BURST);
1966
1967 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1968 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1969 if (fault_status && __ratelimit(&rs))
1970 pr_err("DRHD: handling fault status reg %x\n", fault_status);
1971
1972 /* TBD: ignore advanced fault log currently */
1973 if (!(fault_status & DMA_FSTS_PPF))
1974 goto unlock_exit;
1975
1976 fault_index = dma_fsts_fault_record_index(fault_status);
1977 reg = cap_fault_reg_offset(iommu->cap);
1978 while (1) {
1979 /* Disable printing, simply clear the fault when ratelimited */
1980 bool ratelimited = !__ratelimit(&rs);
1981 u8 fault_reason;
1982 u16 source_id;
1983 u64 guest_addr;
1984 u32 pasid;
1985 int type;
1986 u32 data;
1987 bool pasid_present;
1988
1989 /* highest 32 bits */
1990 data = readl(iommu->reg + reg +
1991 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1992 if (!(data & DMA_FRCD_F))
1993 break;
1994
1995 if (!ratelimited) {
1996 fault_reason = dma_frcd_fault_reason(data);
1997 type = dma_frcd_type(data);
1998
1999 pasid = dma_frcd_pasid_value(data);
2000 data = readl(iommu->reg + reg +
2001 fault_index * PRIMARY_FAULT_REG_LEN + 8);
2002 source_id = dma_frcd_source_id(data);
2003
2004 pasid_present = dma_frcd_pasid_present(data);
2005 guest_addr = dmar_readq(iommu->reg + reg +
2006 fault_index * PRIMARY_FAULT_REG_LEN);
2007 guest_addr = dma_frcd_page_addr(guest_addr);
2008 }
2009
2010 /* clear the fault */
2011 writel(DMA_FRCD_F, iommu->reg + reg +
2012 fault_index * PRIMARY_FAULT_REG_LEN + 12);
2013
2014 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
2015
2016 if (!ratelimited)
2017 /* Using pasid -1 if pasid is not present */
2018 dmar_fault_do_one(iommu, type, fault_reason,
2019 pasid_present ? pasid : INVALID_IOASID,
2020 source_id, guest_addr);
2021
2022 fault_index++;
2023 if (fault_index >= cap_num_fault_regs(iommu->cap))
2024 fault_index = 0;
2025 raw_spin_lock_irqsave(&iommu->register_lock, flag);
2026 }
2027
2028 writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO,
2029 iommu->reg + DMAR_FSTS_REG);
2030
2031unlock_exit:
2032 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
2033 return IRQ_HANDLED;
2034}
2035
2036int dmar_set_interrupt(struct intel_iommu *iommu)
2037{
2038 int irq, ret;
2039
2040 /*
2041 * Check if the fault interrupt is already initialized.
2042 */
2043 if (iommu->irq)
2044 return 0;
2045
2046 irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
2047 if (irq > 0) {
2048 iommu->irq = irq;
2049 } else {
2050 pr_err("No free IRQ vectors\n");
2051 return -EINVAL;
2052 }
2053
2054 ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
2055 if (ret)
2056 pr_err("Can't request irq\n");
2057 return ret;
2058}
2059
2060int __init enable_drhd_fault_handling(void)
2061{
2062 struct dmar_drhd_unit *drhd;
2063 struct intel_iommu *iommu;
2064
2065 /*
2066 * Enable fault control interrupt.
2067 */
2068 for_each_iommu(iommu, drhd) {
2069 u32 fault_status;
2070 int ret = dmar_set_interrupt(iommu);
2071
2072 if (ret) {
2073 pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
2074 (unsigned long long)drhd->reg_base_addr, ret);
2075 return -1;
2076 }
2077
2078 /*
2079 * Clear any previous faults.
2080 */
2081 dmar_fault(iommu->irq, iommu);
2082 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
2083 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
2084 }
2085
2086 return 0;
2087}
2088
2089/*
2090 * Re-enable Queued Invalidation interface.
2091 */
2092int dmar_reenable_qi(struct intel_iommu *iommu)
2093{
2094 if (!ecap_qis(iommu->ecap))
2095 return -ENOENT;
2096
2097 if (!iommu->qi)
2098 return -ENOENT;
2099
2100 /*
2101 * First disable queued invalidation.
2102 */
2103 dmar_disable_qi(iommu);
2104 /*
2105 * Then enable queued invalidation again. Since there is no pending
2106 * invalidation requests now, it's safe to re-enable queued
2107 * invalidation.
2108 */
2109 __dmar_enable_qi(iommu);
2110
2111 return 0;
2112}
2113
2114/*
2115 * Check interrupt remapping support in DMAR table description.
2116 */
2117int __init dmar_ir_support(void)
2118{
2119 struct acpi_table_dmar *dmar;
2120 dmar = (struct acpi_table_dmar *)dmar_tbl;
2121 if (!dmar)
2122 return 0;
2123 return dmar->flags & 0x1;
2124}
2125
2126/* Check whether DMAR units are in use */
2127static inline bool dmar_in_use(void)
2128{
2129 return irq_remapping_enabled || intel_iommu_enabled;
2130}
2131
2132static int __init dmar_free_unused_resources(void)
2133{
2134 struct dmar_drhd_unit *dmaru, *dmaru_n;
2135
2136 if (dmar_in_use())
2137 return 0;
2138
2139 if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
2140 bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
2141
2142 down_write(&dmar_global_lock);
2143 list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
2144 list_del(&dmaru->list);
2145 dmar_free_drhd(dmaru);
2146 }
2147 up_write(&dmar_global_lock);
2148
2149 return 0;
2150}
2151
2152late_initcall(dmar_free_unused_resources);
2153
2154/*
2155 * DMAR Hotplug Support
2156 * For more details, please refer to Intel(R) Virtualization Technology
2157 * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
2158 * "Remapping Hardware Unit Hot Plug".
2159 */
2160static guid_t dmar_hp_guid =
2161 GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B,
2162 0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF);
2163
2164/*
2165 * Currently there's only one revision and BIOS will not check the revision id,
2166 * so use 0 for safety.
2167 */
2168#define DMAR_DSM_REV_ID 0
2169#define DMAR_DSM_FUNC_DRHD 1
2170#define DMAR_DSM_FUNC_ATSR 2
2171#define DMAR_DSM_FUNC_RHSA 3
2172#define DMAR_DSM_FUNC_SATC 4
2173
2174static inline bool dmar_detect_dsm(acpi_handle handle, int func)
2175{
2176 return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func);
2177}
2178
2179static int dmar_walk_dsm_resource(acpi_handle handle, int func,
2180 dmar_res_handler_t handler, void *arg)
2181{
2182 int ret = -ENODEV;
2183 union acpi_object *obj;
2184 struct acpi_dmar_header *start;
2185 struct dmar_res_callback callback;
2186 static int res_type[] = {
2187 [DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
2188 [DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
2189 [DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
2190 [DMAR_DSM_FUNC_SATC] = ACPI_DMAR_TYPE_SATC,
2191 };
2192
2193 if (!dmar_detect_dsm(handle, func))
2194 return 0;
2195
2196 obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID,
2197 func, NULL, ACPI_TYPE_BUFFER);
2198 if (!obj)
2199 return -ENODEV;
2200
2201 memset(&callback, 0, sizeof(callback));
2202 callback.cb[res_type[func]] = handler;
2203 callback.arg[res_type[func]] = arg;
2204 start = (struct acpi_dmar_header *)obj->buffer.pointer;
2205 ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);
2206
2207 ACPI_FREE(obj);
2208
2209 return ret;
2210}
2211
2212static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
2213{
2214 int ret;
2215 struct dmar_drhd_unit *dmaru;
2216
2217 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2218 if (!dmaru)
2219 return -ENODEV;
2220
2221 ret = dmar_ir_hotplug(dmaru, true);
2222 if (ret == 0)
2223 ret = dmar_iommu_hotplug(dmaru, true);
2224
2225 return ret;
2226}
2227
2228static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
2229{
2230 int i, ret;
2231 struct device *dev;
2232 struct dmar_drhd_unit *dmaru;
2233
2234 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2235 if (!dmaru)
2236 return 0;
2237
2238 /*
2239 * All PCI devices managed by this unit should have been destroyed.
2240 */
2241 if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) {
2242 for_each_active_dev_scope(dmaru->devices,
2243 dmaru->devices_cnt, i, dev)
2244 return -EBUSY;
2245 }
2246
2247 ret = dmar_ir_hotplug(dmaru, false);
2248 if (ret == 0)
2249 ret = dmar_iommu_hotplug(dmaru, false);
2250
2251 return ret;
2252}
2253
2254static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
2255{
2256 struct dmar_drhd_unit *dmaru;
2257
2258 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2259 if (dmaru) {
2260 list_del_rcu(&dmaru->list);
2261 synchronize_rcu();
2262 dmar_free_drhd(dmaru);
2263 }
2264
2265 return 0;
2266}
2267
2268static int dmar_hotplug_insert(acpi_handle handle)
2269{
2270 int ret;
2271 int drhd_count = 0;
2272
2273 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2274 &dmar_validate_one_drhd, (void *)1);
2275 if (ret)
2276 goto out;
2277
2278 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2279 &dmar_parse_one_drhd, (void *)&drhd_count);
2280 if (ret == 0 && drhd_count == 0) {
2281 pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
2282 goto out;
2283 } else if (ret) {
2284 goto release_drhd;
2285 }
2286
2287 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
2288 &dmar_parse_one_rhsa, NULL);
2289 if (ret)
2290 goto release_drhd;
2291
2292 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2293 &dmar_parse_one_atsr, NULL);
2294 if (ret)
2295 goto release_atsr;
2296
2297 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2298 &dmar_hp_add_drhd, NULL);
2299 if (!ret)
2300 return 0;
2301
2302 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2303 &dmar_hp_remove_drhd, NULL);
2304release_atsr:
2305 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2306 &dmar_release_one_atsr, NULL);
2307release_drhd:
2308 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2309 &dmar_hp_release_drhd, NULL);
2310out:
2311 return ret;
2312}
2313
2314static int dmar_hotplug_remove(acpi_handle handle)
2315{
2316 int ret;
2317
2318 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2319 &dmar_check_one_atsr, NULL);
2320 if (ret)
2321 return ret;
2322
2323 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2324 &dmar_hp_remove_drhd, NULL);
2325 if (ret == 0) {
2326 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2327 &dmar_release_one_atsr, NULL));
2328 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2329 &dmar_hp_release_drhd, NULL));
2330 } else {
2331 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2332 &dmar_hp_add_drhd, NULL);
2333 }
2334
2335 return ret;
2336}
2337
2338static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
2339 void *context, void **retval)
2340{
2341 acpi_handle *phdl = retval;
2342
2343 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2344 *phdl = handle;
2345 return AE_CTRL_TERMINATE;
2346 }
2347
2348 return AE_OK;
2349}
2350
2351static int dmar_device_hotplug(acpi_handle handle, bool insert)
2352{
2353 int ret;
2354 acpi_handle tmp = NULL;
2355 acpi_status status;
2356
2357 if (!dmar_in_use())
2358 return 0;
2359
2360 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2361 tmp = handle;
2362 } else {
2363 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2364 ACPI_UINT32_MAX,
2365 dmar_get_dsm_handle,
2366 NULL, NULL, &tmp);
2367 if (ACPI_FAILURE(status)) {
2368 pr_warn("Failed to locate _DSM method.\n");
2369 return -ENXIO;
2370 }
2371 }
2372 if (tmp == NULL)
2373 return 0;
2374
2375 down_write(&dmar_global_lock);
2376 if (insert)
2377 ret = dmar_hotplug_insert(tmp);
2378 else
2379 ret = dmar_hotplug_remove(tmp);
2380 up_write(&dmar_global_lock);
2381
2382 return ret;
2383}
2384
2385int dmar_device_add(acpi_handle handle)
2386{
2387 return dmar_device_hotplug(handle, true);
2388}
2389
2390int dmar_device_remove(acpi_handle handle)
2391{
2392 return dmar_device_hotplug(handle, false);
2393}
2394
2395/*
2396 * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table
2397 *
2398 * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in
2399 * the ACPI DMAR table. This means that the platform boot firmware has made
2400 * sure no device can issue DMA outside of RMRR regions.
2401 */
2402bool dmar_platform_optin(void)
2403{
2404 struct acpi_table_dmar *dmar;
2405 acpi_status status;
2406 bool ret;
2407
2408 status = acpi_get_table(ACPI_SIG_DMAR, 0,
2409 (struct acpi_table_header **)&dmar);
2410 if (ACPI_FAILURE(status))
2411 return false;
2412
2413 ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN);
2414 acpi_put_table((struct acpi_table_header *)dmar);
2415
2416 return ret;
2417}
2418EXPORT_SYMBOL_GPL(dmar_platform_optin);