Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2#include <linux/types.h>
  3#include <linux/i8253.h>
  4#include <linux/interrupt.h>
  5#include <linux/irq.h>
  6#include <linux/smp.h>
  7#include <linux/time.h>
  8#include <linux/clockchips.h>
  9
 10#include <asm/sni.h>
 11#include <asm/time.h>
 12
 13#define SNI_CLOCK_TICK_RATE	3686400
 14#define SNI_COUNTER2_DIV	64
 15#define SNI_COUNTER0_DIV	((SNI_CLOCK_TICK_RATE / SNI_COUNTER2_DIV) / HZ)
 16
 17static int a20r_set_periodic(struct clock_event_device *evt)
 18{
 19	*(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0x34;
 20	wmb();
 21	*(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = SNI_COUNTER0_DIV & 0xff;
 22	wmb();
 23	*(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = SNI_COUNTER0_DIV >> 8;
 24	wmb();
 25
 26	*(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0xb4;
 27	wmb();
 28	*(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = SNI_COUNTER2_DIV & 0xff;
 29	wmb();
 30	*(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = SNI_COUNTER2_DIV >> 8;
 31	wmb();
 32	return 0;
 33}
 34
 35static struct clock_event_device a20r_clockevent_device = {
 36	.name			= "a20r-timer",
 37	.features		= CLOCK_EVT_FEAT_PERIODIC,
 38
 39	/* .mult, .shift, .max_delta_ns and .min_delta_ns left uninitialized */
 40
 41	.rating			= 300,
 42	.irq			= SNI_A20R_IRQ_TIMER,
 43	.set_state_periodic	= a20r_set_periodic,
 44};
 45
 46static irqreturn_t a20r_interrupt(int irq, void *dev_id)
 47{
 48	struct clock_event_device *cd = dev_id;
 49
 50	*(volatile u8 *)A20R_PT_TIM0_ACK = 0;
 51	wmb();
 52
 53	cd->event_handler(cd);
 54
 55	return IRQ_HANDLED;
 56}
 57
 
 
 
 
 
 
 58/*
 59 * a20r platform uses 2 counters to divide the input frequency.
 60 * Counter 2 output is connected to Counter 0 & 1 input.
 61 */
 62static void __init sni_a20r_timer_setup(void)
 63{
 64	struct clock_event_device *cd = &a20r_clockevent_device;
 
 65	unsigned int cpu = smp_processor_id();
 66
 67	cd->cpumask		= cpumask_of(cpu);
 68	clockevents_register_device(cd);
 69	if (request_irq(SNI_A20R_IRQ_TIMER, a20r_interrupt,
 70			IRQF_PERCPU | IRQF_TIMER, "a20r-timer", cd))
 71		pr_err("Failed to register a20r-timer interrupt\n");
 72}
 73
 74#define SNI_8254_TICK_RATE	  1193182UL
 75
 76#define SNI_8254_TCSAMP_COUNTER	  ((SNI_8254_TICK_RATE / HZ) + 255)
 77
 78static __init unsigned long dosample(void)
 79{
 80	u32 ct0, ct1;
 81	volatile u8 msb;
 82
 83	/* Start the counter. */
 84	outb_p(0x34, 0x43);
 85	outb_p(SNI_8254_TCSAMP_COUNTER & 0xff, 0x40);
 86	outb(SNI_8254_TCSAMP_COUNTER >> 8, 0x40);
 87
 88	/* Get initial counter invariant */
 89	ct0 = read_c0_count();
 90
 91	/* Latch and spin until top byte of counter0 is zero */
 92	do {
 93		outb(0x00, 0x43);
 94		(void) inb(0x40);
 95		msb = inb(0x40);
 96		ct1 = read_c0_count();
 97	} while (msb);
 98
 99	/* Stop the counter. */
100	outb(0x38, 0x43);
101	/*
102	 * Return the difference, this is how far the r4k counter increments
103	 * for every 1/HZ seconds. We round off the nearest 1 MHz of master
104	 * clock (= 1000000 / HZ / 2).
105	 */
106	/*return (ct1 - ct0 + (500000/HZ/2)) / (500000/HZ) * (500000/HZ);*/
107	return (ct1 - ct0) / (500000/HZ) * (500000/HZ);
108}
109
110/*
111 * Here we need to calibrate the cycle counter to at least be close.
112 */
113void __init plat_time_init(void)
114{
115	unsigned long r4k_ticks[3];
116	unsigned long r4k_tick;
117
118	/*
119	 * Figure out the r4k offset, the algorithm is very simple and works in
120	 * _all_ cases as long as the 8254 counter register itself works ok (as
121	 * an interrupt driving timer it does not because of bug, this is why
122	 * we are using the onchip r4k counter/compare register to serve this
123	 * purpose, but for r4k_offset calculation it will work ok for us).
124	 * There are other very complicated ways of performing this calculation
125	 * but this one works just fine so I am not going to futz around. ;-)
126	 */
127	printk(KERN_INFO "Calibrating system timer... ");
128	dosample();	/* Prime cache. */
129	dosample();	/* Prime cache. */
130	/* Zero is NOT an option. */
131	do {
132		r4k_ticks[0] = dosample();
133	} while (!r4k_ticks[0]);
134	do {
135		r4k_ticks[1] = dosample();
136	} while (!r4k_ticks[1]);
137
138	if (r4k_ticks[0] != r4k_ticks[1]) {
139		printk("warning: timer counts differ, retrying... ");
140		r4k_ticks[2] = dosample();
141		if (r4k_ticks[2] == r4k_ticks[0]
142		    || r4k_ticks[2] == r4k_ticks[1])
143			r4k_tick = r4k_ticks[2];
144		else {
145			printk("disagreement, using average... ");
146			r4k_tick = (r4k_ticks[0] + r4k_ticks[1]
147				   + r4k_ticks[2]) / 3;
148		}
149	} else
150		r4k_tick = r4k_ticks[0];
151
152	printk("%d [%d.%04d MHz CPU]\n", (int) r4k_tick,
153		(int) (r4k_tick / (500000 / HZ)),
154		(int) (r4k_tick % (500000 / HZ)));
155
156	mips_hpt_frequency = r4k_tick * HZ;
157
158	switch (sni_brd_type) {
159	case SNI_BRD_10:
160	case SNI_BRD_10NEW:
161	case SNI_BRD_TOWER_OASIC:
162	case SNI_BRD_MINITOWER:
163		sni_a20r_timer_setup();
164		break;
165	}
166	setup_pit_timer();
 
 
 
 
 
 
167}
v4.10.11
 
  1#include <linux/types.h>
  2#include <linux/i8253.h>
  3#include <linux/interrupt.h>
  4#include <linux/irq.h>
  5#include <linux/smp.h>
  6#include <linux/time.h>
  7#include <linux/clockchips.h>
  8
  9#include <asm/sni.h>
 10#include <asm/time.h>
 11
 12#define SNI_CLOCK_TICK_RATE	3686400
 13#define SNI_COUNTER2_DIV	64
 14#define SNI_COUNTER0_DIV	((SNI_CLOCK_TICK_RATE / SNI_COUNTER2_DIV) / HZ)
 15
 16static int a20r_set_periodic(struct clock_event_device *evt)
 17{
 18	*(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0x34;
 19	wmb();
 20	*(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = SNI_COUNTER0_DIV;
 21	wmb();
 22	*(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = SNI_COUNTER0_DIV >> 8;
 23	wmb();
 24
 25	*(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0xb4;
 26	wmb();
 27	*(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = SNI_COUNTER2_DIV;
 28	wmb();
 29	*(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = SNI_COUNTER2_DIV >> 8;
 30	wmb();
 31	return 0;
 32}
 33
 34static struct clock_event_device a20r_clockevent_device = {
 35	.name			= "a20r-timer",
 36	.features		= CLOCK_EVT_FEAT_PERIODIC,
 37
 38	/* .mult, .shift, .max_delta_ns and .min_delta_ns left uninitialized */
 39
 40	.rating			= 300,
 41	.irq			= SNI_A20R_IRQ_TIMER,
 42	.set_state_periodic	= a20r_set_periodic,
 43};
 44
 45static irqreturn_t a20r_interrupt(int irq, void *dev_id)
 46{
 47	struct clock_event_device *cd = dev_id;
 48
 49	*(volatile u8 *)A20R_PT_TIM0_ACK = 0;
 50	wmb();
 51
 52	cd->event_handler(cd);
 53
 54	return IRQ_HANDLED;
 55}
 56
 57static struct irqaction a20r_irqaction = {
 58	.handler	= a20r_interrupt,
 59	.flags		= IRQF_PERCPU | IRQF_TIMER,
 60	.name		= "a20r-timer",
 61};
 62
 63/*
 64 * a20r platform uses 2 counters to divide the input frequency.
 65 * Counter 2 output is connected to Counter 0 & 1 input.
 66 */
 67static void __init sni_a20r_timer_setup(void)
 68{
 69	struct clock_event_device *cd = &a20r_clockevent_device;
 70	struct irqaction *action = &a20r_irqaction;
 71	unsigned int cpu = smp_processor_id();
 72
 73	cd->cpumask		= cpumask_of(cpu);
 74	clockevents_register_device(cd);
 75	action->dev_id = cd;
 76	setup_irq(SNI_A20R_IRQ_TIMER, &a20r_irqaction);
 
 77}
 78
 79#define SNI_8254_TICK_RATE	  1193182UL
 80
 81#define SNI_8254_TCSAMP_COUNTER	  ((SNI_8254_TICK_RATE / HZ) + 255)
 82
 83static __init unsigned long dosample(void)
 84{
 85	u32 ct0, ct1;
 86	volatile u8 msb;
 87
 88	/* Start the counter. */
 89	outb_p(0x34, 0x43);
 90	outb_p(SNI_8254_TCSAMP_COUNTER & 0xff, 0x40);
 91	outb(SNI_8254_TCSAMP_COUNTER >> 8, 0x40);
 92
 93	/* Get initial counter invariant */
 94	ct0 = read_c0_count();
 95
 96	/* Latch and spin until top byte of counter0 is zero */
 97	do {
 98		outb(0x00, 0x43);
 99		(void) inb(0x40);
100		msb = inb(0x40);
101		ct1 = read_c0_count();
102	} while (msb);
103
104	/* Stop the counter. */
105	outb(0x38, 0x43);
106	/*
107	 * Return the difference, this is how far the r4k counter increments
108	 * for every 1/HZ seconds. We round off the nearest 1 MHz of master
109	 * clock (= 1000000 / HZ / 2).
110	 */
111	/*return (ct1 - ct0 + (500000/HZ/2)) / (500000/HZ) * (500000/HZ);*/
112	return (ct1 - ct0) / (500000/HZ) * (500000/HZ);
113}
114
115/*
116 * Here we need to calibrate the cycle counter to at least be close.
117 */
118void __init plat_time_init(void)
119{
120	unsigned long r4k_ticks[3];
121	unsigned long r4k_tick;
122
123	/*
124	 * Figure out the r4k offset, the algorithm is very simple and works in
125	 * _all_ cases as long as the 8254 counter register itself works ok (as
126	 * an interrupt driving timer it does not because of bug, this is why
127	 * we are using the onchip r4k counter/compare register to serve this
128	 * purpose, but for r4k_offset calculation it will work ok for us).
129	 * There are other very complicated ways of performing this calculation
130	 * but this one works just fine so I am not going to futz around. ;-)
131	 */
132	printk(KERN_INFO "Calibrating system timer... ");
133	dosample();	/* Prime cache. */
134	dosample();	/* Prime cache. */
135	/* Zero is NOT an option. */
136	do {
137		r4k_ticks[0] = dosample();
138	} while (!r4k_ticks[0]);
139	do {
140		r4k_ticks[1] = dosample();
141	} while (!r4k_ticks[1]);
142
143	if (r4k_ticks[0] != r4k_ticks[1]) {
144		printk("warning: timer counts differ, retrying... ");
145		r4k_ticks[2] = dosample();
146		if (r4k_ticks[2] == r4k_ticks[0]
147		    || r4k_ticks[2] == r4k_ticks[1])
148			r4k_tick = r4k_ticks[2];
149		else {
150			printk("disagreement, using average... ");
151			r4k_tick = (r4k_ticks[0] + r4k_ticks[1]
152				   + r4k_ticks[2]) / 3;
153		}
154	} else
155		r4k_tick = r4k_ticks[0];
156
157	printk("%d [%d.%04d MHz CPU]\n", (int) r4k_tick,
158		(int) (r4k_tick / (500000 / HZ)),
159		(int) (r4k_tick % (500000 / HZ)));
160
161	mips_hpt_frequency = r4k_tick * HZ;
162
163	switch (sni_brd_type) {
164	case SNI_BRD_10:
165	case SNI_BRD_10NEW:
166	case SNI_BRD_TOWER_OASIC:
167	case SNI_BRD_MINITOWER:
168		sni_a20r_timer_setup();
169		break;
170	}
171	setup_pit_timer();
172}
173
174void read_persistent_clock(struct timespec *ts)
175{
176	ts->tv_sec = -1;
177	ts->tv_nsec = 0;
178}