Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.10.11.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Kernel-based Virtual Machine driver for Linux
   4 *
   5 * AMD SVM support
   6 *
   7 * Copyright (C) 2006 Qumranet, Inc.
   8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
   9 *
  10 * Authors:
  11 *   Yaniv Kamay  <yaniv@qumranet.com>
  12 *   Avi Kivity   <avi@qumranet.com>
  13 */
  14
  15#define pr_fmt(fmt) "SVM: " fmt
  16
  17#include <linux/kvm_types.h>
  18#include <linux/hashtable.h>
  19#include <linux/amd-iommu.h>
  20#include <linux/kvm_host.h>
  21
  22#include <asm/irq_remapping.h>
  23
  24#include "trace.h"
  25#include "lapic.h"
  26#include "x86.h"
  27#include "irq.h"
  28#include "svm.h"
  29
  30/* AVIC GATAG is encoded using VM and VCPU IDs */
  31#define AVIC_VCPU_ID_BITS		8
  32#define AVIC_VCPU_ID_MASK		((1 << AVIC_VCPU_ID_BITS) - 1)
  33
  34#define AVIC_VM_ID_BITS			24
  35#define AVIC_VM_ID_NR			(1 << AVIC_VM_ID_BITS)
  36#define AVIC_VM_ID_MASK			((1 << AVIC_VM_ID_BITS) - 1)
  37
  38#define AVIC_GATAG(x, y)		(((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
  39						(y & AVIC_VCPU_ID_MASK))
  40#define AVIC_GATAG_TO_VMID(x)		((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
  41#define AVIC_GATAG_TO_VCPUID(x)		(x & AVIC_VCPU_ID_MASK)
  42
  43static bool force_avic;
  44module_param_unsafe(force_avic, bool, 0444);
  45
  46/* Note:
  47 * This hash table is used to map VM_ID to a struct kvm_svm,
  48 * when handling AMD IOMMU GALOG notification to schedule in
  49 * a particular vCPU.
  50 */
  51#define SVM_VM_DATA_HASH_BITS	8
  52static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
  53static u32 next_vm_id = 0;
  54static bool next_vm_id_wrapped = 0;
  55static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
  56enum avic_modes avic_mode;
  57
  58/*
  59 * This is a wrapper of struct amd_iommu_ir_data.
  60 */
  61struct amd_svm_iommu_ir {
  62	struct list_head node;	/* Used by SVM for per-vcpu ir_list */
  63	void *data;		/* Storing pointer to struct amd_ir_data */
  64};
  65
  66static void avic_activate_vmcb(struct vcpu_svm *svm)
  67{
  68	struct vmcb *vmcb = svm->vmcb01.ptr;
  69
  70	vmcb->control.int_ctl &= ~(AVIC_ENABLE_MASK | X2APIC_MODE_MASK);
  71	vmcb->control.avic_physical_id &= ~AVIC_PHYSICAL_MAX_INDEX_MASK;
  72
  73	vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
  74
  75	/* Note:
  76	 * KVM can support hybrid-AVIC mode, where KVM emulates x2APIC
  77	 * MSR accesses, while interrupt injection to a running vCPU
  78	 * can be achieved using AVIC doorbell. The AVIC hardware still
  79	 * accelerate MMIO accesses, but this does not cause any harm
  80	 * as the guest is not supposed to access xAPIC mmio when uses x2APIC.
  81	 */
  82	if (apic_x2apic_mode(svm->vcpu.arch.apic) &&
  83	    avic_mode == AVIC_MODE_X2) {
  84		vmcb->control.int_ctl |= X2APIC_MODE_MASK;
  85		vmcb->control.avic_physical_id |= X2AVIC_MAX_PHYSICAL_ID;
  86		/* Disabling MSR intercept for x2APIC registers */
  87		svm_set_x2apic_msr_interception(svm, false);
  88	} else {
  89		/* For xAVIC and hybrid-xAVIC modes */
  90		vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID;
  91		/* Enabling MSR intercept for x2APIC registers */
  92		svm_set_x2apic_msr_interception(svm, true);
  93	}
  94}
  95
  96static void avic_deactivate_vmcb(struct vcpu_svm *svm)
  97{
  98	struct vmcb *vmcb = svm->vmcb01.ptr;
  99
 100	vmcb->control.int_ctl &= ~(AVIC_ENABLE_MASK | X2APIC_MODE_MASK);
 101	vmcb->control.avic_physical_id &= ~AVIC_PHYSICAL_MAX_INDEX_MASK;
 102
 103	/*
 104	 * If running nested and the guest uses its own MSR bitmap, there
 105	 * is no need to update L0's msr bitmap
 106	 */
 107	if (is_guest_mode(&svm->vcpu) &&
 108	    vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_MSR_PROT))
 109		return;
 110
 111	/* Enabling MSR intercept for x2APIC registers */
 112	svm_set_x2apic_msr_interception(svm, true);
 113}
 114
 115/* Note:
 116 * This function is called from IOMMU driver to notify
 117 * SVM to schedule in a particular vCPU of a particular VM.
 118 */
 119int avic_ga_log_notifier(u32 ga_tag)
 120{
 121	unsigned long flags;
 122	struct kvm_svm *kvm_svm;
 123	struct kvm_vcpu *vcpu = NULL;
 124	u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
 125	u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
 126
 127	pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
 128	trace_kvm_avic_ga_log(vm_id, vcpu_id);
 129
 130	spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
 131	hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
 132		if (kvm_svm->avic_vm_id != vm_id)
 133			continue;
 134		vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
 135		break;
 136	}
 137	spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
 138
 139	/* Note:
 140	 * At this point, the IOMMU should have already set the pending
 141	 * bit in the vAPIC backing page. So, we just need to schedule
 142	 * in the vcpu.
 143	 */
 144	if (vcpu)
 145		kvm_vcpu_wake_up(vcpu);
 146
 147	return 0;
 148}
 149
 150void avic_vm_destroy(struct kvm *kvm)
 151{
 152	unsigned long flags;
 153	struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
 154
 155	if (!enable_apicv)
 156		return;
 157
 158	if (kvm_svm->avic_logical_id_table_page)
 159		__free_page(kvm_svm->avic_logical_id_table_page);
 160	if (kvm_svm->avic_physical_id_table_page)
 161		__free_page(kvm_svm->avic_physical_id_table_page);
 162
 163	spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
 164	hash_del(&kvm_svm->hnode);
 165	spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
 166}
 167
 168int avic_vm_init(struct kvm *kvm)
 169{
 170	unsigned long flags;
 171	int err = -ENOMEM;
 172	struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
 173	struct kvm_svm *k2;
 174	struct page *p_page;
 175	struct page *l_page;
 176	u32 vm_id;
 177
 178	if (!enable_apicv)
 179		return 0;
 180
 181	/* Allocating physical APIC ID table (4KB) */
 182	p_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
 183	if (!p_page)
 184		goto free_avic;
 185
 186	kvm_svm->avic_physical_id_table_page = p_page;
 187
 188	/* Allocating logical APIC ID table (4KB) */
 189	l_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
 190	if (!l_page)
 191		goto free_avic;
 192
 193	kvm_svm->avic_logical_id_table_page = l_page;
 194
 195	spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
 196 again:
 197	vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
 198	if (vm_id == 0) { /* id is 1-based, zero is not okay */
 199		next_vm_id_wrapped = 1;
 200		goto again;
 201	}
 202	/* Is it still in use? Only possible if wrapped at least once */
 203	if (next_vm_id_wrapped) {
 204		hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) {
 205			if (k2->avic_vm_id == vm_id)
 206				goto again;
 207		}
 208	}
 209	kvm_svm->avic_vm_id = vm_id;
 210	hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id);
 211	spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
 212
 213	return 0;
 214
 215free_avic:
 216	avic_vm_destroy(kvm);
 217	return err;
 218}
 219
 220void avic_init_vmcb(struct vcpu_svm *svm, struct vmcb *vmcb)
 221{
 222	struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
 223	phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
 224	phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
 225	phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));
 226
 227	vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
 228	vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
 229	vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
 230	vmcb->control.avic_vapic_bar = APIC_DEFAULT_PHYS_BASE & VMCB_AVIC_APIC_BAR_MASK;
 231
 232	if (kvm_apicv_activated(svm->vcpu.kvm))
 233		avic_activate_vmcb(svm);
 234	else
 235		avic_deactivate_vmcb(svm);
 236}
 237
 238static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
 239				       unsigned int index)
 240{
 241	u64 *avic_physical_id_table;
 242	struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
 243
 244	if ((avic_mode == AVIC_MODE_X1 && index > AVIC_MAX_PHYSICAL_ID) ||
 245	    (avic_mode == AVIC_MODE_X2 && index > X2AVIC_MAX_PHYSICAL_ID))
 246		return NULL;
 247
 248	avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);
 249
 250	return &avic_physical_id_table[index];
 251}
 252
 253/*
 254 * Note:
 255 * AVIC hardware walks the nested page table to check permissions,
 256 * but does not use the SPA address specified in the leaf page
 257 * table entry since it uses  address in the AVIC_BACKING_PAGE pointer
 258 * field of the VMCB. Therefore, we set up the
 259 * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
 260 */
 261static int avic_alloc_access_page(struct kvm *kvm)
 262{
 263	void __user *ret;
 264	int r = 0;
 265
 266	mutex_lock(&kvm->slots_lock);
 267
 268	if (kvm->arch.apic_access_memslot_enabled)
 269		goto out;
 270
 271	ret = __x86_set_memory_region(kvm,
 272				      APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
 273				      APIC_DEFAULT_PHYS_BASE,
 274				      PAGE_SIZE);
 275	if (IS_ERR(ret)) {
 276		r = PTR_ERR(ret);
 277		goto out;
 278	}
 279
 280	kvm->arch.apic_access_memslot_enabled = true;
 281out:
 282	mutex_unlock(&kvm->slots_lock);
 283	return r;
 284}
 285
 286static int avic_init_backing_page(struct kvm_vcpu *vcpu)
 287{
 288	u64 *entry, new_entry;
 289	int id = vcpu->vcpu_id;
 290	struct vcpu_svm *svm = to_svm(vcpu);
 291
 292	if ((avic_mode == AVIC_MODE_X1 && id > AVIC_MAX_PHYSICAL_ID) ||
 293	    (avic_mode == AVIC_MODE_X2 && id > X2AVIC_MAX_PHYSICAL_ID))
 294		return -EINVAL;
 295
 296	if (!vcpu->arch.apic->regs)
 297		return -EINVAL;
 298
 299	if (kvm_apicv_activated(vcpu->kvm)) {
 300		int ret;
 301
 302		ret = avic_alloc_access_page(vcpu->kvm);
 303		if (ret)
 304			return ret;
 305	}
 306
 307	svm->avic_backing_page = virt_to_page(vcpu->arch.apic->regs);
 308
 309	/* Setting AVIC backing page address in the phy APIC ID table */
 310	entry = avic_get_physical_id_entry(vcpu, id);
 311	if (!entry)
 312		return -EINVAL;
 313
 314	new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
 315			      AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
 316			      AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
 317	WRITE_ONCE(*entry, new_entry);
 318
 319	svm->avic_physical_id_cache = entry;
 320
 321	return 0;
 322}
 323
 324void avic_ring_doorbell(struct kvm_vcpu *vcpu)
 325{
 326	/*
 327	 * Note, the vCPU could get migrated to a different pCPU at any point,
 328	 * which could result in signalling the wrong/previous pCPU.  But if
 329	 * that happens the vCPU is guaranteed to do a VMRUN (after being
 330	 * migrated) and thus will process pending interrupts, i.e. a doorbell
 331	 * is not needed (and the spurious one is harmless).
 332	 */
 333	int cpu = READ_ONCE(vcpu->cpu);
 334
 335	if (cpu != get_cpu()) {
 336		wrmsrl(MSR_AMD64_SVM_AVIC_DOORBELL, kvm_cpu_get_apicid(cpu));
 337		trace_kvm_avic_doorbell(vcpu->vcpu_id, kvm_cpu_get_apicid(cpu));
 338	}
 339	put_cpu();
 340}
 341
 342/*
 343 * A fast-path version of avic_kick_target_vcpus(), which attempts to match
 344 * destination APIC ID to vCPU without looping through all vCPUs.
 345 */
 346static int avic_kick_target_vcpus_fast(struct kvm *kvm, struct kvm_lapic *source,
 347				       u32 icrl, u32 icrh, u32 index)
 348{
 349	u32 l1_physical_id, dest;
 350	struct kvm_vcpu *target_vcpu;
 351	int dest_mode = icrl & APIC_DEST_MASK;
 352	int shorthand = icrl & APIC_SHORT_MASK;
 353	struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
 354
 355	if (shorthand != APIC_DEST_NOSHORT)
 356		return -EINVAL;
 357
 358	if (apic_x2apic_mode(source))
 359		dest = icrh;
 360	else
 361		dest = GET_XAPIC_DEST_FIELD(icrh);
 362
 363	if (dest_mode == APIC_DEST_PHYSICAL) {
 364		/* broadcast destination, use slow path */
 365		if (apic_x2apic_mode(source) && dest == X2APIC_BROADCAST)
 366			return -EINVAL;
 367		if (!apic_x2apic_mode(source) && dest == APIC_BROADCAST)
 368			return -EINVAL;
 369
 370		l1_physical_id = dest;
 371
 372		if (WARN_ON_ONCE(l1_physical_id != index))
 373			return -EINVAL;
 374
 375	} else {
 376		u32 bitmap, cluster;
 377		int logid_index;
 378
 379		if (apic_x2apic_mode(source)) {
 380			/* 16 bit dest mask, 16 bit cluster id */
 381			bitmap = dest & 0xFFFF0000;
 382			cluster = (dest >> 16) << 4;
 383		} else if (kvm_lapic_get_reg(source, APIC_DFR) == APIC_DFR_FLAT) {
 384			/* 8 bit dest mask*/
 385			bitmap = dest;
 386			cluster = 0;
 387		} else {
 388			/* 4 bit desk mask, 4 bit cluster id */
 389			bitmap = dest & 0xF;
 390			cluster = (dest >> 4) << 2;
 391		}
 392
 393		if (unlikely(!bitmap))
 394			/* guest bug: nobody to send the logical interrupt to */
 395			return 0;
 396
 397		if (!is_power_of_2(bitmap))
 398			/* multiple logical destinations, use slow path */
 399			return -EINVAL;
 400
 401		logid_index = cluster + __ffs(bitmap);
 402
 403		if (!apic_x2apic_mode(source)) {
 404			u32 *avic_logical_id_table =
 405				page_address(kvm_svm->avic_logical_id_table_page);
 406
 407			u32 logid_entry = avic_logical_id_table[logid_index];
 408
 409			if (WARN_ON_ONCE(index != logid_index))
 410				return -EINVAL;
 411
 412			/* guest bug: non existing/reserved logical destination */
 413			if (unlikely(!(logid_entry & AVIC_LOGICAL_ID_ENTRY_VALID_MASK)))
 414				return 0;
 415
 416			l1_physical_id = logid_entry &
 417					 AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
 418		} else {
 419			/*
 420			 * For x2APIC logical mode, cannot leverage the index.
 421			 * Instead, calculate physical ID from logical ID in ICRH.
 422			 */
 423			int cluster = (icrh & 0xffff0000) >> 16;
 424			int apic = ffs(icrh & 0xffff) - 1;
 425
 426			/*
 427			 * If the x2APIC logical ID sub-field (i.e. icrh[15:0])
 428			 * contains anything but a single bit, we cannot use the
 429			 * fast path, because it is limited to a single vCPU.
 430			 */
 431			if (apic < 0 || icrh != (1 << apic))
 432				return -EINVAL;
 433
 434			l1_physical_id = (cluster << 4) + apic;
 435		}
 436	}
 437
 438	target_vcpu = kvm_get_vcpu_by_id(kvm, l1_physical_id);
 439	if (unlikely(!target_vcpu))
 440		/* guest bug: non existing vCPU is a target of this IPI*/
 441		return 0;
 442
 443	target_vcpu->arch.apic->irr_pending = true;
 444	svm_complete_interrupt_delivery(target_vcpu,
 445					icrl & APIC_MODE_MASK,
 446					icrl & APIC_INT_LEVELTRIG,
 447					icrl & APIC_VECTOR_MASK);
 448	return 0;
 449}
 450
 451static void avic_kick_target_vcpus(struct kvm *kvm, struct kvm_lapic *source,
 452				   u32 icrl, u32 icrh, u32 index)
 453{
 454	unsigned long i;
 455	struct kvm_vcpu *vcpu;
 456
 457	if (!avic_kick_target_vcpus_fast(kvm, source, icrl, icrh, index))
 458		return;
 459
 460	trace_kvm_avic_kick_vcpu_slowpath(icrh, icrl, index);
 461
 462	/*
 463	 * Wake any target vCPUs that are blocking, i.e. waiting for a wake
 464	 * event.  There's no need to signal doorbells, as hardware has handled
 465	 * vCPUs that were in guest at the time of the IPI, and vCPUs that have
 466	 * since entered the guest will have processed pending IRQs at VMRUN.
 467	 */
 468	kvm_for_each_vcpu(i, vcpu, kvm) {
 469		u32 dest;
 470
 471		if (apic_x2apic_mode(vcpu->arch.apic))
 472			dest = icrh;
 473		else
 474			dest = GET_XAPIC_DEST_FIELD(icrh);
 475
 476		if (kvm_apic_match_dest(vcpu, source, icrl & APIC_SHORT_MASK,
 477					dest, icrl & APIC_DEST_MASK)) {
 478			vcpu->arch.apic->irr_pending = true;
 479			svm_complete_interrupt_delivery(vcpu,
 480							icrl & APIC_MODE_MASK,
 481							icrl & APIC_INT_LEVELTRIG,
 482							icrl & APIC_VECTOR_MASK);
 483		}
 484	}
 485}
 486
 487int avic_incomplete_ipi_interception(struct kvm_vcpu *vcpu)
 488{
 489	struct vcpu_svm *svm = to_svm(vcpu);
 490	u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
 491	u32 icrl = svm->vmcb->control.exit_info_1;
 492	u32 id = svm->vmcb->control.exit_info_2 >> 32;
 493	u32 index = svm->vmcb->control.exit_info_2 & 0x1FF;
 494	struct kvm_lapic *apic = vcpu->arch.apic;
 495
 496	trace_kvm_avic_incomplete_ipi(vcpu->vcpu_id, icrh, icrl, id, index);
 497
 498	switch (id) {
 499	case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
 500		/*
 501		 * Emulate IPIs that are not handled by AVIC hardware, which
 502		 * only virtualizes Fixed, Edge-Triggered INTRs.  The exit is
 503		 * a trap, e.g. ICR holds the correct value and RIP has been
 504		 * advanced, KVM is responsible only for emulating the IPI.
 505		 * Sadly, hardware may sometimes leave the BUSY flag set, in
 506		 * which case KVM needs to emulate the ICR write as well in
 507		 * order to clear the BUSY flag.
 508		 */
 509		if (icrl & APIC_ICR_BUSY)
 510			kvm_apic_write_nodecode(vcpu, APIC_ICR);
 511		else
 512			kvm_apic_send_ipi(apic, icrl, icrh);
 513		break;
 514	case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING:
 515		/*
 516		 * At this point, we expect that the AVIC HW has already
 517		 * set the appropriate IRR bits on the valid target
 518		 * vcpus. So, we just need to kick the appropriate vcpu.
 519		 */
 520		avic_kick_target_vcpus(vcpu->kvm, apic, icrl, icrh, index);
 521		break;
 522	case AVIC_IPI_FAILURE_INVALID_TARGET:
 523		break;
 524	case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
 525		WARN_ONCE(1, "Invalid backing page\n");
 526		break;
 527	default:
 528		pr_err("Unknown IPI interception\n");
 529	}
 530
 531	return 1;
 532}
 533
 534unsigned long avic_vcpu_get_apicv_inhibit_reasons(struct kvm_vcpu *vcpu)
 535{
 536	if (is_guest_mode(vcpu))
 537		return APICV_INHIBIT_REASON_NESTED;
 538	return 0;
 539}
 540
 541static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
 542{
 543	struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
 544	int index;
 545	u32 *logical_apic_id_table;
 546	int dlid = GET_APIC_LOGICAL_ID(ldr);
 547
 548	if (!dlid)
 549		return NULL;
 550
 551	if (flat) { /* flat */
 552		index = ffs(dlid) - 1;
 553		if (index > 7)
 554			return NULL;
 555	} else { /* cluster */
 556		int cluster = (dlid & 0xf0) >> 4;
 557		int apic = ffs(dlid & 0x0f) - 1;
 558
 559		if ((apic < 0) || (apic > 7) ||
 560		    (cluster >= 0xf))
 561			return NULL;
 562		index = (cluster << 2) + apic;
 563	}
 564
 565	logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);
 566
 567	return &logical_apic_id_table[index];
 568}
 569
 570static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr)
 571{
 572	bool flat;
 573	u32 *entry, new_entry;
 574
 575	flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
 576	entry = avic_get_logical_id_entry(vcpu, ldr, flat);
 577	if (!entry)
 578		return -EINVAL;
 579
 580	new_entry = READ_ONCE(*entry);
 581	new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
 582	new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
 583	new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
 584	WRITE_ONCE(*entry, new_entry);
 585
 586	return 0;
 587}
 588
 589static void avic_invalidate_logical_id_entry(struct kvm_vcpu *vcpu)
 590{
 591	struct vcpu_svm *svm = to_svm(vcpu);
 592	bool flat = svm->dfr_reg == APIC_DFR_FLAT;
 593	u32 *entry;
 594
 595	/* Note: x2AVIC does not use logical APIC ID table */
 596	if (apic_x2apic_mode(vcpu->arch.apic))
 597		return;
 598
 599	entry = avic_get_logical_id_entry(vcpu, svm->ldr_reg, flat);
 600	if (entry)
 601		clear_bit(AVIC_LOGICAL_ID_ENTRY_VALID_BIT, (unsigned long *)entry);
 602}
 603
 604static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
 605{
 606	int ret = 0;
 607	struct vcpu_svm *svm = to_svm(vcpu);
 608	u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
 609	u32 id = kvm_xapic_id(vcpu->arch.apic);
 610
 611	/* AVIC does not support LDR update for x2APIC */
 612	if (apic_x2apic_mode(vcpu->arch.apic))
 613		return 0;
 614
 615	if (ldr == svm->ldr_reg)
 616		return 0;
 617
 618	avic_invalidate_logical_id_entry(vcpu);
 619
 620	if (ldr)
 621		ret = avic_ldr_write(vcpu, id, ldr);
 622
 623	if (!ret)
 624		svm->ldr_reg = ldr;
 625
 626	return ret;
 627}
 628
 629static void avic_handle_dfr_update(struct kvm_vcpu *vcpu)
 630{
 631	struct vcpu_svm *svm = to_svm(vcpu);
 632	u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
 633
 634	if (svm->dfr_reg == dfr)
 635		return;
 636
 637	avic_invalidate_logical_id_entry(vcpu);
 638	svm->dfr_reg = dfr;
 639}
 640
 641static int avic_unaccel_trap_write(struct kvm_vcpu *vcpu)
 642{
 643	u32 offset = to_svm(vcpu)->vmcb->control.exit_info_1 &
 644				AVIC_UNACCEL_ACCESS_OFFSET_MASK;
 645
 646	switch (offset) {
 647	case APIC_LDR:
 648		if (avic_handle_ldr_update(vcpu))
 649			return 0;
 650		break;
 651	case APIC_DFR:
 652		avic_handle_dfr_update(vcpu);
 653		break;
 654	default:
 655		break;
 656	}
 657
 658	kvm_apic_write_nodecode(vcpu, offset);
 659	return 1;
 660}
 661
 662static bool is_avic_unaccelerated_access_trap(u32 offset)
 663{
 664	bool ret = false;
 665
 666	switch (offset) {
 667	case APIC_ID:
 668	case APIC_EOI:
 669	case APIC_RRR:
 670	case APIC_LDR:
 671	case APIC_DFR:
 672	case APIC_SPIV:
 673	case APIC_ESR:
 674	case APIC_ICR:
 675	case APIC_LVTT:
 676	case APIC_LVTTHMR:
 677	case APIC_LVTPC:
 678	case APIC_LVT0:
 679	case APIC_LVT1:
 680	case APIC_LVTERR:
 681	case APIC_TMICT:
 682	case APIC_TDCR:
 683		ret = true;
 684		break;
 685	default:
 686		break;
 687	}
 688	return ret;
 689}
 690
 691int avic_unaccelerated_access_interception(struct kvm_vcpu *vcpu)
 692{
 693	struct vcpu_svm *svm = to_svm(vcpu);
 694	int ret = 0;
 695	u32 offset = svm->vmcb->control.exit_info_1 &
 696		     AVIC_UNACCEL_ACCESS_OFFSET_MASK;
 697	u32 vector = svm->vmcb->control.exit_info_2 &
 698		     AVIC_UNACCEL_ACCESS_VECTOR_MASK;
 699	bool write = (svm->vmcb->control.exit_info_1 >> 32) &
 700		     AVIC_UNACCEL_ACCESS_WRITE_MASK;
 701	bool trap = is_avic_unaccelerated_access_trap(offset);
 702
 703	trace_kvm_avic_unaccelerated_access(vcpu->vcpu_id, offset,
 704					    trap, write, vector);
 705	if (trap) {
 706		/* Handling Trap */
 707		WARN_ONCE(!write, "svm: Handling trap read.\n");
 708		ret = avic_unaccel_trap_write(vcpu);
 709	} else {
 710		/* Handling Fault */
 711		ret = kvm_emulate_instruction(vcpu, 0);
 712	}
 713
 714	return ret;
 715}
 716
 717int avic_init_vcpu(struct vcpu_svm *svm)
 718{
 719	int ret;
 720	struct kvm_vcpu *vcpu = &svm->vcpu;
 721
 722	if (!enable_apicv || !irqchip_in_kernel(vcpu->kvm))
 723		return 0;
 724
 725	ret = avic_init_backing_page(vcpu);
 726	if (ret)
 727		return ret;
 728
 729	INIT_LIST_HEAD(&svm->ir_list);
 730	spin_lock_init(&svm->ir_list_lock);
 731	svm->dfr_reg = APIC_DFR_FLAT;
 732
 733	return ret;
 734}
 735
 736void avic_apicv_post_state_restore(struct kvm_vcpu *vcpu)
 737{
 738	avic_handle_dfr_update(vcpu);
 739	avic_handle_ldr_update(vcpu);
 740}
 741
 742void avic_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
 743{
 744	if (!lapic_in_kernel(vcpu) || avic_mode == AVIC_MODE_NONE)
 745		return;
 746
 747	if (kvm_get_apic_mode(vcpu) == LAPIC_MODE_INVALID) {
 748		WARN_ONCE(true, "Invalid local APIC state (vcpu_id=%d)", vcpu->vcpu_id);
 749		return;
 750	}
 751	avic_refresh_apicv_exec_ctrl(vcpu);
 752}
 753
 754static int avic_set_pi_irte_mode(struct kvm_vcpu *vcpu, bool activate)
 755{
 756	int ret = 0;
 757	unsigned long flags;
 758	struct amd_svm_iommu_ir *ir;
 759	struct vcpu_svm *svm = to_svm(vcpu);
 760
 761	if (!kvm_arch_has_assigned_device(vcpu->kvm))
 762		return 0;
 763
 764	/*
 765	 * Here, we go through the per-vcpu ir_list to update all existing
 766	 * interrupt remapping table entry targeting this vcpu.
 767	 */
 768	spin_lock_irqsave(&svm->ir_list_lock, flags);
 769
 770	if (list_empty(&svm->ir_list))
 771		goto out;
 772
 773	list_for_each_entry(ir, &svm->ir_list, node) {
 774		if (activate)
 775			ret = amd_iommu_activate_guest_mode(ir->data);
 776		else
 777			ret = amd_iommu_deactivate_guest_mode(ir->data);
 778		if (ret)
 779			break;
 780	}
 781out:
 782	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
 783	return ret;
 784}
 785
 786static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
 787{
 788	unsigned long flags;
 789	struct amd_svm_iommu_ir *cur;
 790
 791	spin_lock_irqsave(&svm->ir_list_lock, flags);
 792	list_for_each_entry(cur, &svm->ir_list, node) {
 793		if (cur->data != pi->ir_data)
 794			continue;
 795		list_del(&cur->node);
 796		kfree(cur);
 797		break;
 798	}
 799	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
 800}
 801
 802static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
 803{
 804	int ret = 0;
 805	unsigned long flags;
 806	struct amd_svm_iommu_ir *ir;
 807
 808	/**
 809	 * In some cases, the existing irte is updated and re-set,
 810	 * so we need to check here if it's already been * added
 811	 * to the ir_list.
 812	 */
 813	if (pi->ir_data && (pi->prev_ga_tag != 0)) {
 814		struct kvm *kvm = svm->vcpu.kvm;
 815		u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
 816		struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
 817		struct vcpu_svm *prev_svm;
 818
 819		if (!prev_vcpu) {
 820			ret = -EINVAL;
 821			goto out;
 822		}
 823
 824		prev_svm = to_svm(prev_vcpu);
 825		svm_ir_list_del(prev_svm, pi);
 826	}
 827
 828	/**
 829	 * Allocating new amd_iommu_pi_data, which will get
 830	 * add to the per-vcpu ir_list.
 831	 */
 832	ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL_ACCOUNT);
 833	if (!ir) {
 834		ret = -ENOMEM;
 835		goto out;
 836	}
 837	ir->data = pi->ir_data;
 838
 839	spin_lock_irqsave(&svm->ir_list_lock, flags);
 840	list_add(&ir->node, &svm->ir_list);
 841	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
 842out:
 843	return ret;
 844}
 845
 846/*
 847 * Note:
 848 * The HW cannot support posting multicast/broadcast
 849 * interrupts to a vCPU. So, we still use legacy interrupt
 850 * remapping for these kind of interrupts.
 851 *
 852 * For lowest-priority interrupts, we only support
 853 * those with single CPU as the destination, e.g. user
 854 * configures the interrupts via /proc/irq or uses
 855 * irqbalance to make the interrupts single-CPU.
 856 */
 857static int
 858get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
 859		 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
 860{
 861	struct kvm_lapic_irq irq;
 862	struct kvm_vcpu *vcpu = NULL;
 863
 864	kvm_set_msi_irq(kvm, e, &irq);
 865
 866	if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
 867	    !kvm_irq_is_postable(&irq)) {
 868		pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
 869			 __func__, irq.vector);
 870		return -1;
 871	}
 872
 873	pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
 874		 irq.vector);
 875	*svm = to_svm(vcpu);
 876	vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
 877	vcpu_info->vector = irq.vector;
 878
 879	return 0;
 880}
 881
 882/*
 883 * avic_pi_update_irte - set IRTE for Posted-Interrupts
 884 *
 885 * @kvm: kvm
 886 * @host_irq: host irq of the interrupt
 887 * @guest_irq: gsi of the interrupt
 888 * @set: set or unset PI
 889 * returns 0 on success, < 0 on failure
 890 */
 891int avic_pi_update_irte(struct kvm *kvm, unsigned int host_irq,
 892			uint32_t guest_irq, bool set)
 893{
 894	struct kvm_kernel_irq_routing_entry *e;
 895	struct kvm_irq_routing_table *irq_rt;
 896	int idx, ret = 0;
 897
 898	if (!kvm_arch_has_assigned_device(kvm) ||
 899	    !irq_remapping_cap(IRQ_POSTING_CAP))
 900		return 0;
 901
 902	pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
 903		 __func__, host_irq, guest_irq, set);
 904
 905	idx = srcu_read_lock(&kvm->irq_srcu);
 906	irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
 907
 908	if (guest_irq >= irq_rt->nr_rt_entries ||
 909		hlist_empty(&irq_rt->map[guest_irq])) {
 910		pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
 911			     guest_irq, irq_rt->nr_rt_entries);
 912		goto out;
 913	}
 914
 915	hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
 916		struct vcpu_data vcpu_info;
 917		struct vcpu_svm *svm = NULL;
 918
 919		if (e->type != KVM_IRQ_ROUTING_MSI)
 920			continue;
 921
 922		/**
 923		 * Here, we setup with legacy mode in the following cases:
 924		 * 1. When cannot target interrupt to a specific vcpu.
 925		 * 2. Unsetting posted interrupt.
 926		 * 3. APIC virtualization is disabled for the vcpu.
 927		 * 4. IRQ has incompatible delivery mode (SMI, INIT, etc)
 928		 */
 929		if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
 930		    kvm_vcpu_apicv_active(&svm->vcpu)) {
 931			struct amd_iommu_pi_data pi;
 932
 933			/* Try to enable guest_mode in IRTE */
 934			pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
 935					    AVIC_HPA_MASK);
 936			pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
 937						     svm->vcpu.vcpu_id);
 938			pi.is_guest_mode = true;
 939			pi.vcpu_data = &vcpu_info;
 940			ret = irq_set_vcpu_affinity(host_irq, &pi);
 941
 942			/**
 943			 * Here, we successfully setting up vcpu affinity in
 944			 * IOMMU guest mode. Now, we need to store the posted
 945			 * interrupt information in a per-vcpu ir_list so that
 946			 * we can reference to them directly when we update vcpu
 947			 * scheduling information in IOMMU irte.
 948			 */
 949			if (!ret && pi.is_guest_mode)
 950				svm_ir_list_add(svm, &pi);
 951		} else {
 952			/* Use legacy mode in IRTE */
 953			struct amd_iommu_pi_data pi;
 954
 955			/**
 956			 * Here, pi is used to:
 957			 * - Tell IOMMU to use legacy mode for this interrupt.
 958			 * - Retrieve ga_tag of prior interrupt remapping data.
 959			 */
 960			pi.prev_ga_tag = 0;
 961			pi.is_guest_mode = false;
 962			ret = irq_set_vcpu_affinity(host_irq, &pi);
 963
 964			/**
 965			 * Check if the posted interrupt was previously
 966			 * setup with the guest_mode by checking if the ga_tag
 967			 * was cached. If so, we need to clean up the per-vcpu
 968			 * ir_list.
 969			 */
 970			if (!ret && pi.prev_ga_tag) {
 971				int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
 972				struct kvm_vcpu *vcpu;
 973
 974				vcpu = kvm_get_vcpu_by_id(kvm, id);
 975				if (vcpu)
 976					svm_ir_list_del(to_svm(vcpu), &pi);
 977			}
 978		}
 979
 980		if (!ret && svm) {
 981			trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
 982						 e->gsi, vcpu_info.vector,
 983						 vcpu_info.pi_desc_addr, set);
 984		}
 985
 986		if (ret < 0) {
 987			pr_err("%s: failed to update PI IRTE\n", __func__);
 988			goto out;
 989		}
 990	}
 991
 992	ret = 0;
 993out:
 994	srcu_read_unlock(&kvm->irq_srcu, idx);
 995	return ret;
 996}
 997
 998bool avic_check_apicv_inhibit_reasons(enum kvm_apicv_inhibit reason)
 999{
1000	ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
1001			  BIT(APICV_INHIBIT_REASON_ABSENT) |
1002			  BIT(APICV_INHIBIT_REASON_HYPERV) |
1003			  BIT(APICV_INHIBIT_REASON_NESTED) |
1004			  BIT(APICV_INHIBIT_REASON_IRQWIN) |
1005			  BIT(APICV_INHIBIT_REASON_PIT_REINJ) |
1006			  BIT(APICV_INHIBIT_REASON_BLOCKIRQ) |
1007			  BIT(APICV_INHIBIT_REASON_SEV)      |
1008			  BIT(APICV_INHIBIT_REASON_APIC_ID_MODIFIED) |
1009			  BIT(APICV_INHIBIT_REASON_APIC_BASE_MODIFIED);
1010
1011	return supported & BIT(reason);
1012}
1013
1014
1015static inline int
1016avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
1017{
1018	int ret = 0;
1019	unsigned long flags;
1020	struct amd_svm_iommu_ir *ir;
1021	struct vcpu_svm *svm = to_svm(vcpu);
1022
1023	if (!kvm_arch_has_assigned_device(vcpu->kvm))
1024		return 0;
1025
1026	/*
1027	 * Here, we go through the per-vcpu ir_list to update all existing
1028	 * interrupt remapping table entry targeting this vcpu.
1029	 */
1030	spin_lock_irqsave(&svm->ir_list_lock, flags);
1031
1032	if (list_empty(&svm->ir_list))
1033		goto out;
1034
1035	list_for_each_entry(ir, &svm->ir_list, node) {
1036		ret = amd_iommu_update_ga(cpu, r, ir->data);
1037		if (ret)
1038			break;
1039	}
1040out:
1041	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
1042	return ret;
1043}
1044
1045void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1046{
1047	u64 entry;
1048	int h_physical_id = kvm_cpu_get_apicid(cpu);
1049	struct vcpu_svm *svm = to_svm(vcpu);
1050
1051	lockdep_assert_preemption_disabled();
1052
1053	if (WARN_ON(h_physical_id & ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK))
1054		return;
1055
1056	/*
1057	 * No need to update anything if the vCPU is blocking, i.e. if the vCPU
1058	 * is being scheduled in after being preempted.  The CPU entries in the
1059	 * Physical APIC table and IRTE are consumed iff IsRun{ning} is '1'.
1060	 * If the vCPU was migrated, its new CPU value will be stuffed when the
1061	 * vCPU unblocks.
1062	 */
1063	if (kvm_vcpu_is_blocking(vcpu))
1064		return;
1065
1066	entry = READ_ONCE(*(svm->avic_physical_id_cache));
1067
1068	entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
1069	entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
1070	entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1071
1072	WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1073	avic_update_iommu_vcpu_affinity(vcpu, h_physical_id, true);
1074}
1075
1076void avic_vcpu_put(struct kvm_vcpu *vcpu)
1077{
1078	u64 entry;
1079	struct vcpu_svm *svm = to_svm(vcpu);
1080
1081	lockdep_assert_preemption_disabled();
1082
1083	entry = READ_ONCE(*(svm->avic_physical_id_cache));
1084
1085	/* Nothing to do if IsRunning == '0' due to vCPU blocking. */
1086	if (!(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK))
1087		return;
1088
1089	avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
1090
1091	entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1092	WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1093}
1094
1095
1096void avic_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
1097{
1098	struct vcpu_svm *svm = to_svm(vcpu);
1099	struct vmcb *vmcb = svm->vmcb01.ptr;
1100	bool activated = kvm_vcpu_apicv_active(vcpu);
1101
1102	if (!enable_apicv)
1103		return;
1104
1105	if (activated) {
1106		/**
1107		 * During AVIC temporary deactivation, guest could update
1108		 * APIC ID, DFR and LDR registers, which would not be trapped
1109		 * by avic_unaccelerated_access_interception(). In this case,
1110		 * we need to check and update the AVIC logical APIC ID table
1111		 * accordingly before re-activating.
1112		 */
1113		avic_apicv_post_state_restore(vcpu);
1114		avic_activate_vmcb(svm);
1115	} else {
1116		avic_deactivate_vmcb(svm);
1117	}
1118	vmcb_mark_dirty(vmcb, VMCB_AVIC);
1119
1120	if (activated)
1121		avic_vcpu_load(vcpu, vcpu->cpu);
1122	else
1123		avic_vcpu_put(vcpu);
1124
1125	avic_set_pi_irte_mode(vcpu, activated);
1126}
1127
1128void avic_vcpu_blocking(struct kvm_vcpu *vcpu)
1129{
1130	if (!kvm_vcpu_apicv_active(vcpu))
1131		return;
1132
1133       /*
1134        * Unload the AVIC when the vCPU is about to block, _before_
1135        * the vCPU actually blocks.
1136        *
1137        * Any IRQs that arrive before IsRunning=0 will not cause an
1138        * incomplete IPI vmexit on the source, therefore vIRR will also
1139        * be checked by kvm_vcpu_check_block() before blocking.  The
1140        * memory barrier implicit in set_current_state orders writing
1141        * IsRunning=0 before reading the vIRR.  The processor needs a
1142        * matching memory barrier on interrupt delivery between writing
1143        * IRR and reading IsRunning; the lack of this barrier might be
1144        * the cause of errata #1235).
1145        */
1146	avic_vcpu_put(vcpu);
1147}
1148
1149void avic_vcpu_unblocking(struct kvm_vcpu *vcpu)
1150{
1151	if (!kvm_vcpu_apicv_active(vcpu))
1152		return;
1153
1154	avic_vcpu_load(vcpu, vcpu->cpu);
1155}
1156
1157/*
1158 * Note:
1159 * - The module param avic enable both xAPIC and x2APIC mode.
1160 * - Hypervisor can support both xAVIC and x2AVIC in the same guest.
1161 * - The mode can be switched at run-time.
1162 */
1163bool avic_hardware_setup(struct kvm_x86_ops *x86_ops)
1164{
1165	if (!npt_enabled)
1166		return false;
1167
1168	if (boot_cpu_has(X86_FEATURE_AVIC)) {
1169		avic_mode = AVIC_MODE_X1;
1170		pr_info("AVIC enabled\n");
1171	} else if (force_avic) {
1172		/*
1173		 * Some older systems does not advertise AVIC support.
1174		 * See Revision Guide for specific AMD processor for more detail.
1175		 */
1176		avic_mode = AVIC_MODE_X1;
1177		pr_warn("AVIC is not supported in CPUID but force enabled");
1178		pr_warn("Your system might crash and burn");
1179	}
1180
1181	/* AVIC is a prerequisite for x2AVIC. */
1182	if (boot_cpu_has(X86_FEATURE_X2AVIC)) {
1183		if (avic_mode == AVIC_MODE_X1) {
1184			avic_mode = AVIC_MODE_X2;
1185			pr_info("x2AVIC enabled\n");
1186		} else {
1187			pr_warn(FW_BUG "Cannot support x2AVIC due to AVIC is disabled");
1188			pr_warn(FW_BUG "Try enable AVIC using force_avic option");
1189		}
1190	}
1191
1192	if (avic_mode != AVIC_MODE_NONE)
1193		amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1194
1195	return !!avic_mode;
1196}