Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright 2013-2015 Analog Devices Inc.
  4 *  Author: Lars-Peter Clausen <lars@metafoo.de>
 
 
  5 */
  6
  7#include <linux/slab.h>
  8#include <linux/kernel.h>
  9#include <linux/module.h>
 10#include <linux/device.h>
 11#include <linux/workqueue.h>
 12#include <linux/mutex.h>
 13#include <linux/sched.h>
 14#include <linux/poll.h>
 15#include <linux/iio/buffer_impl.h>
 16#include <linux/iio/buffer-dma.h>
 17#include <linux/dma-mapping.h>
 18#include <linux/sizes.h>
 19
 20/*
 21 * For DMA buffers the storage is sub-divided into so called blocks. Each block
 22 * has its own memory buffer. The size of the block is the granularity at which
 23 * memory is exchanged between the hardware and the application. Increasing the
 24 * basic unit of data exchange from one sample to one block decreases the
 25 * management overhead that is associated with each sample. E.g. if we say the
 26 * management overhead for one exchange is x and the unit of exchange is one
 27 * sample the overhead will be x for each sample. Whereas when using a block
 28 * which contains n samples the overhead per sample is reduced to x/n. This
 29 * allows to achieve much higher samplerates than what can be sustained with
 30 * the one sample approach.
 31 *
 32 * Blocks are exchanged between the DMA controller and the application via the
 33 * means of two queues. The incoming queue and the outgoing queue. Blocks on the
 34 * incoming queue are waiting for the DMA controller to pick them up and fill
 35 * them with data. Block on the outgoing queue have been filled with data and
 36 * are waiting for the application to dequeue them and read the data.
 37 *
 38 * A block can be in one of the following states:
 39 *  * Owned by the application. In this state the application can read data from
 40 *    the block.
 41 *  * On the incoming list: Blocks on the incoming list are queued up to be
 42 *    processed by the DMA controller.
 43 *  * Owned by the DMA controller: The DMA controller is processing the block
 44 *    and filling it with data.
 45 *  * On the outgoing list: Blocks on the outgoing list have been successfully
 46 *    processed by the DMA controller and contain data. They can be dequeued by
 47 *    the application.
 48 *  * Dead: A block that is dead has been marked as to be freed. It might still
 49 *    be owned by either the application or the DMA controller at the moment.
 50 *    But once they are done processing it instead of going to either the
 51 *    incoming or outgoing queue the block will be freed.
 52 *
 53 * In addition to this blocks are reference counted and the memory associated
 54 * with both the block structure as well as the storage memory for the block
 55 * will be freed when the last reference to the block is dropped. This means a
 56 * block must not be accessed without holding a reference.
 57 *
 58 * The iio_dma_buffer implementation provides a generic infrastructure for
 59 * managing the blocks.
 60 *
 61 * A driver for a specific piece of hardware that has DMA capabilities need to
 62 * implement the submit() callback from the iio_dma_buffer_ops structure. This
 63 * callback is supposed to initiate the DMA transfer copying data from the
 64 * converter to the memory region of the block. Once the DMA transfer has been
 65 * completed the driver must call iio_dma_buffer_block_done() for the completed
 66 * block.
 67 *
 68 * Prior to this it must set the bytes_used field of the block contains
 69 * the actual number of bytes in the buffer. Typically this will be equal to the
 70 * size of the block, but if the DMA hardware has certain alignment requirements
 71 * for the transfer length it might choose to use less than the full size. In
 72 * either case it is expected that bytes_used is a multiple of the bytes per
 73 * datum, i.e. the block must not contain partial samples.
 74 *
 75 * The driver must call iio_dma_buffer_block_done() for each block it has
 76 * received through its submit_block() callback, even if it does not actually
 77 * perform a DMA transfer for the block, e.g. because the buffer was disabled
 78 * before the block transfer was started. In this case it should set bytes_used
 79 * to 0.
 80 *
 81 * In addition it is recommended that a driver implements the abort() callback.
 82 * It will be called when the buffer is disabled and can be used to cancel
 83 * pending and stop active transfers.
 84 *
 85 * The specific driver implementation should use the default callback
 86 * implementations provided by this module for the iio_buffer_access_funcs
 87 * struct. It may overload some callbacks with custom variants if the hardware
 88 * has special requirements that are not handled by the generic functions. If a
 89 * driver chooses to overload a callback it has to ensure that the generic
 90 * callback is called from within the custom callback.
 91 */
 92
 93static void iio_buffer_block_release(struct kref *kref)
 94{
 95	struct iio_dma_buffer_block *block = container_of(kref,
 96		struct iio_dma_buffer_block, kref);
 97
 98	WARN_ON(block->state != IIO_BLOCK_STATE_DEAD);
 99
100	dma_free_coherent(block->queue->dev, PAGE_ALIGN(block->size),
101					block->vaddr, block->phys_addr);
102
103	iio_buffer_put(&block->queue->buffer);
104	kfree(block);
105}
106
107static void iio_buffer_block_get(struct iio_dma_buffer_block *block)
108{
109	kref_get(&block->kref);
110}
111
112static void iio_buffer_block_put(struct iio_dma_buffer_block *block)
113{
114	kref_put(&block->kref, iio_buffer_block_release);
115}
116
117/*
118 * dma_free_coherent can sleep, hence we need to take some special care to be
119 * able to drop a reference from an atomic context.
120 */
121static LIST_HEAD(iio_dma_buffer_dead_blocks);
122static DEFINE_SPINLOCK(iio_dma_buffer_dead_blocks_lock);
123
124static void iio_dma_buffer_cleanup_worker(struct work_struct *work)
125{
126	struct iio_dma_buffer_block *block, *_block;
127	LIST_HEAD(block_list);
128
129	spin_lock_irq(&iio_dma_buffer_dead_blocks_lock);
130	list_splice_tail_init(&iio_dma_buffer_dead_blocks, &block_list);
131	spin_unlock_irq(&iio_dma_buffer_dead_blocks_lock);
132
133	list_for_each_entry_safe(block, _block, &block_list, head)
134		iio_buffer_block_release(&block->kref);
135}
136static DECLARE_WORK(iio_dma_buffer_cleanup_work, iio_dma_buffer_cleanup_worker);
137
138static void iio_buffer_block_release_atomic(struct kref *kref)
139{
140	struct iio_dma_buffer_block *block;
141	unsigned long flags;
142
143	block = container_of(kref, struct iio_dma_buffer_block, kref);
144
145	spin_lock_irqsave(&iio_dma_buffer_dead_blocks_lock, flags);
146	list_add_tail(&block->head, &iio_dma_buffer_dead_blocks);
147	spin_unlock_irqrestore(&iio_dma_buffer_dead_blocks_lock, flags);
148
149	schedule_work(&iio_dma_buffer_cleanup_work);
150}
151
152/*
153 * Version of iio_buffer_block_put() that can be called from atomic context
154 */
155static void iio_buffer_block_put_atomic(struct iio_dma_buffer_block *block)
156{
157	kref_put(&block->kref, iio_buffer_block_release_atomic);
158}
159
160static struct iio_dma_buffer_queue *iio_buffer_to_queue(struct iio_buffer *buf)
161{
162	return container_of(buf, struct iio_dma_buffer_queue, buffer);
163}
164
165static struct iio_dma_buffer_block *iio_dma_buffer_alloc_block(
166	struct iio_dma_buffer_queue *queue, size_t size)
167{
168	struct iio_dma_buffer_block *block;
169
170	block = kzalloc(sizeof(*block), GFP_KERNEL);
171	if (!block)
172		return NULL;
173
174	block->vaddr = dma_alloc_coherent(queue->dev, PAGE_ALIGN(size),
175		&block->phys_addr, GFP_KERNEL);
176	if (!block->vaddr) {
177		kfree(block);
178		return NULL;
179	}
180
181	block->size = size;
182	block->state = IIO_BLOCK_STATE_DEQUEUED;
183	block->queue = queue;
184	INIT_LIST_HEAD(&block->head);
185	kref_init(&block->kref);
186
187	iio_buffer_get(&queue->buffer);
188
189	return block;
190}
191
192static void _iio_dma_buffer_block_done(struct iio_dma_buffer_block *block)
193{
194	struct iio_dma_buffer_queue *queue = block->queue;
195
196	/*
197	 * The buffer has already been freed by the application, just drop the
198	 * reference.
199	 */
200	if (block->state != IIO_BLOCK_STATE_DEAD) {
201		block->state = IIO_BLOCK_STATE_DONE;
202		list_add_tail(&block->head, &queue->outgoing);
203	}
204}
205
206/**
207 * iio_dma_buffer_block_done() - Indicate that a block has been completed
208 * @block: The completed block
209 *
210 * Should be called when the DMA controller has finished handling the block to
211 * pass back ownership of the block to the queue.
212 */
213void iio_dma_buffer_block_done(struct iio_dma_buffer_block *block)
214{
215	struct iio_dma_buffer_queue *queue = block->queue;
216	unsigned long flags;
217
218	spin_lock_irqsave(&queue->list_lock, flags);
219	_iio_dma_buffer_block_done(block);
220	spin_unlock_irqrestore(&queue->list_lock, flags);
221
222	iio_buffer_block_put_atomic(block);
223	wake_up_interruptible_poll(&queue->buffer.pollq, EPOLLIN | EPOLLRDNORM);
224}
225EXPORT_SYMBOL_GPL(iio_dma_buffer_block_done);
226
227/**
228 * iio_dma_buffer_block_list_abort() - Indicate that a list block has been
229 *   aborted
230 * @queue: Queue for which to complete blocks.
231 * @list: List of aborted blocks. All blocks in this list must be from @queue.
232 *
233 * Typically called from the abort() callback after the DMA controller has been
234 * stopped. This will set bytes_used to 0 for each block in the list and then
235 * hand the blocks back to the queue.
236 */
237void iio_dma_buffer_block_list_abort(struct iio_dma_buffer_queue *queue,
238	struct list_head *list)
239{
240	struct iio_dma_buffer_block *block, *_block;
241	unsigned long flags;
242
243	spin_lock_irqsave(&queue->list_lock, flags);
244	list_for_each_entry_safe(block, _block, list, head) {
245		list_del(&block->head);
246		block->bytes_used = 0;
247		_iio_dma_buffer_block_done(block);
248		iio_buffer_block_put_atomic(block);
249	}
250	spin_unlock_irqrestore(&queue->list_lock, flags);
251
252	wake_up_interruptible_poll(&queue->buffer.pollq, EPOLLIN | EPOLLRDNORM);
253}
254EXPORT_SYMBOL_GPL(iio_dma_buffer_block_list_abort);
255
256static bool iio_dma_block_reusable(struct iio_dma_buffer_block *block)
257{
258	/*
259	 * If the core owns the block it can be re-used. This should be the
260	 * default case when enabling the buffer, unless the DMA controller does
261	 * not support abort and has not given back the block yet.
262	 */
263	switch (block->state) {
264	case IIO_BLOCK_STATE_DEQUEUED:
265	case IIO_BLOCK_STATE_QUEUED:
266	case IIO_BLOCK_STATE_DONE:
267		return true;
268	default:
269		return false;
270	}
271}
272
273/**
274 * iio_dma_buffer_request_update() - DMA buffer request_update callback
275 * @buffer: The buffer which to request an update
276 *
277 * Should be used as the iio_dma_buffer_request_update() callback for
278 * iio_buffer_access_ops struct for DMA buffers.
279 */
280int iio_dma_buffer_request_update(struct iio_buffer *buffer)
281{
282	struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
283	struct iio_dma_buffer_block *block;
284	bool try_reuse = false;
285	size_t size;
286	int ret = 0;
287	int i;
288
289	/*
290	 * Split the buffer into two even parts. This is used as a double
291	 * buffering scheme with usually one block at a time being used by the
292	 * DMA and the other one by the application.
293	 */
294	size = DIV_ROUND_UP(queue->buffer.bytes_per_datum *
295		queue->buffer.length, 2);
296
297	mutex_lock(&queue->lock);
298
299	/* Allocations are page aligned */
300	if (PAGE_ALIGN(queue->fileio.block_size) == PAGE_ALIGN(size))
301		try_reuse = true;
302
303	queue->fileio.block_size = size;
304	queue->fileio.active_block = NULL;
305
306	spin_lock_irq(&queue->list_lock);
307	for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
308		block = queue->fileio.blocks[i];
309
310		/* If we can't re-use it free it */
311		if (block && (!iio_dma_block_reusable(block) || !try_reuse))
312			block->state = IIO_BLOCK_STATE_DEAD;
313	}
314
315	/*
316	 * At this point all blocks are either owned by the core or marked as
317	 * dead. This means we can reset the lists without having to fear
318	 * corrution.
319	 */
320	INIT_LIST_HEAD(&queue->outgoing);
321	spin_unlock_irq(&queue->list_lock);
322
323	INIT_LIST_HEAD(&queue->incoming);
324
325	for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
326		if (queue->fileio.blocks[i]) {
327			block = queue->fileio.blocks[i];
328			if (block->state == IIO_BLOCK_STATE_DEAD) {
329				/* Could not reuse it */
330				iio_buffer_block_put(block);
331				block = NULL;
332			} else {
333				block->size = size;
334			}
335		} else {
336			block = NULL;
337		}
338
339		if (!block) {
340			block = iio_dma_buffer_alloc_block(queue, size);
341			if (!block) {
342				ret = -ENOMEM;
343				goto out_unlock;
344			}
345			queue->fileio.blocks[i] = block;
346		}
347
348		block->state = IIO_BLOCK_STATE_QUEUED;
349		list_add_tail(&block->head, &queue->incoming);
350	}
351
352out_unlock:
353	mutex_unlock(&queue->lock);
354
355	return ret;
356}
357EXPORT_SYMBOL_GPL(iio_dma_buffer_request_update);
358
359static void iio_dma_buffer_submit_block(struct iio_dma_buffer_queue *queue,
360	struct iio_dma_buffer_block *block)
361{
362	int ret;
363
364	/*
365	 * If the hardware has already been removed we put the block into
366	 * limbo. It will neither be on the incoming nor outgoing list, nor will
367	 * it ever complete. It will just wait to be freed eventually.
368	 */
369	if (!queue->ops)
370		return;
371
372	block->state = IIO_BLOCK_STATE_ACTIVE;
373	iio_buffer_block_get(block);
374	ret = queue->ops->submit(queue, block);
375	if (ret) {
376		/*
377		 * This is a bit of a problem and there is not much we can do
378		 * other then wait for the buffer to be disabled and re-enabled
379		 * and try again. But it should not really happen unless we run
380		 * out of memory or something similar.
381		 *
382		 * TODO: Implement support in the IIO core to allow buffers to
383		 * notify consumers that something went wrong and the buffer
384		 * should be disabled.
385		 */
386		iio_buffer_block_put(block);
387	}
388}
389
390/**
391 * iio_dma_buffer_enable() - Enable DMA buffer
392 * @buffer: IIO buffer to enable
393 * @indio_dev: IIO device the buffer is attached to
394 *
395 * Needs to be called when the device that the buffer is attached to starts
396 * sampling. Typically should be the iio_buffer_access_ops enable callback.
397 *
398 * This will allocate the DMA buffers and start the DMA transfers.
399 */
400int iio_dma_buffer_enable(struct iio_buffer *buffer,
401	struct iio_dev *indio_dev)
402{
403	struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
404	struct iio_dma_buffer_block *block, *_block;
405
406	mutex_lock(&queue->lock);
407	queue->active = true;
408	list_for_each_entry_safe(block, _block, &queue->incoming, head) {
409		list_del(&block->head);
410		iio_dma_buffer_submit_block(queue, block);
411	}
412	mutex_unlock(&queue->lock);
413
414	return 0;
415}
416EXPORT_SYMBOL_GPL(iio_dma_buffer_enable);
417
418/**
419 * iio_dma_buffer_disable() - Disable DMA buffer
420 * @buffer: IIO DMA buffer to disable
421 * @indio_dev: IIO device the buffer is attached to
422 *
423 * Needs to be called when the device that the buffer is attached to stops
424 * sampling. Typically should be the iio_buffer_access_ops disable callback.
425 */
426int iio_dma_buffer_disable(struct iio_buffer *buffer,
427	struct iio_dev *indio_dev)
428{
429	struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
430
431	mutex_lock(&queue->lock);
432	queue->active = false;
433
434	if (queue->ops && queue->ops->abort)
435		queue->ops->abort(queue);
436	mutex_unlock(&queue->lock);
437
438	return 0;
439}
440EXPORT_SYMBOL_GPL(iio_dma_buffer_disable);
441
442static void iio_dma_buffer_enqueue(struct iio_dma_buffer_queue *queue,
443	struct iio_dma_buffer_block *block)
444{
445	if (block->state == IIO_BLOCK_STATE_DEAD) {
446		iio_buffer_block_put(block);
447	} else if (queue->active) {
448		iio_dma_buffer_submit_block(queue, block);
449	} else {
450		block->state = IIO_BLOCK_STATE_QUEUED;
451		list_add_tail(&block->head, &queue->incoming);
452	}
453}
454
455static struct iio_dma_buffer_block *iio_dma_buffer_dequeue(
456	struct iio_dma_buffer_queue *queue)
457{
458	struct iio_dma_buffer_block *block;
459
460	spin_lock_irq(&queue->list_lock);
461	block = list_first_entry_or_null(&queue->outgoing, struct
462		iio_dma_buffer_block, head);
463	if (block != NULL) {
464		list_del(&block->head);
465		block->state = IIO_BLOCK_STATE_DEQUEUED;
466	}
467	spin_unlock_irq(&queue->list_lock);
468
469	return block;
470}
471
472/**
473 * iio_dma_buffer_read() - DMA buffer read callback
474 * @buffer: Buffer to read form
475 * @n: Number of bytes to read
476 * @user_buffer: Userspace buffer to copy the data to
477 *
478 * Should be used as the read callback for iio_buffer_access_ops
479 * struct for DMA buffers.
480 */
481int iio_dma_buffer_read(struct iio_buffer *buffer, size_t n,
482	char __user *user_buffer)
483{
484	struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
485	struct iio_dma_buffer_block *block;
486	int ret;
487
488	if (n < buffer->bytes_per_datum)
489		return -EINVAL;
490
491	mutex_lock(&queue->lock);
492
493	if (!queue->fileio.active_block) {
494		block = iio_dma_buffer_dequeue(queue);
495		if (block == NULL) {
496			ret = 0;
497			goto out_unlock;
498		}
499		queue->fileio.pos = 0;
500		queue->fileio.active_block = block;
501	} else {
502		block = queue->fileio.active_block;
503	}
504
505	n = rounddown(n, buffer->bytes_per_datum);
506	if (n > block->bytes_used - queue->fileio.pos)
507		n = block->bytes_used - queue->fileio.pos;
508
509	if (copy_to_user(user_buffer, block->vaddr + queue->fileio.pos, n)) {
510		ret = -EFAULT;
511		goto out_unlock;
512	}
513
514	queue->fileio.pos += n;
515
516	if (queue->fileio.pos == block->bytes_used) {
517		queue->fileio.active_block = NULL;
518		iio_dma_buffer_enqueue(queue, block);
519	}
520
521	ret = n;
522
523out_unlock:
524	mutex_unlock(&queue->lock);
525
526	return ret;
527}
528EXPORT_SYMBOL_GPL(iio_dma_buffer_read);
529
530/**
531 * iio_dma_buffer_data_available() - DMA buffer data_available callback
532 * @buf: Buffer to check for data availability
533 *
534 * Should be used as the data_available callback for iio_buffer_access_ops
535 * struct for DMA buffers.
536 */
537size_t iio_dma_buffer_data_available(struct iio_buffer *buf)
538{
539	struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buf);
540	struct iio_dma_buffer_block *block;
541	size_t data_available = 0;
542
543	/*
544	 * For counting the available bytes we'll use the size of the block not
545	 * the number of actual bytes available in the block. Otherwise it is
546	 * possible that we end up with a value that is lower than the watermark
547	 * but won't increase since all blocks are in use.
548	 */
549
550	mutex_lock(&queue->lock);
551	if (queue->fileio.active_block)
552		data_available += queue->fileio.active_block->size;
553
554	spin_lock_irq(&queue->list_lock);
555	list_for_each_entry(block, &queue->outgoing, head)
556		data_available += block->size;
557	spin_unlock_irq(&queue->list_lock);
558	mutex_unlock(&queue->lock);
559
560	return data_available;
561}
562EXPORT_SYMBOL_GPL(iio_dma_buffer_data_available);
563
564/**
565 * iio_dma_buffer_set_bytes_per_datum() - DMA buffer set_bytes_per_datum callback
566 * @buffer: Buffer to set the bytes-per-datum for
567 * @bpd: The new bytes-per-datum value
568 *
569 * Should be used as the set_bytes_per_datum callback for iio_buffer_access_ops
570 * struct for DMA buffers.
571 */
572int iio_dma_buffer_set_bytes_per_datum(struct iio_buffer *buffer, size_t bpd)
573{
574	buffer->bytes_per_datum = bpd;
575
576	return 0;
577}
578EXPORT_SYMBOL_GPL(iio_dma_buffer_set_bytes_per_datum);
579
580/**
581 * iio_dma_buffer_set_length - DMA buffer set_length callback
582 * @buffer: Buffer to set the length for
583 * @length: The new buffer length
584 *
585 * Should be used as the set_length callback for iio_buffer_access_ops
586 * struct for DMA buffers.
587 */
588int iio_dma_buffer_set_length(struct iio_buffer *buffer, unsigned int length)
589{
590	/* Avoid an invalid state */
591	if (length < 2)
592		length = 2;
593	buffer->length = length;
594	buffer->watermark = length / 2;
595
596	return 0;
597}
598EXPORT_SYMBOL_GPL(iio_dma_buffer_set_length);
599
600/**
601 * iio_dma_buffer_init() - Initialize DMA buffer queue
602 * @queue: Buffer to initialize
603 * @dev: DMA device
604 * @ops: DMA buffer queue callback operations
605 *
606 * The DMA device will be used by the queue to do DMA memory allocations. So it
607 * should refer to the device that will perform the DMA to ensure that
608 * allocations are done from a memory region that can be accessed by the device.
609 */
610int iio_dma_buffer_init(struct iio_dma_buffer_queue *queue,
611	struct device *dev, const struct iio_dma_buffer_ops *ops)
612{
613	iio_buffer_init(&queue->buffer);
614	queue->buffer.length = PAGE_SIZE;
615	queue->buffer.watermark = queue->buffer.length / 2;
616	queue->dev = dev;
617	queue->ops = ops;
618
619	INIT_LIST_HEAD(&queue->incoming);
620	INIT_LIST_HEAD(&queue->outgoing);
621
622	mutex_init(&queue->lock);
623	spin_lock_init(&queue->list_lock);
624
625	return 0;
626}
627EXPORT_SYMBOL_GPL(iio_dma_buffer_init);
628
629/**
630 * iio_dma_buffer_exit() - Cleanup DMA buffer queue
631 * @queue: Buffer to cleanup
632 *
633 * After this function has completed it is safe to free any resources that are
634 * associated with the buffer and are accessed inside the callback operations.
635 */
636void iio_dma_buffer_exit(struct iio_dma_buffer_queue *queue)
637{
638	unsigned int i;
639
640	mutex_lock(&queue->lock);
641
642	spin_lock_irq(&queue->list_lock);
643	for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
644		if (!queue->fileio.blocks[i])
645			continue;
646		queue->fileio.blocks[i]->state = IIO_BLOCK_STATE_DEAD;
647	}
648	INIT_LIST_HEAD(&queue->outgoing);
649	spin_unlock_irq(&queue->list_lock);
650
651	INIT_LIST_HEAD(&queue->incoming);
652
653	for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
654		if (!queue->fileio.blocks[i])
655			continue;
656		iio_buffer_block_put(queue->fileio.blocks[i]);
657		queue->fileio.blocks[i] = NULL;
658	}
659	queue->fileio.active_block = NULL;
660	queue->ops = NULL;
661
662	mutex_unlock(&queue->lock);
663}
664EXPORT_SYMBOL_GPL(iio_dma_buffer_exit);
665
666/**
667 * iio_dma_buffer_release() - Release final buffer resources
668 * @queue: Buffer to release
669 *
670 * Frees resources that can't yet be freed in iio_dma_buffer_exit(). Should be
671 * called in the buffers release callback implementation right before freeing
672 * the memory associated with the buffer.
673 */
674void iio_dma_buffer_release(struct iio_dma_buffer_queue *queue)
675{
676	mutex_destroy(&queue->lock);
677}
678EXPORT_SYMBOL_GPL(iio_dma_buffer_release);
679
680MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
681MODULE_DESCRIPTION("DMA buffer for the IIO framework");
682MODULE_LICENSE("GPL v2");
v4.10.11
 
  1/*
  2 * Copyright 2013-2015 Analog Devices Inc.
  3 *  Author: Lars-Peter Clausen <lars@metafoo.de>
  4 *
  5 * Licensed under the GPL-2.
  6 */
  7
  8#include <linux/slab.h>
  9#include <linux/kernel.h>
 10#include <linux/module.h>
 11#include <linux/device.h>
 12#include <linux/workqueue.h>
 13#include <linux/mutex.h>
 14#include <linux/sched.h>
 15#include <linux/poll.h>
 16#include <linux/iio/buffer.h>
 17#include <linux/iio/buffer-dma.h>
 18#include <linux/dma-mapping.h>
 19#include <linux/sizes.h>
 20
 21/*
 22 * For DMA buffers the storage is sub-divided into so called blocks. Each block
 23 * has its own memory buffer. The size of the block is the granularity at which
 24 * memory is exchanged between the hardware and the application. Increasing the
 25 * basic unit of data exchange from one sample to one block decreases the
 26 * management overhead that is associated with each sample. E.g. if we say the
 27 * management overhead for one exchange is x and the unit of exchange is one
 28 * sample the overhead will be x for each sample. Whereas when using a block
 29 * which contains n samples the overhead per sample is reduced to x/n. This
 30 * allows to achieve much higher samplerates than what can be sustained with
 31 * the one sample approach.
 32 *
 33 * Blocks are exchanged between the DMA controller and the application via the
 34 * means of two queues. The incoming queue and the outgoing queue. Blocks on the
 35 * incoming queue are waiting for the DMA controller to pick them up and fill
 36 * them with data. Block on the outgoing queue have been filled with data and
 37 * are waiting for the application to dequeue them and read the data.
 38 *
 39 * A block can be in one of the following states:
 40 *  * Owned by the application. In this state the application can read data from
 41 *    the block.
 42 *  * On the incoming list: Blocks on the incoming list are queued up to be
 43 *    processed by the DMA controller.
 44 *  * Owned by the DMA controller: The DMA controller is processing the block
 45 *    and filling it with data.
 46 *  * On the outgoing list: Blocks on the outgoing list have been successfully
 47 *    processed by the DMA controller and contain data. They can be dequeued by
 48 *    the application.
 49 *  * Dead: A block that is dead has been marked as to be freed. It might still
 50 *    be owned by either the application or the DMA controller at the moment.
 51 *    But once they are done processing it instead of going to either the
 52 *    incoming or outgoing queue the block will be freed.
 53 *
 54 * In addition to this blocks are reference counted and the memory associated
 55 * with both the block structure as well as the storage memory for the block
 56 * will be freed when the last reference to the block is dropped. This means a
 57 * block must not be accessed without holding a reference.
 58 *
 59 * The iio_dma_buffer implementation provides a generic infrastructure for
 60 * managing the blocks.
 61 *
 62 * A driver for a specific piece of hardware that has DMA capabilities need to
 63 * implement the submit() callback from the iio_dma_buffer_ops structure. This
 64 * callback is supposed to initiate the DMA transfer copying data from the
 65 * converter to the memory region of the block. Once the DMA transfer has been
 66 * completed the driver must call iio_dma_buffer_block_done() for the completed
 67 * block.
 68 *
 69 * Prior to this it must set the bytes_used field of the block contains
 70 * the actual number of bytes in the buffer. Typically this will be equal to the
 71 * size of the block, but if the DMA hardware has certain alignment requirements
 72 * for the transfer length it might choose to use less than the full size. In
 73 * either case it is expected that bytes_used is a multiple of the bytes per
 74 * datum, i.e. the block must not contain partial samples.
 75 *
 76 * The driver must call iio_dma_buffer_block_done() for each block it has
 77 * received through its submit_block() callback, even if it does not actually
 78 * perform a DMA transfer for the block, e.g. because the buffer was disabled
 79 * before the block transfer was started. In this case it should set bytes_used
 80 * to 0.
 81 *
 82 * In addition it is recommended that a driver implements the abort() callback.
 83 * It will be called when the buffer is disabled and can be used to cancel
 84 * pending and stop active transfers.
 85 *
 86 * The specific driver implementation should use the default callback
 87 * implementations provided by this module for the iio_buffer_access_funcs
 88 * struct. It may overload some callbacks with custom variants if the hardware
 89 * has special requirements that are not handled by the generic functions. If a
 90 * driver chooses to overload a callback it has to ensure that the generic
 91 * callback is called from within the custom callback.
 92 */
 93
 94static void iio_buffer_block_release(struct kref *kref)
 95{
 96	struct iio_dma_buffer_block *block = container_of(kref,
 97		struct iio_dma_buffer_block, kref);
 98
 99	WARN_ON(block->state != IIO_BLOCK_STATE_DEAD);
100
101	dma_free_coherent(block->queue->dev, PAGE_ALIGN(block->size),
102					block->vaddr, block->phys_addr);
103
104	iio_buffer_put(&block->queue->buffer);
105	kfree(block);
106}
107
108static void iio_buffer_block_get(struct iio_dma_buffer_block *block)
109{
110	kref_get(&block->kref);
111}
112
113static void iio_buffer_block_put(struct iio_dma_buffer_block *block)
114{
115	kref_put(&block->kref, iio_buffer_block_release);
116}
117
118/*
119 * dma_free_coherent can sleep, hence we need to take some special care to be
120 * able to drop a reference from an atomic context.
121 */
122static LIST_HEAD(iio_dma_buffer_dead_blocks);
123static DEFINE_SPINLOCK(iio_dma_buffer_dead_blocks_lock);
124
125static void iio_dma_buffer_cleanup_worker(struct work_struct *work)
126{
127	struct iio_dma_buffer_block *block, *_block;
128	LIST_HEAD(block_list);
129
130	spin_lock_irq(&iio_dma_buffer_dead_blocks_lock);
131	list_splice_tail_init(&iio_dma_buffer_dead_blocks, &block_list);
132	spin_unlock_irq(&iio_dma_buffer_dead_blocks_lock);
133
134	list_for_each_entry_safe(block, _block, &block_list, head)
135		iio_buffer_block_release(&block->kref);
136}
137static DECLARE_WORK(iio_dma_buffer_cleanup_work, iio_dma_buffer_cleanup_worker);
138
139static void iio_buffer_block_release_atomic(struct kref *kref)
140{
141	struct iio_dma_buffer_block *block;
142	unsigned long flags;
143
144	block = container_of(kref, struct iio_dma_buffer_block, kref);
145
146	spin_lock_irqsave(&iio_dma_buffer_dead_blocks_lock, flags);
147	list_add_tail(&block->head, &iio_dma_buffer_dead_blocks);
148	spin_unlock_irqrestore(&iio_dma_buffer_dead_blocks_lock, flags);
149
150	schedule_work(&iio_dma_buffer_cleanup_work);
151}
152
153/*
154 * Version of iio_buffer_block_put() that can be called from atomic context
155 */
156static void iio_buffer_block_put_atomic(struct iio_dma_buffer_block *block)
157{
158	kref_put(&block->kref, iio_buffer_block_release_atomic);
159}
160
161static struct iio_dma_buffer_queue *iio_buffer_to_queue(struct iio_buffer *buf)
162{
163	return container_of(buf, struct iio_dma_buffer_queue, buffer);
164}
165
166static struct iio_dma_buffer_block *iio_dma_buffer_alloc_block(
167	struct iio_dma_buffer_queue *queue, size_t size)
168{
169	struct iio_dma_buffer_block *block;
170
171	block = kzalloc(sizeof(*block), GFP_KERNEL);
172	if (!block)
173		return NULL;
174
175	block->vaddr = dma_alloc_coherent(queue->dev, PAGE_ALIGN(size),
176		&block->phys_addr, GFP_KERNEL);
177	if (!block->vaddr) {
178		kfree(block);
179		return NULL;
180	}
181
182	block->size = size;
183	block->state = IIO_BLOCK_STATE_DEQUEUED;
184	block->queue = queue;
185	INIT_LIST_HEAD(&block->head);
186	kref_init(&block->kref);
187
188	iio_buffer_get(&queue->buffer);
189
190	return block;
191}
192
193static void _iio_dma_buffer_block_done(struct iio_dma_buffer_block *block)
194{
195	struct iio_dma_buffer_queue *queue = block->queue;
196
197	/*
198	 * The buffer has already been freed by the application, just drop the
199	 * reference.
200	 */
201	if (block->state != IIO_BLOCK_STATE_DEAD) {
202		block->state = IIO_BLOCK_STATE_DONE;
203		list_add_tail(&block->head, &queue->outgoing);
204	}
205}
206
207/**
208 * iio_dma_buffer_block_done() - Indicate that a block has been completed
209 * @block: The completed block
210 *
211 * Should be called when the DMA controller has finished handling the block to
212 * pass back ownership of the block to the queue.
213 */
214void iio_dma_buffer_block_done(struct iio_dma_buffer_block *block)
215{
216	struct iio_dma_buffer_queue *queue = block->queue;
217	unsigned long flags;
218
219	spin_lock_irqsave(&queue->list_lock, flags);
220	_iio_dma_buffer_block_done(block);
221	spin_unlock_irqrestore(&queue->list_lock, flags);
222
223	iio_buffer_block_put_atomic(block);
224	wake_up_interruptible_poll(&queue->buffer.pollq, POLLIN | POLLRDNORM);
225}
226EXPORT_SYMBOL_GPL(iio_dma_buffer_block_done);
227
228/**
229 * iio_dma_buffer_block_list_abort() - Indicate that a list block has been
230 *   aborted
231 * @queue: Queue for which to complete blocks.
232 * @list: List of aborted blocks. All blocks in this list must be from @queue.
233 *
234 * Typically called from the abort() callback after the DMA controller has been
235 * stopped. This will set bytes_used to 0 for each block in the list and then
236 * hand the blocks back to the queue.
237 */
238void iio_dma_buffer_block_list_abort(struct iio_dma_buffer_queue *queue,
239	struct list_head *list)
240{
241	struct iio_dma_buffer_block *block, *_block;
242	unsigned long flags;
243
244	spin_lock_irqsave(&queue->list_lock, flags);
245	list_for_each_entry_safe(block, _block, list, head) {
246		list_del(&block->head);
247		block->bytes_used = 0;
248		_iio_dma_buffer_block_done(block);
249		iio_buffer_block_put_atomic(block);
250	}
251	spin_unlock_irqrestore(&queue->list_lock, flags);
252
253	wake_up_interruptible_poll(&queue->buffer.pollq, POLLIN | POLLRDNORM);
254}
255EXPORT_SYMBOL_GPL(iio_dma_buffer_block_list_abort);
256
257static bool iio_dma_block_reusable(struct iio_dma_buffer_block *block)
258{
259	/*
260	 * If the core owns the block it can be re-used. This should be the
261	 * default case when enabling the buffer, unless the DMA controller does
262	 * not support abort and has not given back the block yet.
263	 */
264	switch (block->state) {
265	case IIO_BLOCK_STATE_DEQUEUED:
266	case IIO_BLOCK_STATE_QUEUED:
267	case IIO_BLOCK_STATE_DONE:
268		return true;
269	default:
270		return false;
271	}
272}
273
274/**
275 * iio_dma_buffer_request_update() - DMA buffer request_update callback
276 * @buffer: The buffer which to request an update
277 *
278 * Should be used as the iio_dma_buffer_request_update() callback for
279 * iio_buffer_access_ops struct for DMA buffers.
280 */
281int iio_dma_buffer_request_update(struct iio_buffer *buffer)
282{
283	struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
284	struct iio_dma_buffer_block *block;
285	bool try_reuse = false;
286	size_t size;
287	int ret = 0;
288	int i;
289
290	/*
291	 * Split the buffer into two even parts. This is used as a double
292	 * buffering scheme with usually one block at a time being used by the
293	 * DMA and the other one by the application.
294	 */
295	size = DIV_ROUND_UP(queue->buffer.bytes_per_datum *
296		queue->buffer.length, 2);
297
298	mutex_lock(&queue->lock);
299
300	/* Allocations are page aligned */
301	if (PAGE_ALIGN(queue->fileio.block_size) == PAGE_ALIGN(size))
302		try_reuse = true;
303
304	queue->fileio.block_size = size;
305	queue->fileio.active_block = NULL;
306
307	spin_lock_irq(&queue->list_lock);
308	for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
309		block = queue->fileio.blocks[i];
310
311		/* If we can't re-use it free it */
312		if (block && (!iio_dma_block_reusable(block) || !try_reuse))
313			block->state = IIO_BLOCK_STATE_DEAD;
314	}
315
316	/*
317	 * At this point all blocks are either owned by the core or marked as
318	 * dead. This means we can reset the lists without having to fear
319	 * corrution.
320	 */
321	INIT_LIST_HEAD(&queue->outgoing);
322	spin_unlock_irq(&queue->list_lock);
323
324	INIT_LIST_HEAD(&queue->incoming);
325
326	for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
327		if (queue->fileio.blocks[i]) {
328			block = queue->fileio.blocks[i];
329			if (block->state == IIO_BLOCK_STATE_DEAD) {
330				/* Could not reuse it */
331				iio_buffer_block_put(block);
332				block = NULL;
333			} else {
334				block->size = size;
335			}
336		} else {
337			block = NULL;
338		}
339
340		if (!block) {
341			block = iio_dma_buffer_alloc_block(queue, size);
342			if (!block) {
343				ret = -ENOMEM;
344				goto out_unlock;
345			}
346			queue->fileio.blocks[i] = block;
347		}
348
349		block->state = IIO_BLOCK_STATE_QUEUED;
350		list_add_tail(&block->head, &queue->incoming);
351	}
352
353out_unlock:
354	mutex_unlock(&queue->lock);
355
356	return ret;
357}
358EXPORT_SYMBOL_GPL(iio_dma_buffer_request_update);
359
360static void iio_dma_buffer_submit_block(struct iio_dma_buffer_queue *queue,
361	struct iio_dma_buffer_block *block)
362{
363	int ret;
364
365	/*
366	 * If the hardware has already been removed we put the block into
367	 * limbo. It will neither be on the incoming nor outgoing list, nor will
368	 * it ever complete. It will just wait to be freed eventually.
369	 */
370	if (!queue->ops)
371		return;
372
373	block->state = IIO_BLOCK_STATE_ACTIVE;
374	iio_buffer_block_get(block);
375	ret = queue->ops->submit(queue, block);
376	if (ret) {
377		/*
378		 * This is a bit of a problem and there is not much we can do
379		 * other then wait for the buffer to be disabled and re-enabled
380		 * and try again. But it should not really happen unless we run
381		 * out of memory or something similar.
382		 *
383		 * TODO: Implement support in the IIO core to allow buffers to
384		 * notify consumers that something went wrong and the buffer
385		 * should be disabled.
386		 */
387		iio_buffer_block_put(block);
388	}
389}
390
391/**
392 * iio_dma_buffer_enable() - Enable DMA buffer
393 * @buffer: IIO buffer to enable
394 * @indio_dev: IIO device the buffer is attached to
395 *
396 * Needs to be called when the device that the buffer is attached to starts
397 * sampling. Typically should be the iio_buffer_access_ops enable callback.
398 *
399 * This will allocate the DMA buffers and start the DMA transfers.
400 */
401int iio_dma_buffer_enable(struct iio_buffer *buffer,
402	struct iio_dev *indio_dev)
403{
404	struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
405	struct iio_dma_buffer_block *block, *_block;
406
407	mutex_lock(&queue->lock);
408	queue->active = true;
409	list_for_each_entry_safe(block, _block, &queue->incoming, head) {
410		list_del(&block->head);
411		iio_dma_buffer_submit_block(queue, block);
412	}
413	mutex_unlock(&queue->lock);
414
415	return 0;
416}
417EXPORT_SYMBOL_GPL(iio_dma_buffer_enable);
418
419/**
420 * iio_dma_buffer_disable() - Disable DMA buffer
421 * @buffer: IIO DMA buffer to disable
422 * @indio_dev: IIO device the buffer is attached to
423 *
424 * Needs to be called when the device that the buffer is attached to stops
425 * sampling. Typically should be the iio_buffer_access_ops disable callback.
426 */
427int iio_dma_buffer_disable(struct iio_buffer *buffer,
428	struct iio_dev *indio_dev)
429{
430	struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
431
432	mutex_lock(&queue->lock);
433	queue->active = false;
434
435	if (queue->ops && queue->ops->abort)
436		queue->ops->abort(queue);
437	mutex_unlock(&queue->lock);
438
439	return 0;
440}
441EXPORT_SYMBOL_GPL(iio_dma_buffer_disable);
442
443static void iio_dma_buffer_enqueue(struct iio_dma_buffer_queue *queue,
444	struct iio_dma_buffer_block *block)
445{
446	if (block->state == IIO_BLOCK_STATE_DEAD) {
447		iio_buffer_block_put(block);
448	} else if (queue->active) {
449		iio_dma_buffer_submit_block(queue, block);
450	} else {
451		block->state = IIO_BLOCK_STATE_QUEUED;
452		list_add_tail(&block->head, &queue->incoming);
453	}
454}
455
456static struct iio_dma_buffer_block *iio_dma_buffer_dequeue(
457	struct iio_dma_buffer_queue *queue)
458{
459	struct iio_dma_buffer_block *block;
460
461	spin_lock_irq(&queue->list_lock);
462	block = list_first_entry_or_null(&queue->outgoing, struct
463		iio_dma_buffer_block, head);
464	if (block != NULL) {
465		list_del(&block->head);
466		block->state = IIO_BLOCK_STATE_DEQUEUED;
467	}
468	spin_unlock_irq(&queue->list_lock);
469
470	return block;
471}
472
473/**
474 * iio_dma_buffer_read() - DMA buffer read callback
475 * @buffer: Buffer to read form
476 * @n: Number of bytes to read
477 * @user_buffer: Userspace buffer to copy the data to
478 *
479 * Should be used as the read_first_n callback for iio_buffer_access_ops
480 * struct for DMA buffers.
481 */
482int iio_dma_buffer_read(struct iio_buffer *buffer, size_t n,
483	char __user *user_buffer)
484{
485	struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
486	struct iio_dma_buffer_block *block;
487	int ret;
488
489	if (n < buffer->bytes_per_datum)
490		return -EINVAL;
491
492	mutex_lock(&queue->lock);
493
494	if (!queue->fileio.active_block) {
495		block = iio_dma_buffer_dequeue(queue);
496		if (block == NULL) {
497			ret = 0;
498			goto out_unlock;
499		}
500		queue->fileio.pos = 0;
501		queue->fileio.active_block = block;
502	} else {
503		block = queue->fileio.active_block;
504	}
505
506	n = rounddown(n, buffer->bytes_per_datum);
507	if (n > block->bytes_used - queue->fileio.pos)
508		n = block->bytes_used - queue->fileio.pos;
509
510	if (copy_to_user(user_buffer, block->vaddr + queue->fileio.pos, n)) {
511		ret = -EFAULT;
512		goto out_unlock;
513	}
514
515	queue->fileio.pos += n;
516
517	if (queue->fileio.pos == block->bytes_used) {
518		queue->fileio.active_block = NULL;
519		iio_dma_buffer_enqueue(queue, block);
520	}
521
522	ret = n;
523
524out_unlock:
525	mutex_unlock(&queue->lock);
526
527	return ret;
528}
529EXPORT_SYMBOL_GPL(iio_dma_buffer_read);
530
531/**
532 * iio_dma_buffer_data_available() - DMA buffer data_available callback
533 * @buf: Buffer to check for data availability
534 *
535 * Should be used as the data_available callback for iio_buffer_access_ops
536 * struct for DMA buffers.
537 */
538size_t iio_dma_buffer_data_available(struct iio_buffer *buf)
539{
540	struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buf);
541	struct iio_dma_buffer_block *block;
542	size_t data_available = 0;
543
544	/*
545	 * For counting the available bytes we'll use the size of the block not
546	 * the number of actual bytes available in the block. Otherwise it is
547	 * possible that we end up with a value that is lower than the watermark
548	 * but won't increase since all blocks are in use.
549	 */
550
551	mutex_lock(&queue->lock);
552	if (queue->fileio.active_block)
553		data_available += queue->fileio.active_block->size;
554
555	spin_lock_irq(&queue->list_lock);
556	list_for_each_entry(block, &queue->outgoing, head)
557		data_available += block->size;
558	spin_unlock_irq(&queue->list_lock);
559	mutex_unlock(&queue->lock);
560
561	return data_available;
562}
563EXPORT_SYMBOL_GPL(iio_dma_buffer_data_available);
564
565/**
566 * iio_dma_buffer_set_bytes_per_datum() - DMA buffer set_bytes_per_datum callback
567 * @buffer: Buffer to set the bytes-per-datum for
568 * @bpd: The new bytes-per-datum value
569 *
570 * Should be used as the set_bytes_per_datum callback for iio_buffer_access_ops
571 * struct for DMA buffers.
572 */
573int iio_dma_buffer_set_bytes_per_datum(struct iio_buffer *buffer, size_t bpd)
574{
575	buffer->bytes_per_datum = bpd;
576
577	return 0;
578}
579EXPORT_SYMBOL_GPL(iio_dma_buffer_set_bytes_per_datum);
580
581/**
582 * iio_dma_buffer_set_length - DMA buffer set_length callback
583 * @buffer: Buffer to set the length for
584 * @length: The new buffer length
585 *
586 * Should be used as the set_length callback for iio_buffer_access_ops
587 * struct for DMA buffers.
588 */
589int iio_dma_buffer_set_length(struct iio_buffer *buffer, int length)
590{
591	/* Avoid an invalid state */
592	if (length < 2)
593		length = 2;
594	buffer->length = length;
595	buffer->watermark = length / 2;
596
597	return 0;
598}
599EXPORT_SYMBOL_GPL(iio_dma_buffer_set_length);
600
601/**
602 * iio_dma_buffer_init() - Initialize DMA buffer queue
603 * @queue: Buffer to initialize
604 * @dev: DMA device
605 * @ops: DMA buffer queue callback operations
606 *
607 * The DMA device will be used by the queue to do DMA memory allocations. So it
608 * should refer to the device that will perform the DMA to ensure that
609 * allocations are done from a memory region that can be accessed by the device.
610 */
611int iio_dma_buffer_init(struct iio_dma_buffer_queue *queue,
612	struct device *dev, const struct iio_dma_buffer_ops *ops)
613{
614	iio_buffer_init(&queue->buffer);
615	queue->buffer.length = PAGE_SIZE;
616	queue->buffer.watermark = queue->buffer.length / 2;
617	queue->dev = dev;
618	queue->ops = ops;
619
620	INIT_LIST_HEAD(&queue->incoming);
621	INIT_LIST_HEAD(&queue->outgoing);
622
623	mutex_init(&queue->lock);
624	spin_lock_init(&queue->list_lock);
625
626	return 0;
627}
628EXPORT_SYMBOL_GPL(iio_dma_buffer_init);
629
630/**
631 * iio_dma_buffer_exit() - Cleanup DMA buffer queue
632 * @queue: Buffer to cleanup
633 *
634 * After this function has completed it is safe to free any resources that are
635 * associated with the buffer and are accessed inside the callback operations.
636 */
637void iio_dma_buffer_exit(struct iio_dma_buffer_queue *queue)
638{
639	unsigned int i;
640
641	mutex_lock(&queue->lock);
642
643	spin_lock_irq(&queue->list_lock);
644	for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
645		if (!queue->fileio.blocks[i])
646			continue;
647		queue->fileio.blocks[i]->state = IIO_BLOCK_STATE_DEAD;
648	}
649	INIT_LIST_HEAD(&queue->outgoing);
650	spin_unlock_irq(&queue->list_lock);
651
652	INIT_LIST_HEAD(&queue->incoming);
653
654	for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
655		if (!queue->fileio.blocks[i])
656			continue;
657		iio_buffer_block_put(queue->fileio.blocks[i]);
658		queue->fileio.blocks[i] = NULL;
659	}
660	queue->fileio.active_block = NULL;
661	queue->ops = NULL;
662
663	mutex_unlock(&queue->lock);
664}
665EXPORT_SYMBOL_GPL(iio_dma_buffer_exit);
666
667/**
668 * iio_dma_buffer_release() - Release final buffer resources
669 * @queue: Buffer to release
670 *
671 * Frees resources that can't yet be freed in iio_dma_buffer_exit(). Should be
672 * called in the buffers release callback implementation right before freeing
673 * the memory associated with the buffer.
674 */
675void iio_dma_buffer_release(struct iio_dma_buffer_queue *queue)
676{
677	mutex_destroy(&queue->lock);
678}
679EXPORT_SYMBOL_GPL(iio_dma_buffer_release);
680
681MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
682MODULE_DESCRIPTION("DMA buffer for the IIO framework");
683MODULE_LICENSE("GPL v2");