Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.10.11.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * This file is part of STM32 Crypto driver for Linux.
   4 *
   5 * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
   6 * Author(s): Lionel DEBIEVE <lionel.debieve@st.com> for STMicroelectronics.
   7 */
   8
   9#include <linux/clk.h>
  10#include <linux/crypto.h>
  11#include <linux/delay.h>
  12#include <linux/dma-mapping.h>
  13#include <linux/dmaengine.h>
  14#include <linux/interrupt.h>
  15#include <linux/io.h>
  16#include <linux/iopoll.h>
  17#include <linux/kernel.h>
  18#include <linux/module.h>
  19#include <linux/of_device.h>
  20#include <linux/platform_device.h>
  21#include <linux/pm_runtime.h>
  22#include <linux/reset.h>
  23
  24#include <crypto/engine.h>
  25#include <crypto/hash.h>
  26#include <crypto/md5.h>
  27#include <crypto/scatterwalk.h>
  28#include <crypto/sha1.h>
  29#include <crypto/sha2.h>
  30#include <crypto/internal/hash.h>
  31
  32#define HASH_CR				0x00
  33#define HASH_DIN			0x04
  34#define HASH_STR			0x08
  35#define HASH_IMR			0x20
  36#define HASH_SR				0x24
  37#define HASH_CSR(x)			(0x0F8 + ((x) * 0x04))
  38#define HASH_HREG(x)			(0x310 + ((x) * 0x04))
  39#define HASH_HWCFGR			0x3F0
  40#define HASH_VER			0x3F4
  41#define HASH_ID				0x3F8
  42
  43/* Control Register */
  44#define HASH_CR_INIT			BIT(2)
  45#define HASH_CR_DMAE			BIT(3)
  46#define HASH_CR_DATATYPE_POS		4
  47#define HASH_CR_MODE			BIT(6)
  48#define HASH_CR_MDMAT			BIT(13)
  49#define HASH_CR_DMAA			BIT(14)
  50#define HASH_CR_LKEY			BIT(16)
  51
  52#define HASH_CR_ALGO_SHA1		0x0
  53#define HASH_CR_ALGO_MD5		0x80
  54#define HASH_CR_ALGO_SHA224		0x40000
  55#define HASH_CR_ALGO_SHA256		0x40080
  56
  57/* Interrupt */
  58#define HASH_DINIE			BIT(0)
  59#define HASH_DCIE			BIT(1)
  60
  61/* Interrupt Mask */
  62#define HASH_MASK_CALC_COMPLETION	BIT(0)
  63#define HASH_MASK_DATA_INPUT		BIT(1)
  64
  65/* Context swap register */
  66#define HASH_CSR_REGISTER_NUMBER	53
  67
  68/* Status Flags */
  69#define HASH_SR_DATA_INPUT_READY	BIT(0)
  70#define HASH_SR_OUTPUT_READY		BIT(1)
  71#define HASH_SR_DMA_ACTIVE		BIT(2)
  72#define HASH_SR_BUSY			BIT(3)
  73
  74/* STR Register */
  75#define HASH_STR_NBLW_MASK		GENMASK(4, 0)
  76#define HASH_STR_DCAL			BIT(8)
  77
  78#define HASH_FLAGS_INIT			BIT(0)
  79#define HASH_FLAGS_OUTPUT_READY		BIT(1)
  80#define HASH_FLAGS_CPU			BIT(2)
  81#define HASH_FLAGS_DMA_READY		BIT(3)
  82#define HASH_FLAGS_DMA_ACTIVE		BIT(4)
  83#define HASH_FLAGS_HMAC_INIT		BIT(5)
  84#define HASH_FLAGS_HMAC_FINAL		BIT(6)
  85#define HASH_FLAGS_HMAC_KEY		BIT(7)
  86
  87#define HASH_FLAGS_FINAL		BIT(15)
  88#define HASH_FLAGS_FINUP		BIT(16)
  89#define HASH_FLAGS_ALGO_MASK		GENMASK(21, 18)
  90#define HASH_FLAGS_MD5			BIT(18)
  91#define HASH_FLAGS_SHA1			BIT(19)
  92#define HASH_FLAGS_SHA224		BIT(20)
  93#define HASH_FLAGS_SHA256		BIT(21)
  94#define HASH_FLAGS_ERRORS		BIT(22)
  95#define HASH_FLAGS_HMAC			BIT(23)
  96
  97#define HASH_OP_UPDATE			1
  98#define HASH_OP_FINAL			2
  99
 100enum stm32_hash_data_format {
 101	HASH_DATA_32_BITS		= 0x0,
 102	HASH_DATA_16_BITS		= 0x1,
 103	HASH_DATA_8_BITS		= 0x2,
 104	HASH_DATA_1_BIT			= 0x3
 105};
 106
 107#define HASH_BUFLEN			256
 108#define HASH_LONG_KEY			64
 109#define HASH_MAX_KEY_SIZE		(SHA256_BLOCK_SIZE * 8)
 110#define HASH_QUEUE_LENGTH		16
 111#define HASH_DMA_THRESHOLD		50
 112
 113#define HASH_AUTOSUSPEND_DELAY		50
 114
 115struct stm32_hash_ctx {
 116	struct crypto_engine_ctx enginectx;
 117	struct stm32_hash_dev	*hdev;
 118	unsigned long		flags;
 119
 120	u8			key[HASH_MAX_KEY_SIZE];
 121	int			keylen;
 122};
 123
 124struct stm32_hash_request_ctx {
 125	struct stm32_hash_dev	*hdev;
 126	unsigned long		flags;
 127	unsigned long		op;
 128
 129	u8 digest[SHA256_DIGEST_SIZE] __aligned(sizeof(u32));
 130	size_t			digcnt;
 131	size_t			bufcnt;
 132	size_t			buflen;
 133
 134	/* DMA */
 135	struct scatterlist	*sg;
 136	unsigned int		offset;
 137	unsigned int		total;
 138	struct scatterlist	sg_key;
 139
 140	dma_addr_t		dma_addr;
 141	size_t			dma_ct;
 142	int			nents;
 143
 144	u8			data_type;
 145
 146	u8 buffer[HASH_BUFLEN] __aligned(sizeof(u32));
 147
 148	/* Export Context */
 149	u32			*hw_context;
 150};
 151
 152struct stm32_hash_algs_info {
 153	struct ahash_alg	*algs_list;
 154	size_t			size;
 155};
 156
 157struct stm32_hash_pdata {
 158	struct stm32_hash_algs_info	*algs_info;
 159	size_t				algs_info_size;
 160};
 161
 162struct stm32_hash_dev {
 163	struct list_head	list;
 164	struct device		*dev;
 165	struct clk		*clk;
 166	struct reset_control	*rst;
 167	void __iomem		*io_base;
 168	phys_addr_t		phys_base;
 169	u32			dma_mode;
 170	u32			dma_maxburst;
 171
 172	struct ahash_request	*req;
 173	struct crypto_engine	*engine;
 174
 175	int			err;
 176	unsigned long		flags;
 177
 178	struct dma_chan		*dma_lch;
 179	struct completion	dma_completion;
 180
 181	const struct stm32_hash_pdata	*pdata;
 182};
 183
 184struct stm32_hash_drv {
 185	struct list_head	dev_list;
 186	spinlock_t		lock; /* List protection access */
 187};
 188
 189static struct stm32_hash_drv stm32_hash = {
 190	.dev_list = LIST_HEAD_INIT(stm32_hash.dev_list),
 191	.lock = __SPIN_LOCK_UNLOCKED(stm32_hash.lock),
 192};
 193
 194static void stm32_hash_dma_callback(void *param);
 195
 196static inline u32 stm32_hash_read(struct stm32_hash_dev *hdev, u32 offset)
 197{
 198	return readl_relaxed(hdev->io_base + offset);
 199}
 200
 201static inline void stm32_hash_write(struct stm32_hash_dev *hdev,
 202				    u32 offset, u32 value)
 203{
 204	writel_relaxed(value, hdev->io_base + offset);
 205}
 206
 207static inline int stm32_hash_wait_busy(struct stm32_hash_dev *hdev)
 208{
 209	u32 status;
 210
 211	return readl_relaxed_poll_timeout(hdev->io_base + HASH_SR, status,
 212				   !(status & HASH_SR_BUSY), 10, 10000);
 213}
 214
 215static void stm32_hash_set_nblw(struct stm32_hash_dev *hdev, int length)
 216{
 217	u32 reg;
 218
 219	reg = stm32_hash_read(hdev, HASH_STR);
 220	reg &= ~(HASH_STR_NBLW_MASK);
 221	reg |= (8U * ((length) % 4U));
 222	stm32_hash_write(hdev, HASH_STR, reg);
 223}
 224
 225static int stm32_hash_write_key(struct stm32_hash_dev *hdev)
 226{
 227	struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
 228	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 229	u32 reg;
 230	int keylen = ctx->keylen;
 231	void *key = ctx->key;
 232
 233	if (keylen) {
 234		stm32_hash_set_nblw(hdev, keylen);
 235
 236		while (keylen > 0) {
 237			stm32_hash_write(hdev, HASH_DIN, *(u32 *)key);
 238			keylen -= 4;
 239			key += 4;
 240		}
 241
 242		reg = stm32_hash_read(hdev, HASH_STR);
 243		reg |= HASH_STR_DCAL;
 244		stm32_hash_write(hdev, HASH_STR, reg);
 245
 246		return -EINPROGRESS;
 247	}
 248
 249	return 0;
 250}
 251
 252static void stm32_hash_write_ctrl(struct stm32_hash_dev *hdev)
 253{
 254	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
 255	struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
 256	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 257
 258	u32 reg = HASH_CR_INIT;
 259
 260	if (!(hdev->flags & HASH_FLAGS_INIT)) {
 261		switch (rctx->flags & HASH_FLAGS_ALGO_MASK) {
 262		case HASH_FLAGS_MD5:
 263			reg |= HASH_CR_ALGO_MD5;
 264			break;
 265		case HASH_FLAGS_SHA1:
 266			reg |= HASH_CR_ALGO_SHA1;
 267			break;
 268		case HASH_FLAGS_SHA224:
 269			reg |= HASH_CR_ALGO_SHA224;
 270			break;
 271		case HASH_FLAGS_SHA256:
 272			reg |= HASH_CR_ALGO_SHA256;
 273			break;
 274		default:
 275			reg |= HASH_CR_ALGO_MD5;
 276		}
 277
 278		reg |= (rctx->data_type << HASH_CR_DATATYPE_POS);
 279
 280		if (rctx->flags & HASH_FLAGS_HMAC) {
 281			hdev->flags |= HASH_FLAGS_HMAC;
 282			reg |= HASH_CR_MODE;
 283			if (ctx->keylen > HASH_LONG_KEY)
 284				reg |= HASH_CR_LKEY;
 285		}
 286
 287		stm32_hash_write(hdev, HASH_IMR, HASH_DCIE);
 288
 289		stm32_hash_write(hdev, HASH_CR, reg);
 290
 291		hdev->flags |= HASH_FLAGS_INIT;
 292
 293		dev_dbg(hdev->dev, "Write Control %x\n", reg);
 294	}
 295}
 296
 297static void stm32_hash_append_sg(struct stm32_hash_request_ctx *rctx)
 298{
 299	size_t count;
 300
 301	while ((rctx->bufcnt < rctx->buflen) && rctx->total) {
 302		count = min(rctx->sg->length - rctx->offset, rctx->total);
 303		count = min(count, rctx->buflen - rctx->bufcnt);
 304
 305		if (count <= 0) {
 306			if ((rctx->sg->length == 0) && !sg_is_last(rctx->sg)) {
 307				rctx->sg = sg_next(rctx->sg);
 308				continue;
 309			} else {
 310				break;
 311			}
 312		}
 313
 314		scatterwalk_map_and_copy(rctx->buffer + rctx->bufcnt, rctx->sg,
 315					 rctx->offset, count, 0);
 316
 317		rctx->bufcnt += count;
 318		rctx->offset += count;
 319		rctx->total -= count;
 320
 321		if (rctx->offset == rctx->sg->length) {
 322			rctx->sg = sg_next(rctx->sg);
 323			if (rctx->sg)
 324				rctx->offset = 0;
 325			else
 326				rctx->total = 0;
 327		}
 328	}
 329}
 330
 331static int stm32_hash_xmit_cpu(struct stm32_hash_dev *hdev,
 332			       const u8 *buf, size_t length, int final)
 333{
 334	unsigned int count, len32;
 335	const u32 *buffer = (const u32 *)buf;
 336	u32 reg;
 337
 338	if (final)
 339		hdev->flags |= HASH_FLAGS_FINAL;
 340
 341	len32 = DIV_ROUND_UP(length, sizeof(u32));
 342
 343	dev_dbg(hdev->dev, "%s: length: %zd, final: %x len32 %i\n",
 344		__func__, length, final, len32);
 345
 346	hdev->flags |= HASH_FLAGS_CPU;
 347
 348	stm32_hash_write_ctrl(hdev);
 349
 350	if (stm32_hash_wait_busy(hdev))
 351		return -ETIMEDOUT;
 352
 353	if ((hdev->flags & HASH_FLAGS_HMAC) &&
 354	    (!(hdev->flags & HASH_FLAGS_HMAC_KEY))) {
 355		hdev->flags |= HASH_FLAGS_HMAC_KEY;
 356		stm32_hash_write_key(hdev);
 357		if (stm32_hash_wait_busy(hdev))
 358			return -ETIMEDOUT;
 359	}
 360
 361	for (count = 0; count < len32; count++)
 362		stm32_hash_write(hdev, HASH_DIN, buffer[count]);
 363
 364	if (final) {
 365		stm32_hash_set_nblw(hdev, length);
 366		reg = stm32_hash_read(hdev, HASH_STR);
 367		reg |= HASH_STR_DCAL;
 368		stm32_hash_write(hdev, HASH_STR, reg);
 369		if (hdev->flags & HASH_FLAGS_HMAC) {
 370			if (stm32_hash_wait_busy(hdev))
 371				return -ETIMEDOUT;
 372			stm32_hash_write_key(hdev);
 373		}
 374		return -EINPROGRESS;
 375	}
 376
 377	return 0;
 378}
 379
 380static int stm32_hash_update_cpu(struct stm32_hash_dev *hdev)
 381{
 382	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
 383	int bufcnt, err = 0, final;
 384
 385	dev_dbg(hdev->dev, "%s flags %lx\n", __func__, rctx->flags);
 386
 387	final = (rctx->flags & HASH_FLAGS_FINUP);
 388
 389	while ((rctx->total >= rctx->buflen) ||
 390	       (rctx->bufcnt + rctx->total >= rctx->buflen)) {
 391		stm32_hash_append_sg(rctx);
 392		bufcnt = rctx->bufcnt;
 393		rctx->bufcnt = 0;
 394		err = stm32_hash_xmit_cpu(hdev, rctx->buffer, bufcnt, 0);
 395	}
 396
 397	stm32_hash_append_sg(rctx);
 398
 399	if (final) {
 400		bufcnt = rctx->bufcnt;
 401		rctx->bufcnt = 0;
 402		err = stm32_hash_xmit_cpu(hdev, rctx->buffer, bufcnt,
 403					  (rctx->flags & HASH_FLAGS_FINUP));
 404	}
 405
 406	return err;
 407}
 408
 409static int stm32_hash_xmit_dma(struct stm32_hash_dev *hdev,
 410			       struct scatterlist *sg, int length, int mdma)
 411{
 412	struct dma_async_tx_descriptor *in_desc;
 413	dma_cookie_t cookie;
 414	u32 reg;
 415	int err;
 416
 417	in_desc = dmaengine_prep_slave_sg(hdev->dma_lch, sg, 1,
 418					  DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT |
 419					  DMA_CTRL_ACK);
 420	if (!in_desc) {
 421		dev_err(hdev->dev, "dmaengine_prep_slave error\n");
 422		return -ENOMEM;
 423	}
 424
 425	reinit_completion(&hdev->dma_completion);
 426	in_desc->callback = stm32_hash_dma_callback;
 427	in_desc->callback_param = hdev;
 428
 429	hdev->flags |= HASH_FLAGS_FINAL;
 430	hdev->flags |= HASH_FLAGS_DMA_ACTIVE;
 431
 432	reg = stm32_hash_read(hdev, HASH_CR);
 433
 434	if (mdma)
 435		reg |= HASH_CR_MDMAT;
 436	else
 437		reg &= ~HASH_CR_MDMAT;
 438
 439	reg |= HASH_CR_DMAE;
 440
 441	stm32_hash_write(hdev, HASH_CR, reg);
 442
 443	stm32_hash_set_nblw(hdev, length);
 444
 445	cookie = dmaengine_submit(in_desc);
 446	err = dma_submit_error(cookie);
 447	if (err)
 448		return -ENOMEM;
 449
 450	dma_async_issue_pending(hdev->dma_lch);
 451
 452	if (!wait_for_completion_timeout(&hdev->dma_completion,
 453					 msecs_to_jiffies(100)))
 454		err = -ETIMEDOUT;
 455
 456	if (dma_async_is_tx_complete(hdev->dma_lch, cookie,
 457				     NULL, NULL) != DMA_COMPLETE)
 458		err = -ETIMEDOUT;
 459
 460	if (err) {
 461		dev_err(hdev->dev, "DMA Error %i\n", err);
 462		dmaengine_terminate_all(hdev->dma_lch);
 463		return err;
 464	}
 465
 466	return -EINPROGRESS;
 467}
 468
 469static void stm32_hash_dma_callback(void *param)
 470{
 471	struct stm32_hash_dev *hdev = param;
 472
 473	complete(&hdev->dma_completion);
 474
 475	hdev->flags |= HASH_FLAGS_DMA_READY;
 476}
 477
 478static int stm32_hash_hmac_dma_send(struct stm32_hash_dev *hdev)
 479{
 480	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
 481	struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
 482	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 483	int err;
 484
 485	if (ctx->keylen < HASH_DMA_THRESHOLD || (hdev->dma_mode == 1)) {
 486		err = stm32_hash_write_key(hdev);
 487		if (stm32_hash_wait_busy(hdev))
 488			return -ETIMEDOUT;
 489	} else {
 490		if (!(hdev->flags & HASH_FLAGS_HMAC_KEY))
 491			sg_init_one(&rctx->sg_key, ctx->key,
 492				    ALIGN(ctx->keylen, sizeof(u32)));
 493
 494		rctx->dma_ct = dma_map_sg(hdev->dev, &rctx->sg_key, 1,
 495					  DMA_TO_DEVICE);
 496		if (rctx->dma_ct == 0) {
 497			dev_err(hdev->dev, "dma_map_sg error\n");
 498			return -ENOMEM;
 499		}
 500
 501		err = stm32_hash_xmit_dma(hdev, &rctx->sg_key, ctx->keylen, 0);
 502
 503		dma_unmap_sg(hdev->dev, &rctx->sg_key, 1, DMA_TO_DEVICE);
 504	}
 505
 506	return err;
 507}
 508
 509static int stm32_hash_dma_init(struct stm32_hash_dev *hdev)
 510{
 511	struct dma_slave_config dma_conf;
 512	struct dma_chan *chan;
 513	int err;
 514
 515	memset(&dma_conf, 0, sizeof(dma_conf));
 516
 517	dma_conf.direction = DMA_MEM_TO_DEV;
 518	dma_conf.dst_addr = hdev->phys_base + HASH_DIN;
 519	dma_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 520	dma_conf.src_maxburst = hdev->dma_maxburst;
 521	dma_conf.dst_maxburst = hdev->dma_maxburst;
 522	dma_conf.device_fc = false;
 523
 524	chan = dma_request_chan(hdev->dev, "in");
 525	if (IS_ERR(chan))
 526		return PTR_ERR(chan);
 527
 528	hdev->dma_lch = chan;
 529
 530	err = dmaengine_slave_config(hdev->dma_lch, &dma_conf);
 531	if (err) {
 532		dma_release_channel(hdev->dma_lch);
 533		hdev->dma_lch = NULL;
 534		dev_err(hdev->dev, "Couldn't configure DMA slave.\n");
 535		return err;
 536	}
 537
 538	init_completion(&hdev->dma_completion);
 539
 540	return 0;
 541}
 542
 543static int stm32_hash_dma_send(struct stm32_hash_dev *hdev)
 544{
 545	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
 546	struct scatterlist sg[1], *tsg;
 547	int err = 0, len = 0, reg, ncp = 0;
 548	unsigned int i;
 549	u32 *buffer = (void *)rctx->buffer;
 550
 551	rctx->sg = hdev->req->src;
 552	rctx->total = hdev->req->nbytes;
 553
 554	rctx->nents = sg_nents(rctx->sg);
 555
 556	if (rctx->nents < 0)
 557		return -EINVAL;
 558
 559	stm32_hash_write_ctrl(hdev);
 560
 561	if (hdev->flags & HASH_FLAGS_HMAC) {
 562		err = stm32_hash_hmac_dma_send(hdev);
 563		if (err != -EINPROGRESS)
 564			return err;
 565	}
 566
 567	for_each_sg(rctx->sg, tsg, rctx->nents, i) {
 568		len = sg->length;
 569
 570		sg[0] = *tsg;
 571		if (sg_is_last(sg)) {
 572			if (hdev->dma_mode == 1) {
 573				len = (ALIGN(sg->length, 16) - 16);
 574
 575				ncp = sg_pcopy_to_buffer(
 576					rctx->sg, rctx->nents,
 577					rctx->buffer, sg->length - len,
 578					rctx->total - sg->length + len);
 579
 580				sg->length = len;
 581			} else {
 582				if (!(IS_ALIGNED(sg->length, sizeof(u32)))) {
 583					len = sg->length;
 584					sg->length = ALIGN(sg->length,
 585							   sizeof(u32));
 586				}
 587			}
 588		}
 589
 590		rctx->dma_ct = dma_map_sg(hdev->dev, sg, 1,
 591					  DMA_TO_DEVICE);
 592		if (rctx->dma_ct == 0) {
 593			dev_err(hdev->dev, "dma_map_sg error\n");
 594			return -ENOMEM;
 595		}
 596
 597		err = stm32_hash_xmit_dma(hdev, sg, len,
 598					  !sg_is_last(sg));
 599
 600		dma_unmap_sg(hdev->dev, sg, 1, DMA_TO_DEVICE);
 601
 602		if (err == -ENOMEM)
 603			return err;
 604	}
 605
 606	if (hdev->dma_mode == 1) {
 607		if (stm32_hash_wait_busy(hdev))
 608			return -ETIMEDOUT;
 609		reg = stm32_hash_read(hdev, HASH_CR);
 610		reg &= ~HASH_CR_DMAE;
 611		reg |= HASH_CR_DMAA;
 612		stm32_hash_write(hdev, HASH_CR, reg);
 613
 614		if (ncp) {
 615			memset(buffer + ncp, 0,
 616			       DIV_ROUND_UP(ncp, sizeof(u32)) - ncp);
 617			writesl(hdev->io_base + HASH_DIN, buffer,
 618				DIV_ROUND_UP(ncp, sizeof(u32)));
 619		}
 620		stm32_hash_set_nblw(hdev, ncp);
 621		reg = stm32_hash_read(hdev, HASH_STR);
 622		reg |= HASH_STR_DCAL;
 623		stm32_hash_write(hdev, HASH_STR, reg);
 624		err = -EINPROGRESS;
 625	}
 626
 627	if (hdev->flags & HASH_FLAGS_HMAC) {
 628		if (stm32_hash_wait_busy(hdev))
 629			return -ETIMEDOUT;
 630		err = stm32_hash_hmac_dma_send(hdev);
 631	}
 632
 633	return err;
 634}
 635
 636static struct stm32_hash_dev *stm32_hash_find_dev(struct stm32_hash_ctx *ctx)
 637{
 638	struct stm32_hash_dev *hdev = NULL, *tmp;
 639
 640	spin_lock_bh(&stm32_hash.lock);
 641	if (!ctx->hdev) {
 642		list_for_each_entry(tmp, &stm32_hash.dev_list, list) {
 643			hdev = tmp;
 644			break;
 645		}
 646		ctx->hdev = hdev;
 647	} else {
 648		hdev = ctx->hdev;
 649	}
 650
 651	spin_unlock_bh(&stm32_hash.lock);
 652
 653	return hdev;
 654}
 655
 656static bool stm32_hash_dma_aligned_data(struct ahash_request *req)
 657{
 658	struct scatterlist *sg;
 659	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
 660	struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
 661	int i;
 662
 663	if (req->nbytes <= HASH_DMA_THRESHOLD)
 664		return false;
 665
 666	if (sg_nents(req->src) > 1) {
 667		if (hdev->dma_mode == 1)
 668			return false;
 669		for_each_sg(req->src, sg, sg_nents(req->src), i) {
 670			if ((!IS_ALIGNED(sg->length, sizeof(u32))) &&
 671			    (!sg_is_last(sg)))
 672				return false;
 673		}
 674	}
 675
 676	if (req->src->offset % 4)
 677		return false;
 678
 679	return true;
 680}
 681
 682static int stm32_hash_init(struct ahash_request *req)
 683{
 684	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 685	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 686	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
 687	struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
 688
 689	rctx->hdev = hdev;
 690
 691	rctx->flags = HASH_FLAGS_CPU;
 692
 693	rctx->digcnt = crypto_ahash_digestsize(tfm);
 694	switch (rctx->digcnt) {
 695	case MD5_DIGEST_SIZE:
 696		rctx->flags |= HASH_FLAGS_MD5;
 697		break;
 698	case SHA1_DIGEST_SIZE:
 699		rctx->flags |= HASH_FLAGS_SHA1;
 700		break;
 701	case SHA224_DIGEST_SIZE:
 702		rctx->flags |= HASH_FLAGS_SHA224;
 703		break;
 704	case SHA256_DIGEST_SIZE:
 705		rctx->flags |= HASH_FLAGS_SHA256;
 706		break;
 707	default:
 708		return -EINVAL;
 709	}
 710
 711	rctx->bufcnt = 0;
 712	rctx->buflen = HASH_BUFLEN;
 713	rctx->total = 0;
 714	rctx->offset = 0;
 715	rctx->data_type = HASH_DATA_8_BITS;
 716
 717	memset(rctx->buffer, 0, HASH_BUFLEN);
 718
 719	if (ctx->flags & HASH_FLAGS_HMAC)
 720		rctx->flags |= HASH_FLAGS_HMAC;
 721
 722	dev_dbg(hdev->dev, "%s Flags %lx\n", __func__, rctx->flags);
 723
 724	return 0;
 725}
 726
 727static int stm32_hash_update_req(struct stm32_hash_dev *hdev)
 728{
 729	return stm32_hash_update_cpu(hdev);
 730}
 731
 732static int stm32_hash_final_req(struct stm32_hash_dev *hdev)
 733{
 734	struct ahash_request *req = hdev->req;
 735	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
 736	int err;
 737	int buflen = rctx->bufcnt;
 738
 739	rctx->bufcnt = 0;
 740
 741	if (!(rctx->flags & HASH_FLAGS_CPU))
 742		err = stm32_hash_dma_send(hdev);
 743	else
 744		err = stm32_hash_xmit_cpu(hdev, rctx->buffer, buflen, 1);
 745
 746
 747	return err;
 748}
 749
 750static void stm32_hash_copy_hash(struct ahash_request *req)
 751{
 752	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
 753	__be32 *hash = (void *)rctx->digest;
 754	unsigned int i, hashsize;
 755
 756	switch (rctx->flags & HASH_FLAGS_ALGO_MASK) {
 757	case HASH_FLAGS_MD5:
 758		hashsize = MD5_DIGEST_SIZE;
 759		break;
 760	case HASH_FLAGS_SHA1:
 761		hashsize = SHA1_DIGEST_SIZE;
 762		break;
 763	case HASH_FLAGS_SHA224:
 764		hashsize = SHA224_DIGEST_SIZE;
 765		break;
 766	case HASH_FLAGS_SHA256:
 767		hashsize = SHA256_DIGEST_SIZE;
 768		break;
 769	default:
 770		return;
 771	}
 772
 773	for (i = 0; i < hashsize / sizeof(u32); i++)
 774		hash[i] = cpu_to_be32(stm32_hash_read(rctx->hdev,
 775						      HASH_HREG(i)));
 776}
 777
 778static int stm32_hash_finish(struct ahash_request *req)
 779{
 780	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
 781
 782	if (!req->result)
 783		return -EINVAL;
 784
 785	memcpy(req->result, rctx->digest, rctx->digcnt);
 786
 787	return 0;
 788}
 789
 790static void stm32_hash_finish_req(struct ahash_request *req, int err)
 791{
 792	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
 793	struct stm32_hash_dev *hdev = rctx->hdev;
 794
 795	if (!err && (HASH_FLAGS_FINAL & hdev->flags)) {
 796		stm32_hash_copy_hash(req);
 797		err = stm32_hash_finish(req);
 798		hdev->flags &= ~(HASH_FLAGS_FINAL | HASH_FLAGS_CPU |
 799				 HASH_FLAGS_INIT | HASH_FLAGS_DMA_READY |
 800				 HASH_FLAGS_OUTPUT_READY | HASH_FLAGS_HMAC |
 801				 HASH_FLAGS_HMAC_INIT | HASH_FLAGS_HMAC_FINAL |
 802				 HASH_FLAGS_HMAC_KEY);
 803	} else {
 804		rctx->flags |= HASH_FLAGS_ERRORS;
 805	}
 806
 807	pm_runtime_mark_last_busy(hdev->dev);
 808	pm_runtime_put_autosuspend(hdev->dev);
 809
 810	crypto_finalize_hash_request(hdev->engine, req, err);
 811}
 812
 813static int stm32_hash_hw_init(struct stm32_hash_dev *hdev,
 814			      struct stm32_hash_request_ctx *rctx)
 815{
 816	pm_runtime_get_sync(hdev->dev);
 817
 818	if (!(HASH_FLAGS_INIT & hdev->flags)) {
 819		stm32_hash_write(hdev, HASH_CR, HASH_CR_INIT);
 820		stm32_hash_write(hdev, HASH_STR, 0);
 821		stm32_hash_write(hdev, HASH_DIN, 0);
 822		stm32_hash_write(hdev, HASH_IMR, 0);
 823		hdev->err = 0;
 824	}
 825
 826	return 0;
 827}
 828
 829static int stm32_hash_one_request(struct crypto_engine *engine, void *areq);
 830static int stm32_hash_prepare_req(struct crypto_engine *engine, void *areq);
 831
 832static int stm32_hash_handle_queue(struct stm32_hash_dev *hdev,
 833				   struct ahash_request *req)
 834{
 835	return crypto_transfer_hash_request_to_engine(hdev->engine, req);
 836}
 837
 838static int stm32_hash_prepare_req(struct crypto_engine *engine, void *areq)
 839{
 840	struct ahash_request *req = container_of(areq, struct ahash_request,
 841						 base);
 842	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
 843	struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
 844	struct stm32_hash_request_ctx *rctx;
 845
 846	if (!hdev)
 847		return -ENODEV;
 848
 849	hdev->req = req;
 850
 851	rctx = ahash_request_ctx(req);
 852
 853	dev_dbg(hdev->dev, "processing new req, op: %lu, nbytes %d\n",
 854		rctx->op, req->nbytes);
 855
 856	return stm32_hash_hw_init(hdev, rctx);
 857}
 858
 859static int stm32_hash_one_request(struct crypto_engine *engine, void *areq)
 860{
 861	struct ahash_request *req = container_of(areq, struct ahash_request,
 862						 base);
 863	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
 864	struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
 865	struct stm32_hash_request_ctx *rctx;
 866	int err = 0;
 867
 868	if (!hdev)
 869		return -ENODEV;
 870
 871	hdev->req = req;
 872
 873	rctx = ahash_request_ctx(req);
 874
 875	if (rctx->op == HASH_OP_UPDATE)
 876		err = stm32_hash_update_req(hdev);
 877	else if (rctx->op == HASH_OP_FINAL)
 878		err = stm32_hash_final_req(hdev);
 879
 880	if (err != -EINPROGRESS)
 881	/* done task will not finish it, so do it here */
 882		stm32_hash_finish_req(req, err);
 883
 884	return 0;
 885}
 886
 887static int stm32_hash_enqueue(struct ahash_request *req, unsigned int op)
 888{
 889	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
 890	struct stm32_hash_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
 891	struct stm32_hash_dev *hdev = ctx->hdev;
 892
 893	rctx->op = op;
 894
 895	return stm32_hash_handle_queue(hdev, req);
 896}
 897
 898static int stm32_hash_update(struct ahash_request *req)
 899{
 900	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
 901
 902	if (!req->nbytes || !(rctx->flags & HASH_FLAGS_CPU))
 903		return 0;
 904
 905	rctx->total = req->nbytes;
 906	rctx->sg = req->src;
 907	rctx->offset = 0;
 908
 909	if ((rctx->bufcnt + rctx->total < rctx->buflen)) {
 910		stm32_hash_append_sg(rctx);
 911		return 0;
 912	}
 913
 914	return stm32_hash_enqueue(req, HASH_OP_UPDATE);
 915}
 916
 917static int stm32_hash_final(struct ahash_request *req)
 918{
 919	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
 920
 921	rctx->flags |= HASH_FLAGS_FINUP;
 922
 923	return stm32_hash_enqueue(req, HASH_OP_FINAL);
 924}
 925
 926static int stm32_hash_finup(struct ahash_request *req)
 927{
 928	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
 929	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
 930	struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
 931	int err1, err2;
 932
 933	rctx->flags |= HASH_FLAGS_FINUP;
 934
 935	if (hdev->dma_lch && stm32_hash_dma_aligned_data(req))
 936		rctx->flags &= ~HASH_FLAGS_CPU;
 937
 938	err1 = stm32_hash_update(req);
 939
 940	if (err1 == -EINPROGRESS || err1 == -EBUSY)
 941		return err1;
 942
 943	/*
 944	 * final() has to be always called to cleanup resources
 945	 * even if update() failed, except EINPROGRESS
 946	 */
 947	err2 = stm32_hash_final(req);
 948
 949	return err1 ?: err2;
 950}
 951
 952static int stm32_hash_digest(struct ahash_request *req)
 953{
 954	return stm32_hash_init(req) ?: stm32_hash_finup(req);
 955}
 956
 957static int stm32_hash_export(struct ahash_request *req, void *out)
 958{
 959	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
 960	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
 961	struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
 962	u32 *preg;
 963	unsigned int i;
 964
 965	pm_runtime_get_sync(hdev->dev);
 966
 967	while ((stm32_hash_read(hdev, HASH_SR) & HASH_SR_BUSY))
 968		cpu_relax();
 969
 970	rctx->hw_context = kmalloc_array(3 + HASH_CSR_REGISTER_NUMBER,
 971					 sizeof(u32),
 972					 GFP_KERNEL);
 973
 974	preg = rctx->hw_context;
 975
 976	*preg++ = stm32_hash_read(hdev, HASH_IMR);
 977	*preg++ = stm32_hash_read(hdev, HASH_STR);
 978	*preg++ = stm32_hash_read(hdev, HASH_CR);
 979	for (i = 0; i < HASH_CSR_REGISTER_NUMBER; i++)
 980		*preg++ = stm32_hash_read(hdev, HASH_CSR(i));
 981
 982	pm_runtime_mark_last_busy(hdev->dev);
 983	pm_runtime_put_autosuspend(hdev->dev);
 984
 985	memcpy(out, rctx, sizeof(*rctx));
 986
 987	return 0;
 988}
 989
 990static int stm32_hash_import(struct ahash_request *req, const void *in)
 991{
 992	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
 993	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
 994	struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
 995	const u32 *preg = in;
 996	u32 reg;
 997	unsigned int i;
 998
 999	memcpy(rctx, in, sizeof(*rctx));
1000
1001	preg = rctx->hw_context;
1002
1003	pm_runtime_get_sync(hdev->dev);
1004
1005	stm32_hash_write(hdev, HASH_IMR, *preg++);
1006	stm32_hash_write(hdev, HASH_STR, *preg++);
1007	stm32_hash_write(hdev, HASH_CR, *preg);
1008	reg = *preg++ | HASH_CR_INIT;
1009	stm32_hash_write(hdev, HASH_CR, reg);
1010
1011	for (i = 0; i < HASH_CSR_REGISTER_NUMBER; i++)
1012		stm32_hash_write(hdev, HASH_CSR(i), *preg++);
1013
1014	pm_runtime_mark_last_busy(hdev->dev);
1015	pm_runtime_put_autosuspend(hdev->dev);
1016
1017	kfree(rctx->hw_context);
1018
1019	return 0;
1020}
1021
1022static int stm32_hash_setkey(struct crypto_ahash *tfm,
1023			     const u8 *key, unsigned int keylen)
1024{
1025	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
1026
1027	if (keylen <= HASH_MAX_KEY_SIZE) {
1028		memcpy(ctx->key, key, keylen);
1029		ctx->keylen = keylen;
1030	} else {
1031		return -ENOMEM;
1032	}
1033
1034	return 0;
1035}
1036
1037static int stm32_hash_cra_init_algs(struct crypto_tfm *tfm,
1038				    const char *algs_hmac_name)
1039{
1040	struct stm32_hash_ctx *ctx = crypto_tfm_ctx(tfm);
1041
1042	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1043				 sizeof(struct stm32_hash_request_ctx));
1044
1045	ctx->keylen = 0;
1046
1047	if (algs_hmac_name)
1048		ctx->flags |= HASH_FLAGS_HMAC;
1049
1050	ctx->enginectx.op.do_one_request = stm32_hash_one_request;
1051	ctx->enginectx.op.prepare_request = stm32_hash_prepare_req;
1052	ctx->enginectx.op.unprepare_request = NULL;
1053	return 0;
1054}
1055
1056static int stm32_hash_cra_init(struct crypto_tfm *tfm)
1057{
1058	return stm32_hash_cra_init_algs(tfm, NULL);
1059}
1060
1061static int stm32_hash_cra_md5_init(struct crypto_tfm *tfm)
1062{
1063	return stm32_hash_cra_init_algs(tfm, "md5");
1064}
1065
1066static int stm32_hash_cra_sha1_init(struct crypto_tfm *tfm)
1067{
1068	return stm32_hash_cra_init_algs(tfm, "sha1");
1069}
1070
1071static int stm32_hash_cra_sha224_init(struct crypto_tfm *tfm)
1072{
1073	return stm32_hash_cra_init_algs(tfm, "sha224");
1074}
1075
1076static int stm32_hash_cra_sha256_init(struct crypto_tfm *tfm)
1077{
1078	return stm32_hash_cra_init_algs(tfm, "sha256");
1079}
1080
1081static irqreturn_t stm32_hash_irq_thread(int irq, void *dev_id)
1082{
1083	struct stm32_hash_dev *hdev = dev_id;
1084
1085	if (HASH_FLAGS_CPU & hdev->flags) {
1086		if (HASH_FLAGS_OUTPUT_READY & hdev->flags) {
1087			hdev->flags &= ~HASH_FLAGS_OUTPUT_READY;
1088			goto finish;
1089		}
1090	} else if (HASH_FLAGS_DMA_READY & hdev->flags) {
1091		if (HASH_FLAGS_DMA_ACTIVE & hdev->flags) {
1092			hdev->flags &= ~HASH_FLAGS_DMA_ACTIVE;
1093				goto finish;
1094		}
1095	}
1096
1097	return IRQ_HANDLED;
1098
1099finish:
1100	/* Finish current request */
1101	stm32_hash_finish_req(hdev->req, 0);
1102
1103	return IRQ_HANDLED;
1104}
1105
1106static irqreturn_t stm32_hash_irq_handler(int irq, void *dev_id)
1107{
1108	struct stm32_hash_dev *hdev = dev_id;
1109	u32 reg;
1110
1111	reg = stm32_hash_read(hdev, HASH_SR);
1112	if (reg & HASH_SR_OUTPUT_READY) {
1113		reg &= ~HASH_SR_OUTPUT_READY;
1114		stm32_hash_write(hdev, HASH_SR, reg);
1115		hdev->flags |= HASH_FLAGS_OUTPUT_READY;
1116		/* Disable IT*/
1117		stm32_hash_write(hdev, HASH_IMR, 0);
1118		return IRQ_WAKE_THREAD;
1119	}
1120
1121	return IRQ_NONE;
1122}
1123
1124static struct ahash_alg algs_md5_sha1[] = {
1125	{
1126		.init = stm32_hash_init,
1127		.update = stm32_hash_update,
1128		.final = stm32_hash_final,
1129		.finup = stm32_hash_finup,
1130		.digest = stm32_hash_digest,
1131		.export = stm32_hash_export,
1132		.import = stm32_hash_import,
1133		.halg = {
1134			.digestsize = MD5_DIGEST_SIZE,
1135			.statesize = sizeof(struct stm32_hash_request_ctx),
1136			.base = {
1137				.cra_name = "md5",
1138				.cra_driver_name = "stm32-md5",
1139				.cra_priority = 200,
1140				.cra_flags = CRYPTO_ALG_ASYNC |
1141					CRYPTO_ALG_KERN_DRIVER_ONLY,
1142				.cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1143				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1144				.cra_alignmask = 3,
1145				.cra_init = stm32_hash_cra_init,
1146				.cra_module = THIS_MODULE,
1147			}
1148		}
1149	},
1150	{
1151		.init = stm32_hash_init,
1152		.update = stm32_hash_update,
1153		.final = stm32_hash_final,
1154		.finup = stm32_hash_finup,
1155		.digest = stm32_hash_digest,
1156		.export = stm32_hash_export,
1157		.import = stm32_hash_import,
1158		.setkey = stm32_hash_setkey,
1159		.halg = {
1160			.digestsize = MD5_DIGEST_SIZE,
1161			.statesize = sizeof(struct stm32_hash_request_ctx),
1162			.base = {
1163				.cra_name = "hmac(md5)",
1164				.cra_driver_name = "stm32-hmac-md5",
1165				.cra_priority = 200,
1166				.cra_flags = CRYPTO_ALG_ASYNC |
1167					CRYPTO_ALG_KERN_DRIVER_ONLY,
1168				.cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1169				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1170				.cra_alignmask = 3,
1171				.cra_init = stm32_hash_cra_md5_init,
1172				.cra_module = THIS_MODULE,
1173			}
1174		}
1175	},
1176	{
1177		.init = stm32_hash_init,
1178		.update = stm32_hash_update,
1179		.final = stm32_hash_final,
1180		.finup = stm32_hash_finup,
1181		.digest = stm32_hash_digest,
1182		.export = stm32_hash_export,
1183		.import = stm32_hash_import,
1184		.halg = {
1185			.digestsize = SHA1_DIGEST_SIZE,
1186			.statesize = sizeof(struct stm32_hash_request_ctx),
1187			.base = {
1188				.cra_name = "sha1",
1189				.cra_driver_name = "stm32-sha1",
1190				.cra_priority = 200,
1191				.cra_flags = CRYPTO_ALG_ASYNC |
1192					CRYPTO_ALG_KERN_DRIVER_ONLY,
1193				.cra_blocksize = SHA1_BLOCK_SIZE,
1194				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1195				.cra_alignmask = 3,
1196				.cra_init = stm32_hash_cra_init,
1197				.cra_module = THIS_MODULE,
1198			}
1199		}
1200	},
1201	{
1202		.init = stm32_hash_init,
1203		.update = stm32_hash_update,
1204		.final = stm32_hash_final,
1205		.finup = stm32_hash_finup,
1206		.digest = stm32_hash_digest,
1207		.export = stm32_hash_export,
1208		.import = stm32_hash_import,
1209		.setkey = stm32_hash_setkey,
1210		.halg = {
1211			.digestsize = SHA1_DIGEST_SIZE,
1212			.statesize = sizeof(struct stm32_hash_request_ctx),
1213			.base = {
1214				.cra_name = "hmac(sha1)",
1215				.cra_driver_name = "stm32-hmac-sha1",
1216				.cra_priority = 200,
1217				.cra_flags = CRYPTO_ALG_ASYNC |
1218					CRYPTO_ALG_KERN_DRIVER_ONLY,
1219				.cra_blocksize = SHA1_BLOCK_SIZE,
1220				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1221				.cra_alignmask = 3,
1222				.cra_init = stm32_hash_cra_sha1_init,
1223				.cra_module = THIS_MODULE,
1224			}
1225		}
1226	},
1227};
1228
1229static struct ahash_alg algs_sha224_sha256[] = {
1230	{
1231		.init = stm32_hash_init,
1232		.update = stm32_hash_update,
1233		.final = stm32_hash_final,
1234		.finup = stm32_hash_finup,
1235		.digest = stm32_hash_digest,
1236		.export = stm32_hash_export,
1237		.import = stm32_hash_import,
1238		.halg = {
1239			.digestsize = SHA224_DIGEST_SIZE,
1240			.statesize = sizeof(struct stm32_hash_request_ctx),
1241			.base = {
1242				.cra_name = "sha224",
1243				.cra_driver_name = "stm32-sha224",
1244				.cra_priority = 200,
1245				.cra_flags = CRYPTO_ALG_ASYNC |
1246					CRYPTO_ALG_KERN_DRIVER_ONLY,
1247				.cra_blocksize = SHA224_BLOCK_SIZE,
1248				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1249				.cra_alignmask = 3,
1250				.cra_init = stm32_hash_cra_init,
1251				.cra_module = THIS_MODULE,
1252			}
1253		}
1254	},
1255	{
1256		.init = stm32_hash_init,
1257		.update = stm32_hash_update,
1258		.final = stm32_hash_final,
1259		.finup = stm32_hash_finup,
1260		.digest = stm32_hash_digest,
1261		.setkey = stm32_hash_setkey,
1262		.export = stm32_hash_export,
1263		.import = stm32_hash_import,
1264		.halg = {
1265			.digestsize = SHA224_DIGEST_SIZE,
1266			.statesize = sizeof(struct stm32_hash_request_ctx),
1267			.base = {
1268				.cra_name = "hmac(sha224)",
1269				.cra_driver_name = "stm32-hmac-sha224",
1270				.cra_priority = 200,
1271				.cra_flags = CRYPTO_ALG_ASYNC |
1272					CRYPTO_ALG_KERN_DRIVER_ONLY,
1273				.cra_blocksize = SHA224_BLOCK_SIZE,
1274				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1275				.cra_alignmask = 3,
1276				.cra_init = stm32_hash_cra_sha224_init,
1277				.cra_module = THIS_MODULE,
1278			}
1279		}
1280	},
1281	{
1282		.init = stm32_hash_init,
1283		.update = stm32_hash_update,
1284		.final = stm32_hash_final,
1285		.finup = stm32_hash_finup,
1286		.digest = stm32_hash_digest,
1287		.export = stm32_hash_export,
1288		.import = stm32_hash_import,
1289		.halg = {
1290			.digestsize = SHA256_DIGEST_SIZE,
1291			.statesize = sizeof(struct stm32_hash_request_ctx),
1292			.base = {
1293				.cra_name = "sha256",
1294				.cra_driver_name = "stm32-sha256",
1295				.cra_priority = 200,
1296				.cra_flags = CRYPTO_ALG_ASYNC |
1297					CRYPTO_ALG_KERN_DRIVER_ONLY,
1298				.cra_blocksize = SHA256_BLOCK_SIZE,
1299				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1300				.cra_alignmask = 3,
1301				.cra_init = stm32_hash_cra_init,
1302				.cra_module = THIS_MODULE,
1303			}
1304		}
1305	},
1306	{
1307		.init = stm32_hash_init,
1308		.update = stm32_hash_update,
1309		.final = stm32_hash_final,
1310		.finup = stm32_hash_finup,
1311		.digest = stm32_hash_digest,
1312		.export = stm32_hash_export,
1313		.import = stm32_hash_import,
1314		.setkey = stm32_hash_setkey,
1315		.halg = {
1316			.digestsize = SHA256_DIGEST_SIZE,
1317			.statesize = sizeof(struct stm32_hash_request_ctx),
1318			.base = {
1319				.cra_name = "hmac(sha256)",
1320				.cra_driver_name = "stm32-hmac-sha256",
1321				.cra_priority = 200,
1322				.cra_flags = CRYPTO_ALG_ASYNC |
1323					CRYPTO_ALG_KERN_DRIVER_ONLY,
1324				.cra_blocksize = SHA256_BLOCK_SIZE,
1325				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1326				.cra_alignmask = 3,
1327				.cra_init = stm32_hash_cra_sha256_init,
1328				.cra_module = THIS_MODULE,
1329			}
1330		}
1331	},
1332};
1333
1334static int stm32_hash_register_algs(struct stm32_hash_dev *hdev)
1335{
1336	unsigned int i, j;
1337	int err;
1338
1339	for (i = 0; i < hdev->pdata->algs_info_size; i++) {
1340		for (j = 0; j < hdev->pdata->algs_info[i].size; j++) {
1341			err = crypto_register_ahash(
1342				&hdev->pdata->algs_info[i].algs_list[j]);
1343			if (err)
1344				goto err_algs;
1345		}
1346	}
1347
1348	return 0;
1349err_algs:
1350	dev_err(hdev->dev, "Algo %d : %d failed\n", i, j);
1351	for (; i--; ) {
1352		for (; j--;)
1353			crypto_unregister_ahash(
1354				&hdev->pdata->algs_info[i].algs_list[j]);
1355	}
1356
1357	return err;
1358}
1359
1360static int stm32_hash_unregister_algs(struct stm32_hash_dev *hdev)
1361{
1362	unsigned int i, j;
1363
1364	for (i = 0; i < hdev->pdata->algs_info_size; i++) {
1365		for (j = 0; j < hdev->pdata->algs_info[i].size; j++)
1366			crypto_unregister_ahash(
1367				&hdev->pdata->algs_info[i].algs_list[j]);
1368	}
1369
1370	return 0;
1371}
1372
1373static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f4[] = {
1374	{
1375		.algs_list	= algs_md5_sha1,
1376		.size		= ARRAY_SIZE(algs_md5_sha1),
1377	},
1378};
1379
1380static const struct stm32_hash_pdata stm32_hash_pdata_stm32f4 = {
1381	.algs_info	= stm32_hash_algs_info_stm32f4,
1382	.algs_info_size	= ARRAY_SIZE(stm32_hash_algs_info_stm32f4),
1383};
1384
1385static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f7[] = {
1386	{
1387		.algs_list	= algs_md5_sha1,
1388		.size		= ARRAY_SIZE(algs_md5_sha1),
1389	},
1390	{
1391		.algs_list	= algs_sha224_sha256,
1392		.size		= ARRAY_SIZE(algs_sha224_sha256),
1393	},
1394};
1395
1396static const struct stm32_hash_pdata stm32_hash_pdata_stm32f7 = {
1397	.algs_info	= stm32_hash_algs_info_stm32f7,
1398	.algs_info_size	= ARRAY_SIZE(stm32_hash_algs_info_stm32f7),
1399};
1400
1401static const struct of_device_id stm32_hash_of_match[] = {
1402	{
1403		.compatible = "st,stm32f456-hash",
1404		.data = &stm32_hash_pdata_stm32f4,
1405	},
1406	{
1407		.compatible = "st,stm32f756-hash",
1408		.data = &stm32_hash_pdata_stm32f7,
1409	},
1410	{},
1411};
1412
1413MODULE_DEVICE_TABLE(of, stm32_hash_of_match);
1414
1415static int stm32_hash_get_of_match(struct stm32_hash_dev *hdev,
1416				   struct device *dev)
1417{
1418	hdev->pdata = of_device_get_match_data(dev);
1419	if (!hdev->pdata) {
1420		dev_err(dev, "no compatible OF match\n");
1421		return -EINVAL;
1422	}
1423
1424	if (of_property_read_u32(dev->of_node, "dma-maxburst",
1425				 &hdev->dma_maxburst)) {
1426		dev_info(dev, "dma-maxburst not specified, using 0\n");
1427		hdev->dma_maxburst = 0;
1428	}
1429
1430	return 0;
1431}
1432
1433static int stm32_hash_probe(struct platform_device *pdev)
1434{
1435	struct stm32_hash_dev *hdev;
1436	struct device *dev = &pdev->dev;
1437	struct resource *res;
1438	int ret, irq;
1439
1440	hdev = devm_kzalloc(dev, sizeof(*hdev), GFP_KERNEL);
1441	if (!hdev)
1442		return -ENOMEM;
1443
1444	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1445	hdev->io_base = devm_ioremap_resource(dev, res);
1446	if (IS_ERR(hdev->io_base))
1447		return PTR_ERR(hdev->io_base);
1448
1449	hdev->phys_base = res->start;
1450
1451	ret = stm32_hash_get_of_match(hdev, dev);
1452	if (ret)
1453		return ret;
1454
1455	irq = platform_get_irq(pdev, 0);
1456	if (irq < 0)
1457		return irq;
1458
1459	ret = devm_request_threaded_irq(dev, irq, stm32_hash_irq_handler,
1460					stm32_hash_irq_thread, IRQF_ONESHOT,
1461					dev_name(dev), hdev);
1462	if (ret) {
1463		dev_err(dev, "Cannot grab IRQ\n");
1464		return ret;
1465	}
1466
1467	hdev->clk = devm_clk_get(&pdev->dev, NULL);
1468	if (IS_ERR(hdev->clk))
1469		return dev_err_probe(dev, PTR_ERR(hdev->clk),
1470				     "failed to get clock for hash\n");
1471
1472	ret = clk_prepare_enable(hdev->clk);
1473	if (ret) {
1474		dev_err(dev, "failed to enable hash clock (%d)\n", ret);
1475		return ret;
1476	}
1477
1478	pm_runtime_set_autosuspend_delay(dev, HASH_AUTOSUSPEND_DELAY);
1479	pm_runtime_use_autosuspend(dev);
1480
1481	pm_runtime_get_noresume(dev);
1482	pm_runtime_set_active(dev);
1483	pm_runtime_enable(dev);
1484
1485	hdev->rst = devm_reset_control_get(&pdev->dev, NULL);
1486	if (IS_ERR(hdev->rst)) {
1487		if (PTR_ERR(hdev->rst) == -EPROBE_DEFER) {
1488			ret = -EPROBE_DEFER;
1489			goto err_reset;
1490		}
1491	} else {
1492		reset_control_assert(hdev->rst);
1493		udelay(2);
1494		reset_control_deassert(hdev->rst);
1495	}
1496
1497	hdev->dev = dev;
1498
1499	platform_set_drvdata(pdev, hdev);
1500
1501	ret = stm32_hash_dma_init(hdev);
1502	switch (ret) {
1503	case 0:
1504		break;
1505	case -ENOENT:
1506		dev_dbg(dev, "DMA mode not available\n");
1507		break;
1508	default:
1509		goto err_dma;
1510	}
1511
1512	spin_lock(&stm32_hash.lock);
1513	list_add_tail(&hdev->list, &stm32_hash.dev_list);
1514	spin_unlock(&stm32_hash.lock);
1515
1516	/* Initialize crypto engine */
1517	hdev->engine = crypto_engine_alloc_init(dev, 1);
1518	if (!hdev->engine) {
1519		ret = -ENOMEM;
1520		goto err_engine;
1521	}
1522
1523	ret = crypto_engine_start(hdev->engine);
1524	if (ret)
1525		goto err_engine_start;
1526
1527	hdev->dma_mode = stm32_hash_read(hdev, HASH_HWCFGR);
1528
1529	/* Register algos */
1530	ret = stm32_hash_register_algs(hdev);
1531	if (ret)
1532		goto err_algs;
1533
1534	dev_info(dev, "Init HASH done HW ver %x DMA mode %u\n",
1535		 stm32_hash_read(hdev, HASH_VER), hdev->dma_mode);
1536
1537	pm_runtime_put_sync(dev);
1538
1539	return 0;
1540
1541err_algs:
1542err_engine_start:
1543	crypto_engine_exit(hdev->engine);
1544err_engine:
1545	spin_lock(&stm32_hash.lock);
1546	list_del(&hdev->list);
1547	spin_unlock(&stm32_hash.lock);
1548err_dma:
1549	if (hdev->dma_lch)
1550		dma_release_channel(hdev->dma_lch);
1551err_reset:
1552	pm_runtime_disable(dev);
1553	pm_runtime_put_noidle(dev);
1554
1555	clk_disable_unprepare(hdev->clk);
1556
1557	return ret;
1558}
1559
1560static int stm32_hash_remove(struct platform_device *pdev)
1561{
1562	struct stm32_hash_dev *hdev;
1563	int ret;
1564
1565	hdev = platform_get_drvdata(pdev);
1566	if (!hdev)
1567		return -ENODEV;
1568
1569	ret = pm_runtime_resume_and_get(hdev->dev);
1570	if (ret < 0)
1571		return ret;
1572
1573	stm32_hash_unregister_algs(hdev);
1574
1575	crypto_engine_exit(hdev->engine);
1576
1577	spin_lock(&stm32_hash.lock);
1578	list_del(&hdev->list);
1579	spin_unlock(&stm32_hash.lock);
1580
1581	if (hdev->dma_lch)
1582		dma_release_channel(hdev->dma_lch);
1583
1584	pm_runtime_disable(hdev->dev);
1585	pm_runtime_put_noidle(hdev->dev);
1586
1587	clk_disable_unprepare(hdev->clk);
1588
1589	return 0;
1590}
1591
1592#ifdef CONFIG_PM
1593static int stm32_hash_runtime_suspend(struct device *dev)
1594{
1595	struct stm32_hash_dev *hdev = dev_get_drvdata(dev);
1596
1597	clk_disable_unprepare(hdev->clk);
1598
1599	return 0;
1600}
1601
1602static int stm32_hash_runtime_resume(struct device *dev)
1603{
1604	struct stm32_hash_dev *hdev = dev_get_drvdata(dev);
1605	int ret;
1606
1607	ret = clk_prepare_enable(hdev->clk);
1608	if (ret) {
1609		dev_err(hdev->dev, "Failed to prepare_enable clock\n");
1610		return ret;
1611	}
1612
1613	return 0;
1614}
1615#endif
1616
1617static const struct dev_pm_ops stm32_hash_pm_ops = {
1618	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1619				pm_runtime_force_resume)
1620	SET_RUNTIME_PM_OPS(stm32_hash_runtime_suspend,
1621			   stm32_hash_runtime_resume, NULL)
1622};
1623
1624static struct platform_driver stm32_hash_driver = {
1625	.probe		= stm32_hash_probe,
1626	.remove		= stm32_hash_remove,
1627	.driver		= {
1628		.name	= "stm32-hash",
1629		.pm = &stm32_hash_pm_ops,
1630		.of_match_table	= stm32_hash_of_match,
1631	}
1632};
1633
1634module_platform_driver(stm32_hash_driver);
1635
1636MODULE_DESCRIPTION("STM32 SHA1/224/256 & MD5 (HMAC) hw accelerator driver");
1637MODULE_AUTHOR("Lionel Debieve <lionel.debieve@st.com>");
1638MODULE_LICENSE("GPL v2");