Linux Audio

Check our new training course

Linux kernel drivers training

May 6-19, 2025
Register
Loading...
Note: File does not exist in v6.2.
   1/*
   2 * Copyright © 2006-2014 Intel Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * Authors: David Woodhouse <dwmw2@infradead.org>,
  14 *          Ashok Raj <ashok.raj@intel.com>,
  15 *          Shaohua Li <shaohua.li@intel.com>,
  16 *          Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
  17 *          Fenghua Yu <fenghua.yu@intel.com>
  18 *          Joerg Roedel <jroedel@suse.de>
  19 */
  20
  21#define pr_fmt(fmt)     "DMAR: " fmt
  22
  23#include <linux/init.h>
  24#include <linux/bitmap.h>
  25#include <linux/debugfs.h>
  26#include <linux/export.h>
  27#include <linux/slab.h>
  28#include <linux/irq.h>
  29#include <linux/interrupt.h>
  30#include <linux/spinlock.h>
  31#include <linux/pci.h>
  32#include <linux/dmar.h>
  33#include <linux/dma-mapping.h>
  34#include <linux/mempool.h>
  35#include <linux/memory.h>
  36#include <linux/cpu.h>
  37#include <linux/timer.h>
  38#include <linux/io.h>
  39#include <linux/iova.h>
  40#include <linux/iommu.h>
  41#include <linux/intel-iommu.h>
  42#include <linux/syscore_ops.h>
  43#include <linux/tboot.h>
  44#include <linux/dmi.h>
  45#include <linux/pci-ats.h>
  46#include <linux/memblock.h>
  47#include <linux/dma-contiguous.h>
  48#include <linux/crash_dump.h>
  49#include <asm/irq_remapping.h>
  50#include <asm/cacheflush.h>
  51#include <asm/iommu.h>
  52
  53#include "irq_remapping.h"
  54
  55#define ROOT_SIZE		VTD_PAGE_SIZE
  56#define CONTEXT_SIZE		VTD_PAGE_SIZE
  57
  58#define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
  59#define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
  60#define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
  61#define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
  62
  63#define IOAPIC_RANGE_START	(0xfee00000)
  64#define IOAPIC_RANGE_END	(0xfeefffff)
  65#define IOVA_START_ADDR		(0x1000)
  66
  67#define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
  68
  69#define MAX_AGAW_WIDTH 64
  70#define MAX_AGAW_PFN_WIDTH	(MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
  71
  72#define __DOMAIN_MAX_PFN(gaw)  ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
  73#define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
  74
  75/* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
  76   to match. That way, we can use 'unsigned long' for PFNs with impunity. */
  77#define DOMAIN_MAX_PFN(gaw)	((unsigned long) min_t(uint64_t, \
  78				__DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
  79#define DOMAIN_MAX_ADDR(gaw)	(((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
  80
  81/* IO virtual address start page frame number */
  82#define IOVA_START_PFN		(1)
  83
  84#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
  85#define DMA_32BIT_PFN		IOVA_PFN(DMA_BIT_MASK(32))
  86#define DMA_64BIT_PFN		IOVA_PFN(DMA_BIT_MASK(64))
  87
  88/* page table handling */
  89#define LEVEL_STRIDE		(9)
  90#define LEVEL_MASK		(((u64)1 << LEVEL_STRIDE) - 1)
  91
  92/*
  93 * This bitmap is used to advertise the page sizes our hardware support
  94 * to the IOMMU core, which will then use this information to split
  95 * physically contiguous memory regions it is mapping into page sizes
  96 * that we support.
  97 *
  98 * Traditionally the IOMMU core just handed us the mappings directly,
  99 * after making sure the size is an order of a 4KiB page and that the
 100 * mapping has natural alignment.
 101 *
 102 * To retain this behavior, we currently advertise that we support
 103 * all page sizes that are an order of 4KiB.
 104 *
 105 * If at some point we'd like to utilize the IOMMU core's new behavior,
 106 * we could change this to advertise the real page sizes we support.
 107 */
 108#define INTEL_IOMMU_PGSIZES	(~0xFFFUL)
 109
 110static inline int agaw_to_level(int agaw)
 111{
 112	return agaw + 2;
 113}
 114
 115static inline int agaw_to_width(int agaw)
 116{
 117	return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
 118}
 119
 120static inline int width_to_agaw(int width)
 121{
 122	return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
 123}
 124
 125static inline unsigned int level_to_offset_bits(int level)
 126{
 127	return (level - 1) * LEVEL_STRIDE;
 128}
 129
 130static inline int pfn_level_offset(unsigned long pfn, int level)
 131{
 132	return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
 133}
 134
 135static inline unsigned long level_mask(int level)
 136{
 137	return -1UL << level_to_offset_bits(level);
 138}
 139
 140static inline unsigned long level_size(int level)
 141{
 142	return 1UL << level_to_offset_bits(level);
 143}
 144
 145static inline unsigned long align_to_level(unsigned long pfn, int level)
 146{
 147	return (pfn + level_size(level) - 1) & level_mask(level);
 148}
 149
 150static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
 151{
 152	return  1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
 153}
 154
 155/* VT-d pages must always be _smaller_ than MM pages. Otherwise things
 156   are never going to work. */
 157static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
 158{
 159	return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
 160}
 161
 162static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
 163{
 164	return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
 165}
 166static inline unsigned long page_to_dma_pfn(struct page *pg)
 167{
 168	return mm_to_dma_pfn(page_to_pfn(pg));
 169}
 170static inline unsigned long virt_to_dma_pfn(void *p)
 171{
 172	return page_to_dma_pfn(virt_to_page(p));
 173}
 174
 175/* global iommu list, set NULL for ignored DMAR units */
 176static struct intel_iommu **g_iommus;
 177
 178static void __init check_tylersburg_isoch(void);
 179static int rwbf_quirk;
 180
 181/*
 182 * set to 1 to panic kernel if can't successfully enable VT-d
 183 * (used when kernel is launched w/ TXT)
 184 */
 185static int force_on = 0;
 186
 187/*
 188 * 0: Present
 189 * 1-11: Reserved
 190 * 12-63: Context Ptr (12 - (haw-1))
 191 * 64-127: Reserved
 192 */
 193struct root_entry {
 194	u64	lo;
 195	u64	hi;
 196};
 197#define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
 198
 199/*
 200 * Take a root_entry and return the Lower Context Table Pointer (LCTP)
 201 * if marked present.
 202 */
 203static phys_addr_t root_entry_lctp(struct root_entry *re)
 204{
 205	if (!(re->lo & 1))
 206		return 0;
 207
 208	return re->lo & VTD_PAGE_MASK;
 209}
 210
 211/*
 212 * Take a root_entry and return the Upper Context Table Pointer (UCTP)
 213 * if marked present.
 214 */
 215static phys_addr_t root_entry_uctp(struct root_entry *re)
 216{
 217	if (!(re->hi & 1))
 218		return 0;
 219
 220	return re->hi & VTD_PAGE_MASK;
 221}
 222/*
 223 * low 64 bits:
 224 * 0: present
 225 * 1: fault processing disable
 226 * 2-3: translation type
 227 * 12-63: address space root
 228 * high 64 bits:
 229 * 0-2: address width
 230 * 3-6: aval
 231 * 8-23: domain id
 232 */
 233struct context_entry {
 234	u64 lo;
 235	u64 hi;
 236};
 237
 238static inline void context_clear_pasid_enable(struct context_entry *context)
 239{
 240	context->lo &= ~(1ULL << 11);
 241}
 242
 243static inline bool context_pasid_enabled(struct context_entry *context)
 244{
 245	return !!(context->lo & (1ULL << 11));
 246}
 247
 248static inline void context_set_copied(struct context_entry *context)
 249{
 250	context->hi |= (1ull << 3);
 251}
 252
 253static inline bool context_copied(struct context_entry *context)
 254{
 255	return !!(context->hi & (1ULL << 3));
 256}
 257
 258static inline bool __context_present(struct context_entry *context)
 259{
 260	return (context->lo & 1);
 261}
 262
 263static inline bool context_present(struct context_entry *context)
 264{
 265	return context_pasid_enabled(context) ?
 266	     __context_present(context) :
 267	     __context_present(context) && !context_copied(context);
 268}
 269
 270static inline void context_set_present(struct context_entry *context)
 271{
 272	context->lo |= 1;
 273}
 274
 275static inline void context_set_fault_enable(struct context_entry *context)
 276{
 277	context->lo &= (((u64)-1) << 2) | 1;
 278}
 279
 280static inline void context_set_translation_type(struct context_entry *context,
 281						unsigned long value)
 282{
 283	context->lo &= (((u64)-1) << 4) | 3;
 284	context->lo |= (value & 3) << 2;
 285}
 286
 287static inline void context_set_address_root(struct context_entry *context,
 288					    unsigned long value)
 289{
 290	context->lo &= ~VTD_PAGE_MASK;
 291	context->lo |= value & VTD_PAGE_MASK;
 292}
 293
 294static inline void context_set_address_width(struct context_entry *context,
 295					     unsigned long value)
 296{
 297	context->hi |= value & 7;
 298}
 299
 300static inline void context_set_domain_id(struct context_entry *context,
 301					 unsigned long value)
 302{
 303	context->hi |= (value & ((1 << 16) - 1)) << 8;
 304}
 305
 306static inline int context_domain_id(struct context_entry *c)
 307{
 308	return((c->hi >> 8) & 0xffff);
 309}
 310
 311static inline void context_clear_entry(struct context_entry *context)
 312{
 313	context->lo = 0;
 314	context->hi = 0;
 315}
 316
 317/*
 318 * 0: readable
 319 * 1: writable
 320 * 2-6: reserved
 321 * 7: super page
 322 * 8-10: available
 323 * 11: snoop behavior
 324 * 12-63: Host physcial address
 325 */
 326struct dma_pte {
 327	u64 val;
 328};
 329
 330static inline void dma_clear_pte(struct dma_pte *pte)
 331{
 332	pte->val = 0;
 333}
 334
 335static inline u64 dma_pte_addr(struct dma_pte *pte)
 336{
 337#ifdef CONFIG_64BIT
 338	return pte->val & VTD_PAGE_MASK;
 339#else
 340	/* Must have a full atomic 64-bit read */
 341	return  __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
 342#endif
 343}
 344
 345static inline bool dma_pte_present(struct dma_pte *pte)
 346{
 347	return (pte->val & 3) != 0;
 348}
 349
 350static inline bool dma_pte_superpage(struct dma_pte *pte)
 351{
 352	return (pte->val & DMA_PTE_LARGE_PAGE);
 353}
 354
 355static inline int first_pte_in_page(struct dma_pte *pte)
 356{
 357	return !((unsigned long)pte & ~VTD_PAGE_MASK);
 358}
 359
 360/*
 361 * This domain is a statically identity mapping domain.
 362 *	1. This domain creats a static 1:1 mapping to all usable memory.
 363 * 	2. It maps to each iommu if successful.
 364 *	3. Each iommu mapps to this domain if successful.
 365 */
 366static struct dmar_domain *si_domain;
 367static int hw_pass_through = 1;
 368
 369/*
 370 * Domain represents a virtual machine, more than one devices
 371 * across iommus may be owned in one domain, e.g. kvm guest.
 372 */
 373#define DOMAIN_FLAG_VIRTUAL_MACHINE	(1 << 0)
 374
 375/* si_domain contains mulitple devices */
 376#define DOMAIN_FLAG_STATIC_IDENTITY	(1 << 1)
 377
 378#define for_each_domain_iommu(idx, domain)			\
 379	for (idx = 0; idx < g_num_of_iommus; idx++)		\
 380		if (domain->iommu_refcnt[idx])
 381
 382struct dmar_domain {
 383	int	nid;			/* node id */
 384
 385	unsigned	iommu_refcnt[DMAR_UNITS_SUPPORTED];
 386					/* Refcount of devices per iommu */
 387
 388
 389	u16		iommu_did[DMAR_UNITS_SUPPORTED];
 390					/* Domain ids per IOMMU. Use u16 since
 391					 * domain ids are 16 bit wide according
 392					 * to VT-d spec, section 9.3 */
 393
 394	bool has_iotlb_device;
 395	struct list_head devices;	/* all devices' list */
 396	struct iova_domain iovad;	/* iova's that belong to this domain */
 397
 398	struct dma_pte	*pgd;		/* virtual address */
 399	int		gaw;		/* max guest address width */
 400
 401	/* adjusted guest address width, 0 is level 2 30-bit */
 402	int		agaw;
 403
 404	int		flags;		/* flags to find out type of domain */
 405
 406	int		iommu_coherency;/* indicate coherency of iommu access */
 407	int		iommu_snooping; /* indicate snooping control feature*/
 408	int		iommu_count;	/* reference count of iommu */
 409	int		iommu_superpage;/* Level of superpages supported:
 410					   0 == 4KiB (no superpages), 1 == 2MiB,
 411					   2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
 412	u64		max_addr;	/* maximum mapped address */
 413
 414	struct iommu_domain domain;	/* generic domain data structure for
 415					   iommu core */
 416};
 417
 418/* PCI domain-device relationship */
 419struct device_domain_info {
 420	struct list_head link;	/* link to domain siblings */
 421	struct list_head global; /* link to global list */
 422	u8 bus;			/* PCI bus number */
 423	u8 devfn;		/* PCI devfn number */
 424	u8 pasid_supported:3;
 425	u8 pasid_enabled:1;
 426	u8 pri_supported:1;
 427	u8 pri_enabled:1;
 428	u8 ats_supported:1;
 429	u8 ats_enabled:1;
 430	u8 ats_qdep;
 431	struct device *dev; /* it's NULL for PCIe-to-PCI bridge */
 432	struct intel_iommu *iommu; /* IOMMU used by this device */
 433	struct dmar_domain *domain; /* pointer to domain */
 434};
 435
 436struct dmar_rmrr_unit {
 437	struct list_head list;		/* list of rmrr units	*/
 438	struct acpi_dmar_header *hdr;	/* ACPI header		*/
 439	u64	base_address;		/* reserved base address*/
 440	u64	end_address;		/* reserved end address */
 441	struct dmar_dev_scope *devices;	/* target devices */
 442	int	devices_cnt;		/* target device count */
 443};
 444
 445struct dmar_atsr_unit {
 446	struct list_head list;		/* list of ATSR units */
 447	struct acpi_dmar_header *hdr;	/* ACPI header */
 448	struct dmar_dev_scope *devices;	/* target devices */
 449	int devices_cnt;		/* target device count */
 450	u8 include_all:1;		/* include all ports */
 451};
 452
 453static LIST_HEAD(dmar_atsr_units);
 454static LIST_HEAD(dmar_rmrr_units);
 455
 456#define for_each_rmrr_units(rmrr) \
 457	list_for_each_entry(rmrr, &dmar_rmrr_units, list)
 458
 459static void flush_unmaps_timeout(unsigned long data);
 460
 461struct deferred_flush_entry {
 462	unsigned long iova_pfn;
 463	unsigned long nrpages;
 464	struct dmar_domain *domain;
 465	struct page *freelist;
 466};
 467
 468#define HIGH_WATER_MARK 250
 469struct deferred_flush_table {
 470	int next;
 471	struct deferred_flush_entry entries[HIGH_WATER_MARK];
 472};
 473
 474struct deferred_flush_data {
 475	spinlock_t lock;
 476	int timer_on;
 477	struct timer_list timer;
 478	long size;
 479	struct deferred_flush_table *tables;
 480};
 481
 482DEFINE_PER_CPU(struct deferred_flush_data, deferred_flush);
 483
 484/* bitmap for indexing intel_iommus */
 485static int g_num_of_iommus;
 486
 487static void domain_exit(struct dmar_domain *domain);
 488static void domain_remove_dev_info(struct dmar_domain *domain);
 489static void dmar_remove_one_dev_info(struct dmar_domain *domain,
 490				     struct device *dev);
 491static void __dmar_remove_one_dev_info(struct device_domain_info *info);
 492static void domain_context_clear(struct intel_iommu *iommu,
 493				 struct device *dev);
 494static int domain_detach_iommu(struct dmar_domain *domain,
 495			       struct intel_iommu *iommu);
 496
 497#ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
 498int dmar_disabled = 0;
 499#else
 500int dmar_disabled = 1;
 501#endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
 502
 503int intel_iommu_enabled = 0;
 504EXPORT_SYMBOL_GPL(intel_iommu_enabled);
 505
 506static int dmar_map_gfx = 1;
 507static int dmar_forcedac;
 508static int intel_iommu_strict;
 509static int intel_iommu_superpage = 1;
 510static int intel_iommu_ecs = 1;
 511static int intel_iommu_pasid28;
 512static int iommu_identity_mapping;
 513
 514#define IDENTMAP_ALL		1
 515#define IDENTMAP_GFX		2
 516#define IDENTMAP_AZALIA		4
 517
 518/* Broadwell and Skylake have broken ECS support — normal so-called "second
 519 * level" translation of DMA requests-without-PASID doesn't actually happen
 520 * unless you also set the NESTE bit in an extended context-entry. Which of
 521 * course means that SVM doesn't work because it's trying to do nested
 522 * translation of the physical addresses it finds in the process page tables,
 523 * through the IOVA->phys mapping found in the "second level" page tables.
 524 *
 525 * The VT-d specification was retroactively changed to change the definition
 526 * of the capability bits and pretend that Broadwell/Skylake never happened...
 527 * but unfortunately the wrong bit was changed. It's ECS which is broken, but
 528 * for some reason it was the PASID capability bit which was redefined (from
 529 * bit 28 on BDW/SKL to bit 40 in future).
 530 *
 531 * So our test for ECS needs to eschew those implementations which set the old
 532 * PASID capabiity bit 28, since those are the ones on which ECS is broken.
 533 * Unless we are working around the 'pasid28' limitations, that is, by putting
 534 * the device into passthrough mode for normal DMA and thus masking the bug.
 535 */
 536#define ecs_enabled(iommu) (intel_iommu_ecs && ecap_ecs(iommu->ecap) && \
 537			    (intel_iommu_pasid28 || !ecap_broken_pasid(iommu->ecap)))
 538/* PASID support is thus enabled if ECS is enabled and *either* of the old
 539 * or new capability bits are set. */
 540#define pasid_enabled(iommu) (ecs_enabled(iommu) &&			\
 541			      (ecap_pasid(iommu->ecap) || ecap_broken_pasid(iommu->ecap)))
 542
 543int intel_iommu_gfx_mapped;
 544EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
 545
 546#define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
 547static DEFINE_SPINLOCK(device_domain_lock);
 548static LIST_HEAD(device_domain_list);
 549
 550static const struct iommu_ops intel_iommu_ops;
 551
 552static bool translation_pre_enabled(struct intel_iommu *iommu)
 553{
 554	return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
 555}
 556
 557static void clear_translation_pre_enabled(struct intel_iommu *iommu)
 558{
 559	iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
 560}
 561
 562static void init_translation_status(struct intel_iommu *iommu)
 563{
 564	u32 gsts;
 565
 566	gsts = readl(iommu->reg + DMAR_GSTS_REG);
 567	if (gsts & DMA_GSTS_TES)
 568		iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
 569}
 570
 571/* Convert generic 'struct iommu_domain to private struct dmar_domain */
 572static struct dmar_domain *to_dmar_domain(struct iommu_domain *dom)
 573{
 574	return container_of(dom, struct dmar_domain, domain);
 575}
 576
 577static int __init intel_iommu_setup(char *str)
 578{
 579	if (!str)
 580		return -EINVAL;
 581	while (*str) {
 582		if (!strncmp(str, "on", 2)) {
 583			dmar_disabled = 0;
 584			pr_info("IOMMU enabled\n");
 585		} else if (!strncmp(str, "off", 3)) {
 586			dmar_disabled = 1;
 587			pr_info("IOMMU disabled\n");
 588		} else if (!strncmp(str, "igfx_off", 8)) {
 589			dmar_map_gfx = 0;
 590			pr_info("Disable GFX device mapping\n");
 591		} else if (!strncmp(str, "forcedac", 8)) {
 592			pr_info("Forcing DAC for PCI devices\n");
 593			dmar_forcedac = 1;
 594		} else if (!strncmp(str, "strict", 6)) {
 595			pr_info("Disable batched IOTLB flush\n");
 596			intel_iommu_strict = 1;
 597		} else if (!strncmp(str, "sp_off", 6)) {
 598			pr_info("Disable supported super page\n");
 599			intel_iommu_superpage = 0;
 600		} else if (!strncmp(str, "ecs_off", 7)) {
 601			printk(KERN_INFO
 602				"Intel-IOMMU: disable extended context table support\n");
 603			intel_iommu_ecs = 0;
 604		} else if (!strncmp(str, "pasid28", 7)) {
 605			printk(KERN_INFO
 606				"Intel-IOMMU: enable pre-production PASID support\n");
 607			intel_iommu_pasid28 = 1;
 608			iommu_identity_mapping |= IDENTMAP_GFX;
 609		}
 610
 611		str += strcspn(str, ",");
 612		while (*str == ',')
 613			str++;
 614	}
 615	return 0;
 616}
 617__setup("intel_iommu=", intel_iommu_setup);
 618
 619static struct kmem_cache *iommu_domain_cache;
 620static struct kmem_cache *iommu_devinfo_cache;
 621
 622static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did)
 623{
 624	struct dmar_domain **domains;
 625	int idx = did >> 8;
 626
 627	domains = iommu->domains[idx];
 628	if (!domains)
 629		return NULL;
 630
 631	return domains[did & 0xff];
 632}
 633
 634static void set_iommu_domain(struct intel_iommu *iommu, u16 did,
 635			     struct dmar_domain *domain)
 636{
 637	struct dmar_domain **domains;
 638	int idx = did >> 8;
 639
 640	if (!iommu->domains[idx]) {
 641		size_t size = 256 * sizeof(struct dmar_domain *);
 642		iommu->domains[idx] = kzalloc(size, GFP_ATOMIC);
 643	}
 644
 645	domains = iommu->domains[idx];
 646	if (WARN_ON(!domains))
 647		return;
 648	else
 649		domains[did & 0xff] = domain;
 650}
 651
 652static inline void *alloc_pgtable_page(int node)
 653{
 654	struct page *page;
 655	void *vaddr = NULL;
 656
 657	page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
 658	if (page)
 659		vaddr = page_address(page);
 660	return vaddr;
 661}
 662
 663static inline void free_pgtable_page(void *vaddr)
 664{
 665	free_page((unsigned long)vaddr);
 666}
 667
 668static inline void *alloc_domain_mem(void)
 669{
 670	return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
 671}
 672
 673static void free_domain_mem(void *vaddr)
 674{
 675	kmem_cache_free(iommu_domain_cache, vaddr);
 676}
 677
 678static inline void * alloc_devinfo_mem(void)
 679{
 680	return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
 681}
 682
 683static inline void free_devinfo_mem(void *vaddr)
 684{
 685	kmem_cache_free(iommu_devinfo_cache, vaddr);
 686}
 687
 688static inline int domain_type_is_vm(struct dmar_domain *domain)
 689{
 690	return domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE;
 691}
 692
 693static inline int domain_type_is_si(struct dmar_domain *domain)
 694{
 695	return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY;
 696}
 697
 698static inline int domain_type_is_vm_or_si(struct dmar_domain *domain)
 699{
 700	return domain->flags & (DOMAIN_FLAG_VIRTUAL_MACHINE |
 701				DOMAIN_FLAG_STATIC_IDENTITY);
 702}
 703
 704static inline int domain_pfn_supported(struct dmar_domain *domain,
 705				       unsigned long pfn)
 706{
 707	int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
 708
 709	return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
 710}
 711
 712static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
 713{
 714	unsigned long sagaw;
 715	int agaw = -1;
 716
 717	sagaw = cap_sagaw(iommu->cap);
 718	for (agaw = width_to_agaw(max_gaw);
 719	     agaw >= 0; agaw--) {
 720		if (test_bit(agaw, &sagaw))
 721			break;
 722	}
 723
 724	return agaw;
 725}
 726
 727/*
 728 * Calculate max SAGAW for each iommu.
 729 */
 730int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
 731{
 732	return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
 733}
 734
 735/*
 736 * calculate agaw for each iommu.
 737 * "SAGAW" may be different across iommus, use a default agaw, and
 738 * get a supported less agaw for iommus that don't support the default agaw.
 739 */
 740int iommu_calculate_agaw(struct intel_iommu *iommu)
 741{
 742	return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
 743}
 744
 745/* This functionin only returns single iommu in a domain */
 746static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
 747{
 748	int iommu_id;
 749
 750	/* si_domain and vm domain should not get here. */
 751	BUG_ON(domain_type_is_vm_or_si(domain));
 752	for_each_domain_iommu(iommu_id, domain)
 753		break;
 754
 755	if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
 756		return NULL;
 757
 758	return g_iommus[iommu_id];
 759}
 760
 761static void domain_update_iommu_coherency(struct dmar_domain *domain)
 762{
 763	struct dmar_drhd_unit *drhd;
 764	struct intel_iommu *iommu;
 765	bool found = false;
 766	int i;
 767
 768	domain->iommu_coherency = 1;
 769
 770	for_each_domain_iommu(i, domain) {
 771		found = true;
 772		if (!ecap_coherent(g_iommus[i]->ecap)) {
 773			domain->iommu_coherency = 0;
 774			break;
 775		}
 776	}
 777	if (found)
 778		return;
 779
 780	/* No hardware attached; use lowest common denominator */
 781	rcu_read_lock();
 782	for_each_active_iommu(iommu, drhd) {
 783		if (!ecap_coherent(iommu->ecap)) {
 784			domain->iommu_coherency = 0;
 785			break;
 786		}
 787	}
 788	rcu_read_unlock();
 789}
 790
 791static int domain_update_iommu_snooping(struct intel_iommu *skip)
 792{
 793	struct dmar_drhd_unit *drhd;
 794	struct intel_iommu *iommu;
 795	int ret = 1;
 796
 797	rcu_read_lock();
 798	for_each_active_iommu(iommu, drhd) {
 799		if (iommu != skip) {
 800			if (!ecap_sc_support(iommu->ecap)) {
 801				ret = 0;
 802				break;
 803			}
 804		}
 805	}
 806	rcu_read_unlock();
 807
 808	return ret;
 809}
 810
 811static int domain_update_iommu_superpage(struct intel_iommu *skip)
 812{
 813	struct dmar_drhd_unit *drhd;
 814	struct intel_iommu *iommu;
 815	int mask = 0xf;
 816
 817	if (!intel_iommu_superpage) {
 818		return 0;
 819	}
 820
 821	/* set iommu_superpage to the smallest common denominator */
 822	rcu_read_lock();
 823	for_each_active_iommu(iommu, drhd) {
 824		if (iommu != skip) {
 825			mask &= cap_super_page_val(iommu->cap);
 826			if (!mask)
 827				break;
 828		}
 829	}
 830	rcu_read_unlock();
 831
 832	return fls(mask);
 833}
 834
 835/* Some capabilities may be different across iommus */
 836static void domain_update_iommu_cap(struct dmar_domain *domain)
 837{
 838	domain_update_iommu_coherency(domain);
 839	domain->iommu_snooping = domain_update_iommu_snooping(NULL);
 840	domain->iommu_superpage = domain_update_iommu_superpage(NULL);
 841}
 842
 843static inline struct context_entry *iommu_context_addr(struct intel_iommu *iommu,
 844						       u8 bus, u8 devfn, int alloc)
 845{
 846	struct root_entry *root = &iommu->root_entry[bus];
 847	struct context_entry *context;
 848	u64 *entry;
 849
 850	entry = &root->lo;
 851	if (ecs_enabled(iommu)) {
 852		if (devfn >= 0x80) {
 853			devfn -= 0x80;
 854			entry = &root->hi;
 855		}
 856		devfn *= 2;
 857	}
 858	if (*entry & 1)
 859		context = phys_to_virt(*entry & VTD_PAGE_MASK);
 860	else {
 861		unsigned long phy_addr;
 862		if (!alloc)
 863			return NULL;
 864
 865		context = alloc_pgtable_page(iommu->node);
 866		if (!context)
 867			return NULL;
 868
 869		__iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
 870		phy_addr = virt_to_phys((void *)context);
 871		*entry = phy_addr | 1;
 872		__iommu_flush_cache(iommu, entry, sizeof(*entry));
 873	}
 874	return &context[devfn];
 875}
 876
 877static int iommu_dummy(struct device *dev)
 878{
 879	return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
 880}
 881
 882static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
 883{
 884	struct dmar_drhd_unit *drhd = NULL;
 885	struct intel_iommu *iommu;
 886	struct device *tmp;
 887	struct pci_dev *ptmp, *pdev = NULL;
 888	u16 segment = 0;
 889	int i;
 890
 891	if (iommu_dummy(dev))
 892		return NULL;
 893
 894	if (dev_is_pci(dev)) {
 895		struct pci_dev *pf_pdev;
 896
 897		pdev = to_pci_dev(dev);
 898		/* VFs aren't listed in scope tables; we need to look up
 899		 * the PF instead to find the IOMMU. */
 900		pf_pdev = pci_physfn(pdev);
 901		dev = &pf_pdev->dev;
 902		segment = pci_domain_nr(pdev->bus);
 903	} else if (has_acpi_companion(dev))
 904		dev = &ACPI_COMPANION(dev)->dev;
 905
 906	rcu_read_lock();
 907	for_each_active_iommu(iommu, drhd) {
 908		if (pdev && segment != drhd->segment)
 909			continue;
 910
 911		for_each_active_dev_scope(drhd->devices,
 912					  drhd->devices_cnt, i, tmp) {
 913			if (tmp == dev) {
 914				/* For a VF use its original BDF# not that of the PF
 915				 * which we used for the IOMMU lookup. Strictly speaking
 916				 * we could do this for all PCI devices; we only need to
 917				 * get the BDF# from the scope table for ACPI matches. */
 918				if (pdev && pdev->is_virtfn)
 919					goto got_pdev;
 920
 921				*bus = drhd->devices[i].bus;
 922				*devfn = drhd->devices[i].devfn;
 923				goto out;
 924			}
 925
 926			if (!pdev || !dev_is_pci(tmp))
 927				continue;
 928
 929			ptmp = to_pci_dev(tmp);
 930			if (ptmp->subordinate &&
 931			    ptmp->subordinate->number <= pdev->bus->number &&
 932			    ptmp->subordinate->busn_res.end >= pdev->bus->number)
 933				goto got_pdev;
 934		}
 935
 936		if (pdev && drhd->include_all) {
 937		got_pdev:
 938			*bus = pdev->bus->number;
 939			*devfn = pdev->devfn;
 940			goto out;
 941		}
 942	}
 943	iommu = NULL;
 944 out:
 945	rcu_read_unlock();
 946
 947	return iommu;
 948}
 949
 950static void domain_flush_cache(struct dmar_domain *domain,
 951			       void *addr, int size)
 952{
 953	if (!domain->iommu_coherency)
 954		clflush_cache_range(addr, size);
 955}
 956
 957static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
 958{
 959	struct context_entry *context;
 960	int ret = 0;
 961	unsigned long flags;
 962
 963	spin_lock_irqsave(&iommu->lock, flags);
 964	context = iommu_context_addr(iommu, bus, devfn, 0);
 965	if (context)
 966		ret = context_present(context);
 967	spin_unlock_irqrestore(&iommu->lock, flags);
 968	return ret;
 969}
 970
 971static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
 972{
 973	struct context_entry *context;
 974	unsigned long flags;
 975
 976	spin_lock_irqsave(&iommu->lock, flags);
 977	context = iommu_context_addr(iommu, bus, devfn, 0);
 978	if (context) {
 979		context_clear_entry(context);
 980		__iommu_flush_cache(iommu, context, sizeof(*context));
 981	}
 982	spin_unlock_irqrestore(&iommu->lock, flags);
 983}
 984
 985static void free_context_table(struct intel_iommu *iommu)
 986{
 987	int i;
 988	unsigned long flags;
 989	struct context_entry *context;
 990
 991	spin_lock_irqsave(&iommu->lock, flags);
 992	if (!iommu->root_entry) {
 993		goto out;
 994	}
 995	for (i = 0; i < ROOT_ENTRY_NR; i++) {
 996		context = iommu_context_addr(iommu, i, 0, 0);
 997		if (context)
 998			free_pgtable_page(context);
 999
1000		if (!ecs_enabled(iommu))
1001			continue;
1002
1003		context = iommu_context_addr(iommu, i, 0x80, 0);
1004		if (context)
1005			free_pgtable_page(context);
1006
1007	}
1008	free_pgtable_page(iommu->root_entry);
1009	iommu->root_entry = NULL;
1010out:
1011	spin_unlock_irqrestore(&iommu->lock, flags);
1012}
1013
1014static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
1015				      unsigned long pfn, int *target_level)
1016{
1017	struct dma_pte *parent, *pte = NULL;
1018	int level = agaw_to_level(domain->agaw);
1019	int offset;
1020
1021	BUG_ON(!domain->pgd);
1022
1023	if (!domain_pfn_supported(domain, pfn))
1024		/* Address beyond IOMMU's addressing capabilities. */
1025		return NULL;
1026
1027	parent = domain->pgd;
1028
1029	while (1) {
1030		void *tmp_page;
1031
1032		offset = pfn_level_offset(pfn, level);
1033		pte = &parent[offset];
1034		if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
1035			break;
1036		if (level == *target_level)
1037			break;
1038
1039		if (!dma_pte_present(pte)) {
1040			uint64_t pteval;
1041
1042			tmp_page = alloc_pgtable_page(domain->nid);
1043
1044			if (!tmp_page)
1045				return NULL;
1046
1047			domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
1048			pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
1049			if (cmpxchg64(&pte->val, 0ULL, pteval))
1050				/* Someone else set it while we were thinking; use theirs. */
1051				free_pgtable_page(tmp_page);
1052			else
1053				domain_flush_cache(domain, pte, sizeof(*pte));
1054		}
1055		if (level == 1)
1056			break;
1057
1058		parent = phys_to_virt(dma_pte_addr(pte));
1059		level--;
1060	}
1061
1062	if (!*target_level)
1063		*target_level = level;
1064
1065	return pte;
1066}
1067
1068
1069/* return address's pte at specific level */
1070static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
1071					 unsigned long pfn,
1072					 int level, int *large_page)
1073{
1074	struct dma_pte *parent, *pte = NULL;
1075	int total = agaw_to_level(domain->agaw);
1076	int offset;
1077
1078	parent = domain->pgd;
1079	while (level <= total) {
1080		offset = pfn_level_offset(pfn, total);
1081		pte = &parent[offset];
1082		if (level == total)
1083			return pte;
1084
1085		if (!dma_pte_present(pte)) {
1086			*large_page = total;
1087			break;
1088		}
1089
1090		if (dma_pte_superpage(pte)) {
1091			*large_page = total;
1092			return pte;
1093		}
1094
1095		parent = phys_to_virt(dma_pte_addr(pte));
1096		total--;
1097	}
1098	return NULL;
1099}
1100
1101/* clear last level pte, a tlb flush should be followed */
1102static void dma_pte_clear_range(struct dmar_domain *domain,
1103				unsigned long start_pfn,
1104				unsigned long last_pfn)
1105{
1106	unsigned int large_page = 1;
1107	struct dma_pte *first_pte, *pte;
1108
1109	BUG_ON(!domain_pfn_supported(domain, start_pfn));
1110	BUG_ON(!domain_pfn_supported(domain, last_pfn));
1111	BUG_ON(start_pfn > last_pfn);
1112
1113	/* we don't need lock here; nobody else touches the iova range */
1114	do {
1115		large_page = 1;
1116		first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
1117		if (!pte) {
1118			start_pfn = align_to_level(start_pfn + 1, large_page + 1);
1119			continue;
1120		}
1121		do {
1122			dma_clear_pte(pte);
1123			start_pfn += lvl_to_nr_pages(large_page);
1124			pte++;
1125		} while (start_pfn <= last_pfn && !first_pte_in_page(pte));
1126
1127		domain_flush_cache(domain, first_pte,
1128				   (void *)pte - (void *)first_pte);
1129
1130	} while (start_pfn && start_pfn <= last_pfn);
1131}
1132
1133static void dma_pte_free_level(struct dmar_domain *domain, int level,
1134			       struct dma_pte *pte, unsigned long pfn,
1135			       unsigned long start_pfn, unsigned long last_pfn)
1136{
1137	pfn = max(start_pfn, pfn);
1138	pte = &pte[pfn_level_offset(pfn, level)];
1139
1140	do {
1141		unsigned long level_pfn;
1142		struct dma_pte *level_pte;
1143
1144		if (!dma_pte_present(pte) || dma_pte_superpage(pte))
1145			goto next;
1146
1147		level_pfn = pfn & level_mask(level - 1);
1148		level_pte = phys_to_virt(dma_pte_addr(pte));
1149
1150		if (level > 2)
1151			dma_pte_free_level(domain, level - 1, level_pte,
1152					   level_pfn, start_pfn, last_pfn);
1153
1154		/* If range covers entire pagetable, free it */
1155		if (!(start_pfn > level_pfn ||
1156		      last_pfn < level_pfn + level_size(level) - 1)) {
1157			dma_clear_pte(pte);
1158			domain_flush_cache(domain, pte, sizeof(*pte));
1159			free_pgtable_page(level_pte);
1160		}
1161next:
1162		pfn += level_size(level);
1163	} while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1164}
1165
1166/* clear last level (leaf) ptes and free page table pages. */
1167static void dma_pte_free_pagetable(struct dmar_domain *domain,
1168				   unsigned long start_pfn,
1169				   unsigned long last_pfn)
1170{
1171	BUG_ON(!domain_pfn_supported(domain, start_pfn));
1172	BUG_ON(!domain_pfn_supported(domain, last_pfn));
1173	BUG_ON(start_pfn > last_pfn);
1174
1175	dma_pte_clear_range(domain, start_pfn, last_pfn);
1176
1177	/* We don't need lock here; nobody else touches the iova range */
1178	dma_pte_free_level(domain, agaw_to_level(domain->agaw),
1179			   domain->pgd, 0, start_pfn, last_pfn);
1180
1181	/* free pgd */
1182	if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1183		free_pgtable_page(domain->pgd);
1184		domain->pgd = NULL;
1185	}
1186}
1187
1188/* When a page at a given level is being unlinked from its parent, we don't
1189   need to *modify* it at all. All we need to do is make a list of all the
1190   pages which can be freed just as soon as we've flushed the IOTLB and we
1191   know the hardware page-walk will no longer touch them.
1192   The 'pte' argument is the *parent* PTE, pointing to the page that is to
1193   be freed. */
1194static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
1195					    int level, struct dma_pte *pte,
1196					    struct page *freelist)
1197{
1198	struct page *pg;
1199
1200	pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
1201	pg->freelist = freelist;
1202	freelist = pg;
1203
1204	if (level == 1)
1205		return freelist;
1206
1207	pte = page_address(pg);
1208	do {
1209		if (dma_pte_present(pte) && !dma_pte_superpage(pte))
1210			freelist = dma_pte_list_pagetables(domain, level - 1,
1211							   pte, freelist);
1212		pte++;
1213	} while (!first_pte_in_page(pte));
1214
1215	return freelist;
1216}
1217
1218static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
1219					struct dma_pte *pte, unsigned long pfn,
1220					unsigned long start_pfn,
1221					unsigned long last_pfn,
1222					struct page *freelist)
1223{
1224	struct dma_pte *first_pte = NULL, *last_pte = NULL;
1225
1226	pfn = max(start_pfn, pfn);
1227	pte = &pte[pfn_level_offset(pfn, level)];
1228
1229	do {
1230		unsigned long level_pfn;
1231
1232		if (!dma_pte_present(pte))
1233			goto next;
1234
1235		level_pfn = pfn & level_mask(level);
1236
1237		/* If range covers entire pagetable, free it */
1238		if (start_pfn <= level_pfn &&
1239		    last_pfn >= level_pfn + level_size(level) - 1) {
1240			/* These suborbinate page tables are going away entirely. Don't
1241			   bother to clear them; we're just going to *free* them. */
1242			if (level > 1 && !dma_pte_superpage(pte))
1243				freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1244
1245			dma_clear_pte(pte);
1246			if (!first_pte)
1247				first_pte = pte;
1248			last_pte = pte;
1249		} else if (level > 1) {
1250			/* Recurse down into a level that isn't *entirely* obsolete */
1251			freelist = dma_pte_clear_level(domain, level - 1,
1252						       phys_to_virt(dma_pte_addr(pte)),
1253						       level_pfn, start_pfn, last_pfn,
1254						       freelist);
1255		}
1256next:
1257		pfn += level_size(level);
1258	} while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1259
1260	if (first_pte)
1261		domain_flush_cache(domain, first_pte,
1262				   (void *)++last_pte - (void *)first_pte);
1263
1264	return freelist;
1265}
1266
1267/* We can't just free the pages because the IOMMU may still be walking
1268   the page tables, and may have cached the intermediate levels. The
1269   pages can only be freed after the IOTLB flush has been done. */
1270static struct page *domain_unmap(struct dmar_domain *domain,
1271				 unsigned long start_pfn,
1272				 unsigned long last_pfn)
1273{
1274	struct page *freelist = NULL;
1275
1276	BUG_ON(!domain_pfn_supported(domain, start_pfn));
1277	BUG_ON(!domain_pfn_supported(domain, last_pfn));
1278	BUG_ON(start_pfn > last_pfn);
1279
1280	/* we don't need lock here; nobody else touches the iova range */
1281	freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1282				       domain->pgd, 0, start_pfn, last_pfn, NULL);
1283
1284	/* free pgd */
1285	if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1286		struct page *pgd_page = virt_to_page(domain->pgd);
1287		pgd_page->freelist = freelist;
1288		freelist = pgd_page;
1289
1290		domain->pgd = NULL;
1291	}
1292
1293	return freelist;
1294}
1295
1296static void dma_free_pagelist(struct page *freelist)
1297{
1298	struct page *pg;
1299
1300	while ((pg = freelist)) {
1301		freelist = pg->freelist;
1302		free_pgtable_page(page_address(pg));
1303	}
1304}
1305
1306/* iommu handling */
1307static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1308{
1309	struct root_entry *root;
1310	unsigned long flags;
1311
1312	root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1313	if (!root) {
1314		pr_err("Allocating root entry for %s failed\n",
1315			iommu->name);
1316		return -ENOMEM;
1317	}
1318
1319	__iommu_flush_cache(iommu, root, ROOT_SIZE);
1320
1321	spin_lock_irqsave(&iommu->lock, flags);
1322	iommu->root_entry = root;
1323	spin_unlock_irqrestore(&iommu->lock, flags);
1324
1325	return 0;
1326}
1327
1328static void iommu_set_root_entry(struct intel_iommu *iommu)
1329{
1330	u64 addr;
1331	u32 sts;
1332	unsigned long flag;
1333
1334	addr = virt_to_phys(iommu->root_entry);
1335	if (ecs_enabled(iommu))
1336		addr |= DMA_RTADDR_RTT;
1337
1338	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1339	dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1340
1341	writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1342
1343	/* Make sure hardware complete it */
1344	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1345		      readl, (sts & DMA_GSTS_RTPS), sts);
1346
1347	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1348}
1349
1350static void iommu_flush_write_buffer(struct intel_iommu *iommu)
1351{
1352	u32 val;
1353	unsigned long flag;
1354
1355	if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1356		return;
1357
1358	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1359	writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1360
1361	/* Make sure hardware complete it */
1362	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1363		      readl, (!(val & DMA_GSTS_WBFS)), val);
1364
1365	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1366}
1367
1368/* return value determine if we need a write buffer flush */
1369static void __iommu_flush_context(struct intel_iommu *iommu,
1370				  u16 did, u16 source_id, u8 function_mask,
1371				  u64 type)
1372{
1373	u64 val = 0;
1374	unsigned long flag;
1375
1376	switch (type) {
1377	case DMA_CCMD_GLOBAL_INVL:
1378		val = DMA_CCMD_GLOBAL_INVL;
1379		break;
1380	case DMA_CCMD_DOMAIN_INVL:
1381		val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1382		break;
1383	case DMA_CCMD_DEVICE_INVL:
1384		val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1385			| DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1386		break;
1387	default:
1388		BUG();
1389	}
1390	val |= DMA_CCMD_ICC;
1391
1392	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1393	dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1394
1395	/* Make sure hardware complete it */
1396	IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1397		dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1398
1399	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1400}
1401
1402/* return value determine if we need a write buffer flush */
1403static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1404				u64 addr, unsigned int size_order, u64 type)
1405{
1406	int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1407	u64 val = 0, val_iva = 0;
1408	unsigned long flag;
1409
1410	switch (type) {
1411	case DMA_TLB_GLOBAL_FLUSH:
1412		/* global flush doesn't need set IVA_REG */
1413		val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1414		break;
1415	case DMA_TLB_DSI_FLUSH:
1416		val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1417		break;
1418	case DMA_TLB_PSI_FLUSH:
1419		val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1420		/* IH bit is passed in as part of address */
1421		val_iva = size_order | addr;
1422		break;
1423	default:
1424		BUG();
1425	}
1426	/* Note: set drain read/write */
1427#if 0
1428	/*
1429	 * This is probably to be super secure.. Looks like we can
1430	 * ignore it without any impact.
1431	 */
1432	if (cap_read_drain(iommu->cap))
1433		val |= DMA_TLB_READ_DRAIN;
1434#endif
1435	if (cap_write_drain(iommu->cap))
1436		val |= DMA_TLB_WRITE_DRAIN;
1437
1438	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1439	/* Note: Only uses first TLB reg currently */
1440	if (val_iva)
1441		dmar_writeq(iommu->reg + tlb_offset, val_iva);
1442	dmar_writeq(iommu->reg + tlb_offset + 8, val);
1443
1444	/* Make sure hardware complete it */
1445	IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1446		dmar_readq, (!(val & DMA_TLB_IVT)), val);
1447
1448	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1449
1450	/* check IOTLB invalidation granularity */
1451	if (DMA_TLB_IAIG(val) == 0)
1452		pr_err("Flush IOTLB failed\n");
1453	if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1454		pr_debug("TLB flush request %Lx, actual %Lx\n",
1455			(unsigned long long)DMA_TLB_IIRG(type),
1456			(unsigned long long)DMA_TLB_IAIG(val));
1457}
1458
1459static struct device_domain_info *
1460iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
1461			 u8 bus, u8 devfn)
1462{
1463	struct device_domain_info *info;
1464
1465	assert_spin_locked(&device_domain_lock);
1466
1467	if (!iommu->qi)
1468		return NULL;
1469
1470	list_for_each_entry(info, &domain->devices, link)
1471		if (info->iommu == iommu && info->bus == bus &&
1472		    info->devfn == devfn) {
1473			if (info->ats_supported && info->dev)
1474				return info;
1475			break;
1476		}
1477
1478	return NULL;
1479}
1480
1481static void domain_update_iotlb(struct dmar_domain *domain)
1482{
1483	struct device_domain_info *info;
1484	bool has_iotlb_device = false;
1485
1486	assert_spin_locked(&device_domain_lock);
1487
1488	list_for_each_entry(info, &domain->devices, link) {
1489		struct pci_dev *pdev;
1490
1491		if (!info->dev || !dev_is_pci(info->dev))
1492			continue;
1493
1494		pdev = to_pci_dev(info->dev);
1495		if (pdev->ats_enabled) {
1496			has_iotlb_device = true;
1497			break;
1498		}
1499	}
1500
1501	domain->has_iotlb_device = has_iotlb_device;
1502}
1503
1504static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1505{
1506	struct pci_dev *pdev;
1507
1508	assert_spin_locked(&device_domain_lock);
1509
1510	if (!info || !dev_is_pci(info->dev))
1511		return;
1512
1513	pdev = to_pci_dev(info->dev);
1514
1515#ifdef CONFIG_INTEL_IOMMU_SVM
1516	/* The PCIe spec, in its wisdom, declares that the behaviour of
1517	   the device if you enable PASID support after ATS support is
1518	   undefined. So always enable PASID support on devices which
1519	   have it, even if we can't yet know if we're ever going to
1520	   use it. */
1521	if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1))
1522		info->pasid_enabled = 1;
1523
1524	if (info->pri_supported && !pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32))
1525		info->pri_enabled = 1;
1526#endif
1527	if (info->ats_supported && !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) {
1528		info->ats_enabled = 1;
1529		domain_update_iotlb(info->domain);
1530		info->ats_qdep = pci_ats_queue_depth(pdev);
1531	}
1532}
1533
1534static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1535{
1536	struct pci_dev *pdev;
1537
1538	assert_spin_locked(&device_domain_lock);
1539
1540	if (!dev_is_pci(info->dev))
1541		return;
1542
1543	pdev = to_pci_dev(info->dev);
1544
1545	if (info->ats_enabled) {
1546		pci_disable_ats(pdev);
1547		info->ats_enabled = 0;
1548		domain_update_iotlb(info->domain);
1549	}
1550#ifdef CONFIG_INTEL_IOMMU_SVM
1551	if (info->pri_enabled) {
1552		pci_disable_pri(pdev);
1553		info->pri_enabled = 0;
1554	}
1555	if (info->pasid_enabled) {
1556		pci_disable_pasid(pdev);
1557		info->pasid_enabled = 0;
1558	}
1559#endif
1560}
1561
1562static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1563				  u64 addr, unsigned mask)
1564{
1565	u16 sid, qdep;
1566	unsigned long flags;
1567	struct device_domain_info *info;
1568
1569	if (!domain->has_iotlb_device)
1570		return;
1571
1572	spin_lock_irqsave(&device_domain_lock, flags);
1573	list_for_each_entry(info, &domain->devices, link) {
1574		if (!info->ats_enabled)
1575			continue;
1576
1577		sid = info->bus << 8 | info->devfn;
1578		qdep = info->ats_qdep;
1579		qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1580	}
1581	spin_unlock_irqrestore(&device_domain_lock, flags);
1582}
1583
1584static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
1585				  struct dmar_domain *domain,
1586				  unsigned long pfn, unsigned int pages,
1587				  int ih, int map)
1588{
1589	unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1590	uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1591	u16 did = domain->iommu_did[iommu->seq_id];
1592
1593	BUG_ON(pages == 0);
1594
1595	if (ih)
1596		ih = 1 << 6;
1597	/*
1598	 * Fallback to domain selective flush if no PSI support or the size is
1599	 * too big.
1600	 * PSI requires page size to be 2 ^ x, and the base address is naturally
1601	 * aligned to the size
1602	 */
1603	if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1604		iommu->flush.flush_iotlb(iommu, did, 0, 0,
1605						DMA_TLB_DSI_FLUSH);
1606	else
1607		iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1608						DMA_TLB_PSI_FLUSH);
1609
1610	/*
1611	 * In caching mode, changes of pages from non-present to present require
1612	 * flush. However, device IOTLB doesn't need to be flushed in this case.
1613	 */
1614	if (!cap_caching_mode(iommu->cap) || !map)
1615		iommu_flush_dev_iotlb(get_iommu_domain(iommu, did),
1616				      addr, mask);
1617}
1618
1619static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1620{
1621	u32 pmen;
1622	unsigned long flags;
1623
1624	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1625	pmen = readl(iommu->reg + DMAR_PMEN_REG);
1626	pmen &= ~DMA_PMEN_EPM;
1627	writel(pmen, iommu->reg + DMAR_PMEN_REG);
1628
1629	/* wait for the protected region status bit to clear */
1630	IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1631		readl, !(pmen & DMA_PMEN_PRS), pmen);
1632
1633	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1634}
1635
1636static void iommu_enable_translation(struct intel_iommu *iommu)
1637{
1638	u32 sts;
1639	unsigned long flags;
1640
1641	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1642	iommu->gcmd |= DMA_GCMD_TE;
1643	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1644
1645	/* Make sure hardware complete it */
1646	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1647		      readl, (sts & DMA_GSTS_TES), sts);
1648
1649	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1650}
1651
1652static void iommu_disable_translation(struct intel_iommu *iommu)
1653{
1654	u32 sts;
1655	unsigned long flag;
1656
1657	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1658	iommu->gcmd &= ~DMA_GCMD_TE;
1659	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1660
1661	/* Make sure hardware complete it */
1662	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1663		      readl, (!(sts & DMA_GSTS_TES)), sts);
1664
1665	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1666}
1667
1668
1669static int iommu_init_domains(struct intel_iommu *iommu)
1670{
1671	u32 ndomains, nlongs;
1672	size_t size;
1673
1674	ndomains = cap_ndoms(iommu->cap);
1675	pr_debug("%s: Number of Domains supported <%d>\n",
1676		 iommu->name, ndomains);
1677	nlongs = BITS_TO_LONGS(ndomains);
1678
1679	spin_lock_init(&iommu->lock);
1680
1681	iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1682	if (!iommu->domain_ids) {
1683		pr_err("%s: Allocating domain id array failed\n",
1684		       iommu->name);
1685		return -ENOMEM;
1686	}
1687
1688	size = (ALIGN(ndomains, 256) >> 8) * sizeof(struct dmar_domain **);
1689	iommu->domains = kzalloc(size, GFP_KERNEL);
1690
1691	if (iommu->domains) {
1692		size = 256 * sizeof(struct dmar_domain *);
1693		iommu->domains[0] = kzalloc(size, GFP_KERNEL);
1694	}
1695
1696	if (!iommu->domains || !iommu->domains[0]) {
1697		pr_err("%s: Allocating domain array failed\n",
1698		       iommu->name);
1699		kfree(iommu->domain_ids);
1700		kfree(iommu->domains);
1701		iommu->domain_ids = NULL;
1702		iommu->domains    = NULL;
1703		return -ENOMEM;
1704	}
1705
1706
1707
1708	/*
1709	 * If Caching mode is set, then invalid translations are tagged
1710	 * with domain-id 0, hence we need to pre-allocate it. We also
1711	 * use domain-id 0 as a marker for non-allocated domain-id, so
1712	 * make sure it is not used for a real domain.
1713	 */
1714	set_bit(0, iommu->domain_ids);
1715
1716	return 0;
1717}
1718
1719static void disable_dmar_iommu(struct intel_iommu *iommu)
1720{
1721	struct device_domain_info *info, *tmp;
1722	unsigned long flags;
1723
1724	if (!iommu->domains || !iommu->domain_ids)
1725		return;
1726
1727again:
1728	spin_lock_irqsave(&device_domain_lock, flags);
1729	list_for_each_entry_safe(info, tmp, &device_domain_list, global) {
1730		struct dmar_domain *domain;
1731
1732		if (info->iommu != iommu)
1733			continue;
1734
1735		if (!info->dev || !info->domain)
1736			continue;
1737
1738		domain = info->domain;
1739
1740		__dmar_remove_one_dev_info(info);
1741
1742		if (!domain_type_is_vm_or_si(domain)) {
1743			/*
1744			 * The domain_exit() function  can't be called under
1745			 * device_domain_lock, as it takes this lock itself.
1746			 * So release the lock here and re-run the loop
1747			 * afterwards.
1748			 */
1749			spin_unlock_irqrestore(&device_domain_lock, flags);
1750			domain_exit(domain);
1751			goto again;
1752		}
1753	}
1754	spin_unlock_irqrestore(&device_domain_lock, flags);
1755
1756	if (iommu->gcmd & DMA_GCMD_TE)
1757		iommu_disable_translation(iommu);
1758}
1759
1760static void free_dmar_iommu(struct intel_iommu *iommu)
1761{
1762	if ((iommu->domains) && (iommu->domain_ids)) {
1763		int elems = ALIGN(cap_ndoms(iommu->cap), 256) >> 8;
1764		int i;
1765
1766		for (i = 0; i < elems; i++)
1767			kfree(iommu->domains[i]);
1768		kfree(iommu->domains);
1769		kfree(iommu->domain_ids);
1770		iommu->domains = NULL;
1771		iommu->domain_ids = NULL;
1772	}
1773
1774	g_iommus[iommu->seq_id] = NULL;
1775
1776	/* free context mapping */
1777	free_context_table(iommu);
1778
1779#ifdef CONFIG_INTEL_IOMMU_SVM
1780	if (pasid_enabled(iommu)) {
1781		if (ecap_prs(iommu->ecap))
1782			intel_svm_finish_prq(iommu);
1783		intel_svm_free_pasid_tables(iommu);
1784	}
1785#endif
1786}
1787
1788static struct dmar_domain *alloc_domain(int flags)
1789{
1790	struct dmar_domain *domain;
1791
1792	domain = alloc_domain_mem();
1793	if (!domain)
1794		return NULL;
1795
1796	memset(domain, 0, sizeof(*domain));
1797	domain->nid = -1;
1798	domain->flags = flags;
1799	domain->has_iotlb_device = false;
1800	INIT_LIST_HEAD(&domain->devices);
1801
1802	return domain;
1803}
1804
1805/* Must be called with iommu->lock */
1806static int domain_attach_iommu(struct dmar_domain *domain,
1807			       struct intel_iommu *iommu)
1808{
1809	unsigned long ndomains;
1810	int num;
1811
1812	assert_spin_locked(&device_domain_lock);
1813	assert_spin_locked(&iommu->lock);
1814
1815	domain->iommu_refcnt[iommu->seq_id] += 1;
1816	domain->iommu_count += 1;
1817	if (domain->iommu_refcnt[iommu->seq_id] == 1) {
1818		ndomains = cap_ndoms(iommu->cap);
1819		num      = find_first_zero_bit(iommu->domain_ids, ndomains);
1820
1821		if (num >= ndomains) {
1822			pr_err("%s: No free domain ids\n", iommu->name);
1823			domain->iommu_refcnt[iommu->seq_id] -= 1;
1824			domain->iommu_count -= 1;
1825			return -ENOSPC;
1826		}
1827
1828		set_bit(num, iommu->domain_ids);
1829		set_iommu_domain(iommu, num, domain);
1830
1831		domain->iommu_did[iommu->seq_id] = num;
1832		domain->nid			 = iommu->node;
1833
1834		domain_update_iommu_cap(domain);
1835	}
1836
1837	return 0;
1838}
1839
1840static int domain_detach_iommu(struct dmar_domain *domain,
1841			       struct intel_iommu *iommu)
1842{
1843	int num, count = INT_MAX;
1844
1845	assert_spin_locked(&device_domain_lock);
1846	assert_spin_locked(&iommu->lock);
1847
1848	domain->iommu_refcnt[iommu->seq_id] -= 1;
1849	count = --domain->iommu_count;
1850	if (domain->iommu_refcnt[iommu->seq_id] == 0) {
1851		num = domain->iommu_did[iommu->seq_id];
1852		clear_bit(num, iommu->domain_ids);
1853		set_iommu_domain(iommu, num, NULL);
1854
1855		domain_update_iommu_cap(domain);
1856		domain->iommu_did[iommu->seq_id] = 0;
1857	}
1858
1859	return count;
1860}
1861
1862static struct iova_domain reserved_iova_list;
1863static struct lock_class_key reserved_rbtree_key;
1864
1865static int dmar_init_reserved_ranges(void)
1866{
1867	struct pci_dev *pdev = NULL;
1868	struct iova *iova;
1869	int i;
1870
1871	init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN,
1872			DMA_32BIT_PFN);
1873
1874	lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1875		&reserved_rbtree_key);
1876
1877	/* IOAPIC ranges shouldn't be accessed by DMA */
1878	iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1879		IOVA_PFN(IOAPIC_RANGE_END));
1880	if (!iova) {
1881		pr_err("Reserve IOAPIC range failed\n");
1882		return -ENODEV;
1883	}
1884
1885	/* Reserve all PCI MMIO to avoid peer-to-peer access */
1886	for_each_pci_dev(pdev) {
1887		struct resource *r;
1888
1889		for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1890			r = &pdev->resource[i];
1891			if (!r->flags || !(r->flags & IORESOURCE_MEM))
1892				continue;
1893			iova = reserve_iova(&reserved_iova_list,
1894					    IOVA_PFN(r->start),
1895					    IOVA_PFN(r->end));
1896			if (!iova) {
1897				pr_err("Reserve iova failed\n");
1898				return -ENODEV;
1899			}
1900		}
1901	}
1902	return 0;
1903}
1904
1905static void domain_reserve_special_ranges(struct dmar_domain *domain)
1906{
1907	copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1908}
1909
1910static inline int guestwidth_to_adjustwidth(int gaw)
1911{
1912	int agaw;
1913	int r = (gaw - 12) % 9;
1914
1915	if (r == 0)
1916		agaw = gaw;
1917	else
1918		agaw = gaw + 9 - r;
1919	if (agaw > 64)
1920		agaw = 64;
1921	return agaw;
1922}
1923
1924static int domain_init(struct dmar_domain *domain, struct intel_iommu *iommu,
1925		       int guest_width)
1926{
1927	int adjust_width, agaw;
1928	unsigned long sagaw;
1929
1930	init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN,
1931			DMA_32BIT_PFN);
1932	domain_reserve_special_ranges(domain);
1933
1934	/* calculate AGAW */
1935	if (guest_width > cap_mgaw(iommu->cap))
1936		guest_width = cap_mgaw(iommu->cap);
1937	domain->gaw = guest_width;
1938	adjust_width = guestwidth_to_adjustwidth(guest_width);
1939	agaw = width_to_agaw(adjust_width);
1940	sagaw = cap_sagaw(iommu->cap);
1941	if (!test_bit(agaw, &sagaw)) {
1942		/* hardware doesn't support it, choose a bigger one */
1943		pr_debug("Hardware doesn't support agaw %d\n", agaw);
1944		agaw = find_next_bit(&sagaw, 5, agaw);
1945		if (agaw >= 5)
1946			return -ENODEV;
1947	}
1948	domain->agaw = agaw;
1949
1950	if (ecap_coherent(iommu->ecap))
1951		domain->iommu_coherency = 1;
1952	else
1953		domain->iommu_coherency = 0;
1954
1955	if (ecap_sc_support(iommu->ecap))
1956		domain->iommu_snooping = 1;
1957	else
1958		domain->iommu_snooping = 0;
1959
1960	if (intel_iommu_superpage)
1961		domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1962	else
1963		domain->iommu_superpage = 0;
1964
1965	domain->nid = iommu->node;
1966
1967	/* always allocate the top pgd */
1968	domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1969	if (!domain->pgd)
1970		return -ENOMEM;
1971	__iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1972	return 0;
1973}
1974
1975static void domain_exit(struct dmar_domain *domain)
1976{
1977	struct page *freelist = NULL;
1978
1979	/* Domain 0 is reserved, so dont process it */
1980	if (!domain)
1981		return;
1982
1983	/* Flush any lazy unmaps that may reference this domain */
1984	if (!intel_iommu_strict) {
1985		int cpu;
1986
1987		for_each_possible_cpu(cpu)
1988			flush_unmaps_timeout(cpu);
1989	}
1990
1991	/* Remove associated devices and clear attached or cached domains */
1992	rcu_read_lock();
1993	domain_remove_dev_info(domain);
1994	rcu_read_unlock();
1995
1996	/* destroy iovas */
1997	put_iova_domain(&domain->iovad);
1998
1999	freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
2000
2001	dma_free_pagelist(freelist);
2002
2003	free_domain_mem(domain);
2004}
2005
2006static int domain_context_mapping_one(struct dmar_domain *domain,
2007				      struct intel_iommu *iommu,
2008				      u8 bus, u8 devfn)
2009{
2010	u16 did = domain->iommu_did[iommu->seq_id];
2011	int translation = CONTEXT_TT_MULTI_LEVEL;
2012	struct device_domain_info *info = NULL;
2013	struct context_entry *context;
2014	unsigned long flags;
2015	struct dma_pte *pgd;
2016	int ret, agaw;
2017
2018	WARN_ON(did == 0);
2019
2020	if (hw_pass_through && domain_type_is_si(domain))
2021		translation = CONTEXT_TT_PASS_THROUGH;
2022
2023	pr_debug("Set context mapping for %02x:%02x.%d\n",
2024		bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
2025
2026	BUG_ON(!domain->pgd);
2027
2028	spin_lock_irqsave(&device_domain_lock, flags);
2029	spin_lock(&iommu->lock);
2030
2031	ret = -ENOMEM;
2032	context = iommu_context_addr(iommu, bus, devfn, 1);
2033	if (!context)
2034		goto out_unlock;
2035
2036	ret = 0;
2037	if (context_present(context))
2038		goto out_unlock;
2039
2040	/*
2041	 * For kdump cases, old valid entries may be cached due to the
2042	 * in-flight DMA and copied pgtable, but there is no unmapping
2043	 * behaviour for them, thus we need an explicit cache flush for
2044	 * the newly-mapped device. For kdump, at this point, the device
2045	 * is supposed to finish reset at its driver probe stage, so no
2046	 * in-flight DMA will exist, and we don't need to worry anymore
2047	 * hereafter.
2048	 */
2049	if (context_copied(context)) {
2050		u16 did_old = context_domain_id(context);
2051
2052		if (did_old >= 0 && did_old < cap_ndoms(iommu->cap))
2053			iommu->flush.flush_context(iommu, did_old,
2054						   (((u16)bus) << 8) | devfn,
2055						   DMA_CCMD_MASK_NOBIT,
2056						   DMA_CCMD_DEVICE_INVL);
2057	}
2058
2059	pgd = domain->pgd;
2060
2061	context_clear_entry(context);
2062	context_set_domain_id(context, did);
2063
2064	/*
2065	 * Skip top levels of page tables for iommu which has less agaw
2066	 * than default.  Unnecessary for PT mode.
2067	 */
2068	if (translation != CONTEXT_TT_PASS_THROUGH) {
2069		for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
2070			ret = -ENOMEM;
2071			pgd = phys_to_virt(dma_pte_addr(pgd));
2072			if (!dma_pte_present(pgd))
2073				goto out_unlock;
2074		}
2075
2076		info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
2077		if (info && info->ats_supported)
2078			translation = CONTEXT_TT_DEV_IOTLB;
2079		else
2080			translation = CONTEXT_TT_MULTI_LEVEL;
2081
2082		context_set_address_root(context, virt_to_phys(pgd));
2083		context_set_address_width(context, iommu->agaw);
2084	} else {
2085		/*
2086		 * In pass through mode, AW must be programmed to
2087		 * indicate the largest AGAW value supported by
2088		 * hardware. And ASR is ignored by hardware.
2089		 */
2090		context_set_address_width(context, iommu->msagaw);
2091	}
2092
2093	context_set_translation_type(context, translation);
2094	context_set_fault_enable(context);
2095	context_set_present(context);
2096	domain_flush_cache(domain, context, sizeof(*context));
2097
2098	/*
2099	 * It's a non-present to present mapping. If hardware doesn't cache
2100	 * non-present entry we only need to flush the write-buffer. If the
2101	 * _does_ cache non-present entries, then it does so in the special
2102	 * domain #0, which we have to flush:
2103	 */
2104	if (cap_caching_mode(iommu->cap)) {
2105		iommu->flush.flush_context(iommu, 0,
2106					   (((u16)bus) << 8) | devfn,
2107					   DMA_CCMD_MASK_NOBIT,
2108					   DMA_CCMD_DEVICE_INVL);
2109		iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
2110	} else {
2111		iommu_flush_write_buffer(iommu);
2112	}
2113	iommu_enable_dev_iotlb(info);
2114
2115	ret = 0;
2116
2117out_unlock:
2118	spin_unlock(&iommu->lock);
2119	spin_unlock_irqrestore(&device_domain_lock, flags);
2120
2121	return ret;
2122}
2123
2124struct domain_context_mapping_data {
2125	struct dmar_domain *domain;
2126	struct intel_iommu *iommu;
2127};
2128
2129static int domain_context_mapping_cb(struct pci_dev *pdev,
2130				     u16 alias, void *opaque)
2131{
2132	struct domain_context_mapping_data *data = opaque;
2133
2134	return domain_context_mapping_one(data->domain, data->iommu,
2135					  PCI_BUS_NUM(alias), alias & 0xff);
2136}
2137
2138static int
2139domain_context_mapping(struct dmar_domain *domain, struct device *dev)
2140{
2141	struct intel_iommu *iommu;
2142	u8 bus, devfn;
2143	struct domain_context_mapping_data data;
2144
2145	iommu = device_to_iommu(dev, &bus, &devfn);
2146	if (!iommu)
2147		return -ENODEV;
2148
2149	if (!dev_is_pci(dev))
2150		return domain_context_mapping_one(domain, iommu, bus, devfn);
2151
2152	data.domain = domain;
2153	data.iommu = iommu;
2154
2155	return pci_for_each_dma_alias(to_pci_dev(dev),
2156				      &domain_context_mapping_cb, &data);
2157}
2158
2159static int domain_context_mapped_cb(struct pci_dev *pdev,
2160				    u16 alias, void *opaque)
2161{
2162	struct intel_iommu *iommu = opaque;
2163
2164	return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
2165}
2166
2167static int domain_context_mapped(struct device *dev)
2168{
2169	struct intel_iommu *iommu;
2170	u8 bus, devfn;
2171
2172	iommu = device_to_iommu(dev, &bus, &devfn);
2173	if (!iommu)
2174		return -ENODEV;
2175
2176	if (!dev_is_pci(dev))
2177		return device_context_mapped(iommu, bus, devfn);
2178
2179	return !pci_for_each_dma_alias(to_pci_dev(dev),
2180				       domain_context_mapped_cb, iommu);
2181}
2182
2183/* Returns a number of VTD pages, but aligned to MM page size */
2184static inline unsigned long aligned_nrpages(unsigned long host_addr,
2185					    size_t size)
2186{
2187	host_addr &= ~PAGE_MASK;
2188	return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
2189}
2190
2191/* Return largest possible superpage level for a given mapping */
2192static inline int hardware_largepage_caps(struct dmar_domain *domain,
2193					  unsigned long iov_pfn,
2194					  unsigned long phy_pfn,
2195					  unsigned long pages)
2196{
2197	int support, level = 1;
2198	unsigned long pfnmerge;
2199
2200	support = domain->iommu_superpage;
2201
2202	/* To use a large page, the virtual *and* physical addresses
2203	   must be aligned to 2MiB/1GiB/etc. Lower bits set in either
2204	   of them will mean we have to use smaller pages. So just
2205	   merge them and check both at once. */
2206	pfnmerge = iov_pfn | phy_pfn;
2207
2208	while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
2209		pages >>= VTD_STRIDE_SHIFT;
2210		if (!pages)
2211			break;
2212		pfnmerge >>= VTD_STRIDE_SHIFT;
2213		level++;
2214		support--;
2215	}
2216	return level;
2217}
2218
2219static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2220			    struct scatterlist *sg, unsigned long phys_pfn,
2221			    unsigned long nr_pages, int prot)
2222{
2223	struct dma_pte *first_pte = NULL, *pte = NULL;
2224	phys_addr_t uninitialized_var(pteval);
2225	unsigned long sg_res = 0;
2226	unsigned int largepage_lvl = 0;
2227	unsigned long lvl_pages = 0;
2228
2229	BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
2230
2231	if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
2232		return -EINVAL;
2233
2234	prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
2235
2236	if (!sg) {
2237		sg_res = nr_pages;
2238		pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
2239	}
2240
2241	while (nr_pages > 0) {
2242		uint64_t tmp;
2243
2244		if (!sg_res) {
2245			sg_res = aligned_nrpages(sg->offset, sg->length);
2246			sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
2247			sg->dma_length = sg->length;
2248			pteval = page_to_phys(sg_page(sg)) | prot;
2249			phys_pfn = pteval >> VTD_PAGE_SHIFT;
2250		}
2251
2252		if (!pte) {
2253			largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
2254
2255			first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2256			if (!pte)
2257				return -ENOMEM;
2258			/* It is large page*/
2259			if (largepage_lvl > 1) {
2260				unsigned long nr_superpages, end_pfn;
2261
2262				pteval |= DMA_PTE_LARGE_PAGE;
2263				lvl_pages = lvl_to_nr_pages(largepage_lvl);
2264
2265				nr_superpages = sg_res / lvl_pages;
2266				end_pfn = iov_pfn + nr_superpages * lvl_pages - 1;
2267
2268				/*
2269				 * Ensure that old small page tables are
2270				 * removed to make room for superpage(s).
2271				 */
2272				dma_pte_free_pagetable(domain, iov_pfn, end_pfn);
2273			} else {
2274				pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2275			}
2276
2277		}
2278		/* We don't need lock here, nobody else
2279		 * touches the iova range
2280		 */
2281		tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2282		if (tmp) {
2283			static int dumps = 5;
2284			pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2285				iov_pfn, tmp, (unsigned long long)pteval);
2286			if (dumps) {
2287				dumps--;
2288				debug_dma_dump_mappings(NULL);
2289			}
2290			WARN_ON(1);
2291		}
2292
2293		lvl_pages = lvl_to_nr_pages(largepage_lvl);
2294
2295		BUG_ON(nr_pages < lvl_pages);
2296		BUG_ON(sg_res < lvl_pages);
2297
2298		nr_pages -= lvl_pages;
2299		iov_pfn += lvl_pages;
2300		phys_pfn += lvl_pages;
2301		pteval += lvl_pages * VTD_PAGE_SIZE;
2302		sg_res -= lvl_pages;
2303
2304		/* If the next PTE would be the first in a new page, then we
2305		   need to flush the cache on the entries we've just written.
2306		   And then we'll need to recalculate 'pte', so clear it and
2307		   let it get set again in the if (!pte) block above.
2308
2309		   If we're done (!nr_pages) we need to flush the cache too.
2310
2311		   Also if we've been setting superpages, we may need to
2312		   recalculate 'pte' and switch back to smaller pages for the
2313		   end of the mapping, if the trailing size is not enough to
2314		   use another superpage (i.e. sg_res < lvl_pages). */
2315		pte++;
2316		if (!nr_pages || first_pte_in_page(pte) ||
2317		    (largepage_lvl > 1 && sg_res < lvl_pages)) {
2318			domain_flush_cache(domain, first_pte,
2319					   (void *)pte - (void *)first_pte);
2320			pte = NULL;
2321		}
2322
2323		if (!sg_res && nr_pages)
2324			sg = sg_next(sg);
2325	}
2326	return 0;
2327}
2328
2329static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2330				    struct scatterlist *sg, unsigned long nr_pages,
2331				    int prot)
2332{
2333	return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2334}
2335
2336static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2337				     unsigned long phys_pfn, unsigned long nr_pages,
2338				     int prot)
2339{
2340	return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2341}
2342
2343static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn)
2344{
2345	if (!iommu)
2346		return;
2347
2348	clear_context_table(iommu, bus, devfn);
2349	iommu->flush.flush_context(iommu, 0, 0, 0,
2350					   DMA_CCMD_GLOBAL_INVL);
2351	iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2352}
2353
2354static inline void unlink_domain_info(struct device_domain_info *info)
2355{
2356	assert_spin_locked(&device_domain_lock);
2357	list_del(&info->link);
2358	list_del(&info->global);
2359	if (info->dev)
2360		info->dev->archdata.iommu = NULL;
2361}
2362
2363static void domain_remove_dev_info(struct dmar_domain *domain)
2364{
2365	struct device_domain_info *info, *tmp;
2366	unsigned long flags;
2367
2368	spin_lock_irqsave(&device_domain_lock, flags);
2369	list_for_each_entry_safe(info, tmp, &domain->devices, link)
2370		__dmar_remove_one_dev_info(info);
2371	spin_unlock_irqrestore(&device_domain_lock, flags);
2372}
2373
2374/*
2375 * find_domain
2376 * Note: we use struct device->archdata.iommu stores the info
2377 */
2378static struct dmar_domain *find_domain(struct device *dev)
2379{
2380	struct device_domain_info *info;
2381
2382	/* No lock here, assumes no domain exit in normal case */
2383	info = dev->archdata.iommu;
2384	if (info)
2385		return info->domain;
2386	return NULL;
2387}
2388
2389static inline struct device_domain_info *
2390dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
2391{
2392	struct device_domain_info *info;
2393
2394	list_for_each_entry(info, &device_domain_list, global)
2395		if (info->iommu->segment == segment && info->bus == bus &&
2396		    info->devfn == devfn)
2397			return info;
2398
2399	return NULL;
2400}
2401
2402static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu,
2403						    int bus, int devfn,
2404						    struct device *dev,
2405						    struct dmar_domain *domain)
2406{
2407	struct dmar_domain *found = NULL;
2408	struct device_domain_info *info;
2409	unsigned long flags;
2410	int ret;
2411
2412	info = alloc_devinfo_mem();
2413	if (!info)
2414		return NULL;
2415
2416	info->bus = bus;
2417	info->devfn = devfn;
2418	info->ats_supported = info->pasid_supported = info->pri_supported = 0;
2419	info->ats_enabled = info->pasid_enabled = info->pri_enabled = 0;
2420	info->ats_qdep = 0;
2421	info->dev = dev;
2422	info->domain = domain;
2423	info->iommu = iommu;
2424
2425	if (dev && dev_is_pci(dev)) {
2426		struct pci_dev *pdev = to_pci_dev(info->dev);
2427
2428		if (ecap_dev_iotlb_support(iommu->ecap) &&
2429		    pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS) &&
2430		    dmar_find_matched_atsr_unit(pdev))
2431			info->ats_supported = 1;
2432
2433		if (ecs_enabled(iommu)) {
2434			if (pasid_enabled(iommu)) {
2435				int features = pci_pasid_features(pdev);
2436				if (features >= 0)
2437					info->pasid_supported = features | 1;
2438			}
2439
2440			if (info->ats_supported && ecap_prs(iommu->ecap) &&
2441			    pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI))
2442				info->pri_supported = 1;
2443		}
2444	}
2445
2446	spin_lock_irqsave(&device_domain_lock, flags);
2447	if (dev)
2448		found = find_domain(dev);
2449
2450	if (!found) {
2451		struct device_domain_info *info2;
2452		info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
2453		if (info2) {
2454			found      = info2->domain;
2455			info2->dev = dev;
2456		}
2457	}
2458
2459	if (found) {
2460		spin_unlock_irqrestore(&device_domain_lock, flags);
2461		free_devinfo_mem(info);
2462		/* Caller must free the original domain */
2463		return found;
2464	}
2465
2466	spin_lock(&iommu->lock);
2467	ret = domain_attach_iommu(domain, iommu);
2468	spin_unlock(&iommu->lock);
2469
2470	if (ret) {
2471		spin_unlock_irqrestore(&device_domain_lock, flags);
2472		free_devinfo_mem(info);
2473		return NULL;
2474	}
2475
2476	list_add(&info->link, &domain->devices);
2477	list_add(&info->global, &device_domain_list);
2478	if (dev)
2479		dev->archdata.iommu = info;
2480	spin_unlock_irqrestore(&device_domain_lock, flags);
2481
2482	if (dev && domain_context_mapping(domain, dev)) {
2483		pr_err("Domain context map for %s failed\n", dev_name(dev));
2484		dmar_remove_one_dev_info(domain, dev);
2485		return NULL;
2486	}
2487
2488	return domain;
2489}
2490
2491static int get_last_alias(struct pci_dev *pdev, u16 alias, void *opaque)
2492{
2493	*(u16 *)opaque = alias;
2494	return 0;
2495}
2496
2497static struct dmar_domain *find_or_alloc_domain(struct device *dev, int gaw)
2498{
2499	struct device_domain_info *info = NULL;
2500	struct dmar_domain *domain = NULL;
2501	struct intel_iommu *iommu;
2502	u16 req_id, dma_alias;
2503	unsigned long flags;
2504	u8 bus, devfn;
2505
2506	iommu = device_to_iommu(dev, &bus, &devfn);
2507	if (!iommu)
2508		return NULL;
2509
2510	req_id = ((u16)bus << 8) | devfn;
2511
2512	if (dev_is_pci(dev)) {
2513		struct pci_dev *pdev = to_pci_dev(dev);
2514
2515		pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2516
2517		spin_lock_irqsave(&device_domain_lock, flags);
2518		info = dmar_search_domain_by_dev_info(pci_domain_nr(pdev->bus),
2519						      PCI_BUS_NUM(dma_alias),
2520						      dma_alias & 0xff);
2521		if (info) {
2522			iommu = info->iommu;
2523			domain = info->domain;
2524		}
2525		spin_unlock_irqrestore(&device_domain_lock, flags);
2526
2527		/* DMA alias already has a domain, use it */
2528		if (info)
2529			goto out;
2530	}
2531
2532	/* Allocate and initialize new domain for the device */
2533	domain = alloc_domain(0);
2534	if (!domain)
2535		return NULL;
2536	if (domain_init(domain, iommu, gaw)) {
2537		domain_exit(domain);
2538		return NULL;
2539	}
2540
2541out:
2542
2543	return domain;
2544}
2545
2546static struct dmar_domain *set_domain_for_dev(struct device *dev,
2547					      struct dmar_domain *domain)
2548{
2549	struct intel_iommu *iommu;
2550	struct dmar_domain *tmp;
2551	u16 req_id, dma_alias;
2552	u8 bus, devfn;
2553
2554	iommu = device_to_iommu(dev, &bus, &devfn);
2555	if (!iommu)
2556		return NULL;
2557
2558	req_id = ((u16)bus << 8) | devfn;
2559
2560	if (dev_is_pci(dev)) {
2561		struct pci_dev *pdev = to_pci_dev(dev);
2562
2563		pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2564
2565		/* register PCI DMA alias device */
2566		if (req_id != dma_alias) {
2567			tmp = dmar_insert_one_dev_info(iommu, PCI_BUS_NUM(dma_alias),
2568					dma_alias & 0xff, NULL, domain);
2569
2570			if (!tmp || tmp != domain)
2571				return tmp;
2572		}
2573	}
2574
2575	tmp = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2576	if (!tmp || tmp != domain)
2577		return tmp;
2578
2579	return domain;
2580}
2581
2582static struct dmar_domain *get_domain_for_dev(struct device *dev, int gaw)
2583{
2584	struct dmar_domain *domain, *tmp;
2585
2586	domain = find_domain(dev);
2587	if (domain)
2588		goto out;
2589
2590	domain = find_or_alloc_domain(dev, gaw);
2591	if (!domain)
2592		goto out;
2593
2594	tmp = set_domain_for_dev(dev, domain);
2595	if (!tmp || domain != tmp) {
2596		domain_exit(domain);
2597		domain = tmp;
2598	}
2599
2600out:
2601
2602	return domain;
2603}
2604
2605static int iommu_domain_identity_map(struct dmar_domain *domain,
2606				     unsigned long long start,
2607				     unsigned long long end)
2608{
2609	unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2610	unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2611
2612	if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2613			  dma_to_mm_pfn(last_vpfn))) {
2614		pr_err("Reserving iova failed\n");
2615		return -ENOMEM;
2616	}
2617
2618	pr_debug("Mapping reserved region %llx-%llx\n", start, end);
2619	/*
2620	 * RMRR range might have overlap with physical memory range,
2621	 * clear it first
2622	 */
2623	dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2624
2625	return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2626				  last_vpfn - first_vpfn + 1,
2627				  DMA_PTE_READ|DMA_PTE_WRITE);
2628}
2629
2630static int domain_prepare_identity_map(struct device *dev,
2631				       struct dmar_domain *domain,
2632				       unsigned long long start,
2633				       unsigned long long end)
2634{
2635	/* For _hardware_ passthrough, don't bother. But for software
2636	   passthrough, we do it anyway -- it may indicate a memory
2637	   range which is reserved in E820, so which didn't get set
2638	   up to start with in si_domain */
2639	if (domain == si_domain && hw_pass_through) {
2640		pr_warn("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2641			dev_name(dev), start, end);
2642		return 0;
2643	}
2644
2645	pr_info("Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2646		dev_name(dev), start, end);
2647
2648	if (end < start) {
2649		WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2650			"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2651			dmi_get_system_info(DMI_BIOS_VENDOR),
2652			dmi_get_system_info(DMI_BIOS_VERSION),
2653		     dmi_get_system_info(DMI_PRODUCT_VERSION));
2654		return -EIO;
2655	}
2656
2657	if (end >> agaw_to_width(domain->agaw)) {
2658		WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2659		     "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2660		     agaw_to_width(domain->agaw),
2661		     dmi_get_system_info(DMI_BIOS_VENDOR),
2662		     dmi_get_system_info(DMI_BIOS_VERSION),
2663		     dmi_get_system_info(DMI_PRODUCT_VERSION));
2664		return -EIO;
2665	}
2666
2667	return iommu_domain_identity_map(domain, start, end);
2668}
2669
2670static int iommu_prepare_identity_map(struct device *dev,
2671				      unsigned long long start,
2672				      unsigned long long end)
2673{
2674	struct dmar_domain *domain;
2675	int ret;
2676
2677	domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2678	if (!domain)
2679		return -ENOMEM;
2680
2681	ret = domain_prepare_identity_map(dev, domain, start, end);
2682	if (ret)
2683		domain_exit(domain);
2684
2685	return ret;
2686}
2687
2688static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2689					 struct device *dev)
2690{
2691	if (dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2692		return 0;
2693	return iommu_prepare_identity_map(dev, rmrr->base_address,
2694					  rmrr->end_address);
2695}
2696
2697#ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2698static inline void iommu_prepare_isa(void)
2699{
2700	struct pci_dev *pdev;
2701	int ret;
2702
2703	pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2704	if (!pdev)
2705		return;
2706
2707	pr_info("Prepare 0-16MiB unity mapping for LPC\n");
2708	ret = iommu_prepare_identity_map(&pdev->dev, 0, 16*1024*1024 - 1);
2709
2710	if (ret)
2711		pr_err("Failed to create 0-16MiB identity map - floppy might not work\n");
2712
2713	pci_dev_put(pdev);
2714}
2715#else
2716static inline void iommu_prepare_isa(void)
2717{
2718	return;
2719}
2720#endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2721
2722static int md_domain_init(struct dmar_domain *domain, int guest_width);
2723
2724static int __init si_domain_init(int hw)
2725{
2726	int nid, ret = 0;
2727
2728	si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2729	if (!si_domain)
2730		return -EFAULT;
2731
2732	if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2733		domain_exit(si_domain);
2734		return -EFAULT;
2735	}
2736
2737	pr_debug("Identity mapping domain allocated\n");
2738
2739	if (hw)
2740		return 0;
2741
2742	for_each_online_node(nid) {
2743		unsigned long start_pfn, end_pfn;
2744		int i;
2745
2746		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2747			ret = iommu_domain_identity_map(si_domain,
2748					PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2749			if (ret)
2750				return ret;
2751		}
2752	}
2753
2754	return 0;
2755}
2756
2757static int identity_mapping(struct device *dev)
2758{
2759	struct device_domain_info *info;
2760
2761	if (likely(!iommu_identity_mapping))
2762		return 0;
2763
2764	info = dev->archdata.iommu;
2765	if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2766		return (info->domain == si_domain);
2767
2768	return 0;
2769}
2770
2771static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev)
2772{
2773	struct dmar_domain *ndomain;
2774	struct intel_iommu *iommu;
2775	u8 bus, devfn;
2776
2777	iommu = device_to_iommu(dev, &bus, &devfn);
2778	if (!iommu)
2779		return -ENODEV;
2780
2781	ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2782	if (ndomain != domain)
2783		return -EBUSY;
2784
2785	return 0;
2786}
2787
2788static bool device_has_rmrr(struct device *dev)
2789{
2790	struct dmar_rmrr_unit *rmrr;
2791	struct device *tmp;
2792	int i;
2793
2794	rcu_read_lock();
2795	for_each_rmrr_units(rmrr) {
2796		/*
2797		 * Return TRUE if this RMRR contains the device that
2798		 * is passed in.
2799		 */
2800		for_each_active_dev_scope(rmrr->devices,
2801					  rmrr->devices_cnt, i, tmp)
2802			if (tmp == dev) {
2803				rcu_read_unlock();
2804				return true;
2805			}
2806	}
2807	rcu_read_unlock();
2808	return false;
2809}
2810
2811/*
2812 * There are a couple cases where we need to restrict the functionality of
2813 * devices associated with RMRRs.  The first is when evaluating a device for
2814 * identity mapping because problems exist when devices are moved in and out
2815 * of domains and their respective RMRR information is lost.  This means that
2816 * a device with associated RMRRs will never be in a "passthrough" domain.
2817 * The second is use of the device through the IOMMU API.  This interface
2818 * expects to have full control of the IOVA space for the device.  We cannot
2819 * satisfy both the requirement that RMRR access is maintained and have an
2820 * unencumbered IOVA space.  We also have no ability to quiesce the device's
2821 * use of the RMRR space or even inform the IOMMU API user of the restriction.
2822 * We therefore prevent devices associated with an RMRR from participating in
2823 * the IOMMU API, which eliminates them from device assignment.
2824 *
2825 * In both cases we assume that PCI USB devices with RMRRs have them largely
2826 * for historical reasons and that the RMRR space is not actively used post
2827 * boot.  This exclusion may change if vendors begin to abuse it.
2828 *
2829 * The same exception is made for graphics devices, with the requirement that
2830 * any use of the RMRR regions will be torn down before assigning the device
2831 * to a guest.
2832 */
2833static bool device_is_rmrr_locked(struct device *dev)
2834{
2835	if (!device_has_rmrr(dev))
2836		return false;
2837
2838	if (dev_is_pci(dev)) {
2839		struct pci_dev *pdev = to_pci_dev(dev);
2840
2841		if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
2842			return false;
2843	}
2844
2845	return true;
2846}
2847
2848static int iommu_should_identity_map(struct device *dev, int startup)
2849{
2850
2851	if (dev_is_pci(dev)) {
2852		struct pci_dev *pdev = to_pci_dev(dev);
2853
2854		if (device_is_rmrr_locked(dev))
2855			return 0;
2856
2857		if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2858			return 1;
2859
2860		if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2861			return 1;
2862
2863		if (!(iommu_identity_mapping & IDENTMAP_ALL))
2864			return 0;
2865
2866		/*
2867		 * We want to start off with all devices in the 1:1 domain, and
2868		 * take them out later if we find they can't access all of memory.
2869		 *
2870		 * However, we can't do this for PCI devices behind bridges,
2871		 * because all PCI devices behind the same bridge will end up
2872		 * with the same source-id on their transactions.
2873		 *
2874		 * Practically speaking, we can't change things around for these
2875		 * devices at run-time, because we can't be sure there'll be no
2876		 * DMA transactions in flight for any of their siblings.
2877		 *
2878		 * So PCI devices (unless they're on the root bus) as well as
2879		 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2880		 * the 1:1 domain, just in _case_ one of their siblings turns out
2881		 * not to be able to map all of memory.
2882		 */
2883		if (!pci_is_pcie(pdev)) {
2884			if (!pci_is_root_bus(pdev->bus))
2885				return 0;
2886			if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2887				return 0;
2888		} else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2889			return 0;
2890	} else {
2891		if (device_has_rmrr(dev))
2892			return 0;
2893	}
2894
2895	/*
2896	 * At boot time, we don't yet know if devices will be 64-bit capable.
2897	 * Assume that they will — if they turn out not to be, then we can
2898	 * take them out of the 1:1 domain later.
2899	 */
2900	if (!startup) {
2901		/*
2902		 * If the device's dma_mask is less than the system's memory
2903		 * size then this is not a candidate for identity mapping.
2904		 */
2905		u64 dma_mask = *dev->dma_mask;
2906
2907		if (dev->coherent_dma_mask &&
2908		    dev->coherent_dma_mask < dma_mask)
2909			dma_mask = dev->coherent_dma_mask;
2910
2911		return dma_mask >= dma_get_required_mask(dev);
2912	}
2913
2914	return 1;
2915}
2916
2917static int __init dev_prepare_static_identity_mapping(struct device *dev, int hw)
2918{
2919	int ret;
2920
2921	if (!iommu_should_identity_map(dev, 1))
2922		return 0;
2923
2924	ret = domain_add_dev_info(si_domain, dev);
2925	if (!ret)
2926		pr_info("%s identity mapping for device %s\n",
2927			hw ? "Hardware" : "Software", dev_name(dev));
2928	else if (ret == -ENODEV)
2929		/* device not associated with an iommu */
2930		ret = 0;
2931
2932	return ret;
2933}
2934
2935
2936static int __init iommu_prepare_static_identity_mapping(int hw)
2937{
2938	struct pci_dev *pdev = NULL;
2939	struct dmar_drhd_unit *drhd;
2940	struct intel_iommu *iommu;
2941	struct device *dev;
2942	int i;
2943	int ret = 0;
2944
2945	for_each_pci_dev(pdev) {
2946		ret = dev_prepare_static_identity_mapping(&pdev->dev, hw);
2947		if (ret)
2948			return ret;
2949	}
2950
2951	for_each_active_iommu(iommu, drhd)
2952		for_each_active_dev_scope(drhd->devices, drhd->devices_cnt, i, dev) {
2953			struct acpi_device_physical_node *pn;
2954			struct acpi_device *adev;
2955
2956			if (dev->bus != &acpi_bus_type)
2957				continue;
2958
2959			adev= to_acpi_device(dev);
2960			mutex_lock(&adev->physical_node_lock);
2961			list_for_each_entry(pn, &adev->physical_node_list, node) {
2962				ret = dev_prepare_static_identity_mapping(pn->dev, hw);
2963				if (ret)
2964					break;
2965			}
2966			mutex_unlock(&adev->physical_node_lock);
2967			if (ret)
2968				return ret;
2969		}
2970
2971	return 0;
2972}
2973
2974static void intel_iommu_init_qi(struct intel_iommu *iommu)
2975{
2976	/*
2977	 * Start from the sane iommu hardware state.
2978	 * If the queued invalidation is already initialized by us
2979	 * (for example, while enabling interrupt-remapping) then
2980	 * we got the things already rolling from a sane state.
2981	 */
2982	if (!iommu->qi) {
2983		/*
2984		 * Clear any previous faults.
2985		 */
2986		dmar_fault(-1, iommu);
2987		/*
2988		 * Disable queued invalidation if supported and already enabled
2989		 * before OS handover.
2990		 */
2991		dmar_disable_qi(iommu);
2992	}
2993
2994	if (dmar_enable_qi(iommu)) {
2995		/*
2996		 * Queued Invalidate not enabled, use Register Based Invalidate
2997		 */
2998		iommu->flush.flush_context = __iommu_flush_context;
2999		iommu->flush.flush_iotlb = __iommu_flush_iotlb;
3000		pr_info("%s: Using Register based invalidation\n",
3001			iommu->name);
3002	} else {
3003		iommu->flush.flush_context = qi_flush_context;
3004		iommu->flush.flush_iotlb = qi_flush_iotlb;
3005		pr_info("%s: Using Queued invalidation\n", iommu->name);
3006	}
3007}
3008
3009static int copy_context_table(struct intel_iommu *iommu,
3010			      struct root_entry *old_re,
3011			      struct context_entry **tbl,
3012			      int bus, bool ext)
3013{
3014	int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
3015	struct context_entry *new_ce = NULL, ce;
3016	struct context_entry *old_ce = NULL;
3017	struct root_entry re;
3018	phys_addr_t old_ce_phys;
3019
3020	tbl_idx = ext ? bus * 2 : bus;
3021	memcpy(&re, old_re, sizeof(re));
3022
3023	for (devfn = 0; devfn < 256; devfn++) {
3024		/* First calculate the correct index */
3025		idx = (ext ? devfn * 2 : devfn) % 256;
3026
3027		if (idx == 0) {
3028			/* First save what we may have and clean up */
3029			if (new_ce) {
3030				tbl[tbl_idx] = new_ce;
3031				__iommu_flush_cache(iommu, new_ce,
3032						    VTD_PAGE_SIZE);
3033				pos = 1;
3034			}
3035
3036			if (old_ce)
3037				iounmap(old_ce);
3038
3039			ret = 0;
3040			if (devfn < 0x80)
3041				old_ce_phys = root_entry_lctp(&re);
3042			else
3043				old_ce_phys = root_entry_uctp(&re);
3044
3045			if (!old_ce_phys) {
3046				if (ext && devfn == 0) {
3047					/* No LCTP, try UCTP */
3048					devfn = 0x7f;
3049					continue;
3050				} else {
3051					goto out;
3052				}
3053			}
3054
3055			ret = -ENOMEM;
3056			old_ce = memremap(old_ce_phys, PAGE_SIZE,
3057					MEMREMAP_WB);
3058			if (!old_ce)
3059				goto out;
3060
3061			new_ce = alloc_pgtable_page(iommu->node);
3062			if (!new_ce)
3063				goto out_unmap;
3064
3065			ret = 0;
3066		}
3067
3068		/* Now copy the context entry */
3069		memcpy(&ce, old_ce + idx, sizeof(ce));
3070
3071		if (!__context_present(&ce))
3072			continue;
3073
3074		did = context_domain_id(&ce);
3075		if (did >= 0 && did < cap_ndoms(iommu->cap))
3076			set_bit(did, iommu->domain_ids);
3077
3078		/*
3079		 * We need a marker for copied context entries. This
3080		 * marker needs to work for the old format as well as
3081		 * for extended context entries.
3082		 *
3083		 * Bit 67 of the context entry is used. In the old
3084		 * format this bit is available to software, in the
3085		 * extended format it is the PGE bit, but PGE is ignored
3086		 * by HW if PASIDs are disabled (and thus still
3087		 * available).
3088		 *
3089		 * So disable PASIDs first and then mark the entry
3090		 * copied. This means that we don't copy PASID
3091		 * translations from the old kernel, but this is fine as
3092		 * faults there are not fatal.
3093		 */
3094		context_clear_pasid_enable(&ce);
3095		context_set_copied(&ce);
3096
3097		new_ce[idx] = ce;
3098	}
3099
3100	tbl[tbl_idx + pos] = new_ce;
3101
3102	__iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);
3103
3104out_unmap:
3105	memunmap(old_ce);
3106
3107out:
3108	return ret;
3109}
3110
3111static int copy_translation_tables(struct intel_iommu *iommu)
3112{
3113	struct context_entry **ctxt_tbls;
3114	struct root_entry *old_rt;
3115	phys_addr_t old_rt_phys;
3116	int ctxt_table_entries;
3117	unsigned long flags;
3118	u64 rtaddr_reg;
3119	int bus, ret;
3120	bool new_ext, ext;
3121
3122	rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
3123	ext        = !!(rtaddr_reg & DMA_RTADDR_RTT);
3124	new_ext    = !!ecap_ecs(iommu->ecap);
3125
3126	/*
3127	 * The RTT bit can only be changed when translation is disabled,
3128	 * but disabling translation means to open a window for data
3129	 * corruption. So bail out and don't copy anything if we would
3130	 * have to change the bit.
3131	 */
3132	if (new_ext != ext)
3133		return -EINVAL;
3134
3135	old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
3136	if (!old_rt_phys)
3137		return -EINVAL;
3138
3139	old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB);
3140	if (!old_rt)
3141		return -ENOMEM;
3142
3143	/* This is too big for the stack - allocate it from slab */
3144	ctxt_table_entries = ext ? 512 : 256;
3145	ret = -ENOMEM;
3146	ctxt_tbls = kzalloc(ctxt_table_entries * sizeof(void *), GFP_KERNEL);
3147	if (!ctxt_tbls)
3148		goto out_unmap;
3149
3150	for (bus = 0; bus < 256; bus++) {
3151		ret = copy_context_table(iommu, &old_rt[bus],
3152					 ctxt_tbls, bus, ext);
3153		if (ret) {
3154			pr_err("%s: Failed to copy context table for bus %d\n",
3155				iommu->name, bus);
3156			continue;
3157		}
3158	}
3159
3160	spin_lock_irqsave(&iommu->lock, flags);
3161
3162	/* Context tables are copied, now write them to the root_entry table */
3163	for (bus = 0; bus < 256; bus++) {
3164		int idx = ext ? bus * 2 : bus;
3165		u64 val;
3166
3167		if (ctxt_tbls[idx]) {
3168			val = virt_to_phys(ctxt_tbls[idx]) | 1;
3169			iommu->root_entry[bus].lo = val;
3170		}
3171
3172		if (!ext || !ctxt_tbls[idx + 1])
3173			continue;
3174
3175		val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
3176		iommu->root_entry[bus].hi = val;
3177	}
3178
3179	spin_unlock_irqrestore(&iommu->lock, flags);
3180
3181	kfree(ctxt_tbls);
3182
3183	__iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);
3184
3185	ret = 0;
3186
3187out_unmap:
3188	memunmap(old_rt);
3189
3190	return ret;
3191}
3192
3193static int __init init_dmars(void)
3194{
3195	struct dmar_drhd_unit *drhd;
3196	struct dmar_rmrr_unit *rmrr;
3197	bool copied_tables = false;
3198	struct device *dev;
3199	struct intel_iommu *iommu;
3200	int i, ret, cpu;
3201
3202	/*
3203	 * for each drhd
3204	 *    allocate root
3205	 *    initialize and program root entry to not present
3206	 * endfor
3207	 */
3208	for_each_drhd_unit(drhd) {
3209		/*
3210		 * lock not needed as this is only incremented in the single
3211		 * threaded kernel __init code path all other access are read
3212		 * only
3213		 */
3214		if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
3215			g_num_of_iommus++;
3216			continue;
3217		}
3218		pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
3219	}
3220
3221	/* Preallocate enough resources for IOMMU hot-addition */
3222	if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
3223		g_num_of_iommus = DMAR_UNITS_SUPPORTED;
3224
3225	g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
3226			GFP_KERNEL);
3227	if (!g_iommus) {
3228		pr_err("Allocating global iommu array failed\n");
3229		ret = -ENOMEM;
3230		goto error;
3231	}
3232
3233	for_each_possible_cpu(cpu) {
3234		struct deferred_flush_data *dfd = per_cpu_ptr(&deferred_flush,
3235							      cpu);
3236
3237		dfd->tables = kzalloc(g_num_of_iommus *
3238				      sizeof(struct deferred_flush_table),
3239				      GFP_KERNEL);
3240		if (!dfd->tables) {
3241			ret = -ENOMEM;
3242			goto free_g_iommus;
3243		}
3244
3245		spin_lock_init(&dfd->lock);
3246		setup_timer(&dfd->timer, flush_unmaps_timeout, cpu);
3247	}
3248
3249	for_each_active_iommu(iommu, drhd) {
3250		g_iommus[iommu->seq_id] = iommu;
3251
3252		intel_iommu_init_qi(iommu);
3253
3254		ret = iommu_init_domains(iommu);
3255		if (ret)
3256			goto free_iommu;
3257
3258		init_translation_status(iommu);
3259
3260		if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
3261			iommu_disable_translation(iommu);
3262			clear_translation_pre_enabled(iommu);
3263			pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
3264				iommu->name);
3265		}
3266
3267		/*
3268		 * TBD:
3269		 * we could share the same root & context tables
3270		 * among all IOMMU's. Need to Split it later.
3271		 */
3272		ret = iommu_alloc_root_entry(iommu);
3273		if (ret)
3274			goto free_iommu;
3275
3276		if (translation_pre_enabled(iommu)) {
3277			pr_info("Translation already enabled - trying to copy translation structures\n");
3278
3279			ret = copy_translation_tables(iommu);
3280			if (ret) {
3281				/*
3282				 * We found the IOMMU with translation
3283				 * enabled - but failed to copy over the
3284				 * old root-entry table. Try to proceed
3285				 * by disabling translation now and
3286				 * allocating a clean root-entry table.
3287				 * This might cause DMAR faults, but
3288				 * probably the dump will still succeed.
3289				 */
3290				pr_err("Failed to copy translation tables from previous kernel for %s\n",
3291				       iommu->name);
3292				iommu_disable_translation(iommu);
3293				clear_translation_pre_enabled(iommu);
3294			} else {
3295				pr_info("Copied translation tables from previous kernel for %s\n",
3296					iommu->name);
3297				copied_tables = true;
3298			}
3299		}
3300
3301		if (!ecap_pass_through(iommu->ecap))
3302			hw_pass_through = 0;
3303#ifdef CONFIG_INTEL_IOMMU_SVM
3304		if (pasid_enabled(iommu))
3305			intel_svm_alloc_pasid_tables(iommu);
3306#endif
3307	}
3308
3309	/*
3310	 * Now that qi is enabled on all iommus, set the root entry and flush
3311	 * caches. This is required on some Intel X58 chipsets, otherwise the
3312	 * flush_context function will loop forever and the boot hangs.
3313	 */
3314	for_each_active_iommu(iommu, drhd) {
3315		iommu_flush_write_buffer(iommu);
3316		iommu_set_root_entry(iommu);
3317		iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
3318		iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3319	}
3320
3321	if (iommu_pass_through)
3322		iommu_identity_mapping |= IDENTMAP_ALL;
3323
3324#ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
3325	iommu_identity_mapping |= IDENTMAP_GFX;
3326#endif
3327
3328	check_tylersburg_isoch();
3329
3330	if (iommu_identity_mapping) {
3331		ret = si_domain_init(hw_pass_through);
3332		if (ret)
3333			goto free_iommu;
3334	}
3335
3336
3337	/*
3338	 * If we copied translations from a previous kernel in the kdump
3339	 * case, we can not assign the devices to domains now, as that
3340	 * would eliminate the old mappings. So skip this part and defer
3341	 * the assignment to device driver initialization time.
3342	 */
3343	if (copied_tables)
3344		goto domains_done;
3345
3346	/*
3347	 * If pass through is not set or not enabled, setup context entries for
3348	 * identity mappings for rmrr, gfx, and isa and may fall back to static
3349	 * identity mapping if iommu_identity_mapping is set.
3350	 */
3351	if (iommu_identity_mapping) {
3352		ret = iommu_prepare_static_identity_mapping(hw_pass_through);
3353		if (ret) {
3354			pr_crit("Failed to setup IOMMU pass-through\n");
3355			goto free_iommu;
3356		}
3357	}
3358	/*
3359	 * For each rmrr
3360	 *   for each dev attached to rmrr
3361	 *   do
3362	 *     locate drhd for dev, alloc domain for dev
3363	 *     allocate free domain
3364	 *     allocate page table entries for rmrr
3365	 *     if context not allocated for bus
3366	 *           allocate and init context
3367	 *           set present in root table for this bus
3368	 *     init context with domain, translation etc
3369	 *    endfor
3370	 * endfor
3371	 */
3372	pr_info("Setting RMRR:\n");
3373	for_each_rmrr_units(rmrr) {
3374		/* some BIOS lists non-exist devices in DMAR table. */
3375		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3376					  i, dev) {
3377			ret = iommu_prepare_rmrr_dev(rmrr, dev);
3378			if (ret)
3379				pr_err("Mapping reserved region failed\n");
3380		}
3381	}
3382
3383	iommu_prepare_isa();
3384
3385domains_done:
3386
3387	/*
3388	 * for each drhd
3389	 *   enable fault log
3390	 *   global invalidate context cache
3391	 *   global invalidate iotlb
3392	 *   enable translation
3393	 */
3394	for_each_iommu(iommu, drhd) {
3395		if (drhd->ignored) {
3396			/*
3397			 * we always have to disable PMRs or DMA may fail on
3398			 * this device
3399			 */
3400			if (force_on)
3401				iommu_disable_protect_mem_regions(iommu);
3402			continue;
3403		}
3404
3405		iommu_flush_write_buffer(iommu);
3406
3407#ifdef CONFIG_INTEL_IOMMU_SVM
3408		if (pasid_enabled(iommu) && ecap_prs(iommu->ecap)) {
3409			ret = intel_svm_enable_prq(iommu);
3410			if (ret)
3411				goto free_iommu;
3412		}
3413#endif
3414		ret = dmar_set_interrupt(iommu);
3415		if (ret)
3416			goto free_iommu;
3417
3418		if (!translation_pre_enabled(iommu))
3419			iommu_enable_translation(iommu);
3420
3421		iommu_disable_protect_mem_regions(iommu);
3422	}
3423
3424	return 0;
3425
3426free_iommu:
3427	for_each_active_iommu(iommu, drhd) {
3428		disable_dmar_iommu(iommu);
3429		free_dmar_iommu(iommu);
3430	}
3431free_g_iommus:
3432	for_each_possible_cpu(cpu)
3433		kfree(per_cpu_ptr(&deferred_flush, cpu)->tables);
3434	kfree(g_iommus);
3435error:
3436	return ret;
3437}
3438
3439/* This takes a number of _MM_ pages, not VTD pages */
3440static unsigned long intel_alloc_iova(struct device *dev,
3441				     struct dmar_domain *domain,
3442				     unsigned long nrpages, uint64_t dma_mask)
3443{
3444	unsigned long iova_pfn = 0;
3445
3446	/* Restrict dma_mask to the width that the iommu can handle */
3447	dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
3448	/* Ensure we reserve the whole size-aligned region */
3449	nrpages = __roundup_pow_of_two(nrpages);
3450
3451	if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
3452		/*
3453		 * First try to allocate an io virtual address in
3454		 * DMA_BIT_MASK(32) and if that fails then try allocating
3455		 * from higher range
3456		 */
3457		iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3458					   IOVA_PFN(DMA_BIT_MASK(32)));
3459		if (iova_pfn)
3460			return iova_pfn;
3461	}
3462	iova_pfn = alloc_iova_fast(&domain->iovad, nrpages, IOVA_PFN(dma_mask));
3463	if (unlikely(!iova_pfn)) {
3464		pr_err("Allocating %ld-page iova for %s failed",
3465		       nrpages, dev_name(dev));
3466		return 0;
3467	}
3468
3469	return iova_pfn;
3470}
3471
3472static struct dmar_domain *__get_valid_domain_for_dev(struct device *dev)
3473{
3474	struct dmar_domain *domain, *tmp;
3475	struct dmar_rmrr_unit *rmrr;
3476	struct device *i_dev;
3477	int i, ret;
3478
3479	domain = find_domain(dev);
3480	if (domain)
3481		goto out;
3482
3483	domain = find_or_alloc_domain(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
3484	if (!domain)
3485		goto out;
3486
3487	/* We have a new domain - setup possible RMRRs for the device */
3488	rcu_read_lock();
3489	for_each_rmrr_units(rmrr) {
3490		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3491					  i, i_dev) {
3492			if (i_dev != dev)
3493				continue;
3494
3495			ret = domain_prepare_identity_map(dev, domain,
3496							  rmrr->base_address,
3497							  rmrr->end_address);
3498			if (ret)
3499				dev_err(dev, "Mapping reserved region failed\n");
3500		}
3501	}
3502	rcu_read_unlock();
3503
3504	tmp = set_domain_for_dev(dev, domain);
3505	if (!tmp || domain != tmp) {
3506		domain_exit(domain);
3507		domain = tmp;
3508	}
3509
3510out:
3511
3512	if (!domain)
3513		pr_err("Allocating domain for %s failed\n", dev_name(dev));
3514
3515
3516	return domain;
3517}
3518
3519static inline struct dmar_domain *get_valid_domain_for_dev(struct device *dev)
3520{
3521	struct device_domain_info *info;
3522
3523	/* No lock here, assumes no domain exit in normal case */
3524	info = dev->archdata.iommu;
3525	if (likely(info))
3526		return info->domain;
3527
3528	return __get_valid_domain_for_dev(dev);
3529}
3530
3531/* Check if the dev needs to go through non-identity map and unmap process.*/
3532static int iommu_no_mapping(struct device *dev)
3533{
3534	int found;
3535
3536	if (iommu_dummy(dev))
3537		return 1;
3538
3539	if (!iommu_identity_mapping)
3540		return 0;
3541
3542	found = identity_mapping(dev);
3543	if (found) {
3544		if (iommu_should_identity_map(dev, 0))
3545			return 1;
3546		else {
3547			/*
3548			 * 32 bit DMA is removed from si_domain and fall back
3549			 * to non-identity mapping.
3550			 */
3551			dmar_remove_one_dev_info(si_domain, dev);
3552			pr_info("32bit %s uses non-identity mapping\n",
3553				dev_name(dev));
3554			return 0;
3555		}
3556	} else {
3557		/*
3558		 * In case of a detached 64 bit DMA device from vm, the device
3559		 * is put into si_domain for identity mapping.
3560		 */
3561		if (iommu_should_identity_map(dev, 0)) {
3562			int ret;
3563			ret = domain_add_dev_info(si_domain, dev);
3564			if (!ret) {
3565				pr_info("64bit %s uses identity mapping\n",
3566					dev_name(dev));
3567				return 1;
3568			}
3569		}
3570	}
3571
3572	return 0;
3573}
3574
3575static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
3576				     size_t size, int dir, u64 dma_mask)
3577{
3578	struct dmar_domain *domain;
3579	phys_addr_t start_paddr;
3580	unsigned long iova_pfn;
3581	int prot = 0;
3582	int ret;
3583	struct intel_iommu *iommu;
3584	unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
3585
3586	BUG_ON(dir == DMA_NONE);
3587
3588	if (iommu_no_mapping(dev))
3589		return paddr;
3590
3591	domain = get_valid_domain_for_dev(dev);
3592	if (!domain)
3593		return 0;
3594
3595	iommu = domain_get_iommu(domain);
3596	size = aligned_nrpages(paddr, size);
3597
3598	iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
3599	if (!iova_pfn)
3600		goto error;
3601
3602	/*
3603	 * Check if DMAR supports zero-length reads on write only
3604	 * mappings..
3605	 */
3606	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3607			!cap_zlr(iommu->cap))
3608		prot |= DMA_PTE_READ;
3609	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3610		prot |= DMA_PTE_WRITE;
3611	/*
3612	 * paddr - (paddr + size) might be partial page, we should map the whole
3613	 * page.  Note: if two part of one page are separately mapped, we
3614	 * might have two guest_addr mapping to the same host paddr, but this
3615	 * is not a big problem
3616	 */
3617	ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
3618				 mm_to_dma_pfn(paddr_pfn), size, prot);
3619	if (ret)
3620		goto error;
3621
3622	/* it's a non-present to present mapping. Only flush if caching mode */
3623	if (cap_caching_mode(iommu->cap))
3624		iommu_flush_iotlb_psi(iommu, domain,
3625				      mm_to_dma_pfn(iova_pfn),
3626				      size, 0, 1);
3627	else
3628		iommu_flush_write_buffer(iommu);
3629
3630	start_paddr = (phys_addr_t)iova_pfn << PAGE_SHIFT;
3631	start_paddr += paddr & ~PAGE_MASK;
3632	return start_paddr;
3633
3634error:
3635	if (iova_pfn)
3636		free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3637	pr_err("Device %s request: %zx@%llx dir %d --- failed\n",
3638		dev_name(dev), size, (unsigned long long)paddr, dir);
3639	return 0;
3640}
3641
3642static dma_addr_t intel_map_page(struct device *dev, struct page *page,
3643				 unsigned long offset, size_t size,
3644				 enum dma_data_direction dir,
3645				 unsigned long attrs)
3646{
3647	return __intel_map_single(dev, page_to_phys(page) + offset, size,
3648				  dir, *dev->dma_mask);
3649}
3650
3651static void flush_unmaps(struct deferred_flush_data *flush_data)
3652{
3653	int i, j;
3654
3655	flush_data->timer_on = 0;
3656
3657	/* just flush them all */
3658	for (i = 0; i < g_num_of_iommus; i++) {
3659		struct intel_iommu *iommu = g_iommus[i];
3660		struct deferred_flush_table *flush_table =
3661				&flush_data->tables[i];
3662		if (!iommu)
3663			continue;
3664
3665		if (!flush_table->next)
3666			continue;
3667
3668		/* In caching mode, global flushes turn emulation expensive */
3669		if (!cap_caching_mode(iommu->cap))
3670			iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3671					 DMA_TLB_GLOBAL_FLUSH);
3672		for (j = 0; j < flush_table->next; j++) {
3673			unsigned long mask;
3674			struct deferred_flush_entry *entry =
3675						&flush_table->entries[j];
3676			unsigned long iova_pfn = entry->iova_pfn;
3677			unsigned long nrpages = entry->nrpages;
3678			struct dmar_domain *domain = entry->domain;
3679			struct page *freelist = entry->freelist;
3680
3681			/* On real hardware multiple invalidations are expensive */
3682			if (cap_caching_mode(iommu->cap))
3683				iommu_flush_iotlb_psi(iommu, domain,
3684					mm_to_dma_pfn(iova_pfn),
3685					nrpages, !freelist, 0);
3686			else {
3687				mask = ilog2(nrpages);
3688				iommu_flush_dev_iotlb(domain,
3689						(uint64_t)iova_pfn << PAGE_SHIFT, mask);
3690			}
3691			free_iova_fast(&domain->iovad, iova_pfn, nrpages);
3692			if (freelist)
3693				dma_free_pagelist(freelist);
3694		}
3695		flush_table->next = 0;
3696	}
3697
3698	flush_data->size = 0;
3699}
3700
3701static void flush_unmaps_timeout(unsigned long cpuid)
3702{
3703	struct deferred_flush_data *flush_data = per_cpu_ptr(&deferred_flush, cpuid);
3704	unsigned long flags;
3705
3706	spin_lock_irqsave(&flush_data->lock, flags);
3707	flush_unmaps(flush_data);
3708	spin_unlock_irqrestore(&flush_data->lock, flags);
3709}
3710
3711static void add_unmap(struct dmar_domain *dom, unsigned long iova_pfn,
3712		      unsigned long nrpages, struct page *freelist)
3713{
3714	unsigned long flags;
3715	int entry_id, iommu_id;
3716	struct intel_iommu *iommu;
3717	struct deferred_flush_entry *entry;
3718	struct deferred_flush_data *flush_data;
3719	unsigned int cpuid;
3720
3721	cpuid = get_cpu();
3722	flush_data = per_cpu_ptr(&deferred_flush, cpuid);
3723
3724	/* Flush all CPUs' entries to avoid deferring too much.  If
3725	 * this becomes a bottleneck, can just flush us, and rely on
3726	 * flush timer for the rest.
3727	 */
3728	if (flush_data->size == HIGH_WATER_MARK) {
3729		int cpu;
3730
3731		for_each_online_cpu(cpu)
3732			flush_unmaps_timeout(cpu);
3733	}
3734
3735	spin_lock_irqsave(&flush_data->lock, flags);
3736
3737	iommu = domain_get_iommu(dom);
3738	iommu_id = iommu->seq_id;
3739
3740	entry_id = flush_data->tables[iommu_id].next;
3741	++(flush_data->tables[iommu_id].next);
3742
3743	entry = &flush_data->tables[iommu_id].entries[entry_id];
3744	entry->domain = dom;
3745	entry->iova_pfn = iova_pfn;
3746	entry->nrpages = nrpages;
3747	entry->freelist = freelist;
3748
3749	if (!flush_data->timer_on) {
3750		mod_timer(&flush_data->timer, jiffies + msecs_to_jiffies(10));
3751		flush_data->timer_on = 1;
3752	}
3753	flush_data->size++;
3754	spin_unlock_irqrestore(&flush_data->lock, flags);
3755
3756	put_cpu();
3757}
3758
3759static void intel_unmap(struct device *dev, dma_addr_t dev_addr, size_t size)
3760{
3761	struct dmar_domain *domain;
3762	unsigned long start_pfn, last_pfn;
3763	unsigned long nrpages;
3764	unsigned long iova_pfn;
3765	struct intel_iommu *iommu;
3766	struct page *freelist;
3767
3768	if (iommu_no_mapping(dev))
3769		return;
3770
3771	domain = find_domain(dev);
3772	BUG_ON(!domain);
3773
3774	iommu = domain_get_iommu(domain);
3775
3776	iova_pfn = IOVA_PFN(dev_addr);
3777
3778	nrpages = aligned_nrpages(dev_addr, size);
3779	start_pfn = mm_to_dma_pfn(iova_pfn);
3780	last_pfn = start_pfn + nrpages - 1;
3781
3782	pr_debug("Device %s unmapping: pfn %lx-%lx\n",
3783		 dev_name(dev), start_pfn, last_pfn);
3784
3785	freelist = domain_unmap(domain, start_pfn, last_pfn);
3786
3787	if (intel_iommu_strict) {
3788		iommu_flush_iotlb_psi(iommu, domain, start_pfn,
3789				      nrpages, !freelist, 0);
3790		/* free iova */
3791		free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
3792		dma_free_pagelist(freelist);
3793	} else {
3794		add_unmap(domain, iova_pfn, nrpages, freelist);
3795		/*
3796		 * queue up the release of the unmap to save the 1/6th of the
3797		 * cpu used up by the iotlb flush operation...
3798		 */
3799	}
3800}
3801
3802static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
3803			     size_t size, enum dma_data_direction dir,
3804			     unsigned long attrs)
3805{
3806	intel_unmap(dev, dev_addr, size);
3807}
3808
3809static void *intel_alloc_coherent(struct device *dev, size_t size,
3810				  dma_addr_t *dma_handle, gfp_t flags,
3811				  unsigned long attrs)
3812{
3813	struct page *page = NULL;
3814	int order;
3815
3816	size = PAGE_ALIGN(size);
3817	order = get_order(size);
3818
3819	if (!iommu_no_mapping(dev))
3820		flags &= ~(GFP_DMA | GFP_DMA32);
3821	else if (dev->coherent_dma_mask < dma_get_required_mask(dev)) {
3822		if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
3823			flags |= GFP_DMA;
3824		else
3825			flags |= GFP_DMA32;
3826	}
3827
3828	if (gfpflags_allow_blocking(flags)) {
3829		unsigned int count = size >> PAGE_SHIFT;
3830
3831		page = dma_alloc_from_contiguous(dev, count, order);
3832		if (page && iommu_no_mapping(dev) &&
3833		    page_to_phys(page) + size > dev->coherent_dma_mask) {
3834			dma_release_from_contiguous(dev, page, count);
3835			page = NULL;
3836		}
3837	}
3838
3839	if (!page)
3840		page = alloc_pages(flags, order);
3841	if (!page)
3842		return NULL;
3843	memset(page_address(page), 0, size);
3844
3845	*dma_handle = __intel_map_single(dev, page_to_phys(page), size,
3846					 DMA_BIDIRECTIONAL,
3847					 dev->coherent_dma_mask);
3848	if (*dma_handle)
3849		return page_address(page);
3850	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3851		__free_pages(page, order);
3852
3853	return NULL;
3854}
3855
3856static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3857				dma_addr_t dma_handle, unsigned long attrs)
3858{
3859	int order;
3860	struct page *page = virt_to_page(vaddr);
3861
3862	size = PAGE_ALIGN(size);
3863	order = get_order(size);
3864
3865	intel_unmap(dev, dma_handle, size);
3866	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3867		__free_pages(page, order);
3868}
3869
3870static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3871			   int nelems, enum dma_data_direction dir,
3872			   unsigned long attrs)
3873{
3874	dma_addr_t startaddr = sg_dma_address(sglist) & PAGE_MASK;
3875	unsigned long nrpages = 0;
3876	struct scatterlist *sg;
3877	int i;
3878
3879	for_each_sg(sglist, sg, nelems, i) {
3880		nrpages += aligned_nrpages(sg_dma_address(sg), sg_dma_len(sg));
3881	}
3882
3883	intel_unmap(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
3884}
3885
3886static int intel_nontranslate_map_sg(struct device *hddev,
3887	struct scatterlist *sglist, int nelems, int dir)
3888{
3889	int i;
3890	struct scatterlist *sg;
3891
3892	for_each_sg(sglist, sg, nelems, i) {
3893		BUG_ON(!sg_page(sg));
3894		sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
3895		sg->dma_length = sg->length;
3896	}
3897	return nelems;
3898}
3899
3900static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3901			enum dma_data_direction dir, unsigned long attrs)
3902{
3903	int i;
3904	struct dmar_domain *domain;
3905	size_t size = 0;
3906	int prot = 0;
3907	unsigned long iova_pfn;
3908	int ret;
3909	struct scatterlist *sg;
3910	unsigned long start_vpfn;
3911	struct intel_iommu *iommu;
3912
3913	BUG_ON(dir == DMA_NONE);
3914	if (iommu_no_mapping(dev))
3915		return intel_nontranslate_map_sg(dev, sglist, nelems, dir);
3916
3917	domain = get_valid_domain_for_dev(dev);
3918	if (!domain)
3919		return 0;
3920
3921	iommu = domain_get_iommu(domain);
3922
3923	for_each_sg(sglist, sg, nelems, i)
3924		size += aligned_nrpages(sg->offset, sg->length);
3925
3926	iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3927				*dev->dma_mask);
3928	if (!iova_pfn) {
3929		sglist->dma_length = 0;
3930		return 0;
3931	}
3932
3933	/*
3934	 * Check if DMAR supports zero-length reads on write only
3935	 * mappings..
3936	 */
3937	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3938			!cap_zlr(iommu->cap))
3939		prot |= DMA_PTE_READ;
3940	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3941		prot |= DMA_PTE_WRITE;
3942
3943	start_vpfn = mm_to_dma_pfn(iova_pfn);
3944
3945	ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3946	if (unlikely(ret)) {
3947		dma_pte_free_pagetable(domain, start_vpfn,
3948				       start_vpfn + size - 1);
3949		free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3950		return 0;
3951	}
3952
3953	/* it's a non-present to present mapping. Only flush if caching mode */
3954	if (cap_caching_mode(iommu->cap))
3955		iommu_flush_iotlb_psi(iommu, domain, start_vpfn, size, 0, 1);
3956	else
3957		iommu_flush_write_buffer(iommu);
3958
3959	return nelems;
3960}
3961
3962static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3963{
3964	return !dma_addr;
3965}
3966
3967struct dma_map_ops intel_dma_ops = {
3968	.alloc = intel_alloc_coherent,
3969	.free = intel_free_coherent,
3970	.map_sg = intel_map_sg,
3971	.unmap_sg = intel_unmap_sg,
3972	.map_page = intel_map_page,
3973	.unmap_page = intel_unmap_page,
3974	.mapping_error = intel_mapping_error,
3975};
3976
3977static inline int iommu_domain_cache_init(void)
3978{
3979	int ret = 0;
3980
3981	iommu_domain_cache = kmem_cache_create("iommu_domain",
3982					 sizeof(struct dmar_domain),
3983					 0,
3984					 SLAB_HWCACHE_ALIGN,
3985
3986					 NULL);
3987	if (!iommu_domain_cache) {
3988		pr_err("Couldn't create iommu_domain cache\n");
3989		ret = -ENOMEM;
3990	}
3991
3992	return ret;
3993}
3994
3995static inline int iommu_devinfo_cache_init(void)
3996{
3997	int ret = 0;
3998
3999	iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
4000					 sizeof(struct device_domain_info),
4001					 0,
4002					 SLAB_HWCACHE_ALIGN,
4003					 NULL);
4004	if (!iommu_devinfo_cache) {
4005		pr_err("Couldn't create devinfo cache\n");
4006		ret = -ENOMEM;
4007	}
4008
4009	return ret;
4010}
4011
4012static int __init iommu_init_mempool(void)
4013{
4014	int ret;
4015	ret = iova_cache_get();
4016	if (ret)
4017		return ret;
4018
4019	ret = iommu_domain_cache_init();
4020	if (ret)
4021		goto domain_error;
4022
4023	ret = iommu_devinfo_cache_init();
4024	if (!ret)
4025		return ret;
4026
4027	kmem_cache_destroy(iommu_domain_cache);
4028domain_error:
4029	iova_cache_put();
4030
4031	return -ENOMEM;
4032}
4033
4034static void __init iommu_exit_mempool(void)
4035{
4036	kmem_cache_destroy(iommu_devinfo_cache);
4037	kmem_cache_destroy(iommu_domain_cache);
4038	iova_cache_put();
4039}
4040
4041static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
4042{
4043	struct dmar_drhd_unit *drhd;
4044	u32 vtbar;
4045	int rc;
4046
4047	/* We know that this device on this chipset has its own IOMMU.
4048	 * If we find it under a different IOMMU, then the BIOS is lying
4049	 * to us. Hope that the IOMMU for this device is actually
4050	 * disabled, and it needs no translation...
4051	 */
4052	rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
4053	if (rc) {
4054		/* "can't" happen */
4055		dev_info(&pdev->dev, "failed to run vt-d quirk\n");
4056		return;
4057	}
4058	vtbar &= 0xffff0000;
4059
4060	/* we know that the this iommu should be at offset 0xa000 from vtbar */
4061	drhd = dmar_find_matched_drhd_unit(pdev);
4062	if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
4063			    TAINT_FIRMWARE_WORKAROUND,
4064			    "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
4065		pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
4066}
4067DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
4068
4069static void __init init_no_remapping_devices(void)
4070{
4071	struct dmar_drhd_unit *drhd;
4072	struct device *dev;
4073	int i;
4074
4075	for_each_drhd_unit(drhd) {
4076		if (!drhd->include_all) {
4077			for_each_active_dev_scope(drhd->devices,
4078						  drhd->devices_cnt, i, dev)
4079				break;
4080			/* ignore DMAR unit if no devices exist */
4081			if (i == drhd->devices_cnt)
4082				drhd->ignored = 1;
4083		}
4084	}
4085
4086	for_each_active_drhd_unit(drhd) {
4087		if (drhd->include_all)
4088			continue;
4089
4090		for_each_active_dev_scope(drhd->devices,
4091					  drhd->devices_cnt, i, dev)
4092			if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
4093				break;
4094		if (i < drhd->devices_cnt)
4095			continue;
4096
4097		/* This IOMMU has *only* gfx devices. Either bypass it or
4098		   set the gfx_mapped flag, as appropriate */
4099		if (dmar_map_gfx) {
4100			intel_iommu_gfx_mapped = 1;
4101		} else {
4102			drhd->ignored = 1;
4103			for_each_active_dev_scope(drhd->devices,
4104						  drhd->devices_cnt, i, dev)
4105				dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
4106		}
4107	}
4108}
4109
4110#ifdef CONFIG_SUSPEND
4111static int init_iommu_hw(void)
4112{
4113	struct dmar_drhd_unit *drhd;
4114	struct intel_iommu *iommu = NULL;
4115
4116	for_each_active_iommu(iommu, drhd)
4117		if (iommu->qi)
4118			dmar_reenable_qi(iommu);
4119
4120	for_each_iommu(iommu, drhd) {
4121		if (drhd->ignored) {
4122			/*
4123			 * we always have to disable PMRs or DMA may fail on
4124			 * this device
4125			 */
4126			if (force_on)
4127				iommu_disable_protect_mem_regions(iommu);
4128			continue;
4129		}
4130	
4131		iommu_flush_write_buffer(iommu);
4132
4133		iommu_set_root_entry(iommu);
4134
4135		iommu->flush.flush_context(iommu, 0, 0, 0,
4136					   DMA_CCMD_GLOBAL_INVL);
4137		iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4138		iommu_enable_translation(iommu);
4139		iommu_disable_protect_mem_regions(iommu);
4140	}
4141
4142	return 0;
4143}
4144
4145static void iommu_flush_all(void)
4146{
4147	struct dmar_drhd_unit *drhd;
4148	struct intel_iommu *iommu;
4149
4150	for_each_active_iommu(iommu, drhd) {
4151		iommu->flush.flush_context(iommu, 0, 0, 0,
4152					   DMA_CCMD_GLOBAL_INVL);
4153		iommu->flush.flush_iotlb(iommu, 0, 0, 0,
4154					 DMA_TLB_GLOBAL_FLUSH);
4155	}
4156}
4157
4158static int iommu_suspend(void)
4159{
4160	struct dmar_drhd_unit *drhd;
4161	struct intel_iommu *iommu = NULL;
4162	unsigned long flag;
4163
4164	for_each_active_iommu(iommu, drhd) {
4165		iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
4166						 GFP_ATOMIC);
4167		if (!iommu->iommu_state)
4168			goto nomem;
4169	}
4170
4171	iommu_flush_all();
4172
4173	for_each_active_iommu(iommu, drhd) {
4174		iommu_disable_translation(iommu);
4175
4176		raw_spin_lock_irqsave(&iommu->register_lock, flag);
4177
4178		iommu->iommu_state[SR_DMAR_FECTL_REG] =
4179			readl(iommu->reg + DMAR_FECTL_REG);
4180		iommu->iommu_state[SR_DMAR_FEDATA_REG] =
4181			readl(iommu->reg + DMAR_FEDATA_REG);
4182		iommu->iommu_state[SR_DMAR_FEADDR_REG] =
4183			readl(iommu->reg + DMAR_FEADDR_REG);
4184		iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
4185			readl(iommu->reg + DMAR_FEUADDR_REG);
4186
4187		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4188	}
4189	return 0;
4190
4191nomem:
4192	for_each_active_iommu(iommu, drhd)
4193		kfree(iommu->iommu_state);
4194
4195	return -ENOMEM;
4196}
4197
4198static void iommu_resume(void)
4199{
4200	struct dmar_drhd_unit *drhd;
4201	struct intel_iommu *iommu = NULL;
4202	unsigned long flag;
4203
4204	if (init_iommu_hw()) {
4205		if (force_on)
4206			panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
4207		else
4208			WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
4209		return;
4210	}
4211
4212	for_each_active_iommu(iommu, drhd) {
4213
4214		raw_spin_lock_irqsave(&iommu->register_lock, flag);
4215
4216		writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
4217			iommu->reg + DMAR_FECTL_REG);
4218		writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
4219			iommu->reg + DMAR_FEDATA_REG);
4220		writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
4221			iommu->reg + DMAR_FEADDR_REG);
4222		writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
4223			iommu->reg + DMAR_FEUADDR_REG);
4224
4225		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4226	}
4227
4228	for_each_active_iommu(iommu, drhd)
4229		kfree(iommu->iommu_state);
4230}
4231
4232static struct syscore_ops iommu_syscore_ops = {
4233	.resume		= iommu_resume,
4234	.suspend	= iommu_suspend,
4235};
4236
4237static void __init init_iommu_pm_ops(void)
4238{
4239	register_syscore_ops(&iommu_syscore_ops);
4240}
4241
4242#else
4243static inline void init_iommu_pm_ops(void) {}
4244#endif	/* CONFIG_PM */
4245
4246
4247int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
4248{
4249	struct acpi_dmar_reserved_memory *rmrr;
4250	struct dmar_rmrr_unit *rmrru;
4251
4252	rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
4253	if (!rmrru)
4254		return -ENOMEM;
4255
4256	rmrru->hdr = header;
4257	rmrr = (struct acpi_dmar_reserved_memory *)header;
4258	rmrru->base_address = rmrr->base_address;
4259	rmrru->end_address = rmrr->end_address;
4260	rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
4261				((void *)rmrr) + rmrr->header.length,
4262				&rmrru->devices_cnt);
4263	if (rmrru->devices_cnt && rmrru->devices == NULL) {
4264		kfree(rmrru);
4265		return -ENOMEM;
4266	}
4267
4268	list_add(&rmrru->list, &dmar_rmrr_units);
4269
4270	return 0;
4271}
4272
4273static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
4274{
4275	struct dmar_atsr_unit *atsru;
4276	struct acpi_dmar_atsr *tmp;
4277
4278	list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4279		tmp = (struct acpi_dmar_atsr *)atsru->hdr;
4280		if (atsr->segment != tmp->segment)
4281			continue;
4282		if (atsr->header.length != tmp->header.length)
4283			continue;
4284		if (memcmp(atsr, tmp, atsr->header.length) == 0)
4285			return atsru;
4286	}
4287
4288	return NULL;
4289}
4290
4291int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4292{
4293	struct acpi_dmar_atsr *atsr;
4294	struct dmar_atsr_unit *atsru;
4295
4296	if (system_state != SYSTEM_BOOTING && !intel_iommu_enabled)
4297		return 0;
4298
4299	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4300	atsru = dmar_find_atsr(atsr);
4301	if (atsru)
4302		return 0;
4303
4304	atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
4305	if (!atsru)
4306		return -ENOMEM;
4307
4308	/*
4309	 * If memory is allocated from slab by ACPI _DSM method, we need to
4310	 * copy the memory content because the memory buffer will be freed
4311	 * on return.
4312	 */
4313	atsru->hdr = (void *)(atsru + 1);
4314	memcpy(atsru->hdr, hdr, hdr->length);
4315	atsru->include_all = atsr->flags & 0x1;
4316	if (!atsru->include_all) {
4317		atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
4318				(void *)atsr + atsr->header.length,
4319				&atsru->devices_cnt);
4320		if (atsru->devices_cnt && atsru->devices == NULL) {
4321			kfree(atsru);
4322			return -ENOMEM;
4323		}
4324	}
4325
4326	list_add_rcu(&atsru->list, &dmar_atsr_units);
4327
4328	return 0;
4329}
4330
4331static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
4332{
4333	dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
4334	kfree(atsru);
4335}
4336
4337int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4338{
4339	struct acpi_dmar_atsr *atsr;
4340	struct dmar_atsr_unit *atsru;
4341
4342	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4343	atsru = dmar_find_atsr(atsr);
4344	if (atsru) {
4345		list_del_rcu(&atsru->list);
4346		synchronize_rcu();
4347		intel_iommu_free_atsr(atsru);
4348	}
4349
4350	return 0;
4351}
4352
4353int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4354{
4355	int i;
4356	struct device *dev;
4357	struct acpi_dmar_atsr *atsr;
4358	struct dmar_atsr_unit *atsru;
4359
4360	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4361	atsru = dmar_find_atsr(atsr);
4362	if (!atsru)
4363		return 0;
4364
4365	if (!atsru->include_all && atsru->devices && atsru->devices_cnt) {
4366		for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
4367					  i, dev)
4368			return -EBUSY;
4369	}
4370
4371	return 0;
4372}
4373
4374static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
4375{
4376	int sp, ret = 0;
4377	struct intel_iommu *iommu = dmaru->iommu;
4378
4379	if (g_iommus[iommu->seq_id])
4380		return 0;
4381
4382	if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
4383		pr_warn("%s: Doesn't support hardware pass through.\n",
4384			iommu->name);
4385		return -ENXIO;
4386	}
4387	if (!ecap_sc_support(iommu->ecap) &&
4388	    domain_update_iommu_snooping(iommu)) {
4389		pr_warn("%s: Doesn't support snooping.\n",
4390			iommu->name);
4391		return -ENXIO;
4392	}
4393	sp = domain_update_iommu_superpage(iommu) - 1;
4394	if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
4395		pr_warn("%s: Doesn't support large page.\n",
4396			iommu->name);
4397		return -ENXIO;
4398	}
4399
4400	/*
4401	 * Disable translation if already enabled prior to OS handover.
4402	 */
4403	if (iommu->gcmd & DMA_GCMD_TE)
4404		iommu_disable_translation(iommu);
4405
4406	g_iommus[iommu->seq_id] = iommu;
4407	ret = iommu_init_domains(iommu);
4408	if (ret == 0)
4409		ret = iommu_alloc_root_entry(iommu);
4410	if (ret)
4411		goto out;
4412
4413#ifdef CONFIG_INTEL_IOMMU_SVM
4414	if (pasid_enabled(iommu))
4415		intel_svm_alloc_pasid_tables(iommu);
4416#endif
4417
4418	if (dmaru->ignored) {
4419		/*
4420		 * we always have to disable PMRs or DMA may fail on this device
4421		 */
4422		if (force_on)
4423			iommu_disable_protect_mem_regions(iommu);
4424		return 0;
4425	}
4426
4427	intel_iommu_init_qi(iommu);
4428	iommu_flush_write_buffer(iommu);
4429
4430#ifdef CONFIG_INTEL_IOMMU_SVM
4431	if (pasid_enabled(iommu) && ecap_prs(iommu->ecap)) {
4432		ret = intel_svm_enable_prq(iommu);
4433		if (ret)
4434			goto disable_iommu;
4435	}
4436#endif
4437	ret = dmar_set_interrupt(iommu);
4438	if (ret)
4439		goto disable_iommu;
4440
4441	iommu_set_root_entry(iommu);
4442	iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
4443	iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4444	iommu_enable_translation(iommu);
4445
4446	iommu_disable_protect_mem_regions(iommu);
4447	return 0;
4448
4449disable_iommu:
4450	disable_dmar_iommu(iommu);
4451out:
4452	free_dmar_iommu(iommu);
4453	return ret;
4454}
4455
4456int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
4457{
4458	int ret = 0;
4459	struct intel_iommu *iommu = dmaru->iommu;
4460
4461	if (!intel_iommu_enabled)
4462		return 0;
4463	if (iommu == NULL)
4464		return -EINVAL;
4465
4466	if (insert) {
4467		ret = intel_iommu_add(dmaru);
4468	} else {
4469		disable_dmar_iommu(iommu);
4470		free_dmar_iommu(iommu);
4471	}
4472
4473	return ret;
4474}
4475
4476static void intel_iommu_free_dmars(void)
4477{
4478	struct dmar_rmrr_unit *rmrru, *rmrr_n;
4479	struct dmar_atsr_unit *atsru, *atsr_n;
4480
4481	list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
4482		list_del(&rmrru->list);
4483		dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
4484		kfree(rmrru);
4485	}
4486
4487	list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
4488		list_del(&atsru->list);
4489		intel_iommu_free_atsr(atsru);
4490	}
4491}
4492
4493int dmar_find_matched_atsr_unit(struct pci_dev *dev)
4494{
4495	int i, ret = 1;
4496	struct pci_bus *bus;
4497	struct pci_dev *bridge = NULL;
4498	struct device *tmp;
4499	struct acpi_dmar_atsr *atsr;
4500	struct dmar_atsr_unit *atsru;
4501
4502	dev = pci_physfn(dev);
4503	for (bus = dev->bus; bus; bus = bus->parent) {
4504		bridge = bus->self;
4505		/* If it's an integrated device, allow ATS */
4506		if (!bridge)
4507			return 1;
4508		/* Connected via non-PCIe: no ATS */
4509		if (!pci_is_pcie(bridge) ||
4510		    pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
4511			return 0;
4512		/* If we found the root port, look it up in the ATSR */
4513		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
4514			break;
4515	}
4516
4517	rcu_read_lock();
4518	list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4519		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4520		if (atsr->segment != pci_domain_nr(dev->bus))
4521			continue;
4522
4523		for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
4524			if (tmp == &bridge->dev)
4525				goto out;
4526
4527		if (atsru->include_all)
4528			goto out;
4529	}
4530	ret = 0;
4531out:
4532	rcu_read_unlock();
4533
4534	return ret;
4535}
4536
4537int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
4538{
4539	int ret = 0;
4540	struct dmar_rmrr_unit *rmrru;
4541	struct dmar_atsr_unit *atsru;
4542	struct acpi_dmar_atsr *atsr;
4543	struct acpi_dmar_reserved_memory *rmrr;
4544
4545	if (!intel_iommu_enabled && system_state != SYSTEM_BOOTING)
4546		return 0;
4547
4548	list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
4549		rmrr = container_of(rmrru->hdr,
4550				    struct acpi_dmar_reserved_memory, header);
4551		if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4552			ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
4553				((void *)rmrr) + rmrr->header.length,
4554				rmrr->segment, rmrru->devices,
4555				rmrru->devices_cnt);
4556			if(ret < 0)
4557				return ret;
4558		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4559			dmar_remove_dev_scope(info, rmrr->segment,
4560				rmrru->devices, rmrru->devices_cnt);
4561		}
4562	}
4563
4564	list_for_each_entry(atsru, &dmar_atsr_units, list) {
4565		if (atsru->include_all)
4566			continue;
4567
4568		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4569		if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4570			ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
4571					(void *)atsr + atsr->header.length,
4572					atsr->segment, atsru->devices,
4573					atsru->devices_cnt);
4574			if (ret > 0)
4575				break;
4576			else if(ret < 0)
4577				return ret;
4578		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4579			if (dmar_remove_dev_scope(info, atsr->segment,
4580					atsru->devices, atsru->devices_cnt))
4581				break;
4582		}
4583	}
4584
4585	return 0;
4586}
4587
4588/*
4589 * Here we only respond to action of unbound device from driver.
4590 *
4591 * Added device is not attached to its DMAR domain here yet. That will happen
4592 * when mapping the device to iova.
4593 */
4594static int device_notifier(struct notifier_block *nb,
4595				  unsigned long action, void *data)
4596{
4597	struct device *dev = data;
4598	struct dmar_domain *domain;
4599
4600	if (iommu_dummy(dev))
4601		return 0;
4602
4603	if (action != BUS_NOTIFY_REMOVED_DEVICE)
4604		return 0;
4605
4606	domain = find_domain(dev);
4607	if (!domain)
4608		return 0;
4609
4610	dmar_remove_one_dev_info(domain, dev);
4611	if (!domain_type_is_vm_or_si(domain) && list_empty(&domain->devices))
4612		domain_exit(domain);
4613
4614	return 0;
4615}
4616
4617static struct notifier_block device_nb = {
4618	.notifier_call = device_notifier,
4619};
4620
4621static int intel_iommu_memory_notifier(struct notifier_block *nb,
4622				       unsigned long val, void *v)
4623{
4624	struct memory_notify *mhp = v;
4625	unsigned long long start, end;
4626	unsigned long start_vpfn, last_vpfn;
4627
4628	switch (val) {
4629	case MEM_GOING_ONLINE:
4630		start = mhp->start_pfn << PAGE_SHIFT;
4631		end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
4632		if (iommu_domain_identity_map(si_domain, start, end)) {
4633			pr_warn("Failed to build identity map for [%llx-%llx]\n",
4634				start, end);
4635			return NOTIFY_BAD;
4636		}
4637		break;
4638
4639	case MEM_OFFLINE:
4640	case MEM_CANCEL_ONLINE:
4641		start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
4642		last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
4643		while (start_vpfn <= last_vpfn) {
4644			struct iova *iova;
4645			struct dmar_drhd_unit *drhd;
4646			struct intel_iommu *iommu;
4647			struct page *freelist;
4648
4649			iova = find_iova(&si_domain->iovad, start_vpfn);
4650			if (iova == NULL) {
4651				pr_debug("Failed get IOVA for PFN %lx\n",
4652					 start_vpfn);
4653				break;
4654			}
4655
4656			iova = split_and_remove_iova(&si_domain->iovad, iova,
4657						     start_vpfn, last_vpfn);
4658			if (iova == NULL) {
4659				pr_warn("Failed to split IOVA PFN [%lx-%lx]\n",
4660					start_vpfn, last_vpfn);
4661				return NOTIFY_BAD;
4662			}
4663
4664			freelist = domain_unmap(si_domain, iova->pfn_lo,
4665					       iova->pfn_hi);
4666
4667			rcu_read_lock();
4668			for_each_active_iommu(iommu, drhd)
4669				iommu_flush_iotlb_psi(iommu, si_domain,
4670					iova->pfn_lo, iova_size(iova),
4671					!freelist, 0);
4672			rcu_read_unlock();
4673			dma_free_pagelist(freelist);
4674
4675			start_vpfn = iova->pfn_hi + 1;
4676			free_iova_mem(iova);
4677		}
4678		break;
4679	}
4680
4681	return NOTIFY_OK;
4682}
4683
4684static struct notifier_block intel_iommu_memory_nb = {
4685	.notifier_call = intel_iommu_memory_notifier,
4686	.priority = 0
4687};
4688
4689static void free_all_cpu_cached_iovas(unsigned int cpu)
4690{
4691	int i;
4692
4693	for (i = 0; i < g_num_of_iommus; i++) {
4694		struct intel_iommu *iommu = g_iommus[i];
4695		struct dmar_domain *domain;
4696		int did;
4697
4698		if (!iommu)
4699			continue;
4700
4701		for (did = 0; did < cap_ndoms(iommu->cap); did++) {
4702			domain = get_iommu_domain(iommu, (u16)did);
4703
4704			if (!domain)
4705				continue;
4706			free_cpu_cached_iovas(cpu, &domain->iovad);
4707		}
4708	}
4709}
4710
4711static int intel_iommu_cpu_dead(unsigned int cpu)
4712{
4713	free_all_cpu_cached_iovas(cpu);
4714	flush_unmaps_timeout(cpu);
4715	return 0;
4716}
4717
4718static ssize_t intel_iommu_show_version(struct device *dev,
4719					struct device_attribute *attr,
4720					char *buf)
4721{
4722	struct intel_iommu *iommu = dev_get_drvdata(dev);
4723	u32 ver = readl(iommu->reg + DMAR_VER_REG);
4724	return sprintf(buf, "%d:%d\n",
4725		       DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
4726}
4727static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);
4728
4729static ssize_t intel_iommu_show_address(struct device *dev,
4730					struct device_attribute *attr,
4731					char *buf)
4732{
4733	struct intel_iommu *iommu = dev_get_drvdata(dev);
4734	return sprintf(buf, "%llx\n", iommu->reg_phys);
4735}
4736static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);
4737
4738static ssize_t intel_iommu_show_cap(struct device *dev,
4739				    struct device_attribute *attr,
4740				    char *buf)
4741{
4742	struct intel_iommu *iommu = dev_get_drvdata(dev);
4743	return sprintf(buf, "%llx\n", iommu->cap);
4744}
4745static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);
4746
4747static ssize_t intel_iommu_show_ecap(struct device *dev,
4748				    struct device_attribute *attr,
4749				    char *buf)
4750{
4751	struct intel_iommu *iommu = dev_get_drvdata(dev);
4752	return sprintf(buf, "%llx\n", iommu->ecap);
4753}
4754static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);
4755
4756static ssize_t intel_iommu_show_ndoms(struct device *dev,
4757				      struct device_attribute *attr,
4758				      char *buf)
4759{
4760	struct intel_iommu *iommu = dev_get_drvdata(dev);
4761	return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap));
4762}
4763static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL);
4764
4765static ssize_t intel_iommu_show_ndoms_used(struct device *dev,
4766					   struct device_attribute *attr,
4767					   char *buf)
4768{
4769	struct intel_iommu *iommu = dev_get_drvdata(dev);
4770	return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids,
4771						  cap_ndoms(iommu->cap)));
4772}
4773static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL);
4774
4775static struct attribute *intel_iommu_attrs[] = {
4776	&dev_attr_version.attr,
4777	&dev_attr_address.attr,
4778	&dev_attr_cap.attr,
4779	&dev_attr_ecap.attr,
4780	&dev_attr_domains_supported.attr,
4781	&dev_attr_domains_used.attr,
4782	NULL,
4783};
4784
4785static struct attribute_group intel_iommu_group = {
4786	.name = "intel-iommu",
4787	.attrs = intel_iommu_attrs,
4788};
4789
4790const struct attribute_group *intel_iommu_groups[] = {
4791	&intel_iommu_group,
4792	NULL,
4793};
4794
4795int __init intel_iommu_init(void)
4796{
4797	int ret = -ENODEV;
4798	struct dmar_drhd_unit *drhd;
4799	struct intel_iommu *iommu;
4800
4801	/* VT-d is required for a TXT/tboot launch, so enforce that */
4802	force_on = tboot_force_iommu();
4803
4804	if (iommu_init_mempool()) {
4805		if (force_on)
4806			panic("tboot: Failed to initialize iommu memory\n");
4807		return -ENOMEM;
4808	}
4809
4810	down_write(&dmar_global_lock);
4811	if (dmar_table_init()) {
4812		if (force_on)
4813			panic("tboot: Failed to initialize DMAR table\n");
4814		goto out_free_dmar;
4815	}
4816
4817	if (dmar_dev_scope_init() < 0) {
4818		if (force_on)
4819			panic("tboot: Failed to initialize DMAR device scope\n");
4820		goto out_free_dmar;
4821	}
4822
4823	if (no_iommu || dmar_disabled)
4824		goto out_free_dmar;
4825
4826	if (list_empty(&dmar_rmrr_units))
4827		pr_info("No RMRR found\n");
4828
4829	if (list_empty(&dmar_atsr_units))
4830		pr_info("No ATSR found\n");
4831
4832	if (dmar_init_reserved_ranges()) {
4833		if (force_on)
4834			panic("tboot: Failed to reserve iommu ranges\n");
4835		goto out_free_reserved_range;
4836	}
4837
4838	init_no_remapping_devices();
4839
4840	ret = init_dmars();
4841	if (ret) {
4842		if (force_on)
4843			panic("tboot: Failed to initialize DMARs\n");
4844		pr_err("Initialization failed\n");
4845		goto out_free_reserved_range;
4846	}
4847	up_write(&dmar_global_lock);
4848	pr_info("Intel(R) Virtualization Technology for Directed I/O\n");
4849
4850#ifdef CONFIG_SWIOTLB
4851	swiotlb = 0;
4852#endif
4853	dma_ops = &intel_dma_ops;
4854
4855	init_iommu_pm_ops();
4856
4857	for_each_active_iommu(iommu, drhd)
4858		iommu->iommu_dev = iommu_device_create(NULL, iommu,
4859						       intel_iommu_groups,
4860						       "%s", iommu->name);
4861
4862	bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
4863	bus_register_notifier(&pci_bus_type, &device_nb);
4864	if (si_domain && !hw_pass_through)
4865		register_memory_notifier(&intel_iommu_memory_nb);
4866	cpuhp_setup_state(CPUHP_IOMMU_INTEL_DEAD, "iommu/intel:dead", NULL,
4867			  intel_iommu_cpu_dead);
4868	intel_iommu_enabled = 1;
4869
4870	return 0;
4871
4872out_free_reserved_range:
4873	put_iova_domain(&reserved_iova_list);
4874out_free_dmar:
4875	intel_iommu_free_dmars();
4876	up_write(&dmar_global_lock);
4877	iommu_exit_mempool();
4878	return ret;
4879}
4880
4881static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque)
4882{
4883	struct intel_iommu *iommu = opaque;
4884
4885	domain_context_clear_one(iommu, PCI_BUS_NUM(alias), alias & 0xff);
4886	return 0;
4887}
4888
4889/*
4890 * NB - intel-iommu lacks any sort of reference counting for the users of
4891 * dependent devices.  If multiple endpoints have intersecting dependent
4892 * devices, unbinding the driver from any one of them will possibly leave
4893 * the others unable to operate.
4894 */
4895static void domain_context_clear(struct intel_iommu *iommu, struct device *dev)
4896{
4897	if (!iommu || !dev || !dev_is_pci(dev))
4898		return;
4899
4900	pci_for_each_dma_alias(to_pci_dev(dev), &domain_context_clear_one_cb, iommu);
4901}
4902
4903static void __dmar_remove_one_dev_info(struct device_domain_info *info)
4904{
4905	struct intel_iommu *iommu;
4906	unsigned long flags;
4907
4908	assert_spin_locked(&device_domain_lock);
4909
4910	if (WARN_ON(!info))
4911		return;
4912
4913	iommu = info->iommu;
4914
4915	if (info->dev) {
4916		iommu_disable_dev_iotlb(info);
4917		domain_context_clear(iommu, info->dev);
4918	}
4919
4920	unlink_domain_info(info);
4921
4922	spin_lock_irqsave(&iommu->lock, flags);
4923	domain_detach_iommu(info->domain, iommu);
4924	spin_unlock_irqrestore(&iommu->lock, flags);
4925
4926	free_devinfo_mem(info);
4927}
4928
4929static void dmar_remove_one_dev_info(struct dmar_domain *domain,
4930				     struct device *dev)
4931{
4932	struct device_domain_info *info;
4933	unsigned long flags;
4934
4935	spin_lock_irqsave(&device_domain_lock, flags);
4936	info = dev->archdata.iommu;
4937	__dmar_remove_one_dev_info(info);
4938	spin_unlock_irqrestore(&device_domain_lock, flags);
4939}
4940
4941static int md_domain_init(struct dmar_domain *domain, int guest_width)
4942{
4943	int adjust_width;
4944
4945	init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN,
4946			DMA_32BIT_PFN);
4947	domain_reserve_special_ranges(domain);
4948
4949	/* calculate AGAW */
4950	domain->gaw = guest_width;
4951	adjust_width = guestwidth_to_adjustwidth(guest_width);
4952	domain->agaw = width_to_agaw(adjust_width);
4953
4954	domain->iommu_coherency = 0;
4955	domain->iommu_snooping = 0;
4956	domain->iommu_superpage = 0;
4957	domain->max_addr = 0;
4958
4959	/* always allocate the top pgd */
4960	domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
4961	if (!domain->pgd)
4962		return -ENOMEM;
4963	domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
4964	return 0;
4965}
4966
4967static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
4968{
4969	struct dmar_domain *dmar_domain;
4970	struct iommu_domain *domain;
4971
4972	if (type != IOMMU_DOMAIN_UNMANAGED)
4973		return NULL;
4974
4975	dmar_domain = alloc_domain(DOMAIN_FLAG_VIRTUAL_MACHINE);
4976	if (!dmar_domain) {
4977		pr_err("Can't allocate dmar_domain\n");
4978		return NULL;
4979	}
4980	if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
4981		pr_err("Domain initialization failed\n");
4982		domain_exit(dmar_domain);
4983		return NULL;
4984	}
4985	domain_update_iommu_cap(dmar_domain);
4986
4987	domain = &dmar_domain->domain;
4988	domain->geometry.aperture_start = 0;
4989	domain->geometry.aperture_end   = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
4990	domain->geometry.force_aperture = true;
4991
4992	return domain;
4993}
4994
4995static void intel_iommu_domain_free(struct iommu_domain *domain)
4996{
4997	domain_exit(to_dmar_domain(domain));
4998}
4999
5000static int intel_iommu_attach_device(struct iommu_domain *domain,
5001				     struct device *dev)
5002{
5003	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5004	struct intel_iommu *iommu;
5005	int addr_width;
5006	u8 bus, devfn;
5007
5008	if (device_is_rmrr_locked(dev)) {
5009		dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement.  Contact your platform vendor.\n");
5010		return -EPERM;
5011	}
5012
5013	/* normally dev is not mapped */
5014	if (unlikely(domain_context_mapped(dev))) {
5015		struct dmar_domain *old_domain;
5016
5017		old_domain = find_domain(dev);
5018		if (old_domain) {
5019			rcu_read_lock();
5020			dmar_remove_one_dev_info(old_domain, dev);
5021			rcu_read_unlock();
5022
5023			if (!domain_type_is_vm_or_si(old_domain) &&
5024			     list_empty(&old_domain->devices))
5025				domain_exit(old_domain);
5026		}
5027	}
5028
5029	iommu = device_to_iommu(dev, &bus, &devfn);
5030	if (!iommu)
5031		return -ENODEV;
5032
5033	/* check if this iommu agaw is sufficient for max mapped address */
5034	addr_width = agaw_to_width(iommu->agaw);
5035	if (addr_width > cap_mgaw(iommu->cap))
5036		addr_width = cap_mgaw(iommu->cap);
5037
5038	if (dmar_domain->max_addr > (1LL << addr_width)) {
5039		pr_err("%s: iommu width (%d) is not "
5040		       "sufficient for the mapped address (%llx)\n",
5041		       __func__, addr_width, dmar_domain->max_addr);
5042		return -EFAULT;
5043	}
5044	dmar_domain->gaw = addr_width;
5045
5046	/*
5047	 * Knock out extra levels of page tables if necessary
5048	 */
5049	while (iommu->agaw < dmar_domain->agaw) {
5050		struct dma_pte *pte;
5051
5052		pte = dmar_domain->pgd;
5053		if (dma_pte_present(pte)) {
5054			dmar_domain->pgd = (struct dma_pte *)
5055				phys_to_virt(dma_pte_addr(pte));
5056			free_pgtable_page(pte);
5057		}
5058		dmar_domain->agaw--;
5059	}
5060
5061	return domain_add_dev_info(dmar_domain, dev);
5062}
5063
5064static void intel_iommu_detach_device(struct iommu_domain *domain,
5065				      struct device *dev)
5066{
5067	dmar_remove_one_dev_info(to_dmar_domain(domain), dev);
5068}
5069
5070static int intel_iommu_map(struct iommu_domain *domain,
5071			   unsigned long iova, phys_addr_t hpa,
5072			   size_t size, int iommu_prot)
5073{
5074	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5075	u64 max_addr;
5076	int prot = 0;
5077	int ret;
5078
5079	if (iommu_prot & IOMMU_READ)
5080		prot |= DMA_PTE_READ;
5081	if (iommu_prot & IOMMU_WRITE)
5082		prot |= DMA_PTE_WRITE;
5083	if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
5084		prot |= DMA_PTE_SNP;
5085
5086	max_addr = iova + size;
5087	if (dmar_domain->max_addr < max_addr) {
5088		u64 end;
5089
5090		/* check if minimum agaw is sufficient for mapped address */
5091		end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
5092		if (end < max_addr) {
5093			pr_err("%s: iommu width (%d) is not "
5094			       "sufficient for the mapped address (%llx)\n",
5095			       __func__, dmar_domain->gaw, max_addr);
5096			return -EFAULT;
5097		}
5098		dmar_domain->max_addr = max_addr;
5099	}
5100	/* Round up size to next multiple of PAGE_SIZE, if it and
5101	   the low bits of hpa would take us onto the next page */
5102	size = aligned_nrpages(hpa, size);
5103	ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
5104				 hpa >> VTD_PAGE_SHIFT, size, prot);
5105	return ret;
5106}
5107
5108static size_t intel_iommu_unmap(struct iommu_domain *domain,
5109				unsigned long iova, size_t size)
5110{
5111	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5112	struct page *freelist = NULL;
5113	struct intel_iommu *iommu;
5114	unsigned long start_pfn, last_pfn;
5115	unsigned int npages;
5116	int iommu_id, level = 0;
5117
5118	/* Cope with horrid API which requires us to unmap more than the
5119	   size argument if it happens to be a large-page mapping. */
5120	BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level));
5121
5122	if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
5123		size = VTD_PAGE_SIZE << level_to_offset_bits(level);
5124
5125	start_pfn = iova >> VTD_PAGE_SHIFT;
5126	last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
5127
5128	freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);
5129
5130	npages = last_pfn - start_pfn + 1;
5131
5132	for_each_domain_iommu(iommu_id, dmar_domain) {
5133		iommu = g_iommus[iommu_id];
5134
5135		iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain,
5136				      start_pfn, npages, !freelist, 0);
5137	}
5138
5139	dma_free_pagelist(freelist);
5140
5141	if (dmar_domain->max_addr == iova + size)
5142		dmar_domain->max_addr = iova;
5143
5144	return size;
5145}
5146
5147static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
5148					    dma_addr_t iova)
5149{
5150	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5151	struct dma_pte *pte;
5152	int level = 0;
5153	u64 phys = 0;
5154
5155	pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
5156	if (pte)
5157		phys = dma_pte_addr(pte);
5158
5159	return phys;
5160}
5161
5162static bool intel_iommu_capable(enum iommu_cap cap)
5163{
5164	if (cap == IOMMU_CAP_CACHE_COHERENCY)
5165		return domain_update_iommu_snooping(NULL) == 1;
5166	if (cap == IOMMU_CAP_INTR_REMAP)
5167		return irq_remapping_enabled == 1;
5168
5169	return false;
5170}
5171
5172static int intel_iommu_add_device(struct device *dev)
5173{
5174	struct intel_iommu *iommu;
5175	struct iommu_group *group;
5176	u8 bus, devfn;
5177
5178	iommu = device_to_iommu(dev, &bus, &devfn);
5179	if (!iommu)
5180		return -ENODEV;
5181
5182	iommu_device_link(iommu->iommu_dev, dev);
5183
5184	group = iommu_group_get_for_dev(dev);
5185
5186	if (IS_ERR(group))
5187		return PTR_ERR(group);
5188
5189	iommu_group_put(group);
5190	return 0;
5191}
5192
5193static void intel_iommu_remove_device(struct device *dev)
5194{
5195	struct intel_iommu *iommu;
5196	u8 bus, devfn;
5197
5198	iommu = device_to_iommu(dev, &bus, &devfn);
5199	if (!iommu)
5200		return;
5201
5202	iommu_group_remove_device(dev);
5203
5204	iommu_device_unlink(iommu->iommu_dev, dev);
5205}
5206
5207#ifdef CONFIG_INTEL_IOMMU_SVM
5208#define MAX_NR_PASID_BITS (20)
5209static inline unsigned long intel_iommu_get_pts(struct intel_iommu *iommu)
5210{
5211	/*
5212	 * Convert ecap_pss to extend context entry pts encoding, also
5213	 * respect the soft pasid_max value set by the iommu.
5214	 * - number of PASID bits = ecap_pss + 1
5215	 * - number of PASID table entries = 2^(pts + 5)
5216	 * Therefore, pts = ecap_pss - 4
5217	 * e.g. KBL ecap_pss = 0x13, PASID has 20 bits, pts = 15
5218	 */
5219	if (ecap_pss(iommu->ecap) < 5)
5220		return 0;
5221
5222	/* pasid_max is encoded as actual number of entries not the bits */
5223	return find_first_bit((unsigned long *)&iommu->pasid_max,
5224			MAX_NR_PASID_BITS) - 5;
5225}
5226
5227int intel_iommu_enable_pasid(struct intel_iommu *iommu, struct intel_svm_dev *sdev)
5228{
5229	struct device_domain_info *info;
5230	struct context_entry *context;
5231	struct dmar_domain *domain;
5232	unsigned long flags;
5233	u64 ctx_lo;
5234	int ret;
5235
5236	domain = get_valid_domain_for_dev(sdev->dev);
5237	if (!domain)
5238		return -EINVAL;
5239
5240	spin_lock_irqsave(&device_domain_lock, flags);
5241	spin_lock(&iommu->lock);
5242
5243	ret = -EINVAL;
5244	info = sdev->dev->archdata.iommu;
5245	if (!info || !info->pasid_supported)
5246		goto out;
5247
5248	context = iommu_context_addr(iommu, info->bus, info->devfn, 0);
5249	if (WARN_ON(!context))
5250		goto out;
5251
5252	ctx_lo = context[0].lo;
5253
5254	sdev->did = domain->iommu_did[iommu->seq_id];
5255	sdev->sid = PCI_DEVID(info->bus, info->devfn);
5256
5257	if (!(ctx_lo & CONTEXT_PASIDE)) {
5258		context[1].hi = (u64)virt_to_phys(iommu->pasid_state_table);
5259		context[1].lo = (u64)virt_to_phys(iommu->pasid_table) |
5260			intel_iommu_get_pts(iommu);
5261
5262		wmb();
5263		/* CONTEXT_TT_MULTI_LEVEL and CONTEXT_TT_DEV_IOTLB are both
5264		 * extended to permit requests-with-PASID if the PASIDE bit
5265		 * is set. which makes sense. For CONTEXT_TT_PASS_THROUGH,
5266		 * however, the PASIDE bit is ignored and requests-with-PASID
5267		 * are unconditionally blocked. Which makes less sense.
5268		 * So convert from CONTEXT_TT_PASS_THROUGH to one of the new
5269		 * "guest mode" translation types depending on whether ATS
5270		 * is available or not. Annoyingly, we can't use the new
5271		 * modes *unless* PASIDE is set. */
5272		if ((ctx_lo & CONTEXT_TT_MASK) == (CONTEXT_TT_PASS_THROUGH << 2)) {
5273			ctx_lo &= ~CONTEXT_TT_MASK;
5274			if (info->ats_supported)
5275				ctx_lo |= CONTEXT_TT_PT_PASID_DEV_IOTLB << 2;
5276			else
5277				ctx_lo |= CONTEXT_TT_PT_PASID << 2;
5278		}
5279		ctx_lo |= CONTEXT_PASIDE;
5280		if (iommu->pasid_state_table)
5281			ctx_lo |= CONTEXT_DINVE;
5282		if (info->pri_supported)
5283			ctx_lo |= CONTEXT_PRS;
5284		context[0].lo = ctx_lo;
5285		wmb();
5286		iommu->flush.flush_context(iommu, sdev->did, sdev->sid,
5287					   DMA_CCMD_MASK_NOBIT,
5288					   DMA_CCMD_DEVICE_INVL);
5289	}
5290
5291	/* Enable PASID support in the device, if it wasn't already */
5292	if (!info->pasid_enabled)
5293		iommu_enable_dev_iotlb(info);
5294
5295	if (info->ats_enabled) {
5296		sdev->dev_iotlb = 1;
5297		sdev->qdep = info->ats_qdep;
5298		if (sdev->qdep >= QI_DEV_EIOTLB_MAX_INVS)
5299			sdev->qdep = 0;
5300	}
5301	ret = 0;
5302
5303 out:
5304	spin_unlock(&iommu->lock);
5305	spin_unlock_irqrestore(&device_domain_lock, flags);
5306
5307	return ret;
5308}
5309
5310struct intel_iommu *intel_svm_device_to_iommu(struct device *dev)
5311{
5312	struct intel_iommu *iommu;
5313	u8 bus, devfn;
5314
5315	if (iommu_dummy(dev)) {
5316		dev_warn(dev,
5317			 "No IOMMU translation for device; cannot enable SVM\n");
5318		return NULL;
5319	}
5320
5321	iommu = device_to_iommu(dev, &bus, &devfn);
5322	if ((!iommu)) {
5323		dev_err(dev, "No IOMMU for device; cannot enable SVM\n");
5324		return NULL;
5325	}
5326
5327	if (!iommu->pasid_table) {
5328		dev_err(dev, "PASID not enabled on IOMMU; cannot enable SVM\n");
5329		return NULL;
5330	}
5331
5332	return iommu;
5333}
5334#endif /* CONFIG_INTEL_IOMMU_SVM */
5335
5336static const struct iommu_ops intel_iommu_ops = {
5337	.capable	= intel_iommu_capable,
5338	.domain_alloc	= intel_iommu_domain_alloc,
5339	.domain_free	= intel_iommu_domain_free,
5340	.attach_dev	= intel_iommu_attach_device,
5341	.detach_dev	= intel_iommu_detach_device,
5342	.map		= intel_iommu_map,
5343	.unmap		= intel_iommu_unmap,
5344	.map_sg		= default_iommu_map_sg,
5345	.iova_to_phys	= intel_iommu_iova_to_phys,
5346	.add_device	= intel_iommu_add_device,
5347	.remove_device	= intel_iommu_remove_device,
5348	.device_group   = pci_device_group,
5349	.pgsize_bitmap	= INTEL_IOMMU_PGSIZES,
5350};
5351
5352static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
5353{
5354	/* G4x/GM45 integrated gfx dmar support is totally busted. */
5355	pr_info("Disabling IOMMU for graphics on this chipset\n");
5356	dmar_map_gfx = 0;
5357}
5358
5359DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
5360DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
5361DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
5362DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
5363DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
5364DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
5365DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);
5366
5367static void quirk_iommu_rwbf(struct pci_dev *dev)
5368{
5369	/*
5370	 * Mobile 4 Series Chipset neglects to set RWBF capability,
5371	 * but needs it. Same seems to hold for the desktop versions.
5372	 */
5373	pr_info("Forcing write-buffer flush capability\n");
5374	rwbf_quirk = 1;
5375}
5376
5377DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
5378DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
5379DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
5380DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
5381DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
5382DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
5383DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
5384
5385#define GGC 0x52
5386#define GGC_MEMORY_SIZE_MASK	(0xf << 8)
5387#define GGC_MEMORY_SIZE_NONE	(0x0 << 8)
5388#define GGC_MEMORY_SIZE_1M	(0x1 << 8)
5389#define GGC_MEMORY_SIZE_2M	(0x3 << 8)
5390#define GGC_MEMORY_VT_ENABLED	(0x8 << 8)
5391#define GGC_MEMORY_SIZE_2M_VT	(0x9 << 8)
5392#define GGC_MEMORY_SIZE_3M_VT	(0xa << 8)
5393#define GGC_MEMORY_SIZE_4M_VT	(0xb << 8)
5394
5395static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
5396{
5397	unsigned short ggc;
5398
5399	if (pci_read_config_word(dev, GGC, &ggc))
5400		return;
5401
5402	if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
5403		pr_info("BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
5404		dmar_map_gfx = 0;
5405	} else if (dmar_map_gfx) {
5406		/* we have to ensure the gfx device is idle before we flush */
5407		pr_info("Disabling batched IOTLB flush on Ironlake\n");
5408		intel_iommu_strict = 1;
5409       }
5410}
5411DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
5412DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
5413DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
5414DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
5415
5416/* On Tylersburg chipsets, some BIOSes have been known to enable the
5417   ISOCH DMAR unit for the Azalia sound device, but not give it any
5418   TLB entries, which causes it to deadlock. Check for that.  We do
5419   this in a function called from init_dmars(), instead of in a PCI
5420   quirk, because we don't want to print the obnoxious "BIOS broken"
5421   message if VT-d is actually disabled.
5422*/
5423static void __init check_tylersburg_isoch(void)
5424{
5425	struct pci_dev *pdev;
5426	uint32_t vtisochctrl;
5427
5428	/* If there's no Azalia in the system anyway, forget it. */
5429	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
5430	if (!pdev)
5431		return;
5432	pci_dev_put(pdev);
5433
5434	/* System Management Registers. Might be hidden, in which case
5435	   we can't do the sanity check. But that's OK, because the
5436	   known-broken BIOSes _don't_ actually hide it, so far. */
5437	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
5438	if (!pdev)
5439		return;
5440
5441	if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
5442		pci_dev_put(pdev);
5443		return;
5444	}
5445
5446	pci_dev_put(pdev);
5447
5448	/* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
5449	if (vtisochctrl & 1)
5450		return;
5451
5452	/* Drop all bits other than the number of TLB entries */
5453	vtisochctrl &= 0x1c;
5454
5455	/* If we have the recommended number of TLB entries (16), fine. */
5456	if (vtisochctrl == 0x10)
5457		return;
5458
5459	/* Zero TLB entries? You get to ride the short bus to school. */
5460	if (!vtisochctrl) {
5461		WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
5462		     "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
5463		     dmi_get_system_info(DMI_BIOS_VENDOR),
5464		     dmi_get_system_info(DMI_BIOS_VERSION),
5465		     dmi_get_system_info(DMI_PRODUCT_VERSION));
5466		iommu_identity_mapping |= IDENTMAP_AZALIA;
5467		return;
5468	}
5469
5470	pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
5471	       vtisochctrl);
5472}